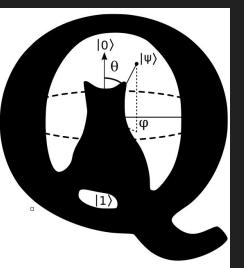
n dimensional Quantum Game of Life



0 < n <= 2

Daniel Enrique Xiang

First ... let's talk a bit about Conway's Game of Life

- Conway's Game of Life is a cellular automaton.
- ... I mean, it is a two-dimensional orthogonal grid of square cells, each of which is in one of two possible states, alive or dead.
- ... ok, imagine a board (like a chess board) where each of the squares is a cell that might be dead or alive.

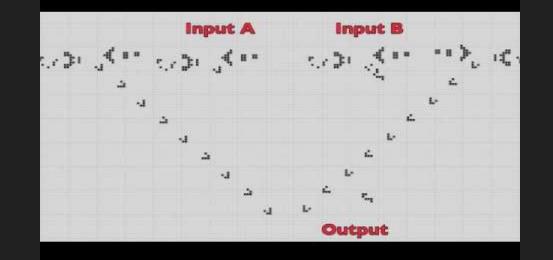
How do we decide if a cell is alive or dead?

By applying the following rules:

- Any live cell with fewer than two live neighbours dies, as if by underpopulation.
- Any live cell with two or three live neighbours lives on to the next generation.
- Any live cell with more than three live neighbours dies, as if by overpopulation.
- Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction.

Yeah but why is it interesting?

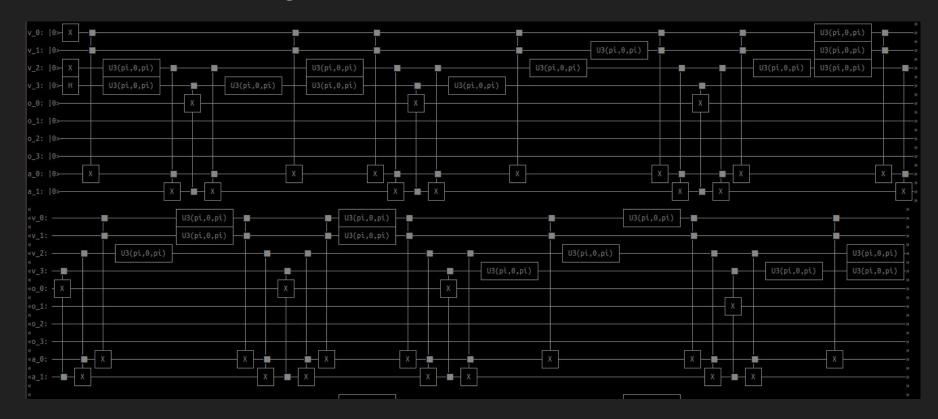
Because GOL provides an example of emergence and self-organization ...



Funny thing is ...

- You do not necessarily have to use a board to code GOL, only one row (I mean one dimension) is enough
- This is nice because this means we can code GOL with a single register
- Then if you make this register quantum and put all the qubits in a superposition, you can produce all possible results in one execution ... well, kind of.

1D GOL - QRegister + OracleTruthTable



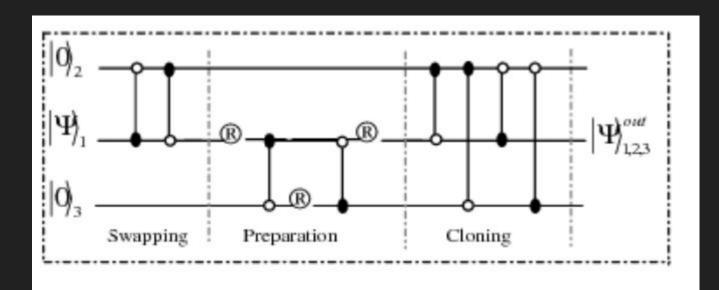
But even funnier ...

- It is to code a 2D GOL with Quantum capabilities
- We use a semi quantum kernel based on: <u>https://arxiv.org/pdf/1902.07835.pdf</u>

$\hat{D} = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$	$\hat{S} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
\hat{G}	
\hat{D}	
$(\sqrt{2}+1)(2-A)\hat{D}+(A-1)\hat{S}$	
$(\sqrt{2}+1)(3-A)\hat{S}+(A-2)\hat{B}$	
$(\sqrt{2}+1)(4-A)\hat{B}+(A-3)\hat{D}$	
D	
	$ \hat{G} \\ \hat{G} \\ \hat{D} \\ (\sqrt{2} + 1)(2 - A) \\ (\sqrt{2} + 1)(3 - A) $

And we even go full quantum!

Kernel clones the cells - but they are imperfect copies - simulating mutation!



Gives rise to complex behaviour

Quantumness spreads through the system

You can see how much this affects the evolution

By changing the amount of initial superposition!

n = 0	n = 0	n = 0
8	8	8
<i>n</i> = 16	<i>n</i> = 32	<i>n</i> = 16
*	್	
<i>n</i> = 32	n = 64	<i>n</i> = 32
·:·	Ş	000
n = 48	n = 96	n = 48
	<i>•</i> ~	۰
<i>n</i> = 64	n = 128	n = 64 ° ° ° ° °

Thank you for listening and hosting us!