{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "from solcore import material\n", "from solcore.constants import electron_mass\n", "from solcore.quantum_mechanics import kp_bands" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Material parameters" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "GaAs = material(\"GaAs\")(T=300)\n", "InGaAs = material(\"InGaAs\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "InGaAs2 = InGaAs(In=0.15, T=300)\n", "masses = kp_bands(InGaAs2, GaAs, graph=False, fit_effective_mass=True, effective_mass_direction=\"L\", return_so=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As a test, we solve the problem for an intermediate indium composition" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "comp = np.linspace(0.01, 0.25, 15)\n", "me = []\n", "mhh = []\n", "mlh = []\n", "mso = []\n", "for i in comp:\n", " InGaAs2 = InGaAs(In=i, T=300)\n", "\n", " # Set graph = True to see the fitting of the bands\n", " c, hh, lh, so, m_eff_c, m_eff_hh, m_eff_lh, m_eff_so = kp_bands(InGaAs2, GaAs, graph=False, fit_effective_mass=True,\n", " effective_mass_direction=\"L\", return_so=True)\n", "\n", " me.append(m_eff_c / electron_mass)\n", " mhh.append(m_eff_hh / electron_mass)\n", " mlh.append(m_eff_lh / electron_mass)\n", " mso.append(m_eff_so / electron_mass)\n", "\n", " print('Effective masses for In = {:2.3}%:'.format(i * 100))\n", " print('- m_e = {:1.3f} m0'.format(me[-1]))\n", " print('- m_hh = {:1.3f} m0'.format(mhh[-1]))\n", " print('- m_lh = {:1.3f} m0'.format(mlh[-1]))\n", " print('- m_so = {:1.3f} m0'.format(mso[-1]))\n", " print()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plt.plot(comp * 100, me, 'b-o', label='e')\n", "plt.plot(comp * 100, mhh, 'r-o', label='hh')\n", "plt.plot(comp * 100, mlh, 'g-o', label='lh')\n", "plt.plot(comp * 100, mso, 'k-o', label='so')\n", "\n", "plt.xlabel(\"Indium content (%)\")\n", "plt.ylabel(\"Effective mass (m$_0$)\")\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "venv", "language": "python", "name": "venv" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.8" }, "pycharm": { "stem_cell": { "cell_type": "raw", "metadata": { "collapsed": false }, "source": [] } } }, "nbformat": 4, "nbformat_minor": 2 }