{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from scipy.interpolate import InterpolatedUnivariateSpline\n", "import matplotlib.pyplot as plt\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from solcore.absorption_calculator import calculate_ellipsometry\n", "from solcore.structure import Structure\n", "from solcore.data_analysis_tools.ellipsometry_analysis import EllipsometryData\n", "from solcore.graphing.Custom_Colours import colours\n", "from solcore.absorption_calculator.cppm import Custom_CPPB as cppb\n", "from solcore.absorption_calculator.dielectric_constant_models import Oscillator" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "E_eV = np.linspace(0.7, 4.2, 1000)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Load in ellipsomery data from file..." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "Exp_Data = EllipsometryData(\"../data/ge_ellipsometry_data.dat\")\n", "Exp_Angles = Exp_Data.angles" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Load in some experimental Ge n-k to compare fit with this..." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "Ge_nk_Exp = np.loadtxt(\"../data/Ge_nk.csv\", delimiter=\",\", unpack=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Smooth the data with spline fitting..." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "n_spline = InterpolatedUnivariateSpline(x=Ge_nk_Exp[::5, 0], y=Ge_nk_Exp[::5, 1], k=3)(E_eV)\n", "k_spline = InterpolatedUnivariateSpline(x=Ge_nk_Exp[::5, 2], y=Ge_nk_Exp[::5, 3], k=3)(E_eV)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " Step 1 :: n and k modelling...
\n", "First model the Ge02 layer with the Sellmeier model" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Define Oscillator Structure" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "GeO2 = Structure([\n", " Oscillator(oscillator_type=\"Sellmeier\", material_parameters=None,\n", " A1=0.80686642, L1=0.68972606E-1,\n", " A2=0.71815848, L2=0.15396605,\n", " A3=0.85416831, L3=0.11841931E2)\n", "])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "GeO2_nk = cppb().nk_calc(oscillator_structure=GeO2, energy_array=E_eV)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Step 2 :: use this modelled n and k to calculate the ellipsometry data...
\n", "Define a structure for the optical stack..." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "stack = Structure([\n", " [4.4, 1240 / E_eV, GeO2_nk[\"n\"], GeO2_nk[\"k\"]], # Layer 1 :: GeO2 native oxide layer\n", " [350000, 1240 / E_eV, n_spline, k_spline] # Layer 2/ Substrate :: Bulk Ge\n", "])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Calculate Ellipsometry data..." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "Out = calculate_ellipsometry(stack, 1240 / E_eV, angle=Exp_Angles)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Define functions for the quick conversion of data
\n", "We show this with the angle = 79ยบ, which is the third one (i = 2)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "i = 2" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "rho = lambda psi, delta: np.tan(psi) * np.exp(1j * delta)\n", "eps = lambda r, theta: np.sin(theta) ** 2 * (1 + np.tan(theta) ** 2 * ((1 - r) / (1 + r)) ** 2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Experimental data..." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "Exp_rho = rho(np.radians(Exp_Data.data[Exp_Angles[i]][1]), np.radians((Exp_Data.data[Exp_Angles[i]][3])))\n", "Exp_eps = eps(Exp_rho, np.radians(Exp_Angles[i]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Modelled data..." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "Mod_rho = rho(np.radians(Out[\"psi\"][:, i]), np.radians(Out[\"Delta\"][:, i]))\n", "Mod_eps = eps(Mod_rho, np.radians(Exp_Angles[i]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ " Step 3 :: Data Plotting..." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fig, ax1 = plt.subplots(1, 1)\n", "ax1b = ax1.twinx()\n", "ax1.set_xlim([400, 1500])\n", "\n", "ax1.plot(Exp_Data.data[Exp_Angles[i]][0] * 1000, Exp_eps.real, lw=2, marker=\"o\", ls='none', color=colours(\"Orange Red\"),\n", " label=\"$\\epsilon_1 (\\lambda)$ :: $ %3.1f^{\\circ}$\" % Exp_Angles[i])\n", "ax1b.plot(Exp_Data.data[Exp_Angles[i]][0] * 1000, abs(Exp_eps.imag), lw=2, marker=\"s\", ls='none',\n", " color=colours(\"Dodger Blue\"),\n", " label=\"$\\epsilon_2 (\\lambda)$ :: $ %3.1f^{\\circ}$\" % Exp_Angles[i])\n", "\n", "ax1.plot(1240 / E_eV, Mod_eps.real, label=\"Model $\\epsilon_1 (\\lambda)$ :: $ %3.1f^{\\circ}$\" % Exp_Angles[i],\n", " color=colours(\"Maroon\"))\n", "ax1b.plot(1240 / E_eV, abs(Mod_eps.imag), label=\"Model $\\epsilon_2 (\\lambda)$ :: $ %3.1f^{\\circ}$\" % Exp_Angles[i],\n", " color=colours(\"Navy\"))\n", "\n", "ax1.set_xlabel(\"Wavelength (nm)\")\n", "ax1.set_ylabel('$\\epsilon_1 (\\lambda)$')\n", "ax1b.set_ylabel('$\\epsilon_2 (\\lambda)$')\n", "ax1.text(0.05, 0.9, '(b)', transform=ax1.transAxes, fontsize=12)\n", "\n", "ax1.legend(loc=\"lower left\")\n", "ax1b.legend(loc=\"upper right\")\n", "\n", "plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4" } }, "nbformat": 4, "nbformat_minor": 4 }