{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Hypothesis Testing\n", "by Maxwell Margenot and Delaney Granizo-Mackenzie. Review by Gilbert Wasserman.\n", "\n", "Part of the Quantopian Lecture Series:\n", "\n", "* [www.quantopian.com/lectures](https://www.quantopian.com/lectures)\n", "* [github.com/quantopian/research_public](https://github.com/quantopian/research_public)\n", "\n", "Notebook released under the Creative Commons Attribution 4.0 License." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Statistical inference, the practice of making predictions about a large group based on smaller samples, is traditionally broken into two segments, **estimation** and **hypothesis testing**. Estimation provides values for specific things that you may be interested in, such as mean or variance, with a provided confidence interval. A confidence interval provides a region within which you can expect to find the true value of the parameter you estimated, as an estimation will almost never be exact. Confidence intervals use a set confidence level to choose how wide the interval should be, to achieve a higher confidence, we must report a wider interval. For more information please see the [Confidence Intervals lecture](https://www.quantopian.com/lectures/confidence-intervals) from the Quantopian Lecture Series.\n", "\n", "For example, we might estimate a sample mean as $100$, with a confidence interval of $90, 110$ at a $95\\%$ confidence level. This doesn't mean that the true population mean is between $90$ and $110$ with $95\\%$ probability, as the true mean is a fixed value and the probability is $100\\%$ or $0\\%$ but we don't know which one. Instead what this means is that over many computations of a $95\\%$ confidence interval assuming underlying assumptions about distributions hold, the population mean will be in the interval $95\\%$ of the time.\n", "\n", "This gives us an idea of the specific characteristics that an overall population may exhibit, given a sample. Hypothesis testing provides a different focus, detailing a framework for statistical testing of hypothesized values. By making an assertion of what a value should be, you create a testable hypothesis.\n", "\n", "One thing to keep in mind is that statistical tests are designed such that if all the pre-requisite conditions are true, you should get the right answer about the data a certain percentage of the time. When you accept a hypothesis as true based on a test, that doesn't mean it's definitely true. It just means that you can know the probability you are wrong." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##The Null and Alternative Hypothesis\n", "\n", "The first thing we need to introduce is the null hypothesis, commonly written as $H_0$. The null hypothesis is the default case, generally reflecting the current common conception of the world. The alternative hypothesis is the one you are testing.\n", "\n", "###Examples\n", "\n", "The alternative hypothesis $H_A$ is that you own more than 10 pairs of shoes.\n", "The null hypothesis $H_0$ is that you do not own more than 10 pairs of shoes.\n", "\n", "The alternative hypothesis $H_A$ is that eating pizza is related with obesity.\n", "The null hypothesis $H_0$ is that it is not.\n", "\n", "The alternative hypothesis $H_A$ is that microsoft's mean returns > 0.\n", "The null hypothesis $H_0$ is that they <= 0.\n", "\n", "###Difficulty of Testing\n", "\n", "Some hypotheses are easier to test than others. For instance the alternative hypothesis, \"I own more than 10 pairs of shoes.\" and the accompanying null hypothesis that you do not, is easily tested by counting the number of pairs you own. However, you will still not get a perfect answer all the time in this case, as there may be measurement error in the counting, albiet quite small.\n", "\n", "On the other hand, the hypothesis, \"The number of insect species is greater than the number of stars in the universe.\" would be more difficult to test and require lots of data gathering.\n", "\n", "###Hypotheses Must be Testable\n", "\n", "A hypothesis cannot be vague, otherwise how will it be tested. For example, \"Momentum trading is a good way to make money.\" is not really testable. What does 'good' mean? What type of momentum trading are we discussing? Hypotheses should be very specific and the type of test needed should follow quickly from the hypothesis." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## How to Perform Hypothesis Testing\n", "\n", "The following are the main steps in hypothesis testing:\n", "\n", "1. State the hypothesis and the alternative to the hypothesis\n", "2. Identify the appropriate test statistic and its distribution. Ensure that any assumptions about the data are met (stationarity, normality, etc.)\n", "3. Specify the significance level, $\\alpha$\n", "4. From $\\alpha$ and the distribution compute the 'critical value'.\n", "5. Collect the data and calculate the test statistic\n", "6. Compare test statistic with critical value and decide whether to accept or reject the hypothesis.\n", "\n", "First we state the hypothesis that we wish to test. We do this by identifying a **null hypothesis** and an **alternative hypothesis**. The null hypothesis, $H_0$, is the one that we want to test, while the alternative hypothesis, $H_A$, is the hypothesis that is accepted in the case where $H_0$ is rejected.\n", "\n", "Let's say that we want to test whether the mean return of Microsoft stock is positive. The parameter that we are testing is denoted by $\\theta$ and the proposed value of the parameter is denoted by $\\theta_0$, which in this case is equal to $0$. So we say that our $H_0$ is $\\theta = \\theta_0$, that the returns are negative, and our $H_A$ is $\\theta \\neq \\theta_0$. Including this formation, there are three possible ways to formulate null and alternative hypotheses:\n", "\n", "1. $H_0: \\theta = \\theta_0$ versus $H_A: \\theta \\neq \\theta_0$ (A \"not equal to\" alternative hypothesis)\n", "2. $H_0: \\theta \\leq \\theta_0$ versus $H_A: \\theta > \\theta_0$ (A \"greater than\" alternative hypothesis)\n", "3. $H_0: \\theta \\geq \\theta_0$ versus $H_A: \\theta < \\theta_0$ (A \"less than\" alternative hypothesis)\n", "\n", "In this case, where we are testing the returns of MSFT, $\\theta = \\mu_{MSFT}$, representing the stock's mean returns. Since we are testing whether the returns are positive or negative, we have that $\\theta_0 = 0$. Our example follows the first formulation of a hypothesis test. This is a **two-sided hypothesis test** (or **two-tailed hypothesis test**). The second and third formulations are examples of a **one-sided hypothesis test** (or **one-tailed hypothesis test**). With a one-sided test, we reject the null in favor of the alternative only if the data indivates that $\\theta$ is repectively greater than or less than $\\theta_0$. A two-sided test rejects the null in favor of the alternative if the data indicates that $\\theta$ is either greater or less than $\\theta_0$.\n", "\n", "So if we were to write out our hypothesis for MSFT in more qualitative terms, we would have:\n", "\n", "\\begin{eqnarray}\n", "H_0 &:& \\text{The mean return on Microsoft stock is $0$}\\\\\n", "H_A &:& \\text{The mean return on Microsoft stock is not $0$}\n", "\\end{eqnarray}\n", "\n", "When forming a hypothesis test, the null and alternative hypothesis must be complementary to each other. Between them they must cover all values of $\\theta$. Regardless of the type of hypothesis test we are performing, we always test the null hypothesis as if $\\theta = \\theta_0$. In the case of either of the one-tailed tests, this will still provide more than enough evidence for us to make a decision. For example, if $H_0: \\theta \\leq 0$, $H_A: \\theta > 0$, and we have enough evidence to reject $H_0: \\theta = 0$ in favor of $H_A: \\theta > 0$, then this holds true for all values less than $0$ as well.\n", "\n", "The most common type of hypothesis test is the two-tailed, \"not equal to\", hypothesis test, because it presents a neutral view. The one-tailed hypothesis tests are less neutral than the \"not equal to\" test, reflecting the thoughts of the tester. One-tailed tests are often used to test \"hoped for\" results or results that the testers have a prior idea about.\n" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's get some data." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzwAAAHiCAYAAAAtXcmYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8XHW9//H3zGSyzGTf0yTdSwuF0tJSFqXQKmi84L0C\nLlwEl6v3h8BPVETgigpeFcUF8PJD1Cveq7JclSubLCLSFilQmha60C1p0yZt9j2ZZCZz5vz+mMwk\nbbNMlnOSTl7Px8OHNJmZ881haOfdz+f7+TpM0zQFAAAAAHHIOdULAAAAAACrEHgAAAAAxC0CDwAA\nAIC4ReABAAAAELcIPAAAAADiFoEHAAAAQNxKsPLFN2/erJtuukmLFi2SJJ1yyin64Ac/qJ/85CdK\nSEiQx+PRD3/4Q6WlpVm5DAAAAAAzlKWBR5JWr16t+++/P/rrK664Qj/5yU80Z84c/fznP9fjjz+u\nz3/+81YvAwAAAMAMZHlL2/Hnmubm5qqlpUWS1N7erqysLKuXAAAAAGCGcpjHJ5JJtHnzZt11112a\nM2eO2tvbdcMNN6iwsFDXXHON0tPTlZmZqUcffVQOh8OqJQAAAACYwSwNPPX19dq6davKyspUXV2t\na6+9VrNnz9aXv/xlLV++XPfcc4+Ki4t19dVXD/sa5eXlVi0PAAAAQBxZuXLlCV+zdA9PQUGBysrK\nJEmlpaXKzc3V/v37tXz5cknS+eefr2effXbU1xlq4TNJeXn5jLoHM+3nHQn3gnsQwX3gHgzGvQjj\nPnAPBpvp92Km//zS8IUSS/fwPPPMM3rggQckSc3NzWpublZ2drYqKyslSTt27NDs2bOtXAIAAACA\nGczSCs+6det0880366qrrpJpmrrzzjuVnp6uO+64Q263W5mZmfre975n5RIAAAAAzGCWBh6v16uH\nHnrohK8/9thjVl4WAAAAACTZMJYaAAAAAKYKgQcAAABA3CLwAAAAAIhbBB4AAAAAcYvAAwAAACBu\nEXgAAAAAxC0CDwAAAIC4ReABAAAAELcIPAAAAADiFoEHAAAAQNwi8AAAAACIWwQeAAAAAHGLwAMA\nAAAgbhF4AAAAAMQtAg8AAACAuEXgAQAAABC3CDwAAAAA4haBBwAAAEDcIvAAAAAAiFsEHgAAAABx\ni8ADAAAAIG4ReAAAAADELQIPAAAAgLhF4AEAAAAQtwg8AAAAAOIWgQcAAABA3CLwAAAAAIhbBB4A\nAAAAcYvAAwAAACBuEXgAAAAAxC0CDwAAAICTRmtHr15685BCITOmxydYvB4AAAAAmDT/u75CT26o\nlCfFrfcsmzXq46nwAAAAADhp1DR0SZJe2VId0+MJPAAAAABOGkcbw4GnfE+9OroDoz6ewAMAAADg\npGAYIdW3+CRJQcPU3985MupzCDwAAAAATgr1rT4ZIVPLF+XJ4ZDWl9eM+hyGFgAAAAA4KRxt7JYk\nnb4gR5L09v5G1TZ1qyjXO+xzqPAAAAAAOCkcbQrv35mVm6r3nBme0La9onHE51DhAQAAAHBSqO2v\n8BTledXlCw8saGnvHfE5BB4AAAAAJ4WjTeHAMyvXq6a2cLNaS6d/xOcQeAAAAACcFI42dSkzLUme\nZLeyM8Jfm9IKz+bNm3XTTTdp0aJFMk1Tixcv1m233aZbb71Vhw8fVmpqqn76058qLS3NymUAAAAA\nsMiW3fX61dM79Z3rzldORopl1+kLhtTQ4tOSudmSJG9yghLdLrV09Iz4PMsrPKtXr9b9998f/fWj\njz6qnJwc/fjHP9Yf/vAHbdmyRWvXrrV6GQAAAAAsUL6nXjUNXdq6p0EXnzPHsuvUt3QrZIYHFkiS\nw+FQTnqyWjpGrvBYPqXNNM1jfv3KK6/osssukyR99KMfJewAAAAAJ7HW/j00+2vaLL1OdP9O3sAI\n6qz0JLV1+mUYoWGfZ3ngqays1PXXX6+rr75amzZt0pEjR7RhwwZdc801uvnmm9XR0WH1EgAAAABY\npC0SeKotDjyNkYEFqdGvZacnK2RKbV3DDy5wmMeXYCZRfX29tm7dqrKyMlVXV+vaa69VQkKCvvzl\nL+tDH/qQfvazn6mzs1Nf+9rXhn2N8vJyq5YHAAAAYIJ++kydWjqDcjqlf/tosRJcDkuu89QbLdp2\nwKfryvJVmJUoSXqhvE1v7O3S5z+Qr+KcRK1cufKE51m6h6egoEBlZWWSpNLSUuXm5qq5uVmrV6+W\nJL33ve/VAw88MOrrDLXwmaS8vHxG3YOZ9vOOhHvBPYjgPnAPBuNehHEfuAeDzfR7MdTPHwqZ2rK7\nXiUFqcdURSZbzxN/7r+elFO0UAtLMyf19Y2QqUde2K1tB3xK9ybq/ReuVpLbJUk61LFfb+x9V4XF\n86TeI0M+39LA88wzz+jQoUO68cYb1dzcrJaWFl155ZXauHGjLr/8cu3atUvz5s2zcgkAAADAjLR1\nb4P+/eE3JUlzi9J17ulFOu+MIs2blS6HY3KqML3+oHr8weiv99e0TWrg6erp048fKdeW3fUqyvXq\n658ZCDtSuKVNkpo7epWfOPRrWBp41q1bp5tvvllXXXWVTNPUnXfeqbPPPlu33nqr/vjHP8rr9eoH\nP/iBlUsAAAAAZqTI9LLivFTVNHTp8Zf26vGX9io/26Pz+sPPkrnZcjnHH34ie2fmz8rQgaPt2n+4\nVWXnzY35+Y2tPXpqY6U+fvEpSvMcm1iq6zv13V+/qSON3Tprcb5u+eRKpR73mOyMcOBpae9Vft7Q\n17A08Hi9Xj300EMnfH3wmGoAAAAAky9SefnUP5yqMxflqXxPg97YUau3dtfrqY2VempjpTJTk3TJ\nuXN0Tdmp47pGa0c48CxblKuaxi5VjHFS24tvVumpjZXqCxr6whVnRr++eVedfvRIuXr8QV2xdqGu\n+dBpQwazSIWnpaNXmorAAwAAAGBqRAJPSlKCPMluXbC8WBcsL1Zf0NA7+5v0+o5avfbOEf3+r/v0\nkQsXnFA9iUVrZ7iKlJORogXFGdp7uFX+PuOYtrORVB0NT2x+8Y1D+sc1C1SY49XvX96nR17Yo0S3\nS7d8cqXWrCgZ9vnHBB65h3wMgQcAAACIQz29A4FnMHeCS6tOLdCqUwvkdDr0wutVam7vHWfgCVd4\nstKStLA0U7urWnTwSLuWzM2O6fkHazvkcIQHE/zq6V1yuRx6fUet8rJS9PVPr9aCkpH3A3mS3UpO\ndKmlncADAAAAzCiDKzzDye3fA9Pc3qs5ReljvkakwpOVnqT5szIkSYfqOmIKPN09fWpo8Wn5ojz1\n+IPa/G6dJOmMBbm69dpVykhNimkN2enJaunslZQ25PctP3gUAAAAgP0GAs/QlQ9JyukPPE3tPeO6\nRlu0wpOs9NRwhai7py+m5x6qC7ezzZ2Vrs/94+nyprh12QXz9e3/c17MYUcKDy5oH+HgUSo8AAAA\nQByKBp7k4T/y52SkSApXeMYjMrQgKy1JHd0BSVJ3b3Ckp0Qd7N+/M29WupbMzdaj3y6TcxwT47LT\nk2Waw3+fCg8AAAAQh6KBJ3H4AQI50Za28VV4Wjt7leByypvilqc/WPl6Y6vwVNVGAk+4FW48YUca\nGFwwHAIPAAAAEId8/qCSEl1yuYb/yD/hCk+nX1npSXI4HPIkh1vnfDFWeKqOtsvldKgkP3Vc146I\nhLbhEHgAAACAONTTGxxxYIEkeZITlJLkGleFxzRNtXX6lZWWFH0tKbYKTyhkqqq2QyX5qXInxDbC\nejhUeAAAAIAZqMffN2rgcTgcyk5PGVeFp7unT0EjpKy0cODwJEUCz+gVnvoWn3oDhuYWZYz5usfL\ny/SM+H0CDwAAABCHevyjV3gkKTczWR3dAQX6jDG9fuQMnsz+Co/L5VRyokvdMVR4qmrbJYUHFkzU\n4jlZuv6KZcN+n8ADAAAAxJlQyFSP34gp8ET28bR0jK3KEz2DJ22gpcyTnBBThScyoW3uJAQep9Oh\nsvPnDf/9CV8BAAAAwLTSGxj90NGI6Fk8bWPbxxMdSZ0+cGaOJ9kd0x6eyBk8cwonHnhGQ+ABAAAA\n4kxkJLVnDBWe5vZe7aho0ie/9bwO9weSkbR2DpzBE+FNdsdU4amu75QnOWHUCWuTgYNHAQAAgJNY\na2ev3trfpfV7y5XgdOrGjy2P6dDRiIGzeHq1ZXe92rsC2ne4VbNHqb60DdHSlpKcoL5gSH1BY9jp\na0EjpKON3VpYmimHY3xn74wFgQcAAAA4if3od+XaXtEmqU2SdPnahWNqacvtr/A0tvpUvqdBktTp\nG74tzQiZen3HUb22/aikgaEFUrjCI0ndPUFlpg0deGqbumWETM0uSBt1bZOBwAMAAACcxI42dik1\n2anVpxfrb1uq1dEdkBEKSRrbHp43dtWp0xeQpOj/D+W+x7Zq/dYaORzSRStLlJ81MBY6ehaPv++Y\nIDTY4fpOSVIpgQcAAADASEIhUy2dfhVnuzW/OEN/21Kt9i6/XM5wq1gsgScjNUkup+OYoQXDVXgC\nfYZe235URble3fm5czUrL/WY73v6Kzy+nuH38VTbHHgYWgAAAACcpNq7/QqFTKWluJThTQx/rcs/\nsIcnhsDjdDqUfdzwgM7uoSs8+6vb1BcM6exTC04IO5Lk7a/wjHQWT3VdOPDY1dJG4AEAAABOUi3t\n4cEBaSkuZaSGW8jauwNjCjySlJMeDjxL5+dIGr6lbeeBpmMed7yUSIVnhElth+s7lZzoUm5mSkxr\nmygCDwAAAHCSihwWmuZxDgSeTv+YprRJUk5/+Dj39EJ5khOGDTy7KpslDR94IhWe4c7iMYyQjjR2\nqaQgTU6n9RPaJAIPAAAAcNKKBp4UlzJS+1vaugPyjbHCc0ppphLdLp17epFSPYlD7uExjJD2HGpR\nSX5qNFwdzzNKhae+xae+YMi2djaJwAMAAIAZ4q136/Sdh9+MVj/iweCWtnRvf4VnjHt4JOkfL1yo\n33zrAyrM8Srd4x6ywnPgaLt6/Maw1R1p0JS2YSo8dk9okwg8AAAAmCH+8uYhvbmrTq+9c3SqlzJp\nmgdVeNwJTnlT3Grr8qunv8LiibGlzeV0yJsSrs6kehLlDxgK9BnHPGbXgXA72+kjBJ7Ia3QPU+GJ\nTGijwgMAAABMssP908E2bquZ4pVMnuZIhccTPuQzMzVRHV1jH1owWLon3Bp3fJVnZ//+ndNGCDyR\n6w1X4YkEnpKCEye8WYXAAwAAgLgX6DNU19wtSXqnokltnf4pXtHkaOnoVXKiS0kJ4QEA6d4kdXT7\n1d0TDhzjCTypnnCVpmvQPp5QyNS7B1uUn5VyzEGjx4tUeIbawxM0Qnpnf6O8yQkqyPaOeV3jReAB\nAABA3DvS2KWQKSUnuhQKmXrtnSNTvaRJ0dLRq+z0ZDkc4cCTmZakkCk1tPbI6ZCS3K4xv2Za/3k+\nHYMqPNUNner0BUbcvyONvIdn8646tXT4tXZVafRgVDsQeAAAABD3DvW3s1363vlyOKSNb5/8gSdo\nhNTe5T/m0ND0/rBS3+JTSlJCNAiNRVp/S1vXoMAT2b8zWuBJcrvkdDqGrPA8/3qVJOmD580d85om\ngsADAACAuBfZO7J8UZ7OWJCrdw+2qKHVN8Wrmpi2Tr9MU8pOHwg8mf3jooNGaFztbNJA4OnoHqjS\njHb+ToTD4ZA3OUHdx1V4jjZ16e19jVo6P0dzCtPHta7xIvAAAAAg7h2u65AkzS5M0wXLiyVJfz/J\nqzzN7T2SpJyMlOjXBp+PE+uho8dLi+7hCVd4TNPUroPNykxNUnHe6MMGUpLdJ1R4Xnz9kCT7qzsS\ngQcAAAAzwOG6TqV53MpMS9L5y2bJ5XRow7aTO/BEDh0dXOGJHD4qjW9ggTSwhycypa2+xafm9l4t\nnZ8TU4ucNznhmD08gT5DL20+rHRvot6zrGhca5oIAg8AAADiWmRC2+zCdDkcDqV7E7Vicb4OHGlX\nTUPnVC9v3CKHjuYcE3gGVXgm2NLW2T+lbWAcdXZMz/cku9XjDyoUMiVJm7YfVacvoItXz5Y7YexD\nFCaKwAMAAIC4FpnQVjrosMsLV4Tb2jaexFWeyKGjg4cWTG7gCVd43j0YOXA0N6bne5ITZJpSbyDc\n1hYZVvCBc+eOaz0TReABAABAXItMaJs9KPCcc3qREt0ubdxWI9M0p2ppE2JVS5s3xS2HYyDw7DzQ\nLG9yguYUxTZswJsc3gPU3RPUodoOvXuwRStOyVNRrn1n7wxG4AEAAEBc2ne4VRu31URHKs8uHAg8\nKUkJOvu0Ah1p7FblkfapWuKERFrastIHqjrpnokHHpfTIW+yW53dATW396i2qVunzsuJ+eycyLAE\nn79PL7xeJUkqO3/uuNYyGcZ3FwAAAIBpLNBn6Js/36TuQdPCBgceKdzW9to7R7Vx2xEtLMm0e4kT\n1tLRK2+KW8mJAx/pXS6n0jyJ6vQFxh14JPW/Rp/ePdAiafRx1INFKjwt7b36W3m1stOTdfZpheNe\ny0RR4QEAAEDcKd9Tr+7eoJYvytN5ZxTpQ+fPjZ5RE7FySYE8yQl69e0j0Q32J4tOX0B1LT7lDtq/\nExFpaxvvWGpJSvO61ekLaOeBJknS6WMIPJ7+677wRpV8vUFdcs4cJbimLnZQ4QEAAEDciYyc/vSl\np2nBMNWbRLdL551RpJffqtbuqpYxVTGm2m+e2y1/wNC6VaUnfC8jNUk1DV0TqvCkehLVFwxp694G\nJbpdw97DoXj6Kzyv76iV0yFdcs6cca9jMlDhAQAAwLTQ0OrTdd//q8r31E/odXy9fXprV52K81I1\nvzhjxMeuWVEiSdq4rWZC15yIUMjU7/+6T09uqIzp8fsOt+rFN6pUWpCmD69ZcML3I5UsT5J73GtK\nSwlXieqafVoyJ0vuhNhjg7e/wmOa0tmnFSovK2WUZ1iLwAMAAIBpYdP2Wh1p7NabO+sm9Dpv7qpT\nIBjShSuKRz0o88yFucpITdRr24/KMEITuu54BI2Q7nt8q377/G797oXdo7bWGSFTP3viHZmm9IXL\nlw3ZKpY+SS1tEWOtfHlSBp47lcMKImhpAwAAwLSwoyK8X+RIY9eEXidyts6as0pGfazL5dR7ls3S\nc5uq9M7+Jp21JH9C1x5KVW2Hfv3sLgWDJwaq9i5/dGy2P2Coub13xIrIi29UqaKmXRedVaIzFg59\nLk5uRvj56d7EIb8fi7RB096Wzhtj4OlvpcvP9mjFKZN/P8fK0sCzefNm3XTTTVq0aJFM09TixYt1\nxx13SJJeffVVff7zn9eePXusXAIAAABOAkbI1K7+DfI1DeMPPP4+Q9v2Nmj+rAwV56XG9Jw1K0r0\n3KYqvbGz1pLA84eX92nrnoZhv3/O0kIV5Xr15IZK1TR0Dht42jr9+s1zu+VJTtBnL1s67Ot96Py5\nyk5PGtOggeNFAo/L6dDiOVljem5pQZpyM1N01cWL5YxxlLWVLK/wrF69Wvfff/8xXwsEAvrFL36h\n/PypT3wAAACYegePtEdHSLd09MrX2xfd/D4WrR29MkKm5s6K7ZBMSVpUmimHY2JBazi+3j69sbNO\nRble/exr66QhWuxcTkd0D1FNQ5dWLB76M/J//XmXunv69Pl/Ol1Z6SdOZ4tI9STq/asnNiggzRO+\n9wtLM5U8xuEHGalJ+vU3LpnQ9SeT5Xt4hjq59qGHHtI111wjt3v8G6kAAAAQP7b3t7NlpoU33B9t\n7B7X67R2+CVJWWlJozxyQKLbpZz0ZNU2j++aI3l9R60CfYbWriyVy+WUy+k44X+SotWomobOIV/n\n3YPNevmtas2flaF/OH/epK/zeNn9467PWDB029zJxPLAU1lZqeuvv15XX321Nm3apKqqKlVUVOiS\nSy4ZMgwBAABg5tlRGQ48F6+eLUmqGec+ntbOXklSZtrwFZChFOZ61dzeo0CfMa7rDueV8mpJ0tqV\nI+8nigSeofYvGUZIP3tiuyTpC1csk8uGM21On5+rL31ihT76vkWWX8tqlra0zZkzRzfeeKPKyspU\nXV2ta6+9VgsXLtRdd91l5WUBAABwEjGMkHYdaNasXK/OWJCrP7y8X0f628t++/xu5Wd59IFzY2vR\nau0ce4VHkopyvNpZ2az6Fp9KC9LG9gMMo6mtR9srmnTq3GwV5nhHfGxyUoLyslKGbKt79rWDqqrt\n0MWrZ2vJ3OxJWdtonE6H3nf2bFuuZTWHaWOZ5QMf+IBqamp0xhlnyDRNvfvuu1q+fLl++9vfDvuc\n8vJyu5YHAACAKVDTFNB//qVBKxd6dcHSNN33VJ2Wzk7R+5dn6P6n65SdmqAvfrgwptf62/Z2bdzZ\nqU+9L1fzCmKv8ry6q0Mvv9Ohqy7M0eLiyTk3Zv2ODq3f0aF/ODtTZy8afYDCb/7WqAN1ft3+0VlK\ncoerOB0+Qw88WyenU/q/lxbKm+yalLXFq5UrV57wNUsrPM8884wOHTqkG2+8Uc3NzQoGg9q+fbtc\nrvC/qHXr1o0YdiKGWvhMUl5ePqPuwUz7eUfCveAeRHAfuAeDcS/CuA/xcw8O/m2/pAatO3eJ3ntm\nsR587s/qCSaq25ErqU7tPkPLl68YsZUrci9eP/C2pE6ds3LZmCo1PtcRvfzOFqVmFmnlyhMP8xyr\nrXsbtHHXG0rzJOqTHz5PqZ7RR0RvObxdB+oOKr94kRaWZsoImfrmzzcpEDR1/ZVnas15c4d9bry8\nFyZiuEKJpQ2A69at086dO3XVVVfphhtu0J133hkNO5JGPQgKAAAA8S9y/s4ZC3LldDpUnOfVkaYu\nvbGzVlJ4ZHVjW09Mr9U2gZY2SZMyuODg0XZ9/7/fksvp0Dc+e05MYUeSSvLDAS0yuOB/Xtqr7RVN\nWn1aoT4YY0sfTmRphcfr9eqhhx4a9vsvv/yylZcHAADANBc0Qnr3YLNK8lOjo5aL81J18GiHdlY2\nRx9X29Q96j4YKTy0IMHllDdlbNOAC3O90etM1MPP7FKPP6hbr12lU+fFvuemJDqprUtv72vQ4y/t\nVX5Wir501QoKBRNg/YgHAAAAYBgV1W3qDRg6Y+HA+OPi/IH9LnMKw1WPuhgrL62dfmWlJ405IKSm\nuJXmSYz5OoNV13eq0xeI/rquuVvZ6cl675nFY3qdkoLwz73zQLN+/MhWuZwOfe2aVdFDQDE+BB4A\nAABMmcj5O8sGBZ5IpUOS/unC8H6aozFUXkzTVGuHX5mpY2tniyjK9ai+xScjFPtMr9aOXt30k/X6\nz6d2RtfQ0uFXdvrY15CdnqyUJJd2HWhWW5dfn7l0qRbPsWcqWzwj8AAAAGDKRM7fOX3+iRWe4jyv\nVp0ans4WS+Wlu6dPQSOkrDGewRNRmONV0DDVHON+IUkq39OgvmBI1fXhfTfdvUEF+gxlp4990pvD\n4VBx/z6e884o0mUXzB/za+BElu7hAQAAAIbTFwxpd1WLZhemKXPQkIG5RelatjBXF55VoozURKUk\nuVTX7Bv19aJn8IyjuiINGlzQ1K3KI+0KBkO6YMXIbWlb9zZIkprbwyGptaN3QmtYe1aJUhIT9MWP\ns29nshB4AAAAMCX2HW6VP2Bo2YLcY77uTnDpu194T/TXRTmpOtLUJdM0RwwBrZ3hsJE5xglt0ev0\nDy7YsK1GL2+pltPh0NmnFSg5aeiPzIYR0rb+wNPa6VfQCKmlPbyGnPTxVZk+vGaBPrxm4mOxMYCW\nNgAAAEyJSDvb4IEFQynM9cgfMKIVnOEMjKQef0ubJL20+bBCIVNBI6RdB5uHffz+6jZ19fRJkkxT\naunoVXN/hSc7Y3xrwOQj8AAAAGBKRM7fWTo/Z8THDW41G0nrOM/giV4nd2DsdWSIwra9jcM+vnxP\nuLpT3D9koamtZ1BLG4FnuiDwAAAAwHZ9QUN7qlo0tyhdGaNMVYtUXkYbXBANG+Os8GSlJakwx6Ol\n83N0x2fPUaLbpbf3NQz7+PI99XI5HVq3qlSS1NzWq5ZIhYfAM22whwcAAAC223OoVYFg6Jhx1MOJ\nVF5qRws8Exxa4HA49ODX1snpcMjlcur0+TnaurdBze09ysk4dupae5dfFTVtWjo/R6UF4clqTe09\nBJ5piAoPAAAAbLezIrb9O1LsLW2RPTzjPYdHCg9McLnCH5FXLM6TJL2z/8S2tm17G2Sa0solBcrN\nDIebSOBxOjRq1Qr2IfAAAADAdtsrm+RwSKePsn9HknIyU5Tgcoze0tbZq5Qk17BT1cZq+Sn5kqRt\n+04MPOX909lWLslXbn/1p7mtN3zwaVqSXE5GSk8XtLQBAADAVv4+Q3uqWjVvVoZSPYmjPt7ldKgg\n26PappHP4mnt9CtznPt3hjKnME1ZaUl6e1+jQiFTzv4QEwqZ2ra3QdnpSZpblC7TDK+xqa1HzR29\nml2QOmlrwMRR4QEAAICt9lS1KGjEtn8noiDbq05fQD3+4JDfD4VMdXT5xz2hbSgOh0NnLMhVW6df\n9S0DYavySJvauwI6a3GBHA6HnE6HcjKSVd3QqUCfwYS2aYbAAwAAAFtFz99ZEHvgycsKt401tA5d\n5fH5QwqZ45/QNpx5xRmSpKrajujXIuOoV56aH/1abmaKfL3hMMbAgumFwAMAAABbVda0S5JOnZcd\n83PyszySpMbWniG/39wZDhuTWeGRpLlF6ZKkQ3UDgWfrngY5HdLyRXnRr+UOmuJG4JleCDwAAACw\nVaDPkCR5xjBcID87HHgGt5YNVl4RHmiw6rSCCa7uWHMKw4Gn6mg48HT5Atp7qEWL52Qfs/8oJ5PA\nM10ReAAAAGArI2RKUnQIQCzy+1vaGodoaWtu79HOQz6VFqTqrMX5J3x/InIzk+VNcUdb2rbta1TI\nDE9nO+ZxGQMhh8AzvRB4AAAAYCvDCMnldMjhGEvgCVd4GoZoafvzawcVMqUPX7BgTK8ZC4fDoblF\n6apt6pK/z9DWyP6dJcdWkqjwTF8EHgAAANjKCJljPqcmKz1ZLqfjhKEFvYGgXni9SilJTq1dVTqJ\nqxwwpzBNIVM6XNehrXvrlZGaqPn9wwwijqnwZBB4phMCDwAAAGxlhEy5XGMLPC6nQ3lZKWo4bg/P\nK+U16vQ206U+AAAgAElEQVT1adVCr5LcrslcZtTcWeFws35rjVo6/FqxOP+Edrzc/gqP0yFlpE7u\n4ARMDIEHAAAAtgqFTLmcY/8Ymp/lUWunPzr0IBQy9fTGSiW4HFp9inWHfc7tH1zwlzcOSTqxnU2S\nMtOS5XQ6lJmWNObqFawV+2gMAAAAYBIEjdCYKzzSwFk8TW09mpWXqq17G1TT0KW1K0uUljLKkydg\nTlGaJKk3YMjhkFacknfCY1xOh1afVqB0L9Wd6YbAAwAAAFuNZw+PNHhwgU+z8lL11MZKSdI/rlmg\ntvrKSV3jYJ5kt/KzPWpo8WlRaeawLWtf/8w5lq0B40dLGwAAAGxlhEw5x9nSJkn1LT06VNuht/c1\n6vQFOVpQkjnZSzxBpK3trMWTe84PrEfgAQAAgK1CRkgJ42hpy88eOItncHXHDkvnZ8vpkM47o8iW\n62Hy0NIGAAAAWwVDppIm0NK2v6ZNOyqaVJTj1dmnFU728ob04TUL9J4zi1WQ7bHlepg8BB4AAADY\nyjDG19KWk5Eih0PRwz8vu2C+bRPRElxOws5JipY2AAAA2CoUGl9LmzvBqZz08KGe3uQEvX/17Mle\nGuIQgQcAAAC2Co5zSpsk5fW3tV1y7lylJNGshNEReAAAAGArwxjfwaOStKg0UylJLl363nmTvCrE\nK2IxAAAAbBUKheQcZ4Xn05cu1cfef8qwZ+EAx6PCAwAAANuEQqZCZngIwHi4E5yEHYwJgQcAAAC2\nMUKmJNk2XQ0g8AAAAMA2RigkSXKOY0obMB4EHgAAANgmRIUHNiPwAAAAwDaRlrbx7uEBxop3GgAA\nAGwTNPpb2qjwwCYEHgAAANiGljbYjcADAAAA2xgGgQf2IvAAAADANuzhgd14pwEAAMA27OGB3RKs\nfPHNmzfrpptu0qJFi2SaphYvXqzPfe5zuv322xUMBuV2u/XDH/5QOTk5Vi4DAAAA0wR7eGA3SwOP\nJK1evVr3339/9Ne33XabPvaxj6msrEyPPPKIHn74Yd1yyy1WLwMAAADTAC1tsJvlgcc0zWN+/a1v\nfUtJSUmSpOzsbO3evdvqJQAAAGCaMEK0tMFelkfryspKXX/99br66qu1adMmpaSkyOl0KhQK6dFH\nH9Wll15q9RIAAAAwTTClDXZzmMeXYCZRfX29tm7dqrKyMlVXV+vaa6/VSy+9JKfTqVtuuUXz58/X\nDTfcMOJrlJeXW7U8AAAA2OxQg1+//mujLliapvedmTHVy0GcWbly5Qlfs7SlraCgQGVlZZKk0tJS\n5eXlqb6+Xj/96U81b968UcNOxFALn0nKy8tn1D2YaT/vSLgX3IMI7gP3YDDuRRj34eS8B+6KRumv\njSotnqWVK5dM2uuejPdiMs30n18avlBiaUvbM888owceeECS1NzcrObmZr311ltKTEzUjTfeaOWl\nAQAAMA1FWtqcLlraYA9LKzzr1q3TzTffrKuuukqmaepb3/qWHnzwQQUCAV1zzTVyOBxauHChvvnN\nb1q5DAAAAEwTRnQsNVPaYA9LA4/X69VDDz10zNfWrFlj5SUBAAAwjRn9B48ytAB2IVoDAADANtEK\nDy1tsAmBBwAAALahpQ12450GAAAA29DSBrsReAAAAGCbgQoPgQf2IPAAAADANgN7ePgYCnvwTgMA\nAIBtqPDAbgQeAAAA2Ca6h4cpbbAJgQcAAAC2YUob7MY7DQAAALYxDM7hgb0IPAAAALCNEWIsNexF\n4AEAAIBtGFoAuxF4AAAAYJuBljY+hsIevNMAAABgG1raYDcCDwAAAGwTrfAQeGATAg8AAABsw1hq\n2I13GgAAAGwTbWljLDVsQuABAACAbZjSBrsReAAAAGAbprTBbrzTAAAAYBumtMFuBB4AAADYhqEF\nsBvvNAAAANgmFG1po8IDexB4AAAAYJsgLW2wGYEHAAAAtmFoAezGOw0AAAC2YSw17EbgAQAAgG1C\nBB7YjMADAAAA2wQN9vDAXgQeAAAA2CbS0uYk8MAmBB4AAADYJhQy5XI65HAQeGAPAg8AAABsY4RC\ntLPBVgQeAAAA2CZomBw6ClsReAAAAGCbcEsbH0FhH95tAAAAsI0RClHhga0IPAAAALCNYZjs4YGt\nCDwAAACwTTBkyklLG2zEuw0AAAC2CRkhJdDSBhsReAAAAGAbI0RLG+xF4AEAAIBtDFraYDPebQAA\nALCNQUsbbEbgAQAAgG1oaYPdCDwAAACwjcHBo7AZ7zYAAADYxjBCclLhgY0SrHzxzZs366abbtKi\nRYtkmqYWL16sz33uc7rllltkmqby8vJ0zz33yO12W7kMAAAATAOhkKmQKSW4+Dt32MfSwCNJq1ev\n1v333x/99e23365rrrlGl1xyie6991498cQT+sQnPmH1MgAAADDFQqYpSezhga0sj9dm/xs7YvPm\nzVq7dq0kae3atdq0aZPVSwAAAMA0YITCnwudTGmDjSyv8FRWVur6669Xe3u7brjhBvX29kZb2HJy\nctTY2Gj1EgAAADANGEZIEhUe2MthHl+CmUT19fXaunWrysrKVF1drWuvvVY+n09vvvmmJOnw4cO6\n9dZb9dhjjw37GuXl5VYtDwAAADby+UO654mjWlKSrE+syZ3q5SAOrVy58oSvWVrhKSgoUFlZmSSp\ntLRUubm52rlzpwKBgBITE1VfX6/8/PxRX2eohc8k5eXlM+oezLSfdyTcC+5BBPeBezAY9yKM+3Dy\n3YO2Tr/0xFHl5GRP+rpPtnsx2Wb6zy8NXyixdA/PM888owceeECS1NzcrObmZl1++eV64YUXJEkv\nvviiLrjgAiuXAAAAgGnCCNHSBvtZWuFZt26dbr75Zl111VUyTVN33XWXlixZoltvvVW///3vNWvW\nLH3kIx+xcgkAAACYJgyDKW2wn6WBx+v16qGHHjrh6w8//LCVlwUAAMA0FJnSxjk8sBPvNgAAANgi\n0tLmpMIDGxF4AAAAYItIhYeWNtiJwAMAAABbRPbw0NIGO/FuAwAAgC1oacNUIPAAAADAFrS0YSoQ\neAAAAGCL6FhqWtpgI95tAAAAsEWkpS2BCg9sROABAACALSIVHqeLwAP7EHgAAABgi4E9PHwEhX14\ntwEAAMAWIYYWYArEFHja29v1gx/8QF/96lclSX/729/U0tJi6cIAAAAQX4JGeA+Pi5Y22CimwHPH\nHXeoqKhINTU1kqRAIKBbb73V0oUBAAAgvtDShqkQ07utpaVF1157rdxutyTpgx/8oHp7ey1dGAAA\nAOIL5/BgKsQcr/v6+uRwhN+cTU1N8vl8li0KAAAA8SfUP5aawAM7JcTyoE9+8pO68sor1djYqOuu\nu047duzQ17/+davXBmAG8PX2yd9nKCsteaqXAgCwWJCDRzEFYgo8ZWVlWrFihbZt26bExER9+9vf\nVn5+vtVrAzAD3PPbLdpd1aIffXGNSgvSpno5AAAL0dKGqRBTvK6oqNAjjzyisrIyve9979O9996r\nffv2Wb02ADPA0aZu+XqD+t5/bZavt2+qlwMAsFCIKW2YAjEFnrvuuksXXnhh9NdXXHGFvv3tb1u2\nKAAzR0d3QJJU09Cl+x7fJtM0p3hFAACrMKUNUyGmljbDMLRq1arorwf/MwCMl2GE1N3Tp9PmZcs0\npdd31OpwfafmFKZP9dIAABYY2MNDhQf2iSnwpKWl6dFHH9U555yjUCikV199VV6v1+q1AYhznb5w\nC1tWWrLOXJSr3VUt2lPVQuABgDhlMKUNUyCmeuLdd9+tXbt26Utf+pK+8pWvqKqqSnfffbfVawMQ\n5zq6/ZKkdG+ilszNliTtqWqdyiUBACwUYmgBpkBMFZ7s7Gx997vftXotAGaYSIUnzZuo2YXpSkly\nae/hlileFQDAKoylxlQYMfB86Utf0n333acLL7wweujoYOvXr7dqXQBmgMEVHpfToUWlWdpe0aQu\nX0CpnsQpXh0AYLLR0oapMGLgueOOOyRJjz76qC2LATCzRCa0pXvD4WbJ3Gxtr2jS3sOtWrmkYCqX\nBgCwAC1tmAoj1hNzc3MlST/4wQ9UXFx8wv8AYCIigSetv5qzZE6WJPbxAEC8Yiw1pkJMe3hmz56t\nP/7xj1qxYoUSEwfaTEpLSy1bGID4d3yFZ/Gc/sEFh+zfx2OapvYeatUps7Pk5G8eAcASQQ4exRSI\nKfA899xzcjgcxxwI6HA49PLLL1u2MADx7/jAk+5NVHGeV/sOtyoUMm0NHlt21+vbv3pTX75qhdat\nmm3bdQFgJjFoacMUGDHwdHV16cEHH9Qpp5yiVatW6VOf+pTcbrddawMQ544PPFK4yvO3LdX6xs83\naXZBmhbnG7aspbapW5K0s7KZwAMAFonu4WFKG2w04rvtzjvvlCR9/OMfV2VlpR588EE71gRghuj0\nBZTgciglaeDvXi46q0QZqYnaXtGkZ187qCdfbzmmumyVSPjaX91m+bUAYKYyDCo8sN+IFZ4jR47o\nRz/6kSRpzZo1+vSnP23HmgDMEB3dAaV7E48Ze79icb5+d1eZev1B3f3fb2nr3gZt2Fqji1Zau2cw\nEngO13Wo1x9UclJMHb8AgDEIRsdSU+GBfUZ8tyUkDPyB73K5LF8MgJmlozsQndB2vOSkBH3himVy\nuxz65VM71d7lt3Qt7f1nAoVMqfJIu6XXAoCZKhQ9eJQKD+wzYuA5/rDRoQ4fBYDxMIyQunv6lO5N\nGvYxhTlerV2Wro7ugB5+Zpel64lUeCSpooa2NgCwAkMLMBVG7NnYtm2bLrroouivm5ubddFFF8k0\nTTkcDq1fv97i5QGIV52+PknHDiwYyjmLU1XZKP1tS7XWrizR8lPyLVlPe1dADodkmtL+wwQeALCC\nEWlpY2gBbDRi4HnhhRfsWgeAGaajv4UsbZTA43I6dONHl+vm+zbo//3xHf3HV9cqOXHy99d0dgc0\nK9ertq6A9ldz8CkAWCHI0AJMgRE/NRQXF9u1DgAzTKwVHklaWJKpD69ZoCc3VOrxv+zVpy9dOqlr\nCYVMdfgCKsr1Ki/To7f3N6qrp0+pKYzhB4DJFKKlDVOAeiKAKRGp8MQSeCTp6g8sUX62R3/aUKkD\nkzxUoLu3T6GQqYzURC2anSlJqqDKAwCTLtrSRuCBjQg8AKZEZEjAcFPajpeclKAbrjhToZCp//jD\n29GNr5O5lnRvkhaWhAPPtr2Nk/b6AICwyO/dTgIPbETgATAlBkJGbIFHks5akq+LzipRRXWbnv37\ngclbS9fAWpYtylNWWpL+tKFCr++onbRrAADCB4+6nA4m/8JWBB4AU2I8gUeSPvePp8ubnKCnNlZO\n2loiZ/BkpCYqNcWtb37uXCW5XfrRI+Xad5jWNgCYLEYoRDsbbEfgATAlxht4MlKTtKAkU42tPfL3\nGZasZWFJpm65ZpWCQUP//qs3VdfcPSnXAYCZzgiZHDoK21keePx+vy6++GI9+eST2rJli/75n/9Z\n1157ra677jp1dnZafXkA09R4A48kFeV6JUn1kxRE2rsiAxQGDkFdfVqh/vUjy9TW5ddd//mGunyB\n4Z4OAIhRuKWNv2+HvSx/xz344IPKzMyUaZq6++67dffdd+s3v/mNVqxYoccff9zqywOYpjp9ASW4\nHEpJGvuZOoU54cBT2zQ5gWe48PUP75mnf7pwgWoauvS9/3pLfcHJqSgBwExlhEJUeGA7SwPPgQMH\ndPDgQV144YWSpNzcXLW0tEiS2tvblZWVZeXlAUxjHd0BpXkSx7VxtSgSeJp9k7YWaehq02cuXarz\nlxVpR2WTfvr7t2WakzcdDgBmmsjQAsBOlgaee+65R7fddpskyeFw6NZbb9WNN96osrIybdu2TVdc\ncYWVlwcwDfUFDT32l72qb/EpKz15XK9RmOORpEnbWxMJPBmpSSd8z+l06Cv/vFKL52RpfXmNHn1x\n76RcEwBmoqARkstFSxvs5TAt+uvKJ598Us3NzfqXf/kXPfDAAyouLtbTTz+tm266ScuXL9c999yj\n4uJiXX311SO+Tnl5uRXLAzAFKut69ee32tTSGVRqilOXn5et+YVjDz29fSF9/w9HtbAoSZ9cmzfh\ndf3yxXrVtfbpjo8XD1tx6u419IsXG9ThM3TblbOU5OYPbAAYC9M09d3fH1Fehlv/54MFU70cxKmV\nK1ee8LWxN8/HaMOGDaqpqdFf/vIX1dfXy+12q6OjQ8uXL5cknX/++Xr22Wdjeq2hFj6TlJeXz6h7\nMNN+3pHEy71o7ejVfz69Uxu3NcnpkD58wXxd/cEl8iS7R33ucPcg4/nn1d2XMCn356EXX1Jmmkur\nVq0a8XEVLbv0p/UVSs+bp9MX5E74umMRL++FieAeDOBehHEfTq570OkLKGgc0eyiHEvWfDLdCyvM\n9J9fGr5QYlnguffee6P//MADD6ikpES//vWvVVlZqQULFmjHjh2aPXu2VZcHMA2YpqnnXjuo3zy/\nW77eoE6ZnakvXHGmFpZkTvi1C3O8qqhukzEJ7RHtXYHovqCRLOpfd0VNm+2BBwBOds3tvZKk7Izx\ntTMD42VZ4BnKXXfdpTvuuENut1uZmZn63ve+Z+flAdhsy+56PfSnHfKmuHX9Fct0yblzJ22zalGO\nV3sPtaqxrSc6tW08+oKGevzBmMZjLywNB5791W3jvh4AzFQt/YEnh8ADm9kSeG688cboPz/22GN2\nXBLANNDQ2iNJuu7yZbrorJJJfe3IWTy1Td0TCjzRCW2poweewhyPvCluVdYQeABgrJrbw38m5Ixz\nYA0wXuy6BWAZwwhJkhITJv+3mkjImeiktrEcgOpwOLSwJENHGrvV3dM3oesCQLzz9fbpx4+Wa0dl\nkySpuSPS0pYylcvCDETgAWCZoBEeAplgwQjSkc7iMYyQnnn1gFr6/3AdSUdXJPCcOJJ6KJH9R5VH\nqPIAwEgef2mf1pfX6IXXqyQN7OGhpQ12I/AAsIwRCld4rDhVuzB3+LN4tlc06RdP7tC//+oN9QWN\nEV+nvdsvScqIoaVNGtjHU1HdPpblAsCMcqSxS8+8WilJOtrYJWlQSxsVHtiMwAPAMtEKj3Pyf6vJ\nTE1SSpJLtU0nBp5IZaeipl3/9ey7I77OWFrapIEKT8Uk7OOx6Bg0AJhyv3p6p4KGKXeCU0cau2Sa\nplo6epXodsmbbOvMLIDAA8A6kT08VlR4HA6HCnO8qm3uPiE4tHeFqzbuBKeefvWAXt9RO+zrRAYr\nZKTG1tJWkO1Rmsetiuo2maapvmBoXOvfc6hFH//6c9q6p2FczweG09zeM+G9bcB47a9u1fd/85be\nerdeZyzI1dmnFajHb6ilo1fN7b3KyUge9oBnwCpxF3heffuI/vkbz6u+5cS+fgD2CkYCjwUVHknK\nzUyRP2DI1xs85utt/ftyrrt8mRITnLr/f7apYZjfE7bsrlei26VFpbGdDeRwOLSgJFO1zd268vY/\n66O3P6ud/Rtyx2LvoVb1+IP69bO7FApR6cHEVdd36sePlOuz33lJX7p3Q/S/P8Bqpmlq654Gff1n\nr+kr923Ua+8c1fziDN340TNVnJcqSTpU16n2Lj/7dzAl4i7w7KlqUacvoPI99VO9FGDGM/o/yFtR\n4ZGk1BS3JJ0wMS1S4Vm2MFf/+pFl6u7p0z2/23LCB8CjjV2qru/UilPylJwYe4vF2pUlyk5PVkle\nqoyQqV89vXPMoSWyxqraDr22/eiYngsM5TsPv6n1W2sk01R3T1/0PQZYJWiEtL68Wl/88Xp965ev\na3tFk5YvytO3//U83fflCzUrL1Ul+eHAs7OySaYp5aSzfwf2i7smyq7+Dz57qlr0ofPnTfFqgJkt\nEjCsmNImSd7+wNPV06f8QV9v6/+gl5mapEvOma3tFY3auO2Ifvf8bn360qXRx72xs06SdO7phWO6\n7rpVs7Vu1WxJ0g9/t0Ubtx3R3985ojUrYj9rqK1z4MPoY3/Zo/OXzZq0Q1kx8xhGSHXN3TpldqZO\nmZ2lZ/9+UG2dfjaHw1IP/OFtvfxWtZwOac3yYn1k7cLoPseISIVne0W4Ek6FB1Mh7io8kb/p3XOo\ndYpXAsAwrK7whAcNdPUEjvl6e5dfSYkuJSclyOFw6IYrz1RRrldPvFKhLbsHqr9v7qqV0yGdfdrY\nAs9g15SdqgSXQ799fveY9vNEhiWcv6xI1fVd+vvbR8a9BqC5o1chUyrKSVVWWvgDZRsVHgzDNE09\n+MQ7em7TwQm9xuZddcrNSNbPb3+/brlm1QlhR5KK89MkSfurw4Nesgk8mAJxF3giFZ7apm7K+cAU\ns7rCk+rpr/D4jmtp6/QfM4TAk+zWrdesUoLLqZ88ulVNbT1q6/Rrd1WLlszNjnlgwVAKc7wqO3+e\n6pp92rC1OubntXX55XI69PH3L5ak6MF8wHg09g/fyMtKUWZa+P08uIoIDNbV06fnN1Xpf17aN+5p\nkU1tver09WnxnOzoQdBDSU1xKzM1Kdr2S4UHUyHuAs/gXv69VHmAKRXdw2NRq1bqoJa2CNM01dYV\nUOZx5+osKMnU5z68VJ2+gP7twdd03+NbZZrSuacXTXgdF68Ot7ftPRz7qOr2rnAoK8lPlcMhHW1k\nqhbGr7FtUODpD/D8pR+GE5ni19LRq6NDjPaPxcHa8Flk82alj/rY4v59PBJ7eDA14i7wDP7gs+dQ\nyxSuBECkpc2yCk/KiRUeX29QQSM0ZNXmQ++Zp7Lz5qqh1afyPQ1yOKRzxrh/ZyjFealyOsJTsmLV\n3uVXZmqSEt0u5WV5dKT/YD5gPBpbw1MI8zIHKjyto1R4TNPUfY9v1ZMbKsZ1zb9uPqTnNh0c92h2\nTJ3Bk2y3728c12scPBoJPBmjPjayj0eiwoOpEXdDC7p7AirI9qih1ac9VVR4gKkUDFl3Do8kpXrC\nVZzu3oHA0z5oYMHxHA6Hrr/yTH32sqXhfnKHNCs39YTHjVWi26WiXK8O13XINM1Rz5jw9xnq8RvK\n6K9Czcr16u19jerxB5WSFHe/Lc84VbUdSvO4bR0YMFDh8cjT/x4abQ/P1r0NevmtapUWpOmfLlw4\npuu9Ul6t+//nbUnS0xsrdf2VZ2rZwrxxrBxToa55UOCpaFLZOIY8HTzSIWnsgScrncAD+8VVhccw\nQurxGyrI9qi0IE37qlujBx8CsJ9h9R6eaIVnYGhB5EPeSPtykpMSdMbCXJ2xIHfS1lJakKZOX19M\n+ybaj1tj5MNA7TCtJfsOt2rDjg7O6zkJ+Hr7dPP9G/XQ/2639brRPTyZKcqIcQ/P/75S0f+43jFd\na391q/7j92/Lm5ygi1fPVm1Tt77z8GbO/TmJRFraXE6HdlQ2jWsfz8Gj7UpNcSs3c/QAExlNnZGa\nKHdCXH30xEkirt513f2HD3pT3FoyJ1v+gKFDdbG3mEyWTl+ADyaApKBh7R4e7xB7eI4PE3aZXRju\nYz8cw+85x69xVl54w+9QbW0d3QF95+E39cqODu2uok13unv3YIsCfYaa28cWIiaqqa1HnuQEeVPc\nSnK7lJKUMOIenoqatuiY4E5fn/qCRkzXae3o1Xd/HQ43X/3kKn3x4yt04Vkl6vEHo6EL01+kpW31\n0kK1dwVi+n1rsB5/ULXN3Zo3K2PUirY0sIeH/TuYKnEVeCKjaVNT3Dp1brYk6a1362y7fqDP0MPP\n7NLV33xeX7p3vV7fcZTggxnNtgrPoMDT1hX+feD4oQVWm10QHr16OIZ9PO39axxoaQt/GDg6ROD5\n2RPvRPdibNvXMClrhXV29k/b6/EHbb1uY6tPeZkDHyYz05JGrPD8qb+6k9u/n2K0/T6S1Bc0dPd/\nv6Xm9l596kOnadWpBZKkov4JXbXNDN44WdQ3+5SZmqSz+/8dRsJvrA7Vdsg0YxtYIEmF2R4VZHu0\nZG7WmNcKTIa4CjyRCW3eFLfOX1YkT3KC/vzawZj/5moi2rv8+sp9G/Sn9RXKSE3SodoOfe+/3iL4\nYEaLTmmzKPAkJbqU4HKo2zcdKjyxB57IB9HM41rajp+WtHFbjf7+zlEtKs2UwyG9vW98m4thn52V\nzZLsDTzdPX3q7g0qL8sT/VpmapLau4fuNqhv8env249qblG63nNmsaTR299M09TPntiu3VUtWrOi\nWJevHdjzU5gbDjz1BJ6TghEy1dDqU0GOR8sWhfddbd3bMKbPKWMZWCCF/wz4+e3v13WXLxv7goFJ\nEFeBJzKpKTXFLU+yW5ecM0etnX5t2Gr9gX6bdtTqUF2n1qwo1i9vf78euGWdLjqrJBp8bvrJem3a\nTvDBzBI0QnI4rGtpczgcSk1JPObg0fZImEizN/BEJrUdrusY9bEd3f2hrH+N+Vkpcjkdx7S0Nbf3\n6GdPbFdyoku3fHKVSnIStf9w6zHVLEwvvt4+7a8Jjya3M/A0tQ3s34nITAufe9LpC5zw+Kc2VioU\nMvWRixYqu38DeWvHyC14z712UC9tPqwFJRn6vx9bfkwbU2F2pMLjG+7pmEaa23pkhEwVZntVkO1R\nSX6qtuyu1xd+8LKe3lh5zPEewzl4NDKwILYKjxT+cyCW9jfACnEVeCKTmiJ9/ZddMF9Op0NPbawc\n98FasYp8gHnfqtlKTkpQaUGabr56ZTT4HK7r0N3//Za+9YvXLV0HMJ0YhimX09rfZrwpbnX3DHy4\njGVogRUGJrV1jvr7TaTtLsMbbmlzuZwqzPFGW9pM09RPf/+2unr69NnLlqoo16sFRckKmeMfIQvr\n7a5qif6lVq8/aPmfOxGDz+CJiFQPj5/U1ukL6C9vHlJuRrLWrChWVnr4cS0jVHi2VzTqF0/tVGZq\nkv7t06uVnHjsJMHC3HBlqY4Kz0mhriX876kgJ/zv7Rv/co7ed3apGtt69MundurT335RD/7xHR2q\nHf4vbw4ebZfL6YhWtoHpLq4Cz+AKjyTlZ3n03jNnqaq2Q9ssbgXp7O6/dv/J7xGDg09+tkfbOU0d\nM0IiwCIAACAASURBVEgwFFKCRSOpI1I9bnX1BKIfLiP7Y9K99u7hkcL/vXf1jD6pbai2u+K8VHX6\n+tTRHdALbxzS1j0NOmtxvj543lxJ0vzC8GNpa5u+Iu1siW6XQmZ4/LgdBp/BExF5bx3/Xnxu00H5\nA4Y+vGaBElxOZaeFKzxtw1R4mtp69P3/3iKnQ7rtU2crf1DbXERmapKSEl2qp8JzUoiMpC7MDv+7\nnJWbqi994iz9+huX6FP/cJrSvIl6/vUq3fijV/T1n712wjCKoBHSwdoOlRakyZ3gsnv5wLjEVeAZ\nvIcn4iP9Zws8uX58B6vFKtI2MNyHrNKCNOVnpSgUMm37Wz9gqoUrPNYGHm+KW0HDlD8Q/nDZ1uVX\nmsdt2aCEkcQ6qa1tiLOCIpPatu6p18NP75Q3xa0vfnygdag4J1Ge5AQCzzS2o7JJTqdDpy/IkWRf\nW9vgM3giIi2dgye1BfoMPfv3g/IkJ+gD584JP26UCs8Lr1ep0xfQZy5bqqXzc4Z8jMPhUGG2R7XN\n3fz5dhKITGiLVHgiMlKTdOW6Rfrlv12sr39mtZYtzNX2iib98Hdbjjnio6K6Tf6AodPmZdu6bmAi\n4irwdA0ReBaWZur0BTnatq9RVSOUZyd87Uh1yTP83yon9Lf2REb1AvEuaIQsG1gQcfyktvYuv+3t\nbBGRSW2H6kf+vaa9y6+kRJeSBx0yOqt/cMEDf3xHvQFD112+7JiDK11Oh5YtzFVtc7f2HeZQ5emm\nu6dPFdVtWlSSGa2a2BZ4WofewyMdW+F5pbxabZ1+lZ03V57k8H83I+3hMU1Tf3/niBLdLl2yes6I\nayjM8arHH1RH94l7hjC9RFoPI3uvjudyOnTu6UX6znXn671nztLuqhY9/tK+6Pd39HeqnD6J55gB\nVourwBOp8KSmHNtWFq3ybLCuytPpC8jpUPSE66FETpvnMFTMFIZhWt/SNijwGEZInb7AlAWeOUXh\nCs9fNx9W6wiHObZ3nbjGWf2TrvwBQ+9ZNksXrig+4XlrVpRIkm77f3/XkxsqGYIyTRghU/c+tlVG\nyNTqpYVKSQ7/OdDTO/HA8/zrVfrqTzfK1zv8RvLGth45HVJ2xsABkMfv4QmFTP1pfaUSXA5ddsH8\n6ONSU9xKcDmGbMOsqu3QkcZunX1qwTHhfCiF/aOp2ccz/dU3++RyOpSTOfKZOA6HQzd8dLnys1L0\n+7/u1a4D4ZbNSOtmpJIJnAziMvB4jws8q04tUHFeqjZsrVHLKJNoxqvTF1CqJ1HOEdp3Ii02QT6k\nYIYwQjZUePqrql2+gDp8AZnmsa1idppTmKb3nz1bB4926Ks/fVXVQ4yoNk0zXIU6rv01chJ5ZlrS\n/2fvzuPjLOj8gX+emWfuTDK57zvpfadpS0spBQpyCYi4olYFb0VX19XF3+7qb9fj57Lusq6IqAgu\nrIiAWhAQCoVe0DNt0yZN0zb3fUxmJjOZe57n98czz5M7c2TOzPf9eu1rJZnjyTDMPN/ne+FL966b\nc5rRzg3F+McHtkCrZvGbV5pw8ExvdP4QEpJnXruIE82DWF+bgw/troHGHxxEIsPzXmMfWrtMeONY\n17y3GTHZkZWunlbGOTPDc/LiIPpGbNi1qWRa5pBhGBj0aozNEaAfbewHAFy7oSjgcRZmi4MLqI8n\n0Q2N2ZGXqQ2q3DhNo8DffawOHA/8fv8leH0cWjqNKMlLQ6ZeHfD+hCSKJRXwiCUtM8vKZDIGd+2q\nhtfH49Wj7dF5brsH+hkDC2aiDA9JNV4fL5VyRouY4ZlweGYt9Iw1hmHwtb/ZgI/dvBzDY3Z862dH\ncP7q9J4bh8sLj5ebleHJztDgb/9mI/7lc9csmKHatqYQ//ez1wCYXHJJ4uftk13408GrKM7V4eFP\n1oOVyyIa8Az4dzO9cqQNHu/07w6LzYUXD1zGqNkxrX8HmJ3h+ZN/0ahY8TBVVroKpnHXtP4bnufx\nnr+cbfOK/IDHmU8ZnqQwNGaH2eaa1b+zkNVV2VhbnYPGK6N493QPHC4f1lI5G0kySRHwBLs4dMLh\nASuXQcnO/rNu2FyKdJ0SbxzrhDPCddU8L+w60C/QvwNM7eGhgIekBiHDE7uSNot19jCAWGMYBvff\nsgLfuH8jXG4vvverY3jndLf0+7kGFohu2lKGquLAi/wqitLBymXoiGJfIgnsQtsofv5SI9I0Cnz3\nM9uki21iwON0LW5Km9vjkwYSGC1OHDknZPQud5vw52Nj+PS/7sczr7dAqZBjz5ayaffVqlmwchnM\nVhdaOsbQ0jmGuhV5UtnlVJl6Nbw+DjaHB/2jNrxyuA1/OdoedDkbABRQhiehGS0O/NMT7+FzP3oL\nwGS/YbDEMshfv9wEgMrZSPIJ/CmWAJ796yU8eOfqgLezOdxI0yrmLAVRKeS4bXslnn+rFQdO9+D2\nHZUROz6Hywsfxy84sAAAWH8g5qOhBSRFeH181KeliaPgbf4LHsDkQs94umFzGXINWvzwtyfx6O/P\nYtBox/03L4fFuvgsFCuXoSxfj+6BcfhiMBhiLmdbh5GXpUWxf9hCqhkYncD/++1J8Dzwfz69RRo6\nAQAalTCq177Ii2tDY3bwPLBxWS4ar47i9/tb8fp7nWj1D60oztXh9h1VuGFz6axSbqFUTQWT1YWn\nX20GAHz4hto5nydzyuCC37zSjDOtw9LvdqwPXM4GAPlZWjAMMEAZnoQj7vVqvDKKlRVZuL6uBDfU\nlYb0GFtWFyA/SytNeKOBBSTZJEWG5+XDbejotwS83YTDC516/rKy23dUQsHK8PLhNvgi2Edj9U9o\nC1jS5q+X9XKU4SGpQTgZj/5YakAoKxWvhidKbfnamhz8+1d3Ij9Li9/vb8Wjvz8D47hwjIZFBmWV\nxelwezn0j8b+BNPu9OBfnjyOX/7pfMyfOxHYHB7862+Ow2r34Ev3rsfamuknf5EqaRMX0a6vzcXO\n9cUYNNpxuceErasLsHd3Dh7/9o24c2fVrGBHZNCrMGp2oKVzDNesLZz3JDXT/14cNjnQ1G5EYbYO\nn7t7DT571xpsXxdcwKNg5cjO0GCIAp6E8/bJbpy5NIyNy3Lxbw9di9u2VwaVtZtKLmNwx7XCheLi\nXJ003Y+QZJEUGR6O4/HzlxrxyEM75x0KwPM8bA438rPmr0s16FXYXVeK/Se6cLJ5ENesLYzI8Vn9\nYzj1ARYdilefKcNDUkVsenj8QwscbvQMCeViwZSFxUppvh4/+dp1+MFTJ/BuQy9OXhwCAKTrFhnw\nFGUA6EFHvwWlIZanLNaI2QEfx8cl2IqX377ajONNA/jANZU4c2kIvcM23L2rWtpnM1WkAh4xW1KY\no8NNW8qwrMyALasLUJCtQ0NDw4JDcoDJskkFK1uwSkLM8By7MAC3x4f6Vfn44M7qkI+3MFuHpvZR\nuD0+KBW0kDIRjJodePKVJmhULB76yIY5K2CCddOWcrx5vAu7Q8wOEZIIkiLDs2N9EVq7THjzxPxT\nalweH7w+HroAWZa7rhPqUF8+3Bax4xOXjgbq4RGvdFMPD0kVsezhmXB4cKXHhHSdEnmZC49bjTWD\nXoUffGk7rllbKE2TXGyfUWWR0IvR3hc4+z0Vx/F441jnnGOIgyXufRk1O1JmCMvxpkH0jUzgN680\n4ezlEdSvysen75g7iIhchmcy4MlIU+GD11VL45+DIb7H7t618P3EDM97jX0AgPXLcsM63vwsLXge\nGDZRH0+ieONYJ+xOLx64YxXyMoMfVDCXNI0Cv/iHG/GRm5ZF5uAIiaGkCHg+d9caaNUs/ue1i/Pu\ntpB28CxQ0gYIm9DX1eSgud0ofWkvlk0qaQsuw0MBD0kFPo4HzyNmPTz9IxMYNjlQW2pY1FXMaFEr\nWTz8yXrcu7sGORlqKWAJl5DhQciDC5o7jPj5S4149Pdnpk3lCoVYOujjeBijNOo/0ZisThTl6PDx\nD6zAjfWl+PuP18071jdiGR5/Bq0whCBnqj1by3Dz1nLcd+PCJ6hiwDPh9EImY7CmKryG9Mz02ctO\nSXxdaBuFjJnc4UVIqkqKgCc7Q4O9t67EhMODp15pnvM24kjqQBkeALh2g7DQ76j/atZijUsZnuB6\neKikjaQC8cp/MLseFkOjYiGTMbjSIzRy15ZmRvX5FkMmY/DpO1bj6e/eIpURhUuvVSLHoEFnEP2N\nUxn9wcqZ1mGcbhkK67lHplzBHx5b+lfznW4v7E4v8rO0+Oie5fj6RzdBu8DFNY1K+N1iJ4L2j9qQ\nla4Oud9CtKoyG1/9yAYpAJvP1PfislLDgn/bQsS+NBMFPAnB5fHhcrcZlcUZ8/Z5EZIqkiLgAYBb\nt1eiptSAg2d60Xh5ZNbvpQxPEP9Rb19bCJmMwZFzkQl4bP6AJ+CUNsrwkBQivs+jPUGMYRjo1AqI\nc0hqywxRfb5EUlmUjrFxFyy24E8wzVNu++TLTbN2uwRDzPAAqVG+ZBoXXrNgg1RxSttiMjwerzCS\nujAnvOxOKDKnDNAIt5xNeBzh9aEMT2K43GWC18dhTRVNVCMkaQIeuYzBVz68HjIGePyPjXB7pu83\nsIUQ8GSkqbC+JgdXeswRWZImTmlLD9jDQ0MLSOoQJyGyUe7hASbL2gCgtjSVAh5/WVsIWR7xZHR5\nWSb6Ryfw2nsdIT/v1HLgobHIlAYnsjF/2V52RrABz+JL2gaNwkjqohgEPApWLlUorK8NP+ARMzzm\nEAJwEj3iYmLamUNIEgU8AFBTYsAd11ahf3QCL71zZdrvxAxPsGnbnf6ytnCyPBzH42TzIA6fFZbA\nWaUMz8LPLZ740VhqkgqkDE+Up7QBk//d5xg0CTOSOhYmBxcE38cjlht9/p61YBjgZPNgyM87YnZA\nrFQcGlv6k9rEgCfY95bcvwB7MXt4pP6dGAQ8AJCXpYVGJceK8vBLQsUhCaYU6etKdE3tRjAMsDrM\nnixClpKkCngA4OMfWIGsdDVePHAFff4dBcDk4IBgA55r1haClTM4eq4/6Of2cTyOnOvD3/7nQXz/\nqRP49/9tgNHiCH5Km4wyPCR1iO/zaE9pAyYzu6mU3QGEi0AAcP7q7DLf+YhX38vy9SjM1qGj3xLS\n8AIfx8NodqDSP/p7OAUyPOIJfCi7RzRqFg5n+AGPOPK7KEaLXb/+0U34/he2Q8GGP05aLPmjDE/8\nebw+XOocQ3lBesBzE0JSQdIFPFq1Ap+/Zy28Pg7PvH5R+vmEM/iSNkDot1lbnYP2fkvAemOfj8PB\nhh589Sfv4JFnT6N7cFyamtPRPw6b3QOZjIFWvXBjKEtjqUkKmSxpi/7HTKoGPAXZOtSUGnD28si8\nEyxnMo+7oFHJoVaxqCzKgM3hwag5+CvyZqsTPo5HUU4astLVGEqBHh4pw5Me/ChxjYpdVElb/6hw\nQS8WJW0AUFGYjuXlWYt6DJ2aBSuXUQ9PArjcbYbby1E5GyF+SRfwAMLQgUy9Cm29k3XroWZ4AGBl\nhfDhftk/3Wkmr4/D2ye78eVH3sF/PHcGfSMTuKm+DL/4hxvxgH+JW0e/BeMTbui1ioCjcKmHh6SS\nWE1pAyazq6kW8ADA7roScByPI2eDK88125wwpAlX4iuLhZK4UHqAxP6dXIMG+VnalNjFMxZOhkfF\nwulefElbKHt34o1hGBj0KsrwJICmdn//Dg0sIARAkgY8DMMgL1MLo8UhXUWenNIWfOp2mb9W+XL3\n7IDn7ZPd+OKPD+CnfziLYZMdt2wrxy8fvhF/+9GNKMpNk2rnOwfGYXO4g0oZUw8PSSViJjMWGZ5b\nt1fgvhtrsbY69b7cr9tQApmMwbtnegPeluN4mG1uqbk8nKEHUsCTKQQ8HMfDaJmdIfrr+x343I/e\nQtdgaHuCEpE4pS3kgMflDX/XkcmBdJ0y4EjpRGPQq2Aad4X9d5PIaGozAqD+HUJEyfVJOkVupgat\n3SaYrU5kZ2ikK0p6XQgBT5k/4OmaHvA0tY3ip384CwUrw+07KnHv7lrkztjcnpcpNHh29FtgtXtQ\nlBO4zpqVMjwU8JClT7wYEYsensqiDOnkPdUY9CpsWp6H0y1D6BmyojRfP+9trXY3OI6fDHgKxYAn\n+KBkxCyUsOUaNNIAhCGTHXlZwhZ3juPx9KvN2HeoDQDwfmM/ygsWt2Q13sasTug0CigVwfe3qFUs\nOB5wuX1h7dEx21zICXIqXCLJ1Ktw1cdhwukNusScRJbXx+FS5xhK89Ok/9YJSXVJmeEBgNxM4ctV\nvNo4aJyAXqsI6QNWr1WiKEeHyz1mcNzk1aiuQSsA4Ksf2YAvfmjdrGAHEBYIVhRmoGfIBo7jA05o\nAyZL2rxU0kZSQCwzPKnu+k3CFvV3G3oWvJ14YUicppVjUCNNo0B7WBkeLfL8n8Pi8lGn24sfP3MK\n+w61oThXB4YBzvtH4yYz07gTWSH07wCLG03t9vgw4fAk5cRB8b1lDrKnjEReW68ZTrePytkImSLq\nZyIulwt79uzBvn374PV68c1vfhP33XcfHnjgAVit1rAfN88fhAyb7PBxPAaN9rBqnZeVZWLC4ZEa\nRIHJLeIFWQs/XkXh5FXLUEraKMNDUoE0pS0GPTypbuuaAug0Crx6tANGy/xT08RmcvGqL8MwqCzK\nwKBxIugT8+FpJW3C5/DQmB0mqxP/+Iv3cOzCANZW5+AnX7sOlUUZaO0yzdqblkzcHh+sdk9I5WwA\noJ0S8Lx5vAv/9sypoAfWSP+eQgyyEoH43jLR4IK4EcvZaGABIZOiHvA8/vjjMBiERuIXXngB2dnZ\nePHFF3Hbbbfh9OnTYT9urkH4oh0xOWC0OOD1cdLktFBIZW1T+njELeJzZXamqigKLeARx1J7Ocrw\nkKWPMjyxo1ay+PTtq+BwefHLP1+Y93YzAx5AGFzA80DXQHBlbSNmO9RKOdI0CqmM7ULbKP7+v4/g\ncrcZu+tK8C+fv0aahOnxcrjUNbaIvy6+xBP3zBADHjHDY3d58cbxThxt7Jd2twV+ztD2/iQS8Zhp\nUlv8NLWLAQ9leAgRRfVMpL29HR0dHdi1axd4nse7776LO++8EwBw3333Yffu3WE/tvhFO2J2YNDo\nn2YTxvjO5f7BBa1T+nhGTA7IZEzALzix/h0A9LrAJW3S0AIvZXjI0je5h4cCnli4eWs5Vldl49iF\nARy7MPd+sZklbcDUPp7gytpGTA7kZmrAMAxyDVowjHBFeXjMjo/dvBzfuH8TFKzw73xdjXDCdeGq\nMey/K96kHTwhBh9TS9r6/TvjXnj7itTbtuBzikFWEvZfiME0BTzx4eN4XOwwoihHF3JWkpClLKpn\nIo888ggefvhh6Z/7+vpw6NAh7N27F9/85jcxPh7+9B4xwzNssk9upA4jw1NZlA5WLpuV4cnJUAcs\nxSkvnGwODirDI/bw0JQ2kgLE9zkbg6EFROgr/MqH14OVy/DEny5IkyunEk/ep2YOxImT7UEMLrA7\nPbA5PMg1CBecFKwMBVk6sHIG37h/E+6/ZcW08fyrqrIhY4QMULKa3METXsAzODoBu38Bad+Ibd5g\ndKqlEPAEuxeKRFZHnwV2p5eyO4TMELUpbfv27UN9fT2Kioqkn/E8j6qqKjz00EP4xS9+gSeeeALf\n/va3Az5WQ0PDrJ/xPA8ly6C7fwxKCD0348ZeNDQEv3FclG9g0d5nwfETpyGTAUaLA6U5yjmfdyaD\nTg7zhA8jg71oaFi4bKNjSPgC6OnpQ0ODbcHbzhTMsSwlqfb3LiRZX4vWXqE0dGCgHw0N4ffrAcn7\nGkRaMK/DtavScPDCOH7yP4dwR33mtN+1+UvLeruuwD4mfPx7fTxkDNBwsRenT3sW3CfWPeK/au+d\nkI7lnq1p4JGGDGYYDQ3Ds+6Tn6nApU4jjp84DQW7+OA31u+FxsvCZ7XF2I+GBnPQ9xseEu537OwV\nAMDKUg0u9Trw21caofYMLPg6X2wVgs+Rwe45X1NRIv53MTouBNpXO/vQ0DB/P1kkJeLrEGvia/B+\ni/BZq5ONp+zrkqp/tyjV//75RC3gOXToEHp7e7F//34MDg5CpVIhJycHW7ZsAQBce+21eOyxx4J6\nrLq6ujl/XvDuOzCaHQCrB2DFru0bkZ2xcN/NXE53n0ff0Q5kFVbDoFeB5/tQVZo37/NOtbzxBE40\nD2L9muXYsCxvwduq243AgaPIyy9AXd2qoI+voaEhqGNZKlLt711IMr8WLkU/cNiIirJS1NVVh/04\nyfwaRFKwr8O69T60/edBnL5iw323bMSqysnG5b+cOQbAjmuvqZu232X7JR5HG/vhUhZhx7qiOR5V\nuMj04uPvAQA+dNN6rF+WG9Rxb+1rwr5DbdBklWN9bXD3mU883gvNQxcBmFG3fmVIV80tfA9eP30G\nFpdQ7rznmuXIvTKCw2f7AF0p6lbmz3vfEx2NAMaxZdNalBfOPdI7Uf+7sDk8eOzV18Gq9DE5vkR9\nHWJp6mvw18YTACy488b6gH3IS1Gqvx9S/e8H5g/4olbS9uijj+LFF1/EH/7wB9x333348pe/jN27\nd+Pw4cMAgObmZlRWVi7qOXINGkw4vWjrM0OpkIddr1o1Zfne1KV6wahflQ+VUr7g7gvR5JQ2GlpA\nlj7q4YkPBSvHQ/dtAAA89mIjPN7JCWlmmwsqpXzWMstP3LoSMhmDZ19vmXeK5NHGfjS3G7F1dUHQ\nwQ4AKcg52zp/piKRhbN0FJgsaRN3HBXnpeHe3bUAgH2Hri78nP5ysGTcoaJTs2DlMurhiQOO49Hc\nbkReljYlgx1CFhLTM5FPfvKTOHToED72sY/hwIED+PznP7+oxxN3QAwa7SjM1i5YIrAQcWFhe59l\nckKbIbgPi5u3luOFH94eVGaJenhIKhHf5zSWOvZWVWbj1u0V6Bmy4o/vTp5cm62uaQMLRMW5adiz\npQx9IzYcOD17l4/L48PTrzaDlcvwmQ+uCelY1tbkQK2U49iFAfB88l3sGbOG18MjjqX2+IfUFOem\noao4A+tqctB4ZRTtffMPiTBbXZDLmKB6QxMNwzAw6FU0ljoOugbHYXN4sKaKxlETMlNMAp6HHnoI\nd999N1QqFX7605/iueeew69//WtkZWUt6nGnXsEIZwePqKxAD5mMQUf/uLSDR1xsGgjDMJAFeUIn\njuelDA9JBeL7nIYWxMenbluFrHQ1/vDWZfQMWcHzPCw217xZg/tvXg4lK8Pv37wE14y9OUfP9WHE\n5MAHd1ahMMRpmCqFHHUr89E/OoHuwcX1csWDadwJjYqdlRULRKOevL1Oo0C6Tghe7rm+BsDCWR6T\nVfj3FOx3S6LJ1KtgtrqSMsBNZuL+nbW0f4eQWZK61mRqUBLql/BUSoUcxblp6BwYx5B/Y3iwGZ5Q\niFe6g10+R0gy84kZHippiwudRoEvfmgtvD4OP3+pEVa7B14fP2eGBwCyMzS4c2cVRi1OvP5ex7Tf\nNV4RhsFcX1cS1rFsX1sIAHj/wkBY948Xu9ODQaM9rHLpqQFSSW6aVIGwaXkeSvPTcPhs35xLYnme\nh8nqSsoJbSKDXgWvj8OEM7hltiQymtqFaYg0oY2Q2ZL6TGRqULKYDA8g9PE4XF7pCkk06l/F3RSU\n4SGpwCtmeGRJ/TGT1K5ZW4RtawrQ3G7Er18WFpIu1Bfy4RtqodMo8OKBy9JYa57nceHqKPRaJcoL\n5m6gD2TzynywcllQI5kTyUvvXIHD5cWujcUh31etnAx4inInv59kMgZ3XVcDH8fj1aMds+7ncHnh\n9vhgSMKloyIxqBbHoJPo43mhfycnQ438rOAqVAhJJUl9JjI1KFlMhgeY3EXRN2KDTs1Cqw68SDRU\nchn18JDUITa/y6mkLa4eum8DcgwaHGzoBTB9B89MaVol7t1dA6vdgz8fFEquBowTGLU4sa4mJ+wS\nK61agQ3LctHRP46B0QmMmh1wuhP76v+gcQJ/PtiGHIMG9+yuCfn+U0vainPTpv1ud10JMtKU+Oux\nTjhc01+HZN7BIxL7ncRFtyT6eoassNjcWFOdE3Y/MyFLWVIHPNnpaukLOJylo1OJgwuA4Pt3QkVT\n2kgqkTI8VNIWVxlpKnznU/XSv4dAk7/u3FmFrHQV9h1ug8nqxIWrQpnM2prFlcnsWCeUtX3tP97F\nA9/fjx//z6lFPV408TyP37zSBK+Pw4N3rJ6WrQmWRimX/ndx3vSAR6mQ4/btlZhwePD2ye5pvzOF\nueg0kei1wgVDm3328lsSHU3tQnXKGurfIWROSX0mIpfLkJ0hBD2LLUETMzwAkBOF/h1gypQ26uEh\nKWCyh4euNsbbsrJMPHTfemhULGpLDQveVq1k8dE9y+Fy+/DCW5dx3h/wrFtkwLN1TSEy9SpoVCx0\nGgXOXx2dNjI7kTy/vxXHmwaxqjIL126Yey9RIHK5DEqFEPTMzPAAwG07KqFkZXjlSBt83ORFMDHD\nM1+vVTIQ/263JzH//S5FYjk+9e8QMreoLR6NlQ/fUAuLzb3oq8iZ6WoY0lQw21xRm19PGR6SSqiH\nJ7HcWF+G3XWlQZWl7dlajj8fbMMbxzuhUrLI1KtQkjf7pD0Ueq0S//O9WwAAv/zzBbz2Xgfaei1Y\nUbG4aZ2R9sd3ruC5/a3Iz9LiW5/YvKjyIK2Khdvjm7MCISNNhd2bS/Hm8S4cbxqQFr6apDHYSRzw\nsELAk6gB7VLU0jkGg16FokWW9xOyVCX9mcht2ytx/83LI/JYYpYnGhPaAMrwkNRCPTyJJ5QR+p+4\ndQW8Ph4TDg/W1kSmL4BhGDAMg5X+IKelc2zRjxlJV3vN+O1rF5GTocYPv7Rj0dn+/Gwtygv0UM8z\n0vqu66oBAPsOTt+VBCzca5XolArhu87loe+6WOB4HmPjThRm66h/h5B5JH3AE0liH0+0Ah6WxlKT\nFCK+z6mHJzldu74YVf7PxMWWs82UqAHPqeZBAMBn714bkUlX//zgVnz/i9vn/X1pvh71q/JxZb9F\nHwAAIABJREFUqcuES/7XwrwEhhaIJW2U4YkNh4sDx/EB+/MISWV0JjLFzdvKsXNDMTavzI/K44tX\nV6fWaxOyVInvc8rwJCeZjMFDH1mPHeuKpHKrSMnN1CA7Q42WzrGEWk55pnUYMhmDDbW5EXm8jDRV\nwEzN3buELM+f/YtIpR6eJD55FUvaZi6wJdFhcwoXl5L5PUNItFHAM0Vxbhq+vXcz0rTKqDw+wzBg\n5QxleEhKoAxP8qstzcTDn6qP+GciwzBYUZEFs9WFQaM9oo8dLpvdjcvdJiwvy4ROE/m1BPNZW52D\nquIMHL8wgEHjBExWJ1RK+bTFpclGLGnzUElbTNicQmCZmcSDLgiJNjoTiTG5XCb1NhCylInDOeRh\n7m4hS9uqBCtra7wyCo4HNq3Ii+nzMgyDe3ZVg+OBv/3Pg+jsH0emXpXUvRhiSRtleGJjwuHP8CTx\nKHNCoo0CnhhjZYw0vYqQpUwsaaMMD5nLigQLeM60DgMANi2PbcADANduKMbuuhJkZ6ihVMjjcgyR\nNNnDQxf3YkHM8CTzKHNCoi15c+ZJSi6XSftJCFnKxJK2YCeDkdRSVZwBlVKOlg5jvA8FPM/jTOsw\n9FoFqksW3lMUDaxchr/7WF3MnzdaxJI22sMTGxNiSRv18BAyL7r0GmNCDw9leMjSJ5a0UYaHzIWV\ny7CyPAtdg1aMjTvjeiy9wzaMmh1YX5tLJZgRIA4tcFMPT0zQ0AJCAqMzkRhjqYeHpAgvR3t4yMLq\n/BMxT7cMxfU44lnOthSJJW1uGksdExNU0kZIQBTwxJhcLqMMD0kJPprSRgLYskoIeE5dHIzrcYgB\nz0YKeCJCyYqLRyngiQWbk4NaKZ93wS0hhAKemGPlDPXwkJTgpSltJICi3DQU5+pw7vJI3JZUuj0+\nNLUZUVagR06Ulk6nGoU4tIBK2mLC5vRRORshAVDAE2NyGWV4SGqgDA8JRv2qAjjdPlxoi8/wguZ2\nI9weH5WzRZBcJuyco6EF0cdxPCacHJWzERIAnYnEGCtnqIeHpARxLLWcAh6ygM0r41vWdvbyCAAq\nZ4s0pUJOPTwxYLW7wfNAJu3gIWRBdCYSY9TDQ1KF18eBYaikjSxsVWU2tGoWpy4Ogedj/9l4tnUY\nSlaG1VXZMX/upUzJyinDEwNmmwsADSwgJBAKeGKMlcvg9XFx+WInJJZ8Ph5yGX3EkIUpWBk2Ls/D\n0JgdvcO2mD630eJA58A4VldlQ+XvOyGRoVTI4KbFo1FntvoDHurhIWRBdDYSY+LVbo6jgIcsbV6O\nA0sjqUkQ4jWt7WyrUM62aQWVs0WaUkEZnliggIeQ4FDAE2NiA7eXAh6yxPl8PPXvkKDUrcgHwwAn\nL8Z2H89ZGkcdNUJJG2V4os1kpZI2QoJBZyMxJi5hpMEFZKnz+ijDQ4KTkabCsrJMtHSOwWZ3x+Q5\nfRyPs5dHkJ2hRlm+PibPmUqUChlleGLAbHUCoAwPIYFQwBNjUoaHBheQJc7HUQ8PCV79qnxwHC8t\nAY22tl4zrHY3Ni3PA8NQYB5pSoUcPo6ni3tRJg0toICHkAXR2UiMiT089CVAljofZXhICLasKgAA\nnIpRWRuVs0WX0j8EggYXRJeZStoICQoFPDFGGR6SKrw0pY2EoKIwHTkZajRcGpJ2OEXTmdZhyBhg\nw7LcqD9XKlKwwn/7VNYWXWabCwo5A42KjfehEJLQ6GwkxsSAx8fRVS+ytPk4TupZIyQQhmGweVUB\nrHYPWrvGovpcEw4PLnWZUFuaCb1WGdXnSlXimG8aXBBdZqsLOrWMyjIJCYACnhgTTwC9VNJGljiv\nj5cCfEKCUS+Np45uWdv5qyPgOB4bllN2J1rEDI/HSxmeaOE4HhabC2lq2iFFSCB0NhJjUoaHStrI\nEufzUYaHhGZdTQ6UrAynW6IX8Pg4HgdO9QAANlH/TtSIGR4XlbRFjcnqhNfHI01Dp3KEBEL/lcQY\nZXhIqvD6eLDUw0NCoFayWFebi86BcQyP2SP++B4vh5/872mcaB5EdUkGlpdlRvw5iEAhlbRRwBMt\nV3rMAIDCLCrLJCQQOhuJMfEEMBZNuYTEE/XwkHBIZW1RyPL89PmzONrYj9VV2fjBF3fQYtwoUir8\nQwtoSlvUtHaZAAAlORTwEBIIfdrHGGV4SCrwcTx4HtTDQ0K2eaUQ8Mwsa+seHIfVEX62wGx14ci5\nXlQUpuNfPn8N0jSKRR0nWZiKMjxRd7nbBIYBiinDQ0hANMcwxqiHh6QCcc+UuHeKkGDlZWpRUZiO\nxisjcLq8UKtYmKxOfP3RQ2DAYwLtuHV7JRhGKJv0eH3weDnp/9xeH1i5DMW5adMe99iFfnA8cGN9\nmXQyTqJHwdKUtmjycTyu9JhQkqeHWkkXlggJhAKeGBMzPB7K8JAlTMxgUskQCUf9qnx0HhhH45UR\nbF1TiIaWIXj8pVFP/PkCnnylGT6OA7/AdaPbd1TiC/eslcb1Hm3sBwDsWFcU9eMngEpBe3iiqWfI\nCofL5+9Do/MJQgKhgCfGpB4eCnjIEib2qLHUw0PCcM3aQrx44AoOn+3D1jWFUj/Pp27MQd+4Ft1D\n41CwcijkMigUMihYGRRyOZQKGVhWhgtXR/Haex3Iz9LinutrYLa60NQ2ihXlmcjN1MT5r0sNYoaH\nxlJHh7iranl5JgBjfA+GkCRAAU+MiVe8vVTSRpYwyvCQxagpMaA4Nw3HmwYwPuHG2dYRFGRrUZGn\nwodv2xjw/qNmB77508N46i/NkMsYyGUMOB7Ysb44BkdPgKljqZfuxT2LzYXfvnoR62pzsHNDcUx7\nFsWBBcvLMzE2QAEPIYHQ2UiMiVe8fdzS/RIghBMzPDSWmoSBYRjsriuB28vhyZcvwOHyYvPK/KC3\nyecYNPjeZ7dBp1Hg1y834Vf7LgCgcrZYUiiW/uLR/Se68Papbvznc2fwuR+9jYsdsQs8WrtNUCvl\nKCtIj9lzEpLM6GwkxijDQ1KB+P6msdQkXLs2lQAA3m3oBQDUrywI6f5VxRn4xbdvwJ4tZeAhLDWl\ncrbYUabA4tFzl0cAADfWl2LU7MA7p3ti8rx2pwc9Q1bUlmbSYBhCgkQBT4yx/g8n6uEhS5n4/qax\n1CRcBdk6rKrMAgColHKsqc4O+TEy09X42t9sxJP/Zw++86n6SB8iWYCS9Wd4lmhJm9PlxcWOMVSX\nZODzd68FIJRSxkJH/zh4HqgpNcTk+QhZCqJ+NuJyubBnzx7s27dP+tmRI0ewYsWKaD91QmLZ1Mnw\n/Ondq9j7vTfw4oHLNKknxUz28NDVRxK+3XWlAIANtblSxiAceVlapGlpV0ksLfUMT1O7EV4fhw21\nudCqFdCq2QUDnhGTkAHiFxotGKQR//PkZ2kX/ViEpIqoDy14/PHHYTBMXoVwu9341a9+hby8vGg/\ndUKSprQt8R6et0924elXmwEAz7zegjePd+G7n9lK9cYpQpzSRuUWZDF2bSpBS+cYbt1eEe9DISES\nAx5xnPhSI5azbVwunMvkGDQYtTjnvf3jf2zE6ZYhGPQqbFq+uPMfMbDKNVCJJiHBimqGp729HR0d\nHdi1a5f0syeeeAJ79+6FQpGaW67FK97eJVzSduriIH72YiP0WgV+8rWduOu6agyN2fHjZ07D6faC\n43gcbOhB77A13odKosRLJW0kAjQqFt+4fxNWlGfF+1BIiJRLfA/PucvDUCrkUtllToYGEw4PHC7v\nrNsOm+w4c0kYrX7gVPein9voD3hyKOAhJGhRPRt55JFH8PDDD0v/3NnZiatXr+Lmm2+OSFo3GYkn\ngL4lWtLW2jWGHz9zGqxchu9+ZhuWl2fhs3etwe07KtEzZMUTfzqPHzx9Av/x3Bn82zOnU/Z9sNSJ\n72/K8BCSmsSx1O4l2MNjtDjQNWjFmupsad+QGHzMVdb21olucDwgkzE4fmEANodnUc8vlrRlZ6gX\n9TiEpJKoBTz79u1DfX09ioqEMaA8z+PHP/7xtAAoFS3lDE/vsBX/8uQJeL0+/MPezVhRMXlV9oE7\nV6OiMB0HTvXg1MUhKBVydA6Mo6VzLI5HTKKFMjyEpDYxEHAvwbHUjVf85WzLcqWf5fiDj5kBj8/H\n4a2TXdCqWdx3Yy3cXg5HzvbO+biDxgmMT7gDPv+oxQElK0O6jvrSCAkWw0fpEvs3vvEN9Pb2QiaT\nYXBwEAqFAnK5HJmZmeB5HhcvXsSGDRvw7LPPLvg4DQ0N0Ti8uGkfdOKZd0axe206dq1dOv0sVocP\nT+4fhmXChzu3ZKKuRjfrNsMWD/5w2IgVJWpUFarx7DujWFuhxb3bqVxlqRHf59evTcf1S+h9TggJ\njtvL4Ucv9KOmUIVP7M4NfIcpXB4OlgkfJlw+lOSooEiw4Sf7z5rxfosND+7JRVmuCgBwpm0Cr5ww\n4a6tmdhYPfn9d6nXgecPG1Ffq8PO1el49OUBFGUp8blbJvt4rA4fDjRacK7djuLs6b+byyN/7Ida\nKcPX7gxtVDshqaKurm7Wz6I2tODRRx+V/vdjjz2GkpIS3H333dLPbrjhhoDBjmiuA09WqrZR4J1R\n5BUUoK5uZVD3aWhoSOjXYMLhwXcePwrLhA8f/8AKfHTP8nlve+sNwv/neR4Hm99BS48d1cvWwKBX\nSbdpaGjApk2bwHG8tLcoVSX6v/t5XRoC3hlFWWkx6uqWLeqhkvY1iDB6Heg1mCrRXwuO44EXXoFG\nqw/pOJvbjfjBE+9Jk0xvrC/F1z+6ad7bh/s6uD0+DBgnUB7GIJ1DrQ0AbLimfj0KsoXghkkbxisn\njkFnyEdd3eR34KtnjwMA9n6wHpVFGTh46RjOXBrGiQ4WlUXpaLwyilMXh+D2cpDLGPQZ3cjIq553\n5LTb44P9uV7UlGZJf3eivxdiKdVfi1T/+4H5EyVRn9I2n2A3Zi81YomPN4Em1/A8j//+wzkU5Ghx\n3w3LIAux7+Lf//c0OvrHces1Ffibm4I7uWUYBrdeU4lf7buA3/ylCUU5aRg1OzBisqNn0ATbS6+B\n43j85zd2hfWFROJrsocntQNWQlKVTMaAlctCHlpwpccMr4/H5pX5GBqbwIFTPdi9qRTrl4WWJQrk\nd29cwr5DV/HEwzehMGd2RcJCzFYXAEy7UCdOTDNaJkvahk12NFwawvLyTFQWZQAAPnLjMrR0GPHX\nY53S7Ypz03DXdVXISlfjB0+fxJsnuuYNeEYtNLCAkHDEJOB56KGHZv3swIEDsXjqhCP28IhjexOB\n2erC2/7JMVe6zfi7j22CVh3cFL0RkwMNl4axsiILX/jQupAC2Rs2l+KZ1y/iYMP0emaNSoY0rQqj\nZgcuthsp4ElCkz08qXlhgxAiTGoLtYfHZhd6WO7dXQO1ksU3f3oIP3+pET/71m5pEEIknGgeAMcL\nvachBzw2FzQqFmrl5CmUOEBgZEoPz/4TXeB54APbyqWfra7Kxu/+9Va09VrQMTCO5WWZqCxKB8Mw\n8HE8cjLUOHSmFw/euRoa1exTNKNZGH1NAQ8hoYlbhidVSRmeBBpaIF4xUrAynGgexLd+dgT//OBW\nKVW/kKb2UQDANWsLQ57IpdMo8P0vbEf3kBW5Bg1yDBrkGjRobmqENqsS337sCPpHJ0L/g0jcSXt4\nUrwkkZBUplTIQ87wjPsDHr1OifKCdHzwumrsO9SG5/e34lO3r4rIcQ2P2dE3Iny3GBfYnTMfk9WF\nzCnZHQDQqhXQqVlpZLTPx+GtE93QqVlcu6F42m0VrBwrKrKmDfYBhKmWN20px/NvteLouT7s2VqO\nmUZoJDUhYaGzkRgTg4JEGkstTpX52C0rcMe1legetOLv/usQzl8dCXjfpjYjAGBtdU5Yz72iIgs3\nby3HxuV5KM3XQ+2/olWUKwRb/SMU8CQjH2V4CEl5SlYGd4jl21b/lDK9VphA9vFbViAvS4s/HbyK\njn5LRI7r7OXJ77ZRy+wx0gvxcTzGba5p5WyibING+j491TKEsXEnrq8rnZYJCmTPljIwDPDmia45\nf09LRwkJDwU8MZaQGR5/ijw/S4sv3LMOD923Hg6XF9/95TG8/n7Hgve90DYKrZpFZXFGRI8pXaeE\nTs2if9QW0cclseGlHh5CUl44GR6rfXrAo1ax+PK968BxPH72wrmIlIOfuzws/e+xEDM81gk3OB5z\nBjw5Bg0mnF7YnR68eVwIWD5wTUVIj5+XpcXG5Xlo7TKha2B81u9HKcNDSFjobCTGxBKfROrhmXnF\n6JZtFfjBF3dAp1HgF388j8dfapwzQDNaHBgYncCqyuyIL5hkGAaFuWkYNNoT6rUiwfFxlOEhJNUp\nWXnIi0etEx5oVHIo2MnTk7oV+di1sQRXesx47Wj7oo7Jx/FovDICQ5oQsIRa0mayCrfP1M9e+pmT\nIXyHXuo0ScMKKgpD70G9xV/KNleWh0raCAkPBTwxxibg4lExpZ+dMfkBuroqG49+fRcqCtPx12Od\n+Odfvg+LzTXtfhekcrbsqBxXcU4avD4OIyZ7VB6fRI+U4aEeHkJSllIR+pS2cbtbyu5M9dm71kCv\nVeDZv7ZgeCz874T2PjOsdg/qV+VDp1GEXNI214Q2kRiEPPfmpVnDCkKxZXUBDHoV3j3dM+v1GzU7\noFHJoVNTCzYhoaCzkRgTS9oSrYdHxgBZ6dM/wPOytHjkqzuxfV0hmtqM+LufHsbJ5kGIu2qb2oSB\nBWvC7N8JROrjocEFSYd6eAghSoUcPo6XPg+CYbO7odfNDngMehUevHMNnG4ffvGn8wh3Z/o5f//O\nhmW5yMlQh5Hh8Qc8aXMEPP5Jba3dpjmHFQSLlctw4+ZS2BwevH++f9rvjBYHsjM0Kbvag5BwUcAT\nY/JE7OGxOJGZrp7zarxGxeIf9tbjYzcvx4jJju8/dQLf+u8jePlwG85dHoFGxaI6wv07oiL/qNCB\nEerjSTbUw0MIUfrHSAc7uMDj9cHp9kGvmR3wAMIS0vW1OTjdMoSj5/rnvE0gZ1tHwDDA+tpcZGdo\nMOHwwOnyBn1/McMzc0obML3MLNRhBTPdvG12WZvT7YXV7qFyNkLCQGcjMcbKEmsPD8fxGLM4FvwA\nlckY3H/LCvzs73dj+7pCtHab8OTLTRgas2NlZVbUypaKctMAUIYnGYk9PHLK8BCSspQK4bsh2LK2\n8YnJkdRzYRgGX/7weihZGZ56tXnW73uGrPj2z46grdc85/2dLi9aOo2oKs5ARppK2p1jHJ+e5Wlu\nN0qBzUxmW+CSNiD0YQUzFeWkYV1NDprajOjzX/SjCW2EhI8CnhhLtAyPxeaC18dLzZYLKS9Ix3c+\ntQVP/uMefOP+TbjrumrsvXVl1I5NzPBQwJN8xAwPSxkeQlKWkvVneIIcXGC1ewAAeu38i6+LctKw\nvDwLo2bHrFK5J19pQkvnGE5fGprzvk3tRnh9PDbU5gKY7FsdnbIs9HK3CQ///Ch+8PQJcHNcmFxo\naEGuQQMlK8PKiqywhhXMdLN/eMF+/8Q3mtBGSPio6y3GxJ6GROnhCWfiS36WFvlZWtywuTRahwUA\nSNMqodcq0U8lbUlHPBGhDA8hqUssafN4g8vwWANkeERaf8O+Y0opWuOVEZy5JIybNo3PnZ056x9H\nvXF5HgBMZnim9PG88PZlAEBrlwmHzvZid93077mFhhaoVSz+7as7kZ0+OxgKxzVrC6HXKnDgdDc+\ncetKnGkV+o8KsrUReXxCUgldfo0xhmEgkzEJk+ExWsSAJzIf0JFWlKvD0Jg9pKZXEn9eaWgBfcQQ\nkqqU/tHSriBL2sQdPOlzTGmbSuNfUG33Bzwcx+O3U0rcxsbnHkRw7vIIlAo5VlVmAZi80Cd+D3YO\njONE8yDKC/RQsjL89tWL04IqQAh4tGpWCuZmqikxIDNCAY9SIcfuzaWw2Nx46cBlvHK4DXlZWmxf\nVxSRxyckldDZSBywMkbqcYi3RJ/pX5Sjg4/jMUSjqZOK3SmcJMx3UkAIWfomMzzBlrQFl+ERAx4x\nGDnRPICrvRbs3FAMmYyZs//GaHGge9CKNdXZUPhL7WZmeF70Z3c+dfsqfGh3LcbGnXjpnSvTHsds\ndc05sCBaxJ08z+1vhY/j8aUPrVvUMARCUhUFPHEgl8vg9SZGSZvRLHzQB9PDEw/S4IIR6uNJJq3d\nJihYGUrz0+J9KISQOFEoQsvwSEMLgszwiAFPW58FgBAcGNJUc2Z4xHHUG5flSj8Te3jEJdpHG/tQ\nVZSBzSvzce/uGuRkqPHng1cxaBS+f3wcj/EJFwxz9O9ES1lBOlZWCBmpHeuKsHllfsyem5ClhAKe\nOGDlDLwJkuFJ9CbI4hzhhLmj3xLnIyHBsjs96Oy3oKbEIF1JJYSkHpU4ljrokrbAQwsAQCP28Pgz\nyWJGOU2rQFa6CqZx56w9PWdbxYAnT/qZXquAgpVh1OLEWye7wPHAPbtrwDAM1CoWn75jNTxeDk/7\ny+XGbS5w/Nw7eKLp47eswMZlufjc3Wti+ryELCUU8MSBXC5LmJ6UUYuwdDSWKfpQrKvNgYKV4cCp\n7rAXzZHYutJtBsdDqpMnhKQmRahT2oIdWjCjh2fCIQRKOo0CBr0abi8nBUGA0OPTeGUEWekqlBXo\npZ8zDIPsDDVGTQ68c7oHOjWLa9YWSr+/bmMxVlZk4f3zAzh/dUQaSR3r78v1y3Lxr1/YLmWkCCGh\no4AnDlgZI43tjbdRs2PepaOJICNNhWvXF6FvZALnr4zG+3BIEFq6xgAAKyoo4CEklalC3MMT6tAC\nMcMjlrZpVCyy/AMDppa1dQ2Ow2xzYX1tLhhm+uTI7AwNzDYXjBYndm4skbJSgBAQff7utWAY4Nf7\nmqRen7kmtBFCEltinuUucSybGBkejuNhtDgTtpxNdNuOSgDAa+93xPlISDBaOoSAZyUFPISktJDH\nUtvdkDGAVh1kSdscGZ7MdCEYEfflAMDZ1unjqKcSBxcAwE31s1ct1JQacFN9GToHxqWR1bHs4SGE\nRAYFPHEgl8ngnWOhWaxZbC74uOCWjsbT8rJMVBVn4ETzIA6e6cXPX2rE8aaBeB8WmQPH8bjUNYai\nHB0yYlznTghJLOLiUVfQi0fdSNMqIZMtvL9r5tACu9MDpUIOVi6TFoJO3cVz1j+wQFw4OpX4/VeS\nl4ZlZZlzPt/eW1dCo2LR0ilczEnUEnBCyPwo4IkDVs4kRIYn0UdSixiGwW3bK8BxPP7jdw1441gn\n/vBWa7wPi8yhe8gKu9OLldS/Q0jKUymFgGfmLpv5WCc8AQcWAIBWJdzG7hQyOxNOL3T+rE/WjAyP\ny+NDc7sRFYXpc+7HycsUvv9urC+bVe4mykxX46N7lkn/TCVthCQfGuYeB3K5LCF6eIb9u23ED/xE\ntmtTCc5fHUW6ToljFwYwbHLE+5DIHMQroCsrsuN8JISQeCvM0QEAeoasAW/L8zysdjcKsrUBbzuz\npM3h9EKnEX6WKfXwCBmei+1GeLwcNiybnd0BgN2bS+HjeXxgW8WCz3nnzmq8ebwL/aMT08rgCCHJ\ngQKeOEiUDM/wmBA05GYG/oKJN7WSxbc+sRkA0Dtkw7krI3C6vbSALcG0dBgBACsr5i4NIYSkjqLc\nNKiVcrT3BV4rYHd64eP4gBPagNklbRNOD3L9F+6kkjZ/hmdy/87s/h1A6Bf64M7qgM+pYGX4pwe3\n4kqPiaalEZKEqKQtDhKlh0fM8ORnJX7AM5X4xTaSwFmeQeNE0JOJlgqe53GhzQi9VomSPH3gOxBC\nljS5jEFlUQa6h6wBl4+KE9oCLR0Fpgc8Xh8Pj5eDzj/oQOyvMfmntJ29PAwFK8OqqsWX2Zbm63HD\n5rJFPw4hJPYo4IkDVi4Dx/Fx3yuTTCVtU+X5A7REDHhcHh9+/fIFfO5Hb+PpvzTH+3CiiuN4/MNj\nR/CbV5oAAINGO0bNDqyryQnYdEwISQ1VxRngOB5dA+ML3k4aSR1ihkcciCCWuSkVcqRpFBgbd8Fk\ndaKjfxyrKrOoGoCQFEefAHEglwsng14fDwUbvxPDEZMDGhULnSZwk2giyfUPWRgx2+f8Pc/z6B22\noSQvbd4m1EgzWZ14r7Efrx7tQN+IDQCWfJ/RgHECFzvGcLXXgo/fsgLnrwp7ktbW5MT5yAghiaK6\nOAMA0N5nmXcKGiAMLACAtCCGFihYGRSsDHanF06PcBqjmzLKOjNdDbPVicYA5WyEkNRBAU8csP4l\nnz4fBwUbnyQbz/MYGrMjL1MTs6AgUvL8PUfzBRQvH27Hb15pwvc+uw2bV+ZH7ThsdjfevzCAw2d7\nceHqKDgekDHAHTsq8dr7HZjwTxBaqq70mAEISwVPtQzh/FXh5GIdBTyEEL8qf8DTFqCPZzzIpaMi\njYqdluHRaiZPZzL1KvQMWXHq4hAAzDuwgBCSOijgiQO5v9wnnn08Ew4PHC6vVB6WTMQeHrEkbyqL\nzYXn918CAHQNjEcl4LncbcIf3rqMM61D0rS9FeWZ2LmxGNeuL0ZWuhrvNvRIy/CWqqv+gAcAjjb2\noaVjDJl6FUry0uJ4VISQRFJWkA5WzqC9z7zg7awT/h6eIEragNkBz9QMT5Z/UtvxpgFkpClRWZQR\nzqETQpYQCnjiQMzweL3xm9QmZkfykmBC20zZGRowzNw9PM/vb8WEU5jcM2qOTknZU39pRnO7EZVF\n6bhuYwl2biieNfhBq1FIOyKWqqu9ZsgYYcrf8aZBcByP6zYWJ13GkBASPQpWhrKCdHT2j8Pn4yCX\nz13VEMrQAkAIeIZNdjjdwkUnrXpKhscf8Li9HLbV5lJPISGEhhbEg9jD4+PiF/AMjSXnwAJA+ALN\nSldjZEaGp2fIitePdUo7EkYtkQ94eJ5HR78Fxblp+O9v7saHb6idc8qdTq2QAq+lyMfxaOs1ozRf\nj+s3lYDzZyvX1VDpCCFkuuriDLi9HHqHbfPexu7/vJyaqVmIVi1keJxiSdvUHp4pi0EE9ZzPAAAg\nAElEQVQ3UjkbIQQU8MSFmOHxxDHDIwYLybCDZy55mVqMWpzT9hn99tWL4DgeX7hnLZSsDKMWZ8Sf\nd8TkgN3pRWVR+oK306pZ2J0eKRBYavqGrXC6fagpNeDaDcXSz6l/hxAyU3UQfTzi2GqVUh7UY2pU\nLHgesDmE+80cWiDaQAMLCCGggCcutDOWpsXK2LgT+w5dhdfHSSVtybaDR5Rr0IDjeGmbduOVEZy8\nOIjVVdnYtqYQ2QZNVEraOvqFL+xANeE6jQI8DzjdSzPLc7VXqMevLTGgvECPmpIMlBfog9qSTghJ\nLVXFBgBA2wJ9PC7/Z2UoAQ8AjNuFgEczpaQtK13I8JTmpyHHkHxVDISQyKMenjjQ+sdA22Nc8vS/\nf23BWye7oVMrpIb/3CQsaQOmDy7IylDjqVeEnTef+eBqMAyDnAwNLrSNwuON7CS8Tv8uiYoAGR7x\nauOEwzut1GKpECe01ZQawDAMfvilHQBA/TuEkFkqitLBMMJo6vlIGR5FiAGPlOGZPJ0pydNDwcqw\nY13xnPclhKQeCnjiYPJkOHZN7R6vD++f7wcAHDjdA6fbCyUrgyFNFeCeiUlaPmp2YOB0D9r7Lbi+\nrgS1pcKehxyDUNIwNu5cdBaL53nwPCCTMegQA57CwCVtAPyDC5IzqFzI1R4z5DIGFf5M11IM6ggh\nkaFRsSjOTUN7nwUcx885RMDt78UJNuARP3PGJ3zT/hkQprQ9/c83Iy3JdswRQqKHStriQOffFxCp\nPS08H7hP5MylYamJvrndiO5BK3IztUl7RV5cPtozZMWzf22BkpXhk7eukn4vljEstqzNx/H40r+9\ng8f/2AgA6Owfh06jkJ5/PuIyV9sSHE3t83Fo77OgvCA96JMTQkhqqyrOgN3plQbmzORyC4GLMtwM\nz4zgJiNNNe9EOEJI6qFPgzgQr0TZI3AyPGicwIe/8xq+/bMjON40MG+T/OGzfQCAD15XBUAYmJCM\nE9pE4jjtVw63YWzcibuvr5lWnpedEZmAx2x1om/EhrdPdmPQOIGBURsqCtMDBopiFm8pjqbuHrLC\n7eVQW2aI96EQQpKEOLhgvrI2l0eoOgh2hLQY8Ew4/VPaVFSwQgiZH31CxIFU0haBHp6LHWNwe3xo\n6RzDD58+Cb1WifW1OdiwLA8bl+UiL0sLp8uLExcHUZijw95bV+Ltk92wO5Nz6ahIDG6cbh8MehXu\n3V0z7fc5/tHUxkWOpjb6J735OB5Pv9oMjgcqA5SzAZN9WktxNLW4cLSmhAIeQkhwqqcMLtixvmjW\n711uX9ADC4DpQwpkMiak+xJCUg8FPHGg1Uzt71icQeMEAODzd69F1+A4GlqGcLSxH0cbhX6dohwd\nCnJ0cLl9uG5jMdRKFjs3FOPN411JO7AAELJkOo0CEw4PPvGBFbN6SKSStkWOpp6aIXr//AAASH0r\nC0mLQ59WrFzpnRxYQAghwagqWXg0tcvjC6lEVjMlo6NTs0lbnk0IiQ0KeOIgkhmegVEh4KlflY87\nd1aB53n0jdhw7vIIzl0ewfmro+j332bXxhIAwF3XVaOtz4ItqwoW/fzxVL8yH6MWB27aUj7rd5Hq\n4RGXl6brlBifEDaBB9rBA0Q2qE00V3vMYOUylBcEfh0IIQQA9FolcjM1aO+1gOf5WQGKy+2bFsQE\nop2S4dHQ0BRCSAAU8MSBNMErAlf/B4wTkMsYqYmeYRiU5OlRkqfHHddWwevjcLnbBB/HozRfDwAo\nzdfj0a/vWvRzx9s3P1437+/SdUooWNmiAx6jWcgQfej6Gvz2tYtgGKDM/zouJB6T+CKF43h4fNyc\nV1s9Xg4d/eOoLEqP6LhvQsjSV12cgeNNgxgbd0p9liK3RyhPDtbMDA8hhCyEzljiQDwZtkWopC0v\nSzvvNBpWLsOqymysrc5Z9HMlE3EXT6R6eHZuKMbyskysrMiCOoirkLok7uH5j+ca8NkfvoWuwfFZ\nv+saGIfXx1E5GyEkZOIC0rkGFyympI3G4hNCAqGAJw5USjlkMmbRGR670wOLzY3CHF2EjmxpyTao\nYbK64PVxYT/GqMUBhgGyMtT4f1+5Fj/yL9gMJJJZvFhr6RyD2erCPz3xPvpGbNN+J/bv1NLAAkJI\niMRJbTP7eLw+Dl4fH9LgAe20DA8FPISQhVHAEwcMw0CnViz66r/Yv1OYTQHPXHIyNOB5YGwRgwuM\nFgcy9SqwchkUrCzovQ6TfVrJFfC4PT6Mmh3QqVkp6HG6J9+n0oQ2yvAQQkJUXTL3aGq3R9ilo1IE\nX5o2dUqblkraCCEBRD3gcblc2LNnD/bt24fBwUE88MAD2Lt3Lx588EEYjcZoP33C0mnYRTe0DxqF\nBW4FFPDMaXJSW3hlbTzPw2hxIisj9Gl2KqUcchmTdD08g8YJ8DywY30xbt5ajlGzY9rJydUeM5Ss\nLKg+JkIImSorXY2MNOWsDI+4dDSksdQqCngIIcGLesDz+OOPw2AQrgb/13/9Fz7ykY/g2WefxY03\n3oinnnoq2k+fsLRqxaIDngGjmOFJ3n060STt4jGHl+EZn3DD4+WkxwkFwzDQRiCLF2viRL+iHB1W\nlGcCAHqGhLI2l8eHrsFxVBVn0AZzQkjIGIZBdbEBw2N2WO1u6ecuf4ZHqQj+c0WlkEPcUSr2TBJC\nyHyietbS3t6Ojo4O7NolTAT73ve+h1tuuQUAkJWVBYtl7nn8qUCnVsDh8sHH8QCEaV48z4f0GFJJ\nG/XwzCnbn+G53GMK6/7iwIKcMDI8QGSyeLE29T1VkidkcXqHrQCAzn4LfBxP5WyEkLBVFc8ua3NJ\nJW3BZ3gYhpGyPKGMsyaEpKaoBjyPPPIIHn74YemfNRoNZDIZOI7Dc889hzvuuCOaT5/QxBS8w+nB\nlR4T7v/n13Hq4lBIjyEuHc2nkrY5LS/LhE6jwL5Dbfjp82en9aIEQyyFEwOnUImLUZNJ/9SAJz8N\nANA7LGR4xP6dWgp4CCFhEgOett4pAY9U0hZa4CIGOpThIYQEErXLIvv27UN9fT2KiooAQMpecByH\nb33rW9i2bRu2bdsW1GM1NDRE6zDjxmkXRv4eP3UWVwec4Hng/YYWyJ19c95+rtegq98EvUaOpvPn\nonqs8RCpf+efuSkbLx414u1T3bCOj+HWuuBP1s9cEU70x8cG0NAwe0RzID6PE063DydPnYZcFv4W\n8Fi+/1vbRwAAgz2XMTYgg04tQ1vPKBoaGnC8cQwA4BrvR0PDSMyOCVianwHhoNeBXoOpkvG1cFiF\nC0+nL7SjPF0IejqHXACAsdEhNDQEX4LMQHisoYFeNDSMRfhIk0syvheiJdVfi1T/++cTtYDn0KFD\n6O3txf79+zE4OAiVSoWCggLs27cPlZWV+MpXvhL0Y9XVzb9gMlmd7j6Pxo4OVNWswIC9H4AZmdn5\nqKtbNeu2DQ0Ns14Dj9eH8d/3YlVl9pJ7feb6exdj53Yv7vvOa3D41CE97sXhFgBm1G9YhbU1oe8x\neuP8CXQODWLl6nXQa5Uh3x+I/GsRyM//uh9Z6Wpcs7UeAFBx3IGLHUasXbcBT79zCGqlHDdfv3VR\nAVyoYv0aJCp6Heg1mCpZXwuO4/Hk/tdhdsql4+dbhgCMoKK8FHV1tUE/VtbRwxixmLBmZS3qVhVE\n6YgTX7K+F6Ih1V+LVP/7gfkDvqgFPI8++qj0vx977DGUlJRgdHQUSqUSDz30ULSeNmlMHVssLscM\npd9j0GgHz9NI6mColSzSNAqYba6Q7meUStpCH1oATC7Dm3B4wg54YkkcSb26Klv6WWm+Hs3tRrT3\nWdAzZMXKyuyYBjuEkKVFJmNQVZyBix1GOF1eqFVsWD08wGRJGy0eJYQEEtNOv9/97ndwu93Yu3cv\nGIZBTU0Nvvvd78byEBKG+AFtd3ik5ni7K/geE7F/hwYWBMegV8FsDTHg8U93yw5zaEGaZjLgSQZD\nY7OD6JI8oY/n8Lk+cDz17xBCFq+6OAPN7UZ0DoxjRUWW1MOjDDXgUYsBDw0tIIQsLCafEmJG5+67\n747F0yUFsclywumVAh5HCCOMr/gbyIv9J6RkYRlpKvSN2ODzcUGPVB61OKDXKkO+6iiSgtokGU3d\nPyL0LE0NoqWA52wvAKCmhAIeQsjiSIML+ixCwOMJfQ8PIOxaYxhhvw8hhCyELovEiU4jvPT2aSVt\nwZ0Y8zyPgw29UCrk2LgsN2rHuJQY9CrwPGCZcAf95Wi0OJCfFX4GTfx3PJFAo6l9HI++YSva+yxo\n67Ogvc+CrsFx7K4rRbZ/31BR7mQQLY6mttiEnRmU4SGELNbkpDbhwp07zJK2T966EqXpE8hIU0X2\nAAkhSw4FPHEiXv03WpxSoGN3BXdi3NptwoBxArs2llDtcpAy/V+IZqsrqIDH7vTA4fIhJ8yR1MCU\nPq0EKGlr7RrDky83ob1/XDq5EKmUcuw71IZif6BTNCXDk2vQQKmQw+3xQadmUUA9Y4SQRSrN10PB\nytDm38UzOZY6tIBHrWKRl0HfgYSQwCjgiROdv+a4Z8gq/SzYkrZ3T/cAAK6vK4n8gS1RBv1kwBMM\ncUfEYgIerWZyMEW8Pf/WZVzqMqGiMB3VJRmoKs5AdbEBlUXpMFqc+Pqjh9AnlrRNCWpkMgYluWlo\n77egusQAGQ0sIIQsEiuXoShHhyF/L2q4QwsIISRYFPDEiZiZ6Z4S8AQztMDj5XDkXD8MehWVs4VA\nCnhsgXc88DyP/32jBQBw/abwg0oxqI13D4/J6sSZ1mHUlBrw6Nd3zfq9Vq3A5+5ag5+/1IisdBXU\nM7aWl+QJAQ+VsxFCIiVNq0TXoBU+jg87w0MIIcGigCdOxKEF4hUuILgT4zOXhmC1u/HB66qCbr4n\ngCEt+AzPyeZBXOwYw9bVBdNGNIdKlyBT2o6c7QPH8di9QPB2y7ZyjJodyMqYXe5XXpgOnOtDbVlm\nNA+TEJJC9NrJz0fK8BBCoo0CnjgRx2hyvPDPDCM0bnp9HNgFApn3zvcDWFzmIRWJGR5TgIDH5+Pw\nP69fhIwBPnnbykU9Zyx7eA6c6gbDACsrslGQrQXDTJaevXumFzIZg+s2zv+eYRgGn7h17r/3jmsr\nkalXYduawogfNyEkNYm7yWwON1xu4WIfBTyEkGihgCdOVAo55DIGPn/Ek5upxfCYHQ6Xd94llRzH\n42zrCDL1KhoPHCKDXshcWBZYPto/asPPXjiHniEbbt5ajrKC9EU9Z6zGUl/tMeO/nj8r/fO2NQV4\n+FNbIJcx6Bmy4mqPGZtX5ktBX6i0agX2bC2P1OESQgjSxIDH7oHbwwGgkjZCSPRQTVScMAwzbcJa\nqX/fyUInxx39FphtLmxcnjftCj4JbKGhBT6Ox58PXsVXf3IQTW1GbFtTgAfuWLXo55TGUkc5w3Om\ndRgAcFN9GWpLDTjeNIjn3rwEn4/DH9+9AoAygoSQxCKWtFntbippI4REHWV44kinYWG1u8HKZdK4\nX/sCE73EE9tN/7+9Ow+IstofP/4eVkFUBAMTtUBzw33JtUBLza5GLgjKolSm4ZJrSl9T226pNyv0\nZzevdtXA5ZbKVSPNSr2ZW6ZpZi4opoAsLoDsy5zfHzRPjCxuDDDyef0Fzzxz5pwzZ57n7E9Ll0qJ\n34PE1toSO1srUm8Z4fkjMZ3wjcc4eymVeg42TPXvRJ8OjSqkQWltZUktG0uupWffd1jlOXomGZ0O\nXnjOEx0w/aP/8Z9vz3Lw5BUuJd6kobM93ds2NGkchBDibjjYGRo8+dqmBTbS4BFCmIg0eKqQYVG7\nc71a2pqe8kZ4fj5dVLHtKLuz3RNHB1tthCe/QM+X35/jP9+eoaBQ4d25MS/5tK3wB9i1bdaAI78n\nkZCSYfRAz4qSlZPP6YvXeayJozYVMmxsN2Yt/YFLiTfx6tSYCcPaUctGfupCiOrDMKUtMyuP3PwC\nbKwsZNt7IYTJSC2oChkWtRc1eIr+zi5ja+riFVt5qvS9caxjy5lLWej1ivCNx9hzNA7nerUIHdGB\nx9uYZgTkiY6NOPJ7EvuOJzDy6RYVHv6vMVcp1Cs6FRv1c29Uj/dCe5ORlW90XAghqgttSlt20QiP\njO4IIUxJ1vBUIcOojnM9O+z+fPZJWQ8fPX6uZMVW3B3HOrbo9YobN3M4cPIKDzvX5v/N6meyxg7A\n454PY2WpY9/xeJOEb5jm2KmFcbl4rEl9KStCiGrLMMJjWMMjGxYIIUxJGjxVyL5WKVPacktfw3Ps\nz4ptl5aulRO5B5DhWTxHTyeTm1dIxxYPadMKTcXBzppOLV2ITUgnPiWjwsM/djYF+1pWtHxEnpEj\nhDAfhjU8Rbu0FcqGBUIIk5IGTxUyWsNjW/YaHqUUP51KxMHOmhZNZTvqe2XYqW3fn88yup+Hit6N\nPh0aFX1uBY/yJF7L5MrVTNo3b1Dus5uEEKK6qVNsW+rcPBnhEUKYltSSqpA2pa2uXbnPbEm8kc/V\ntBy6tnbFUiq298zQ4Dl+NgWovAaPNq3tlwSUUhUW7jHZtU8IYabsa1lhYaH7a0qbjPAIIUxIas9V\nqGsrV1o0daRtM2fsypnSdiY+B4DHPWVr4fthmNJWqFe4OtnTwNGuUj7Xwc6abm0acvFKOr9duFZh\n4Wrrd6TBI4QwMzqdDgc7a1IzcikoVDLCI4QwKWnwVKFWjzrxwate1K/71xqe0jYtOBOfjaWFTnry\n75NhhAcqb3THYKhXcwA274mpkPAKCvWciLnKww1qa89wEkIIc1LH3ppraUUderJLmxDClKTBU03Y\n25Y+pe1aWjZXrufTrlkDky+wf9AVb/C0reQGT2t3J1o/6sRPp5K4lJh+3+Gd+eMGWTkFdJJnMgkh\nzJSDnQ15+UUPHZUpbUIIU5IGTzXx14NHjae0HT6VBEA3T9md7X45OlTdCA/AUO+iUZ6ovefvO6xj\nZ2X9jhDCvDnY/9WJJ1PahBCmJA8erSasrSywstSRdcuDRw//lghg0mfF1BR2tlbUsrHEztaKhxtU\n/jSwxz0b0qhBbXYdvkRMXCodW7jQscVDeHo433Xv5rEzyVha6GjXvIGJYiuEEKZl2KkNZIRHCGFa\n0uCpJnQ6HXa21mQXa/Dk5BZw/FwKLvWsZJ1GBdDpdEwe2RH7WtbodLpK/3xLCx0zArqwNvoUp2Kv\nE5uQzpY9MVhbWdD6USc6tXRhYI9HjCoBpUnPzOPc5VTauDtru/sJIYS5MR7hkeqIEMJ05ApTjdjX\nsjJaw/PLuRTyC/S0cJPGTkV5slPjKv38Fk3r886E3uTmF3LqwjV+OZvCL2dTOBFzlRMxV0m+nkXo\niA7lhnH8XApKQaeWsn5HCGG+HOxkhEcIUTmkwVON2NlakXIjS/vfMJ2tZeNaVRUlYSK21pZ0aumi\nbSmdejOX0EXfc+i3RF4Z3r7cESh5/o4Q4kFQp9gIj421LCkWQpiOXGGqEftaVmTlFqCUQq9X/HQq\nCUcHW9ycy5/iJMyfYx1burR24Xp6Dufj08o8TynFsTPJ1LG3wcPNsRJjKIQQFcuh+Boe2bRACGFC\n0uCpRuxrWaMU5OQVcvbyDVIzcunWxhWLKlhvIiqfYWOKn/7cma80l5NucjUth04tHsLSQsqFEMJ8\nFR/hsbWWCSdCCNORBk81Ym/719bUhuls3WR3thqjc0sXLC10HD6VWOY5x86mALJ+Rwhh/ozW8MgI\njxDChKTBU43Yac/iKeDwb4lYW1nIgyVrkNp21nh6OBNzOZXEa5l8+f05fr2YZXTO0T/X73SS9TtC\nCDNntEubbFoghDAhGUOuRgxbDF9MSOePxJt0be1KLVv5imqSxz0bciLmKlOX7CEzpwBbax3BQxUW\nFjry8gs5ef4aTRvWwbmeXVVHVQgh7ksdWcMjhKgkMsJTjdj/OcKz91gcUFT5FTVLtzauAGTmFODo\nYEtuvuLKtUwATsVeIy+/UHZnE0I8EGSERwhRWWT4oBoxrOH5+XTRovXH/6z8ipqjUQMHXgvsSr06\nNsQmpLPyvyc5d+kGbg85cOzMn+t3WkiDRwhh/qwsLbCztSI7t0AaPEIIk5IGTzViGOEpKFQ0b1xP\npi3VUE90cgOKKgMA5+JS8e7ShKNnkrG2ssCzmXNVRk8IISqMg711UYNHprQJIUxIprRVI3a1/hre\nf1x2Z6vxPNzqodPBuUupXE/P4eKVdDw9nKUnVAjxwKjz505tcl0TQpiSNHiqEftiGxTI+h1Ry8YK\nl3rWnI9P4+ffi6Y5yvodIcSDxLCOR0Z4hBCmJA2easQwpa1BvVp4uNWr4tiI6qCRszV5+YVs/eEC\nINtRCyEeLG09nGns4oCDnfXtTxZCiHska3iqkQaOdlha6OjT0Q2dTlfV0RHVQCMnG46dz+LilXSc\n6trySMM6VR0lIYSoMKMGtsJ/QEu55wkhTEoaPNWIcz07/jnnKdmsQGjcnP96TkXHFi5SKRBCPHDk\nuiaEMDVp8FQzDZ1rV3UURDXiUs8aK0sLCgr1sn5HCCGEEOIeyBoeIaoxK0sdzRvXw0IHHVs8VNXR\nEUIIIYQwOzLCI0Q1N3lkR66l5VDPwbaqoyKEEEIIYXakwSNENde0YV2aNqxb1dEQQgghhDBLMqVN\nCCGEEEII8cAyeYMnNzeX/v37ExUVRWJiIkFBQQQGBjJt2jTy8/NN/fFCCCGEEEKIGszkDZ7ly5fj\n6OgIwMcff0xQUBARERE0bdqUTZs2mfrjhRBCCCGEEDWYSRs8Fy5cIDY2Fi8vL5RS/PTTT/Tt2xeA\nvn37sn//flN+vBBCCCGEEKKGM2mDZ9GiRcyZM0f7Pzs7G2trawCcnZ1JSUkx5ccLIYQQQgghajiT\n7dIWFRVFt27daNSoUamvK6XuOKyff/65oqJltmpaHtS09JZH8kLywEDyQfKgOMmLIpIPkgfF1fS8\nqOnpL4vJGjx79+4lLi6Ob775hqSkJKytrbG3tycvLw8bGxuSkpJwcbn9k+O7dOliqigKIYQQQggh\nHnA6dTdDLfdo2bJlNG7cmKNHj9K1a1eee+453nnnHVq1asWIESNM/fFCCCGEEEKIGqpSn8MzZcoU\noqKiCAwMJD09naFDh1bmxwshhBBCCCFqmEoZ4RFCCCGEEEKIqlCpIzxCCCGEEEIIUZmkwSOEEEII\nIYR4YEmDRwghhBBCCPHAkgZPBYuPj6dz584EBwcTFBREcHAw7733Xpnnh4WFsXfv3nLDXLRoEf7+\n/vj6+rJr1y4AEhMTCQoKIjAwkGnTppGfnw9AWloaL774Iq+++qr2/i1btuDt7U1wcDDBwcF8+umn\nFZDSIvHx8bRq1Ypff/3V6PiIESMICwu7pzCrc3rv1Pbt22nbti2pqan3HMaaNWvw9fXF19eXdevW\nAZCRkcH48eMZPXo048aNIz09HYC8vDxmz57N8OHDtfcfPnyYnj17amXxnXfeub9ElcMU5QCK0hsa\nGqp99xcuXABg//79+Pr64u/vz/Lly7XzT58+Tf/+/YmMjNSOhYWFMWTIEK083O73VtHGjRtHnz59\n7utza0o+9OvXj+zsbKNjp0+fJiAggKCgICZNmkRubi4AK1euxNfXFz8/P6Mwo6Oj6dSpEzExMUbh\nBgYGatfk5OTkCk7d7VXENcHg4MGD+Pn5MXr0aP7v//5PO/7ee+/h7+/PqFGjjH6La9asoW3btkZ5\n6+npaXSfqqzlvJGRkfj5+REUFMTIkSM5cODAfYVnjuXj8uXLTJgwAV9fX4YNG8Y777yjxbs0V65c\n4cSJEyWOm3M5iI+Pp02bNpw9e1Y7tmXLFqKiou45THMrC7fWF0NCQu7795CYmEhISAhBQUG88MIL\nXLt2DYCtW7cyYsQI/Pz8+PLLL7XzDx06RK9evYzyJSgoCF9fXy0PTp06dV9xqjaUqFBxcXFq+PDh\nd3z+nDlz1J49e8p8/eDBg2rcuHFKKaVu3LihvL29tfft3LlTKaXUkiVL1Pr165VSSk2bNk2tWLFC\nTZkyRQtj8+bNauHChXedljsRFxen+vfvbxR+fHy86t+/v5ozZ85dh1fd03unxo8fr6ZPn642bNhw\nT++/dOmS8vHxUXq9XuXl5am+ffuqmzdvqqVLl6pVq1YppZTauHGjWrx4sVJKqbfffltFREQYlb1D\nhw4Z5YspVXQ5MAgPD1crVqxQSim1Z88eNXXqVKWUUs8++6xKTExUer1ejR49WsXExKisrCw1duxY\nNX/+fBUREaGFcbvfWGW43zjUlHzo16+fysrKMjoWGBiojh8/rpRSauHChWrdunXq8uXLatiwYaqg\noEBdu3ZNPfPMM0qv16uDBw+qN954Q40aNUqdO3fOKNzs7GzTJOoO3e81obgBAwaoxMREpZRSU6ZM\nUXv37lWHDx9W48ePV0opFRMTo/z8/JRSSm3ZskWFh4ervn37GuVtjx497jsedysuLk75+PiowsJC\npZRSsbGxKjAw8L7CNLfyodfrlY+Pjzp48KB27LPPPlOzZs0q8z2bN282+i0bmGs5UKqoLAwePFi9\n/PLL2rHNmzerLVu23HOY5lYWbq0vXrp0ST377LPqzJkz9xzm7NmzVXR0tFJKqYiICLV48WKVlZWl\nBg4cqDIyMlROTo4aPHiwSktLU3/88YeaOHGimjx5stF1OTAwUMXExNx7wqopGeGpRB9++CFBQUGM\nHj2a6Oho7fh3333H2LFjGTp0KL///rvRe7p168bHH38MQN26dcnOzkav13P48GH69u0LQN++fdm/\nfz8A7777Lh06dKikFBVp3749Bw8e1P7fuXMnffr00f7ftm0bI0eOJCAggHnz5gFFPTnTp08nMDCQ\npKQk7VxzSO/tpKWlcfHiRV5++WW2b9+uHQ8KCmLx4sUEBwfj7+/PlStXOHz4MBMmTCA4OJiTJ09q\n5zZp0oTIyEh0Op320N7MzEwOHjxI//79AeN8mDFjBt7e3iXioipxE8Z7KQcjR84z0RUAAA/YSURB\nVI7k8uXLQFHP1LBhw4zCHD9+PGPHjgWgfv36pKamcvnyZRwdHXF1dUWn0+Hl5cXBgwextbXl008/\npUGDBiZO6b3bsmULCxcuBCArK4t+/foBMGDAAFatWkVgYCB+fn5kZWUZva+m5ENp5fWTTz6hffv2\nADg5OZGamsqhQ4d48sknsbS0xMnJCTc3N2JiYmjfvj1vvfUWlpaWRmEopSr1t3Cr8q4Jht7lyMhI\nli1bRkFBAVOnTsXf35+FCxeW+rvetGkTrq6uwF95cuDAAZ5++mkAmjVrRnp6OpmZmQwcOJDJkyeX\nCKMq8uPmzZvk5eVpPe+PPvoon3/+OQDnz59nzJgxhISEMGnSJDIyMoiPj2fEiBHMmjWLESNG8Oab\nb5YI09zKx759+3B3d6d79+7asZCQEE6cOMH169dJSEjQRnJfe+01rl27xtKlS1m7di27d+82Cstc\ny4FB27Ztsbe3N7pvGKxZswZ/f3/8/f1ZuXIlqampDBw4UHs9KipKu4YYmFtZuFWTJk145ZVXtJH5\nyMhIRo0aRWBgIKtXrwaKfkPjx48nICCACRMmlBgRnz9/vpZPhjw4fvw47du3p3bt2tja2tK5c2eO\nHj1Kw4YNWbZsGbVr1y4Rl6osF6YiDR4TKK2gHDlyhISEBD7//HNWr17N8uXLycvLA8DCwoLVq1fz\n6quv8sknnxi9z8LCAjs7OwC++OILvL29sbCwIDs7G2trawCcnZ1JSUkB0M691eHDhxk3bhwhISEl\nGlX3y9ramlatWmlD7rt378bLy0t7PTc3l5UrVxIZGUlsbCznzp0DICEhgYiICO2CbS7pvZ0dO3bg\n7e1Ny5YtSU5ONhoSd3R0ZO3atQwePFi7gJ09e5bPPvuMtm3bGoVjuAjt27eP+vXr4+rqSkpKCvXr\n1wfuLB/Onz9PaGgoAQEBWuPIVO6lHPj4+LB161YAvv32W4YMGWIUpo2Njfa9G/Lt6tWrODk5aec4\nOTmRnJyMhYUFNjY2pcYtIiKCMWPGMGPGjAqZUnQ/dDpdib8LCgpo3rw5ERERuLm5lZjWUFPyoTQO\nDg5AUcPov//9LwMHDiw17SkpKWX+DqCoIjB69GiWLFlSAbG/O+VdE271ww8/kJ+fz4YNG+jevXup\n5xryJDk5mf379+Pl5VUiT+rXr8/Vq1fLzJPc3FxmzpzJ6NGjtWuRqbVq1Yp27drx1FNPERYWxtdf\nf01hYSEAb7/9Nm+//Tb//ve/6dWrl1bpO3PmDDNnzuTLL7/k119/5cyZM0Zhmlv5uHDhAq1bty5x\nvEWLFly8eJEPP/yQF198kYiICFxcXIiPj2fYsGEEBwdrnX4G5loOips2bRofffSR0bG4uDiioqJY\nv349kZGRREdHc/PmTRo1asT58+eBoo7i4g0gML+yUBpPT0/Onz9PXFwcO3fuZP369URERLBjxw4S\nExNZtWoVTzzxBJGRkfTs2bPEfd3Ozg4LCwv0ej3r1q0r816RkpJS5n0CIDw8nMDAQObPn6/VVc2d\nVVVH4EEUGxurzYXV6XT07t0bCwsLTpw4YTRH1nAjM/T0tG/fng8++KDUML/99ls2b97MZ599BhhX\nEG7XEu/YsSNOTk54eXnxyy+/8Nprr7Ft27b7TmdxzzzzDNHR0bi4uODo6Gh0MalTpw4TJ04Eiirg\nhopWu3btygyvuqe3PNu3b9fWFPXr14/o6Gitd75Xr15aHH/44QegqBJgZVX6T/GXX35h8eLFrFix\nAiiZD+VVFB955BEmTZrEoEGDuHz5MsHBwezatavMz6oId1sO/va3vzFmzBgmTpzId999V6LHzmDx\n4sXY2toyfPhwjh07ZvTa7cqDj48Pjo6OtGrVihUrVrB06VLeeOON+0xpxevSpQsArq6u3Lx5s9Rz\nakI+lCYrK4vQ0FBefPFFPDw8Srx+u7S/+uqrPPHEEzg6OhIaGso333zDgAEDTBXdEsq7Jtzq/Pnz\ndO7cGQAvL68SPdAG165d45VXXmHBggXUq1evxOu3y5M5c+bw3HPPARAQEEC3bt3w9PS80yTds4UL\nF3LhwgX27dvHypUr2bBhA2vWrOHEiRPMnTsXpRT5+fna/eHRRx/VOsU6dOhAbGwsLVu2NArTnMqH\nTqdDr9eXOK7X67G0tOTUqVPMnTsXgJkzZwLwv//9r8zwzLUcGDRt2hRPT0+jWS+///47HTt2RKfT\nYWlpSefOnTlz5gz9+/fn+++/p0mTJsTExNCxY8cS4ZlTWShNZmamVl/8448/tDpjdnY2cXFxnDp1\niqlTpwIwZsyYUsPQ6/XMmjWLnj170qNHD6NRZbh9HowZM4aWLVvSpEkTFixYQGRkJCEhIRWTwCok\nDR4T8PDwYO3atUbHVq9ezfDhw3n55ZdLnH+7ns4ffviBFStWsGrVKq3X397enry8PGxsbEhKSsLF\nxaXM+Li7u+Pu7g4UVbRv3Lhx28ry3erZsycffPABjRo10qZcAeTn5/PWW2+xbds2nJycmDBhgvaa\nocf6VuaQ3rIkJSVx/PhxbYOAnJwc6tatq1VuDDe64vEpKx9Onz7NG2+8wYoVK7QbvouLC1evXsXB\nweG2+eDq6sqgQYOAoqHyBg0akJSUhJubW4WktTR3Ww4cHR1p0qQJBw4cwMLCotT0hIeHc+PGDf7+\n978DRXlgGNkCbpsPPXr00P5+6qmnWLBgwf0m847cvHkTOzs7rKystMpM8TJYUFBgdH5ZFVuDmpIP\ntyosLGTixIk899xzPP/880BR2mNjY7Vzbpd2Hx8f7e8nn3ySs2fPVlolprxrQvF8MGzEAkUj3Qal\nXbcyMjIYN24cM2bMoGfPnsBf1waD5ORkHnrooTLD8fPz0/7u2bMnZ8+erZSKbl5eHh4eHnh4eBAY\nGMigQYNISEjA3t6+xH0zPj7eqHFQ2nXc3MqHh4cH69evL3E8JiYGd3d3rXf+TphzOSjO0EAJCAjA\n2tq6RKMwLy8PnU7H008/zdSpU3nssceMpksbmFtZKM3Jkydp06YNNjY2eHt7l5jGuXLlytuWj7Cw\nMNzd3QkNDQVKv1d06tSpzPcbpkRC0dT5HTt23EtSqh2Z0mYCpbWeO3TowO7du1FKkZuba7Rj1pEj\nRwA4duwYzZo1M3pfRkYGixcv5p///Cd16tTRjvfs2ZOdO3cCRWslnnjiCaPPLx6HlStX8sUXXwBF\nF1UnJ6cKr/xbW1vTpk0bNm3aZDTsnpmZiZWVFU5OTly5coWTJ0+WOzxqLukty/bt2wkICCAqKoqo\nqCh27NhBWlqatk7l559/BopGbm79rovT6/W8/vrrLF26lIcfflg73qdPH+3i880335SbD9u2bWPZ\nsmVAUS/g9evXjaYPmsKdloNff/1Vq+D5+PiwYMECnn322RLhHTlyhBMnTmiVfAA3NzcyMzNJSEig\noKCAPXv2lHrzM5gyZYo2Deann36iRYsWFZXccr355pvs2rULpRQXLlzA3d0dBwcHbWTX8Lu/EzU5\nH1asWEH37t2N1nf16NGDvXv3UlBQQFJSEsnJyTRv3tzofYbfQkZGBoGBgdq6kSNHjvDYY49VZBLL\nVd41oU6dOlpF5OjRo0BRj7dhZ619+/ZpU76Ke//99wkJCaF3797asd69e2vXyN9++w1XV1fs7e21\n14tfG2JjYwkNDUWv11NYWMixY8dK5J8pfPHFF4SFhWlxSU9PRylFgwYNaNmypTaSER0dra3ruHTp\nElevXkWv13P8+PES8TS38tG7d2/i4+ONRm1Wr15N165dqVu3rtFayPDwcA4cOIBOpyu1Y8Bcy8Gt\nnJ2defrpp9mwYQMArVu35vjx4+j1egoKCjhx4gRt2rTBxcUFnU7H9u3bS0xnA/MrC8U/G4rK+urV\nqwkJCcHT05NDhw6Rk5ODUop3332XvLw82rVrp5WPjRs3ltjVbuvWrdjY2DBp0iTtWIcOHTh58iQZ\nGRlkZmZy7NgxbUZBafEICgrSGs2Vfb00JRnhMYHSKtedOnWie/fuWm/K6NGjjV6fMGECSUlJLFq0\nyOh4dHQ0qampTJ06VevdWrRoEZMnT2b27Nls3LiRRo0aMXToUPR6PT4+PmRnZ5OWlsaQIUOYPXs2\nQ4YMYebMmWzduhW9Xs+7775rknQ/88wz3LhxQ5tHC0U9+L169cLX15fmzZvz0ksv8f777xMcHFxq\nGOaU3tJ89dVXJb7D559/nq+++gqdTkdCQgIvvfQSGRkZhIeHc/HixVLDOXDgAPHx8cybN0/Lh1mz\nZhEYGMisWbMICAigbt26LF68GCha9JqYmMiVK1cYMmQIY8eOZdCgQUyfPp1Ro0ahlGLBggUmnc5m\ncCflYNy4cbz33ntERUXh7e3N3LlzS72BrV+/nsTERG1Yv379+oSHhzN//nymT58OwODBg3nkkUc4\nfvw4c+fO5fr161haWrJhwwYiIiIICAggLCyM2rVrU7t2baNGgykZyuzatWvx8vLCzc2NevXq8ckn\nnxAcHGw0Xel2o7w1MR8M1q1bR+PGjfnxxx/R6XT06NGD0NBQbQMMnU6n9YJGRESwceNG4uLimDRp\nEs2aNWP58uUMGDAAPz8/ateuTevWrUsta6ZS1jUhOjqakSNHsmDBAtzd3WnSpAkA3t7efPnllwQE\nBPD444/j6Oho9N6cnBy2bt3KpUuX+M9//oNOp2PIkCH4+vrSpk0b/P39sbS0ZP78+QAsWbKE3bt3\nk5KSgq+vL127dmXBggV4eHgwYsQIbGxs6Nu3b7lTjCvK8OHDiY2NZeTIkdjb21NYWMjcuXOxsbHh\n9ddfZ968efzrX/+iVq1afPDBB9y8eRN3d3eWLFlCTEwMXbp0KdFRZG7lQ6fTsWrVKubNm0d4eDh6\nvZ62bdtq09gmT55MWFgY69ato1GjRkyePBmlFHPmzMHZ2ZnBgwcD5l0OSvPCCy9oDR43Nzft+1NK\nMXLkSK3jr1+/fnz++ef84x//KBGGuZUFgIsXLxIcHExeXh56vZ758+drHZNjxowhICAAKysrnnrq\nKWxsbBgzZgyvvfYaQUFBODg4lFgGsW7dOvLy8ggKCkKn09G8eXPmzZvHjBkzeOGFF7CwsGDy5Mk4\nODiwa9cuwsPDSU5O5tChQyxdupRNmzZpj71wcHDAxcXFqPFkznTqQdyKQYhqKCgoiPnz51dJD1p1\n9uOPP7J9+/Zyn1clRE2RlpbGoUOHGDBgAElJSYSEhBitb6hJ4uPjmTJlCps2barqqAghzJyM8AhR\nSSprWp05+eijjzhw4ABLly6t6qgIUS3Url2br7/+mlWrVqGU4vXXX6/qKFUpuW4KISqCjPAIIYQQ\nQgghHliyaYEQQgghhBDigSUNHiGEEEIIIcQDSxo8QgghhBBCiAeWNHiEEEIIIYQQDyxp8AghhBBC\nCCEeWP8fTo1RtnrEA6AAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "start = \"2015-01-01\"\n", "end = \"2016-01-01\"\n", "pricing_sample = get_pricing(\"MSFT\", start_date = start, end_date = end, fields = 'price')\n", "\n", "#transform it into returns\n", "returns_sample = pricing_sample.pct_change()[1:]\n", "\n", "# plot it\n", "plt.plot(pricing_sample.index, pricing_sample.values)\n", "plt.ylabel('Price');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here are the returns." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false, "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0sAAAHiCAYAAAA5yFd5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XuYJHV9L/53d/V17jN7mWUHWGAhKyBEWIUQVNaTReGo\nSTwahR8R0SSeRPGQA49PEm6S82BQjDHkYNSjR/QkGhJAVKKAKywX2QWWBbmsC8vO3i8zs3Ptnr53\nVf3+qP7Wrau6q29VMzvv1/P4yF56u7qnu77fz/fz+X6+IVVVVRAREREREZFFOOgLICIiIiIiWogY\nLBERERERETlgsEREREREROSAwRIREREREZEDBktEREREREQOGCwRERERERE5iATxpHfccQdefvll\nhEIh3HjjjTjnnHP0PysWi7jllluwe/duPPDAAwCA559/Htdddx3OOOMMqKqKdevW4eabbw7i0omI\niIiIaInwPVjatm0b9u/fj3vvvRejo6O46aabcO+99+p/fuedd+Lcc8/F6Oio5XEXXHAB7rrrLr8v\nl4iIiIiIlijfy/C2bt2KjRs3AgDWrl2LVCqFTCaj//kNN9yADRs2VD2OZ+cSEREREZGffA+WJicn\nMTQ0pP96cHAQk5OT+q+TyaTj40ZHR/GZz3wGV111FbZs2dLx6yQiIiIioqUtkD1LZl4yRmvWrMG1\n116Lyy+/HAcPHsTVV1+NTZs2IRKpffnbt29v12USEREREdFxav369Y6/73uwtHLlSksmaWJiAitW\nrKj5mOHhYVx++eUAgJNOOgnLly/H+Pg4RkZG6j6f2ws/nmzfvn1JvE6zpfia3fC94Htgx/eD74EZ\n3wsD3wu+B3Z8P/geALUTLL6X4V188cV49NFHAQA7duzA8PAwurq6LH9HVVVLxumhhx7C3XffDQCY\nmprC9PQ0hoeH/btoIiIiIiJacnzPLJ133nk4++yzccUVV0CSJNx666148MEH0dvbi40bN+KTn/wk\nxsbGcPToUXzwgx/ENddcg8svvxzXX389rrzySqiqittuu61uCR4REREREVErAok4rr/+esuv161b\np//3Pffc4/iYb37zmx29JiIiIiIiIjPfy/CIiIiIiIgWAwZLREREREREDhgsEREREREROWCwRERE\nRERE5IDBEhERERERkQMGS0RERERERA4YLBERERERETlgsEREREREROSAwRIREREREZEDBktERERE\nREQOGCwRERERERE5YLBERERERETkgMESERERERGRAwZLREREREREDhgsEREREREROWCwRERERERE\n5IDBEhERERERkQMGS0RERERERA4YLBERERERETlgsEREREREROSAwRIREREREZEDBktEREREREQO\nGCwRERERERE5YLBERERERETkgMESERERERGRAwZLREREREREDhgsEREREREROWCwRERERERE5IDB\nEhERERERkQMGS0RERERERA4YLBERERERETlgsEREREREROSAwRIREREREZEDBktEREREREQOGCwR\nERERERE5YLBERERERETkgMESERERERGRAwZLREREREREDhgsEREREREROWCwRERERERE5IDBEhER\nERERkQMGS0RERERERA4YLBERERERETlgsEREREREROSAwRIREREREZEDBktEREREREQOGCwRERER\nERE5YLBERERERETkgMESERERERGRAwZLREREREREDhgsEREREREROWCwRERERERE5IDBEhERERER\nkQMGS0RERERERA4YLBERERERETlgsEREREREROSAwRIREREREZEDBktEREREREQOGCwRERERERE5\nYLBERERERETkgMESERERERGRAwZLREREREREDhgsEREREREROWCwRERERERE5IDBEhERERERkQMG\nS0RERERERA4YLBERERERETlgsEREREREROSAwRIRERERLXhz8wXsO5oK+jJoiWGwREREREQL3v/5\n8au44a6nUCzJQV8KLSEMloiIiIhowZvPllAsycgVykFfCi0hDJaIiIiIaMGTFQUAkC8ys0T+YbBE\nRERERAteJVZCocjMEvmHwRIRERERLXiKqgIACtyzRD5isEREREREC54sswyP/MdgiYiIiIgWPD2z\nxGCJfMRgiYgCNzdfwOv7p4O+DCIiWsBkhcES+Y/BEhEF7l8feR1/9b+fRipTDPpSiIhogVJEsFRi\ngwfyD4MlIgrcfLYIRQXmcwyWiIjImQiWuGeJ/MRgiYgCxzp0IiKqh2V4FIRAgqU77rgDV1xxBa68\n8kq8+uqrlj8rFov4q7/6K3zkIx/x/BgiWtxkWRsAi2wHS0RELphZoiD4Hixt27YN+/fvx7333ovb\nb78dX/ziFy1/fuedd+Lcc89t6DFEtLiJzFKxpAR8JUREtFAZmSXuWSL/+B4sbd26FRs3bgQArF27\nFqlUCplMRv/zG264ARs2bGjoMUS0uBmbdrlaSEREzliyTUHwPVianJzE0NCQ/uvBwUFMTk7qv04m\nkw0/hogWNwZLRERUjyjZ5lhBfgq8wYNaWSXo9GOIaOESpRXcs0RERG5EZol7lshPEb+fcOXKlZas\n0MTEBFasWNH2xwjbt29v7kIXmaXyOs2W4mt2s9jfi7lUCgDw5u496MNEU//GYn8P2o3vB98DM74X\nBr4Xi/c9KBZLAIDxY1NtfQ2L9f1oJ74H7nwPli6++GLcfffd+OhHP4odO3ZgeHgYXV1dlr+jqqol\ne+TlMW7Wr1/f1utfiLZv374kXqfZUnzNbo6H9+I/tj4NYBqrVp+I9evXNvz44+E9aCe+H3wPzPhe\nGPheLO73IPTgOAAFya6etr2Gxfx+tAvfg9rBou/B0nnnnYezzz4bV1xxBSRJwq233ooHH3wQvb29\n2LhxIz75yU9ibGwMR48exQc/+EFcc801+PCHP4yzzjrL8hgiOn7w7AwiIqqHrcMpCL4HSwBw/fXX\nW369bt06/b/vuecex8fccMMNHb0mIgqOorB1OBER1caFNQpC4A0eiIiMc5Y4ABIRkTOFwRIFgMES\nEQWOrcOJiKgeRdGqDwolHkpL/mGwRESBY+twIiKqRVVVVIYK7lkiXzFYIqLAMbNERES1KKYjNlmG\nR35isEREgVOYWSIiohpECR6gVSOUymwIRP5gsEREgRMNHrhaSERETmRzagmsRCD/MFgiosDpe5a4\nUkhERA4Ue7BUZJMH8geDJSIKHPcsERFRLdXBEscL8geDJSIKHPcsERFRLfYyPHbEI78wWCKiwHHP\nEhER1cLMEgWFwRIRBU6WmVkiIiJ3YlFNyHPPEvmEwRIRBU4MggyWiIjIiVhUE7jHlfzCYImIAmc0\neGA3PCIiqmbPLLEMj/zCYImIAic27pZlpWoTLxERkRgbYhFt6soGD+QXBktEFDjzxl2W4hERkZ0Y\nJ7oSUQBAocQ9S+QPBktEFDhzeQWDJSIishOZpWQiAoBleOQfBktEFChFUWEuRecASEREdkZmicES\n+YvBEhEFqmrTLjNLRERkowdLca0Mj3uWyC8MlogoUPaDBlmGR0REdrKidUvVM0scK8gnDJaIKFDV\nwRLbhxMRkVUlVkIyrgVLPJSW/MJgiYgCVV2GxwGQiIisRGaJDR7IbwyWiChQ9nOVmFkiIiI7sbDW\nFWewRP5isEREgbKX4bEOnYiI7GRZGysS8QhCIY4V5B8GS0QUKDZ4ICKiekRmSQqHEI9K3LNEvmGw\nRESBEmV44ZD2a64WEhGRnVhYk8IhxGMSy/DINwyWiChQYgBMVOrQmVkiIiI7fWEtHEY8FuHCGvmG\nwRIRBUqUVoh2sBwAiYjITtGDJWhleAWOFeQPBktEFCg9sxQTmSV2wyMiIiuRWZJCISRiEhfWyDcM\nlogoUGIA5NkZRETkRs8sSWHEYxKKJbmqQRBRJzBYIqJAicGui3uWiIjIhdEMKGSqROB4QZ3HYImI\nAiX2LInBj6UVRERkZ+mGF5UAAHlWIpAPGCwRUaD0Mjw2eCAiIhdiYS1caR0OcLwgfzBYIqJAGa3D\ntcGPZRVERGQn285ZAsCDackXDJaIKFCKLbPEYImIiOyM1uFGGR4bApEfGCwRUaDEamEsKiEcDrF1\nOBERVZEVbWwIh40GDwyWyA8MlogoUHodeiiEeDTMwY+IiKpUYiVLGR73LJEfGCwRUaAU2VxaEeHg\nR0REVRRLZol7lsg/DJaIKFCy3uEIiEXDKJYZLBERkZXs0DqclQjkBwZLRBQo4+yMMGJRiQ0eiIio\nirlkm+fykZ8YLBFRoBTTqezxmMSVQiIiqmIp2RZleAWOF9R5DJaIKFCyqR1sLKJlltTKCiIRERFg\nlGyzwQP5jcESEQVKUa116IoKlGUGS0REZLCcsySCJTZ4IB8wWCKiQJkHwFiUq4VERFRNMTV44DlL\n5CcGS0QUKNlhtZBNHoiIyMwyVkRF63COFdR5DJaIKFDmBg+xqHZLYrBERERm5s6pCe5ZIh8xWCKi\nQJlLK1iGR0RETpz2LPFQWvIDgyUiCpR+dgYPGiQiIhd6GV4IHCvIVwyWiChQTnXoLMMjIiIzvXOq\nFIYkhRGRwgyWyBcMlogoUHoZXsgowyuWlCAviYiIFhhZNva3AtAOMefCGvmAwRIRBUqvQ5e4Z4mI\niJyZz+QDgERM4p4l8gWDJSIKlGzqhsdT2YmIyIm5wQOg7VtiGR75gcESEQXK3A0vztbhRETkQFbs\nmaUIF9bIFwyWiChQ5m54MTZ4ICIiB1WZpZiEfFGGWhlDiDqFwRIRBco8ADJYIiIiJ7KiNf4xB0uK\noqIsM1iizmKwRESBkk3d8Hh2BhEROanESnoZnjFesMkDdRaDJSIKlOJwzhLr0ImIyEzPLIWMPUsA\nxwvqPAZLRBQoxz1LZZ6zREREBr0ZkGSU4QFAnpUI1GEMlogoUOZueLFKNzyW4RERkZm+sBayBksc\nL6jTGCwRUaBkSxmeVlbBBg9ERGQm27rhJfTMEvcsUWcxWCKiQCmmQ2n1zBKDJSIiMlEUFeEQEArZ\nGzxwvKDOYrBERIESpRWSZDR4YGaJiIjMZEXVs0oAEK80eOCeJeo0BktEFChrZond8IiIqJqiqAiH\njWmrvmeJ4wV1GIMlIgqUuQ49HA4hGgkzs0RERBayokIyzVoTMZ6zRP5gsEREgTJ3wwOAWFRCscTW\n4UREZKjKLHHPEvmEwRIRBUqxdTiKR8MsqyAiIgtFVfW24YBxKC33LFGnMVgiokDZT2WPRyNcKSQi\nIgtZVvUKBIB7lsg/DJaIKFCVWEnPLMWi3LNERERWimrvhscyPPIHgyUiCpTeOtyyZ4mDHxERGapa\nh0d5KC35g8ESEQXKvmcpFpVQLCv67xMRESmKtQxP7FliGR51GoMlIgqUvmdJNHiolFYUyxwAiYhI\noygKy/AoEAyWiChQ+p4lvcFDJVhi+3AiIqpQFDg3eGCwRB3GYImIAlW1ZykigiUOgEREpLHvWYpF\nwgiFuGeJOo/BEhEFquqcJbaDJSIiG0VRLOcshUIhxKMSxwrqOAZLRBQo+56lWFS7LTGzRERusvkS\nfrN3KujLIB8pqgpJCll+LxGLIF/gWEGdxWCJiALltmeJq4VE5OaBzbvxV3f/CkcnM0FfCvlEllVL\nZgkAYjFmlqjzGCwRUaAUVUUoZG0dDjCzRETu5rNFAMBsuhDwlZBfFNXaOhwAEjEJBe5Zog5jsERE\ngVIU62qhnllihyMiciFX9jpyc//SYW/wAGjjBccK6jQGS0QUKNl2dkaMrcOJqA6FwdKSoqoqVBWQ\nwtZpayIWQbGs6MEzUScwWCKiQNlPZY9xzxIR1WFklnifWAqMrqnW39cPMed4QR3EYImIAqUocDyV\nnYMfEblRGCwtKSI4tjd44MG05AcGS0QUKNl2dka80jqcmSUiciOCJW7uXxrEz1uSrNNWsceV5ZjU\nSZEgnvSOO+7Ayy+/jFAohBtvvBHnnHOO/mdbtmzB1772NUiShHe/+934zGc+g+effx7XXXcdzjjj\nDKiqinXr1uHmm28O4tKJqM0UVXXZs8RgiYicsQxvaXHLLCV4iDn5wPdgadu2bdi/fz/uvfdejI6O\n4qabbsK9996r//kXv/hFfPe738XKlSvxx3/8x3jf+94HALjgggtw1113+X25RNRh3LNERI0Sh1nn\nC8woLAWKKjJL9jI8bRrLMjzqJN/L8LZu3YqNGzcCANauXYtUKoVMRjtU7uDBgxgYGMDw8DBCoRAu\nueQSPPvsswC0TihEdPyp2rPE1uFEVIc4zJqZpaVBll32LHG8IB/4HixNTk5iaGhI//Xg4CAmJycd\n/2xoaAgTExMAgNHRUXzmM5/BVVddhS1btvh70UTUMfbW4XGW4RFRHXpmiXtVlgSRWbKfsyTK8Pg5\noE4KZM+SWa2MkfizU045Bddeey0uv/xyHDx4EFdffTU2bdqESKT+5W/fvr1t17qQLZXXabYUX7Ob\nxfxe5AtFhEPGa5hOa4PekbGJhl7XYn4POoHvB98Ds+PtvZiZnQMAHB2fbPi1HW/vRTMW23swl9XG\nhdnZGcu1j4/NAwB2vvEmwrnDTf/7i+396AS+B+58D5ZWrlypZ5IAYGJiAitWrND/7NixY/qfjY+P\nY+XKlVi5ciUuv/xyAMBJJ52E5cuXY3x8HCMjI3Wfb/369W1+BQvP9u3bl8TrNFuKr9nNYn8vIv/5\nCBKxiP4apuZywENj6Osb9Py6Fvt70G58P/gemB2P78WPnn8GQAFd3X0Nvbbj8b1o1GJ8D8ans8CP\nx7Bi+TKsX3++/vsz8n48vP3XWD2yBuvXn9zUv70Y349243tQO1j0vQzv4osvxqOPPgoA2LFjB4aH\nh9HV1QUAGBkZQSaTwZEjR1Aul/HEE0/gne98Jx566CHcfffdAICpqSlMT09jeHjY70snog6oPmep\nsmGXZXhE5EJ0R8uxwcOSoLcOD9v3LHG8oM7zPbN03nnn4eyzz8YVV1wBSZJw66234sEHH0Rvby82\nbtyIL3zhC7j++usBAB/4wAewZs0aLF++HDfccAOuvPJKqKqK2267zVMJHhEtfNV7lnjOEhHVxnOW\nlhaxR82+ZykeFw0e+Dmgzgkk4hDBkLBu3Tr9v9/+9rdbWokDQHd3N775zW/6cm1E5C976/CIFEYo\nxAYPRORO4TlLS4r4eVcFS+yGRz7wvQyPiMjMfihtKBRCPCoxWCIiV0Y3PN4nlgJRdim5HErLzwF1\nEoMlIgqULKtVZ2fEohLL8IjIlThnieVXS4NrZol7XMkHDJaIKFD2zBIggiUloCsiooVOZJZyBU6S\nl4J65yyxDI86icESEQXKvmcJ0Jo8sAyPiNyIyXNZViDLXFg53smu3fB4KC11HoMlIgqMqqpQVKdN\nuxGuFBKRK1k2DrTnfpXjn3sZXiWzxMU16iAGS0QUGH0ArNqzxMwSEbkTmQaAWYWlQGY3PAoQgyUi\nCoxbHXosKkFWVJbXEJEjce8AOFFeCoxDaa3TVkkKIyKF+RmgjmKwRESBcatDj0VZWkFE7liGt7QY\nmaXqP0vEJGYXqaMYLBFRYFiHTkTNUExleLkCJ8rHO7eSbUAbLzhWUCcxWCKiwLgNgKIOvcj24UTk\nwLxniSVYxz9RdmkvwwNEZomfAeocBktEFBi9DE9yLsNjkwcicqIoxkIKS7COf6Ls0l6FALB7KnUe\ngyUiCoze4MEls8TSCiJyYm7wwKzC8c/ILLmU4RXLUE2fCaJ2YrBERIFx27MUi2q3Jq4WEpETc4OH\nAjNLxz2lVmYpJkFRtQOKiTqBwRIRBabe2RkswyMiJ7KlwQPvE8c72eWYCUDbswQww0idw2CJiAKj\n1GkdzmCJiJxYz1liZul4J/aoOZbhRSMAWIlAncNgiYgC47pnKcZueETkTFFUqKqxqMKMwvGvVuvw\nRFx8Dhg0U2cwWCKiwLh1OIpFRIMHDn5EZCVK8LoTWkaBk+Tjn9iOZO+cCpgaAjFopg5hsEREgVFc\n6tCNbnjMLBGRlbhvdCWiAJhZWgpEGZ7bobQAu6dS5zBYIqLAuO9Z0m5N3LNERHZyJc3QnWw+s1Qq\ncyFmMVFczuQDjGCJQTN1CoMlIgqMW+twrhQSkRvRCK/ZzNJro5P46I0/w2ujk+2+NOoQucaeJTZ4\noE5jsEREgXEbANkNj4jciMxSMh5BKNT4JPnwsQzKsoKDE/OduDzqALeSbcBoHc6uiNQpDJaIKDBu\np7LHoswsEZEzc/luPCo1XIYn9r9wMWbxcCvZBliJQJ3HYImIAuNahhdl63AicmbOMiRiEeQbPJRW\nZLRZtrV4uB1gDvBQWuq8hoOlYrGIo0ePduJaiGiJqRcssayCiOzEkQNSOIREvPHMkh4sMROxaNTM\nLHHPEnVYxMtf+ta3voV4PI6Pfexj+PCHP4zu7m5cfPHF+Mu//MtOXx8RHcfEpEVy3bPEzBIRWen3\njXAYiVgE6WyuscdXgi2W4S0etTJLRjc8Lq5RZ3jKLG3evBmf+MQn8Mgjj+A973kP7rvvPrz44oud\nvjYiOs7pmSXJuXU4V36JyM5chhePSQ1noOXKniVmIhYPxRQg23HPEnWap2ApEokgFArhqaeewsaN\nGwEYGySJiJqlT3pCbnuWOPgRkZXohieFQ0jEJJRlFWXZ+5yEZXiLT63W4UY3PP48qTM8BUu9vb34\n9Kc/jdHRUZx33nnYvHkzQg4fWCJauI5OZvDrXRNBX4aFWx26JIURkUKczBBRFXHOkmjwADS2uV+U\n4fH+sngY+1ur/4x7ljrj4Hga//HLXfp7v5R5Cpa++tWv4qMf/Si+973vAQBisRi+/OUvd/K6iKjN\nvv2TV/G333nW97rusqzgp0+PIpsvVf1ZrTr0WFRiZomIqlgzS5VgqeD9vsYyvMXHOGaietqaiHPP\nUic8snUf/uXhnXjz4EzQlxI4T8GSJGkfxM2bN+P+++/H0aNHsWXLlo5eGBG115FjGZRlteE2u616\nbscYvv3j1/Dki4eq/sytGx7AYImInJkXWZqZKIv7TiP3F1VVsX8sBVXlKnsQajZ4iLIMrxNE5vXY\nbGMNVI5Hnrrh/cmf/AnC4TBGRkYsv/+Rj3ykIxdFRO2lqiom57Qbnt+lJ9NzeQBAJl89mdFXCx3K\neuNRCQV2wyMiG/Nh1vEmzthpZs/Si29M4LZvP4ubP3kBLnzrCQ1cLbVDrdbh0UgY4RDLKtutVNbG\n38nZfMBXEjxPwVK5XMa9997b6WvxxQs7x/HiGxP4sz94K/dd0ZKRzpb0VTe/szVz8wUAQMnhecXe\nAbfM0my60NmLI6JFx3zfSEiN71eRm8gsHRhLAwAmucoeiFqZpVBIC5p5KG17iaYpU3P8zHsqwzv9\n9NMxM3N81Cz+7Jm9eOjpPZjhJIyWkGMzWf2//S5VmMsUted1mJiYWwDbxaNhFMsc/IjISrGcs9R4\nGZ6YBDZyL5xOaavrJZlleEGolVkCtCYPLMNrL/E9YRmex8zS2NgY3vve92Lt2rX6/iUA+MEPftCx\nC+uUdGXixr0QtJSYb3Z+lyromaVydUldzVPZYxEUSzJUVWUWmIh05r2OehleA3sxlSbK8ESWu8QF\nnECIphxOC2sAmjpvi2orl7XvyRSDJW/B0qc//elOX4dv5jLaDY/BEi0lx2ZMwZLfmaVKsOSYWarV\n4CEShqpqQVYsKlX9OREtTbJpkSWptw5voBue3HgZnsgslZlZCoRS45wlQAuWZlLVHVepeWJhgKWn\nHoOlRx99FLfcckunr8UXKZFZcljlJjpeWTNL/q6+zc1r3zmnzFKtgwZjpoNpGSwRkWAu323qnKUm\nWoeL0v1GDr+l9qn8yCBJzsFSgnuW2k4sDEynC5BlBZLkaefOccnTK49Go9i6dSsKhQIURdH/t9iU\nygqylY5cfmeWsvkSvn7/yzhybN7X5yUCbHuWfO4wl8rUyCzVODtDbwfLLDARmZjPWYrHRdvoRs5Z\nqmSWyornAzdnxJ4lLrQGQi/Dc8ssRSMolRX9Z0utEwsDiqIu+X3+njJL9913H77//e9bzhcIhULY\nuXNnxy6sE9LZov7fJZ8njK/tmcIjW/dh+UACH9u4ztfnJrJklnxcfSvLCtJZrTTC6TtXqwxP7EUo\nsn04EZmYy/ASLbQOB4BiWdazU25KZRnzOe0+xsxSMGo1AwKM8aJQLKMrEfXtuo5nJdNnfXIuh+UD\nyQCvJliegqXt27d3+jp8IUrwAPjeZUtksnIOZ80QdZplz5KPZXhp83eu5p6l6sfGmFkiIgctl+GZ\nJoGFYv1gaSZlrKozsxQMsc/MtRtezBgvGCy1R9n0WZ+czQFrAryYgHkKlu666y7H37/uuuvaejGd\nJsqBAP/3LImJImtqyW+lsoKZtHGonJ+Zpbk6CxRe9ywREQnmibOeWSo0XoYHeMtcm++fZQZLgaiX\nWUromSWOF+1SsgRLS/tgWk97liRJ0v+nKAqee+45pNPpTl9b24mN5oD/EzBxQ841cEMnaoepuRxU\nFVgxqKXQ/czUzKVrL1DorcMdNo5yzxIROTEOKA2bMkvNBUteMu3TpswSy/CCUetQWsA0XjBYahvz\nZ32pd8TzlFm69tprLb+WZRmf+9znOnJBnWQpw/N5H4RehsdgiXwm9iuduKIHx2Zyvn7258zZ3FqH\n0jpmlsKWx/3smb1YMZDEBWev6sSlEtEiYZzPZpRfNVK1ociNZZZmTZmlpVCGVyzJUGEEIAtBvUNp\nmwmaqbayrFTOr5IxObe0g6Wm+gCWy2UcOHCg3dfSceZgye+D5cSqeiOlAkTtIPYrnTjcC6CxrlGt\nMmdznRo8yDX2LJlXClVVxbd//Cr+bdMbnbnQBqiqiie2H7Q0jCEi/1gyS3FtktxIRsGSWfLwuKWS\nWUplivjho6/jE3/7KD73lc2Wpl5BU0w/cyfmPUvUHmVZwfL+BKRwiJklL3/pkksuQci08js3N4cP\nfehDHbuoTknVWeXupBIzSxSQY7Na2/CRFT0AfC7Dmze+cw0fSmvas5QvypAVdUE0SNm5bxpf/eGL\n+PjlZ+IZzqkcAAAgAElEQVSjG38r6MshWnLM+1dikTBCoUbL8EwNHjyU4c0c55ml6VQeDz6xG49s\n3adn6OZzJRTLyoLJLhn7W53/nHuW2k8cCL+sP4EpBkv1/fCHP9T/OxQKoaenB7FYrGMX1SnWbnj+\n3vAKbPBAAREbM08UwVIADR6kcMgxm2uUVjjsWdJXChVkKm17O1FiMT6dxfKBpGt5h53ojOVnZun7\nP/sN3rJmEBe+9QTfnpNooVJM5yyFQlpHvHyhydbhXho8tJhZms+V8LmvPI6PXboOl110SsOP75Sx\nqQx+tHk3Nj1/AGVZwVBfAldddiZefvMYXtg5jmyutGCCJUVREa78vJ2I6+Qcq33KZQURKYxl/Um8\ncWBmSR9M6+lV33rrrRgZGcHIyAhWr16Nvr4+XHXVVZ2+trZLBdjgQaxGdSqzlM4W8a8P72S9LlUR\nB9KOrAwus7SsP+F4GG7tPUsiWCojk68ES23+/uw9Moc//eImbHpuv+fHpCpBkl/vYzZfwv2Pv4n/\n/NVeX57PrCxbOymS1cRMFtnKZ5P8I9v2ryRiUmOZJVvr8Hpm0nlEI2GEQ81llsamMpicy+O10amG\nH9spB8ZS+IsvP4aHt2rnP177R7+N79y0EX94yVoM9SUAQL/vLgSKoroeSAuYz1lisNQuZVkLllYM\nJJf8wbQ1M0s//elP8fWvfx1HjhzBhg0b9N8vlUpYvnx5p6+t7YJs8FDocBneE9sP4d9/uQsnDvdi\nw/knduQ5aHE6NptDdzKKgd44AH8XClKZIsIhYKgvgWOzOaiqalkZFC2Aa+1ZKpYUZHPa9yZXKFf9\nG63YdzQFANh9aNbzY+ZFsOTToCxWSoMo4f3uQzvw6LP78S+3vY9nl9hk8yV87u8346JzTsBfXnF+\n0JeDI5PzOGFZd9u+GwuZvY10IhZp+lBaL4seM6k8BvsSmE0XLAd1eiXuueaGN0HbeySFsqziDy9Z\ni2vef5YlY9CV0KaG2QVQ9izIquraCQ8A4jGxd23hXPNiJisqFBWIRsJYVjmMdikfTFszWPr93/99\nvP/978dNN91k6X4XDoexcuXKjl9cu1nPWQoms9Tsyvh8tohkIupaKiQmcDMprgKTQVVVHJvJYnio\nGxEpjIgU8nXlbTZdQG93DIlYBKqqrVRFI0ZZh5j0OJXhmbvhiRVORUVb6+hFec3EdNbzY9JZ7Vr8\nyiyJFfNcAJOAsakMiiUZc/NFBks2e4+kkM2XcXQyE/SlYMeeKfz113+FG65avyQWy+wHlMZjkmV8\nr/v4BoIlsaJ++kkDyORKTZ2zJO655uqWoImM8VmnLqsqrepOat/1+dwCyizJas1SaTZ4aC9RNh+J\nhLF8QMs0tutg2pl0HlCBwUoGczGoW4YnSRK+9KUv4c0338TmzZsxMjKCUqnk2pFkoVJVFalMEb1d\n2k3AqTNXJ4kvcLGsWEoAvMgXyvjU7b/A9/5zh+vfma9MJs0b6oky+TJyBVk/YykWlXwdTFKZAvq6\n46ZmDdbPfq0GD3FTg4eMadBuZymemDCMNxIsVTLUfmXoxEQriE6aYmWZjWmq7Tk8BwCWz2ZQjhyb\nBwDs3Ltwyrw6SbbtddTK8GTP3dtkS+vw2t/jdLYIWVEx1JdAVAo3VYa3EDNLosPfUF+86s+6Kwsj\nC6nEVKmTWUo00UKe3JUr35GoFMby/kpmqU0H0/6v//scbvvOs235t/ziKeL5yle+gvvvvx8/+tGP\nAAAPPfQQbr/99o5eWLsVijKKZQXLKj90/7vhGTfYXINf5nS2hFxBxsSM+4RODNhLuaY0SN/60Sv4\nj1/uCvoyqoj9SisqqfN4VPItsyTLCtLZEgZ64ojazkwSvHTDKxRlS+18Oyfu05VM7MRMTr+WetJ+\nl+EVRBme/5MA8V4zWKq294gWLDmtvj+/Ywyf+/vNvjUByVSC2oPj8748X9CMMjzt14l4BLKiem6+\noDSQWRJj6kBvHJFIuKkGD+I55uaLC6Ydt6hCcVrd705qRUeZ3ML53stKncwSD6VtK5FBjUhhvfSu\nXe3DD42nMTYVfEa+EZ6CpW3btuHuu+9Gd3c3AOCzn/0sduxwz3IsRKIrl/ih+12GZ54kNrpCLG7O\n5bL7TVasAM8ys+Q7VVXx8NZ92Lz9YNCXUkUcSLtisAuAVqrgV2ZJ7BHs64kZWSLbqmytdrD64GfP\nLLVxMBRleI00MhCTY7/L8IJo3sJgyd2eI+6ZpRdeH8e+oyk9oOo0kQE4MJ7y5fmCZpThGZklwPu9\nwdI6vM5jRFDRSmZJPEdZVhbMd0ksFA32VmeWuhZiZklR6mSWeChtO4l5pyVYasPBtPlCGfmijGy+\nbCmHXeg8BUvxuPZlEhtHZVmGLC+u6F3UM6/QgyV/y/DMwVmjN0s9WFLcr1kM2J0qw3vwid349B2/\nxCwzV1UylS/9QhkEzcSBtObMkl9ZVbFA0d8dQzTiklkSe5Yc2pGKGvRiSbFsNO5EGR4ATEx7GwhE\nEOh3g4dSWfH9QMwcy/AclWUF+4+mAWg/H/vPRZRq+rUyn9HLsItLohTbqcEDAM/tw8sNlOGJe8Rg\nbxyRSKip76D5OeYC2reUL1j3182k8+jtilr2kAqiDG9hdcMD9yz5SA+WIiH098TbdjCteUF/IQXj\n9XgKls4//3z89V//NSYmJnDPPffgqquuwgUXXNDpa2srMcFZVtmo5ncZnvn5mg2Wau11EqvdnQhm\nNj23H999aAeOTmbw6uhk2//9xU4E4gtxQqmX4VX2LMVj/pXhiUnbQE/csv/ITC/Dq9E6vFi2Zpba\n+T6bG6KMT3srC5j3uXW4ubuT3/uWsswsOTo4nrZMmu3ZpZQeLPkzGciagrID42lfnjNIsumcJcCY\nKHvNKiiKCnHLqVuGV8k+D/YlEJWklsrwgOD2Lf3wF2/gs195XM8oTacKrhvsF2Q3vDqZpXib9izd\n//ib+NeHd7b0bzRix54p3PPQjgVTnimIDGo0IkEKh9p2MK15MWch7Pf0ylOwdM0112DDhg246KKL\nMDY2hk996lO44oorOn1tbSUGr4GeOCJS2PcGD+ZMVqNpYj2zJLt/mcyZpXZ+6ba/Po67738ZEUm7\nSY020GJ5qRCfrXylrfVCopfhDWhleLGohGJZ8bw/pxXiptjXE9czS/YSFrmJPUvtKrMolGRk8mX9\nsz1eY0+goKqq/3uWiuaFFv8WeWRZ0YNbBktWormDmKzbB33xGfFr5dT8/Ti4FIIlxTmz5PU7KSsK\nkvHKY+oES9O2zFJTZXim+UZQHfEOTaRRKivYfzSFUllFJlfCUK9zsCS64S2kyWyxrCAWcZ+ytmPP\nkqKouO+xXXjwyVHfxvIfP7kbP3piN8amvDcZ8oNRhqd9x5b1JzGdyjfcoMzOvKAvFvmnU3n8fMve\nBTd/MqsZLL3wwgt417vehcsuuwz/+I//iGuuuQZ/8zd/g4mJiUV3KK2+f6I7hlg03NKepVyhjG88\n8HJDHbQsmaUGV2vEXqVaK1piUC7LaltvcD99ag8URcUtn/odAMDoIX9q8BcTMfgp6sIrATg2k0M4\nHNI7HrlleDpBlJv0m/Ys2d+fmpmlysBo37PUroBBZJVOG+kH4K0MTyu5UvXr8oM5WPKzHj9XbD4b\nbqaqKl7dPam3oj0eiP1KZ5w0AKC6yYPvmSVTsHRg7PgPlqrL8LT7i9f2+rKioivuLcCa1bvGJRCN\naJmlRid15uxwUGWSYpwam8pgPq+95kGHTnjAwgyWCsUy4lH3027iDQbMTsans8jmyyiWZN8WiESQ\nJMaTqbkcPnPnY9ixJ9jOliVTgwdAK+VX1NabiM2aFgvE5+uhp/fgGw+8gl0HZlr6tzupZrD0ta99\nDd/73vfw3HPP4fOf/zxuvfVWfPzjH8ezzz6L++67z69rbAsjWIojFmlt38avd03g51v24YePvu75\nMcUWuuHVK8NTVWuA1M6OePO5IqKRMM5/y0qcsLwbuw/NLujoPwjm8z0W2gr8sdkclvUn9D1BftZ1\ni3KT/p44opVgyb4qK4IlSaoOlkKhkJYJK8nWPUttChhEOcq6NUMAvJ21ZO5u5ldmyTzR8vPzZZ6A\nN7rAY/bq6CRu/MYzePyFhdcApVl7D6cQCgFvXasdzm6+/6qqauxZ8qmMKZMvQwqHEAp5zyzNpPO4\n6RvP+NaEop0U2zlLCY+BjyArKroqAYGXzFIopN3HIlIIqoqGN6Zby/CCySyJvSJHJjNI57TrGXIr\nw4svrDI8VVVRKMr6+OVECocQjYRRKDV/zaOHjcoZPzoLq6qKo5WucOI+v+vALA6Oz+PFNyY6/vzC\nEy8ewsSsNTAW805RFbKsTR3xnMrwxL5AcYbhQlQzWAqHw1i7di0A4Pd+7/dw+PBhXH311bj77rsx\nPDzsywW2i14SpGeWmk8lignLr14+4nnlpR17ltzK8Ipl7aRlwb5y9cruY9i5d7qh5xSy+bJev7x2\npB/zuVJDGbWlIGUa/BZSsCTLCqbncvoZCYC/7VX1zFJ3zJIlslyj6p5ZAoB4NGw5lBZo374dMRiu\nGurCQG/c0+c6bfpZl2XFl24++TZleBplfq5WnvfIMW0yIM51WexUVcWeI3NYvbwby/u1yaY5sySO\nqQD83LNUQm93DCsHuzzvWXp51zG8snsSz+0Y6/DVtZ9xzpI1s+R1IUWWVSQrmYi6DR5SBfR1xyqH\nemv3sUYPpjUvljaSWdp/NNW2Uk6xqHd0MoP5nMgsOQdLkhRGIiYtmAYPpbICRTV+zm7EeVvNMlfO\nmPezdspMuqCPxeIzYrSZ9+d+OTmbw1d/sB2bX7V20tT3LFU+8/rBtC12xJt1CJbSGe3/F3Inw5rB\nUsg2gTnhhBNw6aWXdvSCOsVchheNSC3tWRJlQMWSjKd+fdjTYyx7lpoOlpyvOW97Lfb24V/6/gv4\np/94qaHnFLL5Mrri2grc6SdqJSejhxffSmQnWYKlBbISBwBTqTwU1WjuAJhKFVrMLJVlBf9474v4\nTY1DMMXNvr/HOJS21MA5S4BxiG4ny/AGexMYHuzCsdls3eBn3rby5Uc5Yz6gBg+WYKmFQUwEpYUF\nPBA2YmImh0yuhFNX9zuWK6VM2Ue/JpvZfBndiQhOGu7FbLpguSe5EeOEl7+70LiV4XnthicrCiKR\nMGKRcP3W4ek8Bit7e8Qqe6NNHszP4fX9npzN4bp/eKIt5/cVSrJ+3zw6lUE6p12/254lQCvFWyjd\nysR4VSuzBLR+juAe09zGj8ySuTuheI3i+v0KlsTiigigBaMbXiVY6m9TZslhz5LeJGsBzZ/sPDV4\nEOzB02KSyhQRCgE9XVpmqZXJonnCsum5/XX/vqqqlnr9ZoMl2SWzlC9qv9/bFQNg+zBmi0hni01/\n8XOFEpIis3SitreDTR6szK1gF9Lp4ZOz1rbhABCLOmd4GrXn8Bwe23YQv3z+gOvfSWWKCJu+c9rz\nupTh1QiWtDK8kt69qt1leIN9cawc6kJZVuuuJqZz1omOHxk683M0WsLbCvPA1cogJkosFtp+vmbt\nqZTqnDbiEixlqmvyOy2TL6ErEcWaVb0AvJXiiY3Wi7HVuP2cJWO/Sv3PqaKqUFXtnhOP1S7JzxfL\nyObL+llEIrPUaJMH8x5pr+/34Yl5yIralkoO83OOmcrw3PYsAdpZS/bPbzZfwu3ffc73OYAIgkUj\nDzetnCOoqqq1DM+HzJL5YFZxnxdlhH61mD9UuVdkCtbPdNm2Z8k4mLa198Uxs1RZYFpIlTl2NT95\nL730EjZs2KD/empqChs2bICqqgiFQnjiiSc6fHntk84W0ZOMQgqHEItILW02FqusvV0xvHlwFvuO\npnDKCX2uf1/bEKqt1GRyJb0dr1eiwUPJLbNU1H5/ZEU3Xt9fxIz5xljZPJjJlSDLiuN5Nm60s4Nk\nowxPZJbY5MFioZbh6WcsVQ6kBdpXhicyLPaN7Waz6QJ6u2Pad07fs2Qrw6uTWYpHJcym88gVZAz1\nxTGdKrTtPZ4xbdweHtLeo/HprD4oOBFleBEpjLKs+BIAWBo8+LlnqU1leGLS4dcer07bc1grVzlt\npF/vqGbOIJlLNf1YmS+VZZTKCroTUZxcCZYOjKVw9mnLaj5OLKAF1Z2tFe4NHup/xsRxheHKfanW\nd1gElKJcTe/q2WRmKRzyvmdJdDJtR8BtDpaKZQVHprVrcNuzBADdiQgOHyvr8z0AeG10Cs/tGMPJ\nq3r1+YAfRABRN7MUi+iLYI2aTuUxN1/EQG8cs+mCP5mlKffMUsqnFvMHJ+YBANmCPbOkfceqgqUO\nlOGJOdRCmj/Z1QyWHnnkEb+uo+PyhbK+CTQWlVCWVciKWvOQMzfiw3zZRWtw32NvYtPz+/Fnf3CO\n698Xtaj93TFkcqWGsw/iMFq3Bg+iDG/1ih68vn/GsiJhXpVKZ0sYcDit242YmIkyvN6uGIaHuvQm\nD4s509hOlgYPCyiNrLcNt5ThtafBg1gJqlVSksoUMFAp84hFXM5ZUusHS6J8ZKg/ielUwXOpTT36\nYZN9CaysBEsTM1mcDfdJptiAuqw/gfHprC+lZfmAGjxYMkutBEuiDO84ySyJhginjfTrgZG5PNOa\nWWr8fSvLCl55cxLnnL7M8cBQO/EcXUmtDA8wJkC16JmlgM79aYXs0uDBS9ZZPwg7HKrcX9wfo5+x\nZMssNbpnSXz2h/oSSHnMLE1VJqXtaLIg5gTRSBilsoJDk9qv3fYsAUBXMgpF0RoriPdXfJf9bvwg\n5kxey/CamZ+IReD1b1mJx7YdtBxY3iljk8b8TA+WKv8/61dmaUIcrq1aFtRLtjK8dh1MOzdf0M97\nnM+XICuqvui6kIOlmmmGkZGRmv9bTPJFWV99ilZKguz7J7wSP9B3vW0E/T0xbH7hUM1MlZgg9vdo\nN9zGW4fX3rNUqJThnbiyBwAwm3Y+aLPRlQpxQxSZJUArxUtlivpEnKwrhY1mDTtJP5B2wNzgofX2\nqoCRUZrPOt/QZVnRgvPKZ16U4dkbq4iuVm4NHkRGCoC+mb5dZXgzqQKScQnJeATDg0ZmqRYRJIpV\nNj8CgEJAmaV2NXgw9iwdH8HS6OE5DPbGMdibcCzDS7e4Z+nF1yfwhW9vxdMe98OK7FV3IqpnCuY8\nrIqLYKmRPUuqquLF1yd8PxzZTlash9KKsd3LZ0xsS4xIYb3M1820aUEFaCGzVNI6ufX3xhvOLNXK\n3nslxn6x77hYVvV7n5vuROWzbfoMz85r74ffe5nEzzUerd/gQVEbL5MEjO0Fbz9Ta17mR2bJsQyv\n8v+ZXKmp19GoQ+PGwop5v2W5MqcVDR7acTCtLCtIZYoYWa7NVTO5EuazRYgGy4s2WDqeaDerSmYp\n4jxx80qsbPd2xfCe9SchnS3W7CgknqevW9tT1O5DaUVmaXioC+FwyHLol/mgs0bbMmYL2t9PmoKl\n01mKV8U82VhI3VyMzJKpDC/WnnOWRJCUdgmW9IYqPdpnPlons+SW4TWvJC6rbDBt1w11Op3XM18r\nh7R/u177cPF6l1UCNz8CAEtmyceAQ3z/gebfc1VVMXscleGlMkVMzuZwauVsLhEszefd9yw1etSC\n+Ix5XZASk9muRBQ9lX2rbt9LMzHxnZsver7GJ148hC98eyse2+a+V9EP1WV4IrPUWBlevT0u4rMr\nGiGIVfaGM0tFGbGIhP7uOApF2dM4MTXXvsBkNq19Ht5yypD+e4M1mjsAxmfbnEWaDSizJO4dXvYs\nAc0tYonGVWedugzJeEQ/X6uTrGV45cr/m5uBdPYa0tmipSzOfO8qiTI800HArR5Mm6oERsPLuhAO\nafdH873Kyzjz4usT+M5PXmv5cNxGLYlgSaSSxaqE2/4Jr8SNLhGP4NILTgYAbHrOffAQE0QRLDU6\n8SjVOWdJ7FnqScYw0BNzLcNr9IsnMmBdptWntSMiWFrcTR4URcXETOsbZ8uygkyuBDHXFz/bZ14+\ngr/551+1ZVWwWcdmckjGI+g2BbvxNjV4EIF3Ous8GRSrp/2Vz7xxGK71M1xvz5LISAHa4kQsEm5L\nsCTLCubmC/pK/EqPmSVRbrXCx8xSUHuWzBnwZp83ky/ri0XHQxne3sqEam0lWIpHJUSkMDIOZXhD\nfQnIitrw6xaLY/bOi26ylTK87kQE8aiEWFRCus59R1FUvcynLCuev1M/f2YvAP9KhNzYy/DiDbQO\nNzeViYuSfJexdboSHAxUGiFEpeYyS8VKZkksHnnZJzbZxj1LYuw/85RB/fdqleAB0McNc2ZJZFv8\nbinudc+SHjQ3UaotMsZDfQkM9sb1rGKnZPMlpDJFJOPWsbGZzonNElklUdhhfr6yrXU40PrBtGJu\nOtgb1xuIiLbhgLe58U+eHsVPnhrFLzw0V2unJREsiU40IlVv7J9oMrMkgqWYhJNX9WHdmkG8tGtC\n31Bf9fyVwTKZiDQ12RMDQ73W4d3JCAZ6EvqKIWBN86YyDWaW9DK8qP57eke8Rd4+/PEXDuJPbt/U\n8oGMeqahMnkWE8xnXzuK10an8PgLwa3AHpvNYcVg0lK73a4yPPG6S2XF8d8ytw0HjNLXom2BQlFU\n10AJsJbhdScjSMQjbcnezc4XoKrGXoRYVMJQX7xuAJ3Oah3+REbKn9bhshGM+5i5FPep7kQEuUK5\nqcOozR2ljofM0p7K/eLU1dp9MBQKoScZtSyKiH1MJyzvBtD4ZFeU3nidKOmZpaTYWxp1LY/VrzFb\n1IMGwFvnrb1H5vD6/hkAwQe+9kUWY5LsZc+S9v9SOKzfX9xej/j8ikWVpjNLJRnxaBj93dr9xss+\nMZFZLJaVlhpSAcam+jUn9OkBR63mDoAx7ps/v0FllvJF6xzOjZFZauz68kVFyxhXvteDlb1lnTxH\nT7QNP3mV1hzM6IbXeOfEZh2s7FdaU7kGcxCvtw43HRjf6sG0YovIQG8CPV3afdOy59vD91dk/H7w\n6OtNLyTMzRfwpe9vw5HJ+ns7hSURLBVsmwP1iVuTN/x8QbYcUHfpBWugqsBjLhNjEZTFIlJTkz3x\noVVUWAY4/Xoqe5a6k1H098SQK2hpfllRMWEK4LyUZpiJMhzznqX+njhWDCb1Jg+L1a6D2qBvPueg\nGeLmIrqpiS+7qP39xbP7A3mfsvkSMrmSZb8S0L4GD9Y9GtU3LHuw5NrgQVFd9ysB1hr1rkQUiXik\nLecsiZUx84Rh5WAXjs3kag6Q6WwR3cmYvhroT+vwMvq6m9vv2ArxWR7q11YTm/nMmEuCG53ALEQi\nWBKZJUAL4jMOZXjintDoxFLc773er409S9p9urcrVrfk2n4Wn5fJ+8Nb9+n/HfSZWfYyPPF99FSG\nJ0p/pVDd+6G4T4hFlWiTrcO1ypYI+iuZpXrBaa5Qttxjm2kUYiaeb6AnjhOWaUF8rbbhgPF5ypqe\n2wiWWsss7dgzhdf3TXv++8YczlsZXqNNtKbS2mscqez7HuiNQ1HhuRlHM0QJnuikbO+GB3Q+gyuO\nGBCdM82Bi7gPmZvMtHow7az+OYzp3aEbLcMTjTfm5otNn0H21EuH8cwrR/DMy0c8P2ZJBUti9Ukv\nCWpytSZXLOs3ZwB419tWIxGTsOn5A47BjHieWFTbUNnoZM+8iiU2tprpmaVEVO92NzdfxPRcHmVZ\n0QftRlO6Tg0eAG2iMJsuNN2icyEYr+zlavVcJPvESHzZxery/rE03jgw09JzNMNpvxLQvtbh5huc\n06RODM5ichDTm6rYyvBUFZLkLVjqTkaRjEltKUXTD6Q1B0tDXZAVVe9C5SSdLaGvO2q8jz5llsT3\n2s89ceL7v6zyHjVT/mjuKHVcZJYOzyERk7CqMuEEjCMhhFRWK60RE+xmM0tpz5klawVAT5d2PbWC\nfjHpFSv19caGbL6EJ7YfrJuJ8YtiO2cpIoURDoe8NXio3IJEGR7gXmUyk84jHjMaITR7KK1ehldZ\n9KhXEm9fuW81OJmbLyAaCSMZj+gZz3p7lkSm0trgoVKG10LwNpPO49b/sxVf+PZWz2XqeY8NHpod\n36ZSlWCp8t6IRTRzuVkmV8LX73+55vjQCLFQK4IlsZBoXlDsZLAGAIcqXTPPOlXby2ZuPiLuQ5GI\nMT63ejCtuO8M9MbRnYgiX5Qt73G9ubGsqJibL2Dtif1YMZjET5/eg1d3TzZ8Hbsqc7JGzrJaEsGS\nmGCIL5K44TVfhme00gS0Qeqdvz2Ciems4w9OfPhjlZtVo5OOsmnQc1rREnuWtMySdjOeTef1Tnhn\nnKTtM/I6+ApispSMRy2/fzw0eRDlibUG/Zl03lLG6MQIlrSbrB4smQKIXzzrb20tYDpjySWz1Gr5\nmHnl2jFYqkwGRNmJ2ySrXmbJUoaXiCDZpjK8aVtLYMAIeN2aPKiqivlsET1dMWNFusMBgNhv2Z2M\nIiKF29Y23QvxWRYr0M0ES9Mpc2ZpcQdLhZKMQxPzOHV1v6V0tCcZ08pRS+J8lCJ6u2JGGVODE12x\nOOa1IU82Z3TDA4zDyWsFaWLSIs5lqjcpe+qlw8gVZGx8x0kAgg987Y1hQqEQEjGpsdbhUtg0uXZ+\n3Ewqj6HehF7K3MyhtGVZgayoiEXDnjNL9sloq3uE5jJF9HfHEAqF9MzSUL3Mkt7gQXvuUlnWP1O5\nQuONS4SfPDlaOWi8jIee3uPpMQXT1odaErHmysyn0trrWr1CyyyJccG82LP11aN4ZOs+bKpxEHsj\nRPOtNfYyPNO1e+2c2KxDE2n098QwUnndlj1LehmeESa0ejCtueJEfL7M1T31xph0pghF1cbqv/hv\n5wJQccu3tuDnW/Y2dB0iWGpkH/+SCJbEICYmOLFoaxPGfKFc9aW99EKt0cMvnq+eGIsNziKzlG+w\n/t+aWap+XKGkIBrR6q8HTZkl8WU84yRtU2ejmaWcKO9I2jJLlWBp9yJt8mAuT6xVTvIPP3wRn73z\nccmkmRgAACAASURBVOypsT9LfNmqMkvZEk4a7sXKoS489evDvrdaFZkl+wGr7VoZnq+TWUpVZZZE\nUxWjDf6/PrwT+47M6e3FncRsmaVEPIKyrLbcUlUM+mJiCZiCJZd9S7lCGWVZ1RpN+LTCXjTdu5Lx\niKc9S7KstKX0M1coIxaV9A5rzQRqokY9HAp+gt2qA2MpKIqK00wleACq2oens0X0dccc24p7UWqw\nDE/PLFXu0z2iQ1+Nx+t7WCoTtVqTd1VV8fDWfQiHQ/jAO08D0PxCY7s4NYbRgqUGM0sx98ySXGmC\nYT6bsJnMkv4djkaMPUt1glORvRDnv7Xa5CE1X0B/5XX8zltPwLK+CN562vKajzFah2ufL9FRD9A6\n8zbTTTiVKeJnz+zFUF8cvV0x/PSpUU9jo30O56bZPUv2Mjw9WDJVz4hxwdxquxViIVYsWNjPWQI6\nu2epUJIxPp3FiSt79UV2854lPbPkGCw1l1kSr2egJ67fp8Q8NephP79+NmJvAu84axVu//OL0Z2M\n4hsPvILnf+PekdosnS3iSCVAayQYXRLBkv1AM7F/otkJlxYsWQOIM08ZwsiKHmx99WjVIKVnlqJh\nJGISZKWxyZ75xux0k84XVX1gFh/6mXRB7+x12kgfwuFQE3uWrIfSCnqTB4+Zpb1H5nD1bY/g7773\nPF7YOd7RTZNeiPJEoHYZ3kwqj2JZwd9973nXiYf4sg32xvXmHXKlQ15/TwzvveBkFIoynnzJ25kp\n7aKfsTRoyyy1oQxPVVXHDe1ms/YGD5K1C98X73ke//7LXVg+2IXrrzrf9bnipm543YmoXg7TanbJ\nKI01/n29I96Uc7AkupP1dkXbVs5Yj3ljczJe+wBNQJtkXXnLw9j2Zmt78QAts9wVj+gLQ82V4Wmf\ng+UDSRTLimOZ8mIhFk3EJnDBHBQVSjIKRRm9XTFTN7FG9yxp79G8rQmDG/M5S4CxAFDrfi8mgWKi\nVmvS8ObBWew5PIcLz16ll3AFvf9MlpWq4wbisYinvVTmrFStRY9UpgBFUS37GvVDaRsIlsQ9wpxZ\nqrdweayycr+m8vNp9DNkli+WkS/KeqB25qlD+NwHVumBmBtRfi8CNXPjKKC50sCfPj2KfFHGhzac\ngT+45DTM50r42TP1swJ521YKN4lm9yylyohFwnqZmWjgYy4R04OlY+mG/m03R6cyWNaf0BejiqY9\nS+J4m04GS7v2z0BVtfM5eytda+cc9ywZY+SAOJi2yVLEGXMZnp5Z0oLPlYNddRsJ2fcQnn3aMvzP\nK7X5w+6D3hbv3zxg/L1GyhyXRLBk37MUc+nM5YWsaCsq9sPcQqEQ3nvhySiVFTz54iHLn+kNHqKS\nXr7XyMTD3Ka0XHZo8FBS9IFZrIIdmkjrZXirlnWjtyvatj1Lg70JDPUlPGeWXnpjAjPpAra+ehR/\n+51n8adf3IQfPvp63TNtOsV8UG+tya4YQMens/jqD190nLjo5wl1x5CsdA2bN2UtNl5wMsIh+N7m\nUt+z1IEGD4WSjFLZmKw4lQulMkWEQtAHgnA4VDk9XkahJOOFneM45YQ+/NP1G/CWNUNVj9ev155Z\namHibmYsYBj/vsgsjbtklsTks9dchtfhzJLRebPSCbDO6965bxq5QhmHp1ov38gVykjGI/q9zut7\n/vCWvbjuH55ANl/SJ+WiTNWP7oGdsudwdXMHwNRiOVfSFw76uuOeMksz6Tzu/JcXcMNdT+rtq0Xn\nM0X1dsi1+ZwlQNuzBNQu4xOLGSfrmSX3ScPDW/YBAC6/6BREpDAk296gsamM7/tXFbW6i2YiJnna\nDyyG07Bpz5LTODCbri7VFd3wGlnsNGdF+nqMyo9axMq9yPy1klmyZ/m9sh9KO2trF91o45JSWcF/\nPr0H/T0xXPY7a/CBi09DdzKKHz85Wve+Zm/S5aaZRSxVVTGVLmP1ih79M2WU4RmvWZS2H5qYb3nR\np1SWMTmbw6pl3ZDCIUSksKkbXhlD/QmEw6GG9tQ0Yt/RFO74/jaEQlqmMR6VEI2ErOcsOWSWwpWD\naVvJLIm9cyKzNDmXRyhUaUuu1M5YmrvpCWLcFueS1WPeQ87Mko399Ge3AzK9/VvG5MXuPetPQjgc\nwi9sNa1i8ItFJNPKuPfnlk2H0To2eCgq+sB85ilDGOqL4z9/tQevjk4hHA5h+UASfd2xJoKl6kNp\nhdNPHMB0Km9JU7sRKc/r/7/zcdlFpyCTK+HffvEG/vTvNuEL397a1Aa9VpgP6q2VoSgUZaxa1oXz\n163ECzvH8e8OnVeMgSiOREwLlswB1LL+JN5+5irsrqzO+uXYTA6hkHGQq9COjIjIsIiblHODhwL6\numOW1d9YJIxiSdEnZqes7tM/t27MwYzohge0ft6QGAhipk4/Wpt1YGLaeSAQr7OnK+ZbZsk8SUjG\n6jeH2XckBQDI5FsvkxLBkjhnzWsnvpd2HcOew3N4adcxzKQL6EpE9DPm/Nq39PDWfTg63d6Jxp7D\ncwiHQ3o2RhALAlob3EpA3R3Vgxe3Ffjnd4zhs3duxtO/PoxdB2b1RRbz4eNe9pnq5ywljW54QJ0y\nvLQow6vsWXJ5nvlsEU/9+jBOWNaN3z5jBQBUHeR64zeewZf/37aa1zg3X8DPt+zF7d99Ds++drTu\na6pHVtSqzFKiklmqV4JqzizVWvSYdmgCE22idbgeLEUldFeOD6m3Mi/+XPx8Winjtmf5vRINHsTn\nS3xmvOyJczI5m0MmX8b6twwjEY+gOxnFB995GlKZIh55dl/Nx+Y97llqZhFrJl1Asaxi9QqjaYve\n4ME0vxGVOoWi7Hli7mZ8OgtVhb5/zPydKhRlJGLaPbMTmaX9Yync/M1nkM4Wce0fvQ1vP3MYANAd\nDzvuWTJnlgBtTjHT5MG0s/MFDPTGEQqFLGN/TzKqlxHXGttnxF5j0347cUC818YbYr/S8v4EGzzY\niZIB8UWLR5tv8CBWV52+tIN9CbzjzGHsOTxnObTVXIbX6CotULsMr1iSISvGKlBXIorrPnY+yrKK\nydkclg8kEZHC6O2KIZMr1i2By+ZL+nPoZXiJ6gnt6Q2ctyQ28P3uuavx2Y/8Nr7/hffhf3z0bVh3\n8iBefH0CX/6Xbb621zYfPFprslssaTetG65aj5WDSfzbL17H9tfHLX9HpK17u2P6fjR9Ul25Gbzv\nd9YAAB6tMyC00+RsDoO9iaobXTsaPIjXJ0py3IMl6+Aci0oolmSjI46HwVsES7FIWFuRijW+2OCk\nYPpOCtGIhKG+RI3MkjY56OuK6i1s/cwsJeMRlGWl5qr2vqNasJRtsRGEoqjIF8tIJiL6YomXLAdg\nfB627xzHTDqPwd64bw0xAO2z/8/3v4zHX0m19O8oiqovdMmKin1HUzh5uNcSwANGGd68LbPUY/p9\nu1SmiL//wQsolGS9HErfz2f6+Xopnc7kS4hGwvoioFGGVzuzFI9pn/eIFHbd6Pz49oMolmRcdtEa\nfdU9HpX0n6OqauPM7oOzVWPLfLaITc/txy3f2oKr//ZRfOOBV/DcjjH87FeNbcZ2IstOwZIERa2f\n9dH3LEm1z1nSO2aaM0tNHEprlOFJCIVCWL2iB0cn52uOeZOzOXQnIvq5Nq0cbi4mwA0HS/EIQiEj\nsySyLCOVoKLRYwzEZFZMbgHg9999GpJxCT/avLvmvdS+4O0mHmu8TPvwMa0MTDQ5AIC+njjCIeM1\ny4pqyaYcmmitFE8s2K5arn3341HJsmcpHpPQ3x1re4OHA2Mp3PyNLZibL+KzH/ltvPfCNfqfdcXD\nSM0X9M+lqGIyZ5aA5g+mVVUVc+mC/jk0B0t9lfkTUHtuPOMwd+hKRJGMS54CWFVVsevADFYOJnHy\nqj4US7Lnz8qSCJbse5aiLbQO12tn4861s+LDZ+6YUjStYiebWBk3D57mVUfAWN0xf/DOf8tKfODi\nUwEAqyoDcV93DIpaezUoXyzjv9/xGL7zk9cAaDdDKRzS62fNGmnycOTYPJb3J/QbXTIewaUXrsFX\n/se78Y6zhjE3X+z4SdVmYw2U4WntXmP460+8AxEpjL//1+22g36LSMQkxPW28GXThEmbtKx/y0oM\n9SXw5IuHfGn9LNpf2/crAaYWuw4Dkywr+Pw/PYV/fuDlmgO5GLj1YMl22LEsK0hnS1VlH9GohGJZ\nqTqDqRbxnRWf72bKWJ2UTKWxZisHuzA5m3NcNRP1zZbMUseDJWPPUkI/28n9tYtgKVNoLbOUL5ah\nqmiqDE9kHrftHEcqU8RgX8LXVutiVX4y1dqm+H9+4GV8+o7HUCjJGJvKIF+Ucerqvqq/12M6vFPP\nKneZMksObZZ/+vQocgUZH7/8TJy7Vttob25+Ini5L2bzJX2xDDDK8OpllgZ6tBXe/p6Y4wqrqqp4\nZOs+RKQwfu8dJ+u/b1kFL8lQVW2ME+XN+46m8L/+77P4+G2P4J/+49f49a5jOP3EfvzJ75+Ngd44\nDh1rfYO8Yxmex6oNkVmKWFqHOwRLogzPIbMkflaZXKnu/iVzkxYAWL2iG7mCXHOyKRY6u/XsZPP3\nO7E41d/dWBleOBxCMh7Rs1oiQyU6xjXaoU9k6szVDr1dMbz/4tMwky5gU41Sdc/nLDWR8T9S+Tyu\nXm4ES1I4hL6euB4wz6TyWkfDys//YIvBklhA1jNLlQWIsqygLKuIRyX098SRyZVabmYkHBxP46Zv\nbsHsfAF/8eFzcdlFp1j+vCseRtF0yLxTNzyg/sG0mVwJv941UfX7uUIZxbKiBzrmOWtvl9dgyWjw\nYDbUl/RUCjw+nUUqU8RvnTyIPrF/0GN2aUkES1V7llpoHa5nluLOKxzaxDiOJ148pA8o5v0R4nFe\nV2kB254l24153iFYAoBPfOAsvPu8EVz2O6cA8Lbp99D4PGbnC3izcmBrNl9CVyKit001M5o81A6W\nCiUZk3N5/QZrd/KwVmYg+v37YdxShud8UzXftACto+Cf/7dzMZ8r4Uv/b5ulTbCoQ08mIlBUYKry\npRXvuSSFcekFJyOTLzd0CFqzZtN5lGW1ar+SYF4ZNtt1YBav75/Bw1v24ac1WrqKSdjwUBfCoerP\nlDiQ1x4MaWV4sqUjTj0imBETT/3wyTbtWbJn3oaHuqAoKiYdVqn2jWkD5MjKHt8yJeZ7l5gMut07\nsvmSnjXNthgsiftclylY8hroi3vSbLoAVdUGNuOwSOd/Yz5b1MsjWiUmOLMZWc8MNeOlXccwOZvD\nq7snsafSzMbeCQ8wZ5aK+mdf27MkGjxYJ5WZXMmyd8OYgMuV/zd+drUCHv3fy5ct+0r1e73Lwpiq\nameViP2t/d1xx8zSjj1TODg+j4vPXW35LpvvH+YOiQcq3497N72Bbb8Zx0nDvbj6v56Jb9+4EV+9\n7hL84SWnY82qXkzO5lr+/mqZJeeseb3PqUiAhc2H0jp8j6drZJbKsgpZUfHnX34M//NrT1bt5zEz\nl+EBRgbjsEvQmM2XkM2XsXwgWdVkoRniZ9vf21hmCdDuu0Y3PJFZ6tGvsxFi5d/cMAMA/vCStYhF\nJTzw+Juu39dCSUY4HEKkxpl8gFHxI36e3/7Jq/j6/S/XfMzhY1rgMmKbowz2xvWAVtxX31pZ2Gh1\nviIWXFfZyvDMgbXeoa6B9tZuDh+bx83ffAaz6QL+/EPn4L/+7qlVf6erMraKbJZbGV69g2kffHI3\nbvnWVhwYs2b2Z23jfo8lsxTXx5laCwPGOU3WwH9ZfwKpTLHu/f6N/doYs27NoNGZ0uP7uySCJfuB\nZnob46b2LGmPSbqscEhSGP/l7Scjkyth66tabbYIyqJRUxlRA4OFec+SPViyd0ISErEIPv/Hb8e7\nzhsBYGQ5akXRYrVE9NDPFspIOpTgAdoNb6A3jt11OuKNiRWU5d2Of35ipVVnq2ntRoxPZ7C8Ugrg\n1tXJqQHAey9cg/deuAajh+bwzQdegaqqWrBUeW/Fz1Y0rug1reRdeuEahELAoz6cueR2IK2g3Zir\nX/f2N7QSQykcwncf2oFXdh9zfLxejtYdQ09XrCpY0g+kta1kxqISSmXZOMXbw+AtvrPixioWPHIt\nBikiq2wv61hZ46ylPYdnIYVDWLOqt+XjB7zSy/DiUt17h5isAkCprLaUxRHBUjJhBGley24yOevn\nYbA3XnfF9/s/34nP/++n23Lg43RlUqaqxn7JRmXzJf0zsO03Y9hzxD1YEpmcTK5s2bOUjEcQDlVP\ndH/2zF5k8mX8wbvXIhGPVGUrLJklD8FSNlfS95eYr8dtYWw+V0JZVvVJS193DLmCXPVZfnjrPgDA\n5b97iuX3zZklc2BycFz7/L15YAYDPXHcdf0G/NHv/ZblAN96gYJXzg0evI2tRuvwsKfMklM3vFJZ\nRq5Qxmy6gH1HU7jxG79yXdm2l5CJDMYRl/dg0nTsQ0+T7efNZl3ux150JyJGN7zK+yHG8kazXUZm\nyRos9ffEcflFp2ByLo/Hth10fGy+qB3X4rRwa2bfs/T0S4fx9EuHaj3EyCytsM5RBnsTyBXKyBfK\nenfZt/2Wtm/vcIvB0hHbvCheKVE3f1bEzyuVKeKZV47g5Tedx+O6z3VsHjf+8zOYThXwZ3/4Vry/\n0v7friserjyf9nM2DqW1BUt1DqYV9197tnoubW00YsksdUc9l+H1dkX1kmPB2Lfknl1SFFU/1+ut\npy3X521e9y0tiWBJlK3E49bW4c2cEyB+kLW6slx6gVay8MvKmUtF08pSM62PzYOnXFWGJzb31t4o\nLz4YtTJLYrCbTWub90TrYCehUAinnziAydlczU2I4qaw2jVY6q08tz+ZpUJJxnSqgNUrehCRQq6Z\nJbdzHf77h87B6Sf245fbDuC6f3gCxZJsBEuV90qsQtnP8HnbGSuwc9901YpLu7kdSCu4ZZZeemMC\nUjiEmz91IUIA7vyXFxzPHJo3NTro7YrqZVeCW5ldLBJGoWQuw6s/eIs9RWKFtV0NHowFjOoyPMC6\nrw3QSgv3HUnh5FW9iEYkSJXufn62Dq9XZiRK8MRejlY2B+vBUoNleGVZQa4g47TV/RBz2QHzniWX\nAO71fdNQFNXSfKVZU6ZJa7OTmgPjRuC5bee4a9twwNo6XEw0+rq1EjdtZd74fuQLZfz4yVH0JKN4\nf6VU2h4smSsJ7CWudqWygmLZ6IYKmDJLLiV8s6b2vQCMchTT359NF7DllSM4abgXZ51q7VYZj0ZQ\nKmsHrZo/EwfG0phJ5zExk8P/z957x0lylVfDp0LnNDnszOzM5hxndyXtrvJKQkhIIAxIgDDY8IEw\nGAM2vI7gF0T6+ffiBMYGjM3rFwkkJEBIIBRQWq02zOYcZ3Zy7ukcq74/qu6tW9VV3dXdM6tdSecf\naWemU/Wte5/nOec5z5L5NaaBLdnvq63M5yVzNzzAhgxPYgweSvQs8RyocgBg5yzJtHjgcYnoH43h\nwR/tNn09owxPSxjNE3nCajfUeGixshoZXjmyZyO8bgeSKWUAbTiWQsDrQJAYPJTds2SeLAHAPTcu\nhkPk8cjzZ0xljYrpQfF+JYBNmPO0mBlP5YqaEQyOx+B2cvQcJyDJ0/mhGTqXsaM5gKZazyz0LMXh\n9zjovaoUEiVdfEnW3fHzk/jmj/fiS/9RmRnWvz9+BFORFP74rtW469pFln/nc5NkSc8sGWV4pQbT\nkv3OGOMS63my71gxS8Vi43A0pXPCIyDSzmLJ0tO7+3Dq4jSuXd+GxR01tm38Cd4kyZLBDY8aPFTS\ns6RtkFaY1+jHqoX1OHRmAuFomlaxHSJfdpUWKG7wQHuWTBzrWJCbstjCIAeYJANTkTSSqgzPCnbm\nLREP/dYGcxnepWaWSLW4pd6nzuWwSJYsGkqdDgF/+YdbsHZxA71e5DOQRniSrAS8+gT2NlUS+bvd\nszMB3Ao0WTLpWQJIZVi/jmZiaZzpD2PFgjpsWtGMj71zDWZiGXz9v/cW3CdEZkU2+2gio+txYh0C\nWTgdAiRJppUnWz1LRIanbqwem1KbUqBzlgxVsxaLwbQD4zFkcpKOWXA6hEtm8OBylk5aSLK0rFMd\nQl2F7SwdG1BmskT2o+Z6L5Z3KUF2HduzZHK/ZXN5WqghmvRqQByTgMoZjL5h5f24nALGp5M4fHYc\nTbUeXQGEwMf0LJHkhvyd1+NAgmEFfrOrF9FEBnddu5BKS4121LkyZHgJg204oCQNosAVFDEIjLr/\nELWz1q7bc3svIpeXcfs1XQVJD2sSw36fF0ejOKPOOiGD0I0ge2XVzJLJnCUSKJcqYBAZns4Nz+Qx\n02ozOvs6rGQymVau7/Ub27F+SSNOXwybMqNpg0qBBOElmaWQB4LaN1SdDK8ygwdAKQRIMiiLVhNw\nU9eycmV4U2ryaSa/rgu6cetVnRibSuCFngHIsoyh8Ri9J1KZPFyO4jEOoB9Km0jlqOmIlUFGPi9h\nZDKO+oCjYJ2Tob1Hz03S86Cx1oP25gCmIumKvxNJkjE6lUALU0Am75swyS6HgBo1mH/4mdOQZaVA\n8PX/3qvrmS4FWZZxpj+M1gYf3nm9daIEaMwSYVqyOQk8h4L7rNRgWtKjaRxiThUlpGfJzfYsMcyS\nRWyczeURTWR1slgCkoBPWSRL09EU/vvJ4/C6RfzxXasAgBpQ2ZU5vimSJeNAM0q9V8AskQVQajga\nSSQmwklaxWaZpXJkRMWSpVjKvGfJiKCvdLLUz1RThyZikGRzJzyCRW2lTR5KMUt+r1Np+r1EPUua\nVthrybAAxSeGN9V58eAD2/DTB+/Ad/7iRvzh21cCYJil6UIZHgBsWdWCkN+J5/f1V9VLUQrjYXVj\nt2CWzIL8g6fHIcvAxmVNAIC3b+3CzZs7cLY/XGD4EE1oAWHA5yyoMIctmCMSLJCDx07PUl3IA5dT\nQIdakdYMHqqU4WXzcIh8wQFJZHhGZokwC2yyVGz9zBbSDLNE+rWKJUscp+nq7WqxzcDK8LxlJEvs\njLFta+cBUKqxxZil/tEYDWpmY14P+xyV7it9Kvt7m2rYk8vLpqwSoO295wbD2HN8GG6nQNe+n2GW\n0tk8Hn/hLDwuEXdeq0lhCpilnH0ZXtxEhs1xnKk8lsDILIXoQErt73cdHYYocLhxU0fB41npGrsm\nBkajONk7BQBYOr/G9LXbaHFsLmR4dnuWCq3DkyaPmY6kChrJ2Z4lln3doO6bZpV/Y89S0OeE3+Ow\nTBg1GZ7y2j63WLaZAgsy28YOM2MEWVeReIYGqt4K2a7JmSRqAi4IgnnY+e4bl0AUODz0zCn8xb+8\njI9/4zk8uVORTRGzpVJg2UU21rGKe0anE8jlZdQHCuO5VQvrASi9e6TI2lTrrbrAOzmTQjYnUXMH\nQFsbhA12OUXKLIVjacxr8OGT716LaCKDB3+0x7bZzkwsg2giQ3vDi4H0LLHMkpFVAkoPpo1ZMEtG\nhtPlFGgiZscNL6zK+Iz3JMDI8CLm7+lHTxxDPJnF/bevoCwU2aPfkuExMAa+DnFumSVACwTDsbTW\nTM4mSxVahxtleAkLgwcjAiVkeNmcpNP3k8TJSoYHKLOWACVIsAJxfWmxSJYApdo4Np24JE5ZJAhu\nrvPC7RQsD1Y7VqUOkcf8liBNAshGbZxHwf79zZvmI5rIzKnRg8YsWfQsqfpodrDe/lOKe033cmXm\nAsdx+OS712FxewjP7e3HU+pgSoCdN+QwZSxJkB4qsA5X7rux6SS8brHAic4Mfo8DP/7SbXj/bcsA\noKL7xwyZrGT6+g01yqwlq2SJFAiAwnkzcwG20FOsJ0OWZfQNRzCvwUeT5GoGGmqBoD0tOQFrm3/n\n9oX47hduwtL5tZrVuklyyc4fs6oMloOpSApupwCeq4ZZUpKld16/mAblZv1KgHJfu5wCRiYTSGfy\n+LN7N2rGJB5lNlY+L+HZ3X2YjqZxx7YFur3BIag9tDnNhYrkAaXmLJEqLqn2EwS8DkvrcJJMajI8\ntcLKMEvReAYBr1MnlSFg2Rh2/8zkJLyi7mtWzFKDWvyoVklgPmfJrgxP+a8gWI/ySKZzSGXyunku\ngH7OEpssrV2sFCiOnJsseD3WOhxQ9ta2Rj9GJuOm8jC2ZwlQzvZqmKVYIouA11my38cMzfXKGUKG\nqtf4XZrpRBkJnCwrigKjuQOLxloPbt48H2NTCdqIT+T56UzOVrIkCjx4TrnmbKxjxbIOqVLI+mBh\nnFMTcKG9yY8TvZMYmUxQxzY7UtLJmST+5zcnTJ3s2IItATkbyTnK9iwBwD03LsHtWxfgjm0L0Dsc\nwbcf2m9rMO7FUWUfM86GM4NZz5LR3AEoPZiWxKTGAoSxSKMUdZT9xU6yRBnxoBmzZC3DO3x2HL/v\nGcDi9hBuZ4wttJ6ly5hZ+vrXv457770X9913H44cOaL73auvvor3vOc9uPfee/Hd737X1mNKwTjQ\nrJrmbDs9S4CWLM0wyZKLmbNUnnW4tcFDfJaYpeEJZSo1eR6i2TcbSEvQUONG0OcsavIwNB5DQ42n\naNLR3hRQmrGZwCafl/Dc3ouzbrVN5xvU+4oGu5ls6WTJCDax9LpF06rMrVd3gueAf/rpAfzoiWNV\nDRsElABrKqq/RuPhJJwOoUAGSEBlNGpwJkky9p8aQ03Aha5WzRrZ6RDwlx/egqDPie//4giOnVcC\nAdqz5HEyAzC1z0HkX0Ejs6T2Ck5HU2VJQrxuTSJRyf1jhkw2b2qJ7xB51AfdBTK884Mz4DjorKNd\nl1SGp/UsmbHSkzMpxJJZdLYGGS125cwSK8MTBB5OkbfHLKnrwO91gOc5dKgVzWK9IReGtf2j3Nkd\nZpiKpNBQ40FtQMTgWPF5NlboG4mguc6LxloPVqhyQqtkCdAKI5/8g/XYtm4e/TlbmX/092fhdAgF\nchjKLOU1ZsnjUooJVo52BGbMEnk/8WSmIKDK5iQ89WoveJ7DIvXzBE2YJTKQ2Azsd0kYXjKgCerq\nkgAAIABJREFUengijtZ6X0H/BwHPc2hr8GNwPG4r2LOCZJIsuewaPDDMktXAZW3Gkj64Z1lANlla\n0BaC1y3iyLkizBITM8xr9CGXl2kvDAtWhgco+19C7RuqBLFkhgal5eId2xfC6xbx89+fBaAEumSt\nldNKEEtmkclJBUPSjbj/9hV4746l+MrHrwGgxE/EmdYOM8ZxHJXXs7FONGke95BiihmzBCgsfTKd\nx/BkHE11yntvt8GO/u61Pvz02dPYe3yk4HfDk3rbcEBbuyTBY93w6oIu3LSpHQDw0btXY+3iBuw6\nMoyHfndK97z9o9GC+LBfNf2xxywV9iwZzR0Iig2mpUy64ZwyuuEB2r5lxzq82HxGK4OHbC6P7z56\nGBwHfPIP1un2DM1t8DJllvbu3Yu+vj48/PDD+OpXv4oHH3xQ9/sHH3wQ//qv/4qHHnoIO3fuxLlz\n50o+phSMLAF1w6tEhkfc8EowS8SmcyaWRiYngeOUqgexDh+3yMrNYMs6vIhcDihtHd6v3vikQkaZ\npSLPS0wexqYSps9LbcOLsEqA+ebz7N5+/OPDB2bdPY5UdRRmSUQqkzc9hIrJ8KzgMWmyNqKt0Y+/\n/shVqAu68dgLZ/G1/9pTztsvwGO/P4t/+fWITsc8Pp1EY43HspJo7B+5MDSDcDSNDUsbC6QtTbVe\nfPFDmyAD+MaP9yISzyCWzMLjEuAQeZqQsXIhs00R0O47WbYnwTOD5oZXbc+SObMEAM31PkyGk/Re\nk2UZ5wZn0Frv090PLuelleF5iySKpF+pqzVEtdizwiypa9rjFsuS4RkZiWK9IRcGFfkgUL0ML5uT\nEIlnUBd0oyEgIsbMPrKLcDSNmViGFg7eef0irOiqo/JGM3ziXWvwhfs30QHUBKT49MQr5zERTuL2\na7oKCgVmbniiyCPodZRmlkx6lgBl/5HkQpv5J3dewPBEHG/f2kVd6kImhbRkOmdZKDNjlpbN15ik\nJRYSPIL2Jj8y2bxlZdoOzAwetAZxu8wSZzm3TZuxpP+uNBmePlkSeA6rFtZjeCJe8LlYGT5BMVfA\niZkk/B4HfW9s3xCLRCqLp1/rw3/84ohlgihJMuLJrClDaAc1ARfee/NSmtjWBFxwiDxEgSuLWZqy\nsA03IuR3KbPHFitnUSSeYeK30j1LgOb2yhaLrO4jmiyZMEuAJsUDNPMfOzK8KXX9mH2/lFlqKJTh\nsczSvEY/buxuxyfuWUfd30SBxxc/tBnNdV48/MwpvHJoEADwixfP4ZPfeh6/3dWre60+NY6b31I4\nH84I02TJQjJJBtNORfTFLVmWqemY8T4MR9PgOOgKKWR/rJZZqlGHCBt7Bh974SwGx2O4Y+uCArbb\n53bQNWYHlzxZ2rVrF3bs2AEAWLRoESKRCOJxZfH09/ejpqYGzc3N4DgO119/PXbt2lX0MXaQzuQh\nCjzVyjpnQYZXqspBgsHpaFrtj1BsL5tqvWhr9GHXkWFqY1gKeV2yVHoorRn8Xic4zjqLHlBvqg2q\nNeaASn8XM3gAis9bKmUbTkD6UQaYnqmek4qN9dl+a4nfb3f14qv/ubugupHK5PD3P3iNWrezGJ1K\nwONSBs26nIrhgJX7DlAes8Qm0FasDqD0Ln33izcj5HcWyL3KxemLYciyltym0jlEExlLcweAbdBW\nPve+E8q13ryixfTv1y5uxPt2LEU4msauI8OIJrLweZQNj8o7DfpwjlPWHAuWybHjhGeG2ZqzlM3l\nqfTBiKZa5SAgQc/YdBLxZLaAWXA5BOTyUlGnpWrB9ki6i3x2LVkKlO3yYwY2ECSvb8vggWEdWVgx\nS7Is48KQkoj63CKt6LM4em7C9OdmIAdqXdBNA6By+2NIvxKRrly9uhXf+vS1RQPOq1a34tr1bQU/\nJ/vyL186D4fI4103FDZZmyVLDoEv2ndEQN1QDfu02WDamVgaD//uJPweB+67dTn9udHgQZJkpDJ5\ny4Kgk/kuyfpc2qkFIkvnm0vwCGjfUhUmD2YyPLtzlvJqcYzneYgCD4fIFzxmyoJZ0qzDJcqskCKG\nJsXTs0vUjdfBMktFkqVwikrwABQMppVlGY88dxr3f/lp/OsjB/HEy+ex87C5rDuZzkGSC+/HcvCO\naxdS5rA2oLk8lqOKKOaEZwaeV9zpIvG07ZiLwOUQCnqWrCSpQ6WYJZNkqcbvgt/jKLqvkHtpyMTx\n0DiQFmAMHuIasyTwHD73/m5cs6ZV9/igz4m//aOr4HEJ+PZDB/DY78/iR08cBaDvOwcUh0qe0+65\nYvA4FQkjee+5nHWyRAbTGpOTTE6i8ZTxnJqJpRHwOnU9a2R/DNjqWSIyvsI1JAg8agJuHbM0PBHH\nz545jdqACx+8fUXBY8gau2xleBMTE6ir06xIa2trMTExYfq7uro6jI+PF32MHRibA2nPUhUGDyWZ\nJeYAyuYkGiiKAo8vf+wa1ARc+P4vj+Dlg4MlX1Pfs2Scs2TPOlzgOfg9DssAimiD1y5pBMdp7ECx\nniUAWNROTB4KpXiauUPxG9XILOXyEg6eVmYKnBs0l/iNTGfwvccOY/exEWqoQHD8/BT2nRjFq4YD\nRJZljE7F0VznU+j6Ig5dlTBLrOmHFbNE4HII8LocVc/pGZ5Urhk53OmMJQtzB/LagDZjau/xUfA8\nhw3Lmywfc2N3h/q3I4glMjQZDHiIDE8flAW8zoJghrXprsSZCWClNtp1y+cljM+UJ2ckBQwzGE0e\nzqs9eQXJUgk7bBZTkRQ+8r+fxov7i8/8MIINFMj6MhtK28cwS2buZuWCDqUlzJKrPGbJ57XHLI2H\nk4gls1jQFkJt0F3ALI1NJ/DX/7YT//XkcVvvmwa5QTcagsp7MAtqRqcSeOLl8/ib7+3EPV98Ak+/\n1kt/R65lp41qbCmQ65fJ5nHLlvmmMqSCZCmnMks+JxKpnGkxh4AyS55CZgnQKwl+8vRJxFM53Hfr\nMtPqLim8lerLZfdN8redLQF6xi3pKM0sAdU5oCoyPH34Qt5vqf4ebc6SJu0tZJbMmRDNOlyi9yFh\n4AjzaDR5oMySszSzFE9mkUzndMkS6UeLJxUp3g9/dQw/fuoE/B4Hbr+mCwBwss98oDNleiuU4QFK\ncvzAu9eiuc6LFQuU5MHndpRl8DClNt6XYpZYKIFspuyz2K0y/vpkyYpZUmYumkmyAaVvjPQWNakF\nSI7j0N7kx/BE3PLeDJdglhwir7sWZj1LxdDZGsTn3t+NTDaPH/36GFWRGPfP/tEomut9toq+PK8Y\nw2jMkmzaswRo5iNGhRR77xmZpZlYuuDcv/WqTtx+TRdq/C56H1kzSyrbazGfsT6knB+yLEOWZXzv\n8cPI5CR89O7VlvFxyOfUyY+LwR6vOYcopsO1+l052t2enh7MROPg1f8nEHhgOhzR/cwOhkaUvo1T\nJ49j+KL1AiSJ2MWhcUSieQCS7rXety2EHz07jn/4f/swMtiLhS3Wm0gipQU95y70ok7UNuPR8Wlw\nHHDsyMGSDZwOQcbUTNz0M5/qHYUocBjqOwmfi0cspbz/sZFB9PRYszvJmLKw9x25gAUhbX5QPJXH\nU/uUxyVmRtDTY93XJMkyRIHD6b4x9PT0oHcsTW+YgbEodu3eq9vM8pKMX7w2TR209uw7jI5G7QZ6\n4YjyPgZHJnSfNZ5SNPYuIYOenh4kYsp72tNzACGv/lY4c1bZ5AYHLqKnp7Bp1wz9E9r3lE3HSq6t\nfC6NRDJf9hokkCSZVsaOnryABsckzg4rm2U2GbZ83vC08r0cOHQU5zwCTl2cRleTC6eOHy76eg1B\nET0nR5HLy5DzafT09GB4RHm9k2f70OJRDuzJcAJ+D1/w+pMT2hpIRqcq/twCD0xMzdDH7zsbw6/3\nhDEZfQXL24tr4gnSmTyy6aTpe0hGlCR/z4ETyEUu4pXDyvuWEuPo6dECvERMWWd79x2A31P8MDre\nn8TETAo/+c1h+OVRW+8RAMYnlWt67OhhTKv3Wv/gCHp69InQ8fOjcIgcBnpPAAA4Dhgarfwa9w8q\nrmZnz5zE1LCIfC6FZDqHffv2Fd1nzvUqa2ug7xzkmDZgkiSzA0P6935qQDlsXXIMDi6LaCKL3Xv2\nQRSU1zh+MQFJBk6cH7H1WY73K8+XiIxjXp2SEOw/ehZ14jiGp7I4NZDEqcEURsPaoc5xwI+eOIIQ\nNwGHyKHnqHLN49MD6Omx/12ZYXpCWS88ByxtTJl+hovqe77Q24ce9xQSqQy8Lh65tLK/7XxtH/xu\n8/V15ry61/VfQE9WY9Ij08rP9x86jsiYG2PhLH6zawD1QREtnmnd+yBn1cjYJHp6ehBJKEFOMm5+\nPo6p1evjJ0/j4rjyXV7sPYeGoIDRsISZsfPomeq1vCaRaSU4OXDsAtq81mdLMeTyEhIJ/VmWzEgQ\neODFnl6sbklarlPSs9TbewHe/Ah45DET1e8FJ04r9/zYcC96csMFj52ansGFPuV7u9h7DlxiAJIk\nw+3gsO/4IHp6tCB6eFQ5P06eOIZBDymwKL8/eW4YPT1acEjWpZzVzo9oWHkv+w8dxUNPJrHzRAwN\nQREfuqkWPncWz+7hsP/EoO556GtPKdc6Hp0u+C7L3RseeFsdRi6ewshFQJYyiMZztp/jyAllPU6O\nDaCnx16hm5cUyXfPAaVHfSZsbz/LZVNIprM436cVS8/3DaKnR19UzeQkTISTWNCsxA5Wz90SAkYm\ngcjUMI2F3EIaeUnGsy/uQWOoMBAfnVA+b99w4Tk8MBpByCvgwIH99Gfj6j01pK6Vgf5e9JQ4JxwA\ndqwP4veHI7jrqhr8avc0+ocn6evFUkrC2FpTeBZbQeQlhCMJ9PT0IJnOwCVKpo+dmVTW/v4jp7H/\nyGn4XAI2LPLpipZDI2P0sXlJRjSRRX1A/168AK5aAOzfv5+qpkbHC9cqAJy/qFybixdOYWq4cD8U\nZMVl8OVX96J3LI39J6ewsMUFb37Ech/npAziySz27N1XUNwtuDZFfzsHaGpq0rFCY2NjaGxspL8b\nH9emFI+OjqKpqQkOh8PyMaXQ3d0NPPFbBHyi8v8q3I+Pwuny6H5mB08efA1AEldt3lC0nwcA3L/4\nNWTeDV5Iw+/iC16ro2scX/7+a3hkZxhf/+Q2ytIYwf1iDICy6bW1daC7W7Od/eFzz8PtyGHTpk0l\n33vTzpdw6uI0fn0gi0VtISxqD2FhWw0aajyYeuRJzG8OYvOmTWh55UUqf1uxfDG6186zfE5ZlvHD\nZ36Dqbj2+V46MIB/euIgMtk8Gmo8uOuWLZYNvwTzX3wBA+MxrN+wEcd+ewLAOOY1+DA0EUddyyIs\n69SYxYeePomR6UHVUjWHlvYF6F6tUdW/2r8LQAS8Q//9nr44DWAYyxe2obt7NXadP4gjfX1YtnwV\nrfQRDMbPAQhj+dLin59Fw0gE+N3vAQBd7S3o7l5b9O9DL7+IcDxS9hokGJtKIC8pzKTLV4vu7vWY\neK0PwATWrVyE7u75po8bz/Ri96lDGI774QmFAAzjpqsWo7t7cdHXu27oGB57QWn0nddch+7ubtQM\nhPF/n38RwZoGdHevQT4vIfmTASzqqC34XOemTwNHlWB+xdIu3TouB95fjEJwuOjz7zx7AEAYhy7K\n+MDdpa9lPi9B+skAamuCptdeDI7jV7tfhSfYiO7uFfjNod0Aorj1+m7UMtXAl07vx7GL/Vi2YhXt\n/7BCX+QsgEkMTWXR1rW85N8TPLzzJQh8Bldt2aS4HD75OwSC+mubzUmY+umvsbAthM3qPuB9fBh5\nONDd3a2uE7mkHJbF747uAZDAlu71CPld+NX+XegfH8PqNetpL4UZXjlzAEAMmzeu1b3e2HQCePIZ\nBEP693526hSASWzfvALSgUFcGB3AgsUrKbt3fOwEgClEEjI2btxYsiA0kjwPYBLrVi6BnFDujVND\nOZwcnKRVV1Hg0b28CVetbsWWlc14cucFPPLcGYxlavGOLQvxPy+9CIHncMv1Wywrq3Yxne/D7w4c\nxM2b5+Pm6zaY/o3sHQVenkRzyzx0dy8F99gIAn4vOtpqcby/DwsXr6BGGUbs7j0EIIItG9fozFlG\n0xfw/OHDaG3rxMb1bfjsPzwNWQY++Z5ubFmpl9vKsgz+0ScgOr3o7u5WpTzDaGttQnf3+oLXHM/0\n4un9h9De0YmZ3BSAGDasW401qyVEYhmsW1r8bE6lc/j33zyJjFz++Uver/yTAQSDgYLH7zq7Dy8d\nHIS/YSGd82XEqydeAAAsXbwI3atbUfP732N8OqF7rpfP7AcQxdWb1hXcN8JPh+Dx+hCqDQGIYv3a\nVZR1XndkN3YfG0HHwhVUtvXUwd0AktjcvUFX4a7/3dOIpjnd6yry81GsWNKB7m7FAfTCzBm8cvw4\n5rUvwMMv70d9yI1//NwNtEq/fO9OHD0/geUr1xZU0A+dGQcwhkWdbeju1qSXPT09FZ87ANC4eydG\npiewfsPGkkEmoK3Tqzfp12kxPHNsL3rHhtDQ0gVgDB1tLejuXlXycY/t2YnByQmIrgAApfDl8dUU\nfN4LQzMAhrB8YSuAnOX1qGudwaPPn8E9b1tHY77emTM4eP44Qo2d6DbI5AAg9diTAIBEWsKyFWuo\nJD2ayCCVHcCaJfW61xvL9AL7D0HmXQAyWLl8KbWjL4bubuCBbB5Oh4Cdp55BKifR5z18dhzAMNYu\n70B398qSz9XT04P6Gj96h5WYRH5kGIGAz/S6BBqn8bOXX8ILR6LI5WXUBd346Huvw8m+KQBKYuL1\nhehjFbneIDpaG4quO/HRYTgs4vKfvvoyeD6F7ddsNl1ze/sO4+TABdS3LsIPn90Hh8jjix/eTiWv\nZiBrbMmy1agNuosmlZdchrdt2zY8/fTTAIBjx46hubkZXq+yqbS1tSEej2NoaAi5XA4vvPACtm/f\nXvQxdpDK5AvmIjlFviInK9rLUmLOEqA0QypDaSVTyc+6JY34/Ac2IpXJ4cs/eI1qWY3IS9YGD4lU\nFm6nPUvQHVs6UR/yYN+JUfz02dP42n/txUcffAYf+NunkMnm0d6sLKoGRldcSoZHTB6GJ+OU8n/0\n+TOQJBn/3zvX4N++eFPJRAlQNO+ZbB6PPncaPSfG4BB53KXOImGthc8PzuCnz55G0CvgA29TdKis\n3EiSZJxWJQnGgY6jk5ptOKBR3am0InV58Ee7seuIUo2qyOCB7Vmy8ZmdDgGZnGSbKZVlGS/09OOA\navPNrhei1SV9NsV6lm7ePB+tDT48tfMCnnz1AgBg88rmkq/P/g3RwFPrcPVak/8abcMB6AwVKpXh\nAcqsJdYRjsisTvRO4VTfVMnHk0q6pcEDGUyryvB6hyMI+Z26RAkoT4Y3MqV9V3aktwQpZnK9lUxh\ncDyGXF5GV6smE/S5eCov+PIPXsPf/vurtl8T0JyuWBkeUNpYg7WVZ0HvNYM04/yQcm8vmBei13eK\nGUxLeiHjqZxl3wGLyYjWBOx18agPuelck5s2deAv/3AzfvKV2/Hlj12D26/pQn3Ig7uvWwS3U8DP\nnz+L7z12GGcHZrCss7bqRAlQ+p3uuWEx7n97oWaegLWjBoBsXoYo8LZm42mubfr7ichjo4ksek6O\n4dxIGuuXNmLzisL7nOM4+NwilZUZ+9WMYNc96UtwO0UsmBcqmSgByv1bF3RV3K/JDpU14uYtSoHo\nmT3Wg7/p49XeCSLDY/dhMtjYTPIjijyyeUlzjGT6xYgU7yhjIU6k1sb9pj7kRjia0r2u0QkP0GSS\nR85NIpHKYdOKZt3+ubyrFrIMnLpYKMWzksVWC28JyZQRdg0eWJD1P67K7IsVaViQ68xKxMwMHkg/\nUbFgGlD2pr/44CZdcbyYlDSTzeskiuxIFrN+JUBxSgb0PUt2QT5vfdCN6WiaKm6IE55VocUMfo8D\n2ZyETDZPeyfNQGT+ubzSOzgTS0OWZTrKAND3Ds7QQfXF4yLlXjQ/T8PRNGr8hfJ+ArK2vvfYYUxF\nUnjPTUtKfrdmM+ascMmZpQ0bNmDVqlW49957IQgC/u7v/g6PP/44AoEAduzYgS996Uv43Oc+BwC4\n88470dnZic7OzoLH2IUsy6YDzRwOAdkKrcOdDsFWNSXkd+FsfxiiyNObwYjt69oQjqbx748fwZf+\nYxe++entBU2l7ET3AuvwZBa1PnuH+m1Xd+K2qzsxE0vj/OAMzg3O4NxAGOcGZ5DM5OlAUlZXX8rg\nAVBMHg6eGcf5wTAWt9egbziC5V11eMe19pmDD75tOfadGMVPnj4JSQbWL22k+mjSt5TNSfj2Q/uR\nl2TctaWWTkJnXb+GJmL0gDAGVyRgJRpkrSE4j6HxGF47OgKHKOCaNfOqNniwoxF3Mr1zpV4nlc7h\nn392EC8fHETQ58T//P3bMMQ44Gk9S9qkcSs4RB4fvmMlvv7fe3FWne5tZNbMsKKrDn6PA7FkVutZ\nMhg8FNsUWUOFSt3wACUwYxPkgbEYBB7IS0oj/RfuN68oE2jBi7VOnVdnLSVSWYxOJWjzNgt2OGcp\nkERd4Dm8cnAI77l5acnHAEpxhhRmSNJkDFCIuUNnq3Yoet0CxmbSmJxJ0qbfRCpbkg0nSKRzEAWO\nFnnYwbS1Rc5ecu8ZX8cqsbwwFEHA60B9yI061eWInbXEFkqGJ2II+op/t+Q+qAu5MRzm8NVPbEUk\nnsGy+bWWwzBDfhdu37oAj79wFk+92ovOlgC+cH9ppt4O/F4nPvKO4tVwo3V4LqcYEmm2/MWSpTRE\ngSsoSJH9JxxN49evnAfHAR+9a7UlM+dxO7T5KKRfzZZ1OEmsyht4Wht0o39UsXUvd/6PpBYPjW54\ngFKAbKjx4OWDg/jY3atNA2zWOlx57yIkWb8PT0dT8LhE08eLAl8wZ4lgzSLlzDpydgI3qQN909k8\neJ6j0lKCgNeJXF5vpjFumLEEaOYdu44Oq6+h34uItf3J3il6hhNQK/8qDB7MQOKChInT3vh0EnuO\nDaOtyY8F85QeyslISueeagek4EZ6ku0aPJC/G59OIuB1IpPLm1qHk36itkYfkCxPDkoSELN+SNLv\nzXGK8+vgeIyangxbmF4Rpz+7PUtmqAu5IUkyZmJp1AXdmhNeGckSScyjCWXsgJXBQ23QjftuXYZ5\nDT68cmgIu4+NIJ7MGnqWmEH1hhlLVijmujodTRXtfyfmIb3DEbQ2+PDum5YUfS2g0NymGF6XniWS\nDBEsW7aM/v+mTZvw8MMPl3yMXeTyEiRJLkiWXA4eMxU4aqUyOds3bY3fhbwkI5+xbiYHgDu3L0Q4\nmsZPnz2N//2D1/APn7lel4zpDB6Y2RS5vIRUJg9XbXlfY8jvwoZlTTqal3UXYh1r7ARX1OShfway\nrFTulncWD2rM3tMXP7QJf/mdVyDlZXQvb0JHcwCiwKl0OfCzZ0+jdziCW6/qxOJ5edOFfoppdI2p\nDbHkMB4xMktsAKcWOUnDdLXMUrCEwQOgn/dVbHMcnojja/+1B73DEWp1OTQR182lIgEmGUjbUGKe\nxTVrWrFqYT2OnZ/E5pXNtgIWQeDRvbwZLx4YoLICt1OA0yHQA8I4pVv3eUWWWar88A75nRgciyKV\nziGdVYYPLm1zIys7sfPwEMamE1QCYwbScG3FLIkCj/oaD8amEnTemJl0pJgdthEjk3EEfU4s66zF\n3uOjGBiL0uGGxZDKaPNurJy7iCHBAgOzBAB7jmta7ZHJRNFZQSxiiYzu3qcWyyWauuPJLHxusaCY\nRL579lolUlkMT8SxdnEDOI6jRSLClkxHUrq5S8OTCZ0c1wyEEagLuDEM2LrGAPCuGxbh9/v6Ma/R\nh7/9o6sKnBznEqzBQ16SIcnQBZbFHPEmIynUBNwF9y9JtH67qxfhWBqbFvvQWUT+5HOLlOkx2sYb\nwa77cpQWLGoDbpwbmEEilStpTmQEOQPNCpYCz+HmzR346TOn8eqRIdy0qVCKzFqHAwxrmsppyVIk\nTZN3IxwiXzBniWDBvBD8HofOES+t7u8F3xFTaCLPMRlW1j5r0EOuD2G6jYUbck+c7C1k1eNJc6a3\nWlCHPkMMlUrn8OUf7MJFldUQBQ5/8cFNdCBtOYkxOSPImWY3gSDrM5rIoK3Rh3RWMGWWtGTJj2Fr\nItIUzXVeiAJnyiyRxKCzJYje4YjO5EEbSGtIltT3TCzay4k7COoJM69e6/7RKDgOaC+HWVL3DfIZ\nirHr779NkXUeVecvTkfTOjt5liGyGidihMcpYMJksCwZEl1jcU8C+rj1gXvW2hp6T9l7G2M2Xpeh\ntJcSVgyBQxQqtA7P26aD2YCx1I3+gbctx8blTTg7MINRhjEghyeporEsE8ni3Y7yJ3MbwR485TJL\ni9Vk6dxgmCYry7uK28eaYXlnHT5xzzo01Xmxde08OEQe81uC6B2K4PTFaTzy3Gk01Hjwx3cplVpS\neQqbJEt1QaXKwlYpRlVmifRDEGlmOpOjAQmhz9MW0oliIMEsYE+GZ4eZ2H9yDJ/7xxfROxzB27d2\n4SN3Kp/9xIUpWqVqDIkIq8P7xsNJ1ARcJd83x3F44J61WLWwHm+7usvOxwMAXLdBsUcmTBTHcWis\n0aZ5k00nZPL5WSanGhne4vYaSDJwdiBMK3uNQRF3X7cIkiTj169cKPp4MozXWaSA0VTrxWQkhXNq\n755ZoFls0CqLvCRjbDqBlnovtZd++aC51a8RRgmxYuGtfz2NWdLeI5mZseeYNhTRSuZb+Jo5DE/E\ndfKNUrauBLFExjTR4HkOTsMQ375hJdBYME9J4OpCRIan3M+EUV7Wqa/KFsNUJAWv25wRKIbagBs/\n+Jtb8I0/2X5JEyUAtJCWZWx3RVFjliJxc/mhLMsIR1OmQT1llmJpeN0iblxbvE/E63YoNtOSTPdA\nW0NpM4SBLC+UIJKZSuZqkYDSjFkCgB2blQTp2T39pr+XaLKlyfAAbW3n8xJm4mlTi2Jm5qW8AAAg\nAElEQVRA2eez6pwlgdd/dl6dtzQ6laDJTTpjXgwzcywk+2gdE/ixMxQ7mv0FcuCgz4m2Rj9OXZzW\nFVOV5zafe1YtSCJtdB783uOHcXEkiuvWt+G9O5ZCEHj8y88OIhxN2bYNJyCBLBkQbjchZ/fLoM+F\ngNdhKuEdGo9B4DkaD5QDQeDR2uDHgMnQa1IwXLmgTn0dRoY3ac4sGVUOdmdKsTDeUxdHomips+eE\nR0BYTBJTWTFLLNiiNbse0mbMUqlkyUQSCzAzloowU+1NAQg8hxu62231ewFaDGlngPsbPlkiGnmz\nnqXKrMNz8NjM+tnqucNC8kPAcRya1Wo4u+ERq3DCZrEsEznU3M7Z/RqJLSRQ2iIdUGRtPreIcwNh\ntcGvfGaJ4LarO/HDv76FMgOL2kLI5JR+orwk49PvXU8r3nSeDFMVONU3DafIY7Uqh2A3yZHJBOqC\nLroW3EyFlFSeEobp0+XS4eR6lbIOB/TzSowgszS+/INdSGXy+NP3rscD715HZR4n+6YwPBmH1y2i\npUa5HlMzKUyEk0Vtw1l0tgbxjT/ZXpamecuqFnz/r3bg6tVak3h9yIOZWAaZbB4z6qYTMtnUyOfl\nec7W9bECkTScvqglSw1BB67b0IbagAtPv9ZbdAZIKRkeoFQOZRnYd1LpD6uGWZqcSSKXl9FS58NV\nq1rAcYX2wmaQZRnpTE5XZfS4xYLP1jscQV3QpZNikWRJafBWMDxpL1m6OBKFJAML5mmfmQQ6Y9PF\n+0xiyaxlFdvl0A/xJf1KC9uU1yGHPWGWiARv+zrFYGXExvufVKuqlcCs+n8pwDJLxD7cIfC04BIz\nkRABimQnl5cLZNuAfv95345l8Fm46RF43SJkWUmUbfcsZZSeJePZagdksOR0tPxkqRizBChV+zWL\nGnDk3ITpmjH2PJH5ZeRzh2NpyLJ1f41D1GR4HpdYsGbWGOYtpbN5OE1iBtNkaUaRjrHXlC1Yrl1s\n3hO2oqsOiVSuYM6O1ZDoaqHNftL2omf39OG5vf1Y3FGDP7tvA+6/fQU+etdqxJJZSEWupxVIIDs2\npTJLZcxZIgj6nAh4nUimCy34B8fjaKn32koIzNDe5EcildOx34CWGCxqr4HTIRiYpQR4DgXKB2Oc\nURGzpO7RkzNJhKNpROIZOivOLgiLSRI+UbTTbqL2/cQyOmaJ7U+lipNSMjyXCEmSC2LzMLUNt15D\nDTUe/Mdf7cCfvc/cSMcMQfLebfQsveGTJSs5ldOhDCQtd6BkMm2fWWKzaDsMBamUGaV2gBbYs7/T\nmKXZ/RoJs8RxhUmmGTiOw6L2GgyOx3H8/CSa6rwF1a9KQWRDU5E0bru6U6fJdjoEeN0irYKk0jn0\nDs9gcUcN1caSgyivsi7NdYVTs1OZvMYspfXMUrmbFlkbdkwtSLCezRYO1f3mj/fhx0+dQH3QjW9+\najtuuaoTgBK0u50Cjl+YxMhEHPMafAh4lfd4fmgG2ZxUtF9pNtBS79MFCA10QF2KfhemBg9qBT3k\nc1pWhe1AS5amqQyiISjCIQq4Y9sCJFI5PFukwZsmS0WYJSLVPHRmHBxnrvsm1b9SzBI1Fqn3wut2\noKnWi34bM2ayOQmSrNfqN9Z4MBVJIauyY7FEBhPhpM7cAQANjrM5ifaT2GWWSJKycJ72nGTm0IWh\niOljAE0WbBWYuZx6ZukCY+4AaFVDYtJwTp1vdfXqVvA8V/L9Z3PKfVxpsvR6wUEHneapckAUeDTX\necFxerMAFiRIqzOp2HvdInweB1obfHjHtQtKvgevi8xaspEs6Zgl++chC01yWf4sMCMzZIYdW5R+\noWf3Fu4DpGeJ5w0yPPVzl5rnIgo8ciqzZCZVNA6nVWTWhe81SGSWKnMoy7JpsYuVKa4x6Z0EQJ3/\nThikeDFquDLLPUse/aDcvuEI/u2xI/C5RXzx/k2ULb3t6k5ctUoprJmt02IggSw5m8vtWQK0ZIl9\nHkApNEQTmZIGAMVgZfJAzsDagAvzGnwYntDYp+GJOBpqPAVMrJE1qyRZItd3MpKiSXM5hVCgUIZn\nJ5EkcW44mqIxqcsp6IbS2pbhuckcRePcs+L3JEFTrdeyN9UMhBUL2+hZesMnS5pbT2GyBJQ3mDaX\nV2QSdm9aVmpkNfSMBal0SUxCRCqN5GYyleHNMrNEtK8el2g7qCV9S/FUDss7y5fgWYEkS421HvyR\nSaN0yOeiFOqZgTAkWdFwG5ujx8NJSJKM5nqtokMHnGbylIEiTc6VMkukKdrO4WTFLH3n0UPYeXgI\nqxbW49ufvYEmB4BC/y+dX4v+0RgyOQmtDX4E1NkdRILYYJNZmi2Q15uYSVKWL2jSk0TY1WokeIAy\nHLDG78Kpi9OUWapXB5C+7ZouOEUev3r5fIEkhaCUG57yGso6yeYktNT5TANCu8ySUafe0RxAOJou\n2rgPMKw489qt9T7IsjYwt0/tDTDKBAmzBABXqbb65H0kUlnsOT5ieX2oQ10bmywphy7pjzJDqWZy\nt1NAJqNPlkSBo31FXrcDbqegY5YCXiea67xoqvWUZMZov9KVliwxRi+kOOYQedSHPNi4rAkneqd0\nRhcE1MzC5PNyHIdvfmo7vvEn24v2yxKQwaeJdNYGs0TkywqzVK65g/Keq2eWip1NW9fMg8cl4rm9\n/QXrnPQsiYK5DG+aGWxsBtqzlMqZXqPOlqDat6QkuWmLnlRqJ60yh/FkFqlMHvU1+tdlZXhGcwcC\nIns39i3NFbNEzrlESlkv3/jxXmSyeXzm3o26fhyO4/Dp967HLVvmU3mkXRgLjuX2LAEKe0eY7hij\nMhli+pUqhZXJAzE5qgm4MK/Rh2Q6j+loGulsHlORlOnYCONnsxMvGkGK3FMzKVwcUfbpcpklv5vI\nd5XPYEdeSwrT4VgGcdUNrz7oRkbtwVR+Zy9ZIsV5o9w7TF0/Z3dvJ8nXtA058Bs+WbJiCOgBVaQq\n/NNnTuE7jx6i/7aS9FmBdf4oj1kqNHSgMjxm44+lZq9niYXbpVQlS9mGs1jEBFaVSvDMsLyzDu+/\ndRn+5iNXmZpNhPzKlG9JkjHANOMH1MOBHBZG23CAkeFlczpmSZZlui7KTZYaajwIeB1U+1sMTpOe\npef3XcQLPQNYNr8WX/n4VlP3GHZ+SGuDryBZaqwpX4NdDWiyFE5SGZ7ZpkiuZTVOeIByAC+ZX4OJ\ncBIneqdQ43fR5CDkd+HGTR0YnUpg99Fh08dnqcFDcRkeAesyx4JUi0sxSyNqYkNcGElFsn+00EmJ\nBTFyYPeulgblOYhZSa+a2Bhlgj639tnWLmpAQ8hNLWwfee4MvvLD3fjOIwd1hRmCC4MzEHhOx6b5\nvU401HjQN2KdLFnZhhMozJLaFyLJ6B2OoqM5oDuQ64JuTEcU7fvIZAKL2kLgOA6t9T6Eo+mi8sqp\nEkHu5QrWOpz2LKmB/B3bFFboyZ2FfXjTJQKIzpag7cSRyqrKZJbMxnLYAbWJr4BZyueLy/AA5Qy7\nbkMbJsJJHGakqEChG563TGbJIWgGD2bXiOc5rF5Uj7GpBEYm4wqzZHKNjE6ipLHdWOxyOQX43CIW\nt4csFQsdTQH43KJpsuQU+bJ6b+2AsF3xVA7feeQQBsZiuPu6RbjGZOZQyO/Cn75vA2WQ7SJoUCfY\nXWcuXc+S09SCn0jjZoNZMkofCSsT8rtoMjY4HqPFKrN5d+xZ5HJWJgdmmfmLFTjhAdr3Go5qM+lK\nQdezpO7PJHEjfUszsTRcTqEkC228FwnIPVnM4KESBH1OOEXe1FTCiDd8spTKmCdLWnO9ObMkyzJ+\n+dJ5/HZXL22gTpU4RIwoW4bHFTJLhEkiGwUrG0zMEbMEAPe/bTnee8uy0n+oYnGHNlC3EnMHK/A8\nh/tuW27p4hVSHQfjqSwNBuc1+OCj1LtyjWjAysrw2J4lNdBTdPt5pLN5iAJXFqULAJ96zzp869PX\n2trsyAZJ1uDgeAz/9vPD8LpF/PkHuy2rOiuYZGlegw9BVYZ3pl9NluZYhmcEmcs1EU5iJpYBx5kz\na+TzVMssAcAylW2LJ7N0PhjB3dctAgD88qVzpo8lyU2xinuTLlkyb46nMjwTZunsQBi/2dWLvCTT\nRJ2sPcKklJLipU2KM2Q+B5Gk9Y6Yu/V5mWr/8q46tDT4MDmTRCabp31Mz+y5iO/+/JBuv1GSmAg6\nmgMFe1ZXaxBTkbTl3J94iSo26VmSZRlD4zFksvmCAKo26MZMPI1dR5REl9z3LWqAUWw2D5WlzfKB\nOtcQTXqWyM82Lm9Gc50XL+wfKGAiNWap+s9LraDTWep4aOWGR/atZDqHTLbCZInI8CpglowyOito\nRg96KR6pRfK0Z6k8ZkkUFRleXpItYwEilztwagyybM4UaG6Hyn1DZ+QZkiWO4/CVT2zFF+7fbPVR\nwfMclnXVYWgirnOHjSesewirAfncv9vdhxcPKMW9P7yj9ODTcuAQeV2/VqU9S4TpZu8fnW14hSCJ\nUCGzpBUMidV1/2gUIxPmTniAPsGrxDYcUJh5j0tUmCXVCa+tqbxkkB05AMByzhKLGkbKFk9mwfMc\n7WMi8Xc4mrZ17pM9J5GqTIZXLjiOQ32Nh957xfCGT5Y0OZV+U9Oaas2rwtPRNA2gn1N1z2QzrcQN\nz5YMT7DuWSIbRZZJlkgWbzXDqRrcsX0hbr+my/bft9b74HGJcDqEsitI1YCtarBypwCl3pXvcNQw\nYwlg3fDyVDcOKNICKwejUqgPeWzbFRvd1J569QJSmTw+/q61phsqwTJG5sgyS2RjsmvwMFvQMUux\nNAJe88Fx8xr9WLmgDlevaSn4XblYwkgTjde7ozmA7uVNOH5hCqdNBjWSe77YfdMQctNgymriPLkn\nWWYwk83jx08dx+f/6SV899FDePXQEEam4hB4ZVNW3p95RdKI11RmjGUpyboga713aAY8z9HnJCDW\n4T6PA22NfirfuzCkzFZb2BbCwrYQnn6tD//++GGqqR+ZjCOVyevMHQhKSfGo5MdCgupyCJBkZU/r\nVXufjHtFXdANWQa++/NDcDkF7FCHjM5Tk6WhIn1LxWzrL2eYueGR80ngObx9axcy2Tye3at3d6MB\nxCwwad4KmKWIer3dFcjwypG/GEGUF6VmHS7rrEV7kx+7jg7rAuU8YZaM1uFlMEsElsmSKpfbd0Ix\niDEL9I29NGTGUr3J2IclHbWmjAQLdt4SQSyZgW+WZywBGgMxPBGH3+PAF+7fNCtDnI1ge19tJ0uG\nnqWgT5+UAppDXTUyPK9bmQ9nTJaIA6XTIWDlQuU7efXwEIbVoplxIC2gT5Aq6VciIEO4iRNeuYUM\nzeBBWZOije/U73WC50CZf59bpPdFSlXqzMTSqLWTLFkyS8o+YeVQWQ0aQh6Eo2laqLLCmyBZKt6z\nZCWh6WUCghf2DyCfl6gsxm7PUsDnBCEYKmWWSHJEFhGRIABacOJ2XnoHJyN4nsMf37UaH717dcXu\nMpWAdWIZmUzA4xIQ8rNNnUYZXiGzxBo8AEpVw2yQ8WzDKMMjmmpiOWqFgNdJg+N5DX74Pfr3ecmZ\nJcbgYSaWsQxWXQ4B3/zUtdi+rq3q11zKMJntJtWzd15vzS5lbDBLgsDTz0XMDYwwJrun+qbwZ99+\nAY88dwb1ITc4DvjFS2cxMhlHU52XBnfFBhoCCqv9/357Ej9+6gTqgm7cxli7k4BpeDIOWZbRNxJF\nW6O/4LN4XDzqgi50L2sCz3P0cc/t64ckA5tXNOMrH9+KrtYgnnq1F9//5VHIsqyZO7TVwAiSNPZa\nJUtEhlfE4AFQihNGJzwC4pKWzUn41HvW02tFk8Q3YLIk8Bx4nkM2l9eYJWYP3bGlE06Rx1OvXtCd\nDcV6lsqFjlkiQ2ktZuwJAg9R4KmDlKcCZsnpEOD3OCqS4ZWyDifgOA63bJmPbE7CiwcGmccr/zVa\nhxPlSKnrygaQVslSZ0sQAa8Th84qLK7Z+W+Uh01aMEt2saJTb/IgSTLiJkNjZwMs4/PZ92+syH7b\nDljZod3ipd7gwaX1hhmYJbdTqPreaW/yYyKc1AX34ZjGosxrUAqEh89O4LC6FtiCLYEocCDLuVJm\nCVDWbDSRQSSeKdvcAdDkuOVYhws8h6DfRa3DvW4HJRRSmTziqRxyednWvuymfeSFzJJD5G21N5QL\n0iNYaozBGz9ZKuKGB8AymySVz6ZaJevcf2qs7J4lgdcmq9tJlgS+kFkiyRF5/5fCOrxS3HZ1Z1ls\n1GxAc2JJY3gyjtZ6PziOY5o6lQ1yZCoOUeB1jjxumizldBtpPJVFJpufdZ23EcSNjQTvWjJeen3d\nd+tyvPvGxQj5nXAImhW3Q+RNnejmEn6PAy6ngNGpBKKJTFUDZ22/ptdJJRRmydK6JY3oag3ilUND\ndKghATF4KHUoLe2oQX3ITVkNI8g9GYln8J9PHMMX/uVl9I/GcOe2BfjOX9yELStbcPpiGDOxDFqY\nYCLgdaLG7zJlliRJxg9+eRQPP3MKLfVefPNT23UV5YDXCZ/HgZHJOMamlUPajPkSeA7f+Yub8On3\nrQegJVkv7h8AoFS+gz4nvvqJrZjfEsATL5/Hfz5xjEmWTJgl9XWs+pY0ZslKhqe5Bxqd8AhIr9jb\nt3bhho3t9OdskmgF1oXqSoNDVGb3aMmSlggEfU5cu6ENwxNxHDyt9d9MR1LgudlJDkmQRNzweJ4r\nqoZwOQXMRAmzVFkAUxt0096IcmDH4IHgxu4O8DyHZ/f00Z8ZrcOJ9IeV4QlFxhuwDIrVHELSt1TM\nKMjjUoY3xwzMUqUGPUvm14DngJNq72oynYMkz/5AWkBp4F+7uAEfvmMltqysXilgBdYoyO460xk8\n+BwFDJ4kyRiaiGNeo7/qUQEdqqqByPrykoxILK1rwdixeT5kGdirDgg3Ywg5jqPvu1pmiaBccweg\n0DrcLltYQ5Ildcg0ia2S6Ry9x836r43wuMxleOFICrUB15yMdmgIacqYYrg8ouw5hJbgmLuNEMbB\niN5h5TC//+2KDve5ff1Mz5L9xUwOMjsyPLL5SyYyPBJAs8nSXFmHX0kIqte3dziCdCZPG+CpTpkY\nPEwl0FTr0Uk3XDoZnoFZqlCGVw5o35waIFmtVTNcu74NH75zFd08yCbZUOOpypa7EnAch4aQm1qo\nXqpkbe3iRogCZ5oscByHu69bqA6pPa/7HWWWStw3n7l3A/71z2+07Fsj39/z+/rx+Atn0Vznw9c+\nuQ0fv2ctPC4Rd6vsFlCoU29v9mNsOqFjtvN5Cf/8swP41cvnMb8lgG/8yXZTOWZrvRcjkwmacFjJ\nBP3MvBbyPImUMkR0mdpXGPK78NVPbEVHsx+/ePEcvVZmUloy9M+SWSrVs8QwuReGIqoZij4gvWVL\nJ/7XhzbjY+9co/t5i6FXywxEOnKlMUuAZhqgyfD0e4CZ0cN0RKlgl5Kj2YHHwCyZzQ9i4XIIdN+q\nRIYHKEltNJG1lMJbQbMOL/25a4NubFrejLMDM/R+oY8nMjwn+eyaDK8m4LLcR0UbMjxA71xndpZw\nnJKQkSB+gsrwKmM7vG4HOluDOHNxGrm8NGdOeIDCLj74wDa8+6Yls/7cLMhZwnH2HeLMhtICmnJj\nciaFTDZflQSPgNqHq4WvWCIDSdYnBtvWzaN7X8jvtGRsSTGpWmaJoJJkySHycDkFWpCwqxIK+Z2I\np5RCi8/t0LU4aPty6SKqz1OYLMmyjHAsPetOeASaMuZNnywRRyn9prZlVQtEgcN3Hj1oqsHvG47C\n6RBw7fo2dDQHsPvoCJ0oX04ljVQYynHDk5jpxVlq8KDOWWJkeHNlHX4loUa9AckwXKIHJhWSaCKD\nRCqrVPcNgSfV3sczOgv55CWS4TmowYMSLKQzeeVQqGCzJIzZpe5XImio8SCnrk0z2/C5wIfvXIl/\n/vyNphp/ALh+YzsCXgdePDCgmwieoW54xa+z2ykWtYAnVWWOU0wl/vnPb9AFSKsX1msGBQbpRUdT\nALIMDKpSvGwuj2/9zz461PHrn9xu+bla6n3I5iTsLzIw1whWJ790fq0uoKgNuPHgJ7ahrdGPVCaP\nxtrCJAZQDtK2Jj8ujkRMXfRKWYeT+2lsKoGpSMq0L8rjErFt3byCQ9rlENDW6Mfpi9MFEg0C0pRs\nZ8bZ5QZiR6254ekD9SUdtVg6vwZ7T4xgdCoBWZYxFU3NmvOfNmQ0h4SFyxsL3aDkCmR4ADuEuDwp\nnjaU1t65Z5y5pDFLhdbhsixjWq1iW8FhQ4YH6GciWZ0lfq+DSsUnZ5II+Z1VKRqWd9Uhk5NwfnBm\nzmYsXUqQe7mcgdHkXOc5JQ4ge1lEvR5D1AmvcnMHAtIvSyTVZhbZXrcD29Yqg7WL9SKTwcVVJUtM\nol2JDA/QW9XbT5a0z+vziNqg50yO7st2XHCpy2JS6y+LJbPI5WVbzFQlYA2qiuENH2Vb0eBL59fi\nM+/bgHgqhy99f5dOqpPLS7g4GkVni1JJvfeWpcjlJTz09EkA9nuWADZZsj9nSSfDk/QGDyyzRCpH\nLhtTlt+oIDcpaeQnm5HAc/B5HIglstRBq9kQsDpEHgLPYUKtKJC9OJbMIJuTCkxBZhvGnqVUJgeX\nQ6iIGSKzsS51vxJ9fSawr9Ya3C68bkfRA8EhCli3pBGTMyndFHVtKG1125/f68Sff6Ab//Cn1+Gj\nd68ukE9yHId7b1kGngNWdNXrfkcc/AbGokilc/jKD3fj1cPDWL2oHg9+YmvRgJ/IOHYfUwwgrNz6\nWPg8DvqcZrNaaoNuPPjAVixuD+G69dY9ZV0tQSTTeYxNFzLyJa3D1fVOZELlGsFsXduKVCaPA6fG\nTH8fjqUR8Douac/kbIEkS6Q4ZiZ/uWPbAsgy8JtXLyCZVtjv2ZopRXuWUlnL+UEsZqMhndqHlynF\ns9uzRLBpRQtCfide6BmAJMkF1uFUhpfKIZHKIZOTiiah7PoqNl5jfnNAF+ybIeB1KmyEJGM8nKp6\nRh5r8jCXzNKlAmEjyjEqIOvRrxoNkWSRJI+DE9XPWCLQ9nE1WYqa903evLmj5GsSw6HqZHjK+uE4\nc3m6HbD7t2gztmQTGa+OWcppCaSNZIfKgZkREaXcKatFPZ0T+WbvWSoibbqhuwMfuXMlJmdS+PIP\ndtHNZXA8hlxeohXb6za0453XL6IVqXJu3FCgHGZJ+Tr01uHK/ztFARxn7FnKwuu2Pzj2jQiyKRHa\nVt/f4UAskaHJUotJE6rbKWBSvUlIwkE2vLlmlowGAal0riIbXkCr0l7qGUsELKMVuowq++uWNAIA\nDp2ZoD+zM5TWLq7f2K4bGmzENWta8eg33oEVBtMOonU/1TeNv/uPXThwehybVjTjyx+7xlKmQUBY\noqlIGh6XiCabCTK5N6wGW9aHPPj2Z2/Ah+8sHP5M0KWyQb986Rz2nRjF0ESMjjOIl3LDU+8n4ta1\nsOxkSanO7jxkPj9rJmbPnvZyhEMUdHOWzCx7t69rQ9DnxO92X6R72mz1Z3kZZimZzpacsadjlirs\nWaKDactllmzMWWLhEHksm1+HSDyDRDrHGDyo1uFMU/mUjeGXLOtnZa8OaH1LgPVeE/Q5IalDpjPZ\nPO2fqBRkxuHJvmmG6b1ykyXa813GWUzWJtvH63EJ1PF2cBYG0hLUBd3wuEQqQZ+xSAzWLGrA59+/\nEffdaj2OhcQD1RRpSQzTXOetOJZgmSU71uGAvkDqZ3qWUpl8WcY7ZszSXNmGE9jtWZrb0vllAGqv\nbXGzveuGxZiYSeGJl8/jwR/txt9/7Boqy2PlLR++YyX6hiM4cHq8LDqQfMF2Fi5RFZhZhyssCF8g\nw/NdwRvhbMBYgWflRn6PA/1jMTrAs9l0voGAuJpoNdf7MDGTogemHTawGhjnLKUy+Yr1/421SpLU\nPEeuRKVQzyRLwcsoYNWSpXHa95ElzNIc96QRmLEERL7xq5eVHqHr1rfhs+/faIsVaWEKAl2tQdvy\nlC0rW5BK57C8hNtiMZCByL9+5QJ+/YrSPyPwHFrqfQjH0uA462o7CQZOqZJZMxleMSxqC6G5zos9\nx0cKDFjyeQnRRKYinf7lAIVZytO5emaWvU6HgFu2zMfPf38Wv3pJWTezzSzNxNLI5a3nBxGwTEml\nQVlNhbOW7M5ZYkEHkGdyBT1LDlFx91Oa0YkdezEZnv1Ece2iBrx6eNgyqSJVfNJPVS2z1FLvRY3f\nhRO9U1i3pEH3GlciyFlSjpqHrEc2Ngh4nYgmiQxPm8dYLTiOQ3uTHxeGIshLsqXkjOM43NDdUfS5\nSKtINUVaoiyxcnC1AzamtGvwEDLIDt2MwyS9JnaYpSLJ0lzJ8II+J0SBV3uWrBPoN3yydGFQSXys\nNnSOUyyvp2ZS2Hl4CP/nof2UgehiDnNB4PFXH9mC4xemdENBS+G2q7vAcRzWL20s+bdCEetwUeAh\nCpx+zlIyS4PkNytEgUdA1X2LAqcL2v1eJ9KZPK36mCUSygaVpr8/dn6S3pxzbfBQKMPLWzowlcIN\n3e3IZPO4bkP1ttyVgGWWLpUMzw5a6r1oqvPiyNkJ5CUZAs9RJq9aGV41aKhxw+MSkEzncdvVnXjg\n3etsV8rZgoCdfiWC9+5YivfuWFr2e2WxZlEDvvuFm9A3EsHgeAxD43EMjccwOB5HPJnF/JaAZRBL\ngoB4Kge3Uyiq3zcDx3HYtnYeHnvhLA6eHseWVZoLVySRgSxfmeYOgFnPkvnavH3rAjz2wlk8v0/p\nv6mr0AzACFHg4XRoLHsxxgSYXWaplGWvEXbnLLFgbevJ8crz+t6jZDpny45dxyyV+Ow7rupEPJWz\nlLaS/f6C6r5bbbLEcRyWd9XitaMj1IjFqofwSkCohIzRDG6ngB2b52N5l8b4+71ODKvyu8HxGEJ+\n56z1crU3+XGmP4zRqXhZkjMjyHlUrQzv8x/oxuL2ymdd6mR4FTBLPgOzZNbHZY5/9OoAACAASURB\nVAVSaGNleMRNb66YJZ7n0FDjxkQ4hTd1skRc7YotQIHn8Ln3b0Q4lsbOQ0N00Rqzc7dTxMZlTWW9\nftDnxB/YdIzh1YWptw7XGn5Fgaf/liQZiXTuTc8sAUqAFE1k0czMsgG0g+jcQBiAxeRsZhMmyZQm\nw5vb20Nzw9NkeJVulC6HgHdcu3DW3lu5YB2cLpXBgx1wHId1ixvwzJ6LOD8YxpKOWtoXcqmYJav3\n9ZE7VyGZzuNdNywqyxK1LuimwbWdfqXZRkdzwLRXLBLPFHUKZe+1rtZgRfLhbeuUZGnn4SFdskQc\nly6nRL0cGK3DrSq6zXVebF7Rgj3HRwAUl4uVC69b1JKlcpilit3w9LJnuyjHDY+AJkvZPCRZBsfp\nH+9xi0imcrYkP+UwSy6HULRAoSVLKrM0C8nviq46vHZ0BPtOKFbVV3KMEPTZV+YQcByHz9y7Qfez\ngNeB8+k8leUvKyKdLhesyQO5fyoZn+GaBYMHALqRC5XAzxo82LUOZ+4Xn1uk31cyncNMLA2es2c0\nIgg8PC5RzyxFyD05Nz1LgJJkHr8wWfRv3vA9S1qfUfEF6HQI+JuPbEFHcwCZnIS6oOuSVynNhtLm\ndMwSTx3HFOcevb70zQryPbU26KsCRKvdOxyBz+Mw1W6z64IkS0QWMtfMEgmIMlklSMpLcsXOUq83\n9D1Ll1fAauxbStOhtK/v9nf71gW458bFZc+O4HmOuuuVwyzNNYI+Z9FBv2zAs6Ctssrnko4aNNR4\nsPvosG5GHqk+XsnMkixr4wOKVXSJnBTQ2JnZgM8t0vOmHDe8SmV41OChbGapEhkekQXlIUmFiZbX\nJSKZydtqJmeb3itl1QgCKnNyYXh2mCVAk8oS+XngCpbh1QRcyuzAKgtwpK/0W/93HyRJnpV+JQJi\npLD/5BheOTiI2oCrIjk8tQ6f417pUvBVwCyFLJildCaPcDSNYBkjDnweB22NAFAVW2cXDSEP5EKD\nVx3e8MkSoFhI2vnS/V4n/v5j16Cl3ovu5c2X4J3pQRaTJGlBQFY1eBBFRYaXMzRTez1XZnA9myAb\nqdGemdDJubxsOjUb0B/0ZIMjU+XnumfJxcjw0tTi/vXdKCuFTx1My3FaAHC5YK2q3T90RhnombU5\nlPZyxsJ5NXA5hcsqWSoFdm2X64RHQKR48VSOfp8AEKbM0uW19uyCJJlkMGqxiu76pY3UrKMuOHvu\nlx6m8FYqCXDqepYqu498bhFOkacJil3kK2CW2AHkkizrJHjk98l0jjrzFatiO3RzlqpLRIJqtX1M\nNeyYjWRpcXuNTip4JVuHe1wivvbJbfijd6yu6nned8sydLUGcUAd6jwbtuEEJFl6cucFZHIS/ugd\nq4oWjaxA4o3X+1zyV9KzxJz5Po/Ws5TMKMxSOYy/3+MwMEv2h9pWioaa0qzVmyJZcjmLD9hj0Vjr\nwff+1w786fs2lP7jWQZPrcO1n7HMksDI8Iim0/8Ws6QxSwaZHdv/01JnvjmyAVxdyA1R4GkP0Vwn\nLk7GDS+ZJq6NV2byy3Ec2hr9aKzxzMqQzNlEbcCNjuYATvROQZZlZijtlZssffyeNfinz91wRUls\n2CBgYZnmDiy2rm0FALx6eIj+zMqF6koBCUqIq2ex4h7Pc/jM+zbgQ29fMaujAnxMn1I5MrxK2RWO\n41AbdNPilF1o1uH2wxdWhpc3YZY8LhGSJNOkpZgMj01kS/V2lYLRfKHSgbQsnA4Bi9pqtNe4gvYI\nMyzvrKt6nbscAr5w/yaaNM8ms9Ta4Kex26qF9bi+QhkcleG93sxSBXOW3C6RXlt2KG00nkE8lSsr\nWfK6RSRSWXqfT0fT8DLSvrmAnSLFmyRZKm/xvV7BHmWWZKueJQ45dQGRzPtKCpbmCsQuc55hA2Tl\nB1a0OLs2Al4ndYUCqrPwtAOHyIPjFGaJDNqsVP9/OeCL92/C33306tf7bZiiuc6LdCaPZDqHTDYP\nUeAuu6SuHAS8zlk98C8FyL3GcdW5NS3vrENd0IXXjg7TYlI59rSXIwhbkVCLYKUquqsW1uM9N1dn\n1mGEtwxmSSfDq0KKVhd0IxxL60ZilIImw7P/Oi5qD64YPBQkS+q+PzQeh8/jKNrPqGeWqjsjWMc2\nRXI2O/s/keI5Rf517c28nNDRHMBn79uIFV11WG0xPqESOEQebY0+8DyHB+5ZW7asmkCzDn+dmaUK\nZHiAVqjyeRy0d5WMOChnX/Z5HJBljWUPR9NzZu5AYDUAnsWbIlmqVCZwqUGqExJzcBT0LOX0Mry3\nkiWl9+OTf7CuwHzDx7gAWcnwyMbEcUpFhK2qzHWFh+M4OERBleFd2cwSoCSr1QTBcwki1QzH0shk\npVkLSt6CfZB7bV6Dv6oAm+c5bF0zD9FEFkfOKn1o5UyJvxxB2AoSINidbzKb8FbILFVzvrY3+SFJ\nsm5odClIdM6S/WtktA4XhEJmCVD2h1J9YA7GtazaggurfpgNCR4Bcey9km3D5wJb187Dtz59bdGh\n35Xgz+7diC999OqqDHdmwzp8NlCJdTigJURetwhR4MHzHGVqQwH715vah6eyyOclzMTTdMzAXOEt\nGZ6K1ztTtwuy8eZlc+twQeCpbSqR4ZUaYPlmQNDnxO3XdBU0/OqZJXMZHgna/B4HeJ7TySpcc9yz\nRF4jk5M0ZukKSeyvNBDTiUgsg0wuf8XsCW8kkMBtcXtNib8sja3r1AG1qhSPuOFdscySIVkqp6I7\nW9AxS2VYh1fjGkp67npV62w7yFcwZ4kOAKfMkv76ssY6pVy3yHdTLasE6JOZ2XDCIyC22b4r2Db8\nSsLS+bVlOyUbQfotX+89rBIZHgCsX9KIxe0h+L1OcBwHj1OgA+DL6llya7OWZuLKSIi5llfbGQZ9\n5Zaxy8CVUq2nzBLrhkcMHgRi8KD8O5ZkpnPn8BZMoOtZsjR40E/7vpQyPEDRlysyvEvTJ/VmBTmA\nZmJpZLJ5OC5BIvwW9KgPefBXH96Mxe3V2/auXFCPGr8ixXvgnrUIx1IQBV53/15JMPYsvR5OjeUx\nS8rvnY7q2BUyy7BvxH6yJFUwZ8nNyvAkGQ6nuQwPKJ0sEVZ6NpIlt1MxucjkpFlllupDHtywsb1A\nmv4WLl/cvHk+2pr8WLWg/nV9H6whSDn70AdvX4EP3r6C/tvlFKmrXTnJEjuYlsTCcy3DC/ldJe/n\nN3zEUON3odkiUL7cIJgkS4RJ0qzDlX+TQ9X3lhueJUjVjuNgObyXVBxJsnQpZXgA4BQFXc/SbBzA\nb6EQRIY3E88gk5PgfEuG97rgmjXzZsWUQOA5XLOmFTOxDI5dmEQ4lkFNwFVxv8DrjXLc8OYKXsbZ\nzWuzZ6nYXC07ILLdC2UwS9XPWTI3eCCoLSHDI05zs7VXk+DUTnW7HHz+A92479Zls/qcb2Hu4HQI\nWLu4saL5c7MJVoZXDcPNqmRCZSQ7XoZZ0uaeza0Mj+c5fO2BbcX/Zk7fwWWAf/7zG/Cp96x/vd+G\nLWhueIwMT6UxRVEZSivLyu+pdfhbMjxLkEOoPuSxrJAQCQmxu9bL8C5BsuTgkc5KSFE3vLeC+LkA\nyyxls/k5t4V/C3OPbWtVKd6hIdWe9sqVHF0OMjy28Ga3Z6la1UbI70Jd0IXe4TJkeBXMWXKx1uHS\n/9/encZHUWZrAH+qegkkIQkBAwRQgyjKKqDDpkNAQOXCRIEAkgWDgyCCInsUAXUYRETH4E/vZMBB\nTAAvIFxgMjiO23VhcUHQccEgCCRsQQgkZOvu937oVPWaPemq7n7+X8ROd6equlL9njrnPa+oPliq\nqQzP2HhleICjyUNjZpaI6is0xAjlnlODgiWnv496ZZZKLepc1KbOLAFA547Vl4cH/IihZYtmfnO3\nvjaL0iqPFTuX4ZFXISYD2l8Tjq5x0VU+RwlOlCyUzzNLJtfMUkPq/6lqyoCksKgcZRXMLAWC7je0\nQotQMz75Jg9l5VbNa/0bwj1Y0qQML6Tu3fAa47v1+naRKLhUopaW16Qh6ywpc5Y811mqfWbJ1MjB\nklLVwGCJ9ECWJfUmvPMCzHXlfOO3russAUpmqeZFon0l4IMlf6J06HEpw7M65iwpP7dabWqDB3bD\nq96aefF44oE+Vf5c+dKP8DJnyRctV80mAyosNnWQ5C+Bvb9RBtKXrtjbFLOdrv8zGGQM6NEOV67a\nr4V+HSwZXOcsadLgwSmzVNPcL0dmqeF/R0qTh19rmV1ylOHVYZ2lyjlWZZVzlqpqHQ4A0bVs8FBT\nqWJtKSXCjblmFlFDKOPKhnSNdc4s1aUMT8lwF5dWOLqc6mD9PAZLOqJklqw1ZpZYhldbJqOh2oGH\nI7OkBEtOmSUfDKiV36EM+NjgoWkoK4wXFJYAABs8BAilFA/w37bhgCNbYXFaV8/X6pNZaozmSdep\nHfEKa/X8+qyzpKxfV1pugU14Hl/n/Y2qbWapkZqJTBzRBY9PuBUxVcyrJfI1pSNdQ65DzZyyz3UZ\nS4U19zZnSftrO29j64hyp8xWRetw9zI8s8mgSblGIOnWqTX63ByDgT3aAXDrhueTMjz753e52H5R\n4JylptEsxIgQswHnL9mDJbYODww9b2yN8OYmFJVU6OLuY325X8e1WAdMySyZjfZlKqqjZpYaYRHt\nuMqOeMfPXKnV860NWGfJviit8Hitc5YouoaSn5iWoQhtZkSn9pG1/v3Vua5thG7Xp6Pg1DIiBOZz\ncoPWe1NupNT1JlZYM88yPD1UDTBY0hHl+q18GQBQF6E1GiS1DM8eLFkQzk54DRYRZsYzUweo/+/r\nzJIyd+ZysX2dGH9pc++PIsPMuFAZLPEmQ2AwGmT0694W739xUhdfqPXlfj5qmVmqTcZEmVfgvDxD\nfXWICYcsS7XOLNnqsc6S0SBDlpQyPM/XKiVDRoNc4zzgyPAQbHz23hoDSiJ/NX1MT1woLG3QOa7c\noKjrTSznRWkvXi5DRJhZk7JkdxyZ6Yi3zJJScmA0yjBW/txqFSgurVBrnanxaDFnCWCw5AsR4SE4\nd5GZpUBz/+DOuHi5DL1vukbrTak350yS0SBp0gJdmStQm3mTLSOa4ekp/RAX2/DsisloQIeYcPx6\n5jJsNlFjEKQsp1GXYEmSJISYjY5Faasow2sZUbv28wyUKJC1bRWGtq3CGvQeyt9UXcepzq3DL10p\n1U3jE/7F60i1rcMNstqyVCnDC+N8pUanlGPIsuSTu7tqGV5RZbDUCGUt5J1zOQAzS4HjunYReObh\nAbromFRfzuejVudmM7O9ZXBtm8z8rlvbRmtKcH3bCJSUWdUy2epUxkp1Xgw3xGzA1bIKr69VgyU/\nLuUk0hOls29UHddIMhllhJgNuHilDMWlliZfY6m2eBtbR7wtSuvS4KHy58UlFbDaBELZCa/RKSng\nEJPBJ3d3HZklZc4S/ySbitI+HPBN1pCotpwDJK1KTmRZwuA+HdAhJtznv1sp1SmuRfvw+mSWAHtZ\nUHGJvdug+5ylsOYmxMVGoNeN/pudJNITZcHq+lRAhTUzIv98MYCaG674CkdmOuIts+TcHUlJ/RcW\n2QfW4cwsNTrlDqOvutIp5WDFpRYYZIkZjybkPKeFwRLpiR6CJQCYO6mvJr9X2f/yCmuNz7XVY50l\nwH4j6nxlGa57GZ5BlpAxd0id3o+IqhZSzwYPgP3mxW+XlU54+sgscWSmI7KXzJLVal8TQpIcZWGF\nlfNbuMZS43POLPmC86CdnfCaVqRzZolBKemIy5ylIDw3lettuaXpgqUQk6FeC9oSUd31vukadOvU\nCrfd0qbOr3WeYqKX0lhmlnTEWxlehdWmfnka3TJLNS0cSHWnZJZ8lXkwO63304wL0jYp53IAZpZI\nT1zmLAVh8wCTEixV2Gp8rmOdpbrPWVLUpe04EdVd21ZheP7RO+r1WudEgF6WhOAVQ0cci9I6vjAs\nFps6V0kJmi4zs9RkjAYZEWFmn3UaZGbJd1zK8ILw7j3pl0sZXhCem8pNo9qU4TmyQ3U7Ts7zQZlZ\nItIv57EtM0vkQamjdoqVYLU5MkvKBV6ds8RgqUk8N22gz7J2ZqfymxA2d2hSnLNEeuU8T0kPa4r4\nmnIdbMo5S86ZJVmDdayIqHZcy/D0MWeJozMd8Z5ZEuqXp1qGx8xSk2qsldlrI4SZJZ9x7oZnYrBE\nOqKH1uFaMqtzlpquDK+ZSxkegyUivWIZHlVLbfAg3OYsuQdL6pwlBkv+jnOWfMc5sxRi4qWP9EMv\n3fC0UpcyvIY0eFAE4zEm8hdKsGSQJbQI9c2UiJrwiqEjysXfanVtHa50wVP+q8xZYhme/+OcJd9p\nZjaoc5Wcu48Rac35fAzGBg9qZqlWc5bqt86SSxkeM0tEuqUES1EtQnTztxp8V2Ud85ZZsjpllhzr\nLLEML1C4BkvMLDUlSZIQWZnS91VreKLaCPoGD8o6S01ZhhfCBg9E/kBZQ1QvzR0ABku6UtWitO6t\nw5W7bwyW/J9LGR4zS01OWWvJxDI80hHOWfJBgwcTW4cT+YPQ5pUL2uqkuQPAYElXvK6zZBEwykqw\n5PrlwHWW/B8zS74VEc7MEumPfeFx+7+DcT6NoxseGzwQBTslEcDMEnklVwZFSrAkhPCaWbL/W+KA\nLwCwG55vKRffEB5r0hFJktS5SsGZWapPg4e6HSfnpRkMbB1OpFudYiMxoEc7DO7TQetNUfFWto4o\nN7uUO2fKl4KjwYPjyyGsuQmSxAu+v3PJLLEbXpMbE98ZcbGRaNcqTOtNIXJhMsoot9iCM7Oktg73\nzTpLLMMj0i+zyYAnH/yd1pvhgqMzHZEkCbIsqV8GFVZ7SYKjwYPjy4FtwwMDu+H51rVtI3Bt2wit\nN4PIg70jnsWj3DoYOOYs+agMLwiPMRHVH2+v6IwsOYIli1XJLHmW4bG5Q2AwO5XchHDOElHQMgZx\nW3vfN3hgsEREtcdgSWcMBgnWytbhVrfMknOwFM7MUkAwGWV1YnfzkOAbJBGRndnovZFPMFBbh9cQ\nLJWWW3DmQjEkqe4Bj3MDHQZLRFQXDJZ0RpYk2KxKZqnqMjxmlgKDJEnqnWRmloiCl9LYIRjXWTLV\nYp0lq03gxayvkF9QjGG3X6uuO1hbrovSBt8xJqL64xVDZwyypC5KW1H5xWHw0uCBbcMDR0hlJyjO\nWSIKXkrAYArCBg+SJMFslKvNLK3f/R/s/88Z9LqxNR4Z26vOvyOErcOJqJ6C76qsc7IswWqzB0lK\nZsnkpXU4M0uBQ6nXb85ueERBS8kwB2PrcMB+HayoIrMkhMCevcfROrIZ0if/rl7HyLkMLxhLHYmo\n/oLzqqxjzt3wrG4NHpzvhoUzWAoYSrDEtX+Igpe3m2LBxGySUVZFZunilTKUlltx03Ut632jsBnL\n8IionnjF0BmDLKEyseTROtz5bhpbhwcOZXJzM85ZIgpaxiCeswRUZpaqCJbyzxcBAGJbh9f7/Z2b\n6bAMj4jqIjivyjrmrQxPKRlwXkiPZXiBQ8kscc4SUfBS5ioF45wlwF6GWFbFOkunC4oBAO1a138x\naUmS1Gss11kioroIzquyjhmcyvAsFrfW4UaW4QWi8OYmmIwyu+ERBbFg7oYH2BvdlFuqyCxVBkux\nDQiWAEfHUWaWiKguODrTGVmS1BXKlTlLBi5KG9Cm3tcDFwpL+AVOFMSCfc6SyWgvwxNCQJJcr4WN\nkVkCHAvTGjhniYjqgMGSzhgMTq3DPcrwHF8gbB0eODq2aYGObVpovRlEpKFg74YXYjLAJgCLVcBk\n9AyWQswGREc0a9DvYBkeEdVHcF6VdUyWJDWjZK2mwQMzS0REgSPoM0uV681VuJXiCSGQX1CEdq3C\nPDJOdaV0HGUWn4jqIjivyjpmkGU1s2TxaB3u+Lg4Z4mIKHAE86K0gKPRjXv78EuVbcNjr2lYCR7g\n6DjKMjwiqgvWcumMLEOds+TeDU+WJSg3xNhmmogocCjLQTQP0hJrZQmFCreOeEpzh3atGh4sMbNE\nRPURnFdlHTPIsmNR2soW4ganO41GgwyTyQCZF3siooAxcuD1aNcqFJ07RGm9KZqoKrN0usC+xlK7\nBqyxpFAaPMics0REdcBgSWdk59bhbmV4gD1w4nwlIqLAEhkegvi+HbXeDM0owVKFxXtmqXHL8Bgs\nEVHtMVjSGfuitN7L8ACgY5twtGzRsI5AREREeqKU4ZW7ZZYaa40lwNENL1ibaBBR/TBY0hnljpfN\nJtRgybkMb+XMOxvcEYiIiEhPlMyS+8K0p88Xw2xqeNtwAOjUPhIhJgnXtGze4PciouDBYEln5MpA\nyGoTagtxo1PJAO+IERFRoFGDJacGD0IInL5QhNjWDW8bDgDD+12HKPk8qzOIqE448tYZZeKpTTgy\nS8YgXaSQiIiCg9nkWYZ3qagMJWVWtGuEEjwFmyMRUV1xFK4zambJanM0eOCaEEREFMDMRiWz5AiW\n8s833nwlIqL64ihcZ9Q5S8IeMAGAgW1OiYgogDlahzvK8E4rayw1QttwIqL6YrCkM7KXBg8swyMi\nokCmlOFVODV4yK9cY4mZJSLSEkfhOqNklqw2luEREVFwcDR4cARLjswSgyUi0g5H4TrjnFliGR4R\nEQUDdZ0lp0Vp8wsar204EVF9MVjSGVl2tA6vUBel5cdERESByz2zJITA6YJitGsVyg52RKQpjsJ1\nxuCSWaosw2OwREREAczRDc9+k9DeNtyC2GvY3IGItMVRuM4orcNtNgGLjWV4REQU+NzXWVLnK7Xi\nfCUi0haDJZ0xVGaRrMwsERFRkFDL8CyuwVLsNQyWiEhbHIXrjFKa7dI6nMESEREFMMecJfv3Xj47\n4RGRTnAUrjNKZskmnIMlluEREVHgUrvhuZXhxXJBWiLSGIMlnVHmLDmX4RmYWSIiogDm3g0vv6AI\nZqPMtuFEpDmOwnXGuRsey/CIiCgYmJzWWVLahrdtHca24USkOaOvf6HFYsGiRYuQn58Pg8GAFStW\noEOHDi7P2blzJzZs2ACDwYDExESMGzcO27dvxyuvvIJrr70WADBo0CBMmzbN15vf5GS3YEmSHAEU\nERFRIJIkCWajjPIKKwqLynG11IJYzlciIh3webC0e/duREZG4sUXX8Rnn32G1atX4+WXX1Z/XlJS\ngtdeew3btm2D0WjEuHHjMGLECADAyJEjsWDBAl9vsk85L0prtQoYZGaViIgo8JlMBlRYbI624Zyv\nREQ64POR+N69ezFs2DAAwMCBA/H111+7/PzQoUPo2bMnwsLCEBISgj59+qjPEUL4enN9zrkMr8Jq\ng8nIrBIREQW+EJOMsgor8guKAICZJSLSBZ8HSwUFBYiOjgZgT7vLsgyLxeL15wAQHR2N8+fPAwC+\n+OILTJ06FWlpafjhhx98u+E+4sgs2WC12phZIiKioGAyGlBeYXXKLDFYIiLtNWkZ3pYtW7B161ZI\nlR3ehBA4fPiwy3NsNlu176Fkk2699VZER0dj8ODB+Oabb7BgwQLs2rWraTZcQ47MEmCxCjZ3ICKi\noGA2GXC11MK24USkK00aLCUmJiIxMdHlsfT0dBQUFKBLly5qRslodGxGTEyMmkkCgLNnz6J3796I\ni4tDXFwcAHvgdPHiRQgh1ECsKl999VVj7Y5P5OdfAQD8dOQIrpaUwGqt3T742342hmDc56rwWPAY\nuOPx4DFw5g/HwlJeitIyC34+cQ4GGTh+9D84UcN3fH34w7FoajwGrng8eAyq4/MGD4MGDcKePXsw\naNAgfPDBB+jXr5/Lz3v16oWnn34aRUVFkCQJBw8exFNPPYW1a9ciMjISiYmJyM3NRXR0dI2BEgD0\n7du3qXalSZwsygW+KUSnTjfA8M1hmM1yjfvw1Vdf+d1+NlQw7nNVeCx4DNzxePAYOPOXYxH1+Sc4\nc+k3XL4qEHtNC9x+222N/jv85Vg0JR4DVzwePAZA9cGiz4OlkSNH4rPPPsOkSZMQEhKC559/HgCQ\nmZmJfv36oVevXpg7dy6mTJkCWZYxa9YshIeHY/To0Zg3bx527twJm82G5cuX+3rTfUJZlNYmBCw2\ngRAzGzwQEVHgCzEZIARQXGpB9xs4X4mI9MHnwZIsy1ixYoXH4w8//LD67xEjRqjtwhVt2rTBW2+9\n1eTbpzWDS+twGwycs0REREHAZHJ837G5AxHpBUfiOuO+KC0bPBARUTAwmwzqv2OvYXMHItIHjsR1\nRq5sFW61icpueCzDIyKiwGc2OoYksa2YWSIifWCwpDNKIsmmlOFxnSUiIgoCzpmldtcwWCIifeBI\nXGeUMjyL1QabAExGfkRERBT4lGDJZJTROrK5xltDRGTHkbjOKGV4ZRVWAI6GD0RERIFMKcNr2ypM\nvXFIRKQ1Bks6Y6hsHV5eYbP/Pxs8EBFREFAyS7HshEdEOsKRuM7IlQ0dKiozS2zwQEREwUAJltg2\nnIj0hMGSziiL0papwRI/IiIiCnxKGR4zS0SkJz5flJaqZ1AySxZ7GR6DJSIiCga3d22Lw7kF6N+9\nndabQkSkYrCkM+6ZJQPL8IiIKAi0ax2GxVP6ab0ZREQumLbQGaX7XTnL8IiIiIiINMWRuM7Isms3\nPAZLRERERETa4EhcZ5RgiWV4RERERETaYrCkM+5leCZmloiIiIiINMGRuM4omSWlGx4XpSUiIiIi\n0gZH4jpjcCvDM8oswyMiIiIi0gKDJZ1RWoeXq3OW+BEREREREWmBI3GdUYKjci5KS0RERESkKY7E\ndUapunOss8QyPCIiIiIiLTBY0hk1s8QyPCIiIiIiTXEkrjPuc5ZYhkdEREREpA2OxHVGaR1usQoA\nLMMjIiIiItIKgyWdMbi1CmcZHhERERGRNjgS1xnZLVgyMVgiIiIiItIER+I645lZYhkeEREREZEW\nGCzpjHtmiQ0eiIiIiIi0wZG4znhklmRmloiIiIiItMBgSWeU1uEKo5EfEGB6OQAAGqxJREFUERER\nERGRFjgS1xn3OUpGmR8REREREZEWOBLXGffMEhs8EBERERFpg8GSzni0DmcZHhERERGRJjgS1xlJ\nkuAcL7HBAxERERGRNhgs6ZBzdomtw4mIiIiItMGRuA7JTk0dGCwREREREWmDI3Edco6P2OCBiIiI\niEgbDJZ0iJklIiIiIiLtcSSuQ87tww0MloiIiIiINMGRuA45l94ZWYZHRERERKQJBks65JxZYhke\nEREREZE2OBLXIefMEtdZIiIiIiLSBoMlHVIyS0aDBElisEREREREpAUGSzqkLErL5g5ERERERNrh\naFyHlNI7I0vwiIiIiIg0w2BJh5TMktHIj4eIiIiISCscjeuQklkyyPx4iIiIiIi0wtG4DqmZJa6x\nRERERESkGQZLOmRggwciIiIiIs1xNK5Djtbh/HiIiIiIiLTC0bgOKRklluEREREREWmHwZIOKZkl\nluEREREREWmHo3EdUprgmRgsERERERFphqNxHVJahhtYhkdEREREpBkGSzqktg7nOktERERERJrh\naFyHlNbhRiM/HiIiIiIirXA0rkNKZkkJmoiIiIiIyPcYLOmQWobHBg9ERERERJrhaFyHDGrrcGaW\niIiIiIi0wmBJh2QDM0tERERERFrjaFyHlEVpGSwREREREWmHo3EdUho7sAyPiIiIiEg7DJZ0SGnw\nYGJmiYiIiIhIMxyN65DaOpzBEhERERGRZjga1yF1UVqW4RERERERaYbBkg5xnSUiIiIiIu1xNK5D\nBtn+sbDBAxERERGRdhgs6VBlYglGmR8PEREREZFWOBrXIaWxAxs8EBERERFph6NxHVIWpTWxDI+I\niIiISDMMlnRImavEzBIRERERkXY4GtchJbPE1uFERERERNphsKRDbB1ORERERKQ9jsZ1SFmUlmV4\nRERERETa4Whch1qEmgAAEaFmjbeEiIiIiCh4GbXeAPI0uE9HtGsdjluuj9Z6U4iIiIiIghaDJR0y\nGWV069RK680gIiIiIgpqLMMjIiIiIiLygsESERERERGRFwyWiIiIiIiIvGCwRERERERE5AWDJSIi\nIiIiIi8YLBEREREREXnh89bhFosFixYtQn5+PgwGA1asWIEOHTq4PKewsBBz5sxBeHg4XnnllVq/\njoiIiIiIqLH4PLO0e/duREZGYuPGjZg+fTpWr17t8ZxnnnkG/fv3r/PriIiIiIiIGovPg6W9e/di\n2LBhAICBAwfi66+/9njO8uXL0atXrzq/joiIiIiIqLH4PFgqKChAdHQ0AECSJMiyDIvF4vKc5s2b\n1+t1REREREREjaVJ5yxt2bIFW7duhSRJAAAhBA4fPuzyHJvNVq/3ru3rvvrqq3q9v78Jlv10Foz7\nXBUeCx4DdzwePAbOeCwceCx4DNzxePAYVKdJg6XExEQkJia6PJaeno6CggJ06dJFzQwZjTVvRkxM\nTJ1f17dv33puORERERERBTufl+ENGjQIe/bsAQB88MEH6Nevn9fnCSEghKjz64iIiIiIiBqDJJwj\nEh+w2Wx46qmn8OuvvyIkJATPP/882rRpg8zMTPTr1w89evRAQkICSkpKUFhYiLZt22LhwoUYOHCg\n19cRERERERE1BZ8HS0RERERERP7A52V4RERERERE/oDBEhERERERkRcMloiIiIiIiLxgsORjeXl5\n6NOnD1JTU5GSkoLU1FSsWLGiyuenp6fj448/rvY9X3jhBUycOBGJiYl47733AABnzpxBSkoKkpOT\n8cQTT6CiogIAUFhYiIceegiPP/64+vrt27cjPj4eqampSE1NxV//+tdG2FOHvLw83Hzzzfj2229d\nHh83bhzS09Pr9Z563+fa2L17N7p3745Lly7V+z3efPNNtUX/xo0bAQBFRUWYNm0aJk2ahKlTp+Ly\n5csAgPLycixcuBBjx45VX3/gwAEMGDBAPR//9Kc/NWynatAU5wJg3+cZM2aon/8vv/wCAPj888+R\nmJiIiRMn4rXXXlOf/+OPP2L48OHIzs5WH0tPT8fo0aPVc6Kmv7vGNnXqVNxxxx0N+r2BcByA2h2L\noUOHoqSkxOWxH3/8EUlJSUhJScHMmTNRVlYGAFi7di0SExMxYcIEl/fMyclB7969kZub6/K+ycnJ\n6vX53Llzjbx3tdMY1wfFvn37MGHCBEyaNAlPPfWU+viKFSswceJEPPDAAy5/k2+++Sa6d+/ucny7\ndevm8r3lq+nO2dnZmDBhAlJSUjB+/Hjs3bu3Qe/nr+fIyZMnMX36dCQmJmLMmDH405/+pG67N6dP\nn/ZY1xLw73MhLy8PXbt2xZEjR9THtm/fjh07dtT7Pf3tfHAfQ6alpTX4b+LMmTNIS0tDSkoKpkyZ\nggsXLgAAdu7ciXHjxmHChAnYunWr+vz9+/dj4MCBLsclJSUFiYmJ6jH4/vvvG7RNuiPIp06dOiXG\njh1b6+cvWrRIfPTRR1X+fN++fWLq1KlCCCEuXrwo4uPj1de9++67QgghXnrpJbFp0yYhhBBPPPGE\nyMzMFI899pj6Hu+8845YuXJlnfeltk6dOiWGDx/u8jvy8vLE8OHDxaJFi+r8fv6wz7Uxbdo0MWfO\nHLF58+Z6vf7EiRMiISFB2Gw2UV5eLoYMGSKuXLki1qxZI9atWyeEEOLtt98Wq1atEkII8dxzz4ms\nrCyX82///v0ux6WpNfa5oMjIyBCZmZlCCCE++ugjMXv2bCGEECNHjhRnzpwRNptNTJo0SeTm5oqr\nV6+KBx98UCxdulRkZWWp71HT35ovNHQbAuU41GY7hg4dKq5everyWHJysjh06JAQQoiVK1eKjRs3\nipMnT4oxY8YIi8UiLly4IO655x5hs9nEvn37xNNPPy0eeOAB8fPPP7u8b0lJSdPsVB009PrgbMSI\nEeLMmTNCCCEee+wx8fHHH4sDBw6IadOmCSGEyM3NFRMmTBBCCLF9+3aRkZEhhgwZ4nJ8+/fv3+Dt\nqKtTp06JhIQEYbVahRBCHDt2TCQnJzfoPf3xHLHZbCIhIUHs27dPfeyNN94Q8+fPr/I177zzjsvf\ntcJfzwUh7OfDqFGjxMMPP6w+9s4774jt27fX+z397XxwH0OeOHFCjBw5Uvz000/1fs+FCxeKnJwc\nIYQQWVlZYtWqVeLq1avi7rvvFkVFRaK0tFSMGjVKFBYWil9//VU8+uijYtasWS7X5+TkZJGbm1v/\nHdM5ZpZ05OWXX0ZKSgomTZqEnJwc9fH3338fDz74IO6//3788MMPLq+5/fbb8corrwAAIiIiUFJS\nApvNhgMHDmDIkCEAgCFDhuDzzz8HACxfvhy9evXy0R459OzZE/v27VP//91338Udd9yh/v+uXbsw\nfvx4JCUlYcmSJQDsd4zmzJmD5ORknD17Vn2uv+xzdQoLC3H8+HE8/PDD2L17t/p4SkoKVq1ahdTU\nVEycOBGnT5/GgQMHMH36dKSmpuK7775Tn9uxY0dkZ2dDkiSYTCaEhoaiuLgY+/btw/DhwwG4Hoe5\nc+ciPj7eY1uEjxti1udcGD9+PE6ePAnAfhdszJgxLu85bdo0PPjggwCAli1b4tKlSzh58iSioqLQ\npk0bSJKEwYMHY9++fQgJCcFf//pXtG7duon3tP62b9+OlStXAgCuXr2KoUOHAgBGjBiBdevWITk5\nGRMmTMDVq1ddXhdoxwGo+lh4O29ff/119OzZEwAQHR2NS5cuYf/+/fj9738Pg8GA6OhotG/fHrm5\nuejZsyeeffZZGAwGl/cQbmv8aaG664NyRzs7OxuvvvoqLBYLZs+ejYkTJ2LlypVe/8a3bdumLrWh\nHJe9e/di2LBhAIAbbrgBly9fRnFxMe6++27MmjXL4z20OCZXrlxBeXm5erf/+uuvx1tvvQUAOHr0\nKCZPnoy0tDTMnDkTRUVFyMvLw7hx4zB//nyMGzcOzzzzjMd7+uM58umnnyIuLs5lfcm0tDQcPnwY\nv/32G/Lz89Vs8oIFC3DhwgWsWbMGGzZswIcffujyXv56Lii6d++O0NBQl+8QxZtvvomJEydi4sSJ\nWLt2LS5duoS7775b/fmOHTvUa4nCH88HZx07dsQjjzyiVgdkZ2fjgQceQHJyMtavXw/A/nc0bdo0\nJCUlYfr06R4Z+aVLl6rHSTkGhw4dQs+ePREWFoaQkBD06dMHX3/9Ndq2bYtXX30VYWFhHtui9XWz\nKTFY0oC3E+rLL79Efn4+3nrrLaxfvx6vvfYaysvLAQCyLGP9+vV4/PHH8frrr7u8TpZlNG/eHACw\nZcsWxMfHQ5ZllJSUwGQyAQBatWqF8+fPA4D6XHcHDhzA1KlTkZaW5hGQNQaTyYSbb75ZLQv48MMP\nMXjwYPXnZWVlWLt2LbKzs3Hs2DH8/PPPAID8/HxkZWW5rKnlL/tcnT179iA+Ph5dunTBuXPnXNL2\nUVFR2LBhA0aNGqVe7I4cOYI33ngD3bt3d3kf5YL16aefomXLlmjTpg3Onz+Pli1bAqjdcTh69Chm\nzJiBpKQkNbBqSvU5FxISErBz504AwL///W+MHj3a5T3NZrP62SvHrqCgANHR0epzoqOjce7cOciy\nDLPZ7HXbsrKyMHnyZMydO7dRyp8aQpIkj39bLBZ07twZWVlZaN++vUf5RSAeB8D7sfAmPDwcgD2o\n+t///V/cfffdXvf//PnzVf49APbBw6RJk/DSSy81wtbXXXXXB3effPIJKioqsHnzZvTr18/rc5Xj\ncu7cOXz++ecYPHiwx3Fp2bIlCgoKqjwuZWVlmDdvHiZNmqRel5razTffjB49euCuu+5Ceno6/vnP\nf8JqtQIAnnvuOTz33HP4+9//joEDB6qDxZ9++gnz5s3D1q1b8e233+Knn35yeU9/PEd++eUX3HLL\nLR6P33TTTTh+/DhefvllPPTQQ8jKykJMTAzy8vIwZswYpKamqjcQFf56Ljh74okn8Je//MXlsVOn\nTmHHjh3YtGkTsrOzkZOTgytXriA2NhZHjx4FYL/x7Bw8Af55Prjr1q0bjh49ilOnTuHdd9/Fpk2b\nkJWVhT179uDMmTNYt24d7rzzTmRnZ2PAgAEe3/PNmzeHLMuw2WzYuHFjld8b58+fr/I7AwAyMjKQ\nnJyMpUuXquPXQGHUegOC0bFjx9Q6X0mSMGjQIMiyjMOHD7vU/ypfesrdpJ49e2L16tVe3/Pf//43\n3nnnHbzxxhsAXAcUNUX7t956K6KjozF48GB88803WLBgAXbt2tXg/XR3zz33ICcnBzExMYiKinK5\n8LRo0QKPPvooAPvgXRmg9ejRo8r384d9rsru3bvVOVRDhw5FTk6OmhEYOHCguo2ffPIJAPugwWj0\n/uf6zTffYNWqVcjMzATgeRyqG1xed911mDlzJu69916cPHkSqampeO+996r8XY2lrufCf/3Xf2Hy\n5Ml49NFH8f7773vcHVSsWrUKISEhGDt2LA4ePOjys5rOiYSEBERFReHmm29GZmYm1qxZg6effrqB\ne9r4+vbtCwBo06YNrly54vU5wXAcqnL16lXMmDEDDz30EDp16uTx85r2//HHH8edd96JqKgozJgx\nA//6178wYsSIptpcr6q7Prg7evQo+vTpAwAYPHiwx11vxYULF/DII49g2bJliIyM9Ph5Tcdl0aJF\n+MMf/gAASEpKwu23345u3brVdpfqbeXKlfjll1/w6aefYu3atdi8eTPefPNNHD58GIsXL4YQAhUV\nFep3xfXXX6/eXOvVqxeOHTuGLl26uLynv50jkiTBZrN5PG6z2WAwGPD9999j8eLFAIB58+YBAP7v\n//6vyvfz13NBce2116Jbt24uFTg//PADbr31VkiSBIPBgD59+uCnn37C8OHD8cEHH6Bjx47Izc3F\nrbfe6vF+/nY+uCsuLlbHkL/++qs6jiwpKcGpU6fw/fffY/bs2QCAyZMne30Pm82G+fPnY8CAAejf\nv79LRhuo+RhMnjwZXbp0QceOHbFs2TJkZ2cjLS2tcXZQBxgsaaBTp07YsGGDy2Pr16/H2LFj8fDD\nD3s8v6a7qp988gkyMzOxbt06NdMQGhqK8vJymM1mnD17FjExMVVuT1xcHOLi4gDYB+gXL16scZBd\nHwMGDMDq1asRGxurlokBQEVFBZ599lns2rUL0dHRmD59uvoz5S65O3/ZZ2/Onj2LQ4cOqc0USktL\nERERoQ6GlC9F5+2p6jj8+OOPePrpp5GZmakOEGJiYlBQUIDw8PAaj0ObNm1w7733ArCn81u3bo2z\nZ8+iffv2jbKvVanruRAVFYWOHTti7969kGXZ6z5lZGTg4sWL+POf/wzAfhyUrBqAGo9F//791X/f\nddddWLZsWUN3s1auXLmC5s2bw2g0qoMf5/PQYrG4PL+qwbDCX48DUPdj4c5qteLRRx/FH/7wB9x3\n330A7Pt/7Ngx9Tk17X9CQoL679///vc4cuSITwc+1V0fnI+F0sAGsGfbFd6uYUVFRZg6dSrmzp2L\nAQMGAHBcJxTnzp3DNddcU+X7TJgwQf33gAEDcOTIEZ8MkMvLy9GpUyd06tQJycnJuPfee5Gfn4/Q\n0FCP79G8vDyXoMLbNd0fz5FOnTph06ZNHo/n5uYiLi5OzQrUhj+fC86U4CYpKQkmk8kjoCwvL4ck\nSRg2bBhmz56NG2+80aXcW+GP54O77777Dl27doXZbEZ8fLxH+enatWtrPD/S09MRFxeHGTNmAPD+\nvdG7d+8qX6+UcQL28v89e/bUZ1d0i2V4GvAWoffq1QsffvghhBAoKytz6Ur25ZdfAgAOHjyIG264\nweV1RUVFWLVqFf77v/8bLVq0UB8fMGAA3n33XQD2OSF33nmny+933oa1a9diy5YtAOwX3+jo6CYJ\nGkwmE7p27Ypt27a5lAYUFxfDaDQiOjoap0+fxnfffVdtCtef9tmb3bt3IykpCTt27MCOHTuwZ88e\nFBYWqnNyvvrqKwD2jJH75+3MZrPhySefxJo1a9CuXTv18TvuuEO9UP3rX/+q9jjs2rULr776KgD7\n3cbffvvNpeSxqdT2XPj222/VQWFCQgKWLVuGkSNHerzfl19+icOHD6sBAgC0b98excXFyM/Ph8Vi\nwUcffeT1y1Lx2GOPqSU7X3zxBW666abG2t1qPfPMM3jvvfcghMAvv/yCuLg4hIeHq5ll5e+/Nvz5\nOAANPxaZmZno16+fy5y2/v374+OPP4bFYsHZs2dx7tw5dO7c2eV1yt9EUVERkpOT1TkyX375JW68\n8cbG3MUaVXd9aNGihTqA+frrrwHY77Ir3cs+/fRTtUzN2fPPP4+0tDQMGjRIfWzQoEHq9fI///kP\n2rRpg9DQUPXnzteJY8eOYcaMGbDZbLBarTh48KDHMWwKW7ZsQXp6urotly9fhhACrVu3RpcuXdTs\nSU5OjjqH5cSJEygoKIDNZsOhQ4c8ttMfz5FBgwYhLy/PJVu0fv163HbbbYiIiHCZB5qRkYG9e/dC\nkiSvNxf89Vxw16pVKwwbNgybN28GANxyyy04dOgQbDYbLBYLDh8+jK5duyImJgaSJGH37t0eJXiA\nf54Pzp/HiRMnsH79eqSlpaFbt27Yv38/SktLIYTA8uXLUV5ejh49eqjnx9tvv+3RPXDnzp0wm82Y\nOXOm+livXr3w3XffoaioCMXFxTh48KBa1eBtO1JSUtSAW4vrZlNjZkkD3gblvXv3Rr9+/dQ7NpMm\nTXL5+fTp03H27Fm88MILLo/n5OTg0qVLmD17tnoX7YUXXsCsWbOwcOFCvP3224iNjcX9998Pm82G\nhIQElJSUoLCwEKNHj8bChQsxevRozJs3Dzt37oTNZsPy5cubbN/vueceXLx4Ua0TBuxZg4EDByIx\nMRGdO3fGH//4Rzz//PNITU31+h7+ts/u/vGPf3h8jvfddx/+8Y9/QJIk5Ofn449//COKioqQkZGB\n48ePe32fvXv3Ii8vD0uWLFGPw/z585GcnIz58+cjKSkJERERWLVqFQD7hOAzZ87g9OnTGD16NB58\n8EHce++9mDNnDh544AEIIbBs2bImL8FT1OZcmDp1KlasWIEdO3YgPj4eixcv9vqFt2nTJpw5c0Yt\nP2jZsiUyMjKwdOlSzJkzBwAwatQoXHfddTh06BAWL16M3377DQaDAZs3b0ZWVhaSkpKQnp6OsLAw\nhIWFuQQcTUk5bzds2IDBgwejffv2iIyMxOuvv47U1FSX0qqassz+fByA+h8LxcaNG9GhQwd89tln\nkCQJ/fv3x4wZM9SGIZIkqXdds7Ky8Pbbb+PUqVOYOXMmbrjhBrz22msYMWIEJkyYgLCwMNxyyy1e\nz7emVNX1IScnB+PHj8eyZcsQFxeHjh07AgDi4+OxdetWJCUl4Xe/+x2ioqJcXltaWoqdO3fixIkT\n+J//+R9IkoTRo0cjMTERXbt2xcSJE2EwGLB06VIAwEsvvYQPP/wQ58+fR2JiIm677TYsW7YMnTp1\nwrhx42A2mzFkyJBqS6Qby9ixY3Hs2DGMHz8eoaGhsFqtWLx4McxmM5588kksWbIEf/vb39CsWTOs\nXr0aV65cQVxcHF566SXk5uaib9++Hjec/PEckSQJ69atw5IlS5CRkQGbzYbu3burpXezZs1Ceno6\nNm7ciNjYWMyaNQtCCCxatAitWrXCqFGjAPj3ueDNlClT1GCpffv26mcohMD48ePVm4hDhw7FW2+9\nhRdffNHjPfzxfDh+/DhSU1NRXl4Om82GpUuXqjc5J0+ejKSkJBiNRtx1110wm82YPHkyFixYgJSU\nFISHh3tM59i4cSPKy8uRkpICSZLQuXNnLFmyBHPnzsWUKVMgyzJmzZqF8PBwvPfee8jIyMC5c+ew\nf/9+rFmzBtu2bVOXKgkPD0dMTIxL4BUIJBHI7SuI/ExKSgqWLl2qyZ06vfvss8+we/fuatclIwo2\nhYWF2L9/P0aMGIGzZ88iLS3NZS5HMMnLy8Njjz2Gbdu2ab0pRBRAmFki0hFflQL6m7/85S/Yu3cv\n1qxZo/WmEOlKWFgY/vnPf2LdunUQQuDJJ5/UepM0xWsoETU2ZpaIiIiIiIi8YIMHIiIiIiIiLxgs\nERERERERecFgiYiIiIiIyAsGS0RERERERF4wWCIiIiIiIvLi/wHNy9dncRELQwAAAABJRU5ErkJg\ngg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(returns_sample.index, returns_sample.values)\n", "plt.ylabel('Returns');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "##Why is this all necessary?\n", "\n", "Why can't we just take the mean returns of microsoft and check if they're > 0? Because we can't look at the actual data generating process behind the returns, we can only sample returns on some limited time period. Because we only observe a sample, that sample may or may not reflect the true state of the underlying process. Because of this uncertainty we need to use statistical tests." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, we identify the appropriate **test statistic** and its probability distribution. A test statistic usually takes the following form:\n", "\n", "$$ \\text{Test statistic} = \\frac{\\text{Sample statistic} - \\text{Value of the population parameter under $H_0$ ($\\theta_0$)}}{\\text{Standard error of the sample statistic}} $$\n", "\n", "A test statistic is calculated based on sample data and is compared to its probability distribution to determine whether to reject or not reject the null hypothesis. Since we are testing the mean return on MSFT stock, we can use the sample mean, $\\bar{X}_\\mu$, as our sample statistic. We calculate the standard error of the sample mean as $\\sigma_{\\bar{X}} = \\frac{\\sigma}{\\sqrt{n}}$ if we know the standard deviation, $\\sigma$, or as $s_{\\bar{X}} = \\frac{s}{\\sqrt{n}}$, where $s$ is the sample standard deviation. So using these definitions, our test statistic can be calculated as:\n", "\n", "$$ \\frac{\\bar{X}_\\mu - \\theta_0}{s_{\\bar{X}}} = \\frac{\\bar{X}_\\mu - 0}{s/\\sqrt{n}} $$\n", "\n", "The four most common distributions for test statistics are as follows:\n", "\n", "* The $t$-distribution ($t$-test)\n", "* The standard normal distribution ($z$-test)\n", "* The chi-square ($\\chi^2$) distribution ($\\chi^2$-test)\n", "* The $F$-distribution ($F$-test)\n", "\n", "We will cover them in detail later. For now, we will say that we can use a $z$-test with our assumptions in the MSFT example.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "After we identify the appropriate test statistic and probability distribution, we need to specify the **significance level** of the test, $\\alpha$. The values that we compare our test statistic to in order to reject or fail to reject \n", "the $H_0$ are determined based on our $\\alpha$ value. \n", "\n", "|| True Situation ||\n", "| :---: | :---: | :---: |\n", "| **Decision** | $H_0$ True | $H_0$ False |\n", "| Do not reject $H_0$ | Correct Decision | Type II Error |\n", "| Reject $H_0$ (accept $H_A$) | Type I Error | Correct Decision |\n", "\n", "Our significance level is equal to the probability of a Type I error (a \"false positive\") occuring. The probability of a Type II error (a \"false negative\") occuring is denoted by $\\beta$. If we try to decrease the probability of a Type I error occuring, we increase the probability of a Type II error occuring, resulting in a tradeoff. The only way to reduce the probability of both a Type I and a Type II error occuring is to increase the sample size.\n", "\n", "The conventional significance levels are $0.1$, $0.05$, and $0.01$. Rejecting the null at $0.1$ mean that we have some evidence null is false, $0.05$ means we have strong evidence null is false, rejecting at $0.01$ we have very strong evidence that null is false." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Critical Value\n", "\n", "Now we figure out our critical value, or, rejection point. The critical value for our test statistic is the value that we compare the test statistic to when deciding whether to reject the null hypothesis. If we reject the null, we say that the result is **statistically significant**, while if we fail to reject the null, we say that the result is **not statistically significant**.\n", "\n", "We compare our test statistic to a **critical value** in order to decide whether to reject or not reject the null hypothesis. The critical value of a test is determined based on the $\\alpha$ of our hypothesis test as well as the chosen distribution. In our case, say that $\\alpha = 0.05$, so our significance level is $0.05$. With a one-sided $z$-test, there are two different ways to see the critical values:\n", "\n", "* If we test $H_0$: $\\theta \\leq \\theta_0$, $H_A$: $\\theta > \\theta_0$ at $\\alpha = 0.05$, our critical value is $z_{0.05} = 1.645$. So we compare our test statistic and we reject the null hypothesis if $z > 1.645$.\n", "* If we test $H_0$: $\\theta \\geq \\theta_0$, $H_A$: $\\theta < \\theta_0$ at $\\alpha = 0.05$, our critical value is $-z_{0.05} = -1.645$. As such, we compare our test statistic and we reject the null hypothesis if $z < -1.645$.\n", "\n", "A two-sided test is a slightly different situation. Since it is two-sided, there are two rejection points, negative and positive. Our $\\alpha$ is $0.05$, so the total probability of a Type I error must sum to $0.05$. As such, we split $0.05$ in half so that our two rejection points are $z_{0.025}$ and $-z_{0.025}$ for the positive and negative critical values, respectively. For a $z$-test, these values are $1.96$ and $-1.96$. Thus, we reject the null if $z < -1.96$ or if $z > 1.96$. If we find that $-1.96 \\leq z \\leq 1.96$, we fail to reject the null.\n", "\n", "When conducting a hypothesis test, you can also use a **$p$-value** to determine the result. A $p$-value is the minimum level of significance where you can reject the null hypothesis. Often people will interpret $p$-values as the \"probability that the null hypothesis is false\", but this is misleading. A $p$-value only makes sense when compared to the significance value. If a $p$-value is less than $\\alpha$, we reject the null and otherwise we do not. Lower $p$-values do not make something \"more statistically significant\". A lot of statistical outputs will calculate a $p$-value for you, but it is also possible to calculate it manually. The calculation depends both on your type of hypothesis test and the CDF (covered in the [random variables lecture](https://www.quantopian.com/lectures/random-variables)) of the distribution you are working with. To manually calculate a $p$-value, do the following:\n", "\n", "* In a 'less than or equal to' hypothesis test, the $p$-value is $1 - CDF(\\text{Test Statistic})$\n", "* In a 'greater than or equal to' hypothesis test, the $p$-value is $CDF(\\text{Test Statistic})$\n", "* In a 'not equal to' hypothesis test, the $p$-value is $2 * 1 - CDF(|\\text{Test Statistic}|)$\n", "\n", "Significance values tie very nicely into confidence intervals, which are covered more in-depth in our [confidence intervals lecture](https://www.quantopian.com/lectures/confidence-intervals). A confidence interval provides us with an estimate for a parameter's possible range in values given a certain significance level. For example, if our $99\\%$ confidence interval for the mean of MSFT returns was $(-0.0020, 0.0023)$, that would mean that there was a $99\\%$ chance that the true value of the mean was within that interval." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false, "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0gAAAH6CAYAAAA9emyMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3WdAVGfCBeAzhV4ERLCAoqIgYMGuYAOUIoodLBBNjGYT\nd2N009SYfIlZ103irpusMdkku4nGqIliiw17R8UodopIUYr03mbe7wdhViIiGoc7MOf55TBz554L\n74xz5r1FJoQQICIiIiIiIsilDkBERERERKQrWJCIiIiIiIh+xYJERERERET0KxYkIiIiIiKiX7Eg\nERERERER/YoFiYiIiIiI6FcsSESk4erqCn9/fwQFBSEwMBD+/v5YtmwZysvLH7tsUFAQcnNzn2q9\nSUlJuHDhAgDg4MGDWLp06VM9j7asXr0amzdv1vp6/vznP2PUqFE4deqU1teVk5ODw4cPa+W59+zZ\ng5KSksc+rnbMREZGYs6cOU+0jszMTLi6utZ7n6urKzIzM5/o+Z7Gg9v59ttvY926dc/keZ/mNfDj\njz/+rnU+zfKxsbGIi4ur974TJ05g0qRJ8PPzw3PPPYesrCwAQGRkJPr37695jwkKCsL3338PAFiz\nZg1Gjx6Nl156CVVVVZrn2r17Nz788MOn2KonV1xcjJCQEPj7+yMzMxPjxo2r93Gff/453n777SbJ\nRERNjwWJiDRkMhnWr1+PPXv2YO/evdi9ezfy8/Mb9cFvz549sLGxear1RkVF4fz58wAAPz+/Jvsw\n1FiLFi1CaGio1tezZ88efPfdd/Dy8mrU43/PZezOnj2rtYL06aefori4+LGPe3DMyGSyJ17Po5Z5\nmud6Go3dzif1pK+B+/fv46uvvnrq9T3t8lu3bsXNmzcf+nlubi4WL16MlStX4uDBg+jbty+WLVum\nuX/06NGa95g9e/Zg5syZyMnJwaFDh3DgwAHY29trxmZxcTG++eYbLFy48Km370ncvHkThYWF2L9/\nP+zt7bFr164mWS8R6RYWJCLSEELU+dBtYGCAYcOGaT4EVVZWYsWKFfD394evry+++OILzWMf/NZ+\n8+bNCAwMhK+vLxYvXozKykoAQF5eHl566SX4+fkhJCQEp06dwpEjR/Dll19i/fr1WLVqVZ3ZhIKC\nAixcuBABAQEIDg7Gv//97zrr27FjByZOnAhvb2/897//rXebfHx88PnnnyMgIAD37t1DZmYmXnrp\nJfj7+yMgIADHjx/XPHbdunUYOnQopk6dio0bN8LHxwdA3dmBmzdvYvr06QgMDMTEiRNx8uRJAMC5\nc+cQFhaG1atXIygoCH5+fppZsfj4eISFhSE4OBgBAQGab8wfFB4eDrVajblz5+L48eNIT0/HCy+8\ngICAAIwbNw7bt28HANy9exfDhg3DqlWrEB4e/tDz5OTkYO7cuQgMDISfn1+9v5fr16/jgw8+wIED\nB7Bo0SKMHDkSqampAGpKi4eHByoqKgAA//3vf/Hhhx+isrISy5cvR0BAAMaOHYtVq1bVW9CWLFmC\npKQkRERE4OLFiw3mqW+mp6ioCG+88Qb8/f0xevRobNu2TXPfTz/9BB8fH4SEhDT4wVUIgX379mHi\nxIkYMWIEvvvuO6jVanh7e+PGjRuax23cuBGvvPIKIiMjMXfuXLzxxhsYPXo0xo0bh5SUFAAPj8Ha\nIvHb7QSArKwsPP/88xg1ahTmzZunmXlNTExEeHg4/P39MX78eFy9ehUAUFpaigULFiAoKAhjxozB\n8uXLoVKp6rwGzp07h0mTJiE4OBhjx47Fvn37Htre6dOn4969ewgKCkJ1dTUSEhIavb7q6uqHln9Q\neXm5Zvv9/PywatUqAMCmTZuwY8cOfPzxxw+NsUuXLsHJyQkuLi4AgNmzZ+PkyZMNziqmpKSgW7du\nkMlkcHNzQ3JyMoCaEjp79myYmZk9ctnU1FTMmjULY8aMwdSpU3H9+nUAaPA15O3tjfXr12PcuHEY\nMWIE9u7di/T0dLz++uvIzs5GUFAQrl69Cnd3dwBARUUFFi5cCB8fH0RERCAjI0Oz/ke9pzxqPbVW\nrlwJX19fBAQE4Ouvv9b8/LPPPkNAQAB8fHzwl7/85Xd9EUJET0kQEf3KxcVFZGRkaG7n5+eLWbNm\niS+++EIIIcRnn30m5syZI6qqqkRZWZmYOHGiOHr0qBBCCFdXV5GRkSHOnz8vvLy8xP3794UQQrz7\n7rti1apVQgghli5dKj7++GMhhBDXr18XgwYNEpWVleKtt94Sn3/+uRBCiG3btok5c+YIIYR45513\nxPLlyzVZRo0aJWJiYjRZP/nkEyGEELGxsaJXr15CrVY/tE2jRo3SPIcQQjz33HPin//8pxBCiOTk\nZDFw4ECRn58v4uLiRP/+/UV2draoqKgQs2bNEj4+PkIIocmnVqtFUFCQ+Pnnn4UQQly5ckUMHDhQ\nlJSUiOjoaNGzZ09x+PBhIYQQX331lXj++eeFEEL86U9/EpGRkUIIIQoLC8Wf/vQnUVlZWe/vPzMz\nUwghxAsvvCC+/PJLIYQQd+/eFf379xd3794VaWlpwt3dXWzfvr3ev+H7778v3nnnHSGEECkpKcLD\nw6PO37TWp59+KpYtWyaEEOLNN98UO3bsEEII8X//938iNDRUnDt3TgghxCuvvCIOHTokvvjiCzF/\n/nyhVqtFeXm5mDJliti5c2e9GR7cjoby1I6ZB//mb7/9tnjrrbeEEELk5uaKkSNHivj4eFFQUCD6\n9Okjbt++LYQQ4oMPPhCurq6PXP9HH30khKj5G/Xu3VtUV1eLDz74QKxevVrzuLlz54qff/5ZbNu2\nTbi7u4vLly8LIYT4+9//LhYsWCCEePwYrN3Ot956SwQGBorCwkKhUqnEhAkTxM6dO4VarRZjxowR\nW7duFUIIcfHiRTFs2DChUqnEhg0bxNtvvy2EEEKtVosVK1aIGzdu1Pl9TJ48WZw/f14IUTMOFi9e\n/ND2RkdHizFjxmie50nX9+Dyv/X1119rxnFhYaEYNGiQZvtnzZpV7xg4fPiwmDRpkuZ2eXm5cHV1\n1WxbSEiImDVrlhgzZoxYunSpKCoqEpcuXRKLFi0SQgjx/fffi3//+9/i1q1bYvbs2eLo0aNi3rx5\n4p133hEVFRUPrW/27Nli06ZNQgghoqKiRHBwsBDi8a+h77//XgghxN69ezXb/+DvovZxQgixYcMG\nMWvWLKFWq0VeXp7w8fHRjNOIiAjNe0pKSormPaWh9Wzfvl3MmDFDqFQqUVRUJEaNGiViY2NFZGSk\nCA4OFsXFxUKlUon58+eLDRs21Pu3ISLt4QwSEdURERGhmQHx8/PD0KFDMXfuXADA0aNHMWPGDCiV\nShgbGyMkJAQHDhwA8L/dvY4cOYLAwEDY2toCAEJDQxEVFQUAOHbsGMaOHQsA6NGjBw4fPgwDA4NH\nZjl+/DhmzJgBAGjVqhVGjx5d5/ickJAQAIC7uzsqKyuRk5NT7/OMHDkSAFBWVobo6Gg899xzAICO\nHTuif//+OHr0KC5cuIBBgwahdevWMDQ0xOTJkx96nrS0NM23ywDg4eGBDh064MqVKwAAc3NzjBo1\nCgDg5uaGe/fuAQBat26NAwcO4Pr167CwsMCaNWseud1CCFRXV+P06dOYPn06AKB9+/YYNGgQzp49\nCwBQqVTw8/Ord/l33nlHszuTo6Mj2rRpo5kdepSBAwfi0qVLAGq+/Z8yZYpmVuTy5csYOHAgjh07\nhmnTpkEmk8HIyAjjxo1r8Fip2vHQUB5RzzfjR48eRUREBADA2toao0ePxoEDB3D58mV07twZnTt3\nBgBMnDixwW2qvd/NzQ0VFRXIy8vDuHHjNN/gl5aWIjY2VjNL6OzsjF69egEA/P398csvvwB4/Bh8\ncBt8fHxgYWEBuVyObt26IT09Hbdv30ZeXh4mTZoEAPD09ISNjQ0uXryI1q1b49KlSzh16hSqqqqw\ndOnSh46rat26NbZv347bt2+jffv2+Pjjjxvc7sTExN+1vt96/vnnsXbtWgCAhYUFunXr9tjx1KdP\nHyQnJ2vG69dffw2FQoHKyko4OTnBz88PX3zxBXbu3ImioiKsXLkSXbp0QVxcHCorK3H+/Hm4u7vj\nww8/xJIlS/Dxxx9jzZo1cHBwwO7du+usq7KyEtHR0Zr3FT8/P2zZsqVRr6Ha35G7uzvS09Mb3KaY\nmBiMGTMGMpkMVlZWmtd5WVkZzp07p3lPcXR01LynNLSe48ePw9/fH3K5HObm5tizZw969uyJo0eP\nYvLkyTAzM4NcLseUKVM077FE1HSUUgcgIt2yfv162NnZIS8vDwEBAQgMDIRcXvNdSmFhIf7yl79g\n9erVEEKgqqoKvXv3rrN8UVERoqKiNB8iVSqVZredvLw8WFpaah5ramraYJbc3Fy0atVKc9vS0hL3\n79/X3DY3NwcAyOVyCCGgUqnqfZ7a5ygqKoIQAmFhYQBqPtyWlZVhyJAhKCkpqbMue3v7evM8mB+o\n+dCYk5MDW1tbWFhYaH6uUCigVqsBAK+//jrWrVuHhQsXorKyEvPmzdN86K5Pfn5+ne2r3fbaAqhQ\nKB65y1FsbCxWr16N9PR0yOVy3L9//7G76AwaNAgbNmxAYWEhDA0NMXjwYLz//vuaD+Xm5uYPbXtt\nntjYWLz55puQyWQYPXo0Xnvttd+Vp7CwEAsXLoRCoYAQAhUVFQgICEBBQcFDv4+G1Dc2evfuDSEE\nbt68ibS0NAwdOhTGxsYA8NA4KygoAPD4MVjfOoH//f0LCwtRWlqqKdVCCJSUlCA/Px8BAQEoLCzE\nmjVrkJSUhPHjx+PNN9+s85wrV67E2rVrMWfOHBgbG2PRokXw9/d/5HYXFRU90freeuutBn+PycnJ\nWLlyJZKSkiCXy5GRkVHvlwcPsra2xj/+8Q/87W9/Q3V1NaZOnQojIyNYWlrCyckJnp6emsfOnz8f\nL774Ij788EPMnDkTEyZMQP/+/ZGRkQE3NzdYW1vDzMwMxsbG6NGjB44cOaIpHEDNa0UIUed3b2Ji\nguzs7If+Jr99DdX+7eVyuea1+igFBQV1Xt+WlpYoKSlp8D2lofXk5+fXGcO1jykqKsI333yDLVu2\nQAgBtVr91Md2EtHTY0EiojpqP7xaW1sjPDwcf/vb3zTfINvZ2WHu3LkYMWLEQ8vVHhhvZ2eHiRMn\n4o033njoMTY2NsjLy0P79u0B1OyjX18RqWVra4v8/Hy0bdsWQM2HitqZqafRunVrKJVKbNu2TfOB\npNb333+P0tJSze3as279dvna8lKrMZlMTEzw2muv4bXXXsPVq1fxwgsvwMvLC506dar38dbW1pDL\n5SgqKtJ8KGvstr/++ut4/vnnNSeVGD58+GOX6dChA0pKSnDixAl4enrCwcEBaWlpiImJweDBgwH8\n72/x2+3u1atXneMqatWOhyfNY2dnh3/9619wdnau8/Pjx4/XOSHC054xsfY4nszMTE2JAGrKe62C\nggJNKfq9Y9DOzg4WFhbYs2dPvfdPmzYN06ZNQ1ZWFv74xz9ix44dUCr/91+zjY0Nli1bhmXLluHU\nqVNYsGABhg8fDhMTk2eyvu3btz9yHALA+++/Dw8PD80xeLUzMo/j7e0Nb29vAMC9e/ewZs0adOzY\nEffu3YOxsbHmQ391dbVme8PCwhAWFoaioiI899xz2LBhQ52/eX1fglhZWUEmkyE/Px9WVlYAao5n\nat++/VO/hupjaWmJoqIize3a8dfQe8rdu3cf+XxWVlZ1xlxOTg6MjIxgZ2cHHx8fzJw586lyEtGz\nwV3siOiR5syZg0uXLmlONuDr64stW7ZArVZDCIHPP/9cc5KC2mLl4+ODqKgozQeIgwcPag5sHzVq\nFCIjIwEACQkJmDRpEtRqNZRKJQoLCx9a/8iRIzWn187NzUVUVJRmd7mnoVAoMGLECGzcuBFAze4x\nS5YsQWZmJnr27Ino6Gjk5+ejsrISO3bseGh5BwcHtG3bVvPhs/YkBLW7Zj3KSy+9hISEBAA1u3JZ\nWlo2eKY1hUIBb29vbNq0CUDNB76YmBgMHToUQMNnr8vLy4ObmxuAmlMql5eX1yl+tZRKpWaWBAD6\n9euH7777Dn379gUAdOnSBVu3btV8Ez5y5Ej89NNPUKvVKC0txc6dO+styrXPXfv3bGyeWr6+vvjh\nhx8A1Hx4XrlyJW7cuAEPDw8kJSVpTp5Q39+nMYKDg3H48GGcP3++Tv6kpCTNyUj27duH/v37a7b7\nUWNQqVTW+dBcnw4dOqBt27bYv3+/5jkWL16M8vJyrF27Flu3bgVQU2wcHBzqjIvq6mqEh4drZqzc\n3NxgaGiomdGtpVQqUVJSArVa/VTrq12+vhnY3Nxc9OjRAwBw6tQpJCcna062YGBgUO/rtqSkBIGB\ngUhPT9e8T4wfPx5yuRybN2/Ge++9B5VKBZVKhQ0bNjw0jv7xj3/gxRdfhKmpKWxtbZGbm6vZJbJ7\n9+51HmtoaAgvLy/N+8rx48cxb948KJXKJ3oNPW6WtU+fPjh8+DDUajVyc3M1J2Jo6D2lofX4+vpi\n9+7dqKysRGlpKWbMmIGEhAT4+vpi586dmhN8bN68WXNyCSJqOixIRKTx2w/tZmZmePHFFzVnrpo5\ncybat2+PsWPHIigoCLdv30a/fv3qLOPm5ob58+cjIiICY8eOxbfffgtfX18ANbMJ6enp8PHxwaJF\ni7B69WoYGhpi1KhR2LRpE1599dU6GRYuXIiCggIEBgYiIiIC8+fPh4eHR71ZG3vK53fffRfnzp1D\nYGAgJk+ejI4dO8Le3h69evXChAkTMGHCBMyePRs+Pj71Pufq1auxYcMGBAUF4S9/+QvWrFnz0DfH\nvxUeHo7Fixdj7NixmDx5MmbOnImOHTs2mPW9995DdHQ0AgMD8cc//hEffvihZratoXL16quv4pVX\nXkFISAjKysoQGhqKZcuWIS0trc7jvLy8EB0djalTpwKo2c0uNjZWs/uTp6cnbty4oSlM4eHhaNeu\nHcaOHYupU6fCx8cHAQEB9WYICAhAWFgY9u3b98g8qamp9W7Hq6++iqKiIs2Zx9RqNVxcXGBjY4M3\n33wTs2fPxrhx49ClS5dH/g4aGhu1M1Oenp4wNDTU/NzT0xPffvst/Pz8cOTIEfz5z38G0PAYfHA7\nG/LJJ59gw4YNmueo3bUvJCQEO3bs0FwPyNDQUHNcHVBTfKZOnYrZs2cjODgYEREReOedd2BkZFTn\n+V1cXNCqVSt4eXkhIyPjiddXu7y3t3eds7MBNeX+r3/9K8aNG4cLFy5gwYIF+PTTT3Hp0iX4+fnh\n448/1rw/1DIzM8Pzzz+PiIgI+Pr6orS0FK+//joA4OWXX4aZmRmCgoIQHBwMpVJZZ7b5xo0bSE5O\nRmBgIICa3dLmz5+PkJAQREdHY8KECQ/9flesWIHDhw/Dz88P//znP7F69WoAT/Yaetyp4adNmwZz\nc3P4+fnh1VdfxZgxYzT3Peo9paH1BAUFwdvbG/7+/pg0aRKmTp2KPn36wM/PD6NGjcLEiRMRFBSE\nI0eOYNiwYQ1mI6JnTyYe97XJ77Ry5UpcvnwZMpkMS5YsQc+ePR96zCeffIJLly5h/fr1jV6GiHSL\nq6srjh071uAuc83JsWPHsGbNmjqnmaaWYe7cuYiIiNDs7hcZGYldu3bhm2++kTgZERHpAq3OIJ0/\nfx7JycnYtGkTVqxYUe+F7xITE3HhwgXNtyqNWYaIdEteXh5kMtkjj4toDnJzczFo0CDcu3cPQgjs\n3bsXffr0kToWPWNnz55Fenp6o47NIiIi/aTVgnTmzBnNqWi7du2KwsLChy4Ut2rVKixevPiJliEi\n3ZGbm4uAgAAEBQU99sxiuszGxgaLFi3C7NmzNWdNW7BggdSx6Bl6/fXX8e677z60SxgREdGDtHoW\nu+zsbM2+2kDNmZmys7M1p6eNjIzEkCFD0K5du0YvQ0S6xcbGBtHR0VLHeCZCQ0M1Z1ujluejjz6q\n9+cTJ0587HWViIhIfzTpab4fPNypoKAAO3bswDfffKO5mOLjlnmUmJiYZ5KPiIiIiIhart+eXKo+\nWi1IdnZ2mou1ATXXFWnTpg2Amv3Ac3JyMGPGDFRUVCA1NRV//etfYWdnV+cifA8u05DGbCy1bDEx\nMRwHxHGgBwqKKxCfmo/4lDzEpeYjITUf+cUVj12ujbUJujlaoZujNbo5WsHZwQpmJgZNkJikxPcE\nAjgOqEZjJ1W0WpC8vLzw2WefYdq0abh27Rrs7e1hamoKAPD399dcDfzu3bt4++238dZbb+GXX37B\nZ599htDQ0IeWISIi/ZNTUIZjF+/iVkou4lPzcT+vrM79tlYmGOjWFoYG/zusNi8vD9bW1prbpRXV\nSEzLx+nYdJyOTdf8vEMbc3TraAU3JxsM69MB5qaGICIi/abVguTp6Ql3d3eEhYVBoVBg+fLliIyM\nhIWFheZEDI1ZhoiI9ItaLRCbcB97Tt9B9LUMqNU1u1u3MjdE/x72cHawQreOVujmaAVri4evQ1Xf\nt8VCCNzPK6uZfUrNQ3xqPhLS8nE0Jg1HY9Lw1c5rGOHZAUFDO8PZ0apJtpOIiHSP1o9BWrRoUZ3b\nLi4uDz2mQ4cO+O677x65DBER6Yei0kocOp+KvaeTcC+75gymndtbInCIE/q52qONtcljL+r5KDKZ\nDHY2prCzMYVX7/YAaorYvexinL2agX1n7iDqXAqizqWgm6MVgoY6wbtPBxgbNunhukREJDG+6xMR\nkeTiU/Pw86kknPjlLiqr1TBQyjGqnwOChnaGSyfrpy5FjyOXy+BgZ4EpPhaYNNIZF29lYe/pO7hw\nIwNrNl/CVzuvwXeAI8YO7Yz2bcy1koGIiHQLCxIREUkmr6gc3+y6hqMxaQCAtq1NETjECb4DOqKV\nuVGTZpHLZejfwx79e9gjK7cU+87eQVR0CnYev43dJ5MQMrwrpo9xgYkR/+skImrJ+C5PRERNTqUW\n2HfmDtbvuY6S8mo4O7TCrMAe8OxuB7lcO7NFT8LOxhQRQW6YPsYVp2PvYf3eG4g8moATv6ThxQk9\nMaRnO63NahERkbRYkIiIqEnFp+Zh7dZYJKTmw9RYiZcm9kTA0M5Q6EAx+i0DpRwj+jpgkEdb/HQo\nHluPxGPlt+fRv4c95k/sibateRFzIqKWhgWJiIiaRHFZFTbsvYE9p5MgBDCyrwOeH+cOa8uHz0Kn\na4wNlZgV2AMj+zlg3bZYXLiRidj4+5jq1x2TRznDQKmQOiIRET0jLEhERKR1xy6m4audV5FfVAEH\nO3P8YXIv9HJ+/EXAdY2DnQU+mD8UJy7dxVc7ruL7fTdxNCYVL0/p3Sy3h4iIHsaCREREWlNVrca/\nt1/B3jN3YKiUIzywByaOdIaBUv7YZXWVTCbDcE8H9HO1x4Z9N7DnVBKWrTuNiCA3TB7lzGOTiIia\nORYkIiLSirzCcqz89jxu3MmFUztLLJk9EO1sW84xO2YmBpg/sRdG9nXAym/P49ufryMxLR+vhnrC\nmGe6IyJqtprvV3hERKSz4lLy8No/juHGnVx4926Pj/44rEWVowe5dLLB318bAbfONjh5+R5e//QE\nMnJKpI5FRERPiQWJiIieqYPnUvDWv04it7Acz411wxvh/Vv8jIq1hTFWvOSFwKFOuJNeiEX/OIbL\ncfeljkVERE+BBYmIiJ6JapUaX26/gjWbf4GhgQLvzh2MKT7d9OaYHAOlHC9P7o0FU3ujrKIay788\nje3HEiCEkDoaERE9gZb9lR4RETWJguIKrPruAq4kZqNjWwssnTMQ7W3NpY4lCf/BTujU1hIrvz2H\nr3deQ2JaARZM6wMjA54KnIioOeAMEhER/S6ZuaVYvOY4riRmY0jPdvjoj8P0thzVcnWyweqFI+DS\n0RpHL6Zh6dpTKC6rkjoWERE1AgsSERE9tYycEry99iQyc0sR6tcdb0UMgKmxgdSxdELrViZY+YoX\nRvZ1wK2UPLzzxWkUl1ZKHYuIiB6DBYmIiJ5KenYJ3l57CvfzyhAe2AOzAntALteP440ay0CpwMLp\nfeE7wBEJqfl454vTKGJJIiLSaSxIRET0xO5lF2PJ2pPIzi/Dc2PdMM2vu9SRdJZCLsOfpnli9MCO\nSEgrwLJ1p1FYwpJERKSrWJCIiOiJ3L1fjLf/dQrZBeWYE+yGKT7dpI6k8+RyGRZM7QP/wZ1w+24B\nlq07hYLiCqljERFRPViQiIio0VIzi7Bkbc01jl4Y745Jo1iOGksul+Hlyb0ROMQJSfcKsWzdaZYk\nIiIdxIJERESNkppZhCWfn0JuYQXmhnhgwghnqSM1O3K5DH+Y3AtBv15Qdunnp5BfxJJERKRLWJCI\niOixUjIKsWRtzYf5eRN6ImR4V6kjNVsymQwvTeqFYK/OSM6oKZ15ReVSxyIiol+xIBERUYOy8krx\nzhenkV9cgZcm9cK4YV2kjtTsyWQyzJvYE+OHdUFqZhHe/fIMSst5nSQiIl3AgkRERI9UWl6FD76O\nRm5hBV4Y746xXp2ljtRiyGQyzA3xgP/gTki6V4iPNsRApVJLHYuISO+xIBERUb1UKjVWfXcBd9IL\nMdarM3er0wKZTIY/TOqFvi52uHAjE//ecRVCCKljERHpNRYkIiJ6iBAC6yKv4OKtLPTvYY8XQzwg\nk/EisNqgUMjxZkR/OLWzxM+nkrDzxG2pIxER6TUWJCIiesj2Y4nYd+YOOre3xOuz+kGh4H8X2mRq\nbIB3XhgEawsjfL3zKs5eTZc6EhGR3uL/eEREVMfp2Hv4z+5rsLE0xvIXBsPU2EDqSHrBztoUy18Y\nDEMDBT7+PgbxqXlSRyIi0kssSEREpBGXkodPNl6EkYECy18YBFsrE6kj6RVnRyv8eWY/VFap8MHX\n0cjKK5U6EhGR3mFBIiIiAEBmbik++Doa1dUqvB7eH10drKSOpJcGe7TD3PEeyCuqwPtfneXpv4mI\nmhgLEhERobisCv/31VnkF1fgxQk9MdCtrdSR9Nq4YV00F5L967fnUc3TfxMRNRkWJCIiPadWC3y0\n4QJSM4v6XFKYAAAgAElEQVQwflgXBHvzQrBSq71GUv8e9vgl7j6+3nlV6khERHqDBYmISM/9eDgO\nF29moa+rHZ4f7yF1HPqVQiHHG+H94Whvgd0nk3Dy8l2pIxER6QUWJCIiPXYlIRsb992EbStjLJre\nFwo5r3WkS0yMlHgroj+MDBX45+ZLuJddLHUkIqIWjwWJiEhP5RWV46MNFwCZDK+H90crcyOpI1E9\nOra1xMuTe6Osohqrvr2AyiqV1JGIiFo0FiQiIj2kUgt88n0M8ooq8FyQG9w6t5Y6EjXAp78jRg/s\niNv3CvDVDh6PRESkTSxIRER6aEvULVyOz8ZAt7aYOLKr1HGoEeZP6gWndpbYe+YOjl1MkzoOEVGL\nxYJERKRnLsfdxw9Rt2BnbYKF0z0hk/G4o+bAyECBNyP6w8RIgX/9dAlpWUVSRyIiapFYkIiI9Ehu\nYTk+/j4GCrkMb4T3h4WpodSR6Ak42FlgwdQ+KKtQYdV3F1DB45GIiJ45FiQiIj2hUqnx0YYLyC+u\nwJxgd7h0spE6Ej2F4Z4OCBzihDvphfhiW6zUcYiIWhwWJCIiPbHxwC1cTczBkJ7tMG4YLwbbnM0N\n8UCXDq0QdS4Fhy+kSh2HiKhFYUEiItIDF29l4cdDcbC3McWfQnncUXNnqDkeSYm1Wy8jNZPHIxER\nPSssSERELVxRaSX+8cNFKOQyvBUxAOYmBlJHomegva05Xg31REWlCp9sjEG1Si11JCKiFoEFiYio\nhfti2xXkFVVghr8rnB2tpI5Dz5BX7/bw6e+IxLQC/HgoXuo4REQtAgsSEVELduryPRz7JQ0unawx\naaSz1HFIC16c0BO2rYyxOeoWEtLypY5DRNTssSAREbVQeUXlWLv1MgyVciwM84RCwbf8lsjcxAB/\nDPWESi3w9x8uoqqap/4mIvo9+L8lEVELJITA2p8uo7CkEs+NdYODnYXUkUiL+rrYIXCIE1IyirBx\n/y2p4xARNWssSERELdDRi2k4ezUDHl1bI9ibp/TWB3PGucPexhTbjsTj5p1cqeMQETVbLEhERC1M\ndn4ZvtgWCxMjBV4N9YRczlN66wMTIyUWhnlCAPj7DxdRXlktdSQiomZJ6wVp5cqVCAsLw/Tp03Hl\nypU6923ZsgWhoaGYMWMG3n//fQDAuXPnMGTIEERERCA8PBwrVqzQdkQiohZDCIFPt1xCSXk1nh/n\ngbatzaSORE3Io6stQoZ3xb3sEqzfc0PqOEREzZJSm09+/vx5JCcnY9OmTUhMTMTSpUuxadMmAEB5\neTn27t2LH374AXK5HM899xwuXboEABg4cCDWrFmjzWhERC3S/rPJuHgrC31d7OA/uJPUcUgCswJ7\n4MKNTOw8cRuDPNqil3MbqSMRETUrWp1BOnPmDPz8/AAAXbt2RWFhIUpKSgAAxsbG+M9//gO5XI6y\nsjIUFxfD1tYWQM03oERE9GQyckrwza6rMDMxwJ9C+0Am4651+sjIQIHXpveFXAas2XwJpeVVUkci\nImpWtFqQsrOzYWNjo7ltbW2N7OzsOo/58ssvMWbMGAQGBsLBwQEAkJiYiJdffhkzZ87E6dOntRmR\niKhFUKsF1mz+BWUVKsyb0BOtW5lIHYkk1L2jNab4dkdWbim+2XVN6jhERM2KVnex+636ZobmzZuH\n2bNnY+7cuejXrx+cnJywYMECBAYGIjU1FREREYiKioJS2XDUmJgYbcWmZoTjgAD9HAfRt4pxNTEf\nrg7GsEQmYmKypI4kOX0cBw/q3lrA3soA+88mo41JCZzbGUsdSTL6PhaoBscBNZZWC5KdnV2dGaOs\nrCy0aVOzL3R+fj7i4uIwcOBAGBoaYvjw4bh48SI8PT0RGBgIAHB0dIStrS0yMzPRoUOHBtfVr18/\n7W0INQsxMTEcB6SX4yA7vwyrth6GuYkBlswdAWsL/f0gXEsfx0F92nQowGv/OIaDsaWY4D8YRgYK\nqSM1OY4FAjgOqEZjS7JWd7Hz8vLC/v37AQDXrl2Dvb09TE1NAQAqlQpLlixBWVkZACA2NhadO3fG\nrl278NlnnwEAcnJykJubC3t7e23GJCJq1r7cfgVlFdWYHezOckR1dOnQCiHDuyIjpxSbo3gBWSKi\nxtDqDJKnpyfc3d0RFhYGhUKB5cuXIzIyEhYWFvDz88OCBQsQHh4OpVIJV1dX+Pj4oKSkBIsXL8b0\n6dMhhMB777332N3riIj01bnrGThzJR1unW0wemBHqeOQDpoxxgUnL99F5NEEjOjrgE5tLaWORESk\n07TePBYtWlTntouLi+bfEyZMwIQJE+rcb2ZmhnXr1mk7FhFRs1deUY1122KhkMvw8pTevCAs1cvY\nSImXJvXCB19HY+1Pl7HyZW+OFSKiBmj9QrFERKQdGw/cwv28Mkwa5cxZAWrQQLe2GNKzHa4n5eLg\n+RSp4xAR6TQWJCKiZijpXgF2HE9E29ammObXXeo41AzMm9ATJkYK/GfXNeQXVUgdh4hIZ7EgERE1\nM2q1wL9+vAy1WuAPk3rD2JDHadLj2VqZYFZADxSXVeGbXVeljkNEpLNYkIiImpl9Z+/gVkoehvXp\ngL6udlLHoWZkrHcXODu0wpGYNFyOvy91HCIincSCRETUjOQVluO7n6/DzFiJuSEeUsehZkYhl+GV\nKX0glwFrf7qMyiqV1JGIiHQOCxIRUTPy1Y6rKCmvRsRYN9hY8ppH9OScHa0w1rsL7mWX4KfD8VLH\nISLSOSxIRETNxMWbWTh+6S5cOlojYLCT1HGoGZsV4AobS2P8eCgeaVlFUschItIpLEhERM1ARZUK\nn2+7DLlchlem8ppH9PuYGhtg/sSeqFapsfanWAghpI5ERKQzWJCIiJqBnw7FIyOnFCHDu6Jz+1ZS\nx6EWYEjPdhjgZo8ridk4djFN6jhERDqDBYmISMdl5ZZi25F42FgaY/oYF6njUAshk8kwb0JPGCjl\n+O/P11FeUS11JCIincCCRESk477ZfQ2V1WrMDnaDiRGveUTPTtvWZpg40hk5BeU8YQMR0a9YkIiI\ndNiVhGycunwPLp2sMcLTQeo41AJN8ekGG0tjbDuagIycEqnjEBFJjgWJiEhHqdQCX26/AgCYN6En\nT8xAWmFipMScYDdUVavxn93XpI5DRCQ5FiQiIh114Owd3EkvhO8AR3TvaC11HGrBRvR1gGsna5yO\nTUdswn2p4xARSYoFiYhIBxWXVmL93pswMVLguSA3qeNQCyeTyTBvYk8AwL+3X4VKpZY4ERGRdFiQ\niIh00MYDt1BUWolQPxdYWxpLHYf0QDdHa/gN6Ig76YXYdzZZ6jhERJJhQSIi0jEpGYX4+VQS2tma\nYfzwLlLHIT0SEdQDJkZKfL/vBopKK6WOQ0QkCRYkIiIdIoTAv3dchVotMHe8BwyUCqkjkR6xtjRG\n2OjuKCqtwsZ9N6WOQ0QkCRYkIiIdcu5aBi7F3UdfFzsMcLOXOg7poXHDuqK9rRn2nLmD5PRCqeMQ\nETU5FiQiIh1RVa3C1zuvQSGXYW6IB2Qyntabmp6BUo4XQjygVgv8e8cVCCGkjkRE1KRYkIiIdMSO\n47eRnlOCsd6d4WhvIXUc0mMDetijr6sdLsdn4+zVDKnjEBE1KRYkIiIdkFtYji0Hb8HSzBDTx7hK\nHYf0nEwmw9zxHlDIZfh651VUVqmkjkRE1GRYkIiIdMDG/TdRVqHCrMAeMDcxkDoOERztLTDWuzMy\nc0vx86kkqeMQETUZFiQiIomlZBQiKjoZjvbmGDOwo9RxiDTCRrvAzMQAmw/G8bTfRKQ3WJCIiCT2\n7c83oBbA7GB3KBR8WybdYWFqiGm+3VFSVoUfD8VLHYeIqEnwf2IiIgldSczGuesZ8OjaGgN68LTe\npHuCvTujjbUJdp24jczcUqnjEBFpHQsSEZFE1GqBb3ZdAwDMCXbnab1JJxkaKBAe2APVKjU27L0h\ndRwiIq1jQSIiksipy/eQkJqPYX06oHtHa6njED3SCE8HdOnQCkcvpiEhLV/qOEREWsWCREQkgapq\nFb7dcx1KhQwRQT2kjkPUILlchueD3QEA/9l1jRePJaIWjQWJiEgCe07fQWZuKYK8OqNtazOp4xA9\nVu/ubdDX1Q6xCdmIuZkldRwiIq1hQSIiamLFZVXYHHULZsZKhPq5SB2HqNFmj3WDTAb8d/c1qNSc\nRSKilokFiYioif10KA5FpVWY6tsdlmaGUscharTO7VvBt39HJGcU4ciFFKnjEBFpBQsSEVETysor\nxc4Tt2FrZYLgYV2kjkP0xGYGuMJQKcf6vTdRXlktdRwiomeOBYmIqAl9v+8mqqrVCA90hZGBQuo4\nRE/M1soEISO6IrewHDuP35Y6DhHRM8eCRETURG7fLcCRmFR0bm+JkX0dpY5D9NQmj+oGSzND/HQ4\nHgXFFVLHISJ6pliQiIiayH93X4MQNReFlct5UVhqvsxMDBA22gVlFdXYFHVL6jhERM8UCxIRURO4\nFJeFX+Luw7N7G3i62Ekdh+h3CxjihHa2Zth7+g7Ss0ukjkNE9MywIBERaZkQAt/tuQEAeG6sm8Rp\niJ4NA6Uc4QE9oFILbDxwU+o4RETPDAsSEZGWnb2agfjUfHj3bo+uDlZSxyF6Zrx6t0fn9pY4djEN\nyemFUschInomWJCIiLRIpRbYsO8G5LKa0yMTtSRyuQzhgT0gBLBh3w2p4xARPRMsSEREWnT8lzSk\nZBTBd0BHONhZSB2H6Jnr38MePZxscPZqBuJS8qSOQ0T0u7EgERFpSVW1Ghv334RSIUfYaBep4xBp\nhUwmQ3hQDwDA+j2cRSKi5o8FiYhIS6LOJSMjpxSBQ51gZ2MqdRwirenZ1Rae3dvgUvx9XI6/L3Uc\nIqLfhQWJiEgLyiursTnqFowMFZjq203qOERaFxFUc4bG9XtuQAghcRoioqfHgkREpAV7TiUht7AC\n44d1gbWFsdRxiLTO2dEKQ3u1w62UPJy7liF1HCKip8aCRET0jJWUVeGnw/EwMzHApJHOUschajIz\n/V0hlwHr996AWs1ZJCJqnliQiIiese3HElFUWoXJo5xhbmoodRyiJtOxrSVG9nNEckYRjl+6K3Uc\nIqKnovWCtHLlSoSFhWH69Om4cuVKnfu2bNmC0NBQzJgxA++//36jliEi0mUFxRXYcTwBVhZGGOfd\nReo4RE1u+hgXKBUybNx3E9UqtdRxiIiemFYL0vnz55GcnIxNmzZhxYoV+PDDDzX3lZeXY+/evfjh\nhx+wceNGJCYm4tKlSw0uQ0Sk6348FI+yChVC/brD2EgpdRyiJte2tRn8BzshPacEUedSpI5DRPTE\ntFqQzpw5Az8/PwBA165dUVhYiJKSEgCAsbEx/vOf/0Aul6OsrAzFxcWwtbVtcBkiIl12P68Me04n\nwc7aBP6DO0kdh0gyoX7dYWigwKYDt1BRpZI6DhHRE9FqQcrOzoaNjY3mtrW1NbKzs+s85ssvv8SY\nMWMQGBgIBweHRi1DRKSLNh+8hapqNaaPcYWBUiF1HCLJWFsaY/ywLsgtLMeeU0lSxyEieiJNuv9H\nfddFmDdvHmbPno25c+eib9++jVqmPjExMb87HzV/HAcESDMOcoqqcSA6A7aWSljKshATw4tlSo3v\nB9LqYq2GkYEMPxy4AXvjPBgZSHdeKI4FAjgOqPG0WpDs7OzqzP5kZWWhTZs2AID8/HzExcVh4MCB\nMDQ0xPDhw3Hx4sUGl2lIv379nv0GULMSExPDcUCSjYO//3ARQgDPj++DgZ4dmnz9VBffD3TD3ZJb\n+H7fTaQVt8I0v+6SZOBYIIDjgGo0tiRr9escLy8v7N+/HwBw7do12Nvbw9TUFACgUqmwZMkSlJWV\nAQBiY2PRpUuXBpchItJFd+8X42hMKjq1tYBX7/ZSxyHSGeOHdYG5iQEijyagtLxK6jhERI2i1Rkk\nT09PuLu7IywsDAqFAsuXL0dkZCQsLCzg5+eHBQsWIDw8HEqlEq6urvDx8QGAh5YhItJlmw7cgloA\n0/1dIZfLpI5DpDNMjQ0wcaQz1u+9gZ0nbiNstIvUkYiIHkvrxyAtWrSozm0Xl/+9OU6YMAETJkx4\n7DJERLoqNbMIx35JQ+f2lhji0U7qOEQ6J9i7M7YfS8T2owkI9q6ZUSIi0mXSHTFJRNQC/HDgFoQA\nZnD2iKhepsYGmDTKGSXl1dh5PFHqOEREj8WCRET0lJLTC3Hy8l10dWiFQe5tpY5DpLPGenVGK3ND\n7DieiKLSSqnjEBE1iAWJiOgpPTh7JJNx9ojoUUyMlJg8qhtKy6ux/RhnkYhIt7EgERE9haR7BTgV\new/dHK0woIe91HGIdF7gUCdYWRhh14lEFJZwFomIdBcLEhHRU/jhwC0AnD0iaixjQyWm+HRDWYUK\nkUcTpI5DRPRILEhERE8oIS0fZ66kw6WTNfq52kkdh6jZCBjiBBtLI+w+eRsFxRVSxyEiqhcLEhHR\nE/phf83s0UzOHhE9ESMDBab4dEd5pQrbjnAWiYh0EwsSEdETiE/Nw7nrGejhZIM+3dtIHYeo2fEf\n3AmtWxlj96kk5BWVSx2HiOghLEhERE9gY+3sUQBnj4iehqGBAlN9u6OyirNIRKSbWJCIiBrpZnIu\nLtzIhEfX1ujlbCt1HKJma8ygjrC1MsGeU0nILeQsEhHpFhYkIqJG2rjvJgCeuY7o9zJQKhDq1x2V\n1Wr8dDhe6jhERHWwIBERNcLNO7n4Je4+ejnbomdXzh4R/V6+AzrCztoE+87c4SwSEekUFiQiokb4\nIarm2KPpY1wkTkLUMhgo5Zjq2x1V1WpsPcJZJCLSHSxIRESPEZeSh4s3s+DRtTU8OHtE9Mz4Dqg5\nFmnf6TvI4ywSEekIFiQiosfYxNkjIq2omUXqhspqNbYd5RntiEg3sCARETUgITUf569nwq2zDY89\nItKC0QM7onUrY+w9cwf5RRVSxyEiYkEiImrIg7NHPHMd0bNnoFRgik83VFSqsP0YZ5GISHosSERE\nj3D7bgGir2XAtZM1endrI3UcohZrzKBOsLE0ws+nklBQzFkkIpIWCxIR0SP8b/aI1z0i0iZDAwUm\nj+qG8koVdhxPlDoOEek5FiQionok3SvAmSvp6N7RCp4unD0i0jb/IU6wsjDC7pO3UVRaKXUcItJj\nLEhERPXYfDAOAGePiJqKkYECk0c5o6xChR3HOItERNJhQSIi+o3kjEKcjr0HZ0cr9HO1kzoOkd4I\nGOIEK3Mj7Dp5G8WcRSIiibAgERH9xpaoOAgBTB/NM9cRNSVjQyUmjnRGaXk1dp64LXUcItJTLEhE\nRA9IzSzCict30aVDKwxws5c6DpHeCRrqBEszQ+w8noiSsiqp4xCRHmJBIiJ6wJaDNbNHYZw9IpKE\nsVHNLFJJeTV2neQsEhE1PRYkIqJf3b1fjOO/pMGpnSUGubeVOg6R3goa6gQLUwPsOJaI0nLOIhFR\n02JBIiL61ZaDcVALIGyMC+Ryzh4RScXU2AATRjijuKwKu08mSR2HiPQMCxIREYCMnBIcvZiGjm0t\nMMSjndRxiPResHdnmJsYYPuxRJRVVEsdh4j0CAsSERGAnw7HQ60WCPXrztkjIh1gamyA8cO6oKi0\nEvvO3JE6DhHpERYkItJ7WXmlOHQ+BR3amMGrdwep4xDRr8YN6wITIyW2HU1ARZVK6jhEpCdYkIhI\n7207koBqlcBU3+5QcPaISGeYmxoi2Lsz8osqcOBsstRxiEhPsCARkV7LLSzHgehk2NuYYkRfB6nj\nENFvhAzvCiNDBbYdiUdVNWeRiEj7WJCISK9FHk1AVbUaU3y6QangWyKRrmllboTAIU7ILijHofOp\nUschIj3ATwNEpLcKiiuw98wd2LYyhu8AR6njENEjTBzpDAOlHD8ejke1Si11HCJq4ViQiEhv7Tie\niIpKFSaN6gYDpULqOET0CDaWxhgzqBOycktx7GKa1HGIqIVjQSIivVRcWondJ5NgZWGEMYM7SR2H\niB5j0ihnKBUy/HgoDiq1kDoOEbVgLEhEpJd2nbiNsopqTBzhDCMDzh4R6To7a1P49O+Iu/dLcOry\nXanjEFELxoJERHqntLwKO0/choWpIQKHOkkdh4gaaYpPN8jlMmw5GAc1Z5GISEtYkIhI7/x8KgnF\nZVWYMKIrTIyUUschokZqZ2uGEZ4dkJxRhOhr6VLHIaIWigWJiPRKeUU1th9LhJmJAcZ6dZY6DhE9\noam+3SGTAZsPxkEIziIR0bPHgkREemXf2WQUllRinHcXmJkYSB2HiJ6Qo70FvHq1R2JaAWJuZkkd\nh4haIBYkItIblVUqRB6Nh4mRAuOHd5E6DhE9pWl+3QEAm6JucRaJiJ45FiQi0htR51KQW1iBoKGd\nYWFqKHUcInpKndu3wiD3triVnIfY+Gyp4xBRC8OCRER6oapaja1H4mFooMCEEc5SxyGi3yl09K+z\nSAdvSZyEiFoaFiQi0gtHY1JxP68MAYM7wcrCSOo4RPQ7dXO0Rl8XO1xNzMH1pByp4xBRC8KCREQt\nnkot8OPheCgVckwcydkjopai9likLQfjJE5CRC0JCxIRtXgnL91FenYJfAc4wtbKROo4RPSMuHdp\nDfcurRFzMwsJqflSxyGiFkLrBWnlypUICwvD9OnTceXKlTr3nT17FqGhoZgxYwaWLl0KADh37hyG\nDBmCiIgIhIeHY8WKFdqOSEQtmFotsOVQHORyGab4dJM6DhE9Y6G1s0iHOItERM+GVi8hf/78eSQn\nJ2PTpk1ITEzE0qVLsWnTJs397777Lr777jvY29vj1VdfxfHjx2FsbIyBAwdizZo12oxGRHoi+loG\nUjKK4NPfEW1bm0kdh4iesT7d26B7RyucuZKO5IxCdGprKXUkImrmtDqDdObMGfj5+QEAunbtisLC\nQpSUlGju37p1K+zt7QEANjY2yM+vmR7nNQ2I6FkQQmDLwVuQycDZI6IWSiaTYZpvzSzSjwfjJU5D\nRC2BVgtSdnY2bGxsNLetra2Rnf2/6xWYm5sDALKysnD69GmMGDECAJCYmIiXX34ZM2fOxOnTp7UZ\nkYhasF9u3UdCWgGG9moPR3sLqeMQkZYMcGsLp3aWOHEpDfeyi6WOQ0TNnFZ3sfut+maGcnJy8Ic/\n/AHvvfceWrVqhU6dOmHBggUIDAxEamoqIiIiEBUVBaWy4agxMTHaik3NCMcBATXjQAiBbw7eBwB4\ntK/m2NBD/Jvrl/5dlLiTDqzbcgYhg2zq3MexQADHATWeVguSnZ1dnRmjrKwstGnTRnO7uLgYL774\nIhYvXowhQ4YAAOzt7REYGAgAcHR0hK2tLTIzM9GhQ4cG19WvXz8tbAE1JzExMRwHpBkHVxKzkXr/\nLga42SPYb7DUsaiJ8f1A//TxFDgTdwixSaVYML0H7KxNAXAsUA2OAwIaX5K1uoudl5cX9u/fDwC4\ndu0a7O3tYWpqqrn/r3/9K+bMmQMvLy/Nz3bt2oXPPvsMQM3sUm5uruY4JSKixqq9LkrtdVKIqGVT\nyGWY6tsdKrVA5JEEqeMQUTOm1RkkT09PuLu7IywsDAqFAsuXL0dkZCQsLCzg7e2NnTt3IiUlBVu2\nbIFMJsO4ceMwduxYLFq0CNOnT4cQAu+9995jd68jInpQXEoeLsXdR+9utnDtZPP4BYioRRjR1wEb\nD9zC/uhkTPPrDmtLY6kjEVEzpPXmsWjRojq3XVxcNP+OjY2td5l169ZpNRMRtWy1s0ehfi6PeSQR\ntSRKhRxTRjlj7dZYbD+WiDnj3KWORETNkNYvFEtE1JQy8ioRfS0DPZxs4NG1tdRxiKiJ+Q7oCBtL\nI+w5nYTCkkqp4xBRM8SCREQtyolrRQBqjj2SyWQSpyGipmZooMDEkd1QXqnCrhO3pY5DRM0QCxIR\ntRhpWUW4llKGrg6t0M/VTuo4RCSRgMGdYGlmiF0nb6O8Ui11HCJqZliQiKjF+PFQPABgmi9nj4j0\nmbGREiHDu6KkrArn43nhWCJ6MixIRNQiZOaW4ujFNLRppcRgj3ZSxyEiiY316gwzYyXO3CxGeUW1\n1HGIqBlhQSKiFmHr4Xio1QLD3Cwhl3P2iEjfmZkYINi7C0or1NgfnSx1HCJqRliQiKjZyykoQ9S5\nFLRrbQb3TiZSxyEiHTFuWBcYKGXYdiQBVdUqqeMQUTPBgkREzV7k0URUq9SY7NMNCs4eEdGvWpkb\nob+zGXILy3HwfKrUcYiomWBBIqJmraC4AnvP3IFtK2P49HeUOg4R6ZihPSxgoJTjp8PxqFbxjHZE\n9HgsSETUrO04nojKKhUm+3SDgZJvaURUl4WJAmMGdUJWbimO/5ImdRwiagb4aYKImq3isir8fCoJ\nVhZGGD2ok9RxiEhHTRrlDIVchi0H46FSC6njEJGOY0Eiombr55O3UVpejYkjusLIQCF1HCLSUXbW\npvDp74i794tx5so9qeMQkY5jQSKiZqmsoho7jifC3MQAAUOcpI5DRDpuik83yGXAloNxEIKzSET0\naCxIRNQs7TtzB0WlVRg/vCtMjQ2kjkNEOq59G3N49+mApHuFOH8jU+o4RKTDWJCIqNmprFIh8mgC\nTIyUGOfdWeo4RNRMTPPtDgDYEsVZJCJ6NBYkImp2os6lIK+oAmO9OsPc1FDqOETUTHRqZ4nBHm1x\nKyUPsfHZUschIh3FgkREzUpVtRpbj8TD0ECBkOFdpY5DRM3MNL+aWaTNB+MkTkJEuooFiYialaMx\nqbifV4aAwZ1gZWEkdRwiama6OVqjr4sdriRm43pSjtRxiEgHsSARUbOhUgv8eDgeSoUcE0c6Sx2H\niJqp2lmkLZxFIqJ6sCARUbNx8tJdpGeXwHeAI2ytTKSOQ0TNlHuX1nDv0hoxN7OQkJovdRwi0jEs\nSETULKjVAlsOxUEul2GKTzep4xBRMxdaO4t0iLNIRFQXCxIRNQtnr6YjJaMII/s6oG1rM6njEFEz\n1y214gEAACAASURBVKd7G3TvaIUzV9KRnF4odRwi0iEsSESk84QQ2HwwDjIZMNWXs0dE9PvJZDKE\njnYBwGORiKguFiQi0nkxN7Nw+24BvHv/P3t3Hh9VdbAP/LlzZzKTSSZkX9ghkLBI2FGMAoWwREWt\nCgRQFK19ra2tL/RtVX5V37darF2srbVKFdzQgCAICLLITgKEsAQDIRskISGZTPZMZjLb/f0RiaVl\nCZDJmeX5/iOTOzc8fjjJ5z5z7j2nB3pGG0THISIfMXZwDPp374Z9J8px3tgkOg4ReQgWJCLyaIqi\nIH37GQDfrzxFRNQZJEnC7KkJUBTg828KRMchIg/BgkREHi2nwIQzJXW47ZZY9I0LER2HiHzM+Fvi\n0CvGgN1Hz6Oyxiw6DhF5ABYkIvJo6TvaZo/mpCQKTkJEvkilkjA7JQEul4I1OzmLREQsSETkwXKL\na/BtUQ1GD4rGgF6houMQkY+6c3h3xEUG4ZusUpjqLaLjEJFgLEhE5LFWbefsERG5nyyrMHvKQDic\nCr7YXSg6DhEJxoJERB4pv7QOx/KrkTQgEoP7hYuOQ0Q+btLoXogOC8TWzHOoa7SKjkNEArEgEZFH\nWrW9bV+SOVO5ch0RuZ9aVuGhyQNhc7iwfk+R6DhEJBALEhF5nOLyBhw+VYnBfcMxLD5SdBwi8hNT\nxvZGeIgOmzPOoqG5VXQcIhKEBYmIPM7FXe3nTE2AJEmC0xCRvwjQyHjwBwNgtTmxcV+x6DhEJAgL\nEhF5lNLKRmScrMCAXqEYlRgtOg4R+Zlpt/VBaLAWG/cXo9liFx2HiARgQSIij/L5NwVQFGBOCmeP\niKjr6QLUuH9iPFqsDny1n7NIRP6IBYmIPEaFqRl7j51H37gQjBsSKzoOEfmp1Nv7wqDX4Mu9RWix\nchaJyN+wIBGRx/h8RwFcCjB7SgJUKs4eEZEYep0G906IR1OLHVsyzomOQ0RdjAWJiDxCZY0ZO7PL\n0CsmGLcP7y46DhH5uXvu6I8gnRrr9hTC2uoQHYeIuhALEhF5hDU7C+ByKZidkgiZs0dEJFhwoAYz\n74xHQ7MNXx88JzoOEXUhFiQiEs5Y24JvskrRIyoId47oIToOEREA4N4J/RGoVWPtrkK02p2i4xBR\nF2FBIiLh1uwqgMOpYHZKAmePiMhjGPQBuOeOfqhvasXWzHOi4xBRF2FBIiKhTPUWbD9UiriIIEwc\n2VN0HCKiS9w3IR66ABlrdxXAxlkkIr/AgkREQq3dWQCH04XZKQMhy/yVRESepVuwFncn90NtYyu2\nHyoRHYeIugCvRohImJoGC7YeKkF0uB6TRvcSHYeI6LLunzgA2gAZa3YWwO7gLBKRr+twQTKZTMjJ\nyUFOTg5MJpM7MxGRn/hidyHsDhdmTxkINWePiMhDhRq0SB3fF6YGK3YcLhUdh4jcTH2tN2zevBnL\nli1DdXU1YmPbdra/cOECYmJi8OMf/xipqaluD0lEvqeu0YqvM84hMjQQk8f0Fh2HiOiqHpg0AJsP\nnMXnOwuQMq4PNGp+qEPkq65akJ577jk4HA689tprGDRo0CXH8vLy8N5772HPnj147bXXrvg9li5d\nihMnTkCSJLzwwgsYNmxY+7GDBw/ijTfegCzL6NevH1599dVrnkNEvmHdniLYHC7MmjKQFxpE5PHC\nQnSYMb4vNuwrxs4jZZh+Wx/RkYjITa5akFJSUpCSknLZY4mJifjjH/+IHTt2XPH8rKwslJSUID09\nHUVFRViyZAnS09Pbj7/00kv46KOPEBMTg1/84hfYu3cvAgMDr3oOEXm/+qZWbM44i4huOkwdx9kj\nIvIOD/xgALZknsPn3+RjythevDWYyEdd9Sf7Yjn6xS9+gYaGhvavnz17FnPnzr3kPZeTmZnZfjw+\nPh6NjY0wm83tx9euXYuYmBgAQHh4OOrr6695DhF5v/V7CtFqc+KhyQOhUcui4xARdUhEt0BMv7UP\nqmpbsDu7THQcInKTDn30MXHiRDz88MPYuXMnPv74Y/z85z/HM888c83zTCYTwsPD21+HhYVdssBD\ncHAwAMBoNCIjIwMTJ0685jlE5N0amlvx1YGzCA/RYtqtvEWFiLzLg5PbFpVZvaMATqdLdBwicoNr\nLtIAAA888ADGjBmDWbNmITQ0FGvWrIHBYLjuv0xRlP/4Wk1NDX7yk5/g5ZdfRrdu3Tp0DhF5rw37\nimG1OfFw6mAEaDh7RETeJTI0EFPH9caWzHPYc6wck8dwiwIiX9OhgrRx40YsW7YMv/nNb2A0GvHo\no49iyZIlGD169FXPi46OvmT2x2g0Iioqqv11c3MznnzySSxevBjjx4/v0DlXkp2d3ZH/FfJxHAee\nzWJzYf3uCwjSqRCtrUV2dr1b/h6OAwI4Duh7nT0WEqMd2KoCPtqUA4NSBZVK6tTvT+7B3wnUUR0q\nSFu2bMGKFSsQGRkJAJg0aRJeeOGFay6ekJycjLfeeguzZ89Gbm4uYmJioNfr24+/9tprWLhwIZKT\nkzt8zpVcq6yR78vOzuY48HCffH0aNoeC+TOGYPytA9zyd3AcEMBxQN9z11g4XXUcWw+WwKyK4UbX\nXoC/EwjoeEm+akHatm0bpk2bhrfffvuSr/fv3x+fffbZJe+5nJEjR2Lo0KFIS0uDLMt48cUXsW7d\nOhgMBtxxxx3YsGEDSktLsXr1akiShJkzZ2LWrFkYMmTIJecQkfdrarFhw95ihAZrcdftfUXHISK6\nKbOmJGDH4VKkbz+DO0f0gMwV7Yh8xlUL0u7du7F161b86Ec/wuDBgy85dnEfJJ1Od8WCBACLFi26\n5HViYmL7n3Nyci57zuLFi68ZnIi8y/o9RbC0OjBveiJ02g5NXhMReayYcD1SxvXG1oMlfBaJyMdc\n9Srld7/7HbZs2YLnnnsOJpOpfUnuqqoqREVF4amnnsKMGTO6JCgRea9Gsw0b9xUh1KDFjPF9Rcch\nIuoUs6ck4JustlmkiSM5i0TkK675k5yamoqVK1di7ty5MBgMiIiIwKOPPor09HSWIyLqkPV7CmFp\ndeLBHwyELoCzR0TkG6LD9UgZ1wcXTGbsOXZedBwi6iQd+qhj8eLFKCsrQ2pqKiZPnoz8/HzeBkdE\nHdLQ3IpN+4sRZtAilc8eEZGPmTVlINSyhPTt+dwXichHdOij3IaGBrz77rvtr+fOnYt58+a5LRQR\n+Y62Z4+ceHjGYGi57xER+ZjoMD2m3toHWzLOYVf2eaSM6y06EhHdpA7NIPXs2RPV1dXtr00mE/r1\n6+e2UETkGy7OHoWHaDGdzx4RkY+aNTkBalmFVTvOwMFZJCKv16EZpIqKCkydOhUDBgyAy+XC2bNn\nMWDAAMyfPx8AsHLlSreGJCLvtG53Iaw2Jx65i7NHROS7osICMe3W3ticcQ67s8uQMq6P6EhEdBM6\nVJCeffZZd+cgIh/T0NyKrw6cRXiIDjNu6ys6DhGRW82akoBth0qRvj0fk0b3gpor2hF5rQ4VpHHj\nxrk7BxH5mC92tc0ePXr3EARw9oiIfFxkaCBm3NYHmw6cxc4jZZh2K2eRiLwVP94gok5X39SKrzLO\nIqKbjhcJROQ3HpoyEBq1Cqt25MPu4LNIRN6KBYmIOt0XuwvRanNi1uSBnD0iIr8R0S0Q02/rA2Nt\nC3YeKRMdh4huEAsSEXWquiYrvjpwFpHddJh2G2ePiMi/PDR5IALUKqzecYazSEReigWJiDrVF7sK\nYbM7MSslARo1Z4+IyL9EdAvEjPF9Yayz4JusUtFxiOgGsCARUaepa7Ric8Y5RIYGYio3SyQiP/Xg\nxVmkb/JhdzhFxyGi68SCRESd5vOdBbDZnZjN2SMi8mPhITqk3t4P1XUWbDvEWSQib8OCRESdwljX\ngi0Z5xATrkfKWM4eEZF/e2jyQOgCZKzecQZWm0N0HCK6DixIRNQpVu/Ih8PpwrzpidCo+auFiPxb\nqEGLmXf2R21jK7ZknBMdh4iuA69iiOimVZiasf1wKXpGB2PiqF6i4xAReYQHJg1AkE6NNTsL0GK1\ni45DRB3EgkRENy192xm4XArmTR8EWSWJjkNE5BGC9QG4f9IANJpt2Li/WHQcIuogFiQiuimllY3Y\nffQ8+nUPQXJSd9FxiIg8yr139odBH4B1uwrR3GITHYeIOoAFiYhuyqdbz0BRgIdnDIaKs0dERJfQ\n6zR4aPJAmK0OrNtTJDoOEXUACxIR3bCi8/U4kFOBhN6hGDskRnQcIiKPdFdyX4QZtNiwtwgNza2i\n4xDRNbAgEdENW7k1D0Db7JEkcfaIiOhydAFqzE5JgNXmxJqdBaLjENE1sCAR0Q3JK6lF1qkqDO0f\ngREJUaLjEBF5tOm39UFkaCA2HziLmgaL6DhEdBUsSER0Qz7ZchoA8EgqZ4+IiK5Fo5aRNjURNocL\nq3fki45DRFfBgkRE1y2nsBonCkwYlRiNof0jRMchIvIKU8b2QlxkELYdKkFVbYvoOER0BSxIRHRd\nFEXBJ1vanj2aP2OQ4DRERN5DLaswb1oiHE4Fq7afER2HiK6ABYmIrkt2nhGnz9Xi1qGxSOgdJjoO\nEZFXuXNkT/SKMeCbI2Uor24WHYeILoMFiYg6TFEUrPy67dkjzh4REV0/WSVh/oxBcLkUfPp1nug4\nRHQZLEhE1GEZORdQeL4Bd47ogX7du4mOQ0TklW4fFof4nt2w70Q5zlY0iI5DRP+GBYmIOsTpdOHj\nLacgqyQ8zNkjIqIbJkkSFqQOgaIAH20+LToOEf0bFiQi6pAdWaUorzZj2q190D0qWHQcIiKvNjIx\nCkkDInHkdBW+LTKJjkNE/4IFiYiuyWpz4NOtZxCgkTFnaoLoOEREXk+SJCy4azAA4IOvTkFRFMGJ\niOgiFiQiuqZN+8+ittGK+yb0R0S3QNFxiIh8QmKfcIwfFoczJXU4lFspOg4RfYcFiYiuqrnFhjU7\nCxAcqMEDPxgoOg4RkU95JHUwVFLbs0hOF2eRiDwBCxIRXdWanQUwW+yYNWUgggM1ouMQEfmUXjEG\nTBnbG2VVTdh1pEx0HCICCxIRXUVNgwUb9xUjopsOd9/RX3QcIiKfNG/6IGjUKqzcmgeb3Sk6DpHf\nY0Eioiv6bNsZ2BwuzJ02CFqNLDoOEZFPigwNxD139Iep3oLNGedExyHyeyxIRHRZ541N2H64FD2j\ng5EytpfoOEREPm3WlIEI0qmxekc+zBa76DhEfo0FiYgu65Ov8+ByKXgkdTBkmb8qiIjcyaAPwIOT\nB6KpxYZ1uwtFxyHya7zqIaL/UFBWhwMnKpDQOxTjh8WJjkNE5Bdm3tEfYQYt1u8tQl2TVXQcIr/F\ngkRE/+HDr04BAB69ewgkSRKchojIP+i0asydlohWmxOrtueLjkPkt1iQiOgSx/ONOFFgwsiEKCQN\niBIdh4jIr0y9tQ/iIoPwdeY5VNaYRcch8kssSETUzuVSLpk9IiKirqWWVXhkxmA4XQo+3nJadBwi\nv8SCRETt9h4vR+H5BkwY0QPxPUNFxyEi8kvJw7tjQM9u2HusHAVldaLjEPkdFiQiAgDY7E58vPlU\n26eXdw0WHYeIyG+pVBIWzhwKAFix8RQURRGciMi/sCAREQBg0/5iGOssmHlnf8RGBImOQ0Tk15IG\nRGHckFicLDIh61SV6DhEfoUFiYjQ0NyK1TvyYdBrMHvKQNFxiIgIwGP3DIFKJWH5xlw4nC7RcYj8\nhtsL0tKlS5GWloa5c+fi5MmTlxyz2Wz49a9/jQcffLD9a4cPH8b48eOxYMECPPLII3jllVfcHZHI\n763akQ+z1YG0qYkI1geIjkNERAB6xRgw/bY+KK9uxrZDJaLjEPkNtTu/eVZWFkpKSpCeno6ioiIs\nWbIE6enp7cdff/11JCUloaio6JLzxo0bhzfffNOd0YjoOxXVzdh84CziIoKQens/0XGIiOhfzJ2W\niN3ZZfh0ax4mjeoJvU4jOhKRz3PrDFJmZiZSUlIAAPHx8WhsbITZ/P2a/osXL8akSZP+4zw+jEjU\ndT746hScLgWP3j0EGjXvuiUi8iRhBh0enDwQDc02rNlZIDoOkV9w69WQyWRCeHh4++uwsDCYTKb2\n14GBgZc9r6ioCE8//TTmz5+PjIwMd0Yk8mu5xTXIPHkBg/qE4fakONFxiIjoMu6bEI+Ibjp8uacI\n1XUW0XGIfJ5bb7H7dx2ZGerTpw9+9rOfITU1FWVlZViwYAG2b98OtfrqUbOzszsrJnkxjoOOUxQF\n720zAgCSE9Q4evSo4ESdh+OAAI4D+p4vjIU7Bwdi/UEr3ly5Hz8cH37tE+g/+MI4oK7h1oIUHR19\nyYyR0WhEVFTUVc+JiYlBamoqAKBXr16IjIxEVVUVevTocdXzRo8effOByatlZ2dzHFyHfcfKUV5T\njuTh3XH/jLGi43QajgMCOA7oe74yFkaMVJBTugc55xrw2P1jMYCbeV8XXxkHdHM6WpLdeotdcnIy\ntm7dCgDIzc1FTEwM9Hr9Je9RFOWSmaWNGzfirbfeAgDU1NSgtrYWMTEx7oxJ5HfsDic+2HwKalnC\no3cNER2HiIiuQVZJeHzmUCgKsGJjLp/XJnIjt84gjRw5EkOHDkVaWhpkWcaLL76IdevWwWAwICUl\nBQsXLkRlZSUuXLiAmTNn4rHHHkNqaioWLVqEuXPnQlEUvPzyy9e8vY6Irs+m/WdhrG3BfRPiERfJ\nTWGJiLzB8IQojBkcgyOnq3DkdBXGDokVHYnIJ7m9eSxatOiS14mJie1/XrFixWXPeeedd9yaicif\nNZptWLUjH0GBGsyZmiA6DhERXYfH7hmCo3lVWLEpF6MSoyHLXH2UqLPxp4rIz6zacQZmix1pUxNg\n4KawRERepU9sCKbe2gdlVc3YdrhUdBwin8SCRORHzhub8NX+s4gJ1+PuZG4KS0TkjeZPHwRdgIyV\nX5+G2WIXHYfI57AgEfmR9zfkwulS8PjModCoZdFxiIjoBoSF6DA7JQENzTakbz8jOg6Rz2FBIvIT\nFx/qTRoQifHDuCksEZE3u29CPGIj9Ni4rxjnjU2i4xD5FBYkIj9gd7jw3pffQiUBT94/DJIkiY5E\nREQ3IUAj4/GZt8DpUvD+hlzRcYh8CgsSkR/46sBZlFc3Y8b4vugbFyI6DhERdYLbbonF8IGR7XcI\nEFHnYEEi8nH1Ta34bFseggM1mD9jsOg4RETUSSRJwpP3DYNKJeG9L0/C7nCJjkTkE1iQiHzcJ1+f\nRovVgfkzBiEkiMt6ExH5kj5xIbhrfF+UV5vx1YFi0XGIfAILEpEPKzpfj22HStA71oDU8X1FxyEi\nIjeYN2MQDHoNPtt2BvVNraLjEHk9FiQiH6UoCv755bdQFODJ+27hbutERD7KoA/A/OmD0GJ14JOv\nT4uOQ+T1eMVE5KP2H69AbnENbh0aixEJ0aLjEBGRG80Y3xd9Yg3YdqgEhefrRcch8mosSEQ+yGpz\nYPmmXKhlFZ649xbRcYiIyM1kWYUn7xsGRQH+uf4kFEURHYnIa7EgEfmgdbsKYaq34P6J8YiLDBId\nh4iIusDwhCiMHxaHU2drsf94heg4RF6LBYnIxxjrWrBmVyHCDFrMmjJQdBwiIupCj88cCrWswvJN\nubDaHKLjEHklFiQiH/PBplOw2Z149O4h0Os0ouMQEVEXio0Iwg8nxcNUb8HanYWi4xB5JRYkIh9y\nPN+IfcfLkdg7DD8Y3Ut0HCIiEmDWlASEh+iwdlcBKkzNouMQeR0WJCIfYXc48c4XOVBJwFMPJkGl\nkkRHIiIiAQK1ajx5/y2wO1x49wsu2EB0vViQiHzEF7sLUV5txl3J/TCgZ6joOEREJFByUneMTIjC\n0TNGZJy8IDoOkVdhQSLyAZU1Zqzeno9QgxYPzxgsOg4REQkmSRKeeiAJalmFf64/CUsrF2wg6igW\nJCIf8M/138LmcOGJmUMRFMiFGYiICOgeFYwHJw9ATYMV6dvOiI5D5DVYkIi83KFvL+DwqUoMi4/E\nxFE9RcchIiIPMmtKAmLC9fhybxFKLjSKjkPkFViQiLyY1ebAsvUnIask/OTBJEgSF2YgIqLvaTUy\nnnogCU6Xgn98kcMFG4g6gAWJyIut3pEPY50F90+MR68Yg+g4RETkgcYMjsFtt8Qit7gGu7LLRMch\n8ngsSEReqqyqCet2FyIyNBBpUxNFxyEiIg/25H3DoA2QsXxjLppbbKLjEHk0FiQiL6QoCt75IgcO\np4If3z8MOq1adCQiIvJg0eF6pE1NREOzDR9vOS06DpFHY0Ei8kL7jpcjp9DUftsEERHRtdw3IR69\nYoKxJfMcCsrqRMch8lgsSERexmyx470vv0WAWoX/+uEwLsxAREQdolGr8JMHhkNRgLfX5sDp4oIN\nRJfDgkTkZVZuzUNdUytmpSQgNiJIdBwiIvIiwwZEYtKonigsq8fXGWdFxyHySCxIRF4kr6QWm/YX\no0dUEB6YNEB0HCIi8kKPf7ep+IebT8NUbxEdh8jjsCAReQm7w4W/rT4ORQF+NmsEAjSy6EhEROSF\nwkJ0eHzmUFhaHXh77QnujUT0b1iQiLzE2l0FKK1sQur4vrglPlJ0HCIi8mJTx/VG0oBIZJ2qwv4T\nFaLjEHkUFiQiL1BW1YRV2/MRHqLDo3cPER2HiIi8nCRJ+Oms4QhQq7Bs3Uk0mrk3EtFFLEhEHs7l\nUvC31cfhcLrw9INJCArUiI5EREQ+oHtkMObPGIT65lYs3/it6DhEHoMFicjDbck4i9PnapE8vDtu\nvSVOdBwiIvIh902IR/8e3fBNVhmOnTGKjkPkEViQiDxYdZ0FH24+heBADf7r/mGi4xARkY+RZRV+\nPnsEVCoJf19zAtZWh+hIRMKxIBF5KEVR8PbaE7C0OvHEvUMRFqITHYmIiHxQfM9Q/HBiPKpqW7By\na57oOETCsSAReah9x8tx5HQVhg+MxJSxvUXHISIiHzZ3+iDERQZhw94i5JfWiY5DJBQLEpEHajTb\nsGz9SQRoZPz0oRGQJEl0JCIi8mFajYyfzRoOl4L2hYGI/BULEpEHen/Dt2hotmH+d5/oERERuVvS\ngChMu7UPzl1oxBe7CkXHIRKGBYnIwxw9Y8TOI2UY0LMb7pvQX3QcIiLyIwvvGYIwgxbp28+grKpJ\ndBwiIViQiDxIs8WOv606Blkl4ZnZIyHL/BElIqKuE6wPwFMPJMHucOHN9GNw8lY78kO8+iLyIP9c\nfxKmBivmpCSgf49uouMQEZEfuj2pOyaM7IEzpXX4YjdvtSP/w4JE5CEOfnuh/da6WSkJouMQEZEf\ne+qBJISHaPHp1jycrWgQHYeoS7EgEXmAhuZW/P3zE9CoVfjvuaOg5q11REQkkEEfgGdmj4TDqeDP\nnx6F3cFb7ch/8CqMSLCLG8LWN7fikdTB6B0bIjoSERERxgyOwfTb2la1+2wbN5Al/8GCRCTYnmPl\nyMi5gKH9I3DvhHjRcYiIiNo9PnMoosP1WLuzAGdKakXHIeoSLEhEAtU0WPDOFznQBcj4xZyRkFXc\nEJaIiDyHXqfBs2kj4VKANz47CqvNIToSkdu5vSAtXboUaWlpmDt3Lk6ePHnJMZvNhl//+td46KGH\nOnwOka9QFAV/XX0cZosdj88cyg1hiYjIIw2Lj8S9E/qjvNqMjzefFh2HyO3cWpCysrJQUlKC9PR0\nvPLKK3j11VcvOf76668jKSnpus4h8hXbDpXgaJ4RIxOiMGN8X9FxiIiIrmjBXUPQIyoYG/YVI6ew\nWnQcIrdya0HKzMxESkoKACA+Ph6NjY0wm83txxcvXoxJkyZd1zlEvqCyxoz3N3yLIJ0aP58zEpLE\nW+uIiMhzaTUyFs0bBZVKwpvpx9BitYuOROQ2bi1IJpMJ4eHh7a/DwsJgMpnaXwcGBl73OUTezuVS\n8Jf0Y7C0OvFfDyQhMvQ/fw6IiIg8TULvMMyaPBDGOgve35ArOg6R26i78i9TFMVt52RnZ1/39ybf\n4w3j4MDpJuQWN2Bwr0AYlCpkZxtFR/I53jAOyP04DugijoXOMzBCQWyYBtsOlSBc24xBPb3nQz6O\nA+ootxak6OjoS2Z/jEYjoqKiOv0cABg9evSNByWfkJ2d7fHjoKCsDrtW7UOYQYsXnpiIUINWdCSf\n4w3jgNyP44Au4ljofLG9GrHoL3vw1ZEmzJg0GhHdPL8kcRwQ0PGS7NZb7JKTk7F161YAQG5uLmJi\nYqDX6y95j6Iol8wSdeQcIm/UYrXjDx9nw+lSsGjeKJYjIiLySn3iQvDEfbegqcWGP608Cqfr+u8Q\nIvJkbp1BGjlyJIYOHYq0tDTIsowXX3wR69atg8FgQEpKChYuXIjKykpcuHABM2fOxGOPPYYHH3wQ\nQ4YMueQcIl/wzhc5uFBjxoM/GIARCdGi4xAREd2w1PF9ceyMEQe/rcSanfmYk5IoOhJRp3H7M0iL\nFi265HVi4vc/QCtWrLjsOYsXL3ZrJqKutvNIGXZln0dC71A8nDpYdBwiIqKbIkkSfj5nJArLduHT\nrWeQFB+Fwf3Cr30ikRdw+0axRP6uoroZ73xxAoFaNf7n4TFQy/yxIyIi72fQB2Dx/NGAouCPK4+g\n2cKlv8k38EqNyI3sDhf+8MkRWFqd+OlDwxEbESQ6EhERUae5JT4Sc6YmwlhnwVufH7+hFYuJPA0L\nEpEbfbzlNArPN2DK2F6YOKqn6DhERESdbk5KAob0C8eBExXYdqhUdByim8aCROQmR/OMWLe7EN0j\ng/BfP0wSHYeIiMgtZFmFxfNHIyhQg2XrT6Ksqkl0JKKbwoJE5AZ1jVa88dlRqGUJ//PIGARqu3RP\nZiIioi4VHabHM7NHwGZ34vWPj8Bmd4qORHTDWJCIOpnLpeCNz46ivrkVj949FAN6hoqORERE5HbJ\nSd0xY3xfnLvQiBUbc0XHIbphLEhEnWzNzgIcy6/G6EHRuPfO/qLjEBERdZkf3XcLescasOnAL7Z9\nrQAAIABJREFUWRw4USE6DtENYUEi6kTHzhix8uvTiOymw3/PHQWVShIdiYiIqMtoNTJ+9cgYaANk\nvLnqKJ9HIq/EgkTUSYx1LfjDJ9lQqSQ89+hYdAvWio5ERETU5frEhuDns0fA0urE0g8Pw9LqEB2J\n6LqwIBF1ArvDidc+zEJTiw1P3j8MiX24mzgREfmvCSN74t47+6Osqhl/XXWM+yORV2FBIuoEy9Z/\ni4Kyekwe0wup4/uKjkNERCTcwplDMbhvOPafqMCXe4tFxyHqMBYkopu043Apvs48h37dQ/CTB5Mg\nSXzuiIiISC2r8NyjYxFm0GLFplzkFteIjkTUISxIRDehuLwB/1h7AkE6NZ5/dBx0AdzviIiI6KLw\nEB1+vWAsAOD3H2WhttEqOBHRtbEgEd2g5hYbfvfBYdgcLiyaPxpxkUGiIxEREXmcof0jsPCeoahr\nasXvP8qCw+kSHYnoqliQiG6Ay6XgT58eRVVtC+akJGDckFjRkYiIiDzWfRP6447h3XHqbC1WbOIm\nsuTZWJCIbsDqb/Jx5HQVRiZEYe70QaLjEBEReTRJkvDM7BHoFROMDXuLse9YuehIRFfEgkR0nQ6f\nqsSnW/MQHRaIXz48BjI3gyUiIromvU6D5x8dh0CtjDdXH0NxeYPoSESXxYJEdB3OVjTgj58cgUYt\n4/lHxyEkKEB0JCIiIq/RK8aA/547Cq02J367/BDquGgDeSAWJKIOqmuy4rfLD8HS6sSiuaMwoFeo\n6EhEREReZ/yw7lhw12CY6i14ZcUhtNqdoiMRXYIFiagDbHYnXl1xGNV1FjycOgjJw7uLjkREROS1\nHpo8EJPH9EJ+aT3+mn4MiqKIjkTUjgWJ6BoURcGbq47hTEkdJo3uidlTEkRHIiIi8mqSJOFns4Zj\ncN9w7D1ejvRtZ0RHImrHgkR0Dat25GPvsXIM7huOZ2aNgCRxUQYiIqKbpVHLWLJwHKLD9fh02xmu\nbEcegwWJ6Cr2HS/Hyq/bVqx74bFxCNDIoiMRERH5jG7BWrz4xK0I1Krxl/SjyC+tEx2JiAWJ6Ery\nS+vwl8+OIlAr4zdP3IZQg1Z0JCIiIp/TJzYEv3pkDBxOF367/BCq6yyiI5GfY0EiugxTvQWvrjgE\nh9OF/3l4DPrGhYiORERE5LPGDI7B4/fegvqmVvx2+UFYWh2iI5EfY0Ei+jctVjt+u/wQahtbsXDm\nLRg7JFZ0JCIiIp937539Mf22Pjhb0Yg/rcyG08WV7UgMFiSif2F3uLD0gywUlzdg+m19cN+E/qIj\nERER+QVJkvDUA0kYPjASh3Ir8Y+1J7j8NwnBgkT0HZdLwV8+O4rjBdW4dWgsfvJAElesIyIi6kJq\nWYUXHhuH/t27YevBEqzcmic6EvkhFiQitO119M8vT2Lv8XIM6ReO/3lkDGSZPx5ERERdTa/T4OUn\nb0NshB6rtudj0/5i0ZHIz/AKkAjA6m/ysWn/WfSJNeA3j98KLZfzJiIiEiYsRIf/+/HtCDVosWz9\nSew7zj2SqOuwIJHf23qwBJ9sadvr6H9/PB7B+gDRkYiIiPxeXGQQXv7RbdAFqPHnT7NxPN8oOhL5\nCRYk8muZJy/g7TXHERIUgP/98XhEdAsUHYmIiIi+E98zFP/v8XEAJPzug8MoLKsXHYn8AAsS+a1v\ni0z4wydHEKCR8dKPbkPPaIPoSERERPRvkgZE4ZfzR8Nqc+Ll9zJRUd0sOhL5OBYk8ktnKxrwyvJD\ncLkUPP/YOCT0DhMdiYiIiK4geXh3/OSBJDQ02/CbZZmobbSKjkQ+jAWJ/E55dTNeWpYJs9WBZ+eO\nwqjEaNGRiIiI6BpSb++HedMSYaxtwYvvZqChuVV0JPJRLEjkVyqqm/HC2wdQ19SKH98/DJNG9RQd\niYiIiDoobVoi7knuh5LKJvzm3Qw0mm2iI5EPYkEiv3HBZMYL/ziA2kYrnrj3Fsy8s7/oSERERHQd\nJEnCj384DKnj++JsRSN+824GmlpYkqhzsSCRX6isaStHNQ1WLLxnKO6fGC86EhEREd0ASZLw1ANJ\nmH5bHxSXN+DFdzPQzJJEnYgFiXxeVW0LXvjHAZjqLXj07iF44AcDREciIiKim6BSSXj6weGYOq43\nCs834MVlmWi22EXHIh/BgkQ+zfhdOaqus+CR1MF4aPJA0ZGIiIioE6hUEn42awSmjO2FgrJ6vLws\nEy1WliS6eSxI5LOq6yx44R8HYKxtwcMzBmF2SoLoSERERNSJVCoJz8weiR+M7okzpXV4iSWJOgEL\nEvkkU70FS/5xAFW1LZg3LRFzpiaKjkRERERuIKsk/CJtFCaN6om8kjq8/M+DLEl0U1iQyOdU1bbg\nhbcP4EKNGXOmJmDu9EGiIxEREZEbySoJz6aNxIQRPXD6XC1e/udBLtxAN4wFiXxKyYVG/Opv+3Ch\nxoyewY2Yz3JERETkF2RZhUXzRmHCyLaS9Ku/7UVto1V0LPJCLEjkM8pMrXju7/tR22iF3FqFEI0Z\nkiSJjkVERERdRJZVWDxvNALRgDKjGYv/shuVNWbRscjLsCCRTzh2xoiPvjHBbLVDZa2CUxsjOhIR\nEREJoFJJMEi1UBQFpoZWLP7LblTV85kk6jgWJPJ6+0+U4//ePwinywVYquDSsRwRERH5M0lC+10k\njS0OvLe1EnnnagWnIm/h9oK0dOlSpKWlYe7cuTh58uQlxzIyMjBr1iykpaXh7bffBgAcPnwY48eP\nx4IFC/DII4/glVdecXdE8mJbD57D6x8fgQQFtqZKKCxHRERE9G9sDuCFt/fjaJ5RdBTyAmp3fvOs\nrCyUlJQgPT0dRUVFWLJkCdLT09uPv/rqq1i+fDmio6Px8MMPY/r06QCAcePG4c0333RnNPJyiqJg\nzc4CfLT5NAJkBdbmGqiD40THIiIiIg8kSRLsDif+971M/HL+GNw5sofoSOTB3DqDlJmZiZSUFABA\nfHw8GhsbYTa3PShXVlaG0NBQxMTEQJIkTJw4EQcPHgTQdvFLdCVOl4LlG3Px0ebT0KpdsDTXQRUY\nKToWEREReTJJBZfLhdc/OYJN+4tFpyEP5taCZDKZEB4e3v46LCwMJpPpssfCw8NhNLZNexYVFeHp\np5/G/PnzkZGR4c6I5GUsrQ4s/eAw1u8pgk62o7m5EXJg+LVPJCIiIpJUUBQn3l13Eu+uy4HT6RKd\niDyQW2+x+3dXmxm6eKxv37742c9+htTUVJSVlWHBggXYvn071OqrR83Ozu7UrOR5GswOfLqnBlX1\ndsiOejS1BkCjC73i+2tqajgu/BT/3QngOKDvcSz4n6amRiDo8sckSYbicmDT/rM4XViBWXdEQBfA\ndcvoe24tSNHR0e0zRgBgNBoRFRXVfqy6urr9WFVVFaKjoxEdHY3U1FQAQK9evRAZGYmqqir06HH1\ne0VHjx7thv8D8hT5pXV4c+Mh1DXZEeCogVUVCo1avuo5ERERHBd+KDs7m//uxHFA7TgW/JMhfR9a\nrjI5JKnUcLmcKKpsxSd7G/DSj8YjNuIKjYp8Rkc/LHFrXU5OTsbWrVsBALm5uYiJiYFerwcA9OjR\nA2azGRUVFXA4HNi9ezfuuOMObNy4EW+99RaAthmA2tpaxMRwZTJ/tv9EOZ7/+37UN7dCbq2CTR0B\nlerq5YiIiIjoalQqGYqi4LzRjP9+YzdOn+Uy4NTGrTNII0eOxNChQ5GWlgZZlvHiiy9i3bp1MBgM\nSElJwUsvvYRFixYBAO655x706dMHkZGRWLx4MebOnQtFUfDyyy9f8/Y68k2KomD1jnx88nUe1DKg\nWKrg5DLeRERE1Eku7pXU3GLH82/vw7NpozBpdC/BqUg0tzePiwXoosTExPY/jxkz5pJlvwEgKCgI\n77zzjrtjkYezO5z46+rj2J19HlrZCUtTPVR6liMiIiJyA0mC0+nCnz49ivPGZsybPggqlSQ6FQnC\nqRnyOMa6Fvz+oyzkl9ZDJ1nQZHZCo48QHYuIiIh8maSC4nJi1Y58nLvQiGfnjkJwoEZ0KhKAS3aQ\nRzlyugrP/nk38kvrEeCsg9muhkYXLDoWERER+QFJJcPlcuBQbiV+8aedKDxfLzoSCcCCRB7B6VLw\nyZbT+N/3DsJssUNlrYRNDoOs5ic3RERE1HVUKjUURYGxzopfvrkHX2eeu+pWNeR7eIsdCVfXZMUf\nP8lGTqEJWtmJlqZayPpY0bGIiIjIT11cvMHpdOLva07g1NkaPP3gcOi0vHT2B/xXJqFyi2vw+sdZ\nqG1shVZpRItVA1kfJToWEREREfDdprK7ss+jsKweLywch57RBtGpyM14ix0JoSgKvthVgBf+cQB1\nTa2QbVWwwgBZEyg6GhEREVE7SaWG4nKhzNiMX/x5N/YdKxcdidyMM0jU5WobrfjrqmPIzjMiQHah\ntdkERR8DLqZJREREnkhStc0p2GwOvP7JERwvqMYT9w6FXsdnpX0RCxJ1qf0nyvH2mhNoarFDCzPM\nLQrU+mjRsYiIiIiuTVJBcTmw7VAJjucbsWjeaAztz61IfA1vsaMu0Wyx408rs/H7j46gxWqHqrUK\nVkUPtZZLeBMREZH3kFRqKIoLxtoWPPf3/fhgUy7sDqfoWNSJOINEbnc834g304/B1GCFTmVFs9kC\ndSBvqSMiIiLvJEltcwyKy4G1uwpx5HQVFs8fjX7duwlORp2BM0jkNlabA++uy8Fv3s1ETaMVapsR\nFocG6sAw0dGIiIiIbpqkUsPldKKksgn//cZurN1ZAKeLeyZ5O84gkVvknavFm6uO4byxGVrZjpam\nBij6aM4aERERkU9RyTIAwOlw4oOvTuHwqUr8fM5I9IjiYwTeigWJOlVziw0ffHUKWw+WAAACHDWw\nOEMg6yMFJyMiIiJyI5UMl9OBU2dr8dPXd2J2SgIemjwQARpZdDK6TixI1CkURcGeo+fx/oZc1De3\nQquyo6W5HjZ9FO/jJCIiIr+gktsurZ0OOz7bdga7j5bhpw+NwPCBUYKT0fVgQaKbVlHdjH+szcHx\ngmrIKkC2GWFVR0DW85cBERER+SGVGi6nAxeqzfh/72Rg0uieeGLmLQg1aEUnow5gQaIbZnc4sWZn\nIT7/Jh92hws6mNHU4oBGx2eNiIiIyL9dnE1SnDbszj6Pw7mVWHjPUEy7tQ9UKl4peTIWJLpuiqIg\nO8+I9778FuXVzQiQXYClGtbAGGh0otMREREReQ5JDoCiuNBiacXf15zAN0dK8eR9w5DQm6v6eioW\nJLouxeUNWLExF8cLqiHhu0UY7MGQA2NERyMiIiLySBf3TXI57cg7V4fFb+7FhJE9sOCuIYgJ1wtO\nR/+OBYk6pKbBgo+3nMbOI2VQFEAnmdFktkLRR4BrsxARERFdm0rWAGi77W7vsXJk5FTgvgnxeGhK\nAoIDNYLT0UUsSHRVLVY7vthdiHW7i2CzO6FV2WAx18Gqj4FGHyQ6HhEREZHXabvtToHDbsfaXYXY\ndqgEc6cNQurtfaGWuf6vaCxIdFkOpws7Dpdi5dY81De1fvecURWsulio9LydjoiIiOhmSJIESBq4\nXE40mZ1Ytv4kNu0vxqN3D8H4YXFtx0kIFiS6hN3hws4jZfj8m3xU1bZAVilQ26phUYVBDozj6nRE\nREREnUilantYweW0o6K6GUs/zEL/7t2QNi0Btw6N44p3ArAgEYC2Jbt3ZJVhzTf5MNZZoJIUBDjr\n0GINgFoXzeeMiIiIiNzo4vNJLkcriivq8bsPstA3LgRpUxMxfhiLUldiQfJzdocT2w6VYs3OApjq\nvytGjjqYnVq4tOFQsxkRERERdRmVum0zWZejFecqGvDaR1noE2vAnKmJSE7qzqLUBViQ/JS11YHt\nh0uxdlcBahqskCUFGkctLE4dXNpwaDgyiIiIiIT516JUckHB6x8fQa8YA2ZPGYg7RvTgYg5uxMtg\nP2Osa8HmA2fx9cESmC12yCoFGnsNLIoe6oAIqDkiiIiIiDzGvxalskoFf/r0KD746hTuTu6HGeP7\nwqAPEJzQ9/By2E/kldTiyz1FyDh5AS6XAo3KBdlWg1YEQx0QyYFARERE5MEuFiWnoxU19U58tPk0\n0refwZQxvTHzzv7oFWMQnNB38LrYhzmcLmTkVGDD3mKcKa0DAGhVNlhbamDTRUMKiOIAICIiIvIi\n8sUZJacTNpcNWzLPYUvmOYweFI17J8RjZEIUlwi/Sbw+9kGVNWZsP1yKb7JKUdNgBQDoJDOam1uA\noChI+jjBCYmIiIjoZqhkGYAMRVEApxXZeUZk5xnRIyoY027tg8ljeiHUoBUd0yuxIPkIm92JjJMX\nsP1QCXIKTQAAWaUgwFmPZrsM6EKgDgoSnJKIiIiIOpMkSYA6EADgtFtQXu3Cik25+GjzKYwbGoup\n43pjVGI0ZC7q0GEsSF6uuLwB2w+VYNfR8zBb7AAAncqKlqY6KIHRcMphCOBS3UREREQ+T9a0FSWX\n0wE4Hcg8eQGZJy8gPESHlHG9MXVcb8RG8APza2FB8kKVNWbsP1GBfcfKUVzRAADQqJxQ2+tgcWoB\nnQGqIN5GR0REROSPVLIaFy/znXYLahucWL0jH6t35GNo/wjcOaIHkpO68xa8K2BB8hKmegv2n6jA\n/uPl7QsuSJICndSC5uYmKPoYSJpIaDSCgxIRERGRx7g4q6S4XIDLitxiBbnFNXh3XQ6GD4jCHSN6\n4PakOC4X/i9YkDxYXaMVGTkV2HeiArnFNQAACUrbLXTN9YA2ElY5iM8WEREREdFVSSoVoNIDAJwO\nG2Q4cLygGscLqvGPtScwMjEad47ogXFDYxEc6N+fuLMgeRBFUVBc3oDDp6qQdaoSBWX1F49Ap2pt\ne65IGwFFHQiVPlBoViIiIiLyTrI6AEDbjJHTYQMkJ46crsKR01WQVRKG9o/A2CExGDckFt2jgsWG\nFYAFSbBWuxMnCqqR9V0purgs98WZImtzAxyaUFg1Oj5XRERERESdqq0stXHarYDkQk6hCzmFJry/\nIRc9ooIwdkgsxg2JxeB+4VD7wWp4LEhdzOVSUFzRgJwCE04UVuPbohrY7E4AgFrlglZphtncAlkf\nBSsCAX0g/5GIiIiIyO1kja79z20r4VlQUe3C+j1mrN9ThKBADZIGRGL4wCgMHxiJHlHBPrkpLa+9\n3UxRFJRXN+NEgQk5hdU4WWhCU4u9/bhWtkNta0CLQwb0YXBIIVAHhwhMTERERET+TiWrAdkABW3X\nsy6bGS1KADJP2pF58gIAIKKbrr0wJQ2IQlSYbzwCwoLUyZxOF85eaETeuVqcPleL3OKa9tvmACBA\n5USAqxktLRaoAiPQCg0QEIkALhxCRERERB5IkiTI2mAo3712OuyQXG3Lh+/KtmJX9nkAQPfIIAzp\nF4FBfcMxuG8YekYboFJ53wwTC9JNamqxIe9cLfJK6pB3rhZnSuvQanO2H1erXNChBWZzE5SAcECj\nBVTdoA7uJjA1EREREdGNkdUaAJr2wuSwWSFLdlwwuVBhMmNHVikAIChQg0F9wjC4bzgG9Q1HQu8w\nBGo9v354fkIP0tDciqLyBhSdr0dReQOKzzfgQo35kvdoVXZonGZYLFZI2nBAEwAHgiEH+d8KIERE\nRETk+9QBOgC672eY7FZILissih7ZeXZk5xkBACoJ6BljQHyPbojvGYr4Ht3Qv0c36HWetaw4C9Jl\nOF0KKmvMKK1sREllU3shqq6zXPI+WXJBJ7Wi1dqMVocMjT4MrS4NIIdCzT5ERERERH6obbEHHVzf\nvVZcTjhtZmg0apRVulBa2dR+Wx4A9IgKQnyPUPTv0Q194kLQO8aAqLBAYQtA+HVBcjpdqKprQVll\nE0qrmlBa2YSSykacNzbD7nBd8l61ygWtZIXNaobVIUGjCwVkNZwIBLSBCNAK+p8gIiIiIvJgkkqG\nWhfSPsMEtK2S57I1Q6PR4EK1E+XVZuw9Xt5+PFAro1eMAb1jQtA71oDesQb0ijEgslug259r8vmC\n5HQpMNVbUFHdjAqTGRWmZlRUm3HB1Iyq2hY4nMol71dJCjSSHQEuK6yWFtgQAG1gNzggwwE9oNVD\nyzJERERERHTDVLIaqsDQtlXyvvuay+mA02aGWgZsig75pQ7kl9Zfcl6AWoW4yCB0jwpG98ggxEUG\no3tUELpHBiE8RNcps04+U5Byi2tQVduC6rqW7/5rQVVd238dTtd/vF+WXFBLdkiuVrS2WmB3qqHR\nhwIqGa1KAKAKgCooBLrL/F1ERERERNS52kpT20Jmzn/5utPpgMtmhkYGnIoWpZUOlFQ2/cf5ARoZ\nMeGBiArTIyZMj+hwPaLDAhEd3va6o3ymID339/3/8TW15IIs2SG5bLC3WmBzAqoAA9QBgXAqKjgV\nLaDSQhUYAk4KERERERF5HllWQ75McVIUBU67FXBaoVar4FJ0KK+yo6yq+bLf5+V5PTv09/lMQYK1\nGnanCy5JiwCdAZJKhkNRwfFdCUKgAdxqiIiIiIjIN0iSBHVAIIC2DWod/3bc5XTAYWuBDAfU6o7X\nHrcXpKVLl+LEiROQJAkvvPAChg0b1n4sIyMDb7zxBmRZxoQJE/D0009f85wr0kXBsxYIJCIiIiIi\nUVSyGgGBIQAA5Rrv/VduLUhZWVkoKSlBeno6ioqKsGTJEqSnp7cff/XVV7F8+XJER0fj4YcfxvTp\n01FbW3vVc4iIiIiIiNzFrQUpMzMTKSkpAID4+Hg0NjbCbDYjKCgIZWVlCA0NRUxMDABg4sSJyMzM\nRG1t7RXPISIiIiIicieVO7+5yWRCeHh4++uwsDCYTKbLHgsPD0d1dfVVzyEiIiIiInKnLl2kQVGu\nfPfflY5d7Zx/1dFVKcif9ER2drboECQA/90J4Dig73Es+J+fpN0pOgJ5MbcWpOjo6Etmf4xGI6Ki\notqPVVdXtx+rqqpCdHQ0NBrNFc+5ktGjR3dyciIiIiIi8kduvcUuOTkZW7duBQDk5uYiJiYGen3b\nJk09evSA2WxGRUUFHA4Hdu/ejTvuuOOq5xAREREREbmTpHT0HrYb9Oc//xmHDx+GLMt48cUXcerU\nKRgMBqSkpODIkSP44x//CACYMWMGHnvsscuek5iY6M6IREREREREALqgIBEREREREXkLt95iR0RE\nRERE5E1YkIiIiIiIiL7DgkRERERERPQdnyhItbW1ePLJJ7FgwQLMmzcPOTk5oiORAE6nE8899xzm\nzZuHtLQ0HD16VHQkEuTQoUO4/fbbsWfPHtFRSIClS5ciLS0Nc+fOxcmTJ0XHIYHy8vIwdepUrFy5\nUnQUEuj1119HWloaZs2ahe3bt4uOQwJYrVY8++yzeOSRRzBnzhzs3r37qu/v0o1i3WXDhg24//77\ncffddyMrKwtvvvkm3n//fdGxqIt9+eWX0Ol0+PTTT1FYWIjnn38en3/+uehY1MVKS0vx8ccfY8yY\nMaKjkABZWVkoKSlBeno6ioqKsGTJEqSnp4uORQJYLBb8/ve/R3JysugoJNChQ4dQWFiI9PR01NfX\n44c//CGmTp0qOhZ1sZ07d2LYsGF44oknUFFRgYULF2LSpElXfL9PFKSLy4MDQEVFBWJjY8WFIWHu\nvfde3H333QCA8PBwNDQ0CE5EIsTGxuKtt97C888/LzoKCZCZmYmUlBQAQHx8PBobG2E2mxEUFCQ4\nGXU1rVaLd999F8uWLRMdhQQaO3YskpKSAAAhISGwWCxQFAWSJAlORl3prrvuav9zRUUF4uLirvp+\nnyhIAGAymfDUU0+hpaUFH374oeg4JIBarYZa3TakP/zwQ9xzzz2CE5EIAQEBoiOQQCaTCbfcckv7\n67CwMJhMJhYkP6RSqfj7gKBSqRAYGAgA+PzzzzFx4kSWIz+WlpYGo9GId95556rv87qC9Pnnn2PN\nmjWQJKn9E4BnnnkGycnJWLNmDfbu3YvnnnuOt9j5uKuNg5UrV+LUqVPXHPzk/a42DogAgFv9EREA\n7NixA1988QWvD/1ceno68vLy8Mtf/hIbNmy44vu8riDNmjULs2bNuuRrhw8fRkNDA7p164YJEybg\nV7/6laB01FUuNw6Atgvm3bt34+2334YsywKSUVe60jgg/xUdHQ2TydT+2mg0IioqSmAiIhJt3759\nWLZsGd5//30EBweLjkMCfPvtt4iIiEBcXBwGDRoEp9OJ2tpahIeHX/b9PrGK3fbt27F+/XoAwJkz\nZ9C9e3fBiUiEsrIyrFq1Cm+99RY0Go3oOOQBOHvgf5KTk7F161YAQG5uLmJiYqDX6wWnIiJRmpub\n8Yc//AHvvPMODAaD6DgkyJEjR7BixQoAbbdiWyyWK5YjAJAUH7iCqKurw3PPPYeWlhbYbDYsWbKk\n/YE88h9vvPEGNm/ejLi4uPbbrZYvX97+XBL5h+3bt+Ovf/0rjEYjgoKCEBYW9v/buUMVVeIwjMPf\nIhZdMFptXsZm72DDgtngBayoiNsUNm3YaJgkGLwNg7A3sCwWLYpJmOQpf047TXZwzvPkCW+cH/Mx\nsVqtip7FL3p/f4/NZhOVSiXG43G02+2iJ1GAr6+vGA6HcTqdolKpRKPRiCzLotFoFD2NX7RcLuPj\n4yNardbfd4PZbOaHXv+ZPM9jMBjE4XCIPM+j3+/H09PTP58vRSABAADcQilO7AAAAG5BIAEAACQC\nCQAAIBFIAAAAiUACAABIBBIAAEAikAAAABKBBAAAkAgkAEpjsVjEaDSKiIjv7+/odDpxuVwKXgXA\nPRFIAJRGt9uNn5+f2G63MZ1O4+3tLWq1WtGzALgjD9fr9Vr0CAC4ld1uFy8vL9HpdOL19bXoOQDc\nGV+QACiV8/kc9Xo99vt90VMAuEMCCYDSyPM8JpNJfH5+RrVajfV6XfQkAO6MEzsASmM+n8fj42P0\ner04Ho/x/PwcWZZFs9ksehoAd0IgAQAAJE7sAAAAEoEEAACQCCQAAIBEIAEAACQCCQAp+ZgMAAAA\nE0lEQVQAIBFIAAAAiUACAABI/gDhChAXx5FiNgAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Plot a standard normal distribution and mark the critical regions with shading\n", "x = np.linspace(-3, 3, 100)\n", "norm_pdf = lambda x: (1/np.sqrt(2 * np.pi)) * np.exp(-x * x / 2)\n", "y = norm_pdf(x)\n", "\n", "fig, ax = plt.subplots(1, 1, sharex=True)\n", "ax.plot(x, y)\n", "ax.fill_between(x, 0, y, where = x > 1.96)\n", "ax.fill_between(x, 0, y, where = x < -1.96)\n", "plt.title('Rejection regions for a two-tailed hypothesis test at 95% confidence')\n", "plt.xlabel('x')\n", "plt.ylabel('p(x)');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we collect the relevant data for our test and calculate the test statistic for a two sided, $5\\%$ significance test. Keep in mind that any negative characteristics of the data will negatively affect our hypothesis test and possibly render it invalid. In the case of our test of MSFT returns, we may run into issues of time-period bias, or of look-ahead bias (if we prepare the test incorrectly). As always with historical data, the data that we work with may result in a specific test result that may not hold for the future. We also have to make sure that the data does not include any values that we would not have known during the time period we are testing (though this is more of an issue when comparing multiple things with hypothesis tests).\n", "\n", "Here we calculate the test statistic:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "t test statistic: 0.740593955141\n" ] } ], "source": [ "n = len(returns_sample)\n", "test_statistic = ((returns_sample.mean() - 0) /\n", " (returns_sample.std()/np.sqrt(n)))\n", "print 't test statistic: ', test_statistic" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In order to make the statistical decision for the test, we compare our test statistic to our critical value. Our test statistic as stated above is between the two critical values for a 95% two-tailed $z$-test so in this example we **fail to reject** our $H_0$, our hypothesis that MSFT returns are **not** $0$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If we chose instead to determine the result of this hypothesis test with a $p$-value, we would calculate the $p$-value in the following way:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from scipy.stats import t" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "P-value is: 0.459634667217\n" ] } ], "source": [ "p_val = 2 * (1 - t.cdf(test_statistic, n - 1))\n", "print 'P-value is: ', p_val" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Because the $p$-value is greater than our significance level, $\\alpha = 0.05$, we **fail to reject** the null hypothesis." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "After we make the statistical decision, we have to translate it into real life. Oftentimes this may be difficult to act upon directly, but the results can have other implications. In the case of our example, we have found that the daily returns of Microsoft in 2015 were not significantly different from $0$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Hypothesis Testing on Means\n", "\n", "A $z$-distribution, or a standard normal distribution, is an essential probability distribution in finance. We like it when things are normally distributed because it entails many useful properties. On top of this, many fundamental methods require an assumption of normality in order to proceed. However, in most cases a $z$-distribution will be inappropriate for our data. We rarely know the true parameter values (mean and variance) of our data and must rely upon approximations. In these cases, we should use the $t$-distribution, and approximation of the normal distribution. The $t$-distribution is more forgiving when it comes to small sample sizes and is meant to be used with sample mean and variance. It has fatter tails and a lower peak, giving more flexibility compared to a normal distribution.\n", "\n", "Both the $t$ and $z$-distributions rely upon an underlying assumption of normality, which is typically the case when we are analyzing financial data. As such, in addition to testing individual means, it makes sense to use them to compare between two or more mean values. We can use a hypothesis test to determine whether the means of several data-sets are statistically different from one another. Here, we will use a $t$-distribution to demonstrate. We will compare the mean returns of the S&P500 and Apple stock with a hypothesis test to see if the differences are statistically significant or not." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0sAAAHMCAYAAAAEbjM/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmYHFd99/utqu7qnp5F+4xlyZZt2cjENsbITt7EgEgi\nIHBJeIivhfzYcB/eG7gPCfcm8L6BEBKTN9cOAR5uAhhBCFvsEAvM4kUYL2C8yrLlkRctlmVto9Fo\n9r3XWs65f1SdWnp6qZ7pruqe/n3+kTSL+nR1Led3vt/f90iccw6CIAiCIAiCIAjChxz1AAiCIAiC\nIAiCIJoRKpYIgiAIgiAIgiBKQMUSQRAEQRAEQRBECahYIgiCIAiCIAiCKAEVSwRBEARBEARBECWg\nYokgCIIgCIIgCKIEkRRLX/jCF7Bz507cdNNNOHjwoO97e/fuxY033oidO3di165dztfvv/9+vP/9\n78cNN9yAJ554IuwhEwRBEARBEATRZoReLO3fvx8DAwPYvXs3brvtNtx+++2+799+++244447cPfd\nd+OZZ57BiRMnMDMzg2984xvYvXs3/u3f/g2//vWvwx42QRAEQRAEQRBtRizsF3z22Wexfft2AMDm\nzZsxNzeHTCaDzs5ODA4OYuXKlejr6wMAbNu2Dfv27cOqVatw/fXXo6OjAx0dHfjHf/zHsIdNEARB\nEARBEESbEbqyNDExgdWrVzv/XrVqFSYmJkp+b/Xq1RgbG8PQ0BByuRw+/vGP45ZbbsGzzz4b9rAJ\ngiAIgiAIgmgzQleWiuGcV/0e5xwzMzPYtWsXzp49iw9/+MP4zW9+E9YQCYIgCIIgCIJoQ0Ivlnp7\nex0lCQDGxsawbt0653vj4+PO90ZHR9Hb24tUKoVrrrkGkiThggsuQGdnJ6ampnwqVCn6+/sb8yYI\ngiAIgiAIglg2bN26teTXQy+Wrr/+etxxxx3YsWMHDh8+jL6+PqRSKQDAhg0bkMlkcO7cOfT29uLx\nxx/HV77yFSSTSfzt3/4tPvrRj2JmZgbZbLZqoSQo98aXE/39/W3xPr2043suBx0LOgbF0PGgY+CF\njoULHQs6BsXQ8aBjAFQWWEIvlq655hpcccUV2LlzJxRFwa233oqf//zn6O7uxvbt2/H5z38en/rU\npwAA73vf+7Bp0yYAwLvf/W7s2LEDkiTh1ltvDXvYBEEQBEEQBEG0GZH0LIliSLBlyxbn79deey12\n79694Hd27NiBHTt2NHxsBEEQBEEQBEEQQBMEPBAEQRAEQRAEER6ccxQKBeff+Xw+wtGESyKRgCRJ\ngX8+9OhwgiAIgiAIgiCio1AoOMXSFVdcEfFowsP7voNCyhJBEARBEC3FXH4exyZP4toNV0c9FIJo\nWRKJBJLJZNTDaHpIWSIIgiAIoqV44LVf4UtPfwvn5kejHgpBEMscKpaaHMZY1EMgCIIgiKYip1v9\nFVktF/FICIJY7pANr4kZSY/jMw//Ez7+2x/Cf7vgLVEPhyAIgiCaAsathUSd6RGPhCCIpfLDH/4Q\n999/P1RVRaFQwCc/+Un09/fjgQceQF9fHzjnSKVSuO2225DP5/Gxj30MDzzwAGIxq4z593//d8zM\nzOCv//qvGzI+UpaamNH0OHJGHmdmh6IeCkEQBEE0DaYolkwj4pEQBLEUhoaGcM899+Duu+/GXXfd\nhS996UvYtWsXAODDH/4w7rzzTtx11114z3veg69+9au44IIL8Pu///v4z//8TwDA9PQ0fvrTn+LP\n//zPGzZGKpaaGM45AECjhwFBEARBOJjcBAAYjJ6PBNHKzM/PQ9M0J6Huoosuwl133bXg5970pjdh\nYGAAAPDxj38cP/rRjzA/P49vfvOb+MhHPoLOzs6GjZFseE0Ms4slwySbAUEQBEEIRD+vTsUSQdSF\n7z1wGM+8XF8n0/VXb8B//+PKseSXX345rrrqKvzhH/4htm3bhre//e1417veteDnHn/8cbzpTW8C\nAHR3d+OWW27BrbfeijNnzuCzn/1sXcddDBVLTQyHrSzRw4AgCIIgHBjZ8Ahi2fDFL34RJ0+exNNP\nP43vfve7uPvuu3HdddfhzjvvxMMPPwzOOS6++GJ85jOfcX5n586d+P73v4+/+7u/q2mD2cVAxVIT\nw52HASlLBEEQBCEQPUtkwyOI+vDf//iKqipQo9A0DZdccgkuueQSfOhDH8If/dEfYXh4GB/+8Idx\n8803l/wdRVFw/vnnY+PGjQ0fH/UsNTHChkc2A4IgCIJwoYAHglge3HPPPfjsZz/r9OnPzs6Cc441\na9ZU/V3xO42GlKUmhpGyRBAEQRALYMwKeKDocIJobW644QacOnUKO3bsQCqVgmma+NznPoeDBw9W\n/d1G2+8EVCw1MaJniYolgiAIgnBhjg3PjHgkBEEsBVmW8elPf3rB17dt21b1d++8885GDGkBZMNr\nYjjZ8AiCIAhiAdSzRBBEWFCx1MQ4PUvkySYIgiAIB0rDIwgiLKhYamIcZYlseARBEAThYDo9S1Qs\nEQTRWKhYamKcniV6GBAEQRCEA23aThBEWFCx1MRQGh5BEARBLMTkpCwRBBEOVCw1McKGp1E0KkEQ\nBEE4MGYvJlKxRBBEg6FiqYlxolGpgZUgCIIgHEx6PhLEsmHPnj248sorMTMz4/v6n/3Zn+Ev/uIv\nfF/7gz/4A9xyyy340Ic+hJ07d+JrX/saAGBoaAg33HBDQ8ZH+yw1MaJnSaOVM4IgCIJwcGzq9Hwk\niJZnz549ePe7342HH34YH/zgBwEAU1NTSKfTGBkZQTqdRldXFwBrI9rvfOc7SCaT4JzjIx/5CA4c\nOIC+vr6GbVJLylITwygNjyAIgiAWIHqWaJ8lgmhtZmdncfr0aXzsYx/Dnj17nK8/+OCDeOtb34q3\nvvWteOSRR5yvc86dNhVJknDVVVdhYGCgoWMkZamJEScD4wwmM6HISsQjIgiCIIjoET1LVCwRRH24\n66WfYt/ggbr+n//tgrfgQ2+ubI176KGH8I53vANbtmzB2NgYxsbG0Nvbiz179uAf/uEfkE6n8c1v\nfhN/+qd/uuB38/k8nnvuObz//e+v67iLoWKpiRE2PMCyGlCxRBAEQRBuzxJtSksQrc2ePXvwl3/5\nlwCsfqQHH3wQ27dvx8TEBC6//HIwxnDs2DFMT09j1apVAICPfvSjkCQJkiThgx/8IC699FIMDQ01\nbIxULDUxwpMNWFa8ZCwR4WgIgiAIojmgniWCqC8fevMNVVWgejM6OoqXX34Zt912GwBLKerp6UE+\nn0cul8MHPvABcM5hGAYeeugh3HTTTQDg9CyFBRVLTYyw4QH0QCAIgiAIAaXhEUTrs2fPHtx88834\nzGc+43ztXe96F771rW/hJz/5CS699FIAwAsvvIB//dd/dYol7/zYS7mvLxUKeGhifDY8CnkgCIIg\nCAAAY7QpLUG0Or/4xS8WxH3/yZ/8CTRNcwolALj22msxMTGBkZGRiol3J06cwHvf+1685z3vwXvf\n+14cOFCfHixSlpoYRsoSQRAEQSzAJBseQbQ8P/vZzxZ87ROf+AQ+8YlPLPj6Qw89BAD49a9/XfL/\n2rBhA1566aX6DtCGlKUmxt+zRA8EgiAIggBo03aCIMKDiqUmxtezRDY8giAIggDgVZbo2UgQRGOh\nYqmJKY4OJwiCIAiCepYIgggPKpaaGEbKEkEQBEEswEnDs4smgiCIRkEBD00M9/QsaVQsEQRBEISv\nn9cwDXDOKyZkEQRRmkKhEPUQQqdQKCCRqG3fUlKWmhivDc8gqwFBEARBgDG3WOLgjspEEERwEomE\nUzQcPnw44tGEh/d9B4WUpSbGa8MjZYkgCIIgsKA4MkwdMVmJaDQE0ZpIkoRkMun82/t3wg8pS02M\nPw2PlCWCIAiCMLm/T4lCHgiCaCRULDUx/jQ8UpYIgiAIghUpS1QsEQTRSKhYamIYKUsEQRAE4cPb\nswTQxrQEQTQWKpaaGO/qGSlLBEEQBLGwZ4mUJYIgGgkVS00M9SwRBEEQhJ8FPUv0fCQIooFQsdTE\nePdZok1pCYIgCKKEDY+UJYIgGggVS00M8wQ8aGTDIwiCIIgFAQ9ULBEE0UioWGpivDY8amAlCIIg\nCOpZIggiXKhYamK8xZJGDwOCIAiCgMmW1rPEOcdoetz3jCUIgigHFUtNjNeGRz1LBEEQBLF0G96L\nw4fwf//iVrw4fKiewyIIYplCxVIT40vDI2WJIAiCIJxiSVXiAGrfWmMmP+f7kyAIohJULDUxlIZH\nEARBEH5Ez1IilgBQuw1PbPherFARBEGUgoqlJoZxsuERBEEQhBfTjg5PKiqA2m14nIolgiBqIJJi\n6Qtf+AJ27tyJm266CQcPHvR9b+/evbjxxhuxc+dO7Nq1y/e9QqGAd77znbj33nvDHG5kMHiUJbLh\nEQRBEASYvSmtGrOKpZoDHuxnK6OAh2XNnS/9FN954e6oh0EsA0Ivlvbv34+BgQHs3r0bt912G26/\n/Xbf92+//XbccccduPvuu/HMM8/gxIkTzvd27dqFlStXhj3kyPD1LFF0OEEQBEE4ilDCVpZqXUwk\nG1578PzZF/Hc0EtRD4NYBoReLD377LPYvn07AGDz5s2Ym5tDJpMBAAwODmLlypXo6+uDJEnYtm0b\n9u3bBwA4ceIETp06hW3btoU95MjgZMMjCIIgCB/FPUu12vBEkSTsfMTyxOSMNiwm6kLoxdLExARW\nr17t/HvVqlWYmJgo+b3Vq1djbGwMAPDlL38Zf/M3fxPuYCNGRIfH5BjZ8AiCIAgCnp6lGPUsEeVh\njMEgVw5RB2JRD6DSpnDie/feey+uu+46nH/++VV/p5j+/v6lDTBCpqYmAQAKZGQL2YrvpZXf52Jp\nx/dcDjoWdAyKoeNBx8DLcjoWr2cGAADZuSwAYHDoLPoLwd/fmcFB6/fODqI/u3yOSy0sp/OhHAW9\nAN3UA73Xdjge1aBjUJ7Qi6Xe3l5HSQKAsbExrFu3zvne+Pi4873R0VH09vbiySefxODgIB555BGM\njIwgkUjgvPPOw+/+7u9Wfb2tW7fW/02ExBPPHADSp5BKdKBgaGXfS39/f0u/z8XQju+5HHQs6BgU\nQ8eDjoGX5XYszLMKMAz0revFa5lTWNO7FluvCfb++vv7sWHjBmASWH/+emy9Yvkcl6Ast/OhHNKZ\n/wIzOa55yzWQpfJGqnY5HpWgY1C5WAy9WLr++utxxx13YMeOHTh8+DD6+vqQSqUAABs2bEAmk8G5\nc+fQ29uLxx9/HF/5yldw8803O79/xx13YOPGjYEKpVZHpOGpiop0IRPxaAiCIAgiekw7De+Vo9NA\nEjVbrciG1x4wJnrTTMgK7ZRDLJ7Qi6VrrrkGV1xxBXbu3AlFUXDrrbfi5z//Obq7u7F9+3Z8/vOf\nx6c+9SkAwPve9z5s2rQp7CE2DeKGnlBU6MwA5xySJEU8KoIgCIKIDtGzND6tIb5+MWl49iSaiqVl\njSiqdWYgrsQjHg3RykTSsySKIcGWLVucv1977bXYvXt32d/9xCc+saTXnsnNYiQ9jsvXXbqk/ycM\nnHhUTxMrXfAEQRBEO+MoQkwBUHuxxEHKUjsgimGDmRGPhGh12k6X/OEr9+IffvMvyGq5qIdSFaEs\nqXaBRHstEQRBEO1OcbFUqw3P3WeJNqVdzggbHsWHE0ul7YqleS0DxhnyRiHqoVRFrH6Jjfc0Rnst\nEQRBEO2NaSsF3BTKUm3PRm4XW6QsLV8YY84cipQlYqm0XbEkNnc1ePNfPGLVSxU2PFKWCIIgiDbH\nLFaWau5ZIhvecsf0zPEMkxaaiaXRvsVSC8iyxTY8UpYIgiCIdmeBDa9G5YDbSbPCpkUsP7zhHaQs\nEUulDYslq0gyW+DiETd0YcPTaXWEIAiCaHNEscS5DAlyzf28pCwtf7yFcCssjhPNTdsVS0KdaYVi\niXF/zxIFPBAEQRBRYTITTw88j4yWjXgc9kSYS5AhL6JniYql5Y7PhtcC8z2iuWm7Ysm14TX/xePY\n8GJ2Gh7Z8AiCIIiIODx2DF/b9308cXpfpONwJsJcgsSV2jelpejwZY/XhldrtDxBFNOGxZJtw2uB\ngAcODgkS4jJFhxMEQRDRMpOfAwAUDC3ScThFDpcsG16tAQ9MpOFRdPhyhWx4RD1pu2JJ2PBaQVli\njEGWJGcjWlodIQiCIKIirWUAuMpMVHiLJXCl9mLJHn8rLJoSi4NseEQ9abtiSdjwWqJnCRySJCMu\nxwBQwANBEAQRHWm7VylqRcbpWYIEzuTabXjUs7Ts8afh0UIzsTTarljSWqxnSfIoSxoVSwRBEERE\nCGUp6iLD27MEJtWsLLnFEtnwlivMM8ejFgZiqbRVsWQy07nJt4L8zjmHDMnZZ4lWRwiCIIioEMoS\nj7jIcKPDJbBFFEvi96Mu+ojGQcoSUU9iUQ8gTLw2ttaw4TFIkoSYbcMjZYkgCIKIiozTsxRtkcE8\n0eHMlMEX2bNExdLyxWS0KS1RP9pKWdI8N9RWWGkQNjxVET1LzT9mgiAIYnnSND1L3FssSeCc17QA\nSj1Lyx9/wAPNnRZL1Cpys9BWxZJXWWqFlQZhw4vJtM8SQRAEES1OGl7kxZJ4fkvgTAJQW1osJxve\nssdbPFOxtDgeO/kMPnrfpzFXSEc9lMhp22KpNWx4VhoeKUsEQRBE1LjKUvPY8MCsaUwtiXhkw1v+\nME42vKVycvoM5gppjMyPRT2UyGmrYsnb89MqAQ+Sb58lUpYIgiCI8OGcI9NkAQ/gEji3pjG1KEsU\n8LD8oYCHpSMWJbJ6LuKRRE9bFUu6r2epNYol2bfPEl3wBEEQRPjkjLxbZES8Ka3p25S29mKJosOX\nP2TDWzqGLSpQsdRuxVKL9SwxziDDoyxRGh5BEAQRAcKCB0SvLJlOdLjsseEFfz5SwMPyx/vZttJC\nc7qQwb/s/Q4GZ89FPRSPspSPeCTR01bFktaSPUteG17rXPAEQRDE8iFdyDh/j7pY8m44uhhlSShj\n3nhponUIcv6ZLdqzdGzyJJ4d7Mf+oZejHgopSx7aqljy3kxbo2fJ2mfJteGRskQQBEGEj0jCA6JX\nZBz7HJfBbWWpFvWAepZal7tfuQ+f/OX/ckM+ytCqNjxR2BUMLeKRUM+Sl/YqllrMhieiwxVZAeBf\nKSEIgiCIsMjorg0v+p4l+/nt6VmqZUJMNrzW5fXJUzg3P4qsUXkC36ppeOI8LpjRF0tCWcqRDa+9\niqVWteEpkvUxUbFEEARBREG60Hw9S77ocCqW2oK8UQDgn8+VwuseaqUWBlHYaU2hLJENT9BWxVIr\nKkuSJDvFEmuBMRNE2MwX0nhx9khN+6wQBFEbXhsej9qGx9xNaZfSs0RpeK1HzrBUjmrFhLcfrZVs\neGIhvxmUJZN6lhzaq1jy9iy1QOEhbHiyY8Nr/jETRNg8NfA8Hhnfi1dGj0Y9FIJYtvh6liK24bk9\nS9KiepZEsUfP1NYjqLLUuja85ulZMqlnyaGtiiXNU6kbLXCTXGDDo+QegliAeKjMFeYjHglBLF8y\nnujwqO1rosjpUGOL6lliZMNrWYIWS94CyWwlZYk3n7JEPUttVyy1mrLEIEsyZOpZIoiyiAmPd+Wb\nIIj60kz7LDHOwDnQmVSdnqXFKEu12vAokTZ63GKpcjHBvD1LLWTRdnqWmqFYImXJoa2KJb3VAh64\npSwJdYl6lghiISYVSwTRcPw9S9EWSwYzAS6hK6UuqmeJo3Zl6ej4CXz4Z5/EQbL7RoZu6s7crWrA\nQ4v2LDlpeE1hw6OeJUHbFkutcPFwziBDAgDIskLKEkGUwFGWPGldBEHUF6+yFHnPEmMAJHR2xD09\nS8FVn8XY8AZmzsJkJkbmx2saK1E/hKoEBEnDa82epWYMeCAbXpsVSxrzFEst1LMEAIokUzMqQZSA\nbHgE0XgyWhaJWAJA9MqSyRnAJSTiChTJCkCqSVkSxVINfcDzWtp+bXoOR4W/WApuw2uFxXGBOL+a\nITpcFG46M9regtpWxZLecj1LRcUSBTwQxALcYomUJYJoFGktg261E0D0wQimbcOTZQmqEgdQq7LE\nfH8GYb6Qqfl3iPriLZaq2dS886VW3Gcp3xTKknsM292K12bFUmv1LFnR4dZHZNnwmn/MBBE2YnWY\nlCWCaAyaqaNgauhOWMVSsyhLiiwhEVcBNL5nab5gKUutZOlabnjtYMvVhtdMm9J658ntbsVrq2LJ\na8NrhcLDa8OLSUpNloFW4ej4cRyihlliCYiH4jwVS0QDOD55Gt96/q6maLiOChEb3pPoAtAkPUtc\ngqJI6IhbylKjo8OFDY+UpeiopWepZW14np6lpliUsCFlqY3w2vBaYaXBa8OT5eXZs/SN5+/EN567\nM+phEC0M9SwRjeTpgefx2Km92D/0ctRDiQxRLHWrVrHEo7bhcSvgQZFlJG1lSTOC2/CcnqUaJqPC\nhtcKrpTlSi09S/40vNb5zLyFXdR9Qt45JxVLbYQ48SRJaomLx5uGZwU8LK8VLZOZGM9MIm+0t7xL\nLA1RLOX0fEtc10RrIe67B84djHgk0SEWIroToliKeMWbmeBcgixJTrFUqKFYWlzPkgh4WF7P4VZi\n0Wl4LRRO4C3Go07E844lSza89kE3dciSDFWON3x1aDo3i1dGXnX+PZGZwv986DYcGTsW+P9g4JBl\n6yNSlqENbzo3C8YZDHr4EEvAZxWgkAeizojz68WRw22rKiwolqK24XGPDU+1iqW8HnxiKYq9Wgof\nYfOlBZnoqMmGZ39OElpjcVzgTWqOvFgiG55DWxVLGtMRV+KIyUrDH3o/PrQHtz/xdUznZgEAJ6fP\n4MzsEF4dPx7o9znnlg0Prg2vFeLOa2E8OwmgtfzERPPhXR0mKx5Rb8SkK6NlcWzyZMSjiYa007PU\nHGl4zBPwkFKtOPNaiiWG2pQlzdSdifrg6FyNoyXqhdeFElRZUmNqS80xvIVd1CEPfmWJiqW2QTcN\nqHIMiqw0vPAYz0yCgzvSvWgODrpSIFbu3OhwxXloLxfGM1MAhKUi2pXKVuHo+HG8Pnkq6mE0FV7F\nleLDiXrjXV3tP3cowpFEh7iuhLJUS69PI7DS8GTIsoRUonYbHq8x4CFdcBdhclrrWLqWG77o8Ko9\nS9Z8KaHEYXIWeYEfFG+Bko+6WPIcM0rDayN0U4eqqFax1ODCYzZvrT6J1Q9xYVdbDRGIm7ksiiV5\n+fUsTWSnnL+3q72lVr6673v41vN3RT2MpoKUJaKReO+77dq35Njw1OboWWJOwIOEVMJSlhZTLLn/\nV2VEEp718/Ssioq8XkPAg/25JhSrmG4VK553LlTtPTYak5lQJKtMIGWpjdBMHXElhpjUeBveTGEe\ngLsSUrD/rLVYkuD2LC23YkkoSwBZ8YLAOcdMfs63ukb4J7OkLBH1Rij6m1dvwtm5YYymxyMeUfiI\nYqmnSXqWTO5uSttpF0uL2ZTW+nv19yIcIgBoc/gI8T77qn3eIsktEbPOj1aZY3jHGWXPEuccjDN0\n2dc8BTy0EaJnSWlwzxJjDHN2sSROdkdZCiirsgU2PHnZ2fAm7J4loHVWfaKkYGowmbnseteWCilL\nRCMRxfh1G64GAPS3obokFiG6nJ6laIslzrndsySjM6mCcwmaWcM+S55iL8hz1buH23LcwmMxZLRs\n6KFTuRp6lsTYErEWU5a8AQ8R2vDEfa9bta55UpbaCN3UocpxxORYQyec81raUYYKjrK0NBueLFvK\nUtT2h3oykZl2/t4qqz5RIgoBsiz6oWKJaCTFxdKBNuxbEvssdcVTkCQp8v4Pxhm4HfCQiCsAk2Gw\nBtrwvMrSMnN4LIaCoeHPH/gc/uOln4T6ur40vCqFhKMsOTa81phjGJ4CNEobnlhE6LYXSHJULLUH\nnHPopoG4Emu4sjSbn3f+XhzsEPTkF5v+SZ59loDwUoiOjB3D0YDJfYuBc+6k4QGts+oTJWLCQsWS\nH58NrxCODW8iMxX5hJEIBzFpWJdajYtXXoDD48fartk5rWUQV+JQYypkSJEv2nmjw9W4DHC5pmeI\nv1iq/l7mPAEPy20Lj8WQ0bLIGXmcnRsO9XVFsZSMJQKn4TnKUg3KY5T4bHgRKktCUOiId0CWZLLh\nRT2AsDCZCQ5uRYdLSkNXGWbybrSoY8OrMQ1vgQ3P3m8pjFUtzjm+8sy3sev5Oxv2GvOFtO9mR9ay\n6ggrDO1L5YeHrCydnR3Gn+/5HB45/mTDX4uIHnHPlWUFbzn/KpjMxCujr1b5reVFWsuiS00BACRJ\n9l1zYcM4s3umrE1p4zFbWeI12PB8PUvV30ualCUfYv7kVdzCIG8UoCpxdMSSVedSoqhVW0xZapZN\nacXxi0kKUvEOsuFFPYCw0GyJPoyeJa+ytOSAB8kNeACC+auXynh2CvNaxvc+GvEaXlrlRhYlQllq\ntd61nJ7HTw7/wreIUE9MFm6xJFIcp3IzDX8tInrEs0KRZGw9/yoA7de3lNYy6LJ7F2RJ8vX8hI2j\nBNk2PDUugzMZZi3FEmqz4c157iuUhucubs4XwrU95/UCkrEEVCUeQFkSAQ8t1rPEmqNnSXzGsiyj\nI55sOzW9mLYplkRyiirbxVID+39mC26RoS024EGsZnp6loBwVrVOTw8CsJopG3WDGc9YFjyhnBlm\na9zIosRVllrrWL04fBg/PrQH+wYPNOT/F9eKIsmhpOGJh3TQhQ+itXGUJUnGJasvxIpkD148d6ht\nbJiMM2S1nFMsWcpShMWSeCZxCbIiQY0pAJdrCl7wjj/IM3U+740O9/aU6C0zCa8nwtI25+nPDoO8\nUUBHLBmoWBKfU+v1LJGy1Iy0UbFkXShxJYZYgwuPWc8KuthUbNEBD050eHg2vNMzZ52/Zxs0+RSr\n8+tSqwG0zo0sSoRqIiI9W4XijZnrjTgW3YmuUJQlcQ3XElVMtC6MmZAlGZIkQZZkvGX9lZgtzOPk\n1JmohxYKWT0HDo5O24YnI9qAB+cZaKfhxeMywGSwGpSlWgMeZjwuC/HzjDN88sF/wHf67w78ussF\n8Rnoph4aV1/HAAAgAElEQVTqhD5v5G1lSa2+zxLzF0t6i8wxvIuhQRfXGzkOWZaRincgZ+Tbul+v\nbYolrw3PKZYatCLkD3iwbXg1bkpbKjocCMeCJZQloHG2JrHH0vruXgCtI5FHScZTuLZSyENGtxWx\nBj2sTM4gQUK32hmqsqS3SMMwsTRMzqDYzwwAbWfFc2LDnZ6laAMeXAXJtuEJZQnB74kMtfUszRXS\n4EbM9/OGaWA8O4UTUwPBB79M8D5/5kLqW+KcI2/YNryYpSxVOg/FeaK2sg2vCdLwLGUpCQBtvcdj\nJMXSF77wBezcuRM33XQTDh70P3D27t2LG2+8ETt37sSuXbucr3/pS1/Czp07ceONN+LRRx+t+TV9\nNjy7/6dRk7fZgifgwVGW/EVTNdyeJb8NLwwLlldZatTkU/QsndcliiWaeFbDW7i2UrEkzqFGrewx\nziBDQleiM5S9P8SKplZDVDHRupjc3cUeAK7quxwxOYYD7VIs2X0prg0v4p4l5ipLsiwhHrN6ljiC\nW+tZjcpSRsuC6wnfzwt1pVG9mM2M93kdVsiDzgyYnCEZt3qWxNfKwexFNPGzrTLHMJiBmGwV5lEW\nS66ypKAj3gGgvfdaioX9gvv378fAwAB2796NEydO4HOf+xx2797tfP/222/H9773PfT29uKWW27B\nu9/9bkxMTOD48ePYvXs3ZmZm8IEPfADvfOc7a3pdrw1PabCyVDINr+bocGHDK1aWGjsRnC+kHYsc\n0LhiaTIzBVWJY1XHCgCts+oTJV5lqZX6lsS4G/WwYoxBlmR0qp3g4MjqOWfzzEYg7iWtEkVLLA3G\nmK9Y6ogncUXvZXh55FVMZWewOrUywtE1HqEMC2VJjrpnyS5SuBPwYClLgDV5FpPjSnjT/KpFhxum\nAY0VwPUU0JFxiyX7mTWXn4fJTJ/6uNzxPq/DKpbc2PCkU6hqplb28zaYCVmWncKjVeYYJjORiicx\nV0hDM6JbkPP3LFnKUjsXS6ErS88++yy2b98OANi8eTPm5uaQyVgrV4ODg1i5ciX6+vogSRK2bduG\nffv24brrrsNXv/pVAEBPTw9yuVzNN2thnRFpeEDjJpyz+XmsSHQDKL0pbZCxC5uAGx0eTsDDgK0q\ndSe6ADTQhpedwtrUas+NjCae1fAWrq3kHRbFUqNsa2IFUUzmGt23JBY8dFKW2gKTM0fZF7xlfftY\n8cT11OXpWYrWhuftWZKgxqyeJSD4AoY/4KHyPGBe9IoKZcl+Nov5AwcPzYrWLBgR2PC8eywl7AKp\nUjEhFjlE20Wr9Jga3ETKVnIKZnS2N/EZi54lAG2911LoxdLExARWr17t/HvVqlWYmJgo+b3Vq1dj\nbGzMii7ssD6se+65B9u2bXOKiKCIiY1q77MENEZZ4pxjtjCPdZ1rAHj3WXJP+iAXbbENzw14aOzq\nyKlpq1i6ovcNAPxqRr3I63mktQzWda72hG20xqpPlLSssqQ31oZncgZJkhybUKP7ligNr70otuEB\nnr6l4TYolgpCWfLY8Joh4AESZFlG3Kcs1dYTDFRfeHKUE0MF564q5f296dxswNEvD7zP69CUJXui\nLgIegMpOHeu6VVpOWTKYp1iKMOBBXOMxWfEUS6QsRUalFari7/3qV7/Cz372M/z93/99za/j9Cw1\nOOAho2VhMhMrkz1IKKpnM1r3Jh5kkrUwDU/ss9TYh9TpGSvc4creLQAas0ov+pXWptaQslQDab01\nAx6cyPMGKksy5BCVJQp4aCesFWq/stTbtRYX9KzHwdGjkU5owsBVlpqlZ8mNDhfKEmdCPQh2TRpm\ncBueUE64EQe4vEBZAtqvb8nXs6SFrywJ612luZQIZom32BzDZCbicgyqEo+2Z0koS5JMNjxE0LPU\n29vrKEkAMDY2hnXr1jnfGx8fd743OjqK3l4rAOCpp57Ct7/9bXz3u99FV1dX4Nfr7+8HABydPwkA\nGB4axlTBmqy/fOgVDKmrlvaGipjQpgEAeroABTJm0rPY/8J+34W6/6V+9MQq91RM69bNd3JyEv39\n/ZgYt47ZoSOHMJ4YWfDz4n0ulVeHX4cqxaGPWhfFybOn0V+oz/8tOJGxCjJtJoehtKVkHT9xAsnx\n2mr3er3nVmE26z6QX37lZaxSVzj/buZjMZ22Nm8dnRhryDizuSxkScLUiLV318HXDsE81zi7wNDY\nEABgNj3b1Me9mccWFvU4BrlCHlKJ/+t8eR0GzWHct/cX2Nx54ZJfp9Es9licnDgFADhzYgD6UBaG\nboDpLLLza1KzN4PmEs6cOY1X5DHHhvfiKy9htee+WA7vws3hI4cxmRwt+7NH09b754YKcAmGqaO/\nvx/TmqsmvfTaK+DDrZUUtpTP7/X5E87fT549jX6t8efCqaw1V5gam0SBWUXEy4dfwXhy4XwIADLZ\nDBgzMXjGmm+cOHUS3VNq2f+/Ge6XYluQbCYLhcuYTc+FOi7va53JDQMAnj5wBr+zyTq3j554DR0T\nkWsskRB6sXT99dfjjjvuwI4dO3D48GH09fUhlbJWhDds2IBMJoNz586ht7cXjz/+OL7yla8gnU7j\ny1/+Mn7wgx+gu7u7ptfbunUrAGD+lAaMApsv2gxlRgXmjmLL5ZfjolUb6/r+jowdA84AmzdegnOn\nx8HAccXVVwLuvQWX/9blTmR2OYbnx4ABoHddL7Zu3YojL50GZg/hDVu24NI1F/l+tr+/33mfS0E3\ndUyd+B4uW30RrnvztfiPs/eic2VXXf5vL5PH08AwcPVllpUFY09h44UbsXVz8Nep13tuFRhnKBz/\nrvPvy694Izb2rAfQ/MdCP/2fAIDuld0NGecPRu6DltPxW5e+EY+MP4N1G/qw9bLGHY/nnjsMzAHx\nhNq0x73Zz4kwqNcxUIbuQUJZ+Fl3jq/Ac4+9gtlUrumP9VKOxXPPHQZmgOuu3oq+rnVInvsZAET2\nngdnzwFnAHAZmy+5BNe+ZSPkfVZC7pY3bsGFKzdU/P3+/n7L3m4LSlsuX/hM9TJ5PAOMANDjAJcg\nyTK2bt2Ks3PD1jgArOxbha2/1dznwJFTk3jm5XP4P//kSrz44oElfX6Z0wZg15eJno5QzgXzrAKc\nAzZvugTzhQyenzmIzZdtxm/ZLQPF/MfIfeAmcNnmS4HRx7Hhgg1lnwvNcr/UTR04AaxasQrZ+QJk\nSQ5tXMXHID7yKjAEDE/qWPnmC4AxYN36Xmx9Y/THqVFUKkxDL5auueYaXHHFFdi5cycURcGtt96K\nn//85+ju7sb27dvx+c9/Hp/61KcAAO973/uwadMm/PjHP8bMzAz+6q/+CpxzSJKEL33pSzjvvPMC\nv66Q51Ul5vYsNaDvQ2xetyLRjUQsgdn83AKbRpBEPOEXXRjw0Dj71bxmJf2sSa1qqKVJ7LG0rnM1\npnOWWtIqfuKoEBtDClol4MFkJnKGpfI01IYnhWnDswMeqGepLWCMQYktTDq7ZPUmAMBYZmLB94Lw\n5OnnwDjDOy7+3SWNr9GUsuGFsTl6OUwnOhxQFHtrDXsqE7QvspZNaZ3NwG1liUv+NDwAmMk1vw3v\n4X0DeOyFQfxv11+85P8r6oAHb2BWOUzOinqWmt+GJ84pRVaQUFRkIrS9OdcFl2EULDWJbHghI4oh\nwZYtW5y/X3vttb4ocQDYsWMHduzYsaTX1NnCNLxG9H3M2t7lFckeJGIq8qa2wHcaxOO+MDpcjLlx\nD6msZl0IqXgHOmJJyJLckIAH0bO0LrUG8/YeHq1wI4uS4s+hVYpL781+sQEPT51+Hm9YezH6utaV\n/D5j9j5LIuChELxYGs9M4q8fvh1/8Tv/B67bcHWg33ECHkJMw8sbBahKHLLUnhaIKLHS8BYe97gc\ngyRJi+pZYozhu/27kYwlWqJYkiQJHXbfgiTJYBHer1nRprSA9Xw0EbxnybfwVKVYEsVAUukAgwQO\nUSx5Ah7yzR/wkNesY5MrLP2zMxscHW4yEz85/CDedtFv4/zuPgBA3nADHvIxq3CqVCwxxhDz9Sw1\n/zNT9MGJYinK4BDD0xuoFaz5ZzsXS23z5HWiw+V4Q9NRxIa0K5PdSMYS0E3dSXEpHkslFipL9j5L\nDVSWxIWQUjsgSRI61VRDksUmM1OQJRmrOlY4YRutcCOLkuLPoVXSA30JfouYYJ2dHcbXn/s+7j9a\nfiNqZqfhdSdqT8MbmBlCVs/htYkT1X/YJuyAB5OZ+H9+cSu+07+7+g8TdadUGh5g3ZsTirqoJuyz\nc8PIGfmW2Ng4o2XRGU85hXrU0eEikIFzGbLkX0wMmoYnCh7r/wuWhtetdgJcdgots8UCHgqaNd68\nVv3Zkc3rmJwtPzFu9Ka0x6dO46dHHsRjJ/c6X8vpCwMeKi1UmFzssyTmGM2/ICvmQTFZgRpTkTcL\nkV1r3v3McjlrDLllEh3OOcfJqYGaBJO2KZaEZUbiMgz7mmnExePY8JI9TrylWJkShU+gNDz4o8Nl\nJzq8gcqS7ipLgLWvRqPS8NZ0rIQiN6dE/u0X/gv3H30k6mH4EEWHZCuNrZKG5yuWFlFcnJm1whTy\nRvnmaXefJVEsBT9nxT4WtVhJxIQsLBtewdQwk5/D8Hz5JnSicZRKwxOoSnxREfLHJq3AoVZYJEpr\nWcfiCkS/Ka1TpHAJiiLSYm0bXgOUJeF+6Ep0QfIpS14bXisoS9Z4qylLBd3EX3/9KXzyX54o+zO+\n6HAtU/coebHg5V1o9m5KGyw63G/Da4X0UnFOxSRLWeKcRzY38ipLuaw171guytLhsWP4m0f/GU8N\nPB/4d9qnWLJPuEf2ncX9T1oPqkaszrs2vG4kYqJYsgooMZkL0rNU3oYXgrLkFEudSOvZuj4YDdPA\ndG4Wa+19qJpxn6UnTu/D0wP7ox6GD/Hw6LLVk1aYZAF+lWcxNryzc1YiT6X3a9o9S8lYAook16Qs\niZXJWlZHxUaIjdo3qhjRn6Yt84jqZqWcDQ8AEoq6qM/l2KSVsGY0ed8b5xxpLeM8u4Doo8PdniUJ\nsmPDC77oVvw8qxYdPpufB2cyelIdAJcAR1lyC4SZ/FykBWQQCrp1Dy1UUZb+85ev4szIPKbnCzDN\n0kWQq4DErPS2Ok+ixSKbV7WtNTqcMdPelLb5FmTL4etZsuePUcWHOy4mLiOTts7t5VIsCQdYLYuk\nbVMsiYtqYDgNTbNvdg3pWZpHTI6hM55CUrF2/BYfSI/a5RtLJZizKa29ciZHoyyZzPRtqLtUJnPT\n4OBYm7Ii25txwziDGaFNhIMi1JIVCSsNspmKy0pkdFflWVyxZMXCVrpWrX2WJGdj2lqUJfEAruWm\nKRY7GGehKHzCx06b4EZDORseAKixxdnwXrfjuE3OIt3gtRqaqUNnhk9ZkqSobXj+fZYAOH0pi7lG\nAilLRhwrUglIkEsqSwVTc4JsmpVCAGXp8MlJ3Peka0kWBVYx4nm9KtkDwFXf6oWYi5QsluLB91my\nbHjNN8cohyjoYnIMCaGeGdHc973K0mxaRzKWWDY2PKEy1lJAt02xJCwzE5MFcG7dYBvSs5Sfw4pE\nNyRJghqL21+zlKWepFUsBQp4KLLhRaEsdaq194BUw5uEB7jKUqOS0mqFcQbOeSCLlWEa+MKT38CT\np59r+LjEStuKpF0stUga3lJteEOzQlkq/7tCWQJQc7G0KGXJc26EYcUT13yUGxS2K+J+IEKBirF6\nlmo7B9KFDIbm3b1hmnkSJ67fTq8ND1KkBZ6jBHmKJddqFdziLqi2ADmvpcF1Fd2dKgAJkKzfL/7c\nmr1vqWAHPIg/i8kVDPzr7gOQAJy/1nbB6OWUJev/WNWxEkD9+5bEeedVbY8PW6mTfmWpgg2PmZYN\nT2m9niVFlqFGriy5Cu5MuoCOeHLZKEviOFOxVAJRSeYLcDawq/fqPOccM4V5Z0KbjPmVpW5HWarB\nhrcg4CFcZQmob7E0YSfhrU0JG15zrfqIiWkQf/PQ/AheHD5Uk+91sYgCoKfFlKWl2PBMZuJcegxA\n5fND9CwBos8uuHVUrFYutljSQngAU7EUHcy5D5ex4cUsG14tSsvrU6d8/27mSVxxbDgQvbJketLw\n5KJiKa8H2JYDxTa88s9UwzRQMAvgRhzdKdWnLAmFS0zcm71vSahEuTI2vO/vOYyRySw+8I5LsWWT\n5fzQyihL4p60ssNSluodH54poSwNjk8DADp8PUvVosNdZanZ3CKCs7PDeOj1xwG4hbvoWQKCLa43\nAq/ddTZdQCresYyKJaEsUcDDAkTqEGcywK23bZj1nXDmjQJ0U3eKpYTi71nqTtRiw7NOVCeBKITo\n8IxWrliqn8Q+npkEUEJZapIbmbh4gqRUjdnvZSy9uH1WamGhslT7ufvA0V/hn5/aFeqq8FKKpdH0\nuPM+KxWHjJmOAtuZ6ATjLLAlRlhMM3ou8I3Te26EoizZnxfZ8MKHiZXecjY8RQUHr+ncPmZb8MRi\nWrOo6qUoVSzJktw0PUtCWRIFSz6AZWlhz1L5+6F3j6WeVBwS5AXK0hrbUt78ypJIw1t4vh14bQy/\n3Hsam87rxs1/dDnUuPVcrm7DWwGg/sVSVvQseQoFDmvcuganWCq3gMQ5B+PMDpFq7sTd+44+gu8d\n+BEmMlPOPOjX+4cwO2f9PcjieiMQz1zOZcxlNKRiHcga+abvzQuCUyzVcO9tm2LJmdQwxW7SrP/q\nvBPukLBWW5yAh7wolqwHTpAVYqdnyQl4aIwa5kWsGnSqbsADAGT0OtrwnD2WRLHUrMpS9YeuKPzG\nspMN3yQ2bX8Gomep1uOV0/O45/AeHDh3EHm9fj1o1RBFXkJRa54Uin4loPJNjXEOGcKGZxf4AT30\nec+1GHRRwGfDC1FZooCH8BGFqlzBhgfU9tm8boc7bFm7GUDz3PtK4QTLLOhZitKG50YaC8dFXLGe\nI4UAylKxDa9SseQUAYaKrpRqP4/90eFr7WdZMxdLnHOn8MkX/OdbOqfj6z96EYos4ZM3vQXxmIKE\nXSxVU5ZWdVjFUr1teFm7N8Y7V2KyAW4qGJvKOy0O5RaQxGeqyLJnn6XmXJQQKlrOyDvHNZ01MD1r\nu6Hq2DNeC6anZ4lzIC6rMJm5LDZjd3uWSFlagFssyU6xVO+HlBsbLpSlcja8IL7q4n2WoknDA2rb\n5LMak44Nz3rAKE2nLNmrV8youoIiFCWTmZjKzTR0XKLocGx4NZ4HTw/sd266QfciqQdi3CuTPTUX\nFiIJD3BDDophnIGDO3bVWuPDveElYlGjEsX9bGE8OMR9SmdGU4cBLEfEhLi8smTv9xJw9Zdxhten\nTmF9d6+zKh/m9Vgr6TI9S9EGPHiUJcUOeBCfg157z1IwZSmO7k7VpywJhUsoS43YQDSv5+uyEKcZ\nDOIjK1aW/v3eg5iYzWPnu7Zg80arB0l1iqUyPUvcryzNa8GKpb2vnMPZser3WbFAKxYhOOfgkgEw\nBSNTmaoBD84ih6Q03YJsMSIeXTN1X6gCt9tFolaWxHw5BmthaDlY8bzzvKC0T7EkDgqXwW0bXr0L\nDxFHuCJZpCzZNryexOJ7lsLZZ8m6aDti1k7tnQ3oWRrPTGFFottpXnQk8ibpwTEc6ZlXPdZjduEH\nAGOZxlrx0loWHfGks4Jai8LIOccjJ550/h2md1s89FYke2AEKEC9+JSlMtdqsQLbVWMoidfmMR+g\nwCoujsKx4bnvnax44SImqmX3WYpV753wcnZ2GDk9jzesuQQxpbkncUC5niXZV2Dseu5O/PjQntDG\n5J3EyY4Nz1aWgixEFt2DKlnbxUInN+LoSanW81ji1vOBCWWpMTa8ufw8/q8HPov7Xyu/IXdQ8p4E\nPK+ytO/QMB57YRCXXrAS//sfXOZ8XY3ZE/WyNjx/wEMQG142r+Of79qHO395pPrPav6eJcPkkBQD\n3IxhZDJbdZ8lr33WKZaa9N45mbaOXV4vuPcCJoMbthUyqmLJuS7sOShfPsWS7vQsUbG0AM3U7V4l\nqeE2vJVFAQ9CZv3l09YGm0GiIIsngaKoCLKyvNhVv6yeQ0cs6ewpIqwX9bLhMc4wkZ3GWrtfCWhe\nGx5QfSI87ulVGm1w31Jay6ArnnL3paphtfH41GkMzJx1/h3m5nxpLYtkLOEsHNRycxqaHUZciaNL\n7Sy7sFHc21drn53YlBYIZiUp7mXTQjiW3vdOxVK4uDa88vssAcGbsMX+Sm9Yc4lzLTfzZpnlAh68\nPUvPnj2A5wYPhDYm7yROLCYKW1YtSbOCSs9UJxLbUF1lyf4dMX9Y0yGKpfoqS4NzVmE95Fk0Wize\n3iOhLKWzGr5xz8uIx2R8cuc1iCnuOe70LBmVbXira7DhzWbzSFz9BE6yfVV/Vsw5xOepGyYgm4Cp\nYGTSVZbKPaO99tlm71maTlvn2Mj0vGchQIZpWOd2IaLocGcstsLFTWuull0G8eGUhlcBzdAcWdMJ\neGiYDc9SlsTqh+DI69YNJZCy5ESHi4CHYGrY0HgaN9/6Szz98lANI7fI6jnHggfU34Y3m5+HwQys\ns5PwALdYMpvGhhesWOKcOwEPADDaYGUpo2XRqaZcO2YNhf6jx58CAJzf3QcgHDVEkNGy6FI7Pb7x\nYONmnGFofgQbuvsQV2Jlb2piBXGhshSwZ8kzuQqyOlpcrIRhofIpS9S3FCrVbHiJWOUV7mKOTVob\nor9h7cVN30sBeDfD9tjwJNm3IMc4C7WvopQNLyF6WIIEPCz4/8ovLgp7mZWGF3d6Iw1mOkVbR7wD\nHfEkZnL1VZYm7G026nF+eDeiFcXSkdNTmEkX8CdvuwQXntfj+3m1Ss+SuI93J7qgSHKgfZbmcmlI\ncQ15qbpl3ZuGxzm3xqyY4EzB6GQ2sA1PkWQosgJJkpr2OtO5de/IFNyeJc4lmEbENrwiZUkoXctB\nWTKoZ6k8OV0DmAxZQsN6ltyAB6Es+YslGMFz8xdGh4tJcmVF4bEXBjGf1XF8sPYeGqtYSjr/rrcN\nTwQi+JWl5upZ8q3iV5gIZ7QsckYem1ZsANDYRDyDmcgbBXSpnY4dKOi5m9YyeGbwBfR1rcM166+0\nfzdEG55d5AnLUVAL4ERmCpqpY2PPesTkWFUb3sKepdpteIsqlkJXlqhYCpOqNrwqqVzFvD55CslY\nAhf0nO9Yapvl3lcK0XPYFfcWS/bkyb72Ii2WbMXPCdoIcD0WOy8qpeKKIkBmCXQkYo6ypBmGW0jL\nMnpTa3AuPVbX+HCxzUY95in+Ysn6eyZn3cvWr+1c8PPViiVxT4rJCroTXYGUpUzBttRVOd85504a\nntj4O1vQIEkcMGMYmcpAtu115RaPilMsKz1DxGvueu5OPHjssarvo94wWJ9DViu4x4bLMBxlqTl6\nlgy9ccXS4ZOT+F/f2eezi5ZjaG4Ee8+8sKTX06lnqTwZLQduxnD+ui5HWap7z5KtLK10epYSvu9z\no/qu04JyaXjVbHh7XzkHwH9zDALn3CqWPI284gGZ0eujLLl7LK1yviZLMiRITSORe8dRLoHNNBl+\n/NRLAIAt6zZDkeSGKksZWyXpVL02vGDH68nTz0E3dbxz81udyVlYPUsmM5Ez8uhSU+4qesDiQoQ7\nbFyxHjFJqW7D8+yzBARXQ70BD4FseEUPrjCUJcNjuax1A1RiadTThpfWMhiaG8Glqy+CLDf//i+A\nq9B6Ax7EM8lbLOVCLJZKRYcn4sGfrcU2PM0of/yFstQZ74QkSY7DQ9MNdwNRScG7Lt0G3dTxsyMP\n1fZmKjCRtfYVqouy5LXh2RNSUSx1dsQX/HwiLtu/V3lT2pgcQ3eiC3MBAh5ymnWNmKj8fgqm5lsU\nLpga0gV78YspGJ/OwTQZEkq87P2wOMUyJisVr7MC0/D46Wfx08MPNjzZ1gvnHFy2xmUVS26BYuj2\nZ2BGm4bn2IUL1nhyDbDhPfTsabzw6ihODFVfbPjRoQfwr89+d0lb2ojztxZHU9sUSwWzAJgxbFrf\n09CeJUmS0GVHhCeKbHgwYwCkRaXhiZt0paJicHQeZ8fsZsEai6W8UQDn3GfDiykxJGMJ90a1RMZt\nW8G6TteGJ0kSYrLSNHuNeB9M5T6n/tfGcN++QwCA87p6sbZzjc+SV2+c1V21syYbHuccj554CjE5\nhndc9LtOwRKWDU9YKTrjKcRl22NuFxefe/SL+E7/3WV/VxRLG3rOs86PMjc1cRyEXVVce0GVpbxR\ncNSBIMWSeOCKfsQwjiXzfNZRrTK2K9VteGKS7v9cGGcLzqfjk6cBWBY8wNuv2Rz3vlKktQwSsYST\nNge4zyTGmTXZ4xwGM0K7h5falFbYIYMovaJY4sz63YrFkr3oIpJsnWLJNJ2Fmpis4Pcv+T30da3D\noyefqtuzYCJr/T+NVpY6kwuLparKkqOqKehJdCGjZasu4IliicO0epDKIMIdnLEbGtIFa4LOzRhM\nxjExm4eqqGWVdq8NDxDKUvnPOW1az4t5LYPjU6crvo96ktcLTrpiXtd8cd0iBT+6TWmtsazosuaE\nhZx1LBuhLB0/azmhKp0XArEQmlmC48kNeCAbng/GGQyug5sKLlrf46Th1d2GV5hHT6LbuaEmPDY8\nmccBSJC5EqjvwLXhWf+X4gQ8lB+zUJWA0hvPVcKNDU/6vt6pppw9fpbKuH3zF3ssCapJ5GHiLULK\nrUSNTWUhJ6zj1du5Bn2dazGbn2uYFcUb36sE7F0DgFfHj2NobgS/s/HN6El2OxOesFayM55xe214\nBjPx+tRpvDh8uOzvnp21mpodG17Z6HD7OilWlgKuOuX0AvJp67gEib8VD2ex0h5GwINBNrzIcGx4\nZfZZUssoSw8e+w0+dv/fYGR+zPma06+05hIAbrHU3AEPWd8eS4Brw2PgPktbPqQVcP8+S9ZYkqpo\n+K/BhseFpa78vXSukAZnEnpS1oRRLMrohqssWZYwBR+88n0wmYmfHPrFIt7VQiYy9VOWvPMB8fdM\n3pTl2MQAACAASURBVPqzlLIUtGcpJilOIVktTTQnZv8yQzpbfpGpeDJeMDVkRAHFrHGJkIeyPUtF\nNrx4lTlG2nDnOP3nDlZ8H/VkfM595uR8ypIMrWDb8CKLDreus+6kipgiIW9/BPUulrJ5HUPj1nEw\nzOrhZGLD+Zy9X+Roehx//6sv4/T02Uq/5oM2pS2DM4llMWw6rxtgomdpcTeh6bk8PnPHUwv6gmbz\n81hp9ysBfhuexK2LXEYsoA1PpHwJG171FLRnDg7CfnaU3Xm7HMV7LAm61M4lyZ1ehK3A27MEWBOR\n4s9iNj+Hbz5/l9PnFBZB0vAmZnKQPMVSb9daAI3rW/JuDFmLsvSoHRf+zs1vBwCPshR+seS14YkJ\n/0R2quwxHpobhiIr6OtaZ58flVc4xaJCKt4BSZICnbOcc2hMAzdUyIjV1LPUaVtUw48Op2IpTMR5\nNzGdh8kWPsjL9Sy9OHwQJjOd9DsAODZh/f2yNZayVGvoSRRktKyvX2lsOosjp6z7OOfcZwsPq2/J\n7VmSnWKpI+ZXrivh2PB4dWVpLp8GDBU9KetzFgEPumkusCn93oXX4sIVG/DEwD7fHnGAtWJ+2/ee\nQ//R0SBvEZxzt2epDvdrfxpekbJU0oanLPg9LwYzLVuiLKPbVvOrKfN5p1gykc5V6AcuWpwtGBoy\nBf9i7ogd8lA+4MF+LnhseJXmexnTfc0DoRZL7p5TeUNzxs2ZDC1iZckpiBUFK7oSsEP76m7DOzk0\n6+wBFkRZEq+ft4um1yZO4rXJkzgyfizwa1LAQxnydgUak1R0p9Ql9ywdOT2FI6em8MDTJ52vaYaG\nnJF3kvCAIhuevSIicSXQhGdBz5JceZ+l3xw7gJENP8UbLrd9rjXa8MoXSynk9HxdHugTmSl0xJLO\nRFMQk5UFysGhsdfwm1N7Q13lAfyFRLkb8bivWFqLXttW2Ki9ltz43hQee95aPTGq+Kpn83PYd/ZF\nbOg5D29cdykAhN5Q7i3yHN8zM5ybf3GioIBzjrNzIzi/qxcxO/q1fM+S/zqRJRld8VQgG57z+ZoK\nFJaorVhSO5z302goOjw6xMT82YOj+MzXn8LAsD/xrFQaHmMMxycHAACDs+ec/+f1qVNY39WLbnu/\nvXqE24xNZ/HDh47CMOvfZ2EyE1k951hbAeClY+POPj2cs0iKJW/PkrDhJePWwmSQY+mUvFyoRBUC\nHrQ0uGHPG+C14Rk+K5r43s6r/hicc/z4oH/fqTMj83ju8AgeevZ01fFZr5tx9xiqsw2voJlgjFex\n4YnerNLnlclMxOwFXHE+Vy2WNOv1pCrKklCRhN1TMzVkNGtivCJlnYujU5mKNjw3mMVjw6tQdApl\nSVXiGJgdcgrVRjM57x6zvOHvWSrkrOMbZP+/RuAWSzGrWEpbx7TeypKw4AGAblS/jznKkv3nxLxV\ncE7MBdsYGfBv9B6UtiiWxEGNIW7Jy6JnaZE3ISFN9x8dBbNXG2cKIjbcVZZUJe42w5oitlwJlobn\nRIcXBTyUGfO+k0cBABds4ojH5CXY8PzFkkj2m8tX33W7GuPZSaztXO28J0EpG55IKAp7cpj3rDKW\ne/COT+cgqTkoXEVK7UCfrSydHB8u+fNLRSg0qpzEr+xiqdq5+/ipfTCZiXdufptzvGNy8CboeiCC\nQTrjKTdcwjR85/9IenzB703lZpAz8tjQsx6ANRlhnJVsvC2ODgeCq6FOuANTwHQ1WMCDsOGFqSx5\nAx5CXmV8/sgI7rjnJec+1254E6FeOzONv/qXx/HDh446E+xEiQjjs3PDzjNHFEtDcyPI6XlcZvcr\nAXBssUspln71/BnsfvQ1HHhtrPoP14jTc+ix4Z0bTzvVBkORsqSHVCx5PhPF3hsooSrgLFg8NPek\n6QGWSlQKK4U0b21I22kVS2LRUjdMj9XLtWhuPf9NuGz1Rdh39gBOTg04XxdqzqlzweLFRWy4NY56\n2PD871E3PcVSR2zBz1e34RmOjbTHLpaqLTY5+wXJJtK58vexrK0siaCsgqk5asKabqtYGpnMQo1Z\nylKpfSWdniVHWarcszQvNk83rOvzwLlDFd9LvZjOuMdMM3VfGp6Wt8Y9W+fNjoOiGyLEQ8HK7oSn\nZ6m+ytLxQTfUIciij6ssWfebIwOWWntqZDrwa9KmtGUQB1dBHPGY7EYhLjLgQdxAZtMaXh+0PiAn\nNtyjLEmS5OzwbtoZ9WBKsICHop4lWaocHS72eOhIAUlVWbSyJFbMBavtHbqncrVHkXvJaFnk9PyC\nfiWgtEQuHohhNz/nCu5NvKyyNJuFlMghzqyHRF+nVSw98uKrDRmTsCXMznKYZvVCn3GGX514CqoS\nx9sv+h3n62Hv6+LrWZLdiaG3Z8/b0yEQmzBuXHEeAE8jfInrtXhTWsBSstJaturmzHm78OFMgZG3\n7LHVihGhPIoJZOj7LIW8ePDwcyfwyIuvYnSqPn2LrYZXxfifN2/Fyq4Edj/6Gv7y/3scR09PlexZ\n8jaID9p2rGMT/n4lwJMytQSbVdbuOxmeqP/qc6kNac9NZCD2XWGc+TanDd2G59mUNh5TrLhlHlxZ\n4k7PUunfEe+f6yq6HGVJcX6neEIOWM/8m970fgDA7oP3O18Xi5ejU1lk89WvYa+yURdlSbdev6tD\n7EfFkcnrUOOKdeyKSASIDhfvu8dRliqfgwVhw5NYZRuerSyJuUfBKCBrF+JruroQU2T/xrQlnmfi\n+ZjJGjh1brZqz9K0/Vmb4xsBhGfFm864x0wzdF/Ag2Fai9WzdVioXgziuaMqMazsStgBZUDOiE5Z\n8m5TIHqWzk1ZxVYt9x/Dfo5SsVSEqyypiCmyc5NcrLLk9fHuf9WqakWxtNKjLAFA0n6YMqEsMdnZ\naK0SZW14ZcYsbuySoiMRV2pOwxM3qGJlaXWqPsWSSMIr7lcCyihLQiYNufnZWyyVem2TcUxl5iAp\nJhTDmkSss4ulLG/MCpBIfxkZ1QIV+gdHj2I0M4Hfu/Ba30THq+6EgdeGF/fEJHuVpeH0wmLJiQ33\nKEtA6XO/OOABsBLxjKLXKYWjLJkKTN0OeaiyOhp1wEPYzb4D8vNIXPUURmfrt39MKyECdSRIePs1\nG/CNT/8B3vt7F2FwNI1P3/EU7n/CUg+8n4voU1qR7MF4ZhJ5Pe98zV8sLX3xQjyLGlEsZTzXr2Bo\nPO3cg6LvWXIDHtS4DDA50DO9uGepnLLk3AuM+AIbnrUpbemkxCv7LsdVfVvw0sgRHBl7HYBf2Tk9\nXP054S+W6rMprdw9idimQwC4VSzldHQmF6pKgKssVepZEsW+Y8OrEpAjlCVJ5pjLlD9XxOLgKlEs\nmRoK9sS4I55E3+qU3bNkW2BLLHCJc2T/kTH80w+er9qzNKdnwDmQnepGX9c6vB5SIt5szl2E0pi2\nYG+jbrULs/m5qvPFRiCuC0WWsaIrYfUISsqCtMKl4A13AKoXS95Fqbxh9ZFOzFvXUy3PRvFMpZ6l\nIoSyFJdV24a3tDQ83ePjfcEulmbs6n9FomgnbJGIZ/cscVMB57zqTb04OrzaprQ5014Fk3Uk1Nii\nlaXB4bzv5K2XsjThJOGtWfC9ksrSIjyl9SCvuytepVSDmfk8eNy6wUm6VViqchLcVGAqjVl9F2mE\nZ4fzzk20nB0TAB49/hQA4F12sIMgyjQ8t1DTfXsbjZaw4Z2ddWPDgcq9HW50uFssdTob01ZZ6TRc\nZQn2HmjVrCRuwEOH835K8er46/jas9+ri00vyp6lAp+HJHOMzITj4W82xP02EY9DkiSkknF8/Iar\n8c9/8Vacv7YLT/Zb56p3wvb65CkkFBW/s/HNAICzcyM4NnkSyVgCF6443/m5euyzJBSLMJQlxrjv\ndaxiKXxlybWluj1Lak3KkvAR2vOAssWS/Uw1VPR0WvcHURhphuEWSyWSEndeJdSl+8A59222GcSK\n57fh1adnSVl7DoWeU5CSWegGQyavlwx3AALY8LirLIk0vOo2PPcYzOXKT7jFXGR1coX9e7qz4N0R\nT+K8NSnMZzXIsK6fUvdE8VzI5RmmZvOIKTGYRT12XjJmDtATmM/o6FY7kW/AXkKlmM+7cwaDuQmL\nYo7apXZDZ0ZD9jaqhhhLPGYrS5Cgyom62vDEvkob1ln3mGo2PO9xyOl5DAzPwbA39dVquP+Iwl0z\ngj9P26JYEqpJXFZ9Nryl9iwlVQUnzs5iai5f0oYHuMoSN+1iiYkG0cofkmvD8/cslUtBKzDrPWq8\ngGRCcWT3oIgb1I8ePokf7HEjnVd1WDes+ilLqxZ8r5Sy5NjwQp4c5jT39RzbgIfx6ZwTG84K1opr\nLm8AZgxcakwRIhSaE2dy7mpomXN3KjeDF869gotXXoDNqzf5vhf6Pks+G56b/OXdSHBkfmGxNDQ/\nAkmSsL67D4A7qaykLL1wLItT56wbr7sxbeXiNe/pWeK6dZ0GLpbUyj1LD73+BJ4+sx+nZ4LHmZbD\nu0ASdhqeAev1pjLRNBlHjZiYJ+L+FfgrLlmDr/2PdyAu+9PwsnoOZ2eHsXn1Jly00rL0HJ044duM\nVlCPwBWxKDY82YBiqeBXliZmctANBi4WbIp7lgJMVs7ODi95Zdqxv3mmL/GYDM7kiltrCNzocKEs\nlZ6gCaWEe5Ql8Rw2zNI2PMFlay7GtRuuxtGJE3hx+LCvWAqmLFn2/lS8o36b0kr2+5RNV1kqWyxV\nDngo1bNUVZX3TEwrFUtivibmHpqpOddXKp7ABX2We0c8nkvdE8V1axgMmsGcFMNShSfnHAWeA9cT\nMEyGuKxCZ8ai54e1IPaPAqzFWTE+4X5KxawiYqYQft+SWESIKwpWdlvnf0xSka2jDU8kSl9+keU4\nqqYsiaLZ+nsBh05OQLI39dVqsMRnCta9qkDFkp+0HTupygmo3mJpkT1LQpq+9o3WZO6FV0cdX+mK\nIhueEx9uK0vMELsyV570LLDh2V7pcrtLG5LIns87NjzxUPinHzyPf7n7QMXXE8US02OYnnMfevVS\nlsZtW0EpZalUdPhi0krqQc5TIOVKFUueJDwzZ8WY5goGOFPAJbOqXK6bOv720S/iwWOPBR5TRstC\nlmTMzprOTVQv47N/7OReMM7wzkvfVjJIAwjvmApFrCue8vVLeaX0seykL6WIc47B2WGc17nO8aSL\n1KVSDzrxQDMZ8MQBqzDpcpSlKiud4ho0Y+BGUBuedXPd/UurB6XcsTwzMwTAffB72X3w/ppSHn3K\nUsgBD6a9audtRK4VzjlePjYeKBa22RDnXCJWugl+TY9VSIgFgJNTA+DguGzNxdjYY6lIvzm1F4Ab\nGS6oRxqeKJbGprJ1T8QrVpa8jgOglA2v8orz0fET+B8P/b/44Ss/X9K4nFAXz/1NjSsAU2CiFhte\nMGUJhopuO+BBFLu6ycra8AQ7r/xjSJCw++B9yPmUpeqW1onsFGJyDGtSq+pyv84XTGfzU0k2kckz\nGCYvXyzFKtvwSqXhVVWWPAtL87ny54qYiwgbXt4ooGDv4dWhdjjFUj5vvZ9SC8/ivGR2j68E+1or\nYZvO6jkwyQTXrLmaAuuYhBGmk9Xc42Bwz8bO9hy1Q7auvShCHsT5HZetNDwAULhaV2VJ9Cu9MWix\n5HntvJ7H4ZOTgGIds1r6h8U9t5YaoC2KJZHRryoqYjF5yTY8zf5Ar7/aehi+8OooZkuk4QGejWnt\nYkk06FdbIRaTbrEJniyXV5YYY2CydTPJ6jkk1Rg4d8f58uvjeOV45Vhr5wIwY5jPumMTN6zpJdvw\nKvUsWdZEbyEYlQ3Pq8iVKpasPZasIkDPusUSmALIZtX9rcYykzg+dRqvjB4NPKa0loEqWTK4szdI\nyX4qE78+8TQ6Yklcf+F1C76v1iF9qxaEspRSi9Lw7BVoxf7cx7JufPhcYR5pLYMNK9Y7X3MmlRUC\nHsAlPH/EssS6G9NWVpbEgyoRU8EN6zqt5rsXD+bZOW6/n4U3aM3QcC5tjUUkAgrmCmn87Mgv8fV9\n3w8UVQ74r/lCiEorYxxMsl5vJrf4YungiQn83b/txa/3D9ZraKGRK1jvX2x6WsyabmuiKJLgRG/S\nZWsuxgX2OSwS8d6w9hLf78bl4BuplkPY8EzGMT5d38Zr0TsiVNRzoljinoCHgMqSYRr49gs/BAdf\n8sKbeE1vkRK3n+usBhueUMjKF0uustTjKEvuwo1RFB1ezIUrN+D6Tdfh9MxZnMy+5nx9YHiuarrk\nRHYKa1KroCrxOilLBiS7WIJiYD5njb1UbDgAyLKEeEyuuCmtuC8nYipUJV51oclbqGTylYol67xb\n7VGWxHypK5HEhXaxlM0x+/vlbXgijETsc1lKfZjOW8Ur162CQObWsyoMW6l38m9yw1U6bAdSUrau\nvWohD5qh4b9euXdRez0yxvHFO/fjldP+52XxPksAILEYCkahbqrbmZF5JFUFG3utz7SqDc+nLFnF\nUly1VUQe/Nkozg+G4AtMbVEspe3V3aSctFNz6mPDu2h9D9av7cRLx8Ywk7MuuJ5EUbFUZMMTylI1\nG553U1rOOX7wgJW0VqpnaV4rQJKtG2FGzyKh2qtC9n4KuYKBXJUEHrGaw424r1iamC6gQ0lhKru0\nBu+JjLVStrLIpgiUTjtzbXhhF0vuccqXLZasY1XIWA8aq1iSAdl09iApx7R9ntTiic5oWUjMOo/6\nVluTs1LH5cXhw5jMTeNtm34bHfbmfV5iIW9Km9aySMYS9l5JQtXSHUVHBDh4rXhOEp7drwS4k5FS\nkwa3Z0LC4Og8RiYzHmWpsjVpNms9HPpW9gBGUBuefU7YSpRWYkyDc8POYkexsiQmFFk9hx8ffKDi\nawmiCnjIFQxI9qrdfH7xE3HR5zI9X37ykdYyOD55etGv0SiEXaNcsbRuZSc4BzK2nebk1BkAwKVr\nLkKnmnKUeaCUsrT0TWm9izP1tuKJYBlxPZ1z+pW8AQ/BepbuO/qIE9yy1EmoeAZKnshuNa6AMxk8\niLLkxOHZKlGZ4+8WS24anhsdbjiLezGpdLEEAH/6W38EADiVt5Tkjb1dyGsmRqbKf1aaqWMmP4e1\nqVUlLeqLoaD5bXhzWbtYKqMsAdYxDZKGB1jqUlBVHgDShQoBD1oOcSXunHcFQ4PGrJ/vVJPYaBdL\n6Ywolsrb8MRcTxbFUgm1SDyTRbEE+2erKaX1QChmAMBguH1d9rhVyeqNnamiLB2dOIF7X30YTw48\nX/MYpufzePrlczg04C+WHGVJUbCq2zo2XCTi1UFdMhnH0HgaG3u7rMUO1KYsTaUzmE1rUJPWBW3W\nUiw51xQv69Yqpi2KJaGaJGJJKLJk3fC4tHhlyb6BqDEF172xD7mCibH5GXSrnc5qi8Brw1NjstVM\njuoSr1j9kiUZk7N5/OaF8vvrTGTdkzyr551iKa8ZyGuGlfJSMCpaxHJ6DoAEMAXpnO7sVv+d+w4h\nM69gMhc8w74U4/ZKmVzCslDKjhKVDc/rYfWGPQiEDU8yEzB0BYbJLBueGYMkc2TylScC4sYc9GbD\nOUdGy8LQFMQUCZdfaMvVJVZDHz1hBTts3/y2kv+Xo+6EqCx1qilMzuZw98NWKpTBDOfhtmnFBgDA\niCcRrzgJD/BMKku8Z1aUHrT/yKinWKqsLIliaWVnCl3xYLvQiwe+eGiUUpYGPH1KxRv4eeN1Hz35\nlGPXq4Q/4CG8YimT0wHFeu1q/V+VmLGLpHITLwD48cE9+Ltff9m5PoDFh1no5v/P3pvHW3aWZaLP\nt+Y9n7FOjanKnBQZSQIIGiLGsa+orXihry0/vXb7a6fW9trddreijch17lYkDTQtIgp2AxcQiQgk\nIVOFzEkllapKKjWdqjOfPe+11/jdP75hfWvttYdzqhL7h3n5g9Q5Z++99hq+733e53mfN8D/e/+f\n4nBr8onuw6LXZ+e7MAQs7ZgqArEuWeh6vwmdaJjmzemCXdpV3iF7O0QYejKoebuhFmcutslDJ+OG\nJ2R4Qvw26Zyl861lfObI3Zh2ajA046KBpTxmiZLxyU/WDS8axizxYgsrsmr8MweZJbUPLRt7q7tw\nzdzl2IjPglg9KTcaZfKwyfuV5oozMEbMmNtK9P1IMktEBUtD3PAAwDa14T1LNA2WqlYZrTHFKTXf\n6nnD979u0EPRLEglhBf5UmJVcYooF0zMVB202qH8fTbEfSnYQ8LZory/XWkx1Qv1WYGRhgIsvbLM\nUhBGCKkyzBphIq/nx23SyZglcazbAXhi/EAYpfPDkEagMYFl6qiWWB4bBezc9C4CkFzdZEYjexcq\n2wJL6y12ToghWKLJ11FVrjspc/uPAiy5vLpb4MDFNDQQOt5m9IFTj+Jvj31t4OdiAbFMXfYtNb32\ngLkDkDBLiHXMTRWkHG88s5T0LPlBJKtgecxSva+CJSbDA1g1SWilKR0cTKdG13dhaxYAwiqlfA7C\nesMF9W30Q2/b1QQ/CtDst3JnLAH5FdZ/MBme0guUB2hXGz0Qqw8HXDctzjGnzUc1rgIJ5e9OuNj4\nUcDstl0Nl+2poeyISfXpa7na3cDTS8/jqtnLcGB6b+57/UMYPJTNIp44uopT5zr8s5Oepf28AV5l\nlhabw5mlXAlqZsDkY0eWFRne6M27xZ+bilPAfJUlt83+hNXREWBJNXXIAjbRR3XdjqtBKcVfHf78\nyM8D0qD91exZavZcEI2d3wupJE4Cls61lxHTWGrzF1tLePdnfwkPnXlsy5/33OoxPLn0HI51Tm7v\ngJXockZ+GFgSa7oACh2vi7Jdlv00+3jfkjqMVsTFmHvmKcPHLz5Y4kOlpQyvi1rZkiCPTiDDo5Ti\nI098EmEc4ide/6Moms4FJ6GiZ0nLgqVYMEWjz+dAz9IQICIKJ6KQAiRrURAl1uGjmCUAeNtlb2Gv\nnT+ngKXhSg0hWZ8vzYycMbeV8IIIEttoUSLDG8MsZWXlq5s9fPDTT7OeJS0BWlWnDC/0Rq5PqqKh\n5w+/B3q+i5JZkC0Mfhgg4KCiaLP975KFisIsDa7BiascZ0FHFKnPbjLpmlAFCfXPKw2Wmh0fhBej\nSGyAkkjO/HJMzmTGDMCN61kSYHI7xyxyxCADluI4BiiBoWswDQ2lgonQ52DpItiHn11hYGffjgQs\nbUWGt1RvomAbiLkJUbwFgy3VCGbSHPMfB1gKE49+gC+sIGMXoM8f/Xt86rlBqYxYQCxTw3WXz8Kx\nCUJ4A/1KQNKzRGMd89MFuaBP3rNEWO/RCMvopp8GSzZ3svH8SFYNAIwchtcLXJiaLf8tpHjNjicr\nLtvtWxrVrwTkM0tiI3q1ZXhBCiwNnq/1Th1Ei1EgHCx5oTR4AID2OLAkmKUJFzXR9xOHJq7ZPyOT\ntqyU7tnlF0BBU0Nos2G8isxSFEdwwz5nlvqK5CWZf7R/ajiztFsBS6OtwxOwNFdzcPjEBgyw+7gz\nZkhih+vmp4pF7Kzx3rzemE1JMks6EGu551Jli3oZsCSYpW/b/wbsLM/jxY3xCb06NPPVtA7f7CTA\ncVJwnxf1DnceGgGWNng1XagAzrWWEcURznIb+a3EE+eY5MmNLzzZ6XkiSRsOlmisy/W87XdRUWab\nXcYdKQ/OXzXw2oQxvbA5S0Iis3yRZXjCWKZgOAjCGCv1HnbPlSVIoZSm1Ap5idp9Jw/h+dXjuHX3\nDXjj3pvhGPaFgyXhFKs6Cxq6ssZMVohEPFqO3/a7oDFBpZjMmTK0pN85HtOzJOJb9t0CjZow5hdx\n5SWsKHNqBLMknWM5s8Q+j90jn3n+S/jgox8f+Xl54fmhlOoTPUJrQrCkFjiePLqKX/yj+3D3I2zN\nMpTzL+zD2yMKVOr6ndcPDHAlRSDAEruv+5GHMA5AIx2OyY53385KUnjO2aezigMaDTfWWm6xntkD\nczvYcQavDrPU6HjSnECPHQaW+FpQLbKcS4vYOWh4o5klkQ9sCyzxHDEIB5klgEDX2TmcKlvw+uy/\ns4qJ7YQESwts0DA7hsmZJWJEeM9PvVFeU0omKyjEcSzNToDXmKVUiBOcgCW2sI5jloKYzYTJVvGF\nq5PNp18fvIotFBaKA++hyvBmawWZVI+1DkfSs8QWLOHgN3gztRRHlSiOYJjsRjjbPI+NTrIoq8Ap\nG73AhUkUsNT1EccUzY4vtbzbbcwVMyO2wiwJIPsPKcPLLsJBGKEdMLBT1BiL2PfDxOABaSvQvJDM\n0oSLjWRHOFiyLROUDjJLogq6ozToNijC4g3lrwYA7fLvJ2R4wjJfdcObcqqo2RUsddI9S/PFGThG\nci8aI4fSJjNX3nLjHoRRjFNn2WePk+EJ45dasYidM2XQ0JTz0oaFfG5jHZRqA8wSpRSnG4tyDpNw\nBBQhkomKXcJscRptrzP2eqhg6dXsWWr0ksTHi/vbHow4jlmilGKDry0ClIk1e6uMFqUUTywxsNSP\nLjzZ6fNRAgXbyv393FQBiHQEcYA4jtH1e9IdDADefMkt+A+3/xzuOPCmgdeaF6Fnqe9HmJsqoFQw\nlZ6iixMdv4eyVQQhBCubXcQxxZ75shwEO87godlv4ePPfAaOYeMnb/k/QQiBY1w4syQYZlWGp2sE\nRIClsesb5a8RDmn5CVqr3wFCC9VishYlr4nkddPHMEu2YaHiXQpieVgJT8MydWw0h6//srhYnBkA\n1A+ffQL3nTyUmsM0SXh+BI2DJWgR2lKGNxlYev7lDfzGfz/EFCe890lllioT2IdHivlGEIe5iXEQ\nBQjjEEWrKFU5fugjgg9Eupz/tG+hMrLwnPQscUWOcCHOYZY2umztuXoXk8z6Pru/X3lmyQO0CASE\nFfgUZqnGZW80NKETbSyzJM7Bdhz8etzEJivDY8ySBpMDmamKA6/P/vtCimcizq6yvXbvji3I8JTP\nrVY0XLo3KUxBiyZyXB3mvDwu/lGApX7UB40JChZ7+MSspXFgSZzEbGLrBzE0jUDnN9FVl7ILt/3B\nZAAAIABJREFU1usMnk6HM0u2brIqzoTMUqwyS0GUciDKRpf73ts6r0aYIaAH+MiRu/CFEwkzNoxZ\nimkMN+hDp0lC0Or56PZZ75Jgljbd7Zk8CJA1WxycsQTkT7KXcxJe5TlL6kabBbTrjb40d6gY3NbU\ni1JgSSTgw0IwS34UTGQwIhJ+Ghq4ev80H744eO9mbX7zYhSztNRevaggSp2xtN5wk6pvlDBLtmFh\nT3UnVjvrcIM+On4X9X4TexUnPGB0I7zayPut3J3y8HF2jsfJ8IQUZKZcwsJMETQwx75G3hOUyX6y\n7OOGW0c3cHHN/BX8M9L3Q3KdytLsZNwMDbU/7dVklpoKWKIkRHdEsWVUCLA0jFnqBa50SBTgSFQu\ntwqWTjcWJUulFpG2GyKRGMUsiWGonaAHCoqKVULXDfD08VVoRMNNu16X29eimp5sJ6KYIghjOJaB\nXbNFLG90x7qsbSU6fmKWcn6N3Qu750uSWRo3Z+nPn/o0un4P77z+7ZjjhbKLwSwlPUtpkKJhsh4w\nIcMTrx9mH9zyOqkZS4BqNsNkeARkZM+SCKfLGMZnlp9DpWii3Rt+zddlz9K0wizx4iF//p9deWHs\nZ6rhBREktuRzloDRzJJt6vDDGJRSHDm5AUqBf/XDN8qqvHr+J7EPV9dvokXouIM5kCyyZXqWIgSg\nscFGv4DJ8EYVnqOMPDsKh7sQN70WKAVuuJQpHfy+AEuvbGGKyfBCmJoFnRggeixNpabKrNjWDyJU\nncoEYIn3b23j2RJF9KwML6KRlOEBQK1syX6uiyHDW1zpQNcIds2V2GfowcRDaSkliBCkZj4RLc69\np7KRXR9eY5aU8CIPiAxZlbBMNsBu3EkSv89Sjl4QSakbAOzdwza9jY3BCz1bYAChpFfZgz6pwUOq\nZykGs43Or667EbuBdhTnAACaHoFYfYQ0xPmuIgkakuz0Qw8UVM4XABizJJIcMX9gu8ySkB5VMg3O\nIoTDkJqs/0P1LI1KTFUnvJrF5BR9P4TbD6Xb4SiXHwDSNRGYrHIlelwKRgHz0wV231FtADhkm7Hz\nYljP0mpnHb9492/gsy/cPfZ4Jo2uPJ4Sk+Ep/QTi3rd1C1fMHgAFxcv1M9IJb081C5aGz1kSyRoB\nwVWXTGOqYuPxF9ZQNAtjmSWX95nMVMrYMVMEDS30o97QKe8A32wpk/HSWBt4jk9zCd4VMwdg6qY8\nDyKSZ6EkTQAa7jiwlDwDw5roX4loKb2QRA9ZJXQb0egIZin/vApwAwwySlsdgPi4Mr8qhL9tNkyE\nYJZKTj6zVHIMaJQNpJY9LnYJn/v6Cfzahw7hxOLwNdPQL4xZEv1KtqVj11wZQRhjs3VxHLwopej4\nXdmvJMwdds+X5Xo9yg3v6aXn8eCZx3D5zH58zxV3yJ87ho0oji6oMCPMDrJmQRoRLMxkA99lL2RO\nzxKTEbugoYVKMdkXpQwvihDReKwET75fj4HODbeOStFCxx0FlhJmSdjLi1xErAXPLG8NLPX9KCXD\nE1EeJcPjwMQPY9nDfGB3FY7NwESqZ8lm328UWFKZJZAYnRzAKHKtolWEzl1U/dBnzfuRDjOXWRoh\nw+OKnFHSul7cBQIbl++ZgqETCHHIK+2G1+x4gB7B0mwY/DqL46uVWIHa8yNM2dXx1uGCWdqG8kD2\nLGVkeDHlPUuGAEs2ELHjvFAZHqUUZ1fb2D3PgNIDZx+C8/p70I1GF+TFvkBCG27YHyimNbrjjYhe\nY5ZGhB/5qaqEqbPq/LieJXESs0O4/CCSwAsAqM5u0OWVcIC9uf3AGxEcfitmjF2wLWMLMrzEDc8X\n1OIQ6WCfsuPbVWWaWxghiMndmfxNSZv3vPwNStz4JFbAUs+XyREN2IOrJjWj4lR9EQ8qFpZidk1l\nCOvxv5MMT01Ms6BiTZmxNGWzSmli8CAqLqMX2M1+shhkH3Q36A/0sCzV2d/vmp4GIcyZBpQMyDEn\nYZYOv7QBAjJwTle662xw6BY34FGhgjeVWQoVZskyLFwxcwAA8OLGyVzbcEB1oMqzDk/kqppGcNu1\nC2i0PdiaM5YlEhvTbKWEHdNFILRAQUduBEGUXGtQbeA5Fk54+6f2omwW5awaEeqzMMXniDT6ozcI\n0UdHY7KlieMXGm0FLEEPZfFkKxGEkUy0hsnw1CKMy8GRkFtsFRw+cf5ZaNAQtacBQi9YLiLMNUpD\nZHiEEJi8Ai7Wx6pdlv1Do6RxFzqUVgykZWCJPfcXy+TBCz1ENB6wDd+jgKU4zsrw+DULPXzkiU9C\nIxp++tYfSzEvQl57IeySnLOk5zNLeTPoUq8XeyuGgyVV/iwG0gJpSXAUR0MH0mbD8zQgMrDeq6Nc\nNNFVHGezsd7dRNUuwzKsgXtEsJCHV45O7JAnGEg5Z0lLnsPiCDc8keP4QSTBXckxUSunbdSBSWV4\nyvFqkTRPUUMqEriM2TYs9COfNe/HhpSAVksWyg7LSyaxDhfLZvZvKaUI0AMJbRQdE9WShZ7LztOr\nIcMjWoiCYUtQLJ6h6QpnlvwINacCL/JHjhu5kJ6lYW54EY1AKZHXebpsJ9bhF7iubrb66PVDOV9p\nzd0AIRQuHQ0KxefqUQGU0gHGrdkbD5ay+c+ko1T+kYAlL6V3NQ0NNJ5EhpfPLPlhnAJLwgM/8i08\n8+Ja6m89P0boFlApWYwVGFENUWNAhsf+lduz5IM9IHurzJmPaj6IyYEOYpng94ZUswSlqoKlVtdH\ns8sb5ziztNIer5Pu+S7ef/8H8CePfEwufKKaXrZHgyVVDvEPZfCgJi7Zh2q94YJY7FwJxrDvh3B9\nFSwNX6zcoJ+iybMLzude+DL+41d/NzVY7tQaaz7dP896kSRYymGWCAiKfJPJxtmVNn7rzx5FHGnw\nMs214jqdrJ+9aE55YhirpdnouEGqZ8nPMEsA8NLGKSw2B23DgdEyPJk48QX9toPsGYjDCSR1MTuO\n+WqFM0vs/m+PMIbwI182C+cZPAhmaf/UHhStwgCzpMoTBbNUH8csic+IjFfVOryjSC2IHqLV3fpG\n3GgnxztMhreuFGEaLl+rfCHDm7yC2XCbOLF5GnPmHlCP94yNYRfHRZ8PqS4V8sESkDierrTZs1q2\nSqi32bO93hh+/BrRoBNt23PPxPl0LB27ZrOzkCYPSik+98KXU5b3WaZaDKTdNVeSz5oXRimwJExr\nvnT8Hqx1N/D9V9854Mx5McCS2Ce0TPoyqqiihlqIBPLBkugtpKElB9IC6loUD8waGhWeH0KPitjs\n1aWsr5uzH1NKsd7blLLF7Non7pWO38XJxmRDnmX+kAOWxsnwxOsFWCoXTVTK7Jh0ovQsSYOH4WBJ\ndSAj2mhmSTCatm4xox5C5bBYEQtTfDhtzp4r7hFhHe577P+zxaa21wO0CCZl60W1ZKPXfXXAUoMz\nSwXLkWDJpx5oTDBTYUCw74fSZXmUycOF9CypbngqE8+YJQ2mwc5drWJLF9gLZZYWV9h9so/PzIr4\nMzuO5REFZgtsvcu2hrQmmAeY/YzXZHg8KKUIqA+qyPBMU2OaxzEXJpLMUrZnKZIsFZB44NPAxmNH\nVlJ/2+KAo1qy2OIjZHgTuuFpRJl1kMMoAEBEPCDWMVVgDxXVQgmWAIA4bOEfxixJB5soWTg7vUAy\nS3OVGmhMsNYZzyx96rkvoN5vgiJB/WIBrVr5MrxRbnijmCUx4+hiRordyny2mLFUtSoo2Xwx87gM\nj1/XUZXweoZByDJLoiqn/t35TXbOr9jFJJa2xc1JMqxox+ugZBVz9fNeEOF3Pv4Yq0TTwT4bASrC\nOMTJ+mQb8LgQoIAG/J7KuOEZmgFd0zFbmMa0U8NLm6ekE96eLLM0gcGDqPDeeOU8DF2D22Wsz0gr\n29gHKOtltE0dNh8AOKo66oW+BH6I9YF75HRjEUWzgLniDGeW3NQG1Pa6KJkF6FryvGbvi2yI+VI0\nMnIn0L9SkWJJ9RCNztY34kYneQ9vyOiCTWWG23qTraVijsdW5nmcaZ4HABTDHXJocHuMFXzqWNve\nAKCTBg9DrMPZ7xgAOFtnhbKqXZYDeNdHNPID4ENHt7eGiVEQjmVgxwy7d9caWweHq911/NWzn8Pf\nHP2q/FmWqT631sHcVAG2qSeDWYMwt2fp5TobzPtPrnrbwGddXGYpvdYZPHkfq9rgjyPhzFKe7FYO\npA3SzJL4zDDemgzP9SIYMVsPCrye1ekNPk8tr40gDhWwlN4b1ef/2QmVAH0u1xRjAKQMz+zjtx/+\nfTy6+HTu6yxTB0iMtU5dArtywUS1ws6zijGrY3qWopim3cq0KFeKKJh4UfSzdQtNDhI0mn4Gd82y\n9XOzM1ggSEZK8OI0v92yedfpNfbMFvjaXytb6EsZ3isNlvogWoySlfRnRZTJvGvc4bLvJWBpVN9S\nIHuWtmHwwBk+StPskpTh6YkMTzBLF9qzJMwdBFgKJVga/ez2fGYWZXPn5noGLLX74/eLfqZY/JoM\nj4cfBaySFKkyvPy+j2xIGZ6fA5YUZkncxGWzhCeOrqSSIwGWamWbTxmfdM5S0oshHD4oJQPW4ZRS\nxLoHPXbkAhPDB8zkhtAKbAEb1rO03GbWzcRPmJ9Wz0eTb/ivOzAHGthj5UInNk/jyy9+PXkPvnC2\neMKi0fzq7HZleB/74hH85Hv//qICpih1DFmw1AWx+pgvzcKxxeDf9JwldxRY4g+22GCzzJL4/uoi\nvdZir7lqD2NMLFNn90EWLHHnqrz4yOcO4/RyGwWb2V1n7z21+n584+Whx7+VEO8p5jKI8+MFAbzQ\nh803B0IILp89gE23gWPrL2O6UJNVRREjrcNjwSyx6lfRMXH95bMQ3gRZN7rUaymTdogQUpJRjnhe\nFLDCRNkGjTVENBn27IU+ljqr2D+1B4QQFK0iYhqn2MS235EJaNKzNEaGJ+7JyEBMo4mMQS5GqPcn\n0UO0ttGzpEr3hsnwNnqJDK/hsrViO254Yq3ouZAsoeoGOir6foh/9Ttfw8f+5vnUz4U7VXbYuBpF\nixVOhAVx2Sqh3hrPLAGsb2m7UmPZs2TyGX4TfF5eiESrqRiNqDOW+l6IjWYfe+bZfTuMWQq4aU3D\nbUEnGqojRmlcELPEn3kjI4HTJ5Q1JgYPYnbh4H0p2GXWs5TsW6a+dRleFFP4QQQbbH0xHG4znwOW\npG04H7Oh9rXFnM3ax5n3SU0eRJFCfm+DnT+z0sLZ1nl88NGPY627MfA6y9Rg7HkJ//mh96PptWFx\n999KifdRKae5KmV4+cymH0SyHQAAoMXo5nz/zV4z9X6WYSVSa6SZpT2zfP3sDt7zqgzPtnS4fBnJ\nGiCcXGfF7ZLB9pxqyZZ7wisOlrriGXNgG+ycxiQAKGH9QeAyPD7/aVTfkgDR23EAVYvo6hqdBUtT\nZYVZukAZXjJjiV1nf0Jmqev3gciQZmZCwu1ofLbiBMxSx02fo0kNdr7pwZKQcaSYJe4oNurCqHrs\nXGZJBUt8k3n95Xux2fJw4lyS/KSYJSthlsYNl0ykAgSeYJbinF4VNwAMHxYpyCQzJH6aWSpwZmmI\nG96SmHPjJWCp3fVlY/a1l86A+g56UUfqpGMa43xrGQ+efhQff+rT+I17/hC/ee8fgYLi1t038PPC\nHojVVhM0NPC5+/IT8e3OWXrkuSV03GBbCcKwUOn7KLPprrY3QTSKXZV5OfjX9dLW4aMcdARY2lma\nZ68NsmApTP3cDyK0+OYzU2QLpm0yZklNUkQzdl6/0v1PLeLLj5zGpbur+KE7rgSlZEDTr8rVjq9f\n+CBPIGGW+i5bYggShyEv8mEZSQJyJe9bcsP+QL8SoPQJjBhKqyYttx3cCYTs/YfNWopjihgBdGUD\nni6wc7zcGM6gBlEAUA17dpQTW1p+r55tngelFPtrTHoknkcB2CilfGgpu07bYZaAV88RL9XgrIdS\nWjYumh0Px8+wczgZWErOt+iTEuv2VrTxQkLa6UQSLK12JnPw3Gz20XEDLGVmFXlchqeNsIcuc5ZZ\nNOYXjIJ0O9tojD5+86IwSzrmapxZqm99LRT7YEth4VQZnjgnu+d5ss/Bkh9EKYMHgBUM6m4DNac6\nYMAQxxTLa+x+uJDm+WjIfCPRJD/++RA9S7z3KscERLLLoZkxeEjMZkIagcZkpA04oIBawp57IeXO\nc8RTzR3UzwviUILq2eI0Lp3ah6PrJyZiEiSjSwSzxP7fdpL85k+/8ecDPVCWqUOfXmFOj2ET5QJb\nfypFfg6Uwy+P6Vny/DRYIkOYpXOttBTb0RVWD+li6yU7mCNtq5cDlvg9QkAwW3XQ7/OCVoZZOldn\nkvcpvnfWSpY0a9oOS7OVaLrsuXJMB7bO7ekJAKqhUrSgaQQe71kCknaPvBD3/LZkeEoRXWXWYzAZ\nngRLFYVZulAZ3moHhIDto0jW7nFroRv2QSMDBTNtOlYy2Pt0JwFLGfbJC14DSwCU4Z+xnpbhxRpv\nYMtvslTNH7rKjRHFFGFEpZ4XYJXoolnAGw+yJOnxFxIpnpCyVUsW+/yJrcP5wkaI4h0/CPBWGk0Q\njaKgF1Hkc6RCmoAlQgk0LsMbxsCc58xS6BbhWDoKtsENHtgxHuRgiYLio09+Cr9xzx/iJz77y/jF\nu38Tf/zIn+GLx7+GF9ZewmxhGv/8xh/Gt+y7BUCy+faCHmho4b4nF3PPdx6zNE6G1+pFWNnkPVE5\nFartBKU0qdpHOiKkP3ujzzayHeVZOBZfUDmzNGpCuAgBlnbx3rJBsJRmlk4sNkE13ljLE2/LZLb3\nKlgKaYQgDgeYpfPrHXzgfz0Dx9Lx7378NszVHCDHBVIACo1oeHbpOI6eGqwybjUEWHJ7DCQtzLAF\n3wuYNM7Rk9klom8JGHTCA8ZYh0uwROTPbju4IJPlYT0rHTcAtAg6SRKh2TKrVC438x3MKKUI4gA0\n1rF3Rzl5lnll6kwz6VcCkiZlwUx7kY8gDqXRSckswtSMsW54ocIsAePXjosVHq9Sls0SiEZzK7h5\n8fG7n8Ov3PVVrNZ7suACICn6ZGKtuykTFCH9E89GP/BGuhOqIRKGVieSMryN9uiGYRFirVPnfMQx\nlcySPsIeulJg627TY883DZKkbm0cs6QZ2+7LVA0eLFNHrWxtq3AkEktVQtVR3CylE94cS0jEufDD\nEDRzbdywj3q/hWluXiKPNYjwu594HA8/zfaaC6nah7FoPM+AJSKk0KOfj0iawoyQ4Sk9SymDhwyz\n1Gj7+JU/eWCku50AtSWdFUdig8+By9m3VNtwAHh5kd2/YRzKhNLUTVw+sx9RHOUyQtlIEuC0G57l\nsH/X7AqOrL2ILx7/aup1VO9DE4XWwJV9eyUOloIg2csNTUfRLAwFS34QAZpynkmce84WW8vQiYad\nZVZQVItqBkkzS/sXGFjKk16Ja2obBipFCy43bcgWqZdb7HzPFtiaXC3bSuHzlWWWRH9NwbBhmwoQ\npASOpcOxdLheKEdMjJbhJWBjq+6a7lBmKWsdzpklurVe0rw4v97FbK0gi84iz4vo6LWwHzJmScxM\nFWCpYrH8ojvGjRgAOn3ez897j8Xg8XHxzQ+WREIaGSzRRDJnCchfKIE0wlVRdMBvJjPVs9RCzang\n5qt3QNMIHlf6loSVq+hZoqEFAg3Pr704Uk6jWoeLxY7msGHn6uxhL5klKcMLqAdi+NCpCSuugRQ6\nAGhuQykALLVXUDIL8F0GlColSzJLhLCZBkbEFpOvnHgAL6y9hJniFL5t/xvw7pt+BL/5tn+Dj/3T\nP8Qffd978P3X3ImqI/TLbVBK4VEXCE2sbPZw9NRg1T6XWeIbeBiHuQDrzFryUOQ1im4nvCCSTbCU\nS55E9PoBPLCNa744Kx9yIcMTWvxRiaxgEHZXOFgakOGlmaWjpzdBjAA60aWmWRg8xFAaq2Oe1CrM\nUhBG+N2/eByuF+Jnf+RG7Jkvs02fDvbZCOajRnaiF3XwwS98Y8yZGh/iPdstdj4v212Tbm79yINO\nDJksXD69XzJPWXMHYLR1eCBlUsnzuHO2hKkCuwfrbn6yLGxbTS3ZpHbWWIKyNoSNkOct1pjWWnH4\nA4BTihMeAJSstMlARxqdsGMjhGCqUBtZMQSSwoGo6nmvErMk7mUxH63enaz/53n3YVjXfx2HTy1J\nsKRpJHH1zMRGrwHqFUBjImUkQuZBQSeuloqEIY4IKO+/bAy5/tlodgdnQfW8EDRnpkw2akUOimOe\n2HpJUldv90fODmHM0natwwVYYp83N1XAesMdWgAcFuL+Eus1kO5ZEjOWpAxPF2BpkFna6NURxqGU\nmAKMXfyPdz2Eh545L0HxBYGlKARiIqW3IqT98hiwFCv9wAAvkmWukexZCs2MwYNguWMG2mKCtbqL\nuz79zNDzLnqGSgbvz9BEkW84szRfmsXiahvfOMwLmXEkE0pTNyd20gQUGZ5glrjBg2Gzf7/75ndg\nyqnik4e/gFNKz2oD55P3iF1pM17kDJMKlgAmY24NMXjwgihx4wOAHIMHSikWW0vYWdkh5Ye2roKl\nNLM0V+XzLXMcaIUMz7HYfMuAD5rNMkubXAK8o8TW5FrZelXAUt8LWc8sgILpoKCAQkoJHMuAYxkp\nZmmkDE/ZE7Y6a0mV4anrHwUFpQQGN3goOQYMXQOh5gX1LFFK0Wh7mKkmBdME7I1Qe9EYfuyDRjrK\nNltzRQG6ZjNAmXWuzouuAEdcbun6rzFLABK6X5XhscGeaQlNNtSfq2BJ3EzivaI4QtvrYsqpolww\ncfDSGRw/W5eM0uGXGM171SXT7DWRiUvM12Gls4b7Tw1PSlUZXiANHgatw1daiV2tBEuxB2J6MGgB\nRlhllSTTyzV4iOMYy5017KosoO9FcGwD1aKJFjd4qBQt6LqGnfF1iE5fj/fcwYHR974HP/+mn8A/\nufo7cO38lRLps2PhD7fXhhd6oIhlpf/eJwcNBAxlKrqIUUYLAANL+vxZWNd8A5vti2OX63phIhWI\nDERIjkGdsbSjPKf0LIXoeyGqvLos9K9RTAcYrzqvguyuMIv3YTI8sUgfPb0JGAFKZhGEMyd5Mrw+\nn7OlgqU/++IRnFhs4jvfcAnuuGUfAAbYwfts1BAs0OpptmEsds7KDX5YxDHF577+kqw6Z0O8Z4uD\npUt316TVth/6OLfi4rc/9hgAoGgVsJuzbXlgaVQvgkjAs5X/y3cyQ4xjiysDrwGS6emidwoA9sww\n6Uujlw9e5IYUa5ifKkgNvWCWTjfOgYBgX40Nxy2ZfDMXwJEnoKqF/rRTQ6PfHMmeMAYcrzqzFFIO\nlkoMLAnZyLjoYgNEj3Dk3Fkpw5ufKsDzB5n8XuDCjz1Qv8Dd/jz5cxGT9i2JZJLGmizYNN3JAJ5k\nlhT2q9PzQUj+TB81pkrsekYIQAiBq5CZlGLk7CND07fdsySeUcFyz9UK8MNYSr8njVBh8UUBR5Xh\niWd8j5ThCSl5NHDfLnGVgkjmz6608f/88f04drqOO27Ze1EMHoI4BKgGLQOWTJ5gj7PXF47dwjoc\nhA4Ye4jeGxJZKDrJGpHuWYplHnH/0+dw7xP55jh9j7131WQJXZ+y85nLLImepeI06i1PurmpzJKl\nmZJtGOekCST3CeUFNqrxApPJjmtneR4/84YfRxRH+ONH/kyyLxtRMqORaoF0zisWeM+an36Wq1aJ\nDfLNAY1ellnKGUpb7zfRC9zUHqAyS2phC0j63/wwGJD4imKrYxrsuKWxVsYNL2AAZIHL3KslCwCB\nQcxXdM5So+OB6Pz5NWxpEgMAoJpkltJueOOZJWByKd56bxO/8ne/hSZJ7lsJrCll94vCLBFCJLs0\nqmfpkbNP4l9/6T1DJfBdlw2fna4kOaMsdGE4WJLfKzJQdpiKRhSgp7mkfVTPuIieJ5glXvAeU1wR\n8U0Plnoqs2Qk1uHSf3/IrKVwCFgSznRChtf2OqCgEiDcdu0CKAWeOLoCP4jw/MsbOLCripmqw3qW\nAFyi3QxDM/DpI18aiqQT63AtWQgoGbA5XedV8KlCFSWT3UC9qAeYPnTqAB6XThS7KW2qiLXeBqI4\nwq7KDrheyJilogU/iLDWcGWj4b6ZOfgre1COF1LAKC9EQ2LL68gEUac2pis2Hnz6XErqAqgyq8Ge\nJSBfindmzYc+swy9WseLjRdHHk9enF/r4A8++XiKgmZgiTK1QqyDpsBSX4Kl+dLsQM+SYBGEHfX/\n+tpx/MR7/17OWwESzfHOMgdLmYRBLPBu2AelFEdP1aEZoUz8gIRZoiqzJORSvBfm0OEl/M0DL2Pf\nQgX/8gevl39XKVqgVEOMdNK63GiAhgaqhPcLlep48ezoAcRPv7iGj37heXzmnvxz3/V7cAwbm00P\nlqExa+NYgxex+S1hoOHwiXUpG7pl9/UoWUUpYVNjlAwvkUmlE6eD+9mGe/z8au7xbba7IASJVhyJ\nPfswRycBlmiso1KyYOliyC9jP880FrGzMi838SyzJKrVFcVCf8qpIqLx0I0F4M8CJYmz0yuspQcY\nGI7AwVKBy128yaqJAWHf99TaKgNLWgiy9zkQyx149kVll/pMDx/BRxzHKYA0ad+SBLNUw2ULTMbT\nHmMfL0LYoqvsFyt2sOdklMFDxUnWw7JZRLPDjmOmynuZRkjjDP3Ce5bEvjK/TZMHtRdQ3PtdBSyd\nX+tA0wh2zLD9Jc0scbMAXnRY6rDixLRTxbMvreFX/uQBrGz28K7vuhr/5l2vR9nh82MuBCxFDCxl\nn3kBlvpjKsXJUNvhYEkwJCWzlAJlgvGIaCyfyxuumEPBNvA//uZ5xDmzk8QeU7MZgBQMZDtH6bHe\n24SpGajaFcbKqiMXeFHG0A0pcxzHSgNJgVdcK+FKpxnsuAqmg5t2vQ7fc+UdWGwt4S+f/RwAYDU4\nI9+D6IFklgoOBx7eILPEhvkOPq+iZ0n0iRFtUIaXNzpCZZayYEkjGnM01KKBop3IHwRjMyLjAAAg\nAElEQVSzJMFS5r5z4w5AgTIvNNdKbD/QYb6izJIo1gGAYzgoqmAp1mCZOhzLQN8PUbXKIIRMzCxN\navJw78sP43TzHFwjKSj6mXtF7VkCWN9SHOoje5aOrr2EpfZq0gufCeEUOlVRmCUpwxsOlsSeQGMD\nVb6OiOs8Xazxv5kELLF9jVABll5jlgCozJKekeElFqB5oW5gqj5T9A8JGZ4wMRBU6a3Xsgr5o0dW\ncOTkBvwwxk1XsY1bACwtLOLOy78Va90N3HfyUO7nqzI8XyQYmV4VANjsMrA0W6rCMW0QEKz3NkAI\noEUOYj453K64uQYPohK4s7wDfT+SMjyAT4/mYEl8h1//8MMjp9IDSTLY9tqyQlc0irj95r1o9wI8\ncTRd7c9r4E+50mU0/V03wEojgGaza3uye3zk8eTFXQ9+Bo/gz3Dfc4mjkNsPQbSYbaJUAyUJqFjj\nM5YICOYK03Bs9qC1uj5imtgHC+vLk+eb8PwI9z6eVG023QYqdlmen+yQOdmzFHhYb/Sx2XIBPUi5\nw9ncDU8FS30pwytidbOH//rXT8Eydfy7H79VHieQMEtAottfXG1jo9MCiUy85599N3RiQKut48jL\no7XwTx1bBQwfZ1fzN+uu30PJKmK92cfsVIFLADV4nAUTm9fDh5nU413X/wDu+j/eN+CEByQSqDwW\nWJhVGBlm6Zo9DJCeXd/MrXRudERzbbJg75udBo0J3Ci/zylQmKVq0ZJVTz/0sdGroxu4UoIHJH1m\nYmNR+0BETGLyEPF5F0LC9GoYPPT9EFQPmTMTr2x2vV5uMqgGc+dk33OpuYlGx0NxxyaaznHos0sD\nFeANbhtOfQcmsUC1EJudXnp+z6TMknJ9xPXvjXBDVEMwS+rxtbuBlOXmWfKLsJSETnXCu3IfA5mj\nTB4M7QLc8IIIxOngvtUvwQv9bTviqc9Viydkqgzv3FoXO2eKMmkyJVhKrMOFqmGpzayYl5dj/PqH\nDsHzQ/zSu16Pf/bd14AQggqXz3THDO8eFWEcgsbaAJsspMrjKusRTbvhAXTA1r7jdQFKUHHS65EA\nZHEcsf2KEuxbqOAtN+xGs+Pj5PnB51i8d9kusr6egI/UyO1ZYjOWCCHMfVJKfSPpWmhphmSWtiTD\nE8wSQgAUhIMlce1+7IYfwp7qTtz94r245+WH0A4bcsYijAQsOQ436/HS52zUYFqPu+GZhIMRg0r1\njQgxOmJvLTH5sRVmyc6AJQAwiQFokXRXEyGKaI5louQYACXQoKUKTa4XItL6MGhBMsdVPnCXUOMV\nBkt+illSwRIhjDV1bB19P2LOqnpZum3mxVaZJUopHjrzOAAgRPL3ggyQa4LCLAGsbykODbhBf6js\nVKxnw+bHCbWByC3Vvx0JlsKE+KgV0mZWcyW21o4y2JLv47O/McDXi9fAEguJNGNDghXT0CS9PUyG\nl2KW/EEZnngvgfbF4rVvgQ24fOrYKh7jRg83X7Uj9RrPD/GD1343TN3EZ4/cnTsIVCxsmjqUlpKB\nm6nJF6aF6jQ0osExbax0+GDcwEbQZYu9UezmyvDOt9kxzhWYbKlgGymNtpjWfecbLsH//fbrUG97\n+NUPPpgysciGqZsomA5a/Q7W22wxL1klfPstLJG874nF1N+Psg4HBpmlY6froJRCt9m1XQ5PbslO\n+b6Th3DMfwREi7HqJgNgBbPEltW09EvI8CpmFYZuSOmLSIzEYifsxkXyda9iatFwW5hxapKZy1LZ\nAhS6YZ9J8HR2PKpxg8VleCBUJiqCWSoaRfzuJx5H1w3w0z90PfbvrKbev1y0lM034POXHgfVA8xX\na7hs1wxuWrgOWqGLp86OZusee+k0nJvuwyJ9Jvf3naCHkllEo+1hrlZAtWiBxhoCyilwDtoefpZt\nkLqmwxnCWI6yDhfFi6yNcJX3LLlhD6eWBgGdkG4K22eA9X6Q2IIf5yebiQxPR7VkwTHFLJ8+Tgtz\nh1rCjAmDB9mzxKvV5YwMDxgtpxGNtqCTzWi7GNFxAxA9hA5TJlNUC8eaqbT6PYA3kLtxB+fXunBK\n/Lzp4UAFf0MySw5KdgHQQyxupPsaJ3VekhawsY7rDjCG3w0ne21TMksJSGv3fAmWRvUsqQmdoxdl\n5fTKS9gGPsrkwdQMRPFwo6FR0fdD6LNLeHbzSTy3emzbYEldd1teGizFITP7EU54gOLQpvQsCXMh\nMYbiq4dWULAN/OeffjPedus++dpqka1lrd72hwWHnNHJ4lfJLI2V4QkATFivZK4MrzPQr8Q+I+lZ\nimkMSjXYpo4beTHx6ePpofQA2NByAI6tY7YwhSYHONmeHT/00fI60ja82fVT8+lUgwcpw5uAWWIM\nJJXSfhAAWizleOL5tgwLv/Cmn4Su6fjQY3/Jvmed5S7ESGR44plw+4PMEpBvH+4HEYgWw9QsEBAU\nHIKzKx187bGEvVpsLQMYwSzpg2DJ0i1Ai3EmA5aEi2XBtvhxExiakVo7lze6IGYfjpasx1VeKCbx\nKwuWxEBaACiYNop2AhwE++ZYBlvDvBDtuoGm15DmBNlQ529N0rN0urEoc78IymsDAVqSAr2hJ8yq\nsA+PaTx0HxLAZxhj3shjloRqA8PXQsksRbqUPgOMUJjn5kyTqC4EWLK4quQ1GR4PsVnSyICZsg7f\nSs9SktT6mZ4lQYOLBjNCCG67dgG9fogvP3IapqHh4GVs8RNyCT+IMVOYwnddfjvWe5u49+TDA5+v\nNqFKaUjOUFqRgInm9KJZkH9DAwtui9+QThe9HNpfMEvTFpMgFWyDJdU8hAyPEIIffOvl+Pc/fhui\niOK9/+MbuPvQqZwzx19nV9D02ljiNsxTThmX7alh30IFjx5ZTlHwo6zDgUGwdOTkBmAEiAl/KNHH\nsfXJ5gMdXjmKDz32CflvT3lQ+lwqoBNN9qOIz15ptOWMJQAwdEZPi8RIJN1i4RGynqX1Lo6fqaMf\n9OGGfUwVaigYfKDtEGZJgCWip53w2OcSkAzQF8zSo89u4NjpOt5681585xsuGfjuukakY1QQh3j4\n2fM4tdwA0SPsnGKJ3Z1XvhkAcNI9MpRFWG+4WGqtgGgxPKMxoL0XMipLY99zdspBuWgydkRs2LyH\n8MjJDQk4h4W4Pzp9byBZF8+GkRlQKQAJMYKBQdFAYlZQsdMAzUQBkeYNNHwDSq8Q1VAuWnC4g1Gz\n18fpjLkDwAoEANCTMjzes6TI8KYnaNQW8y6KnAV7pS1tAcbeQo9gEEsmwkQPx/bDnN1MkkViegij\nGGaRyx60KAcssR6NklFBySqAEOD0ejrhnFyGx4dvQscV+2aA0IRPJ3ttS/YsJcfXSYGl4VulmtBp\nsSUt1q/cx9bkUdbSeRLkScPzI1mdrrsNCZbGOfBlY6OVAJdkNh5zeF3ZYO+1RwFLQoYXhPEgs8Sl\nN9S38f6f/VZcf/lc6rOmeEW4NYHF77AIYyHDS18TcR3GPR9pgwcCQgaZpZbXAQ3STniACpYSZsm2\ndNx4JfueT784CJb6vEhZsAzMFqfRC10YZjSwlmVtwxsdL2kXiENZrFHBUnNSZolk1nItAtUC6EST\njBwAXDq9D++87u1ynY7qTClD9JCt4Uj2HbefPmejBtN6cm81YOoG5mctlBwDd332WckKnWstgRCC\nXdwACcgWIgaLaY5pgeQwSx5nloqWKRkxg5ipBP/02iaIHqNqJUVFAY7jSGcDyLdRxJgkmh0PhIPV\nguHI8QMAQHhaLvLF00ttxF4BIMDdjx3Jfb+UDG+C/eFBzioBkGsIkDiWppglI80sjbMPF0WrYaqt\nOh9UnifDo4gRDck7VGZpRgFLjmGjbLMcSbRBjAoBjoQj77geRxHf/GBJMEuRngylnahnKd8NT9CU\nVoZZqikD+IQUz/MjvO7SpL9FvEYkDD9w7XfB0k189sjfDUhrkp4lIj8TGBxG2gvZRrejypJd0bcE\nAL5rIgw06HEB1GTMUvbhX+abW9VgG7tjJUPngAQsiXjzDbvxvp95CypFEx/89DP42BfzddpVu4K2\n18Fyi1WOZ0pVEELw7bfsRRDGePjZxGlHJAz3PH5aJqmjZHhHTm6CWOzBifvs+z52Lp/hUONM4xx+\n/6EPgRANRpOBCXVhcfuMydGIISvJouKx3GLSxl3VZPN3LF0mjyW+2MVImCXhZn3fE4uyAjhdqMkm\n52FueF7o4dipOnSL/busXFNCCAhJS+mERvnBJ9exa66En/mRG6QhRDYMvjEGUYjl9S5g8MnsPLG/\ncedBGNRBXDuHMyv5G/FTx1ZBLG5Nb3gDenExhd3gQ4jnaoWUBJCdKA133rYPlAKHnlvK/Rx5zPz+\n+PpTZ/AHf/lE6nfCFCQrwxPnjBgBnjw2qJ2ud9kxVgppmY2jFUCMEKv1nOoovxcMzYRpaJJNbHR7\n0gnvAAdLTx1bxVcPsXtcjB4Q/TOnzrpyc59yxvceiHkXZd4b405YCbuQ6HJmydIsmQhDD1NW4Hlx\nvpEwtfIe4c8q9FBZy1gIq+T54ox0OFpssIRTFAm2KsObKhdQsA0gMhFisuqw+F6qvXnbnVSGl6yX\ncWCi3vJg6ASX7mJJ2Cjwog4d3Wp4fiT7HjbdhtKztDWJ22o9eX5Fg/5qbxPzpVmcWxMzlpLkxJBg\nKRoAS6IaXzIqOLArzWwDwHSZvU9nwv63vEjAUnqNE+vqsJ5DERIs8f8BaWYpiiP0Ahc0NFMDaQFe\naEU6mbRNHdMVBwd2VXHk5Y0BqWkyD8vADHeWLFajgSJT1ja81fElA8/c8LjBg27C1E2UrOLYsQMA\nn/NE0s8d0UJE8FE0CwN7xfdffSdu2nkQM/Ys4jYDbjAClLjRhZSLe7Ey1kQdTDtEhqfFMDQDlm6B\nkhg/96M3wfOZa6sfRFhsLWOhNJd6nlSJqwqcRDCwFA+V4SXMEutDUoG0KMrMFKfkz3RdQ6VoIg6Z\nidJ2JbLjotnxJbPkGLbs5QMSFluoV15crIN67PdfefpYLoBLyfDG9CxRSvHwmcdRMBzGrOqhzFXE\nvZvMm9RSe2tqMO1QsDQZs5Rn8EC0eKCvVUTCLBmYqSTFm4LpyHtmkgGzLpfdFXiB2wsnu8bf/GCJ\nJ6Q6LLkoWApYmkiGp4KlUDBLomeJLVai0gMA118xJ4HRzVfPy5+Ln4kbcsqp4nuuvAObbgNfO/Eg\nmh2P9YIAcn4FQSLDo7E20LPkU277zMFaUZEy9TocHMIG1UJQmizcIs63VzFdqCHm/RAFJy3DmyoP\nLlDX7J/B7/387dgzX8Jn7n0Jv/eJxwc2iKpdRkRjyVzNV1hS+NabB6V4gjk4udzA2VW20A6T4QVh\njGNn6pieZje81tgHEht4/Nxw61aAJRPvf+BP4QZ9/PStPwZ3nS2QvlJV6HE3PJ1o0EnSvA8AGz2m\nF95ZSa6nWMwAoORYvM8pRBDGaPd8XLN/BrWyhfufPof1LtsIp50adE2HrVtD5yz1/D5OnGti5w52\n7st2Wp8rJIKywheLgoCJd3/fwZR7UzaEKYEfBVitu5K9ElI/Q9NxZeUgiOnjKy88kfseTx5bTeZ4\nmb5MqEQI2RmJ2XHM1RyWvNJkuaGxjh946+UAgK984/ToJnhNzE8JcXo5f1PMgiVDN+AYNnQzQiNn\nmGrLZZ9XKRRSPxeg8dT6oD5cgCXhoCfAUqvbx5nGOZTMAqbsGv78b4/g1z98CF+4j/WrdTPW4R/9\n7HF89AvPAUiYJWGBmhcxZXNlxLFuVcL08S8dwX///HNbek2n5wNaCFu3pWyU6CHaY5illfam/G9x\nj8QGP14tGlgnllvs73fVZqUOfZW/x2yBJY2TgiVRMZyvso1Uiy3EZLLqcIuDpTCKZfGn3fVlkjlK\nhqcmdJ6ro97uY6rioFa2YejaRPf2dpKyvh/KhGvTbWKm5oAQYH3MkNRsbLSTv2/122j7XXihh/nS\nLM6vcye8uUEZnh8N9iwBzAFwL3eWzMZsmQ+P9C6kZykCYg2ank7y5+wF0EjHy60TI1+fyPA0Vngi\n6V61rt9jzEpoSVmWCEsaPPDrRTW5r9901Tz8MMYLJzdTrxHMkmPrEggVysGAdbhqGw4IZikxeBB7\nkcmLR1NOdSIZnjoSQ4YeIaR+rlmTpmn499/2s/i5G/4175U0mMFDMQ2WQDU02sl6IGV4OfbhPu9Z\nMjQdpm7AjwJ864178D3fcgCnllq46/OPoe11BtxQHZVZMuzs28LWLRA9xvm1birJFvtCyTZR5vOh\nCPQUs3SeD6RdqEyn3rNashH67Ly/UlK8ZsoNL23wIMES7zc+sdgE9dj+vNpdx3M5/cQpZmmMycHx\njZex3tvEbXtvhKVbIHoo73PBsCZGYmlmaapiybEMw9blcBsyPCkjJPHQUQvi8yzNkoU1gIElcW8E\nEzBLfiAUO+ze919jlliIE6w6qaQNHvIvqPpzL/LlAjFUhqcwS7ap42auYb756h3y57rGmuVUyv/t\nV38nbMPG//fC3+HDn38av/7hQ1irJ7MyUj1LSM+GopQiRB+INXmzqJtWxJszTWJzZyuaMnnwowDr\n3U3srixIxx7V4AEYZJZE7Jor4Xd//nYcvHQGDz5zHv/pvz2catgUVaa1HqveCJnXjpkiXnfZLA6f\nWMdqnSVRgTjVJJYNsikZnrIQnDjXgB9EmOJgyUEVWmcBK9112SCajX7Qx+888EFs9Op45/Vvx9XV\n6xDzip2XafgEodA1XYIlPw5AKUUzYMe1g29kAFLmCQXbYNI9LcZaowdKgemqjdtv3otW18dTL7PE\nWSTHjukMMkscIDbdHsIoxq4F7qpmptkP0YwqZXjcNIGGZqoCnBe2wfts3D7WGj0QY1Dq9x1XfAsA\n4MnVJwdeH8UUTx9fQ7HMwbzp43yWWeLgIA7YZ83UWPVSHSJZMG3snivj1msX8NJiEz/1vq/grs88\nk8tSyteRGPVWP/U3klnSB5eyslUCjCB3GHNHGQiohniOFzdGgCUuhys5fIp4r4Wlzip2lXfhP9z1\nMD59z4soOoaswGWZJRpasiiQ9B4MB0sUMQgSZilvCKOIMIrx5397BMt1X/778/e/jK88enroa/Ki\n5fZBNApbd6RsFHqYOxtGjbVukihqvKfQB7dhzulZWu9ugoYGds9OYZrPOhGDBmd5xXdSGV7bZX+3\nMMUtrsH6GcYlPJRS1h/CI+Cbdbvny9kwI2V4SkLX7RDU2x6mKzY0jWBuyhkpwxOJ73YG03pBJGfm\n1N0mDF3DdMXZsgyv0Un+vum1sdphSeSO0qycsaT2LAl2Jd2zpBQdAht75wdZJQCY5UB2UgCcFxEV\nQ2kzzJJlIm7Nou5tyO+QF2rPkgYCkDi1JyfP6SCzJIbShnJgOZFyKWGC9NTxNJOtMkuiAGAWfHR6\nfmotW1NswwEu5aaDzJJwHpxyquj43dyeZzXyZXgxAuqlr5v6a02DY5n8PBjc4IGdC5VVqyuFqIo1\nXIbX90IQjcLkzJKQNP/UD1yH/TsruIcbLe2tpcGSWojIA3aWYYESZuO+tJ58rmC8Co6JEp8LRaiR\n6mlZ7bAC5t7ptFR0YaaIIOAmFlsESyubPTx6ZHns3zVUNzzTTrFpYn8XiqQXzzYks0TsHv72wZMD\n77cVZumh00yC962X3MbcYPVQmi1kmaU8g4dxzJJYh4eBkPoIgweMYpb4PuAYyp4EJmMUZkvjhtoC\niexOmLf4E6693/xgiZ9gOwWW9AmYpfQJFDeGN1SGl94c/uUPXo9fffdtbL6MEralpxKGqlPB9155\nBxr9Fp5Ye5S9Z9dDLKZtEy3lhgck1qddNwA1fOhxctMVVTcxPkne1h22WGoReop9+EpnDRQUu8o7\nErBkGakNYhhYAlgz5Ht/+s24/aY9eOHUJv7tnzwgK5FVnnS2QrYB7JlJqjfC6OH+p1hT/LkVUXmm\nePncIFhSr8WRl9n7FUrcAU6vImixcy9YLDWiOMJ/OfRRnKyfxdsuewt+6NrvwVrdVaxEkwfa9UIQ\nwqQCQvrV9320uj4ig22gKbCkMEsF24AO5syzusnZvpKNO17PvuszJ9NgqWDYQ+csdbmhyOwMe3/V\nEABIKk8CXAmDB4SmlOIMC5HYNbouVusueH6a+ow3X3EQ8ErYoKcGhs+dWGyg4waYnuGJiuFjcS1d\n3RTMUhjw+S9TbGFTJ7ALu+Vfffdt+Ll33IQdM0V86eFTOHxiMMkR1wKE6ZlVUB5wsGTmgqUioPu5\nYEmc42y1crbM76X64PBkUQ0v8F6lMgdL57vnQSnFiZcoXji1iW+7aQ/++Je/HQCBFpsKs9RhevRY\nx3q9hyCMULMrIISgMYJZoqAglEhde9sdngw/dWwVn77nRTzwPFuXziy34QfsuR81HDUbjV6Hf1dH\nJlRED3Nnw6ghQJ+jFQCdJQQeZ7+hDzJLTb8J6jvYMV3EVJG7aPrsfprhieUkgwYBoOez+0IMqzTB\nrtNaa3Rfh+uF6ao0P0YGDMfL8NSepY0NttkLiclsrYB62xuaAFxIz1LfjwDe9yAA5vxUAZtNd6xr\noRqihwBgie5qlxUKdpRmcW6tA8vQMFtLkhPB4oY5PUsAQAMbe3Yk4EqN2UqRDaee0N44G3HMP5Nq\n0DLyMdPQETXZ+vzM8gt5L2fvQRPzJCFpVvfkZCBtTs+Swd3wRFIWE2nc9LpLZ2HoGp7J9C31VYMH\nDoR020NMkVqbsj1LzY4PxOqcpTSzJMxhhCPvsBC9uGq8/Vsq8GN/KFgCEkMqhGbK4EHcqzTWUrLc\nKldAqH1vH3vyf8IN+tJxzNQNWJohv4tt6vi3//xWmGUui9bSjKRaiCjmgSUBMkiMsysKWOLvX7Ls\nxJgiZjPNRP4k2PyFavozd84WJSDI9hWPi7/68lG896PfYDnGiGh1fDnnqmA4KbAkmFuRXyyutkF8\nltdVpkIcem4p9f5ZueConqUojnDo7BOo2GVct3ANTGKD6JFkecRzkHbDSxs8jOtZWm2y63B+I/++\nbHQ8JmN32PtQSpP1j4yX4RUNB7qmy6JBwXTg8DU4Qjh27RMgrsrB0rhig4hverDUl8xSkhSZhpbS\nAudFmJlnJG4MsZHaQobXb8HWrYGka8dMEW++YffA+9qmNlBd/f6r74St24jmXgI0NuQ0ZR2uuOEB\nSa/KZqsPYvowkSwi6oJCA3ZMNm+MJEaQYpYEuGADaTlYcoyU9EClSvPCMnX88v91C97xHVfi/HoX\n7/nwIURRLOdOeYQ9OPtmE5Dxlht2w9A13PvEWVBKcXqJ/Q0hMU6dZ4lSqMgN1YXgyEm2kQvb8JpV\nQ+ixhyav7+Mvnv4Mnlx6DjfuvBY/dcu7QAjBymZP9s+o7+16IaBRJhXgG1LP95gTnpXMWBKRZpYY\nG0W0iL0/GNC8ct8U9syXcHqDbaBigyuYzsCcJXEvCqlAscTugaydtp5llmIPJDZRsM1kYxgSwpSg\n0e1hveGiwjG+CpYMXcNcfAWgxbj3xKOp1wswaxW4xpgAixtp2Uk3YMDSd9lxztXYhixBDxJXLMvU\n8d1v2o+f/9GbAABffzLtlAiozBI7HxuKIYQ4Z1kZnvhOVAvh+kFqAe17SbN0Vge/wHv/VtuD9vit\nXtr5UMjiTtQZaxN2yviZH74Bv/Jjt2Bhpoh9C2XEgSHBUtvvQovZ0MOYAssbPWiahppdGSmnoYhB\niIaKM952+ckXz8O65lGc6p8BpRQvnq1DnzkPfW6RmTZMGE0OyEpmIano6uPd8Joeuz92lXYDBNCK\nyfciWpiq4PeDPh9I62DnTFGuXS4f2imYpUkTFnFNhY2/zW2Kl5ujwVLWtEKst3LuGsbI8JR7KAp4\nIsun089PFUAphpqYiHVmOzI8ZvAgmCV2v85NFRBGdGxvmRqtrgqW2ljjYGm+OIul9Q52z5dTs4YE\ns+RHg254AAdL8/lgabriALG+7cHKMqmKNWk0IcIyNMRNxhI8s5LfCA8kQ2l1orEqfsbgQc7mCk1U\niun11FIMHgDW0yGYJcc2cO2BGZw410zdUwIQOdzggb0RZ5uV50mApZnitBxqTqlQQAQpgwcgYaXH\n9S15QSQZUvk9CnyPGQGWREGYRiaIHqFgi15ZhVlqJfdZ1jr8/tPfwJdevBePn3tW9lkaeppZAoBL\ndlZx3UH2DH3l/s1UUUcUIijNl+FJkKFFKUc8UUQrFZI9UYxe8CLG6HVC9vczhXRBe9dcSf7tVpkl\nMYBana+YF42OB8Ni37Ng2Kk1RKhaBLNEKbCzNgtDM1CZYmDg7kMJuxRKYxtxrww/5udXj6PptfGm\nvTezPIdYnFnikjTJLA2fs4SQz5gcI8MbZsndaHuYqtiyLUZd+4g2XIYnCpxFLsETqhDWs8TPnxbJ\n4sSwEM+RkPL5/zv3LL3//e/HO9/5TrzrXe/C4cOHU797+OGH8Y53vAPvfOc78cEPfnCi14wKN/QA\nmpkErfYsTWDwACT24cItSWwYzX47JcEbF7ZpDFRXK3YZB4wbQUwfxo6zcBWwpBEywCyJJHmt2QbR\nYthQmCW++Ok0sYkuGkmDtsosCetIMZAWYA9oyg0vU1nLC00j+PHvO4jveuN+LG8wGlrI8AAAcZLo\nAczC+raDCziz3MappRZOnWOLlmURvHy+CUppRobHK1mU4sjJTcxPF+CiB41omC7WQDmD1lIqbF97\n7AyW1jv4+xMPYK44g19687+QFZu1ei+xZI3SzBJIDFPXZWLf8zxpG06gYaaQNIOKxQxgzJJBTECL\nsLwhwBLrk7vjln2IdbawJMySAy/0ZJULSO65kPrQNQLdYuegnAFLosote5YiDzQwsWN6sFk3G8Lu\nemmjjSCMJSDLfsbrF14PALjnxCOpnwuJj4+kb2a5VU/1hQhw0OsxqYxgJ4W1LwBMl9Kf97pLZzFb\nc/Dws+dTTcNAUmkjvDq62VTA0khmiQNAPUgtoKpta3YD3jXFkpnN3mACIhidEoq3hNQAACAASURB\nVLd5rRa4A6LFEtVfePvt+N43XyqvwTX7Z5j1Mk++2l4XkZ+cAyFfnHZqaLjNob01FGyYY7XIPq/r\nDd8Mn1w8Cr26Cb+8hJXNHo6facC85BjMS46OBTqp79rv8e/qpHqWsoMks9EN26CRjp0lZnLzpjcq\nyViGWdpwE9vwhdkiCnztivicJsksTSjDE+tEwWLrgXA7Wm2NnguXnfciKpteEEHg9End8MClpwmz\nxP5/mDQuMXjYDlgKJVhqeR0EUYD56a3Zh0cxlUUAgO1nq13G7jqkAteLBqS9whEuVAweXjyVJIfU\nt7F3CLM0VWGV6Ul6C/JC7ZcZGEpr6qBeERWjhudWjg1VjSTMkgKW8pilwBo0eBBzllQZnpkA6Ruv\nmgOlwLMvJeySl5Lhsf0j0vnsNUXWut6rY8qpwtJNtLs+KIXcp7wwkHuVAAhiRtu4WUt5MrwON4Ya\nDZb4PR9yQGJkXM6oluoHLZlFEELk+ROGFW7Yl4OCLd2EZZhykLcIrcDun5MnI3zi7oQVtMX6HOsp\nJYc8RgmW0iYPEizZtjSmoBE/l5GPeruv7MlTUGPnbEkqT1SwtOk28N77/itO1QcLeiJEQUoUTPOC\nUqaO0E2uUjKsNLOkC/CdfN99OyqYL86gjzYqRRNffuS0XEtFv0/sm/L7qXH4xDoefIapeMRspbdc\nchsAZnpBtBjVMruv85gltShRLY1nloTiJc9ljlKKBpcpi0gxOyOYpRbfkyrc+U5I8YpGgfUfUh1E\ni3KVJGrIe4P3LE269r7qYOmxxx7D6dOn8alPfQq/9Vu/hfe9732p37/vfe/DBz7wAXzyk5/EQw89\nhBMnTox9zahwgz6oMmMJ4BUTKcPKX7TFCcwOlhQyPNvUEdMYLa89IMEbFZapDdiUAkD3zD7Q0ICx\n62V03D5zwIJww0sWJyABeEtNthgVdJVZYouficLAz4gRpGYtCWZpd2UHXD5grmAbKDkGNI0luuOY\nCjXefvtlAIAvPngyBSA1ag8k8UKK99XHzuDUOd6/UbXQ6vrYbPVzZXiLqx20ez4OHphFO+xiulBD\ntehIBk1IIk8vt/BfPvUUPn3vcYRxiN2VhdSmsFp3JbOYoq95JdnUDbkp9nwf6w0XGp+xpPbdZGV4\npsbA0ooiwwOAO16/VzqDiWqgSEDVxVhuQiTGrvmCdDrMAhlR5RYVkX7sIQ4MzE8PDnTNhpjncJZL\n5+xCnPsZt15+AFFrGme7p2TFE+BAE0gNbg3gyooaoMwVarNkUVSl1Q1hppwxrdAIbr95L7r9EI+/\nkJZTCrtzaIPMUiLDGwSJ4juRTN9SveWBGOy8p0A9gGmegOTp7ld5T4FIUmYq3J5ci0FA8KYrrkr9\n/cFLZ0AjE37kI4gC9AIXkZ9Y2Z5f7/L3q8GL/OFVTBKDQEe1INzh8v+u1fWx6jK9PLF7eP7lDRw7\nsw5ieSBGiPXWaLmOGh0v2Zgcw5auSeMAlxt3QH0H82XeyD6VfCbrWUo2wg2eTCFwMDdVQIH3ghGT\nXV/Zs7SFOUuUEti8IFDkYGmjO7ry3swwSyJh8PwImiZkeCPmLClgiYbsv1VmCQB++2OP4hf+4F78\n2n97GL//iSfwkc8dxl9/9RjandEDHEdF349A9OR8NvqtLduHbzTdlGmQKsPzuuw7ZFki6YYXxYj5\nmvXkCwq7HNos4cwJy9ShUSM122UrIRObnJ4lNiieYKd1AL3AxUubp3LfQzV4YCCYpkB8S8rwzAGD\nB1vI8KC44Sn7gJipqM5bSvqB2Sw5XdNBNfb9xfMU0xgbvboiwRPzIfkA4CCQe5XYmyZx0gS4DFAw\npGIMwwRgSeRMlIOliPA+SCWRfuzICj7yucP4vb94HL/2oUNAaOLouRX8i9/+Clba7D7qhx7cUMy2\nMWFqJihoKkldbC1hrjiDXdM1fObel3D0FLuf5LOljH5RQzAKBQcpsCSKaOWiBctkTshRyO4XP/Sx\nvNHjezJBzU4Xu3fOliQgUIHH4eWjOLxyFH/93BeGnjNRTBL92HnRdQNEMQXRIziGDY1oqd6srAwP\n4PM7y7No+x287Q270Or6eOBpBoAEUyKuU6ObfPY9j5/Bf7rrIfzOxx/HqeU6Hl18CjOFKVwzz8yV\ndD6YtVRm50YaPMg1IV2UMA0NDgcpQ8ESv655vUBdN0AYxZLJAjKsuhYjHAKWRAFPFN5FoVMMltf5\ngGKVEMgL0ftX4u8zKav/qoOlQ4cO4c477wQAXH755Wi1Wuh2WdJw9uxZTE1NYWFhAYQQvPWtb8Wh\nQ4dGvmZcuGGfzXQxkhvP1DW5qYkEOxtiQajypkUpw1Pc8Lp+DxGNtwSWbEsfYJZaXR8vnekiqi+A\nmAHWepuJDI8QyWbRjAxPVEyLClgSZgA2STYrmQjrAdyUDG8FGtGwozQnF/SibYAQgmrJQq08CHJG\nxf6dVdxwxRyefWkdnXbyOguDWuNbr11AqWDi7odPwfO53KzArtGJc41kHg+SROIIdxm69tIptMMu\n5oozqBQtySwJ7fY53jzfdNnDlZVararMUpzHLBlyke75HpbrbRDLw2whrW3OMkumZoJoFMub7DjE\nNPCdsyU4xRA0MNHqJLMVgHTzurp57NnpSIYmK8MTi6kbBPBDHyGNQCNTVpVHRclmx3R+nW2whrAn\nz/RFXXXJNOINJiN98PRj8udrDReEUDnfCxCOeMm/peysTTFbS47JMhKwJBq91XjrzWyg69efyh9a\nLHT3asO8kMuaOcmscBFk8lOVWepLO+uZTFVRSEl6YW9g1tJKl4G4nWXGmojeJYCxs9n77JoDM7Iq\nu9bb5A5bJt5yIzuvAixNjzF5oIT+/+S9eZxk11kleO7bYo/IiFwrl9r3vSpLu+SybBlLtjGmwQZ+\nNm3PYKAbmk0zzTQ0jekZQzfdeDA9BgboZsBtj0VjY/Aq25IlSyVrzVLtqqysvXLfImOPt9754y7v\nvYgXmVmyZJifv3+kqsrIeOu93/ed850DhSjoSnF5Ziu6YDl7ZREkyZ49JdbAyfF5TK74hefMKg7w\nrSGofplEkpldazE+s9Q5ybVcGw5pgloxDPA5gIlgwtqihifmbFJaBpqqIKGJ2Sh23QVldb1iAI7n\nAJ4iKdIp/o4V66tLSZf4wLEoYm1e0JmWI41PW+djgqEqqlwnRcIiOqfH9g7g4PYeJOMaZpfqODWx\ngO+8OokvPXsVn/n6Rbx4dp4f++uQDrdd6dUCsBmM2zWmnV2qyfeKegSO5+BmaQoZI4WlZfa7B3ta\nkCUh8OC6aHJ1HsfiBq8AMnqGFy7RoUKXHnm3G+I6UU8JUQMBSGuQfp3ZQnSaWxLFkkoIu68tNLxq\nQIilFVlSeddfIkueEmrEbhvuQiquhYol8btjwkJE0QHC/k68T6VmBY7n+MUS9+kTbBLLCZjSKi00\nvDWKJdN2oSphIY4qb3ZFiSaI8Gl4nHbFPSvFPqVAxfjNIr707FU8c2oKZy4vsr1YZcXIbNkvlgQl\ny9A02TQTSX7VrGGlWcZIbhC/+OOHAADffJFRm8XPUs+3fgkdI//3/t44Juercs2WzW4+V5pK6HBt\nH1lihrQmkmqqbR5xoJD0kaVAY0owBE5On8Nctd1PC/Dv52rIkmzOqI7MA3RFE+ORshgO5hfDfWn0\npRjFdPRgBgoBvnLiKiilcgZH5LTXZlme9LXvXsMffu5V+Z589rlnUbMbuHdkVIpICMXaRIJ9udXi\ns6RElAgC2WmdZxYhGglRAg/FVQxp2QHRjsiS+D7RNBQm9oICrBEdUN3QqElrsPkontvz8xCF9Vrx\nfS+WFhcXUQjIiubzeSwuLkb+W6FQwMLCwqqfWSsadhPUCSNLmqb4aESH4UjxsonOc+vMkqGrstDq\niq2fhmfoKizHC81QnLo0D0qBXFI8hFaAhscEHlSFtAk8LNVZcpUJdIeEOWoi4EqdiYukMUzDm6nM\noy/VDU3VfBoeh35/5of34aPv3b/u8xLxww8wdOmFV/3ETCRBwdA1FfcfGoTteLIITCbY43h1Ojxc\nLyp/Ma80PMQ6U93JPPOE4gmKuB+CL1znCV+sxfl7odiQ8s8hPy2TeSPpqr+gNywTUyWu6JcJq+a0\nIksGFxGZW+HPRVAcQ2+C2jEpaiFedJEIep4XoiVs6I0FiqVwsuKLT9gSxaGOsaa4A+D7Qc2t8Dkx\nLbpYSsZ1DMd2gnoKvnPtBXlsiysNdHUx0QExb0F0UxaoQFgNLzgYLiiAANDX1f7ObB3KYbgvjZfP\nz4YWvNaZpSANTyzqq9LwWpGliimRvvZiSVD3rLbu/FJzEdRVsYEXAsEZrI1dQ23fP9SbhibmZirs\nGaKOgeNc9EPQ8CSdJkLkwXHYvIFKFOlR02k4/szEApQEvw+6ie+evQVq+Jv2fHU58nNRIda7HN+Y\nknoCitZupBkMMTdDnAT6M+waifmXuJoAUV00LP++iuMR96B1gDttpBDTYrKhcHJ8Xnaco8LmxZLo\nQGf4WlhurFEs8eRFFBqiIcaKEQpCiEwuooIQItcYhcvq5rPsu/sLSfzuv7wPf/Gb78D/+L134wv/\n8T34y9/6Ifzhrx3Hns0FNJoiubt9pKVpuqBKuPgUa8BqyVowZhbr8r0Se2KxUUJfqkc+n4MtyJKk\n4bkuGpagSBMolFsFpMNSzK0hEPj1JinBkM2tCBqeaIjmyTAUouD0bPTcUhBZYvLhNGSpIVFlR28T\neBB0TI/4CrVBZElVCA7u6MXccl3uQw3LgaYSWUAaqg7KP19psGdPijukAuIO8FkEpuMjS0bLzNJq\ntgMAK/51nV2rlCiW1oEsaSovSPn+KtZ1seb+q/cfwcc+ejf+8NeO4//5dz+Ev/v9H8aekQGusEqx\n0mTrQdMxJSUrpum+Jw5PkifLDA0fyg7gwPYedOfieP7sDGzH8xtQ3MS8NcTv6uuOwXE9zPLnXiTE\nmTgX40nqUuHOdCzMLNZA9CayRvs+FI9pkqIVRPtlEQ2Kb0x8p+1zlFLUmmsjS0I6mxJHoiOEEKam\nC3+OMVwsZWSx5Gg13LlvAJcnSxi/UcTkIrv/+QQ7l6mlEv72yUv40y+cQVc6hv/8S29BIRvH6QXm\nRXnfpjv8g+HFUkwUS05YDS9q3RMWD7UOTSxZLEUgS2KWsnOx5Em2SGuIBl6eCwHJmSWeX2pEX5OG\nZ9ouKMSzwYuldSjoAf8EBB5W88DoyOG/DVflht0EPBW67p+qoSs+GtGhK+PKl409gH6xJHimakA2\n/DaQJeG1FJjLGLvIuotDPey7mpbtUyMo49Azj4PwnNVKgyvxGe2Uu6TmJ7/ZmD+7UWsKxbU6SmZF\numU3A9LhAPDW0RE8cKQ9AVwr7tg7gL5CEs+d9IvZlB5NyXhwdISfI5fKjLP/XpsJzxiIROK1a8tI\nJXTEUuzPPckC94RSEFMSKPNiaYbPDAm6Uiwwl+J5FAsrdWwosGvthoqlgGIPR0Gati0TvuEuXwYe\naBV40OXCLjx8BLLUdEzY1ALsuPSXksPsPBFsNUfu6TZQtWqIazGJJIkQzvWmbcsFHI6OvnXQ8ISC\nmygSPYV31Y32z+7bNABvpRdTlVlcK96C51FWLOXZcyhlXrWw11LVFgWcLhNQIOyZ0Z9r36QIITh+\ndBiW4+GFgFEtIYRzpyMEHlz/fWw7V8NHloIL6ErFBDGaSKiJ0Cwj4CPJRLdCG57neSjZRdBmCtuG\nWXIfpBUKM9rW8+lOs/N8/NIz7O/cGHZvyqM7F/dpeBxBiUKW6ry4UIgqqYudHMdPX5kD4dx/Qthc\nhBAmAQK0t3WEKOIFqpnQ4yDa6j5LAinSaRL5ZHhouifeG/q9ADDFzWdFYdXa5U7ocSS1OBp2E7bj\n4nf/8kX88ec7m0+7ns18b3hSmuONgbK5OgtBUJ4EMmsFaHhEWV3cQURMZea9A93sfgcNF4Nh6Cp6\n8wlsH+7Crk35kDS0iJVmGf/pxP+9qvw1Oz5byg8D7Ppv7M8gEdPw3OmpdakfMmSJ76e2v072prsl\nWtxKwxPIkuN6aJjiWSRweDI62BXtsSTCEPTIyupFbFQEKWCtyJIoWsymgh3dW3B5+bq/PgYiKB3O\nGjE0NNMo/NB0kgg1WQH/WaBBGp6uhX7GlxBnz3fTdEKJr67qcg8XzYdW2XDxTBayQrHLCZhicxpe\nYn00PMtxocliif0+gSytViwBTJBKoKXVlmJpy0AXju3px/bhLvR0JaBrCjJGmiHouomay+5vEFmK\naboUqBDnM8UtP4azG6AoBPcdGkS1YeP0xILcu6mrRhZLYs/tybP/3uQ+fMInKJ0UNg86bIsXS66F\nqWIRRPXQk4ou7PMpttYGqWbiuVAVFd++9t024ZmG6SuxrYos8XvrwpYUMgBQuLCDaEYEi/Ch3jT6\n0kxcar66iPfcx5rSXz5xFa/dYM/ZBm7PYnsWPv2119CTi+M//OJ92D7ShYfuGgTNziGjdWFrfqN/\nMFzIwoix4/Z9ljojSzlerJQb7HpcmJ/AxYUrAHw/LSCaWrwSJRveKvDgROf3DacJ6inIcoaFaDiL\nfcNQjTVpeI2mAyjs+EQjsNNsY2toa//IGxt9fX0hVGh+fh69vb3y3xYWfHhzbm4OfX190HW942fW\nCpe6oK6KWqOMsTFmsjm3YktZ7WvTNzDmtptvXi0xtRGLDzBevnEVY5UcpjjqMTFxEYvKTQBAeX5F\n/u61ol5jL/NLL59EKq7CoxQvnptBOq5A5R3jqdlZGJSd75kz5wEAGvEksnT67Bnk9SzmVxaBLiAX\nT8rvrzkNdOtdiFX9Am5lgf0uotm4dmMSY2NVzDTZdVbrwNjYGCZn2GI9cek1LEx9b4/FQwcS+B8n\nGqCOBqI5IDaNvD4epShkNDjwYAOoVlcQ04dx8focEBj/uHrjOp6eTWBmqYYdg3G8cp79rvpiBbN1\nBtcrjo6lWhFjY2MYv8rObaVSBgpAacm/P+W6C8eliBExhGjKfytWKsAGoFquQKlkAA24OTWJxXoN\n6AIai9XQeSwt+pvU+MVzsBrcqFVhwu8TF89BVQiKFkuC01oSV6dL+NqTL2DZY9f79IUzKCeXYbYM\nPJeKN7FcXYEBve3aWaYFJIALly5hKuXzypfnb2JsbG7Ve7O8xGlZfEEr1YtQiYqzp9tFU+K0Dmdx\nEGphDp9/6cu4M30HHJeCEnbeaYfTpnQLFy5PYWyMnf/sEj8GV0OjsiiP3wyYqV6/fBW1W+3Je0Fn\nC92Xnr6AHGH30aMU1FOgqxSGRjA5W/Sf90YNiAO6orRdp7kqL7hUG+cujMMps/f10tUiSNZEHJnI\n51KFBk+z8dLJ12CX2GdW7AoocaFYKUxfv4iZGwTzpo+e2ouNyN+V5PSsU3NnQc04CuYWnDl9CpkY\nxfX5Jl548RUsN9n7eXbiPOIL4c2pWOfGrq6Ha5cuAgAaVvt3lesupitziAcGuUmMCZOIuLUwue51\nqtJkG+HUjUmMLSrwTBdUsVGqNjv+jgsVtmFqbgw3L16Xf68TDSo3ebwxdQtjY+weX5tjcvpq08PY\n2BjKdiB5psD50+dAXKBsV/DVJ16E5XiYWax0/H7TtUA9FdevXYHSmEIungDKQLFWXPW8r91k7yLl\n33/h4iU45ZtoWi506oJQrHndckoaUIB0F1CuKrh++QImI+boguE2anJNv3hpHO4022vOVy7jlbnT\nSDZ03FM4HPlZj1JYno0EgLgSQ9Mz8dq1cfRXcji4OY4Xx6v4zN8/hwOb/SZI1DlcuLzk0/CsOAC2\nVnkVG1duLSKmE0xcPBuiY0+X2H2r1Gq4Nc3faUqYeSlMaKa1+vVyKKACz748hi2FXOefiwj5znkK\n5udmMTbmP9+m7UFRgJfP3cS+O3MYpxRfev7r2JXeEvodolgqFUtwUjZAKKZm5uUxzyzPApTAIFr7\n2iuG6QUNjxJcfO0sbgaG8TVeQD794iX0GUsoVepQiH/9PduFxRGLK9fYfnyqeIYd00wRY5UxXJxg\n9yGhUlQALJdWoPEmycT4JRSNBVBKoUDBxNQkXn7llY5U0WqtARrndEmOfNQ4sjQ7OYOxUud7RUAB\njpa+dvkiEosKphfYujp+cRzFWLigN7nBsZL0GTvTc9NYqQDIAsWlZdnJf/XsKfQYeYxxxKM6U8JY\ncQy9cXZt/v7JM3j3XRn2jrg6rl+7DFIPU7QXirwgrS8AiOOFVy/CsKZhOTaoSnDuzCkQQuBYDXjc\nzv38xQu4Mm0BI4BiuvK+BO+1zpvVr125huE6+/vXbrBcY4u2FZetCXzm2c/jSG6P/MxKLSADv9LA\nSy+/0oZ+AsCZiSoACofacBq2/F7iEUABGvU6xsbGMMO98jIJBRcvnJH7xLlrF9Dfk0NvTsOJU1Po\nX2R5S5wfM1Fd5NMqPni8C3O3LmHuFtBUJkBUF+ZsL8bGxuT7XC2bQAaYnLoCQMdSkeVK1+uMAQPa\nnru5jSYQB2aXFzA2NoY/vvb/wlB0/Oym96Nc94ul5VL7unt2nK2xxcUpjI2x/X+6GZhRJh5eG78E\nWrvVdt2qzSrgapifvYWxsUXUODtGPMOe7QGKi/MXJxCzoz03F8u2VIa8Mj4BgM2wrWdf/L4XS/fd\ndx8+9alP4QMf+ADOnz+P/v5+JDn9bGhoCLVaDdPT0+jr68PTTz+NT3ziE1heXu74mXUFVTDQ14PR\nUabwNbVQBX2cPQxqSsfo6GjbR2bHV4AFYOvQZpwpj6OrN4/Rw6N45tJJADUcOXQAJ5fqwBxwYOc+\njI4cXdehPD0+htduTWLP3gPozSdwZXIFteYU3nZsBIn+Jl67dR7JTAbZ7gJQAXbt3gPgJfQUMijz\njXXP3j0Yyg7APfUsAIYsBc/hLbgfX3r2Ck6eOgcAOLR7H7750reYU3NXN0ZHD+PZ6y8Bk8Dh7fsx\nun0UXz/9IoA67jp2JKSG93pidBS48+gKfvOpZ0DhYOvgcOQ1BoD/c0cDpm3jV5/8JtLZNLaPFHDh\n1jTiADTocGBjYHAAmjUEYAb3HN6C2MANYA44uvsQsu5GfPbpZ5DQMlj2yjh05DBqj38bAEA0dr1G\nBocxepB9P3NXn8GuLSO4UQeIAnls9GvTAIDufDcS8X5MLAOZrhzMm/PQANy575gcjASAydoVPHWG\nXeN77hzFido53Fq6CiguMkkDd95xjH3nwgRwE9gzMowT54GFZhbbtm/BieUxjGzZiNHhI4z6cdW/\nLgf2b8OTLzyFvnRP27X722unsOQCQ8MjyOUUYIoVSw/cfSSE5ERF47qHJ198FlA8xA0VxCDIKunI\n+zOypY4vPL8IlcYwYd7Ee3Z/AMAMegcSmLOBo9sO4uypS1ANC9SJy9/xN4uPQ2vqAFVweP8OjB5i\nCOWJ6iVc4XMERw8eRl+6p+07AeAbp7+Dy5MlbN25D/lMnBkfjhPohoJcIYVS1ZLfpY8/zf6rKm3n\nkJjP4ouzT4BoFgaHN2GUI5lfPXMCRHMwVOiPPO/0zc+jaDYRz/ZidJRths9efRW4AfQm+3HsGLuv\n05U54NYXAQBvH32rpNAEYyqxgs+cPQdqxWBevBPH7tiB0dGDeP7qKVyfv4ENG3eioBfw97NPIt2T\nxeih8PFcn18GpoG4EcPdd9wFXP1rUIW2HffTY7egJJnS0Y7uLZhYugYSa8BImXL6j8a8ju9hMEzb\nhfWdp6ADOLB7P/b27cDj1e9ienYetufiwMHDkV3eyQtLwByQTxRwzx13409ufg6Wa6M33Y3+VB9u\nzF5HOp+Rx/DnN/4B1FJxx/7dGB3diJpVx5/eeAwAoMLAsWPH8IXlJ3CrPA0a7wOwANOm2LPvIJLx\nCOGZK58BPBX79+7Bni0FlJ8/AQDw1NXP+8snnwdQx94dG/HKxGvYuGkLDuwdAD43BVUjUDRtzet2\n4PBBAAChKlzXC6HOnSJRWMLXrp8CAGzaugmjI+w7KtcsYA5Qc0bH722YDvB5VpyOdG3AxPJ1GDn2\nDm7YVMVL//FJnJ+i+MiPsc+PjY1F/q5Pf+dpCJFKGkCW9m/dh+eeLGPLYE4+7yLKV01g4QQ0XUcm\nmwYWgc0DWUzxLvXxo0dxeMdAx/PO33weZWsS3QODGD2we83rFIwryzeAW0yye3h4CKOju0L/vmfs\nBC5cW8K/3HscJ06cRCVptp33126wxKinpxt1ksRys4ZkKid/7tNzXwIqOnq62tdF27WBq3/tF5hU\nwZ13jIYQKEop/ua5b+HWkoPDR46CfulxZFP+vXxs8XHUeYc9mcljdPQoTp+8DCwBdx24A1sLG/Hi\ntdMAKtg2MoB5ALFEDF2FPFAGDh84hP40axYbV/8Gy80atMxGHNkVZj6IUL7yOBIJDVUA/d19uDE5\nDZsXLPt37cWRDZ3p9qmvL6HJkaXCQDdG941i7JVxoAQc2H8Aw9mwiez4mVs4XR4PFUvJXBpajP2O\n4cEh2K6DU+WL2LFrJ7YWNuLx73wXKAEP3fFWJI0EjlKKL7/8LVyatvDbh+/Akak5PD9Zwf6H97A5\n0EDMXSrhO0svY+/uTfj2iTl4apZd5/N/B0KJfHZfvHYa166MAwA2btmI2gusCb1z43aM7h9tez9e\nmK1gqgpoySRGR0dx7soibharIBmgx70T15SruGBexc8c/aAsPK5NlwDM8mcA2Lh1T6TQyaWlcUBh\nhU9v3t/fjaufh+010JMvYHR0lNFgv/4ktgyxP1fNGv568u9BUyqOHTuGH7eu4U+/cAZzJROxDcCu\nLZtwcfwSejck8fEPvTO0Rj554mWgCJRn+hDPb8b+bWzv/e/nWP6ycesQNHUBeoydrzoTB6YBTWtf\ngy4tXsSFZQXQFew7uA/Vy3V06ey6X5suAVPs3Ygn4m2fPT93AcAKjh7cI48hMT8BiBpY8bBp8xaZ\nMwSDXvkcqKvh0P5dOLi9F2dPXsHZyiXs3bEHo0MHkZt5Ciu1BXQP9GN0dLKY2wAAIABJREFUNHpd\nuXSzCFz6GgDgzqN3sP0mkAOuVjR932l4R44cwb59+/CTP/mT+L3f+z389m//Nr74xS/iiSeeAAB8\n7GMfw6OPPooPfehDeM973oNNmzZFfua2wlNCA6e6pgCeBoVqHWl4/hBY9MxSTPdpeNnbmFkSi6rJ\nB2NPjrOqenR3n4TzTduWVEMBSaYTuq+GJyWj+UxLxExQEPYvcKNNqP6g+0xVyIYzGp4/s/TG1M/b\nhruwpY+9DBt7ujv+XHcugYECu8aO52LrUM6HcS1BUXGkuMPeLd2S393NBR4ARm8CgOVaCYucPiWU\nDoOD94Ja1Z/nNDz43aCm8IJQVDlfU6w1pCeGgMFFiJklQ2OeH8LDCIqLXNr/TsEp3zsyiERMw9Mn\nJ6WijKAltcpXNtwGGk4zkh4nBkCbARqe4hlyTmK1iPFjJIqL3nwCVasW+R0AoyV1Z5OgxQ0oNct4\ndYoVOnqcXaf+dC8MVYcSs1ALDP7XrDo0LmffExB4EJLbQLvoRjCOHxmG51E8d5oVr0ulJjOhVCm6\nc3FU6labH0TU8G9QDS8IzS/VuYFnOpoulI2lQTRLmgsDwLlbvKtY8JMDgw9ap/SE75/SEvdtPoq3\nb70fv/Pgo/j5d92FDzzEIFMxND+9WPXpNBF+KQ0uE64SLiJA1cj5ljOXF0ESLEEZHTwAAEikLSQz\nluSd19z1qeEtFOsgKqfltlAdsIp8+CxXv8oaORBCpCRvdzIvaafiHQOAql1hsuEFwUEPPL+eJr/X\ncm1cuO53sJdKHbjy1AGoIinXaU5xqVo1fPXEVbgdzApLNQuGpiCbEi72nqSjsHmxtWl4hspmMXRN\nWfcaOtyXCVgY+M+nWN87DZEDgiLIfm4gw5Jksc4M9qQxursfF28UWXLQISilmF2qIcmFdajlv5+G\nl4bjepF+SYr0efMkfe3Atl54c1th39yJTQNdbZ8JhpirfT00PHmdIkxpAeDIzl5QClQWkkjpCZyZ\nvdBG2xeG76qiMEoz8UI03YpZg2cbbUp4QICGp/g0vNa1hxCCQzt6UanbuDq1gqblhuZbDVWHQ7m4\nAV83hcx2byos8NCfT/PzdiWqpQfov66pt1GGW8N2PKhqmIYnImqeOBiGpoK64ZklsVcFZzZFiHyJ\nBPzVTKcp51d0xVeateTM0gwKiS4k+TgBIQT3HxpCw3QwdnEePdgK2ogWDRFU6EScwNBV6bXExhj8\n52PjQEaKNlSaDdQc9uy1eiyJGCiwnKlUr2PiVhH//r++AKrYoK6KiSsm7hkZxWR5Bufmx+VnxL0U\n9NBO96RcNQG+vsYD1GMh3CHUPHvzCezamMcDh1nhkDKSSOhxLHB67oOjI0jFNUkrMzQDcdWAR5xQ\noVSz6jg1cx59iX7QRgZfeS7g0WQLg3sLukra9lU1ioaXiTHWiN2QypniXq5UGxK5sSPobSsRAg+h\n3Id0VsOzqQW4msz5snxERjxzIqeoNjsLAtWbtswvDVUHKOB1sA9qjX+UmaVHH30Ujz32GD772c9i\n165d+NEf/VGpdnfs2DE89thjeOyxx/CRj3yk42duJygNK9aIl05DfB0CD3xmSfgs8RupBwUebstn\nic8s8dmnsYvzUAhweGefTNCbti0XdL9YMnyBB8rEAGywhyIoHS4iuDh3p9jxMYEH9lBPS0NattE2\nLQe6FjYg+14jn2QLjhya7xCKwvwuHM/Fex/YinfcxWeZPKG65ODCtSVoqoIdI11y9qInmfcHcHlX\n9PrCgjQdFNS2oMCDWMAGCimAEjmMSClFk9McVEWVg5cr1TqUWAMKVDlQK0KoGyXifmIHsEIkF+Dk\niiSmN5XHfQcHsbjSwOIy+y6/WAq/sCKhb1XCA3wfhuDMUiaWioT8W0MPKMv15BOoWw2pGtcahBDs\n3lxAfYZ1iU8tvsr+XmfXNZ/IIRfPgmgWqo1gElwH8dg1D6rh9WT972kV3QjG/YeHoBDfoHa53AQo\nAVEoCrwgFFLlIrE0ogQeYtECD8I4VUhTt0Y+mQFRPcwW/bXh6hIr3PYNbZJ/Jzb9jV3DHVUju5N5\n/PwdH8S+4Y149/1b5SzLhh62wE8v1PxB7YiZJSGIIO65SjR4cFFtEVo4fXkRepolAMcGGcoxeigD\nJd5EX6oH1NHQpOtLTueLDbmZi2c6qfleS51EHhZq7L0Ugg1C5a87mZcJcpPP6JmOBRtNUCsuZ+0U\nRQlJBQe//+JNn6oRVEMMhgsXNKBOphCFCUskSviLZ7+OR//o6cjioVw1kU3HpIqe7bi+OhoX13gz\nIpsypKJiMGEQ8yyzqxRLTcuR80ppI4VMLC1nxgBfaOczX3+tzQRdRLlmod50/GLJ9vcRt8H+v1Xc\nAYBvJul6aPJZlEI2gfs3H8NG5UhY2CYihBnkSn19irbBWE06HAAO8XmhM5eXcKB/Dxbqy5iphKnJ\nvhqeIu+tEKrwPA81qw7q6G1KeIB/7iLh0gJKiMEQEuInx+dhWm6ogDZUHY7nQiFUvkuLtSXEVEPO\nWZaqTGyoN5eS5y3MPp8ZYxSj5XITzZoGoniYL3cWebAcD5oWVsMT0Sqq0hoxXZUmpGIWVay5WkQT\nIcNnPrW0v3Y2bVMWuZqiSZlsy7VQtxtYqhfbEKp7DrI/n5lYkD6T0QIP7HfZno2R/jQm5ypwPQqP\netKkFQgXS4vlqrQnEPOirTFUYGtYpdnAf/2Hc2haLnI5Ap0w1b37Bu8FAHx94mn5GdFEEh5j8x3m\nllaqpmxGBX3+8mnOsOph66auqfiDX3kLHr5nMwD27PWnejBfWwKlFImYhrffuTGU/Mc0o80O58XJ\nU3A8B2/bfhc2b8jihbMzcg21TaEQaELXAsWSmFmKMHvPpZnXUtNtthdLtaBS7WoCD/5zZwUEHkgH\nnyWPenDBitV0gt3zH9r2FvzqPR/F9m52fYT1xI3ZYsc9ot50Au+uBlDFtwFYI/7RBR6+L0HDyJIY\nBlc9JgoQ9JkQITYsWSxJnyWBLCkSlbo9nyWe6Fouag0bF68vY8fGPLIpQxZLDFkSQ3J8kUto8AUe\nPPZiqiYIVWCQdkqKSBgMTUGWq36QILJUmYOh6jKxaZiOFHd4o0L4F2Ri7Rtua2iKCsdzMNCdwo+9\njVHdRNdlqVLDtakSdox0wdBVLNaXoREVaSOFZEyDQgCXG7LdCMy2iQ58UOBhvshRonwSoIoc1GXJ\nke9FIYwtS/UGSKyOlJptU4ZJ8IJUXDeJnKgtyFJTqNXk8FbuLzVxnSWuUuCBLyyUb0wCPUvrnZEl\ny3FQ4kpfhdT6CnbZDVQ8FLo0UNC2bmMw9m4ugNZyyOp53GpeBhQHjsKV0uIZdMUy8FQT1QZzRfc8\nTypQKsT3mwkeN4CQr0RrFLJxHNzei4s3iphdqmG51GRO9sSTxZdAF0QHLKrIF9cuKPBAadC5PRoN\nEh5hcwEz0/k6S9bv3L5d/l02lsGP7nkY/2zvwx3PpVMM9QpkqQZD1ZHSE5FqeMLMUSgC6kQHVEca\nHwNsSH9+uQ4tXUNvqhtD2QEoIJitzaFiVdGX6gbsOCzCktOm6eDslcWOQjlBZEkUScIwFqvIhy/V\ni6AeQXeKJSACWepJ5pHiXWOh5LfUYEULseMoBBQTRXHk8o6nQJtKjZrs2EYhS2xzp0zMJ7DW/8zo\nBxAzVBhbz2Ey803867/4Cv7486dDBV+pZiGXNqSKnmm7EvkHoZEJwxsVhSy/LraNW3MV/Pnfn5X+\nacuNFVgdfABNy5WGtHEthkI8F1JFO7KzFwe39+DVSwv4N398gs0StIRQa0twYZ0gslSvsPW0VTYc\n8GXUXdeT1ykVN/BrP3UUf/S/vHVNu4ls4nsplvh5eIpES4KxQ0p3z+PQAKPQtkqIi+de5U06QqgU\nOKrZdS7xb7Qp4QG+2IyITqjjwR2MVfHSeUbLCjI9BBqSTKqoBJClnmRBXrtS1UQmaSCZ0KWku1AC\n/G//8BpuzVXw6vi8pE4uVDsbL4eQJaOlWDLWQJZ0JQJZ4sVShF2D3Otj/r1tOiZsx/eIMvg+YHsO\npsuskB3OhmmbmwZYTjU5Xw0pELcdX0AsYqQ/A8vxcHVqpa1Y2jSQBeXF0nKlFlBDjS6WhnvY2jW3\nUsaFa8u4c+8ALDSR4cVsZTGFbYVNGJs+I4VYarxhuHWI/c655eiEvVS1ZKMjiKYnDXYvWwVDgtGX\n6oHpWrLJ/6GH9+Cd9wzLaxHTYmi2qKW+cItRy+7beAzvvm8LXI/iGy8wpoRg79TtJjSVBHyW2H+j\nnu+udAxwNFieJQ2sHc9hIkhV/5zdqGKpYkJTFYaI8Qjat0ChsCOEaaQqoashk2T3PB1L4d6Nvgx6\nJs6u5cvj0/jI//5N/Nx/eAL/5W9exZMv38Tcch2UUtSbNojCptcIISBQQbG2EA7wg1IsedHIkurF\n4FIvUi9eLAgJPQZN0UI0PEJYclYyK9AUbU1FmWAIhRPLdnF6YgGuRzHKucYxrsBmOk6Ahueb4Cr8\nwXU9F8VyE9AtGCQZuTmJxTkZ16EoCpP+1ZkGPaUUM5V5bEj3yQet0XTeMAqeiMFsPwgI+jvMpgRD\nUzR5zcV/u/hc2vlrDC3au4VRFJbqRWS1NJPbVAjSSQN2kx37dDEgLcwXpChkqTefgEJV2VUQHkvi\nWBJ84SqbNRDdRiHenliLayyvtRFAllLtyFI+0YX9W7thaAqm5ljCJxYB0cmhAV8eAJGoj9hsTMfB\nMhcM6cmsr2CXBQvxkOUfaZUND8aeLQUABHlnKzw4ULvmYVJeLMUyDAonHqjioG46qPHuo2Oq6MrE\nQkWM+G5d1ddMQI8fZdSDZ16d4jQ85ocikaWSL7kOILL7b2gGNEULFUsN04GrsGNslQ0XITb8lUYZ\ntuPB9SgaWIHiJNGd8a8VIQQ/dfBHcGhg76rnEhUD3SkQwmh4AFO2KkZQggXNSfhIxbUEiOpgdtlP\nRs5cXgQ0Ew5pYFNuCKqiIqOlcbPE5jL70j1Q3SSoYqNpN/GlZ6/iN//kOYnctUYQWWpVHOqELNmu\njdn6DGgjLVFViSwl8lKyXpg8LteFoXY2hBAEi6Wm6QTofy4ObWfryGJE11DKz1IllFQd33I3Pvmu\n38Hdw0ehZlYQ2/ddPDn1Nfz8f3ocT7x0Aw3TgWmx93WueRPQm7Btz5eSXicN7/VGD/cbWyrX8Omv\nXcCXn72K67N+0TNXi1bEM23XX980A4VkFxpOUyLVhBD8zs/ejbffMYLLt1bw59+Yw/iNsOz6M9zU\nMiWRJXHfcphdZL8nioYn9hsn4LOUjOvr9uTz1bTW5wUVDB9ZavdZAgBVVXBwRy9ml+rYEN8MADg9\nFy6WQjQ8ogCBYqkSMKQVSVlbBIolgfi2Ri4dw9bBHC7dZEVMkOkh6FbplIJq3ULTbqJq1UIzj6Uq\nK+DjhgpQxrqQHXhPwZefvYqTF/1iaakWXSy5LrMpEYcZ1+LSDwtYWw3P0NWO0uFqRLHUavId12Jo\nOqZsXLYiS5NCCS8XRpYSMQ09uTgmF4LFUmcanuXa2NjPmlz/7s+e5+by/vHl0jHZzCzW6oDO9t18\nhz2gL8fOw+LslPc/tA2mY8qm5NnLi3hkx4OglOIbl5mMuECWtvFiqRMNb6Vqgr8CIWRJXJfV1pu+\nlK+IB7DrtHMzR6IUHXE1jCxZro0LCxMYyQ2iP92Ltx4dRiqu4fHnr8N2PJgN9iw07GaYhuetUixl\nGLLkwZGWGOxa2VhpBJRqI+htK1UT+WzYvzOkmteBhif8rgjVQiqBwcjyfPG9xzfh2J5+lKsmvvXS\nTXzysVfx0d/9Fv7nj38L//DMVbam82eXgCFL61HY/sEollo2UJHAEZdtxCtme5IiIO/p+TqSejxg\nSuvB0FlVWmpWkItnbsu4VaBapu3KeaWju/v4cXHameO00fAMXfU9HqjHoFzNRlyJRgViXJ1HUMRS\neoLNbpgOVpplNB1TzisBQMNykXyDi6VHdjyIP3j4t9og9qgQyBLgowU9GbZgzRXZBrZvazcsx0LZ\nrCITkEbPJA2YdXa+8xW2aWzoSYWSCRELxToySZ1t7lBBCaM0smKJXWuN+MiSq7NiJEqMQHhSSWSJ\nF0tQXCkbDvjFUlc8C1VVsGlDFrPz7OUXz5XsmPKNaYlLyUahPmITsBwbRd6d7cuus1jiGzVRPKTS\nnOLZYWYJALYM5hAzVFRn2Plr3fOo2hWkjRR0VZeoKtFNVOuW3FCtphqi4AGAJjjZq6BKIu45MAhd\nU/D0yUkGqXsMBRS+TUI+XDwrnd7BmBoDFJdJhkLIhkd7LImQG75mYXGlgctTi4BuIquu7h9zO2Ho\nKga6U7gyWYJpu8jHc6hatbDnBIJzdJo8NqI5mAooMZ6ZWJQD1cLvKaf7SUtfqhsG2Puy3FiRTvef\nefxiJOVhvlgHFBcqUSVtU84i6FYbBRBgg/cudeFV/DnCjVxOfVPXMNKGcEvnioncsLLLCHd2k3yG\ngroaihUzVKTdz7n7SyvtyJIlkmhPaetAdyfzePS+n8W/Pf5LGMj0QRu4CXv7t/GpJ76Kf/1/MUl3\nM3Mdj137a+gj47AcL2BS+ubR8ACgr4vdl5nlKl55je0H80W/EO40t9S0HL+g1WLSwLcYoOLpmopf\n+Ykj+Jn37ket6eE3/uQ5fPsVpjI1v1zH1567jr5CEt15nrC5OjSXdcynuRXAYG97I0V07B3qweLF\nUiaxflEg4ZNSaa7PCyoYEoGnirRQaI1DOxgV7+ZNB0OZAZyfvyT3cwBS3lnlPksAlc0UITPfiYYH\nIIRYRKErIoSEOIAQa0Mk+PE4QdNysNgQtHJWLLmuh0rdQi4dY01eqsClLmzX4Z6EBE++cgtj4/NI\nKix5XzGjaXji/Ra2C5qiSrsEAhJK1qOCvUsEhhK7rZklgBkHd8W6GLIk0aiAKa1j+8VSRI4w3JfB\n4koDZW5XEGUPIQoM07UwwoulWsNGKqEiFQ/fv/4utlctV6sghgkCItkvraGrOiuKFRd37O1HXx87\n195MDqm4hrOXF3HPyFHkYhl8++pzaDqmRNw3b8hCIZ3lw8s1E8kE268SAelwsS9GXVcRIg+ZDzRR\nRBGtqxpiWgyO58hi59LiVViujQP9TPAgHtPw9js2olgx8cLZGTR5v0IUS6YtfN9EQRxNwxMKiTdK\nfsPNcm2Ua0FkKVwsUUpRLJttNN3QnqdE0/AEA0cjsY57vbAmue9IPz720bvx2f/jXfijR9+Kn33f\nftx7cANsx8X1mTJAPLmvKVBXNcINxg9EsUQ9JeSzpCgEmqqAOBw9aLbPLYmH5U8/fw4JLRFClgxN\nAaUUpWYZXbH1U/CAgBeE5WLs4jwySR3bR1gSJg3oXB9ZskWxpPmbg+O5mF+pgKhuRw8jgaQl4wL1\nSEqBB8HhFvNKolh4o2l4uqpjJDe4rp8NIkvS44rr4IsBxj2bC1jiyUBW8xflbMpAvcYh9jpLIrcO\n5uQAtCiWKKWYW26gV8xIQANRXDiuF+KyqoqKJC+WlDjbPIe72qXq4y0zS+m4XywFF4Ris4S0kZKb\nxJbBnKQZiY6JT8Nj3ytpeBGoj6ELGp4rJZ435FcfqhYRRJZEd6vTzBLAGgs7R/KYugXATELJLWC5\nsSKpamKzYUm0b5Lr2lqbMp9YoNZTLKUSOo7t6cetuQpOTyzIhEEWSxxdEBTaKD8IgCcmAaO6IvdY\nAoBCh5klwbsnmo355TpeucpkCoPNhTci7js4iIbp4MVzMx09U5otM0sFPgc4ucTlrinFmcsLSObZ\n9dgkiiXNTwL6Ut1IEHZOC7Wi3MTnluv4xgvX245rodgA0S0k9YTcmIIFZLnWTsO7sMBkWN1KXg7G\nv3Xz3fgv7/r32N69WaKuolN7c5kVAb0tBqbSd8TVUKw0ZedbM1jSAkTT8MSGSz0lUuwDAA4N7MUn\nHv4t/OSB98KIeTC2ncVM7gmovTdxTWHKeUSzYdluYM7He1NpeGKA/8zVOemLtFDyi6VOc0vNgMBD\nXIvJDvlyC5WTEIL3Hd+GDx7vgaEp+MPPncRffvk8PvP4a3BcDx9852651yRjBnIzD+GX7/6fmPBI\nJhapOhhFw0sYHVCYiBA0vJrZeRC7U0hkyWv3WRJxhBcppy4t4ODAHpiOifElX2qUwjd8V4gCEDaz\nRClF1RKGtEbHYikoHNAJWQL8+SkgLJwkBBp0neUBC1XWOBAeS2XejMilYmyP8RS41IHlWoDHnkXL\nZjT+XRvY+15xopElQWkSNZ1KVMT5+pvQ46uaLQN+HpHQEv7MEu2MLAUp99SKQ4WOpmNKqpOuaLJh\nZ3s2JkusWBrKtqsnDvHZn+szbE1cC1nas7mAvkISH3hoJ9JJra3JMdjN1s6Z5TKIbiIby3R8twkh\nUKGDqA5+6od2SY+lbCyN/dt6MLNUQ7Fs4x3bH0DNbuDEjZckspRLx1DIJeQ6GxzzcD2Kcs1CMsme\noXiAhifOJeq6ihDGtGJWSJw7+7whi1+BLp2dY3YTB/t9dbh33cek9P/h2SuwBA3PaUDTCByXMSmE\nYXQUspSKayBcgOf6SrBYslAJIEtuC7JUazpwXC8k7gC0+CwRKmnIwRCIeUzpnDvIwlnOnhNsHcrh\nvQ9sw298+E789995GH/y629DT96QLC4FjN4fNKXuFD8QxRJaBB4ATsXjXksrEcWS2HybpgcVerhY\n0lVmlOg5Mmlcb4gh4suTK1hcaeDIzj5JQxEdBdvxTWld10eWNG5a5lFPzlO0wt4iJDUs5it2UcVB\nvWni+UuXAfjFku0wqD7eAd78foQaQJZE0SS7XsTDpoEM0klDFhHZALKUTurwLK6EYlWQTujMYFIV\nNDxeFNeYilofN59UiAoQ1kWum7aPLCkqUty8VaAQI/n2RFlsgKLIFF0ionhtNLx8YK5t62AWlMvs\n1ttmltj9qnDhhiiBB2GYazkOalYTlBJsKKwXWWLHum9bHvl8tEJSa+zenAelBPZyPys87KYUJZDP\nPxd5EDQ8uLosbOR380JtNSW8YBw/ypCJ+WIDChS41JMzHpKGtwayFNdiIIonhU1WKiaI3oQCVfLP\nW0MKkmgW5op1vHqTJVo7+0fWddzrjbcdY7/v26/cks9HW7Ekuf7seenNsKR4tsS60ZPzVRQrJrp6\n2ea4KSeQpWCx1IMUL55myouYL9aZuEBMxd9861Kb4/ncSgVKrI7hnJ/AhJClRjuydHGBrSlexRdd\nURRFKrWJd9nhxdIMR5YGc2HEVsxGUVdDsWxCBXvWB/pi6ErHEDPU1Wl4LTNLraGrOv7Z3kfwh+/6\nGI4NHYKaLcLYcsFPGhUXVkDggb7JNDxhji2uaVc6hqVyYB6tQ7FkWq6/vmmGREmDIg/B2D4Yxyd+\n9TiGelP44tOX8dTYJDYNZHD86LCky6TiBupVApXomF+uR1LwAF8Nj4JKYYTbKSgFWlhuvh4anlCh\nUzoK2mzoSaEvn8DpiQXs50ni6dkL8t+90MySL5pkO14IWYpSwwPCyJK+Cgqwb2u3fBZb1fAAQNcp\nPArMy2KJIUvlKnsWsmkDMUMFpQQudVkS6Ck4srNX7jmj2zYDAJo0WqhK0KpETacGkKVWE+ioEAVK\nUku0zyxFvBfMRJ0dG7XiIFRjyTBHQTVV9fcv18ZUeRa5WCZyrlkIJZRrlhx9aDu+AKUvl47hv/3b\nd+CnH9kDl3pQWoqOkR7WkDJdC4rRRCG5usdXNpFEIa9jx0heCimlYykc4HTgs5cX8dC2B6ASBV+f\neFq+w6mEjv5CEsulBi4tXMeHv/BreHWGSXRXahYoBWIJKq+Xfy7suqyGVgaNaUXYsljS5N4q5pbO\nzV2EShTs6d0hf36oN40jO3sxfqMohXQEsgSwZ0aoF0YVboQQaSwdNBm3XQfVpj8v1VosrXDP0lZk\nyWphU0QVSzU+KiNyuaiQhWLLzFbwuEf6MyAqhcZzEYWoIEqQSdA5fjCKJU+RruMidE2RXfwo+fBK\nkycEVIFjqbBcm/GGebEkqHu3I+4A+MN7z59jHRVBwQP8B9MOIEtCNS+ILLnUxWKVU7sS0cVavFV8\nQCTdqoOvvMIMSJ06+zuRLCXibyyydDvBaHjh4ULx8BPFw2GuLiSU8DIBmlEmaYDywrfh1THQk0Ii\nprUhS4JDLNS3VDDZTdNmNC0SQpbCL2XU3FVvVwKP3LsZ77yLKaRJ0QLVkTQ8y2GKP0Fu9JahnJRG\nbrao4QkVORFRFDlD86VXm04DcLVIP4eoEItEb3dcqjmuVfDv3cIWaHfZLxhFsdQVpOE1bLmhUkcL\nyYYDfjNgPcgSABzb0y+RUU1lxTTjO/s0PCqRpQ40PC2MLK1UmiCGibTemT4rRF2IZuPMxCKuLrDZ\njv3DmyJ//vXGSH8GO0a68Or4PGKE3b9iCzJg2j7FAvAVJhc43fTMBE+m42Xoqo6BNHtPclqYhpc1\n2PM3vbKE5XITGwcyeN/x7VipmvjSM1fkzzquh6K5ABBgY873uvCviSWH0kW4novxxatIIAc4MWQj\nOvKig+qAfVa8xxu7w4itEJQQyFK1yu5vb8EAIQTd2bgslIMhNlwxuLtW9KW68ev3/wv8mwd+Afv6\nduLR+z7K5tsUD7btSWSJUu9NpeH1cLUzKB72b+vGkV29sF1/4+5EwzMtJ4AsxWVhe3K63VxaxFBv\nGn/wK8dxdFcfFAJ85D37oCpEIvnpuIFqw8bsUh0ejRZ3AMKNCYF8roVQBCOY1HRSVuwUwZmlTsWS\nkO6uNmwk7X6oihoqlgSypKpK4LgZu0IgS3QVZCk486OvgizFdBV7uC9QUOBBIEtCAXyuyhqAQjZc\nKobx5gCoAo96MB0b1FPRV0ji/W/fgcGeFO7fsxWggKvVZGEUDEEvIoqvACiQpfXMWov5w0w8xWeP\nXDiey+eF2+85IUQ2m6gVl8k40fg6puiyKKhaNczXltrmlUQEi3XXL22ZAAAgAElEQVRdi36vg4VX\nMFzPbXtvN/Wz60t0E1C8jvNKIpJ6HJRbi4jmZcZI4SAvls5cXkQh0YW7R47iVmka8xZDWdIJHX35\nBDwKPHH5eZiuhRsrbA8p8XtrxNj9CBas6yqWkrxYCiBLApkxVEOKWTUdEzWrjsvFG9jevaWtMH43\nR5dAFRCqhool03LlGtTpWIKImAjLtVAJyHa3SnJHyYYD/jstEEeBDAWj1OBiNKsU+D6ytPqa4niu\nPC+VN8zFbPBq8YNRLEUgS4amwDV5sRQhHy7hRErQqLOHqG43YNkeDC2ohHd7yJLo1Mwsspt/NGAk\nJ26gQ13ZMRfUDENXoapC4MHDcp3LH6ejuyNdmRhL5O9mCZ5ADz7288dQ6GEP8R99+hJ+/9Mv4+oU\n+13BBf37HYyGx2eWWpClfdvy+NAjrEMYhSxlUwbgqaz40UwMdqfYubQVS6w7IWh4KlEBxYNle6gH\nZ5YUVSqriBCDlcFQFIJf+LFD0gxQIiaKJ7snQgmvK+EX1Zs3ZP1FqgVZ0kl4IYkqlgSEbLsuTM8E\ndTVZAK4VohPquI7sQnea3RGxaxOjh9BaTib1okmQDdDwKgEaHlwd3a00PJ7wG+tElmK6insObJCf\npZRCISyJkMgSp3eQTsWSajBkyeRJepkN93bFOncVJYqiWfjOq5NAjJ2TQGLfyHjbsRF4FJia5shX\nM7pYEgWyOLaSWYXjejh9eRGAh5KzhJHsBpnACGQpphrIxNJypuVWcR6UsobB+45vQzZl4AtPXZab\n+FKpCXC/JkHpA3xPC3afw5vRjZVJNJwmEjYrpqM68oJeJ/xlSmYJ1FUx0lOI/DnqalguN7Gywt7h\nXI6dV09XAitVE7YT3ohFwqDcJgp0dPAAPvbgr+GOoUPMN0thFDyTb54Ub64anniXCfHw1qPD2DGS\nB+APG89WOwg8WK7s1sdUA7t7tmNT1zCenzy5qj9TOqHjYx+9G3/1sXfi2B52v/xiKQ7LdnF9mu1t\nnZAl8a4RQmVT7/UUS0RxMTV/e15LYhicep2LJcCX7r5wpYTdPdtwrXhL0u0FsqQR4j8vhBVLElmy\nDWRS0dRCQoOiNas/b2JuKQpZ0nR2HAs14RvIaXhVQcMzWN7isSF027UBqiCd0PH+t+/En/3GQ8il\nkjCQAok1ZDIaDH9mif1ZVVSZUK+nWPqJd+zC7/+r+5FP8nkgqwbXcyNRJRFZTmOmZhyew+fDNV/g\nQSTF14uToKCRFDyA+5DxiEVQ8IAwDS8YbkSTY+sGdn1JnAv8dJANl9+pGVKAqcKfi7SRwqaBLDJJ\nA2cuM0XRR3Y8CACYU85DUQgSMQ19BbYfn5lj5re29CFiv0832H1JBJElvi+uRsMzNAP5eC4k/CIU\nM3VVl4Ww6Vi4sDABSqmcVwrGsb0DkmGjER0NroYHMGTJkchS9HWPenYs10a96e8NrZLc4tzzmXjb\n5wAfNTLd9mJppVbr+L0ixMzSmsWSa8tnkBVL9M1BlizLwszMzO1+7B81qKe08V11TYVrCWSpvViq\nNkz52UqFy0s7pkSWZFf+NgxpAYSUPLYO5UJGoqJYIoTKIsmy2YKq66pUxHI9F6Um22T6MtGJLiEs\nkb9zH1uIhERovktBtmAjoSawY0MfTpyexm//+fPsZ97gmaXbCU1R5abdSsPTNL+QE+Z9wZkltqkT\n2KYGaBZDluKBYokvIAsSWWLXQlU0EEJRt5jfiJiN0hRN0vAAQKHauoyHxfeQgMCDQAqCBUkyrmND\ndwrUVdt8lmJKLJR4RNHwYjxxtl0HLiyoVFuVehQM0dW0PDvy2KIikzT48CzB1hTzOGtHltjgv6Ar\nUCeChscLtfg6iyWAGdQCfgfR4XNLS6UGbMdjXWJKOqIJhqbzRIgtwPPVFRDSeV4J8Gl4wk/KSFog\nIGtep9cTDxwegqYSXLzMns1iizGt6fj0FcAvlqhqYr5Yx9nLi+juc+F4jhR3APxiqS/VDUKInIeY\nr7DErL+QRDKu4yce2omG6eDz32YzR/PFuhSL2MQFGgD4lEWtXeDhNU7BI7UCFILIORchketxZKnu\nMUPaVkRUboauhpWKicVlLk3Nf0w8U8vlcGIokhFBVX49oau6HDAWm6cH702l4Qm01TAI7js4iJ0b\nu0CEyaSqY6G21ObBBrCZJQRmlggh+JHd7wClFF8Zf3LV71QUEkpYBJKf5kjKpVtsjY0SdwD8mSWA\nygZTlEFsp5DUI9XB5G0WS0EaXqeZJcCX7j51aUGqVZ7hqng+DU8NHXfTcqUaHlYTeCDBYmn1Wa2H\n7tyI40eGcff+gJm1QJa495FA48V8qkgqcxkfWaLwWEPAU5BKhL8zqWZBjGaIvilCFEsi/9YUVTb1\n1lMspRM69m7plvtQzarD8ZxVRQgEpY5acTg2v1ayWFLl+V8t3gQQLe4AsHdd5EutzCARQRpeMFzq\nthUd3WneBOMm810dZMNFxLUYTNeC53khP0NFITiwvRuLKw3MLtWxo3sLNqT70DTmkE4wVch8OgYS\nr2HZZAiQaOaIQljVPP4dQWRpbYEHgK3pS/WizJcsiSzpshA2HRNnZ9m80oH+dl9SVSF45F6GLukk\nhrrTgK5xZClAw+uELAWbuGJtt1wbNdNfl2lLsVQsRyNLYu0W18JeBVkSqqpRERT7WC0cz5W5iKpo\nbBSjgxddMNaVYf3Zn/0Z/uqv/gqNRgPve9/78Mu//Mv45Cc/uZ6P/tMIqrQpqei6AsdkFywKWaqb\n7ILvHOmG4/CHyLGkGt7K6/BYAsJeAaO7w51q+XITCodLIvvS4Yp8cC3Hpwv0pFZ/4UWIh7ts1jBb\nW8Bw1wA+8Stvwa//9DFs4AlLIbc2h/nNipDAAxVGo2zhCQ4ALnFkKaiG9867N+Hj/+Je5GIZKIaF\nu/b1I2Go0odEbA5i4FJ0fXSeWDVMizs7C6qCirjub5RJNbsuao/4HqK6kookkaWW52TLUBaeq0i1\nM2muqumhbtNqAg8N0wJVHOhYf/ERhSyttWkAvmz73UN3oS/Vjf19bAGWiINmohai4ekdaXireSy1\nxqEdvfjZH9mPwW72Pa7noq+QhOV4mC/WQQjtiCoFv6vBhTQWqiwR7M+0I4UixDU34jwZTVsoJLtW\npUe83silYzi2px8zs1yAogVZEvxtIRcfpMO9cHYG1YYNwQ7cFKDNpdUENuWGcJAnioV0GtRVUbLY\n7xdI5CP3bkZfPoGvPncN88U681jixdJIIIlRFeZrphp2Gw1PFEtT12PYNtwVmcSKBNklNizXhktM\nECfexl8XG69Qw5td5F1Tg72bQmFxcSU87yK6k+r3UCwZqg4QLyTwQKm3aqf3ew1Bi73/yAakkwa2\nDOYglpoNmX541JNoejBaBR4A4O6RUfQmC3jq2ndRNtdfhLieCwKCTIL9nvEbolhafWaJvXavH1mC\n4krp/PVG2JS283fm0jFsHcrhwrVl7O7eCcD3W5ICD0qAhsflwyuy2WMgneiALAXWmyiFtmDkM3H8\nrx8alXsOECyW2N7e5J1wkeiWarxYSgk1PAIK1hARyFIwuow8CAFuLs+jNQQCqyj+ffKRpfXv9yJ/\nqFp1RnFb5Z3wi6UEbIujkKpPJxZrsth/OhVLikIkuhkl7gAEkKUWNMHz2pscqqJKc3Ogs8eSCJ8u\n6jcBxd5wcJtPxSOEIGUkQeHKQjabikHJ+QivQGpEIUw0/u4G1PBEQyu/BuLVl+6BRz1JZRaFos5N\naQH2TJ2du4iYFsOOwpbI3/OuezfjkXs2I59KhWl4tiufm057nvDuBHyPrKZlynwG8FkfInxD2miB\nB7/oaqfElblyZibWmUETDxSKq4XtOfK8NEUFUSga5tp04HWtcE899RQ+/OEP4/HHH8eDDz6Iv/3b\nv8XJkyfX89F/GhEhJ6trChyTyXFHzSzVLXbx3ja6UTo/i7+LBZClrtsWePCPI0jBAwIdBeIFkCWu\nIqOpsrtsOg7qDnt41ksDFF2kGyuTcD0XG9J9IITggcND+ONffxs+/vP34j33b72tc3kjQ9DwKKUh\njX9d0UKyr4v1IlOWU/wNQ3DUdwwOAMTD8ECCzWq1IUsBQ1r417tmmSGfJVVRWHHElYe6jPUhCuJ7\ndm5iEuFANLIEMLU+eIrcKMUiE9d06W1DQCI5usK8eLleBSEIXYu1QoqIeA6KjRJyscy6ioAfe3AH\n3v/2HXjHgf341Hs+Ll2z00YSKlFBDBOVul8swdXakKXbnVkC2Ib53rdsQyYpBAIc9BfYhnVztgyW\nrK1dLDVtk0mXNtkG3Z8pdPyMqqhIGUnocQfppIqGV5XD129GvO3YiPRLaTWmFWpjMX7Ps3FfaOGb\nLzJjwXQhrIQHsKToPz/8W/jwkR9nP5M0QM0ELLBNv180DDQVH3x4N2zHw+e+MY655TqURAV5oyCf\nQxHZWLoNWaKUMiU8OwHVTeGXPnA48hzFRkaJg0VOO4qTdFsT4ujgfhzZsB+GyTq3M9yPrOaw4+4R\nyFLL3JLYcL+XwiamGSAKm0sVJtUMWXrzaHji3ROUFUNXkU2z92RDmtHkgl4mIkw7LPAgfte7d70d\nlmvjm5efWfcxiORXIClXJhn6uqHDHCSJRJZeBw1PdV8HsuRLxK+GLAFMFc9xPdSWEsjFMjgz+xoo\n9amDWkux1DAdhixRxsRQIwQFgLDAg6DH3k4ICpDC5bybjglVUeWzEBR4kMaZxINLHVBPQbpFpr2b\nm2tPl9qLJUtIIis+xTx2GzNLIgSNv2bXQzMfUdGf7gEBQZLkIEZYiGbJczfU8DXrNLMEAMOyWOqE\nLHWm4bXSZwkhoWZK1xpFiVCJLTZLkoYnCsGDXJ7+zGX2buoqm39OJXhTK2VA7Qp7EAH+zBIUX/Zf\nxFs23xXaWzuFUMQTVDxBTTVUXf6+2eo8piqz2Nu7XTZkWiMZ1/ELP34IuQSbRxNUTct2ZQ7W0Ucs\nEWD28PtXajQkOwdAm9mrnFlqkw7nxRJ/HqMEHqom2+OCRVprrAdZ8jwPHvXkNRFMhJoZbbQejHWt\ncJqmgRCCZ555Bg899JD80v/fBI2g4akKbIciG89ESoeLwdXRnRtAedJc51KnuqZINOr1IkuJmIbd\nm8MJmBrgT7sSWWKLXExX5cyHadswKUtKO6nhtYZY7CaWrwEIz1/omoJDAYWdf4wQi69LvYDGPyuW\nRCJEKeVO59F+N4ISWTIrkoZHQGSSPl+sI26o0mxQUCgalskFHsSGwq8D5QpkEfNKUSE4x7mcfx19\nj6XwwrxlMAd4qlzkBZIZM/wFL2UkI5MQUSyVORUziEStFYSw62G7NpYbK+umlm3oSeGfv2tvmyKR\nQhTk410gRhPVhiXlZdNGqm2DE0ldaxK+nhD3xPFcmejfnKsApLNsOOAXZi5c2I6His0aI92r0PAA\n9l7FEi4+/kujoKDofROLpWN7BpCOJQBPbTOmlbKwWiuyZGOKe+HYGisAg4IMrZFJ6qwg02xAb4Y6\n3cePjmDjQAbffuUmXp64AaLbGM62S/5nY2lADc8sTZZnULVqcEpd+OlH9rDnOiJURQWhDO29sciS\nuozevnZu6hrGb7zlF5FPdOHGbBl2w4BKDTx7/SV8dfxJFASy1KKIJ6gcOll/46A1DE7Ds5ywlOxq\nCMb3GkGkV0QmzRVMCXtGo2aQmiGBB//9f3DLvdAUDS/eWn8z0+GUJYFYWI6H3q5ExwRVIiuBWuV2\niiU5m6G5mFp4/TQ8VV29WBJ+S6cmFrElP4JiswTTtXyBh4hiqWrWANdALtl5Tf1eiyWR4ItiyXIs\nOWsChAUeAH99o6CApyLVYpbbn2bnORcY+hchaXjEpx7GpBre+osl0ZRdaZTl89IpfnTPw/i9d/xv\n6I53Q1hpET1Iw/PPNW2kVh1lEIp4newAFKJAV7SIYqld4AEI07jWQpZG+Bp4qzQdEngQx5XPxHCW\nzy2J2bc0N3g24h6UzDJ0cGGbFmSJkjCaIs4laja6NVqNaQWyZCi63O9enjoNAJHzSq0hGrIKR7ss\n2xd46HSfC2m/kSKQpUqjKSnEAEBJdLEUHD0B/LVbIJ3CwDgYQg1PGFpHhaD3BxX6WqPVI0zk1A3r\nDUKWMpkMfu7nfg5XrlzBkSNH8NRTT92WEes/dtAIZMnQVbgeRS6WxUoLDa/asOVF7S+k5PyK4GMy\nZOn10fAySQMKYahSa+IpuzXEk5W9LZAlXZE/X66bAO/UrGeWBgBSfGbpyhLrRr/RnjHfa0hxi4Ch\nmqao0FQdNn95anYdpmPKQdjWEAt6qVlB3GBqeCp8Z/n5IvNYEn8WiUrdNLnAg5hZ4rNjvFgazLZ7\nLEWFWKiClAAfWYoolqgClz9noliK64ZcQKPmldjPsM2SKux5TN3GDBDAFoiSWYHpWsivg4K3VvSk\n8oBuolJvSmSpJ93+Xgxm+vGTB96Lh7cfv+3vEAPFrudioJsXS7MVgHirrkUiMYHiotqwYVK26a1V\nJGaNNCpWDSbY2tCTevOKJV1TcPzICDzLwEKlGPo30WUTc2ppI8mSVT5PNdSbxkxtFvl4TlIioyKd\nNOAW2Tsf23YWhaz/zKgKwT9/ZA88ClxZYqal23vaZdKz8QzzpHEbMgn7u5dfAgBsiG/E+45vW/U8\nVeiA6uDKPPN5Ex3xqMhnY6AUgKfhh3p/Al3xLP761OdxpvIcgHavJZEsrcX3Xy2EJ5flOAy5kajJ\nmz+z5ASoxpkk/7s6SwymyrNtnwsJPASKpYQex4H+XbhRmgopZq0WrudBIwrSgSS8EwUP+N5nlgQV\nTDcoZhZrcD269od4+I2z1QUeAGAvl+4+PbEgr7PruSHpcDWghte0HJSt6qriDuL4RbwuZEkWS3wW\n2rNC91BIZYsZstDzF0HDEx6AS412uqbN6aRhNbzbp+EJZH2pUVxzZimhx7GtsAn57P/H3ptHW3bV\n1cJzrd2dvrldNbf6VKpSSaqSVKWBBEkgEJrwAJEoJIKIijyE742oQ0HH4L3vk/eAoehwfMinOJ4S\nhsaGKBLQh0/TPBUxJpWYvqn0qVu5dZu63Wl3+/2x9lp77dPufbp761ZNRg1Sdc89Z5/drLXmmvM3\nfwnU6+waKTpXKoKmtABbaHcav3mvpXbEHWDPrUyWXI81mm+10Jc3Frul4e0qMLL06vIMSvUSU8t8\ngkkIweELJrC0VsfJuZJYK6RS7P9PVl8CoR7y7i4AUs2S32CXp4J2awrcClsy4V5LXJnRFFXY+p6a\new5AVLLkt1Lxx5O66Ygmwu0CTMb8+i+NGMj7vUZXq1WxhgIAEFeouACwXKpBVSjSDanL/NzwNarV\nwoZXMdl4X0y3H5emMhNIqgn822sPi2CORlgiea+BLNU7W/eAiGTpK1/5Cn78x38c3/jGNwAAuq7j\ny1/+cpRf3RjwmsmS6u9UZPUM6nY9dHJn5tZAqAsCZsfaWmCLkNfm2cKXBzxQQlumlXVCIWvgNz55\nLT75gSNNPxOLdOqKCcQUTWkDZWmlXANRTRDQSL0SgGDhveh3C98+hGSvfqBIO6yi6V2DDW+hHO50\n3oicUJZWmUqmOKDwZdaqhXLVEuEOQDBp1czmmiUg2EHcM946raf5OyhQqRqSgYM0vDApmSgkQKHC\nIy5c1xVkKalrol9Tpk3/I27Jgr9bl9HjDbgaVYXfeRChBZPpMRDCFL21Whmeo2Ci0HzshBB84OJ3\nhYIIokIm00JZmmVEhnQYxnQpofDUfElsMnTb5MgaGbieKyJfh2nDAwIrXskqhVR7vsPHF2WUUFZk\n7JOlQ/uzWKicERN7O2RTOpy5nXCWJ0Fzi/i7E/eGfn71JVtxaM8YqJ+Ed8H4rqb3kOulSlUTry+U\n8S8nWFT1z7/j+q62KAWMjLzmN6Tdkmu/iyoHEFy15wD++9t+BTkjg38//QAAr0lZ4glI/ZAlTdFA\nCGBaNkvD47bcIdrwNMkWy5FM+Pf6WhYJ1cAjs0+GFh2e5+Hk3BpAHbGzLuPYdja3HJ95LNIxcBue\nbO9ql4QHSAEHJCBLJOY5ymgpEM2CZbsieCcKQk1puxA0Q1Nwyd5xvHRqFfyRclxHZA2qUnQ4IR4q\nNaYsuR3CHYBwzRJPM4wDThb4LrzlmKHec8trdWbj8p+nUO2N20yWdvvz06rV3GOLN6UVZClmwAMH\nd3MslM90TcPjGMslRIsMl3AbnhoKxWhXryR+7ifidaoN0xU9FPDgeu0JPJ8PCCFdw7m4Uv/qyimU\nzApzekgqMw8Reez5BZGQmEyw/z9TZ6qPWmVElhOA5bU6KGH95jRF68k23GTDcy3hoOGJco7nImdk\nsDPfeV4AJALpkyXTcsWaq10fscksmz8TyInwpVKt1kSW5I2QpbU6ClkWRvPK8km8vMSi1rmyxNeo\nrchSzeZkqb2ylNKSeNeBt2ClvtbWhtyoLHE7XsUckA2PR1bfd999uOuuu/D666/jX//1X6P86sZA\ni67umhKQJQAhK97MfAmQmhFuKbKH6sXX2c6NrrE6p7yRjWU/4Diyf7KpyA1oCHhwmIWM7+DqGhUs\nf6VUA1QTBklFVvgaG49uzURTS0YFPoFYrt3WhseJXjtlqSCUpVXRZ4l4gQUPQMh+xCe6qmWFapa4\nT5cf085idGJpKFoounKpuoK0lgztpgFssBbJdI4pZOCkrotUmEybYkauMhCx8I9LljQRTT8QZckn\nEiV7BWv1Sstwh37Bnw3bc0TNGXtO3Y7PYLAw8esjWliXWoF7019aYkrL5BCVJQC4cGcBSZoGiIfX\nVwJ1yeLKkhbcPzkjC+oT5W3T7Dp2suAB8K2nBOaLh6G4Sdz5+N/gv977FfzlE9/DU3Mn4LgOfurm\ni0W4QytCGzSmrWOlZOK37nwIXvoMkkoKh6f3dP2OCtFAFBun/SacO4rNvcs4irng+uzdnsdEegwX\nTezHmlmCYphYbAh4qFpBkXOvCIrFrbCyNMyAhxbKkm74Sviiicu3XYLTpXm8tnJK/PyxEwt47tVl\npFOE1Vk1zAHHth8GADx0KhpZarThAe2T8IDGRWh8ZQlgaZQWqQDwYtUtxbHhAcBlfnT3WslveO45\ngniGbHjwsForMaub1ZkshZQlrXcbHq/vsFxLqD0AsFquIyc1NZfJktciDW/3+BQ8j6DiNtdeiz5L\nJHivONHhHOP+GL/gp7BFqXMdyyVE83UOlYaVpXax4RzbJ9PIZ3Rsa9PzC2hWlmyhMjePBdz9UTBy\nXVsCjCULSGtJvLoygzWz3NTEXG5OiwayxGsQ61X2d0uqWcplDNTseiz7fONxKVTBPLfh2RY0hZXK\nyEmzl265KNL6VNgxubJk2SJgrJ2ytH1sDJ5pYG0ujd+/i8Wjl+v1UM0SD8sB2AbPsk+WAOC3f/CH\n+O1//TqA4NxwZcn2mskSbzQ7nu1cdvKegzciqSXwnWf+t+hhKYOvJTlJ4vVzcjBFO0Ra6f/Mz/wM\nvvnNb+Khhx7C8ePHxZ+zBi2UJf73tN/cdFmqFTg5xxZhfCLjSVyvnF4Wv7tcX4vdY6kb5IAHx2P2\nIn6zMWXJLwCt1EE0Eyk1uqrFo8MB9rD1UjcyTPABtO6YDTa8gCzxwvB2u/x8gbtWL4uABy6PN4Y7\nyJ9Zteqo1GxwR4UgyQX2fnwnJ9L3UPUmZamd3M+DGapWHVW/n05Kl2x4bZQlThx474q0Fm/QlQs+\nB6EscfJa9dZQsSotwx36hVhUOiy6fyyXYAsB0r7HEiCFSVBWH0GU5sLaVuD3Eo+3HbayRAgRDVrv\nf+x58e9B8W5wzXJGBp5iQlcBPctshXLMdyskDZUpP7aOi8lN2FfchWfmX8BdT/4t/tt9v42PffsX\n8Tev/SmyW1ahUb2ld17UR6oWvvG9J3Hi9VOgRg2Htx2ItGmjER1QHNFLat9keyswV5a2jKXE4nBv\nkVkDsxNV0ZSYo+ZvNjRuSsSBiCF2LVazRALr0rDAE9nkmiUu0M3OV3H19GUAAuLjeR7+7B+eBQCk\n0qTlfTyeKmJfcReemj+Billt+nkjuFIg18Jsn+igLKFZWYq7aTiWLLACcNWMVbcUbkrb/TN5n6Pl\nNTZWMmXJr01VpOhw4okaUM/WkW3RK4xDrpFMaL0rS2xzzoPlBcqS47hYq1jIZ2SbrKwsKU1kSVdV\nECsJkzSfRx4QBanhOreEt6v9bQVDZf3aFipnYHdJw+OYKiZFOBaHRlU/sp2dw07hDgBrGfK1X7kR\nP/u+S9u+ppEsNVqtGr8HEO572A6EEOwqTGO2NI+1ekkEPnBsG09jIp/A4y8swHPY90kk2P3E1ZKa\n//jx+3alVEchY6Bq13qy4AFszJhMjQkbnulaYuyS7ZxHIljwAMmOSTlZCpSlduEQk/kMDlR+DMkz\nR1CtsefphVNnQjVLhHqo+opNpWbDsln/Scd1cLq8IEoUePodP45WypLpmvBcikKmM8HP6GncfOBG\nrNVL+P7z/6fp57a0tgSCeTVKzVKkbRHbtvHnf/7nUV66IdGqZon3pUn7EdSr9WZliZOTrWM54EVg\nbrkEoACquqhX6wMnS7Ky5Lo+WRLKkiKsOCvVCojhIKNHC3cAwpauYTTX7BdyvY+w4dGwDY8rSxOp\nIspYaXoPHutZMlmQA6gjBuu5hh5LQDBw1m0LlRqgJQkcBA/SdH4bbM9pWzvUCgnFEJZO0zZRNivY\nV2yu/+CfXwZwZq0iAkVShg7TH/BaxYZDOj7eu8KgMWuWpEmkm287CjiRsGgZcOvw7JSIeB4U+LPB\n740tYymcWa35ylL7BYu8iysrS90W1ZwYnFxlPeWGTZYA4NCO7Xj++f/AD595Gbddfw0AtCy05Xa4\n3/j0VfiX0/cD6K4sEUKQTWlYKZnYX9yDD7/9nSiZZTw9/zyeOP0snjj9jIhWPjS5v+XiV25AfPyZ\nOeR3lmACODSxP9L306gG4nmoYBmeS7F3qv0mxJivLO3dHuy2GLsAACAASURBVCxqOFlK5MuYf70G\n1/WE9Y93fe+HLHGbs+lYIg0PGC5ZAtjzLPdSsv17fH6phosnDkEhFA+efBQfuPhdePyFBTz54iKu\nPLQFM7CRVFpvSlw5fQQvLr2K/5h9CtfuOtbx8x3XgaGGo7I72fBCNUvi3+Kdo3F/3CF6LR5ZitiU\nlmPf9jyyKR1LK3Wg4NcstQl4WLOCHnFdlSX/qxs9KEuaVEfJSQxf5PKalryUGCb3DmMbiM3nWncz\nMPU5mI4VegZsu7FmScH1e96A2mwJhyYvjHXcE6kiZlZnfWWp+/d+y7GdOGNfjO+8/lBw/GJHX0PN\nrne14QGtm1zLaNyglGt4GsHXGVHnvZ357Xh6/nl48JqUJUIIDu+fwH3HT2LFVy4FWfLJUbnMFAnT\nYWShXLOxP6PjpF3vKzRoKj2Bx04/jZpVg+lY4rvKSbOXRiRLol0DtQEYrCltA6lohEIJ/vvP/wgA\n4L6nH8P/99i/YXZpFeAlDB6BRzxUzXCwRTFrYKm2AtdzUXdM2I4N27FYs2L/O7RSlmzPBFy1ZQ+/\nRtx84K34X8/di7uf+Qe8Y//1oVKVRnshtxDy5u+dEGmE279/P5aWlrq/cIOCgIjuxBycLKV8srQs\n2/DmSqDUE6yT15B4xG9UqLBdTV7YNiiEAx48UEjKkkbFILtq8nCJ6GTNUINmpxst3AGQiItjBjY8\nErbhdVOWgl4QZXjEA6Ge2PGZa6EscRte3TZRrVvQNHaP8Ing09d8DF++6ddihZnIAzdXK4uJ1gMz\nl8wX18pisZc2dKH6tSNpQlnyd3X1uGRpwMoS36Ekfr0LbA0ThUErS0HNEgAR8gB0XqiJ3lfUwcxc\nCURxoFG96+KOkyXXc5HWU5FrA/vBjiJTc06eWcDrC2zhZotI7OB4+bFlsh5eXZ6BQiimc92faV6T\nwq2oGT2Nq6Yvw08f/XF85V2fx9ff92X80nWfwKeu/mjL388ngpolALj4UvZcRF106dQfR7UyiJUU\nBeytsMWPrT6wK9j93lv066iSK3BcL4jhRWCjGISyZLvMhqfr7PsN04YHIDTGAUHPNc8lWF31cPHU\nAbyw9AoWKmfwZ/+bqUofvukganY9VOsig9ctRbHiCRuefz1UhYQ2lRohj4ekV2UpJZGlnmx4pGuN\nHMBaD1x24QRqJjvOJhseDchS2U88g60jl2p/H8nftR9lySPN8e8rnCxJBEEmJq2sZQCQJOzZnFkO\nx4eL6HCuplEFClWwxZiIHdI1kRpjPdIi9h5LGCrefNnu0L8FvfY0JNXEQOYfXdFhOZa4rtzWpbU4\nV7xmaaxLbDiHvAnVavPyyH4/iXCBrQkN3bfd+cqSWffbojgWVv3+Wbm0zpSlPuYUkYhXXoTlBMoS\nV6u2ZCYjJesBQRqeS9kx1yWy1K2PGADs2erP/9QVNjyF+Ml0fnCCiA3PGqJeGgBKVgWma0NTVHG9\nHGnjiMOBCeKqkTZI0noKNx98G0pmGf/rxH2hn9kNqmPK8NvKrHSvm4w0ws3OzuKmm27Chz70Idx2\n223iz9kCTdGaBgZOlhIKewBeXz6Dv77vBD7zW/fhldk1KKonPdh+jYh/I7jUJ0uDtuFJ0eGub8Pj\naXi6psDwb9yqwyaXsVR0skYIQdr3pm60cAdAysi3m214rsdCEBarS6w7dps6G15/tmaWRSKd63um\n5/yGtJMhZSnYVajWbfBaXT4RyN3GoyKhMmXJdV2cqbYOd+BI+sEMS6WK2NlIJwzhZW6nLDVOVPGV\npeA7dYtPjQJOXqlf7+I52sCVpYAscWWJnRtCvI52HF2y4Z0+UwaoHcn+kJUi+YcZGy6DW0OIVse9\nD7FaKdsJNg44eK+l1foaXl2Zwfbc1ki1OjwyX67bC31+IodrdlwhoogbEdQsmXj/9RfgtPkakmoC\ne7pYADk4qSfUg+6lOy7WLt03jv/6s2/A+94cJOwVk3kUEjnUFbZpIoc88A0KYwA1S5avLPF2E0NX\nlhQtVLPkegEhODm3hqt8K97d//FDPPHCIo5dNIULdxZQt8229/Kewg6ktCRe9mvuOsFxHShEQcq3\nam4ZS7ftMQTI0eGeRJZi1iz5SYi5gtuzDS8KWQKAyw9MAR57rWzDC9csQfQu9Gytsw1PJkt6/PuN\nP6sepMbCfs3SSoteNHKvm3aBElmNkY6XF0+H/p3XLHEFq1udTifIm5RqxPdpvD/5OP62C96E9xy8\ncSCpyvJzCzTXpcgQNUsR570QWTJakSWmjpcrfnqcf9tY0n2qEgWWawvCkM2o8DyvZxsewJLfAEaW\nTMeC7q9VC8k8tmWm8Ja9b4z8Xrx2zSU84MERIUOt1LlGBE2WvaDuG+zfeG/SpTW2Zm4kS2Wzwsge\n1QJlyW1WllxigyL6s/buA29BWk/hu8/+Y8iK3HhvZJOMKJ44eUY0Im+HSBryJz7xicgHuRHRyruq\n+cTjmefZbtK3f/AkrFc8qArBGy7diucNKpGlIFELAGwyHLIUKAZMWSIqRd1yQAmTPbkNz1NrIAAm\nM/EWuik9hTWzvDGVJW7Dc6wmGx7AbvKF8hmMJQptd7WSWgKUUJTrZbF4cm2uLFWgKjSUspXQAoJW\nrWsoNtQs9YIt6Qk8u/AC5iqLojajHSFJ6jpQB5bKVaEsZZIGXHRWlhqTiIwYTWmBYABUqBIiBb0i\npSehQoeVCGwsw6pZctzAhgcAIF6kgAdQB67HGmEm29SCyZAtF6Ow4AFB53Y1YeLe46/hwzcdbGmH\n4Ha458+8gppdx+4uFjwOrhzI6moc8M89emkeH3jjTvz93XO4fOvFkRdghmoAvhiUVjuPnYQQXHmo\neZzaW9yFR15/AlBNLK7UcKHvcOWbDboWb+NABr9XXOKgUrOg6wRVjMaGJytLtkhDJJiZK+HG647g\njx7+C/yfF44DuAwfvukg20mHF6pRkEEIwZb0BGbWZkNJeq3A0vAY+fjE+y4VvazaQU6QU1UCFz3Y\n8HxlKZmx8frLNTiuF2nXWG5KG+X1AGtOiwc4WQrijDWloc+SXQFUv2YpYsBDP8qSCydonC6UJV99\nkMiSRlVh+2u3eTeWKOKkCZxcDpMl07fh8dqyKCl27RAmS9HshzIhkGuVPnT4fT0fRyPkxrS6qgd1\nnh1qlqJuEu6S0uQabXgA23jaMpbCoh/woGu8ZkmyixIVlmNjxW82nEoDMMM9luKC11HPlRdgOZYg\n4Lqi4Xdv/r9jvZdQloikLKk8Orz7deaffdHePGpV4BUb0KiBmlsStUCix1ImgYVKEHFfNiuwXBua\nogW9NhEmLa7nAooN1Y4+tqe0JN578O34s8e/g787cS8+eMnNAFqk4YlNWAuPP7/Qofo5orL093//\n97j66qub/pwtaHXBeTrePT9kg0u+AHzqg5fhm//tnfj1n77GD3hQwr9PuP+XJ2oNZ0EIypQlCgLL\nZgXthJAgeUdjN95YOh5Z4nVLG7FmKRjwwjY8Vfr3M9Xltkl4AFsgZHxCWPfrhhyfLM0vVTFZTIZ2\nIxM6e/hKvlTMAx6iJP20w3bfDjWzOoszVRYI0q5TeNrwfeqVCkyfLGUTCRzZegj7x/bg8JaDLX+v\ncXEaV1ni99lYIj+wfmkpJSsSl3RiRPIWx0GjDW/LeECWOpFbvtHBVWGiOJFSiORmz8PssSSD73aO\nT1DMnangqZcWQ8mQjcf2+OlnALROrmuF9715H37ibQc6Wqw6gRNrh9Tx7MILAKJb8ACIWFsAyBu9\nKZp7i0zFoqnVUCIeL/DuJcqZQy68X6tYMEZow7MbbHhsUUlwcq6EidQYtqW2o6LO4rKDBRzcPSbq\nIjvtTk9mxmE6lugJ2A62F0RB3/ymfXjj4c51JLKKpKj+Oeoh4AEAiMY2Hqu17jUDQHjHPipZmhpL\niV6JlmOLSitFUUJkqe7xavxuNUvB/dCLssSDfRzYkg3PV5ZKvGYp+Hx5/WK02QzglqvXVxdC/277\nypInBTz0iol0MPdG3VCU789+Yv07QSZLQKAwqS2IpVCWItrwUnpSOAuyLZQlwFeXXHYfBcqSfz97\nFJQosFxL1O2k/OE3ETOYSYbcmJYFPPQ+7nHSVnZL0A88hEdr/xjLhsc/u1jQcMEu5o7Q/DVJrYEs\nFbIGFmQbnq8saVSVNkTDytJqtRJ6z6h454U3IKun8b1n7xH9HzmJDcgSX9t7eOjp0y3fhyPSCKdp\nGn74wx+iXmf2Iv7nbEGrG+maS7fi8gOTuO1G5u3eszOBd71xjxgk5cQXblsS4xTfDVJ638VsBUWq\nWeIBD3XLFSoYV5aIT5ZyMVWB6dxWFBK5WOluo0IQthC24XFlab58Bo7ndk3wyehplMxAWXIsgppp\nY7lUb1okprRws2HuduiHLPGC1ZnVWVGz1G4XK5Ngg9RqtSoSYdJJAzty2/A/3v6rmGzjOW5WluLW\nLGn+cfXvF+fIasF3TEVQbuKCT852o7IEr6OyIWo6qF+wT522u/Ey5GbPo1KWckYGlFCkMuxeuOfB\n1+B43APeTJae8QlLt3AHjssPTOEn33WoZ4KsUgVpLYnV2hqemj8BIB5ZkknqZCZ6EpcMXrdE06uh\nRDy+UErEbNAsQ1YhTcsRNYzDV5bUUBqe47FoZk2lOOlb1MyFSRDq4chRdj/UuO2ww/fdkg43r2wF\nz/NEn6WoIFLAA3frxSVLvMDeURlBqdSarTetwJ5/AoB0tAo2Ipdi916lbrIUPrDryo/b0AhMl91P\n3dLw5Psh2aeyRChP5/SVJX9BLQc8yOuXdp+3Pc+sswsNjWmthpqlfu7lXpQllariM9v17OkXIsXS\nfyY4odZbbJJfMnUQ07mtuHB8T+T33+lvRrUL1Dqyf0JEh6uaXzfFn2dXAQVTjnnNkuHvsfdjw+ON\naU+tnYbneX21TODK0vP1F6AUFjCH5zBTexlAPBue6VhiHOP1qTVf8edEsZ0NT1M08R24s4hjcY3Z\n+w0a73wltQTee9FNqFhV/O1z9wBorlnia72EQfBgF7IU6e791re+hTvuuCMk5xNC8PTTT8c6+PVC\nK7J04c4ifuPnrwUA/MO306HocAChLtX89ws5FVUEQQ+dJqpeEK5Z8qAQpiwZGh/Qee0Uuw65Lk3V\nGvFzV94K0zH7IgPDgqhZkqLDZRvebIk1suykLAFMKp8tzYudV9dRRAFxo/0o6StLlTqbJBUVgNff\n7pusLPFeRu380dkkI2+r1RpLPdOATISeSY3Hp8e14fnntJgaHFkqGHnM+GvXXKJ9T4xeEfSjYffG\neD7JQluI13EBEOpp4kcdR5mkkloCCqFwPHfoPZY4KKHIJ7IwUcFEIYl/fnQGmGzeEebPPd9B3d1D\nk99ekUtksVov4Zn556FRFReMNTevbQe5oHlHvrc+b5wskdQqFlooS73s9HOIWj5fheR1rcMmS60C\nHhSiYPtEGjNza3jyxUXMvJBB4jAwY74A4C2ih0ine1k0rywtIIXWYxofo2KRJVGzBKhcWepoYGmG\nrmjIGhnYdWbdLUdUlmzXBvUXpnHqpPj4UbetUFNafm11ncKCT5YsTdT3tYJMDJNG/DUAXxTanhUo\nS7xmqUXAg6aqwr6abKNGTBfG4bkEK/VwEBcPeBAEsR9lSSJLUWLbAfi9fwyUrerQ1h3NylJYPZBx\ndPulOLq9fQx5K+wr7sTDpx5vu7l4eP8EvHv8e9L/ioECSgCPwnJMoa7oBrsD+7HhZfQ0kmoCJ1dn\n2XsOgCwBgD23A9rkKbFxwDfoO4Gv3SzHhMUjzP0NXN4SRdjwskbYhmdxG54q1iWNNrwzJTZG9OLk\neseF1+O7z/4D/vbZe/HuC9/aZGvn98ieHVk89UgFQPu5PtIdf/z4cTz99NN45plnxJ+zhSgB3a0Z\nuUQ21JTW9VifoyCLnf1+Psv+n6p+6MKAlSVKKQghLMXNY7UYbIeTHYfRsKvEC72jgvdK2IjgxNN0\nLBGdqxAqCvFmSyzlp9suf9pIw/XcgPy6Cl49za7tZANZSvkBCzy2myo8Maj3HbCt6UlQQnFqdVb0\nESi2kfxzPlkq1WrBjkyEwUme8BJSymFUaJINb1AYTwYktpge/D0mosMFkSbsehKv4yRsCBueI/pI\nRCFLhBDxrEymoqUKDQLFRB7LtVXccHSaxVeTIPKXQ1aU03pqoAphN+QMRpZeWZ7BheN7Y+1opvRg\nsts90ZsVeDI1hrSWYsrSSqAsceLYbjEZBUEDY58saaOx4TVGh3OlZ8dUFtW6gz/49mPwqhkUjSIe\nef0JFkDh76J3JEsZnpi10PY1TpeI4Fbg442iQIRg9NKcfTxZQB2sMW0cZYn4xC+qDQ8Ivl/NssWm\nr6rIyhKFQ+qAR6BCZ3362kAef5M9kHOFKmwjxg0CHoyOylJwLHyDrxFjuRQ8M4mSE26pYfk1S4Ga\n1vu9nE9kpfCj6HMkX+QOS1mSk3QBVn/CPm8wVvD/dPDt+MVrfw4HJ/a1/Pl4PonxLFtbuH7steVY\nUIgKgAAeU5a4xVIz2LXoR1kihGAqPS6IRz/KUjGRx9v2vQk3jl0L6+VLMW5eLH6mRViPqH4tmmlb\ngiQa/jWvW0HAg6qwhsqLTTY827fhsXvL8xrJEtvs7iWRNqEaeN9F70DVruF7z/1jkJSohG14e7d3\nFx4ijXC/+7u/2/LP2QK9i1ReSOSwZpbFhBVMIOGAh+1TSfzax65CIeeTlwErS/wzKfXgwvWjw10Y\nnCw13LhxbXgbGXLNkuNbPGUb3uxaNGWJx4eLB9JV8MrrjDg12vB4zZLpP0DchtfP7puqqNiamcTJ\ntVksVZeR0pJt7xOuIlXq9abCw46fIU14cbqwy8cIBPG9g8BUJiCx4+nBRuoDzTVLALfidUvDC6xV\nRImnCHOyFKd5Y78oJHIwHQtvvNxXXkgQ+cuRkZ773fnpgdWdRUHOyMDz/xe3T0tKmuwu2LK1p88n\nhGBvcSdoooKF1cANwCfpZF8BD7JlMyjWHlUaHl/E82jm6Sl2nV86tYrLLpzEdbuPombX8cTcs0I5\n72QFj2LDCzam4pAldl5uOLYDU2Ns/OnlHhxLFeHAAhQblajKkmOLpriKEoMs+YN73bJaNqXVdAqX\n1kFcDdmU0fH79KssAWxxa7mWGJMSomapDkoQitWXN3tTRusFdiFrwKsnYaEm7g0AIk3XHYCyRAnF\nhL8pFud9+Hdr1+C0XzQqS2aHPku9IKkl8IadRzveE+/7kQtDn225NjS++HcJbCeoWVL8zfZ+21Hw\nRDygP2WJEIJPXHUbjhYOAQDy5UuQpBl4Lmlac7YDbwxsCzt0gw1vrY5ChkW8r9ZLIpl5tbYGD54f\n8MA+y4UL1w1cbMsVpizJm21xcNP+NyOfyOHvnrtPbGDzCH7+mbu2pdBtCIs0CyiKIv64rosHHngA\na2tr3X9xA8BzCbLJzgMat7XwxrSNu238oXM8G288vB11Xkw8YGUJYAthSpkNjxDWZ4nbQeQGeAQU\n6SHUhqwXjBbR4bIN7/WIyhKPD+dFhJ6kLDVGJoc7qQf2xn4SgwBge24rymYFp0pzbWPOgWDRXjHr\nYtESZYeXUiqsML2QJWHDa9P/qRdszQUD91R+mGQp2HW64sAkCPGC4JMW0OWaJRpemHTD3uJObElP\nIDfg1MtO4JbNdNbFgV0FEB75Ky3QVKqIpMSo4Q6Dgmz9PTQZrRktR1r371WXYirb+73Hm9MuWnOh\n3iqeR5rU9zgQiyv/PtF8i1lUy1GvUBtUU2bDo9gxFZDiD990Ea7awSLEH5x5TATYdLKmTKSjK0vx\napYCsuKBzVM9kSWpMW10ZSkgS1Gjw4Hg2obIkpTOZmgEnmIyC16XJqjy/ZCIuJhshO6TJUXjTWm5\nsmQim9ZDqpnsNki3sWlnUzpgsjFhXiLHlsNrlvonS0AQdhNHiRRkaUQ1S411KaPAeC7lf3YQMiEi\n4h1m514pV6EqFC7ChKJXyLXnca34rUApgapQWCbFddkPwHzuWCSnC8DIv+kGylJSKEus/9XyWp3V\nK/mhV7v8dhNLfmKwXLNEqCvdt8BqjZGljN5bMJGh6nj/RTehZtfxvWdZ7VJgw/PdYzrFf/mJKzq+\nT6Qz8elPfzr0d8dx8JnPfCb2Qa8LPIqxXGdGyiPAV2trGEsWmhKo+EXkEh7v4TMMZUmhCohMlmwX\nuq8syTGlCZoc6Y7ysCHXLNlSdLiw4a1xshRTWXIUvDLrk6UGGx6X6UVSGm3exe8FO3Jb8dDMo3Bc\np60FDwi+c8Wsw9MdKIg+oVDKbBy9kCURnzpAZWlHIahB2VoYvC1MJOVIEv37b7gAf/6XgKa0v15y\nDwi7IXmqGz551UdYKuWQlQUZ/H5Zqq7grcd24n8+/K8Amu/JnJFB2axEjg0fFLiaTQnFgfG9sX43\n7Vc2K25/YxevW7L1ZZRrNjJJv0+RS8VY2QtEciLvFaIRlgnS5+ZJN8jtEVRFFU1id21h89KR/RO4\nZN84XLeIrJHBQzOP4qIJ1n+q0xykKxrGkgXMlRaANvsXvZEldu08z+vr+RgPkaWoNUsOiF+zFIfE\n8l3+um1LylJgw9N0CqgWnFqqYxIeEFbherVoav5OvKoxg5yoWSrVMdbQdiEhqaUZo/VahlICw8vA\nBiNLO/3Ia97UXtSm9TmWcWdHnA1Fnvo2vICHRmWJW60Gm8jaCXwtYUnKkgjycAhAgeVyDYWMjprT\nPckyCuSms4P6robG2tWkvEm4qxNQI4aocGXJcmxQQqXALhvVug3TdlHIJrDo2wZ356fx9PwJLPtK\nj2zDA3Fh24Gjaq3GalOzid7Fgbdf8CO4+5l/EAnFjTY827Xxzqt24fjx+bbv0dOTY9s2Xn311V5+\ndfRwKYrdyJK/W7rs1y01WqI4a+cPYdAAcRg2PEaWPLhCPdCFshQ8EGlt81jwgHDNklD2SKAsrdTX\noPlFwZ3A4z0XJWVp7kwFlKCp94/esJNMKW9W2KeyJPWx6qQs8cHU8eygmVvESYi/rhcp/y17r8X7\nD71DLLgGge2FYJdrujh421orG57rdW+IyZ9RRXGl5Klok1QvTYn7RdFvTLtcW8FbrtyJ7ZNsgmi8\nJ7nCM2pliW8s7Svuit2BPpdkz2aS9qfUcWWJpoP48IAs9b4YDIWBIGglMIo0PCCwErquC4VQ7JvO\n4/YPX4FfvPUoOyxKcWz7YSzXVvHk3HMAut/LU+lxLFSXRKpiI4SiHceGh8GQpSA+vB5TWWLHGktZ\n8i+madmiZ5FCqSBcVDVZg11L7xjuAIQbsvbqQtAVjdW1qLx+RYftuChVLeTT4WuakGx4nQKAMgo7\nn7LtkqfhuWDXqd8NVu7siDNH8s2poZMlv/2GUJaGZPtrhcZn2HJYnHfSUGHb7JyvVmrIZw1hk+zX\nhrdlQDY8GbmMgcWVqrhvVDUmWXKZosato6ZtNoQ7sHXZrgIj8yFlSbTOcaUUR2CtzmK/+fzRC3RV\nx49e/E7xd369gka4nRvSAhHJ0vXXX48bbrhB/HnDG95w9vRZ8ijGcp0nlHyCLVC4Da8xMYNSCoUq\nTWRJH5ayRFw2nvtdx4WypAcP/2aqVwKkprSNNjxpEJhIFrsO9hk9TJbgsnM3lk827ZJoDYsjDKAX\nBRDEhwOdyVIofYu4gEciN/jkx9iLsjSd24pbj7y/7+8pI6HpgGXAcxRsGRtewIM8qLn+f3fa+Vep\nCgLCQllEfcDgn9tBoSCUpVWkEhouuaD14mRPYQfyRlbsII8KfNy5KKYFDwD2TrLJ/aJtO/o6hm2Z\nKSjQWK8lP+TB8WzAo5H6grSDXN8GBElvg3xOWoGr53zc48oSIQRvvXIXxqUmsVdPMyveAycfARCF\nLE3A8zys2qWWP+ctQHpRllzP7U9Z8lUKotdipeFBKEvRF/58Y6zuBDY8uSmtq7EFmWcluitL0rnq\nlXzolC0uOVkyVAOrfhJeLhP+fEMKkeChQK1Q8G3Vp1aD3XHLdkEpgevXwfUL7uyIF/Aw7Jqlhuhw\nZ/Q2vGDRHShLqqIil9bhczjUbRP5jBGpR1oUyDa8QSlLB3cXsVax8PIsqwdVI65HdEVnPTL9sAZu\n36s7NpZa9FiaSI0jrSWx5Adx6VQN7g8SJksVk43xhVR/ZSdv3Xed2KBpjA6XN2HbIdLddOedd4r/\nJoQgk8lAb5PKstHgRVCWCgmuLLEL16rYnu8EAZINbyjKkgqP1AExpAdkSe6xUEiOro5iFOALlSYb\nnnQN5KZ47cDJ0pkak1s5WWrViFNrrFki/afhAQ3KUkcbHrcBOiDEi7Xo6IcsDQvG2l5U7RoyycGr\nMY3R4UBgLel03ggh0BUNruJKzaT7m6SGCU6ul/0dN7Fx0PAdf+qKW/DhI+8b+Xe5YtulePOea/DO\n/dfH/t2xVAG/+iOfwp5Cf2SJUooJYwtmvZOYXVoFMAXHs+G5ykCUJdKgLA3bhtk4YTuu01axOLLl\nEAxFR8ViilpXsuTvPq9YrWuM5bE2KgTBALOLx4nwlsFtwESvoRpRWbKk6PA4ZEkoSyEbXlCz5NAy\n4AGemUCua82Sf6683mq1gGA9oalB6AxPwitkGpQlad7PpdqvZcaTY3gZwKkVmSyxmmdeB9cvtmSY\n3TqOKjL8mqWG6HB3PWx4vrLkSMoS1ZBL61i2mCpBiItCxkDVj/3vJzocQKgP46CUpUN7xnD/8ZN4\n+iWmTsZXlhhZ4sqSZVtBQ9qMgdc5WUoXkdZTKPsqqCpFhxPqwpZqlqpWDVD7T9nVFQ0fufwDuOOR\nu7Ajzza0ZRteN0Q6E5///OcxPT2N6elpbN++HblcDrfddlsfhz1CeBTFbOcJpTHgoVWxPd8JAiRl\naQgPo0oUsXj3azLFAkDeYRpPDy72eSNAV4PdoVY2PIBNBt3AyRIv/PY4WRpr3pXQG2qWPDKYgIeU\nnhSL3o42PDWsLNE2vVBagR9jqk8pf5D4yNH34yOX9qfQAQAAIABJREFUfXAotXS8TsAJkaVojRZ1\nVUcmreC6y1lcdS/9GkaFgq9y8x03p81iVqXKuhDltJ7Cp6/5WCiJKQ6ObT/cNdEyCnZkp0EI8NLS\nSQD+eeq7ZimsLPG0tVHb8BzPbasw66qOI1sPib93q5vldQ3LbciSPNZGRVCz1J+yJAc8RFeWHKCH\ngAeuLFkyWaKBsmRSVkTumUZXZYmvC3jtVC9gaXh2kNBJdayWmnssAUBSD9YvuVT7Z34qU4Dn0HDA\ng+1CV6lQK/vFpVMH8QtX/xTetu9NkX8nMXQbXjg6fD2UJfkZ9jwvpCy5jn+fUheXXTiJqu33SOtz\n7jZUXcwXgyRLAFCt++NCxMRJXdHguA7qtglVUUXJiOnYWF7zlaGsIWqWJpJFEVIEsLWYINPEFZH3\nAESN19gAWpJct+sqfP19XxZ20oEpS3fffTd+7/d+D6dOncINN9wg/t2yLExM9DZZjhxu94AHfsMJ\nZclpXqBoDcqSStWh2DMUysgSIQQut+GpvN9TcLnGUoNPHFtPCGXJNoM+HlQJ+Y4jKUtGg6/V4cpS\nM1nSJNkXYM2GCaJb4TphOrsVS9UVYatqhVBUMfFixffyey+pJYHudtuR4KZrdg/tvVsNapxIdFus\n6YoGCheXXFjAg48MJ5hlUBBjUZUrS/Fq2c4V7B/fheMLD2CmdAoA4MAGPF0kh/aCRluuqFkaQZ8l\nAKLXWidlCQCumr4MD848CiAIBmgHbtVppyz1EvDQVLMUsyEtR0pLIqEaqOjRapZcl5EzuBSExLTh\ncWXJscGLliilQhWre8ym6JmJCGl4PlnqreSbHQ+/1xS/bQVRsVxi1yjfsLkr93JKt4kOB4BiLglv\nMYkztaDpp2m70FQK13UHMoYQQnD93jfE+p1zQlniNjzHhuO58DwPuqIildaBCm98TPDGw9vw8EOD\nseEB7Plerq0OjCzt2ppDKqGK5zFOwAMAVKwqxrWiUEMtx8ZSidcsJbAwu4S0lkRCS4gwLqChZol4\nIRte3WFkK5ccfPpzK8dK29d2+uF73/te3Hzzzfj1X//1UPodpRRTU701FRw5PNokazeCRwOvtAl4\nANjNUPatDzXHHNqCS6WK30BOgb9xLnZL5UW8HOG7GUAJFQlBfOChhIaugdz4tB2yegNZ6mDDE+9N\ng8Z9g1oYXTx1ACfOvIzp3Ja2r9GlnRTQeJ/Nd7tTWgKodXnxJkCr6PAoNjyA2WXLZmVgXvFhQlM0\nZPS0KHztxSZ1LuCSbfuAZ4HFOutg73oOvEEpS6J2kf11+Da88ITtdFEBjm0/DEIIPM8TSWPtwIvA\nl+02Nrw+0vCYDa+/tMjxZBHV2iIqK93JEn8W4LGI4zgKNidLTFliIISIeseKx86PZxmRAx76IUt8\nIe9SNiYRV8VK2W9I2xDwkJJ6OXUiAKzXUgr15DwqZhUpPQnLdqGpCmzPGcgmYC8YdZ+ldalZkpQl\n3mtI9W143hw775fsLyJpqKhZfsDDQMjSOJ5bfHFgDXgVSnDR7jE8/CxLH45Klvh9WXdMaIomEhwt\nxw5seFkDi5UloXantbT0+1LNUoMNz3KZYthvIEbL46YBye2GrmdCURR86UtfwokTJ3Dfffdhenoa\nlmWt24MXFwpRoXS54AnVYAWWtdYBDwCP+mQXzbTNodQrAWzScuECxIPts2tuw5PtILnE5gp4ANig\nV3dM2G5Q4BxWlrrb8BKqETpP3IY32UJZIoSAeAoIdUEIs5X0GxvO8aOH3oE/+E9fFOEhrSCiiqkD\nEDfWzttGrFkaJkR0uESWeMJXt7GI31dBI8+NS5YAoJjIScrSebLUCvsndwIuxRoW2DkiHuAqfQY8\nSM8jAD70DNuGp0m+edffle50vbNGBhdPXggCIpo7tkMxmYdK1fbKUoz+bhy8zxILeIhXa9mIsVQe\nRLVQrnff8eELGs+lsRVEUUPhOAA8eL5rQ9Qsef57m9EDHkgf31skodI6PA9wHIKVUuuAB7nRcqd+\nOkW/MS0QJOLZvrLUTa0cJkZlwxMBD3yze5RpeFJ7GVNK48uldcBl98nlB9j6pWbXm8KregW3Q+vq\n4FS0Q3uDdVZ0ZUki9FQVypLtBmRJT7io2jVhw5ZteBrVWFojaFPAg+35ZGkI9vlGC3QnRDoTv/mb\nv4m77roLf/3Xfw0A+O53v4svfOELfRzi6BA1PrJgZLFc7xDwQFWxY1F3hkeWVKoyZYl4KFX8qGM/\nBU+eQDdbGh7AFACehscH9lDNUoRaB0IIMvK56aAsAWB1QsRFQlcH5usG2LVKdWmiJkcVE9J5gdTq\n/YFziSy1ig6PriyZjnVWKEsAa0xbtqrhZMgR9no6G6BSBYqVh62uiBoAeP1Fhzfa8Hj7ruHb8AJl\nKbjenT/z56/6SfzSdZ/o2kqBEorJ1FjXmqU4FmAq9Vny+lSWuE25ZLVO65PBn33PJfHJkhaQJQ8e\n/PLUUDiFZ6uAq3a14YmU3AEoSw6pA64C03LbBjzILUM6rWcKElmarzCyZNoOdFXpqlYOE4ENbzif\nz4lCoCyx/x9Eo9aokBUKW1K2cmkD8Nj33jPNntWqXRvYHHTNjitwwdhuHBwfXBsQXrcExAt44NAU\nFQk/AM7yyZKqENRcNga1JEvcTQQaCnhwXA8usUE8ZSj3L78OPDCnEyKdiQcffBBf/epXkU4z2ewX\nfuEX8OSTT/ZxiKODHpEs5RJZrNbW4Hley902XdXZzp/rou6YQ4kNZ5/pN8nTgHzGwC03Xogbr/L7\nihAqei9tNhsewBa1dT/ggT8YqjTgTUSw4QEIeWH5rk4rZQnwY6epi1RCHfnum0IVdj19ZUmLMRgE\nAQ/nBlkS0eGebMOLGvCgwfVcVEyeILZxa5aAIEFxub7WNuDhPIAMxgHq4rn5V9g/9GnDU6nCFsCi\n7xr79zhEotfPBRgZ4Gppt+u9NTOJq3dcHun9pzITqLo1kcIloxcbHicJrGap9zQ8IKjRq7pRyJJv\nl3ZJ5B1vDkMLFrMs4CGsLAHMggcAuW4BDz6L7ockCmUJFuCoqFtOEB3eQNbkTdtO7oNiNgGXK0ul\nBQDwbXg8DW+zKkuNNUujV5ZkG54p1UwVMoZYg7h+YlfNqg1MJdlb3Ikvvv2zA20wf2BXUYSnxAl4\n4FCpKqnlDpZKdeQzBhb9hrA8XCHToCwB/lgrKUvlqgUoNhQMh/gWknkQQoJWMx0Q6Wk3/KJC7hF2\nHAeOs0GqyrsgqjyZT+TgeC7KZqW1DU9+GIZpw/MHNA8OxnJJfPTdF4f6bHDL0WZUlnSVKQCywsN3\nHNJ6KnJ6DE/EY9eIoJA1RDfoRihQAeoEZGmEPmdCCHRVh6KwmqU4snygLG3cZLdBomV0uBs14IE9\nqzztcuMrS0HIg+M6fm3FeWWpEWMaqwd89NSz7B88GqvovxVUqop0TCqUpVHVLNlDURJ5jcBceaHp\nZ73Z8AZXs8TTQmtOpetrubLk9mLD48qSywMeWpAlk42lmS5kKZv0F/99LMZl1cNzFdRNB8trdVCC\nJhsgvzYaVTvWaWWSGqjFFqDz5UWWyma7UFUKZ0B9lnoBTx9VhxS4IPdoBNZHWVKlPkuysnTloSlc\nedHW0HHV7PqGnoOShop903kolEDr0YYX2OaZslT065UASVnSWihLRA01pS1VTBDFhkqGlxEwliiI\n/k+dEOlMHD16FJ/97GcxNzeHP/7jP8Ztt9121jSlTWjRTnLeV2pW6mttAh7Y+1TtGhzPFR7oQUPc\nZG1ShhTC4k5lCXOzQFaWGm14fDciCnjIg6HqyCQ17Jxqr8LxJsApQ/NrpUa7KNWpCqp6APFEEXIU\nBAEP55ay5LiOsCtFteEFZIntXm/kiQqQGtPWVta11mCjYzo7DQB4buElAABF58VkFGiK1qQsja7P\nkjOUGjUe8jAnRUpz9GLDI6QhDa8vGx7bGHDVWiguuBWsvmx4wWaL3PBdHu89M4GkoXZ9b06W8une\nN6pCm7iu4itLdeTSRlMkOl8TdNtMo5QgpzGFYa68KKxMOleW1qnOfCrDyPrEAFoGtEJjzZK9nsqS\nYwuFS1M0aKqCay6eFj8DgKpdH0i4wzDxmVsux69+9Mqu9f4csoNLUzQxptVsC6bloJBNYIHHhrew\n4XFliitL/N5dq5iAYkMnwztfE6kizlSXQ/XQrRDpbvrYxz6GBx54AMlkErOzs/j4xz+OQ4cOdf/F\nDYBkVLIkEvFWJbIkBzywU1Wqs34MwyoS79YdXCEKkkZyU+4086x+07EkGx4773F6s8jK0q9/6jqk\nEu0nGdXfyUgaKlY8Z6S7UQAb6CvUBIgbjyydozVLlmvji//0VazU1vBf3vhxAN134Y0GsjQsC+2g\nUPSVpaXqip9idZ4stcKewjT+uUTwWulVAIjVp6wddEUDCKsdETa8IZ9/TdqVjmrDiwMeH86tWTIC\nG170+YRv4rl99lkCArJEtDrKVRuFbPvvLZQlJ74NL+GTE7Yg8sS/h5Wl7kl4QHCu+rlGcnqZ5zCy\ntFwyMZ5vJmBCWYqgzBTSGVQcFXPlBZgWu5c0VVlXG9727BZ8/b1f6hh21A/487OeaXg8kMpybXGf\n8s+XQwRsh/283x5Lw8a+6Tz2TUfv5dmoLIlrYrFrUsg0K0uyDY+fI4WwzWuuLK2W6yCKE3r/QWM8\nPYZnF18UCbTt0PFueuihh3D77bfDNE0Ui0X8wR/8AXbv3o0/+ZM/wRe+8AX80z/900APehhIGtFO\nctBraU30WZKVJT5QlUxGloZXs9SZLKX1lDjWzQZ+TitWVQys+UQWlFDsym+P/D6815KhGti7vfMD\nr1KNkaV1sOEBbHGmG3U4TvT6OoB9R13Rzh2y5E/0T8+fQNlklh07sg2PPbur9TUYir7hNxpEzVJt\nxe+PsrGPd72wtZiDdyINM8VIsEL6f3Y1qoFQVttGabSauH7ROuBh8Da80x1sePECHgZYs+Tb8IhW\nR6VuodChgTx/3l0nvrKU0Hk6l9OhZql7jyX2O/5GXh/kI7T4cxVUqhbKVQsXtFigcmKlR5ibipkE\nZuoJzJUXYVrsfGna+trwgOA6DwOUUGhUDQU8UEJH/n01qsJuUJbY/3PV6ewJGYqLUM2SEtjw4I+h\nhayBl6tLICCiGXUrZUmlKkA91P17d6nM1tvDSMLj4K6lhXJnK17Hp+93fud38I1vfAMXXHAB7rnn\nHnz+85+H67rI5/P41re+NbijHSI6NXGTwQMTVutrYUnQB/+3NZMrS8OLDudoZcP7tes/PVSWvZ7g\n57Rm1zHun/vxVBFfvulz2JKZjPw+fMciyjXiNQrJhALbtUduedIVDabHBtA4C5afPfohLNVWR2o1\nWE/wwZcTJSDYuKCUAm7LXwMQkHDTsc6KWj++sFiqrg40oXGzYSyfgFvJgQ6QLBlqYMMj/kRPhx7w\nINU7DCHQY6qjDS++kiVseGDKUj8R2rKyVKl2ju+VlSVNj3d+klpAlkA8EZQkkyViJVAc774o40S2\nn/YpoXonV8H8MiPojeEOQDxlqZhNwFtOoWbPYbnKngtVJXA9d1Mnaup+j0aAKTijVJU4NEVrqSxx\nsmu5tkjuHObifz0QSsOjarDp7/esK2YNPLR6BvlEVtzH6YamtOJ9iCvCTgRZ0odJlpjStVA5g2SH\nyqSOTw+lFBdcwCIJb7zxRszMzOCjH/0ovvrVr2LLlvbNNjcSMoloZKng2/CWZRueIpEl/4Zfqw+X\nLMmL9VY74Dty28RO4WaDfE7lyXt3YUesnZiszhbEURoH8wEtaSihFL5RQfOth0C8DueFZB57izuH\ndVgbDq2uC38WoypLwNmxoxcoS6vrck+eLZjIJ+GWA5V9EBsdhqqL6HAumAw/4MG3mDq2CC0Z5KZN\nRk/DoHpHG15PAQ+iZql3ZSmtpUChgGgmKnWr42u5vcrzSOSULg4eZdxYlyAf+0+/8xh++j0Xd30v\nfj/0E4Utb3h6joLTZ9gmUD7TPD5FrVkCwvHh/HprCq/P2rzjiK7oQZ8lxxpID6O40KjK+iy1UZZs\n197EylLrgAdOlvIZHYvV5VA5RUYOePBfr6usLILH6C9X2XPRrZ9cPxDKkl9T1Q4dZ4FGG9i2bdvw\n9re/vc9DGy3SEclSzidLq7U1aQKRAh7UUdnwgs/st1j5bIO8qO1ngZIxfGUpClnyP9MwWCz1sHpB\ntENj5OZ5tAYhROyMXjJ1AABQMrmiEK1mCWDWzI2OhGrAUHSRhrdetQYbHbm0DloL7D3KAOoNdUUD\noS50lYio39HZ8OzAWjpggpZXsyIhTUZPAQ8YXMADIQRJmgb8mqVOEEmYLoUWs/kwf73j+X2WwBu9\nB+/z5ksuwK6t3S3uXGnsLzq8QVlaYspSK7JEKQt1imTDyxpBfLhvu+SlsKOe20aJDaEs+Ta8ZmUp\nqKni8f0bvWYpLsJ9ljTxnXmyqJZk50UO6pJLCMQ6TNVAiIeVEjtPa1W23s4YG5wsNeJsXLxHDXgo\nGH7NUps0PC6lloQNbzg7F+GAh80rm7eCTED72VkNAh66L4x5qmEiSeB58RrDDgJhsrR5J7NB4Ood\nV+A9B27EockLAQCrm1RZIoSgkMyzNLx1rjXYyKCUoKBOib8PYoHE7xXdIHA9XhM3wqa0fsDDoO3A\nBS2LumNipR5uTttLHy9CCAiYtcvzvL5rAFNqhtnwambH14mG1F786HB+PnmCJgdXlhRCxYZpNwxa\nWYKrYG6JK0ut1ys/dvG78K4Db+n6vuHGtGzxx3nZRq/V7Ae6ypJ0AaZAroc9XVVU1lqmSVniFtBA\nWdroaXhxoYXIkqwssc0ZV2H3t6wsUUoFYeLqW9JXgJfLbPNgrcZ+L5dMD+3YJ9OcLPVRs/TII4/g\nhhtuEH9fXFzEDTfcAM/zQAjB/fff3/eBDhtReyGk9RQUQhuUJTkNzydL3IY3pJtd/sx+7A1nI9rZ\n8OJCjg7vhslcBs8sA1deMoZvz42esMiT5nllqTNuv/ZnAQB/++w9AICSn27XbREg3wdnA1kCgGIi\nh2cXX0RGS206f/sgMZHNYrWWAk1UBvL88OfRMIhUzzOq6PCgz9KgExDzGiMCc6WFUEBQLzY8gM1N\ng1CWACCnZzFvnsJSpXNjWk6WPI/GTsMTrQc8lobXWLNUTBYifw+uNPaj+MrrEs9RMNdBWQKAWy59\nT6T3LWYTgiwtVs8AKIKLcJt50yWsLFnIqqOvTdWohlVnra2yZDmb2YYXdsg01ixZlJGexvj4tJ5C\nxaoGNjz/fVbKTFkqmVUgCeSSw1OWUloSSTWBxfIZoENHno6zy/e///1BH9fIEXUCJYQgl8j60eHN\n1gR+EUt+gfkoAh5Ii4CHzQx5UdvPwD6d24ortx/BNRE63HNliap8YTRawiJPmueVpWjghaGrvsrb\nbTGrn2U2PIDVpHmehzWzjGJycN3ZNxsmCkk8v5YDTVRCccy9gj+PO7Ym4YjglRGm4fXQJDYKCpws\nlRdwYGKf+Pde+zoRQv2mtP2l4QF+uFIJOFNd7vi6wIYXPw2Pfz/Xc/3d7jBZGovxjAkb3gCVJZ5c\nl4+QxtcJhawBz2QLyzM1RpYUlX3XzdyvTVd0WI7FGvG666MssZolWVkK15pZkg0vuZlteFST0vBc\nqApB2VkF0NwvM6OlMI9FcY74761V2XmqmDUgCeQTw1OWCCGYSBW72vA63lHT09MDPaj1QJwJtGDk\ncKo016YpLU/DY7tfUVSLXtAtOnwzY1CWNE3R8Cs/8p8jvxaAGMRGn4Y3GIJ4LoGTpajK0tlmwwOC\nkAdg+Iv1sxnj+QS82TwwPouE0v8ChD+Pn7rlMP7++fsBjMKGF/QQ66WGKAryKidL4US8XqLDATY3\nuZ4LD/3b8Ap+X7GV2lrH1w3GhseVJT/RrgeyJGx4/ShL0trCc4P3aacsRUUhawCOBsXTsVxntiKu\nLG3mfm26REgsx45U3zVocBueUJa4DU/qsxQoS5uNLEkBD4oKSinb7Ccu8hkDZxp6LHHw+nIeoMZJ\n7lq1Bs/zgvTAIabhAcBEegyvrb7e8TWb3vcTZ9GdS2Tx0vJrIp5Y/l29wYY3rPhumaCdaza8EHEY\nEWnhA1rNfyjXt2Zp0z+OAwFPxuEx/t3JkmTDO0ti94tJObhg8y5y+sV4Pgn79C54loGJvbv6fj9d\n1BdYUj3P6AIegqa0g/1MriydbkjEC5I4430eBQksg32SpfEUIyprZnSy1KsNz4Xrt6RlcyvfPOF1\nC5Hei9vw+rhGofWDE4z7/ZKlTFKDqhBQO40VcxmAB6qwb7y5lSX23NYdk7UAWac0PM/zULNN8Xcg\nIABydPjZsmkXFY3R4QBAwBrMFrIGFqqscXgjWTq67TBs1w1ql/zfdTwHlZqNuqjxGm4/yfFU9+d/\n06/OotYsAawBKhDYAVo1pRV9loakLMkk4Zyz4a1D/Q5PJapadf9zzwc8bHSk/MjRtU1csyTXlZwn\nS+0xnk8AngJncTv0CwfQlNZ/Hk3HguuOJg1PjhYenrLEajjmGhrT9hLwADBlaVBkaSLDyFLJ6kaW\n2Od5bnxliR8jq7EKapZ25rfj09d8DJdtPRTjvdi56ucaNabhASywJJPsb5FPCEEhY6BeT8LWlgDV\nFDa8zTyO8Hm0YrHar/Xps8TXErXQ37lqwprSchve2TEPRUVjGh4AUFCAeihkDCxWlqBQJTSvAcDN\nB2/EzQdvDH5Xsu+tlOsw3ToUDP98NdZStcKm93fEWXTn/ca0Zyo+WZL6LI0qDS9sw9v0lyeEQdUs\nxQG/rs8uvACgeedj2Dgf8BAfad1XlnpIwztrapYkG955Et0eE/lgx9HQ+j9Pws7jWkLlGbZ9qVUa\n3qDHP5WqKCbzTTY8WxDCuAEPVJCXfu3iW7JsV7fqlju+rh8bHiEE8KhI5+JkiRCCN++5BvlE98hw\nDq4o9XONQn2WfLKUS+ugtP8N0kIuAbPMxjliVEH95sqb2c7Lzyd3BcXZJB8U+HMcELawtcxybdSs\nzWnD01o4ZBSiAlxZqpzBWIQQFTkYYnaxAo+yZ37YIUeNtVStMPKnx7Zt/PIv/zJuvfVWfOQjH8HJ\nkyebXnP33Xfjgx/8IH7iJ34Cd911FwDAcRx89rOfxa233ooPfehDePjhhyN9XpzmZHzAXKj6Xt8W\nAQ+8eG9Yiy7lnK5ZWgey5A9k//LqgwCAa3ceG8nnNn4+cH5RHBVpX1niloY4fZbOFmWpmAwWb5s5\n8rdfjOeDSTTuAroV5HE+qOcZfRreMD5zKj2BhcqZICgBsg0vvrJke4NRlqayTFmqdSFLvCktPBLb\nhgcwgkRIOOChF3Bi2c8cJY/7xCdL/YY7cBQyBuwqey6oUYXi2/A2s7LEx3gewDWIsJe44KpIo7LE\n/912bFQ3aXR4WFniZEnxa5Y0LFdXI6k3wj5JPJyaLwGKT5aGHIixIcnS9773PeTzedx555345Cc/\nia985Suhn1erVXzta1/DHXfcgW9+85u44447sLq6iu985ztIJBK488478YUvfAFf/OIXI31eHDmW\nS4Tc3tMq4IFjWGl44ejwc2uRFLKkjapmiQby/XR2K3YXdozkcznOK0vxkdCMkEV1swc8nCfR7VHM\nJcD3lPQBKkthG96IlCUnaEo7jIXtlvQEPM/DopT61GsaXrhmqb9NPX6vm6h2fJ1Qlnqw4QFgoQ7E\nA+D1tRFJRXT4YGqWVH8O6rdeiaMo9VoiRhX80m5msqSrDTa8deqzFD6GcMKb5VpBwMOmS8OTAh64\nskQV1uA7ZcGDF6kuSG5mOzNXAqEjIksRahZHvhr/4Q9/iLe97W0AgGuvvbZJIXr00Udx5MgRpNNp\nGIaBo0eP4uGHH8Z73/tefO5znwMAjI2NYWVlJdLnxVmA5oxwU7pWfZY49KGl4UkBD+dazdJ62PCk\n63rd7qtGruadr1mKD0ooUtLg2TU6XJWjw8+OgIeMkR5IP5fNDk2lYpE5SLJkObINb1TKkiMa4Q5j\nLJjKjAMIhzzY/dQs8fPT56aeqqggjg7b78XSDkIR68GGB/g1FMQDSH/1wFsyE9iSmcRBKYI9LuR5\nR6dsTBoUWWKNaZn6TowK+O27uW144dYu61KzRHmybrhuihDCYsUdW9QsnS2bdlGhUkWMA/zeTmo6\nCPUwtYU9a5GUJcmGd1JWloZswxtLFro+HyN/ehYWFjA2xlgcIQSUUti23fLnACNG8/PzUFUVhsFu\nsDvuuAPveU+0Jm1xdhgKiUayNHplKRTwcI7Z8MJNaUdza8qFtm/adeVIPjP8+cF9tZl3/gaNlB50\nj9uMyhIlVNQtnb8vOmPCt+LpA7HhsTFolDY8TUrDs4VaMwSylJ4AEI4PFza82NHhdGABDwBA3QQ8\npd7xNf00pQX8c0pdyE1pe0FaT+H/vfn/wZt2X93ze8iLS37PDcyGlzXgmeyZCNUsbeJxhJ/DiuUn\nGa9TnyV2DNyGJ22E+rHiVasGAjK09eN6gs+z/DwkDR2ppIJkhpWujCe7kyWxXqcuZuZLIIoDBerQ\n712VKvjU1T/V+TXDPIBvfetbuOuuu8Si3/M8PPbYY6HXcKtDO3ieF/r7n/7pn+Kpp57C7//+70c6\nhhPPnsCq0bnZFMeaHfZMP/7Y4yLJZKUhqefpx58ayg3/aukV8d/Ly8s4fvx4pN+L+rqNDPkcL84v\ndv1Og/jOr5ZYpOU2YxIzz72GGbzW93vGwcm14PNmXpvB8dXevtNmuP5xQKzgv1995VUczh1oew74\n7jkAvPbSq9DmvJav22jQ/FqG1eWVnq7vuXJPKGCL7NdPncTx4+HGpnHPwWv+8/j8S8/jjG9Xe/zR\nx4e6uOGk7MzyEl60X2TH8cqrOL40WGK/PMNI0mMvPIHiMrNpzS3MAQCeevIpzGjRxz7HsmG67CFc\niTFPtQO1dTjJVfzbv/9b2zrjU/On2H+4BKcN+DBVAAAgAElEQVRmXsPx40uxPsNzmaoE4sF1nHV/\nPhRQuHABm41HpdXuc14ULM1XAFeFZ2sgWh0nT7E57vTsaRw3g/df7+8/SJxengUAvPAqe36WFs7E\n/n79no/FBfZ8rVRYA9YnH3sCCcUP2nCBtfIaqqQKjaiRa+5HjX7OAfXYOv/Esyew9soSzGodpm3i\n0RNPAACWXz/TdX3z+rLf64i4mF+qwthhQ4Eykns1hc6EbKhk6ZZbbsEtt9wS+rfPfe5zWFhYwMGD\nB4WipKrBYUxNTWF+fl78/fTp07jiiisAMPJ1//3342tf+xoUJRrTPHLpYezIbYv0Wtt18LWX/0z8\n/cqjx8TAvVxbBV75C/Gzq6+8eihWCeekAszeCwAYL47h2LHugQPHjx+P9LqNDvkcb9+6Dccub/+d\nBvWdJ5a34G9m78H7j7wTx/aN/hx6MyruPn0fAOCCvftwbG/8Y9gs1z8Ovrf6T5ibY5PTvr37gEW0\nPQee54G88A148HD40KW4aHL/KA+1Z/xj5QHMnlrAxPhE7Ot7Lt0T//7yo3j25Mu4cP9eHDsW9Frq\n5Ry4Myq+e/o+bJ3ejvnTq0AZOHr06FAVSc/zgBf+GKlMCjt27QTmgf0XXIBjuwZ3/Y4fP443Hb0W\nd878LWhGFefln3/4H8AacPlll8dqzGrM/BXqdRPwgPGx8b7vtdTT92IFC9i+fy92jW1p/R0eehZY\nAeBR7L8gfK2jQHvhL2H6NSOqqq3785F47c9h1UvIZXJYXCrj4gN7cOzY3r7fVy8s4K4f/ICRJdXC\n7l07gaeBndM7cOxi9p032/iw9EIF9yz8G7JjeWAJmN42jWNHon+/QZyP5x47iQeXH4dF2ObHVceu\nEmpL8tRfgRIKQijSSmpDnvt+z0Hy1F+hUqnhyKWHsTO/HX+zfB9mFxdgFJPAInDN4auwp9i5JvzM\n8+w6EspEFKLYSOmjO1+dSNnIbXjXXXcdvv/97wMA7r33XlxzzTWhn1922WV44oknUCqVUC6X8cgj\nj+DYsWN47bXX8Bd/8Rf46le/Ck2LnnQSx7uqUgVZPS3+Lkt/Og3bpYZVXxKODj+XbXijsQzsLuzA\nH/3ob+Et+64dyec14nzAQ2/giXhAdxsQIUTULZ0t0eFAUPi+me0zg8BEwW9oqPZ/nnjdgemYsH3l\nZNg2PEIIFKrAGmKfJQAYSxSgUnVANrzBpeEBgEHZc7lcKbV9TT9NaQHfhjeAgIdBga8pEv7YlBtg\nwAMAwNYA1QTxbXibuSaWz6Ml34bXWDYxCnALGW+kGqp5pypsx0bNrg+9/ma90GjD401658tMoY9T\ns6T6CY5Q7A1zvka+Onv3u9+NH/zgB7j11lthGAa+9KUvAQC+/vWv45prrsFll12GX/qlX8LHP/5x\nUErxmc98BplMBn/4h3+IlZUV/NzP/RzbKSYEf/RHfxRSpVohboRkLpHFmlmGQmhoEpBrn4ZpyZAX\nzOdan6X1CjvISAR51Dgf8NAbUnrQXydKfZuuaKjb9bOmZgkACklGlkaVDHm24oajO3FyroSjB6f6\nfi85De/k6iyKyXys9hO9QqUqiw7vMXAhCiilmEyNhRrT9pqGRwgRFvlBkCVNVQEPKFXNtq/ppykt\n4JPeAQQ8DAq6osFQdCQ0NucXBhbwwBaXnq2DUg+Wb1MdRh3cRgF/bnmfpfXYeJQ/U6Vqw/pRw5pZ\nhu3YGI+h4J5N4IQ1SAFk99tsaQ6GaiAt1Rm3A0+9S6SAOjwQxQnN9euJkd9RlNKWsd+f+MQnxH/f\ndNNNuOmmm0I/v/3223H77bfH/ry4hX6FRA4zq7NND5tKVRAQePCGSpbkSetcS8Njih1bNJwrCWBh\nsnReWYqKZmWpc+0jP89nE1k6ryxFw2Qxids/fHQg78Xvk/nyIpaqKzi2/fBA3rcbNKqyprRDjiuf\nyozj0dk51KwaElqiZ3Imz02DUGkMVQWsbmSpvz5LCmV9X/oNeBgUdha2I2Okoa8GTWkHgXRChaZS\neLZPICxWi72ZN+NEwMO6puGpLf+b/920TViuPfQY7PVCo7LE1zNz5UVsTU9GGid4+x49aQOUjU3p\nc5UsjRpxHxoeH944eRBCoCkqTMcaWmw4cG7b8ADAUDRGljbxwC5DO68s9QR5AFUikCW+wXG2RIcD\nQWPazRz5u9HAJ/xnF14AAOwrxquL6RUqVRqUpeFcczkRb1dhOujrFPMek3fNB6EsJXQNsIDVaq3t\na2wnsOH1piz5NjzibYgehr94LXPJfPv+F/Ha6TVMjXXfeY8CQggKWQPLPlmq2MzauJk3IIWy1NDj\naJSQ3UeNKcwaZWl4wNm1YRcH/BpwgYL/v+M6GI9gwQMCsqQYpogNzxjnydJIEJcs5f348FYLV13R\nYTrWcJUlaUDbCAP6qKErOspW9ZwhDudteL0hpQUDKCUU3fLthLKknD0T1dYss5Xl/QnkPIYPfp/w\nup59Y7tH8rmqryzZQ6xZAmSytIBdhem+bHgcAyFLfh1yqdo+PlyuWeqlPo0rS4RsjI1ISihAgA++\n9UJ88K0XDvS9CxkDSz5ZKlk+WRpRO471QKMNbz2UJVUq+Wgs/5DJ22YlS3uLu7BYWRJzrOyUiVKv\nBARkCVodxCdL56wNb9SIOwnwi9XKEsV3C4wh7lqc68oSV+028y6YjPMBD72h0YbndHgtAGzNTKFi\nVYfeYHSQ2JHbhv/xtl/FjtzW9T6UcwZ6w0bYKJWlumOKprRDU5YaGtM6rsP6HcYkPGGy1P88ldT9\nxW6te80SXApVif+ZKlXAD3WzW9yL2QReXGD38mqdRVlv5jm1MeBhXZQl2kFZkv6+UQILBo2PXv5j\n+MkjPyrmWHktG1VZSmgJJFQDrlOTGtJuDHK56VdncQkHt+G1VJb83YJhJmrJC+bNPqC3AlftzhUb\n3vmapd4g2/CikKX/640fh+1YXV618bB/fM96H8I5BXlRU0zkUfRDNoYNlaoomxXYQ65Z2tLQmNb2\nnJ4CROS5aRDKUtJg435nsmTDb5TUk7J0Lm1EFrIGMOv3iKyz/oWbeU7VVfZduVLaSFZGgZANr6lm\nafMrSwBCm5HyemY8NRb5PQqJHJbKZRCFXcuktjGUpbNnm3VEKAgbXvPDxhe2w6xZUs6hAb0VjIYk\nlc2O8zVLvSEVIzocYOc2sUkLa89jcJCVpb1jo1GVgCDgweVR3kMaC2QbHsAWl70sosmAa5ZSnCzV\n29vwLNcG9ZcsvdQshZNmN/fcWswaIuAhIEubd7nXWBqxPjY8WVkKK1ty0Ni5Mg9pPdjwAEaWTK8K\nKGxzc6MoS5v36ekR7QIegOABGG50+LlNls41G57mpywC55WlOMhIMaSbeRFwHqOFvDs8KgseEAQ8\nBL2LhjP+pfUUUloSc6X+yBIdcM0SJ0uVLjY84vkWnx7S8OTfoZt86VOQyNIqJ0ubeE5t7Ku07gEP\nLdLwODarDa8R8lo2HlnKw4MHajBL5XllaYMiqFlqFfAwfLIUjg4/9y6Pfo7Z8HjKInDufOdBINVg\nwzuP8xgEKKFi02KkZEnh0eHDVZYIIZhKj2OuvAjP8+B4bk82vEEHPPCapYrZ2YZHwI61f2Vpc48Z\nhawB2Gwu5f2wNrNzobHWcH2iw6WAhw7kbTPb8GT0bMPzU2BJgpOljXG+NveI0QNyHWx4mrDhDTPg\n4dyxCrQCJ6KbeWBvhH4Ofud+0dxn6TzOYzDgm2L7RmjDU6kCDx4sPx57mBsnU+kJ1B0TK/W13pUl\nyDa8/ucpvmFUNdvXFdquA9KHDU/e+R/EMW9kFLMJoSxxbOamtM2BChsvOpxjoyz+hw1+DrJ6OlbL\nDi5YFCd5wMPGUJbO+34akFANvGHHUewp7mj62UhseORct+Gxc3wuqSyiP8F5G15kJFQDhBB4nne+\nD9F5DBRpLQlD1TGWLIzsM/mzX3NYzc4w7+mpjF+3VFqA7fVaszTYNDy+UVSrdyBLzv/P3p3HR1Wf\n/f9/zZI9IRtZCIYQQgJhSQiBsIksIgVBRYGqWNFaa7XWqtVawfrQH73vuiCtItq6cqMoKgjVLyCL\ngMgqGJYQYgQCggkQthDIAklm5vdHmEMC0UKYZDLJ+/kPkBlmPudk5pxznev6XJ8quIIyvJoXsM39\n3BoS5AN2CzhM1WtLAdZmXK5sNplrrWXk/kVpL8ws1Ziz1MIyS5faCc8pxLkYu18ZnGk6waWuzurw\npwG/rfPnRhleA37Ya5fhNe8Del2MbnjN+C7YhbxaWFMLVzCZTAR4+VNSUarMkrjUg33ubvR5cJZz\nFxZnq84FSw14LHDOHzhRfhKb3VavSglXl+E5j/dnKitxOBx1BjOV9kpjzlL9Mkst59waGuQDmDDb\nfbBbqhf6be43IL0tXkawZHVDN7ya73nh+9fuhtey5ixdbrDkXIz95JnqlvdNZY6XrjIug9E6vJEa\nPHjSmjCu0hJL0pRZqp+AcxM/FSyJK3WJTKRT64RGfU8vI1iqnrPTkBe2zoyZM1iqX4MH13bDcwan\nduyUnam66HGHw0FZ5RlM9nPHynpklrytNcvwmvcxw8/HSnCgN1bO39ht7jcga85b8ja7oQyvxvn7\nwvevtc5SC+mG57yeaX0Z85XgfGbJqansr+Z9xHCx85mlhguWah7ETc387lddnF+MC7vbNGfeyizV\ni7PJQ0u8qSDNi/O7bwRLDXgx71w7qqi8uN5leK7uhmeMweTgdNnFTR4qbZXVDR7sXljMJszmyz83\netUIlkz1+P+exGQy8dzvryY2PNz4WbPPLNW4LnNHZqlm9ujC9695I1RleD/POWfJqakES7qVfRmM\nBg8NmFkymUxYzdbqE0Mzr6uuy9AO/fGxeNMxPN7dQ2k0/l5+WMyWZn8yczVnk4fmfpdYmr+L5iw1\n4LEg9Fxmqai8GJu9fovSmly8KK0z62EyOThVWkF0eECtx0sry6v/YveqVwke1L7z3xI6zcZGBREW\nEETeyep/N/e5nTVvsLojs1QzQPK+oEqk5tiaSllZQ2sXHIPZZCY5ouNl/b9WPoGYMOGgeq5dU9lf\nCpYug9HgoQG74UH1ibLKXtXsO/bUpbV/GDclD3f3MBrVnam3cKT0uC76L1PAubWWmvtFgDR/F2aW\n6hPAXCrnnduiM/Uvw2uoBg+Y7JwqvTizVFpZ3UaYqvoHS7XmA7eQc2uQ9/mgs7nfjKsZkLgns1Rz\nztIFi9LWzCw1kYYFDS2pdQfmjJ9x2Tf9LWYLrXyDKD5zCi+LV5P53Ooq4zI0xjpLANZzF38m/Xpa\nhPahsWRc1cPdw/A4ieHtCfZtRfAFaXsRT2O9oMGDuQEvELwtXgR6B3CivBibw+4RZXhlFdWZJYfN\nWq/5SlC7G1xLqdoI9Ak0/t5ULjobSs2KH3eUtNeas/QzrcN9LS0jWIL6f8+cN3T8m0hWCZRZuixt\nAiMxmUxEBUY06Ps4T5wt5YAuUh83dh7O6KRhmrMkHs85AfyMreHnLEH1vKUjpceB+rWUdnmDB+dr\nmByc/pnMkqPKind9M0umltc8qVZmqZln4Gs2SnJHlUbNYPTCZk01l51pKZ+9KxHi24r9gG8Tma8E\nCpYuy8D2GfRum9Lgv0Dnl66llAqI1JdOPNIcOO+EV9oqsZjMDX6jLMwvmB+LDwL165Lm8jlLNcvw\n6sgslZ7LLNkrrS4qw2sZx41A7/OLdzf/zFJ1QOKONZag+ua2c62nCxtUOW+GtJTmDleqKWaWWsYR\nw4UaI9J1njhbYjc8EZGWpuad6IYswXMK9T2/4G795iy5tmurEbD9RGap7FxmyVZ5JWV4LXDOUo0y\nvIacB9cUGMGSG+YrOTnnSl2UWTr376aUKWnKnB07m9L+UrDUBDlPXirDExFp/mpeXDXGRW2I3/l5\nflfe4OHKLyOMG4TnuuFdyJlZslVa6p9ZMrW8YCmwRhleYwTh7uScS+7lhk54Ts6g6OLMUvW//ZRZ\nuiTOzFJTaRsOCpaaJOfJsqWUCoiItGSNvRi5c2FaqF9wZsa13fCMc53JXmeDB2fr8KoKC17W+l30\n1wwKLS2kfDfI53yw1PwzS+cWtHdjZskZqP1kZknB0iUxgqUmtL9axhHDwzi/aC3l7peISEvW2Jkl\nZ5kL1C/j4OoGD85g0WKB06WVFz1eVlFdhme/gjK8mpmlltJpNrAltQ4/t6TLhWscNSZnoPaTmaUm\nlClpys5nlvzcPJLzWsYRw8MYZXj69YiINHs1g6XGuKgN9T0fLNVrUdoGah3u5W2qu8FDpbN1uGvW\nWbKYW8aNyBbZDc+tmaWfn7Pk04QyJU1Z+9BYEsLi6BHdxd1DMagbXhNk1ZwlEZEWo2YZXmNc1NYs\nw2sKc5aMYMlqqnudJWNR2vp3w7O2wG54VosVX6sPZ6rONv/M0rkyPO8mOGcp0CcAE6ZaNynkp/l7\n+fHcdU+6exi1KFhqgtQ6XESk5WjszFKIb80GD/VYZ6nmnCUXZGmc2S2rFc5W2KiotOHtdX4/lFaU\nV+8jh6X+ZXg1trMlLTkQ5B1Aha2y2d98bQqZpZ/qhhfi24r/HfYEbYIi3TEscYGWc8TwIGodLiLS\nctTKLDVCsGS1WI220k2hDM85b8pqrX7dC7NLpZVl+Fmr5y+4ohtecy9Jq6mVb5AxZ6Y58za64bm/\nDO/CzBJAx/D2BNRY90o8izJLTZDl3Beuud8JEhERal3M1meR2PoI8w3m9NmSegVnLm/wYHI2eHAA\ncKq0gvDg85O7yyrK8Tu3QKUryvCCA1vO3JE7U8dy8kyxu4fR4M6vs+TGMryfyCyJ59NvtAk63zpc\nwZKISHNndUNb61C/YPYXF1zxnCWXLErrLD0/N5Saay05HA5KK8sJ9q6eZ1X/Mrzz22m1NO/5OzV1\niUx09xAahREsubMbnpFZ0qV1c9NyctEexKpueCIiLUZjtw4HCD3X5MFan8wSrs0snQ+WqjNLJ06d\nMR6rtFVSZa/Cx3JlmaWWuChtS2KU4bkzs+RcZ6kFlD22NLoab4Is6oYnItJi1F6UtrGCperOXPUp\n+3N5N7xzr+HrXT2WXfuLjMecbcOvNFiq3Q1P59bmpilklhLD44kMCK/VQEWaB+UKm6Dz3fAUy4qI\nNHe1MkuNFSyda2PcFFqHm0wmzCYzXt4mvK1mdu47bjxWeq5tuI+5OlhyRRmeqjaan6bQDe+GzsMY\n3ela3ehuhnTEaIKcJ07d/RIRaf5q3g1vrAYPMa2iAAj2Cbrs/1u7wYNrzlMWswW7w0Ziu1B+OHSK\n0vJKoLq5A4CXqbopgyvK8HQx2/zEBseQHJFIWpuubh2HPlvNk4KlJshZs67W4SIizZ87Gjx0i+zE\ns0P+xMC4jMv+v7XWWXJRBYTVZMFmt9G1QzgOB3z3wwngfGbpSoMlleE1b35evvx/Q/9EWptu7h6K\nNEMKlpogq+YsiYi0GFY3ZJZMJhNdIhPrVbbk6jI8qF4o1ma30SU+DICcc6V4pRdklupbhldznLoR\nKSKXQ8FSE3R+zpIO6CIizV3NYMncSJmlK9EQwZLVZMHmsJPcPgyzCXL2VWeWys5llqyc63bmksxS\n09/HItJ06IjRBKkbnohIy1HzQr6xWodfidpleK6bs2Sz2/D39aJ9m2B2HSiisspGSUV1sGS5wmCp\nVoMHnVtF5DIoWGqCnHcZ1bFHRKT5q1kKV5/udI2tdoMH15ynLGYLVQ4bAF06hFFZZWf3jycpO9c6\n3OK4sjI8i+YsiUg96Wq8CbKqDE9EpMVwx5ylK1G7DM815ylngweALvHhQHUpnnPOktnhzCzVb//U\nzNjpRqSIXA4dMZogNXgQEWk5al7Ie0JmydQAmSWz2YzNYQcwmjzs3Hvc6IZntp9bdNQFZXi6ESki\nl0PBUhPUPaozqdHJJIbFu3soIiLSwMxmsxF0NFbr8CthbqgGD+cyS+HBfkSH+/PdDycoPTdnyWR3\nLjqqOUsi0ria/lG5BYoLuYqnBv2RMP8Qdw9FREQagbOiwCPK8BpgnSVngwenLvHhlJZXcrKsBC+L\nF3Zb9fvUuxueSd3wRKR+dMQQERFxM69z85Y8oQyvdoMH13XDczZ4gPPzlorLSwnw8qPKVl2i55Ju\neFpnSUQug4IlERERN3M2ebB6QLDUEOssWUxm7Ha78e+uHarnLZVVlhPg5U9lVfVjLlmUVmV4InIZ\nFCyJiIi4mTNY8oQSsYaYs2QxW3DgMAKmthGBtAr0ooqz+Hv7UVlVnXWqb2bJZDLVWPC96e9jEWk6\ndMQQERFxM2dGySMySzXK2FyVpXFut7MUz2QykRwfAiYHXvhQZXMA9Q+W4Py8JXXDE5HLoWBJRETE\nzZyZJY9o8NAgZXjV212zyUOHdv4AVJw1G5ml+pbhwfl5S5qzJCKXQ8GSiIiImxnd8Dyidbjr11ly\nBjI1g6V2Mb4AlJZizFm6ksySRWsYikg9NP2jsoiISDNntXhOZqn2nCUXdcNzZpZqdMQLC63eJydP\n2q+4G171e1T/X81ZEpHLYXX3AERERFo6qwe1DjfREJml6tex1eiId8Z2BoBTp+wUeZ0FXFOGpzlL\nInI5Gv32SlVVFY8//jgTJkzgzjvvJD8//6LnfP7554wbN45bb72VefPm1Xrs2LFjZGRksHnz5sYa\nsoiISIPyqEVpG6gbHlBrraWyyjIAHFVWduefBFzT4EFleCJyORo9WFq4cCHBwcF8+OGH3H///Uyb\nNq3W4+Xl5bz++uvMmjWL9957j1mzZnHq1Cnj8alTpxIbG9vYwxYREWkwnpRZaojW4dY6GjyUVpRX\n/8Xmhd3uwGwCi0saPKgMT0QuXaMfMTZs2MCwYcMA6N+/P1u2bKn1+Pbt20lJSSEgIAAfHx969uxp\nPGfjxo0EBQWRlJTU2MMWERFpMOczS03/Qr4hGjyYzRfPWSo9l1nC7gVcWQkeqAxPROqn0Y/Kx44d\nIyysemVuk8mE2WymqqqqzscBwsLCOHr0KJWVlfzrX//ikUceaewhi4iINCgvc3VA4AmZpZqtt10V\neNSVWSqrrM4stQ0LBa6sBK/me6jBg4hcjgZt8DB37lzmzZtn1Ac7HA6ysrJqPcdeYzJnXRyO6oXo\n3nzzTW6//XYCAwNr/VxERMTTedSitKaai9I2XOtwZxleUkwEB/aewMt6ZftGrcNFpD4aNFgaP348\n48ePr/WzSZMmcezYMTp16mRklKzW88OIjIzk6NGjxr8LCwtJS0tjwYIFrFmzhpkzZ3LgwAF27NjB\nK6+8QkJCws+OITMz04Vb1HS1lO2sqSVu80/RvtA+uJD2h2ftg5NF1Q0M9u3dh9cR198MdOW++LH4\nR+Pv27ZsdUnwcexY9Xk/+7scinyPAZB/pACAAKq74tntVVe0HeVl1cHX3rw8zIer/suzmzdP+m40\nBu0P7YOf0+itwwcMGMCSJUsYMGAAK1eupE+fPrUeT01N5emnn6akpASTycTWrVt56qmn+PDDD43n\nTJo0iVtuueW/BkoA6enpLt+GpiYzM7NFbGdNLXGbf4r2hfbBhbQ/PG8fZG7OJfv0bjolJtEzprtr\nX9vF++JkXjkcXQtAr169XPKau7Ly4WQWSUmJdI7oCMAXX62DErhpSD8+W7uCAD/fK9qOhae+puBM\nIYkdE12+jz2Jp303Gpr2h/YB/Hyw2OjB0vXXX8+6deuYMGECPj4+PP/880B1mV2fPn1ITU3lscce\n45577sFsNvPQQw8ZpXciIiLNkWd1w3P94q5G63B77QYPXhYvIkIC6Z/ShlYBPlf2HpqzJCL10OjB\nktls5rnnnrvo5/fdd5/x9+HDhzN8+PCffI26/r+IiIinslrOBUsecCHvLLtzZdBhraMbXllFOQFe\nfgBMuivjit9Dc5ZEpD6a/lFZRESkmfO2VHfD8zr3Z1N2PrPkuqDDUtc6S5VlBHj5u+49jHWWFCyJ\nyKVr9MySiIiI1DYkvh9mk5mEsPbuHsp/5Qw2GqIMz+ao7pDrcDgorSwnKjDCZe9xvnW4giURuXQK\nlkRERNwsKjCCX3Yb7e5hXJKGKMNzlh86M0sVtkpsdptRhueS9zBXv4er2p2LSMugI4aIiIhcssZo\n8FBaWQaAv7cLy/CUWRKRelCwJCIiIpfMGWy4slGC9YJFacvOLUjr2sySc86SLn1E5NLpiCEiIiKX\nrGHK8Gp3w3NmlgJcmVkyK7MkIpdPwZKIiIhcsvMNHlzYDc/snLNU3eCh9Fxmyd+FmSVngwe1DheR\ny6FgSURERC6ZuSEySxess1TmzCy5sHW41axFaUXk8qkbnoiIiFyyBmnwYLqgwYNzzpK36zJL/dv1\n4odDB2gXHOOy1xSR5k+3V0REROSSNcScpQsbPBjd8FyYWeoY3p5RUYM8YuFfEWk6FCyJiIjIJXN2\nk3PlnCWz6cIyPNdnlkRE6kPBkoiIiFyyhpizZDXXXpS2tAFah4uI1IeCJREREblkDdI63Fx363BX\nLkorIlIfCpZERETkkhkNHnBh63CjwUN16/CyBmgdLiJSHwqWRERE5JKdX2fJ9Q0e7DUaPHhZvPBW\nMwYRcTMFSyIiInLJGmLOkrPBQ5WzwUNFueYriUiToGBJRERELtn5OUuuK8Orq3W4KxekFRGpLwVL\nIiIicskaogzPUiNYcjgclFaWE6DmDiLSBChYEhERkUtmNHgwuz5YqnLYqLBVYrPbtMaSiDQJCpZE\nRETkkjXEnCXLudey2+3n24ZrzpKINAEKlkREROSSmZyZJRfOWaqZWSozFqRVGZ6IuJ+CJREREblk\nDdI63HR+ztL5BWmVWRIR91OwJCIiIpfMmVEyuXJR2hoNHkqVWRKRJkTBkoiIiFwyo8FDQ3TDc9gp\nO5dZUoMHEWkKFCyJiIjIJTM1YIOHmpklf2WWRKQJULAkIiIil6whgiXna9kc5+csKbMkIk2BgiUR\nERG5ZOYGaPBgMpmwmC1U2W2UVWrOkmR8mwIAACAASURBVIg0HQqWRERE5JKdzyy5rsEDVHfEs9vt\n58vwlFkSkSZAwZKIiIhcsoZo8ABgNpupqlmGp0VpRaQJULAkIiIilyzQOwAfqw+tA8Jc+rpWkwWb\n/fyitP4KlkSkCbC6ewAiIiLiOfy8fHnjhufw8/J16etazBZjUVpvixdeFi+Xvr6ISH0oWBIREZHL\n0hDziSxmCzZHdWZJzR1EpKlQsCQiIiJuZzGZsdntnLGfJcgn0N3DEREBNGdJREREmgCL2XKuwYMy\nSyLSdChYEhEREbezmiyUVZZjs9u0IK2INBkKlkRERMTtLGYLlbZKQJ3wRKTpULAkIiIibmcxW4y/\nqwxPRJoKBUsiIiLidhbT+WCpIbrtiYjUh4IlERERcTtllkSkKVKwJCIiIm5nNZ+/JFGDBxFpKhQs\niYiIiNvVKsNTZklEmggFSyIiIuJ25ppleMosiUgToWBJRERE3M5q0pwlEWl6FCyJiIiI29Vs8KBu\neCLSVChYEhEREber3Q1PwZKINA0KlkRERMTtrLUaPChYEpGmQcGSiIiIuJ35XOtwb4sXXhYvN49G\nRKSagiURERFxO2dmSc0dRKQpUbAkIiIibuecs6TmDiLSlDR6sFRVVcXjjz/OhAkTuPPOO8nPz7/o\nOZ9//jnjxo3j1ltvZd68ecbP33nnHcaMGcP48ePJzs5uzGGLiIhIA3IGS8osiUhTYm3sN1y4cCHB\nwcG89NJLrFu3jmnTpvHPf/7TeLy8vJzXX3+dTz/9FKvVyrhx4xg+fDhHjhzhiy++YMGCBeTm5rJi\nxQq6devW2MMXERGRBmAxVd+/1YK0ItKUNHqwtGHDBsaMGQNA//79mTx5cq3Ht2/fTkpKCgEBAQD0\n7NmTzMxM9uzZw8iRIzGZTCQnJ5OcnNzYQxcREZEGYpThqROeiDQhjV6Gd+zYMcLCwgAwmUyYzWaq\nqqrqfBwgLCyMo0ePUlBQwMGDB7n33nv59a9/TW5ubmMPXURERBqIVWV4ItIENWhmae7cucybNw+T\nyQSAw+EgKyur1nPsdvvPvobD4cBkMuFwOLDb7bz99ttkZmby17/+tdZ8pp+SmZlZ/w3wIC1lO2tq\nidv8U7QvtA8upP2hfVCTJ+yLwycOA3DqRHGDjtcT9kVD0z6oTftD++DnNGiwNH78eMaPH1/rZ5Mm\nTeLYsWN06tTJyChZreeHERkZydGjR41/FxYWkpaWRkREBB06dAAgPT2dgwcPXtIY0tPTr3QzmrzM\nzMwWsZ01tcRt/inaF9oHF9L+0D6oyVP2RUHucTjxLQmxHUhPbpjxesq+aEjaB7Vpf2gfwM8Hi41e\nhjdgwACWLFkCwMqVK+nTp0+tx1NTU8nOzqakpITS0lK2bt1Keno6AwcOZM2aNQDk5eURHR3d2EMX\nERGRBmJxrrOkBg8i0oQ0eoOH66+/nnXr1jFhwgR8fHx4/vnnAXjzzTfp06cPqampPPbYY9xzzz2Y\nzWYeeughAgMDSU1N5euvv+a2224D4JlnnmnsoYuIiEgDCfCunqsU6hfi5pGIiJzX6MGS2Wzmueee\nu+jn9913n/H34cOHM3z48Iue89BDD/HQQw816PhERESk8fVv14sQ31Z0j+rs7qGIiBgaPVgSERER\nuZC3xYsebbq6exgiIrU0+pwlERERERERT6BgSUREREREpA4KlkREREREROqgYElERERERKQOCpZE\nRERERETqoGBJRERERESkDgqWRERERERE6qBgSUREREREpA4KlkREREREROqgYElERERERKQOCpZE\nRERERETqoGBJRERERESkDgqWRERERERE6qBgSUREREREpA4KlkREREREROqgYElERERERKQOCpZE\nRERERETqoGBJRERERESkDgqWRERERERE6qBgSUREREREpA4KlkREREREROqgYElERERERKQOCpZE\nRERERETqoGBJRERERESkDgqWRERERERE6qBgSUREREREpA4KlkREREREROqgYElERERERKQOCpZE\nRERERETqoGBJRERERESkDgqWRERERERE6qBgSUREREREpA4KlkREREREROqgYElERERERKQOCpZE\nRERERETqoGBJRERERESkDgqWRERERERE6qBgSUREREREpA4KlkREREREROqgYElERERERKQOCpZE\nRERERETqoGBJRERERESkDgqWRERERERE6qBgSUREREREpA4KlkREREREROqgYElERERERKQOCpZE\nRERERETqYG3sN6yqquLJJ5/k4MGDWCwWnnvuOa666qpaz/n888957733sFgsjB8/nnHjxnHkyBEm\nT55MRUUFDoeDSZMm0aVLl8YevoiIiIiItBCNnllauHAhwcHBfPjhh9x///1Mmzat1uPl5eW8/vrr\nzJo1i/fee49Zs2Zx6tQpZs6cyfDhw3nvvff405/+xD/+8Y/GHrqIiIiIiLQgjR4sbdiwgWHDhgHQ\nv39/tmzZUuvx7du3k5KSQkBAAD4+PvTs2ZPMzExat27NyZMnASguLiYsLKyxhy4iIiIiIi1Io5fh\nHTt2zAh0TCYTZrOZqqoqrFbrRY8DhIWFcezYMe68805uvfVWFixYQFlZGR9++GFjD11ERERERFqQ\nBg2W5s6dy7x58zCZTAA4HA6ysrJqPcdut//sazgcDgDeeecdRowYwe9+9ztWr17NCy+8wPTp0xtm\n4CIiIiIi0uKZHM5opJFMmjSJ0aNHM2DAAKqqqrj22mtZvXq18fimTZv4+OOPjblMkyZNYsSIEcye\nPZtHH32ULl26UFFRwS9+8QtWrVr1s++VmZnZoNsiIiIiIiKeLz09vc6fN3oZ3oABA1iyZAkDBgxg\n5cqV9OnTp9bjqampPP3005SUlGAymdi6dStPPfUUa9asYdu2bXTp0oWsrCzi4uL+63v91EaLiIiI\niIj8N42eWbLb7Tz11FPs378fHx8fnn/+eaKionjzzTfp06cPqampLFu2jLfffhuz2cydd97JqFGj\nOHr0KE899RTl5eWYTCb++te/kpSU1JhDFxERERGRFqTRgyURERERERFP0Oitw0VERERERDyBgiUR\nEREREZE6KFgSERFpJlRZLyLiWgqWPExLPBG2xG2+UH5+PsXFxe4ehtudPHnS3UNoMv7bGnUtQX5+\nvruH0GRs2rQJwFjXUESkJp0z6k/BkgcoLy/nyy+/pKKiosWcCFviNtelrKyM6dOn88wzz/Djjz+6\nezhus3r1au6//35ycnLcPZQm4eOPP2bmzJmUlJS4eyhuUVBQwKRJk3jxxRcpLS1193DcKi8vj6ef\nfpqXX36ZQ4cO6eYS8M0333DixAl3D8OtPvjgA601SfU59NVXX2Xfvn3uHorbOPeBPg/1p2CpiZs7\ndy73338/Bw4cwGpt9GWx3KIlbnNdsrKyuO666zCbzbz++ut069bN3UNqdEePHuWxxx5j9uzZ3HPP\nPfTv39/dQ3Krb7/9lnvvvZctW7YwdOhQAgMD3T2kRvfWW2/x0EMPkZ6ezvTp0wkICHD3kNxm8eLF\njBo1iqFDh/Lhhx/Spk2bFn1zKS8vj6eeeooZM2a02CD666+/5rHHHuObb74hMjLS3cNxq08++YSH\nH36YU6dO0bZtW3cPxy3mzp3Lgw8+SFlZGSkpKe4ejsdquVeiTVx5eTnTp09n5cqVzJw5k5iYGHcP\nqcG1xG3+Od7e3qSkpDBkyBB8fHzYvn07UVFRREdHu3tojWbPnj0cP36cJ598ks6dO3P27FnKysoI\nDQ1199Aa3alTp3jrrbdISkriiSeeAKrvGPr7+7t5ZI2roqKCoKAgxo0bB1TfVOjQoUOLDByvueYa\ngoODjcXdv/zySyIjI1vkRdFXX33Fn//8Z6ZMmcLIkSPdPRy3OHToEPfddx8vv/wyI0aMAKpLr8xm\nMw6Ho0UF0l9++SVTpkxh6dKlRqDU0vbBhg0beP3115k6dSq9evUCoKqqqkXfhK4vy7PPPvusuwch\n55WUlODt7Y3ZbOb48eOEhIQwaNAgiouLWbRoEV5eXoSHh7t7mC7VEre5LkVFRfztb3+joqKCxMRE\n/Pz8sFqtzJ49m61bt7Jo0SK+/vpr8vLy6Nevn7uH22AWLFjAkSNHaN++PbGxsezevZvjx4+TlZXF\n9OnT2bFjB7m5uWRkZLh7qA2uqqqKLVu2EBoaSmBgIOXl5ZSVlRESEsK8efOYN28epaWlhISEEBQU\n5O7hNojdu3czbdo0evXqha+vLxkZGcyaNYvS0lLmzZvHypUrWbt2LWazmYSEBHcPt0H9+OOPTJgw\ngR49ehAZGYm3tzcOh4NnnnmGH374gR07drB48WLKyspo06ZNi8i62e12TCYTrVu3ZsGCBTzyyCP4\n+/uzePFijhw5QlRUVLO+OKyqqqKyshKr1UpQUBD5+fmUlpbSv39//vWvf5GTk0NYWBghISHuHmqD\nO3z4MGazGS8vLzp06MDKlSvp2rUrwcHBTJ06lV27dhEeHt6s98WhQ4c4deoUrVq1IjY2lq1bt9K2\nbVu8vb15+eWX2b59O1artcVm2upLwVIT8vHHHzNt2jQ6depEdHQ0fn5+7N27l1mzZvHll1/i5eXF\nzJkzsVgsdOnSxThJeLKWuM0/ZefOnXz11Vds27aNm266CR8fH/z9/cnOzsbf359p06bRo0cP3nnn\nHdLT0wkLC3P3kF2uqKiIJ598El9fX1q3bk14eDhhYWHMnz+f0tJS/vKXv5CUlMSqVas4evRos7+D\n/uyzz7J06VKio6OJi4ujY8eOLFq0iOXLlxMWFsa1117Lli1bWL16NcOGDXP3cBvE8uXL+fDDD+nU\nqRPt2rXDYrHQunVr3njjDSZOnMgjjzzC6dOn2blzJ1FRUc36xkpOTg7Lly/n0KFD/OIXvwAgPT2d\nRYsW0bt3b5544gk6duzIxo0biYmJoU2bNm4eccM5fvw4t99+O61btyYuLg5fX18cDgcvvPACe/bs\nITc3l2+//Za9e/cSERHRLI+XJ0+eZOzYseTm5hrf/759+/Loo4+yZcsWoqKiKCoqYuXKlQQHB3PV\nVVe5ecQNJz8/n1GjRhEaGkrnzp2xWCxERUXx5z//mQMHDtCtWzd++OEHsrKy8PX1bZb74tSpU4wd\nOxa73U58fDyBgYFERETwz3/+k507d9KrVy9MJhPr1q0zbsrKpVGw1IQsWrSI4OBgvv/+ewYNGkRI\nSAjl5eUcP36ce++9l5tuuol27drx/PPPc/fddzeLoKElbnNNWVlZREVFAfDpp58ycuRIDh06xK5d\nu8jIyMDf359OnTrRq1cvAgMDCQ4OJjs7m9OnT9OjRw83j941Tp06hd1ux8vLi3Xr1lFQUEB0dDRl\nZWV06tSJqKgogoKCuPrqq+nQoQORkZFUVlZy+PBhevfu3ew+ExUVFVgsFk6fPs1HH31ESkoKJSUl\ntG3blpCQEEJDQwkODubOO++kQ4cOJCYm1rqD2hwcPnwYLy8vLBYLmZmZJCYmsnr1ajIyMggKCqJD\nhw60a9eOAQMGYLVaadOmDQsXLmTQoEHNZh8AVFZWsnnzZvz8/PD392fjxo1MmDCBefPmERYWRseO\nHQHo168faWlpeHt7Ex0dzfz584mLi6NDhw5u3oKGk5eXx9KlS3E4HKSmpuLv70+PHj346quv6N69\nO3/+859JSUlh165dVFRU0LlzZ3cP2eXy8/MpLCwkMzOTjIwMWrdujbe3N+Hh4Xh7e/Pwww9z9dVX\nk52dTWVlJSkpKc22FC07O5sDBw5QXFxMSkoKwcHBtG/fnlOnTpGRkcGYMWNISUnhu+++w8vLq1l9\nHpy/0507d5KVlWWcJ9q2bUvbtm05c+YMaWlp3HTTTXTt2pXi4mIKCgpIT0/HbFbrgkuhYMmNduzY\nwbZt24iPj6eqqor169czcuRIMjMzMZlMJCQk0Lp1a9LT04mLiwMgNjaW7du3e+yFUUvc5rrk5uby\nzDPPsGrVKvbs2YPNZuOXv/wl7dq1IzY2lnfeeYerr76akJAQQkJCKC0t5bvvvqO0tJQlS5Zw8803\nG0GWp7LZbLz44ot88sknZGZm0rVrVzp37syYMWM4fvw4u3btIiAggDZt2tC+fXvCwsIoKyvD29ub\nmTNnkpSURNeuXd29GS5TWFjIq6++yjfffEObNm2Ijo6me/futG3blqysLBwOB4mJicTExNC9e3cc\nDgcWi4W9e/fy/fffM3bsWHdvwhVbt24dDz74IHv27GH58uX84he/ID4+nsGDB7Nu3TqOHTtGSkoK\nFouF9u3bs23bNiIjI8nKymLz5s0MHjyYVq1auXszrojzwuebb77hz3/+M4WFhXz66ae0b9+eoUOH\nEh0dTXh4OP/+97+57bbbAGjVqpVxoVRQUMCmTZu49tprPf4YUVNlZSVr167F4XAQGhrKd999xzXX\nXMPGjRsBSEpKwmKxkJGRQXp6OlarleDgYL788kuioqLo1KmTxwcKhYWFvPvuu9hsNiIiIigoKGDo\n0KFYrVY++eQTbrzxRgC6du1KRkYGDocDs9nMvn37OHLkCP369fPo7a9p48aNzJs3j5MnT9KxY0dO\nnDjBhAkT2LZtGwcOHCA1NRWr1Up6ejqdOnUCwM/Pj2XLlhEdHd0sgqWNGzcye/ZsDhw4YFRZXH/9\n9RQUFLB3715iY2MJDg6ma9euxj6wWCysWLGCsLAwUlNT3Tl8j6JgyQ2qqqp47rnnWLx4MYWFhWzb\nto3Q0FDGjRtHVFQU5eXlrFy5ksGDB+Pv74/JZGL16tXk5eUxZ84cSktLueWWW7BYLO7elEvWErf5\n5yxYsICQkBCef/55HA4HU6dONbqbhYeHc/DgQVatWmWUVqxfv55PP/2U5cuXM3bsWAYOHOjmLbhy\na9asIScnh2nTprF161Z27twJQLt27QgJCWHnzp2cPHmShIQEfHx8+Pjjj5k9ezavvfYanTt35vbb\nb8fb29vNW+EapaWlTJo0ieTkZAICAli+fDk2m43evXsTHR1NXl4eBQUFhIeHEx4eTn5+Ps8++yyb\nN2/ms88+Y8CAAR5/1/jUqVO8+eab/PGPf2TixIksWLCAoqIiOnbsiL+/P23btmX27NkkJycbXb7m\nzJnDzJkz2bhxI3/605+aRVmJ8/f3wQcf0K9fPx555BHsdjszZ85kyJAh+Pn5kZCQYJTjOSduHzp0\niHnz5pGTk8NDDz1E9+7d3bkZLrVjxw4efPBBSktLef/994mJiSE9PZ3ExETCwsL45JNP6NWrF0FB\nQQQFBbFlyxbWr1/PkSNHWLlyJX379qV9+/Ye+d1wfqe3bNnClClTaNeuHdnZ2SxbtoyJEycSFBRE\neno6b731FhERESQkJGC32/n+++956aWX2LdvH4sWLWLs2LG0a9fO3ZtzRZz7YsWKFbzxxhsMHjyY\n999/n5KSEvr160dwcDCxsbF88MEHdOrUiYiICKxWK5999hkzZ85k7dq15Ofnc+ONN9K6dWt3b069\n1Pw8/OMf/2D06NEsWrSIgoIC42ZrVFQUK1asICgoiJiYGHx9fVm0aBFvvPEGq1evZt++fYwcObJZ\nl+m6moIlN7DZbHz55Zf87W9/Y/jw4RQVFTF79mxGjRqFxWIhICCA7OxsCgsLSUlJoaysjLy8PD77\n7DM6derE5MmTPS5oaInbfKHFixdz7NgxYmNjWbt2LZ07dyYhIYF27dqxf/9+Fi1axPXXX4/dbich\nIYH//Oc/REdHs2fPHhITExk1ahS33norSUlJgGd29tm5cyeVlZW0atWKxYsXYzKZGDhwIB07duTw\n4cPk5ubSpUsXwsPDKSsr48CBA4SGhlJaWkrPnj3p168fQ4cOZdSoUcbkdk/bBzUdPXqUgIAADh06\nxNKlS5kyZQppaWmUlZWRlZVFcHAwUVFRxtw1q9VKYmIiAQEBJCcnY7fb+e1vf2s0/PC0fXHq1CkW\nLFhAdHQ0oaGhLFq0iHbt2tGhQwc6duzIkiVLCAsLIyYmhqioKA4cOMDevXtp164dy5Yt4ze/+Q19\n+/blzjvv9PgsypEjR5g1axZFRUW0bduW/Px8o3ymS5cubNy4kaNHj5KWlobJZKJ79+68/PLLpKWl\nMWfOHPr168fo0aO54YYbiIyM9PjvRk0LFiwgKSmJxx9/nPDwcBYuXEhcXBxRUVHExsayefNm8vPz\n6du3LwBnz55l+fLlbN26lT/+8Y/07t3bzVtQf2fOnMHLy4usrCyKioqYNGkSgwcP5p133iEgIID4\n+HjMZjMhISFGttFkMuHl5YXdbufEiRM88cQTdOnSxd2b4hImk4nFixfTvn17JkyYQLdu3Vi4cCFh\nYWG0adPGyLhlZmYydOhQAOLi4jh79iyBgYE8/fTTHhsoQXWG1WKxsHz5cgIDA5k4cSIpKSls2bKF\n0tJS4uPjad26NcePHyc7O5u0tDT8/PxITEwkKCgIHx8fJk+erEDpMilYaiSff/45y5cvp6ysjJiY\nGN577z1uueUWfHx8iIuLY9OmTezdu5devXrh4+NDeHg4y5Yt48CBA+zevZubb76ZkSNHetRBvyVu\nc1327t3LAw88QGlpKZ999plRSrhp0yYjc9SvXz9effVVunbtSkxMDIGBgaxfv54XXngBb29vhg8f\nbnQ7s9lsmM1mj7oQKikpYerUqXz00Ufs37+fbdu2MXbsWD766CMGDRpEREQEDoeDvLw8Y+Jphw4d\nWLNmDW+99RYLFixg0KBBtGvXjtDQUBwOh1Fi4ol27drFs88+y4oVK9i9ezdDhw5l6dKlBAUFER8f\nT0BAAPn5+eTn59OzZ09at25NVVUVX3zxBS+99BKHDx9m9OjRJCcne2zL7EWLFvG///u/nD59mh07\ndnDkyBHatm1LcXExycnJREVFsX//fvbs2UPPnj2NVvqPP/44CxcuJDo6mn79+nns9te0detWHn30\nUeLi4vjmm28oLS2ltLQUu91OdHQ0rVq14qqrruLf//43I0eOxNfXl9DQUGbNmsVHH31Eeno6gwcP\nNrq+OdtFe6qjR4/y+uuvc/jwYWJiYigpKSEnJ4chQ4aQkJBATk4OBQUFtG/fnoCAADp16sTcuXMJ\nDAxk5syZpKamcssttzBy5EgjcATPupmQlZXFP//5TzZs2ECbNm2oqKiguLiYuLg4goKCCAkJYcGC\nBQwcOBBfX1+SkpJYs2YNGzZsYNGiRXh7e3PDDTfQp08fj/+OLFmyhOeee84ozQ4NDWX37t2kpqbS\ntm1bjh07xs6dO+nYsSOtWrWiT58+fPTRR2zfvp0ZM2bQrVs3Bg0a5NFlZ8uWLePZZ58lNzeXyspK\nunbtyooVK+jbty9t2rShrKyM3NxcI5vUrVs3vv76a1auXMnf//53kpKS6N+/f7PKODcmzz2aeoiq\nqipmzJjB4sWL6dSpE0888YTRFvmVV14Bqutob7/9djIzMzl27Bi+vr4UFxeTmZnJkiVL6NGjB15e\nXh5TctQSt/nnrF27lrS0NP7nf/6HJ554gvfff59f/vKXZGdns2nTJqC6jnjs2LF8/fXXAEyaNIlD\nhw4xZ84c/v73v9c62Xlihi03N5fCwkLmzp3Lww8/TE5ODgcOHCAtLY1PPvkEgMTERAIDAykrKwNg\n6dKlzJ8/nzFjxrBq1Sqj5hqqL3o8+WLwn//8J4MGDeKFF17gxIkT/N///R+33norX3zxBQBXXXUV\nCQkJnD59muLiYgDmz5/Pjh07uP/++/nLX/7izuG7RFZWFn/5y1+YNm0aSUlJlJSUEBwczMGDB9m6\ndSsAY8aM4euvv+bEiROcPHmSp59+mrS0NGbNmsWjjz7q5i1wna+++orf/va3PPLII4wePZpdu3Zx\n3XXXkZeXx65duzhz5gzJycnExcXx/vvvA9WdEnv06MHChQt54IEHar2eJ383cnJyuO+++/D392f3\n7t28/fbblJeXExERQVZWFgA33XQTubm5nDhxAoC2bdty5MgRJk+eTGRkZK0W8s4Oqp4UKB05coQX\nX3yRa6+9lpiYGKMq4fTp0+Tn5wMwbNgwHA4HCxcuNLbNZrPx1Vdf0a9fv2az1tSWLVuYM2cOf/jD\nH4iKimLZsmUcPnwYHx+fWp+H/fv3U1BQAFTP7dq1axc7d+7kiSee8Piuqbm5ubz33ns8/vjjDBo0\niCVLlpCXl0fHjh1ZtWoVAAMGDMDhcHDkyBGgeh+sXr2agoICpk6d2uIXdL9SnntE9RBWq5WsrCz+\n8Ic/cN1113Hvvffyzjvv8Nhjj/H5559TWFgIQFRUFFdddRWHDx/myJEjTJ06lQcffJBPP/3U4+6G\ntMRtrovzbmZcXJwxubh37974+/vj5eXFHXfcwVtvvWUc3JwZN4B7772X999/n7S0NBwOB3a73W3b\n4Qp5eXkMHjzY+HdoaChRUVEMHDiQrVu3kpWVhb+/P+Hh4eTk5ADVjT0+//xz7r//fqA6CPd0DoeD\nAwcOEBkZyYABA2jVqhWdO3fG29ubpKQkzGYzH3/8MQApKSl88803WCwWfvzxR9LT01m8eLFHN3Jw\nfieguvWzc4HlwMBAcnJyGDx4MMHBwWRmZlJYWEhERAQpKSkUFhZitVr5/e9/z7///W9iY2PdtQku\n5dwfV111lbEI96BBg8jKyqJ9+/b06NGDrVu3Gk0MevfubXS4+/3vf8+LL75IZGQkNput1r71ZFu3\nbmXs2LE8+OCDjBw5ktLSUpKTk6moqCArK4uSkhI6dOhAaGgon376KQCvvvoqiYmJfPbZZ/zhD3+o\n9XqeGDiuXbuWyMhIrrvuOsaPH8/WrVvp168fERERZGZmsn//fgDuvvtuli9fDsB7771Ht27dWLVq\nlbFgc3Pw1VdfMXz4cNLS0ujduzf79+/nmmuuwcfHh+zsbA4ePEhQUBDdunVj/vz5QHXJ+0MPPcSc\nOXOMOX2ebOvWrVxzzTWkpqaSv86/kAAAHfVJREFUmJiI2WwmPj6euLg4srOzycvLIyAggNjYWJYt\nWwbA5s2beeCBB5g9e3az2AfupjK8BlZaWkrr1q1JTk7Gx8eHo0ePUlVVxTXXXENhYSFLlixh5MiR\nBAQE8MknnzBy5EiioqK4/fbb6datm7uHXy8tcZudaq4D5fyzffv2dO7cGZPJxHfffcfy5csZP348\n3bp1Iycnh82bN7Nhwwa+/vprBgwYQHx8vLEmiCeW3MH5/eAcf4cOHYy7e3a7nfnz5zNixAiSkpIo\nLi7mzTffpH379ixcuJD09HS6du1KREQEAQEB2Gw2TCaTR2bULmQymQgICKBbt25GoOCsPXe2zn/5\n5Zfp27cvhYWF/PDDD/Tv3582bdrQo0cPj90HM2bMICoqipCQEKPmftiwYUbnuvXr1xMaGkqfPn0I\nDg4mJyeHefPmsWfPHnJycrj99tsJCQlpFmvlOL8TNUvDnOW3gNE+f+TIkUZ2cc6cOXz77besXLmS\n8ePHG98NqP4+WSwWjztG/JSCggISEhKIjo4mOjqaGTNmcOedd2Iymdi9ezcHDx6ke/fulJeXY7FY\n6NGjB0lJSdx44421jheetD+c3wnnZyMuLs7oDOvv78+qVau4+uqriY+PJzMzkz179tCnTx+2b99O\nYGAgGRkZdOnShX79+nnsMcLJOdfOuS8iIiJITU3Fz8+PiIgI5s+fz80330xgYCB5eXls2LCBQYMG\nkZmZSXJyMp07dyYtLY3k5GR3b4rLhISEGNMVgoKC+Oijjxg5ciTt2rWjoKCA//znP4waNYpvv/2W\nqKgo0tLSSEpKalb7wN0875ZLE3dhBiAgIIBBgwYZ801ycnKMg9nkyZPx9/dnypQp3HHHHcTExBAU\nFORRczHqyno0923+Oc5tyMvLM8rJasrNza3Vye7ee+/l9ttvJzAwkH/84x/GhFQnTz3xmc1mSkpK\njPH7+fkZj+Xm5hISEmIEC7/61a/49a9/zYoVK+jfvz/jx4+v9VqefCFos9lq/dvhcGC1Wms1Iygs\nLDRuEvTq1YuJEyfywQcfMG3aNCZMmEBERESjjtmVnNnAwsJCpk2bBoCXlxdQ/RmprKwEquf1OU/s\niYmJPPzww9xyyy2Eh4fzxhtvePSEbCfncdL5nSgrKzMuCms+np2dbRwH/P39GThwIM8++ywDBgxg\n3rx5F10AefJx07nNNbNiI0eONNaQ27ZtG1FRUQQGBtKvXz+uvfZaFixYwKRJk3jttdfo2bMnUJ2p\ndr6epx0vjh49amTTax4vk5OTMZlMFBUVUVhYiJ+fH/Hx8dx2221UVVXxu9/9jo8//pgBAwYA579X\nns75u3Pui4SEBOP3+8033xAQEICfnx8pKSn86le/4vTp0zzwwAPs2LHD47vE/lQVSWxsrHFjKTc3\nF19fX6KiooiKiuK+++4jPDychx9+mM2bN3PDDTc09rBbBKu7B9AcHDt2jNLSUuLi4jCbzVRUVBhz\nbWpOtK2oqGD79u1MnToVqO7Y8/TTT3Po0CFOnjxJenq627ahvpx38Pbt28fx48cvSvc2x22+kM1m\nMw7sp0+fZsaMGRw/fpynn37aeI7zbtnhw4cZNGgQ+/bt47XXXmPEiBEMGzaMBx98EPDM+vqf8vjj\nj3PDDTcwatSoWtuTnZ1tdG976623CAgIYMKECVx//fXGczx9grrzM2GxWCgvL+e7776jZ8+eF/1e\n8/PzOXv2LD179qS4uJjly5dz2223efz2OzkbDkyZMsWYf3TNNdcY2+fl5YXNZuPIkSP06NGDbdu2\nMXfuXG677TZ+8YtfuHn0ruX8fWZlZfHuu+9SXFzMzJkzjZ87/ywpKSEhIYENGzbwwQcfMGbMGIYN\nG2aU6NY83ngq5+//pz7jzsdzcnKM7n/e3t4kJCTwxhtvkJuby5QpUy4KEDzpO+PcxtOnT/PVV1+x\nfv16rr/+euLi4modJ1avXk337t0JDQ3lzJkznDp1iscff5y8vLxac7M8Wc3j3dmzZ43FuJ2/e+f5\nc+3atUZAtG/fPsrKynjxxRcpLCz0+G6YcP566scff8RsNtO2bVvjMec+cK5JaLFY2LVrF0VFRUyZ\nMoXi4uJmsw5lU6RgyQVeeeUVEhISuP7663n33Xc5evQoAwcOZMyYMbUO3kVFRcTHxxMZGclLL71E\ndnY2U6dO9bgD3oUn69WrV/Ovf/3roknG0Hy2uS7OA7zFYqGiogKz2cz+/fvZsmULd9xxB8HBwcZz\nnCe/devWGZNSBw8ebHTDAzwyu3Zhl6kff/zRmE/Sq1cv446g87nOk8GXX37JmjVrCA4ONuYk1XyO\np+0Hp5qfCai+MP6f//kfysvLufvuuxk2bFitz4XNZqOyspKFCxeyYMECunTpQlVVlcdeDNd1If/q\nq68SGhrKk08+yUsvvcQ111xj/H6dE5L9/Px45plnOHnyJHfddVez7Nhks9l47rnnOHz4MP369eO5\n555j1apVDBkyhKqqKqxWK2VlZezYsYNdu3YRGBjIHXfcYdxYcPLUz0ZNzt//mjVr+Oijj0hMTOS3\nv/2tUVroPJ6cOHGCLl26sGXLFt58802GDRvGuHHjjMnqnhg4XniM8/b25sMPP6Rbt27ccccdxnMA\nI0js2bMnn3/+OR999BE333wzKSkpzeIcWnNfOH+Xx48fZ8+ePVx99dUXPS88PBxvb2/efPNN1q1b\nx29+8xsAjw6UnNtmt9ux2+3MmDGDDRs20KFDB66//vqLsmXOG/H/93//x6pVq5gwYQKAAqUGpmCp\nnux2Ow6HA4vFwg033MD8+fONNWGGDBnCW2+9RWVlJePHjzdOhH5+fsyfP5/s7GwGDRrEa6+9Zpwc\nPIWzzAEw7mwdPnyYiooKo1tZzfU9msM2/xTnye6LL77g1VdfZdCgQXTu3Jlf/epXrFixgtGjRxt3\n1p0ngr59+1JSUsKjjz5qlKbVDCI8Sc0LlbNnz3Ly5EljQdFRo0ZRVVXFnj176N+/f607hwcPHsTh\ncHDHHXeQkZEBeO4+uFDNIO+xxx7D29ubV199lfz8fBYuXEhkZCQDBw40nnf8+HF2797N2rVrmTx5\nssdeANlsNqZPn05UVBTjxo3D29ub3NxcOnfuzNChQ3n44YdZvHgxrVu3ZtasWdx1113GZ8I5R+mu\nu+4yTvyeruYxsKqqig0bNpCRkcHJkye5++676dWrF97e3kyZMoUhQ4ZgtVqx2Wz4+/vTtWtXoqOj\n+fWvf13n63kq5+/b4XBQWlrKyy+/TGVlJb/61a+YNWsWc+bMYfTo0UZ5bkVFBQcOHDCaHdx1110e\nHzjWPA5u3ryZJUuWcPPNN/Poo49SVFTE999/T+/evWv9rtevX8/ixYu5+eabmTJlCh07dnTX8F3m\nwpuIhYWFPPTQQ7zzzjvExMRQXl7Ohg0bjAV2nZ+b1atXc/DgQW688Ub+9a9/4e/v7+Ytqb8L94HZ\nbObYsWPs2bOHd955h9OnTxMeHm483/m87777jrVr13LDDTd4/D7wJGrwUA/OO7/OeRnx8fH88MMP\nbNu2jYkTJ9KjRw+io6N57bXXuOWWW4w7AUeOHCEoKIgHHniAESNGeExb7KysLHbv3k27du0wmUxs\n3LiRZ555hq+//pqKigrS09M5c+YMBw4cuKjUyFO3uS4bN24kKCgIX19foHoi8rRp0ygqKuKPf/wj\nfn5+LFy40Jh8fOjQIbp27VorwExNTWXIkCHGgoGeFiBUVFRw8OBBgoODMZvNlJeXM336dD755BO6\nd+9O//792bZtGytXruTGG29k7ty5jBw5EovFYmxvx44duf32240SA08uOXNOQq5pxowZfP/99wwc\nOJA5c+bw61//mtjYWHJycjh69Cht27Y15vP5+vqSnp7OxIkTPbp5waeffsqSJUs4c+YM0dHRbN68\nmYULF9K1a1c6dOjAnj172Lx5M3/4wx/4+9//zpgxY/Dx8aGyshJfX19uvfVWY55Kc1DzO52ZmcnC\nhQspKSkhICCAEydO0LlzZ1JSUnjvvfeorKykZ8+exnll4MCBpKWlAc2jLLfmNlRUVGC1Wjlz5gwv\nvfQSqampjBs3jnbt2rFt2zb8/f1p37690dBl9+7ddOvWjSeffNLIWHta4Hjo0CE2bdpESEgIvr6+\nmEwm5s2bx9tvv03Pnj05dOgQ1113HdnZ2Rw6dIiOHTvi5+dXq9lDz549ueeeezz6GAHVC+xarVbj\n97d582bWrl1LfHy8sZBs69atSUlJ4csvv2TQoEHGjQSz2Ux4eDjjx49n5MiRHj9Hy7kPNm3axPr1\n6wkODubIkSMUFBSQkZFB69atsVgsFBQUYLVaje0NCAhg3LhxjBgxwuP3gSdRsHSJDh8+zIoVK+jc\nuTNms5nDhw8zefJkNm3aRH5+PjfffDObN28mKiqK6Oho4uPj2bZtGzabjaSkJKA6TZqRkeFRBzxn\nWcz+/fu5+uqrqaio4N133+Xhhx+me/fuvPTSS/Tu3Zvg4GB27dpFUFAQbdq0MQ5unrjNdTl+/Dj3\n3HMPe/fuBaonnfr4+PDuu+/SunVrbr75ZmJjYzl58iRbt25l2LBhfPbZZ2RkZNRaI8mTF408ceIE\nEydO5Pvvv2fIkCGUlpby17/+lcTERNLS0njllVcYMWIEo0eP5j//+Q8FBQWUl5dz7bXX1pqf4MmL\n6zrZbDZeeeUVfvjhBzp16oTFYiE3N9foXvXCCy/w2GOPsWHDBk6ePEmPHj0IDAxk8+bNVFZWGt0R\n/fz8jC5onqxr167G2mHl5eXGIomHDh0iJSWF3r178/zzzzN27FgKCwtZtmwZw4cPN24ieFqG4EIX\n3kj58ccfmTVrFmlpaURERHDs2DGOHj2KyWQyOp+1bduW/Px8/vOf/3Dbbbfh4+NjBALOMixPO0bU\nxfn9/uSTT3jppZcoLi7GbDbTt29f5syZwy9/+Uuio6P55ptvKCwspF+/fsY+6t27t7GMhKcFjna7\nnddee40ZM2ZQUVHB0qVLyczM5JprrmHTpk2MGDGCm266yTg2mM1m9uzZw+nTpwGIjIwEICwszOOz\nSXa7nTVr1rBt2zaj9fX06dOZP38+Pj4+LFiwgLFjx+Lv78/cuXMpLy+nffv2dOzYES8vL+N7EBcX\nVyvb4klOnDiB3W43bhhXVVXxyiuvsHTpUtq0acOsWbPo2bMnK1asIDY2ltjYWEpKSvjggw/o3r07\n3t7emEwmYmJiPP56yhMpWPovbDYbb7/9Nm+//TadO3cmOTmZoqIipk2bxujRo7njjju4++67GTJk\nCBaLhaysLEJDQ4mJieHzzz/nuuuu89huVg6HAz8/Pw4fPsyBAwew2Wz069ePoqIi9u/fz5w5cwgP\nD+f06dMMHTqUo0eP8u233zJgwAAjKGguKioq2LRpE9deey2LFi3CZDKRnJxMSEgI69evp3///gQF\nBWE2m8nLyyM9PZ3jx48THh5OmzZtLno9Tznh1+Tn58eaNWs4cOAAYWFhdOrUiaKiInr16sWCBQuM\nQLJv37707t2b4uJiZs+ezcSJE/Hx8bno9Tz5QvDnMikJCQns2bOHb7/9tlYmpW3btuzbt4/Q0FAS\nEhI88jPwU6qqqjCbzfj7+7Ny5UqSkpLw9fVl9+7dREVF0aZNG7Zs2cLChQt58cUX8fX1JT4+3t3D\ndomfupEyffp0QkNDjRtszknbAQEB/L//9/9YunQpnTp14syZM+Tn55ORkVFr2QFP/Xx8++23PPPM\nM3z//ff4+voSExPDF198wbfffsvkyZPZvHkzq1evZvz48ezcuZPt27dz9dVXU1BQwJ49exg2bNhF\nwbMnzuecPXu20cjn2muvpW/fvsbNtU2bNnHq1Kn/v717D4qyXgM4/t1dVC4C6gILuNIu10URE1ou\nXhJxai2TRCJnHB0dGyy7zNikjjXp4DRmVo7kOGSNhpeEEkYqGESEErmJ0oiaEBgjhtKyBuGgi6Lu\nnj8c3vSkJOc0h7O7v8/f/vG++O77/p7n+f2eh7i4OCwWC01NTZjNZpydndm5cycuLi5ScwN7IJPJ\naG1tlbr6ubq6snfvXnbv3i393xuNRgwGA0qlkt27d/Pjjz+ycOFCm6+e9K8ht2/fzsmTJ6mvr8fL\ny4sxY8ZQUFDAtm3b+O233ygpKWHp0qW4urpSVlbGtWvXqKmp4fTp0yQlJdn838HWiWBpAOXl5bzy\nyivodDreeustqU2pTCajoqICmUxGTk4Oer2eBQsWEB4eztGjR6msrKSqqgo3Nzfmzp1rUw95cXGx\n1J7W1dWVvr4+2tra0Gq1XLhwAZVKRUxMDF999RVbt24lOTmZtWvX0tnZiZOTE3q9noCAAJvPFN+r\nP2isra3F3d2dp59+mv3792OxWHj22Weprq6moaGB8PBwysvLuXDhAosWLSI2Nva+bja2pr29nbq6\nOgICApDL5VgsFq5duyadMYmOjkar1bJjxw7mzZvH4sWL+fjjj3Fzc8PPz4/Y2FguX76MQqGQBmna\ni8FWUg4fPozBYCAiIoLQ0FC7WQT161/I+vr68ssvv9DR0UFYWBhdXV2cPHmSixcvolKpCAoKkp4b\ne/GgRMr48ePx9PQkPz+f+Ph4NBoNNTU1GI1GZs6cKZ1NS0tL4/z580yaNAmNRjO0N/Jf6uvrY8uW\nLRQXF5Oamoq/vz8KhQK1Wk1hYaE0ZLm+vp7XXnsNrVaLn58f7733Hh0dHZw9e/a+7bn3srXfS19f\nH5999hkrVqxApVJhNptxd3dn1KhR1NTUMHfuXHbu3ElkZCS+vr4cOHCA27dvM3/+fGbPns20adNs\n7p7/3aFDhygsLJTaXiuVStra2jAajWi1Wo4fP45cLicoKAilUklOTg4xMTFSNdbDw4Mnnnjivm17\ntqZ/DRkeHs7atWuJjo7m999/Jy8vj7CwMGpra/noo48YOXIkGzdu5M6dO0RGRuLt7U11dTW3bt3i\n7bfftptz3rZMBEsDaGpqoqqqim3btt13iO7SpUucP3+eqqoq3njjDVJTU/nmm29QKBT4+vpy69Yt\nli1bZpPZgMbGRjIyMmhrayMqKgoPDw9Onz5NS0sLTz75JGVlZcycOZN169Yxa9Ysent7uXHjBo89\n9hgzZsxAr9fbVaAEf36ozWYzvb29zJkzh9bWVvbs2YPFYiE5OZn9+/dz4cIFurq6WLJkCd7e3tKh\nVFt90e/bt4/169cjl8vR6/XI5XIqKiqwWq3odDpqa2uZNm0a6enppKen4+npyblz5zh//jxKpRJ/\nf3+Ki4tJSkqSZkTYi8FWUvpnpNhadnww+rdJqdVqaf5LdHQ0VVVVtLe3k5aWRlxc3FBf5j9qoETK\nnDlzqKqqorOzk8cff5zGxkZMJhMajYbJkyfT0tLCli1bUCgUdpFBN5lMFBUVsWPHDoKDg9FqtYwb\nNw6ZTEZnZyerV68mJSWFNWvWMGbMGEpKSoiLi8NqtdLa2kpmZqZNJ5fupVAoqKysxMXFBZ1OJ81+\nCgwMZM+ePURGRhIREcHhw4el5lAGgwE/P7/7ZtLZsqamJjIyMqitrUWj0eDj44OPjw+NjY2YzWZ8\nfX1paGhAr9fj5eXFsWPH8PPzQ6PREBgYSHx8PMOGDbPZ7yf8uYb85JNPcHZ2xtPTk4kTJ2I0Gjl0\n6JAUFKenp+Pq6kpGRgZyuZz4+HimTp3K9OnTpa29wtASwdIAAgMDaW5uprGxkZiYGEwmk9TZSqVS\n4erqilqtRq1Ws2vXLoKDg5kyZQpxcXHSuQxbExISgrOzM9XV1ZhMJtRqNVFRUZSXlxMZGUlLSwtu\nbm5ER0ezadMmjh07xosvvshzzz1nF4MjB3Lq1Clqamqora3l1KlTLF++nJycHIYNG8b169fx9PRk\n/fr1eHt720V3twkTJtDd3U1JSQm9vb1MmjQJf39/8vPzSUhIoK6ujvDwcPr6+vj000/59ttvSUhI\nYOXKlYSEhPD9999z9epVEhMTbW5Q5N9x5ErKw8hkMkwmEyqVirNnz2KxWIiJiWHGjBnMnj3bbhaB\n9xookWK1Wpk3bx7FxcVs376d27dvs3LlSiZMmMDw4cOlgbMLFiyw+UAJ7rY0zsrKYsSIEfz666+U\nlpZSVFREQUEBS5YsobKyEr1eT0hICHv37uXMmTPS/KisrCx0Op1dnN+DP1viX7lyhdDQUFxcXLh+\n/TrDhw/n6tWrNDc3s3TpUqKjo/Hw8ODNN9984HZtWxYYGIibmxs9PT24uLiQmZnJ1KlT6enp4c6d\nO3h7e9PS0kJRURF1dXUYjUZSU1Nxd3e3m29F/xry3LlzxMbGSs2e3N3dqa+vZ+LEibS3t3Pw4EFq\namq4ePEiSUlJjB492q4Ta7ZIBEsDkMlkjB07ll27dnHp0iW+/vprtFotK1asQKfT0dvbS1ZWFgcO\nHGD8+PGkpKQM9SX/12QyGaNGjcJoNKJUKmlubqahoYHx48cTHh6OQqEgLy+PV199Fb1ez8svvyx1\nKbJ3/v7+bNq0iaioKDIyMggLC2PixImMHTuWZ555hszMTIKDg/Hz87OLF92wYcNQKpV0dHTg5ORE\nQ0MDTk5OqNVqKQNcVlbG2rVrAUhOTiYhIUGqLAYEBEjdjOzl43cvR6ykDKSjo4P333+f7777jvb2\ndlJSUvDy8rKL38LfeVAiJTs7G6vVisFgwGAwsHjxYtzd3aXmDUql0q4STE5OTnh5ebF3714qKirQ\naDRYrVa6u7upr69n5cqV5Ofns2fPHnp6eli2bBleXl6MHDkSlUrFuHHjGDVq1FDfxj9CJpPh5ubG\nmTNn6O7uJjw8XDrYX1xcTHx8PAEBATg7O9vdFuV+crkcd3d3fvrpJ5YvXw7c3ZZ24sQJnJ2d8fHx\nISUlBYvFwsiRI3nnnXdsNsn8MP1ryC+++IIpU6ZIz/f169cpLy9n+fLlUjt8Dw8P3n333ftmEwr/\nP2TW/je38FBbt24lPz+fI0eOSAfV+7uZtbe34+rqajcvebh7bwcPHsRoNDJ//nxWrFiB1Wpl69at\nqFQqSktLMRgMdpkpHkhfXx+bN28mOTmZiIiIv3S0O3r0KJMnT7ar4XA3b95k3759wN1K04YNGwgN\nDWXDhg1cu3aN7OxsXnrpJWnR9+9Dau2dyWTCx8eHTZs2ERISwgsvvCDNVXNEXV1dnDhxgsTERJse\nEzBYXV1dPPXUUyxYsIA1a9YA0NDQIB3i72eLXTAH68qVK3h7e2M2m6Xt688//zz79u3Dw8NDms8H\nttcGfLB++OEHsrKySExMRKfTkZOTQ19fH+vWrbObKtpArFYrX375JTdu3CAtLY3e3l4yMzMpLCwk\nLCyMLVu2OMR5nG3btnH58mU2b94M3N3GnZaWxocffmizDcAcjagsPYKQkBCOHz9OaGgovr6+0qwI\n4L52sfZCJpPh7e1NaWkper2e6dOn09jYKG2r0el0drFtZLDkcjmff/45cXFx+Pn5SR/5/g++RqOx\nu2fByckJDw8PSktLWbhwIaNHj6a0tBSFQsGMGTOYNm2atCCyh62Hg+HIlZSHcXFxITg42O7OLf4d\nhUJBZ2cnSUlJ+Pj4YLFY8PHxQa1W3/fvHOG34ebmJs3PAti1axcjRoxg1qxZKBQKqe2xIwSOWq0W\ntVpNe3s7paWlJCQksHr1aruroDxMf6vrI0eOMGbMGNRqNVOmTCEqKoqoqCgCAgKG+hL/J4KCgsjL\ny0On0wGwatUqtFotBoPBId4J9kBUlh5Rbm4u2dnZ5OfnD/Wl/M8UFRVRVVXFxo0buXr1ql1VTP5T\nXV1dDjfjwGq1kp2dzR9//MHrr7/Ozz//jK+vr1RNdYRFz8M4aiVFuJ/VamXRokWsWrVKGijrqMxm\nMxkZGXR1dWEymQgNDSUtLQ2VSjXUlzak7L2KNpDi4mKOHj3KBx98MNSXMmRyc3NJT08nLi6OuXPn\nMm/evKG+JGEQRLD0iG7evElBQQHz5893mOy52WympqaGxMREh7jfwXC0D19HRwe5ubksW7bsL5Uk\nQRAcM5HyMB0dHZw6dQp/f38iIyMBx06qODqxlri7hszLyyM1NVUk1myQCJYEQRAE4R8ikgh/JQIl\nQRBsmQiWBEF4ZGIhKAiCIAiCIxGpHkEQHpkIlARBEARBcCQiWBIEQRAEQRAEQXgAESwJgiAIgiAI\ngiA8gAiWBEEQBEEQBEEQHkAES4IgCIIgCIIgCA8ggiVBEARBEARBEIQHEMGSIAiCIAiCIAjCA/wL\nH6tpg5KZFC4AAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "symbol_list = [\"SPY\", \"AAPL\"]\n", "start = '2015-01-01'\n", "end = '2016-01-01'\n", "pricing_sample = get_pricing(symbol_list, start_date = start, end_date = end, fields='price')\n", "pricing_sample.columns = map(lambda x: x.symbol, pricing_sample.columns)\n", "returns_sample = pricing_sample.pct_change()[1:]\n", "returns_sample.plot()\n", "plt.ylabel('Returns');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "While these returns look to have the same mean, we still don't have enough evidence to say for sure. We use a hypothesis test to ground our suspicions in a statistical basis.\n", "\n", "When comparing two means, our hypothesis tests are stated as the following:\n", "\n", "1. $H_0: \\mu_1 - \\mu_2 = \\theta_0, \\ H_A: \\mu_1 - \\mu_2 \\neq \\theta_0$\n", "2. $H_0: \\mu_1 - \\mu_2 \\leq \\theta_0, \\ H_A: \\mu_1 - \\mu_2 > \\theta_0$\n", "3. $H_0: \\mu_1 - \\mu_2 \\geq \\theta_0, \\ H_A: \\mu_1 - \\mu_2 < \\theta_0$\n", "\n", "Where $\\mu_1, \\mu_2$ are the respective means of SPY and AAPL and $\\theta_0$ is the parameter we are testing. We will use the first hypothesis test to test the equality of the two returns. If we assume that the population variances are equal, our test statistic is calculated as:\n", "\n", "$$ t = \\frac{(\\bar{X}_1 - \\bar{X}_2) - (\\mu_1 - \\mu_2)}{(\\frac{s_p^2}{n_1} + \\frac{s_p^2}{n_2})^{1/2}} = \\frac{\\bar{X}_1 - \\bar{X}_2}{(\\frac{s_p^2}{n_1} + \\frac{s_p^2}{n_2})^{1/2}}$$\n", "\n", "With $s_p^2 = \\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2)}{n_1 + n_2 - 2}$ as the estimator of the common variance, known as the pooled variance, and $n_1 + n_2 - 2$ as the number of degrees of freedom ($n_1 - 1$ and $n_2 - 1$ for each dataset). A typical $t$-test on a mean assumes that all variances involved are equal with underlying normal distributions. If we are assuming that the variances are not equal, we have to calculate our test statistic differently. Our test statistic in this case is:\n", "\n", "$$ t = \\frac{(\\bar{X}_1 - \\bar{X}_2) - (\\mu_1 - \\mu_2)}{(\\frac{s_1^2}{n_1} + \\frac{s_2^2}{n_2})^{1/2}} = \\frac{\\bar{X}_1 - \\bar{X}_2}{(\\frac{s_1^2}{n_1} + \\frac{s_2^2}{n_2})^{1/2}}$$\n", "\n", "Where the number of degrees of freedom used to find the critical statistic is the modified degrees of freedom, the number of values that are free to vary, $df = \\frac{(\\frac{s_1^2}{n_1} + \\frac{s_2^2}{n_2})^2}{\\frac{(s_1^2/n_1)^2}{n_1} + \\frac{(s_2^2/n_2)^2}{n_2}}$. This preserves the underlying normality of the data being tested while accounting for differing variances. Calculating the statistic this way removes a lot of problems that can occur if we have unequal variances, especially if the sample sizes of the underlying data differ as well. This specific case of a $t$-test is referred to as [\"Welch's unequal variances $t$-test\"](https://en.wikipedia.org/wiki/Welch%27s_t-test).\n", "\n", "For this example, we are assuming that the variances of SPY and AAPL returns are different. We think that AAPL will be riskier than SPY so we will use the second formulation of the test statistic. Let's say that $\\alpha = 0.05$ so we are computing a $95\\%$ hypothesis test." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "t test statistic: 0.023740009212\n", "Degrees of freedom (modified): 405.251211662\n" ] } ], "source": [ "# Sample mean values\n", "mu_spy, mu_aapl = returns_sample.mean()\n", "s_spy, s_aapl = returns_sample.std()\n", "n_spy = len(returns_sample['SPY'])\n", "n_aapl = len(returns_sample['AAPL'])\n", "\n", "test_statistic = ((mu_spy - mu_aapl) - 0)/((s_spy**2/n_spy) + (s_aapl**2/n_aapl))**0.5\n", "df = ((s_spy**2/n_spy) + (s_aapl**2/n_aapl))**2/(((s_spy**2 / n_spy)**2 /n_spy)+((s_aapl**2 / n_aapl)**2/n_aapl))\n", "\n", "print 't test statistic: ', test_statistic\n", "print 'Degrees of freedom (modified): ', df" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Looking at a [t-table](https://en.wikipedia.org/wiki/Student%27s_t-distribution#Table_of_selected_values), we determine that the critical values for our two-sided hypothesis test are $-1.96$ and $1.96$. Our test statistic is between these values so we **fail to reject** the null hypothesis and determine that the difference between SPY and AAPL returns is **not** significantly different from $0$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Hypothesis Testing on Variances\n", "\n", "If we want to test the variances of populations, we need to use a different distribution from the $t$ and $z$ distributions. Variances must by definition by greater than (or equal to) $0$ and fact that the distributions we have worked with up until now allow negative values makes them unviable as testing distributions. Risk is quantified in terms of standard deviations and variances so this method of hypothesis testing is a handy addition to our financial toolbox.\n", "\n", "Instead of $t$ and $z$-distributions, we will be working with $\\chi^2$ distributions for single variance tests and $F$ distributions for comparisons of variance. These distributions are bounded below by $0$, making them viable for testing in this manner.\n", "\n", "Just like with all of our other hypothesis tests, tests of a single variance can take on three forms:\n", "\n", "1. $H_0: \\sigma^2 = \\sigma_0^2, \\ H_A: \\sigma^2 \\neq \\sigma_0^2$\n", "2. $H_0: \\sigma^2 \\leq \\sigma_0^2, \\ H_A: \\sigma^2 > \\sigma_0^2$\n", "3. $H_0: \\sigma^2 \\geq \\sigma_0^2, \\ H_A: \\sigma^2 < \\sigma_0^2$\n", "\n", "The $\\chi^2$ distribution is a family of functions with each different formulation determined by the number of degrees of freedom. The shape of the distribution is different for every different value of the number of degrees of freedom, $k$." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from scipy.stats import chi2" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false, "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0IAAAH6CAYAAAAqWPxFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xlc1XW+x/H3j4OssiqggpqJS1ouaZppiYYbNx1tcymt\nxrGxmTKTKc3cJjHFKVv0OjW30W5lWeZl1FRcKrNSSymtTE3NXMMFlH0ROPcP5CSCLHqOPzjn9fwL\n+J3z+33gS494+/kuhtVqtQoAAAAAXIib2QUAAAAAwLVGEAIAAADgcghCAAAAAFwOQQgAAACAyyEI\nAQAAAHA5BCEAAAAALocgBKDWWrx4sQYOHKgBAwaob9++ev7555WZmSlJWrBggaZOnVru+x555BHt\n2bOn3GtfffWVhg0bppiYGPXr109//OMfdfDgQYd9D/awcuVKjRw5UpI0ceJEbdq0qcLXr1mzRllZ\nWeVemzdvnj744ANJUuvWrXXy5Mlq1XLo0CHt2LFDkrRx40Y999xz1Xr/1bj4eRfX8c0336hv376V\nvr+qr7tU3759tX379mq/ryY5evSo+vbtqyFDhpS59sknn6hHjx76+9//7pBnnzx5Uq1bt3bIvQGg\nIu5mFwAAV+If//iHduzYoUWLFikkJES5ubmKi4vT2LFj9e6771b43sWLF5f79YyMDI0fP17vvPOO\n7Q+zxYsXa9y4cVq9erXdv4eLWa1WGYZxxe8veW98fHylr50/f746deokX1/fMjVMmDChzD2rY8OG\nDSosLFTnzp0VHR2t6Ojoat/jSl38vIvrkKr+vVzNGNRmSUlJCg0NLfe/nU8//VT333+/xo0bV+rr\nV/s7ezFX/bkDMBdBCECtk5aWpnfffVcrVqxQSEiIJMnLy0vTpk3Tli1bVHJOdFZWlp544gn99NNP\nCg0N1fz581W/fn317t1bL774om6++eZS9/3111/l5uamVq1a2b720EMP6Q9/+IMkKS8vT88884x+\n+OEHhYeHq3Xr1srMzNTs2bPL3PPiz5ctW6ZFixapqKhIoaGhmjt3rho2bKiEhAR99tlnysjI0A03\n3KBnnnlGH3zwgd566y3l5+erQ4cOmj17tjw8PErVabVaNXPmTH322WcKDQ21/bEvSSNHjtT999+v\ngQMH6uWXX9a6deskSQ0aNNDcuXP1yiuv6NChQxo1apRmz56tZcuWKTAwUFu2bNHYsWO1efNmNW3a\nVGPHjpXVatXKlSu1cuVKZWVl6U9/+pNGjBihhIQErVy50hYoSz4fNWqU/vWvf8nDw0Pp6elq2bKl\n7XVpaWmaPn269u7dK3d3d/3hD3/QmDFjJBV3nuLj4/XWW2/p9OnT+tOf/qSHH3641Pf8zDPPqEuX\nLrr33nuVkpKi7t27a/HixerWrZt++uknTZo0SY888ki5dfTq1UtWq1Uvv/yy1q9fr6KiIs2aNavU\nz+1SBQUF+uMf/6jevXuXqWX37t2aOHGiCgoK1KtXr1J/xG/cuFGvvvqqcnNz1aRJE7300ksKDAxU\nWlqaxo0bp6NHj6pdu3by8/NTWFiYHn/8cfXu3Vv33XefVqxYoUWLFslisWj69Ok6dOiQDMPQ5MmT\ndccdd1R4//3792vq1KnKzMxUQUGBRo4cqQceeKDM97V27VotXLhQhYWFCg0N1cyZM5WSkqIXX3xR\nWVlZGjx4sP7zn//YXv/2229r3bp18vDw0JkzZ9SxY8cq/85mZGRo5syZ2rVrl4qKivTYY4/p7rvv\nliR99NFHWrhwofz8/DRw4MBSv9uvvPKK1q9fL8Mw1L59e02fPl1eXl4aOXKkbr/9dn366ac6cuSI\n/vrXvyojI0MrVqyQxWLRG2+8ofDw8MuOKQBciqlxAGqdnTt3qkGDBrruuutKfd3Dw0NRUVG2P0y3\nbdum5557Tp988okCAgL00UcfVXjfFi1ayNfXVw8++KA+/vhjnT59Wm5ubgoODpZU/MdbSkqKPvnk\nE7322mv65JNPKq01JSVFzz//vBYvXqx169apcePGWrhwoe36V199peeff17PPPOMduzYofnz5+ud\nd97RJ598Ij8/P7388stl7rl582Zt2bJFa9eu1TvvvFPutKwDBw4oMTFRa9asUWJiomJiYrR161a9\n8MILkqR33nnHFtq2bt2qjz76SAMGDChzn5MnT2rVqlV68803FR8fr7Nnz0oq+y/4hmGoV69e6tOn\nj0aNGqWJEyeWet1LL72kgIAAJSYmasmSJXr//ff17bff2t5/8OBBJSQk6J///KdefvllW5gt0bVr\nV+3cuVOStH37dnXo0EFJSUmSpB07dui2226rsI4TJ06oQ4cOWrt2rYYOHVpqDMozc+ZMNWvWrEwI\nkqQZM2booYceUmJiotq3b69jx45JKp5eNnHiRL3yyivasGGDunbtqmnTpkmSXn/9ddWrV0+ffvqp\nxowZo48//rjUPZOTk5WYmKhGjRpp4sSJatu2rdatW6f/+Z//0dNPP620tLQK779gwQINGzZMH3/8\nsZYtW6ZvvvlG58+fL/WM3377TdOmTdPChQu1Zs0a9ezZU9OmTVOHDh0UGxurjh07lgpBkjRq1Cjb\nz/L555+XVPnv7CuvvCJJmj17tiwWi9atW6cPP/xQ8+fP14EDB5Senq5Zs2bp3//+t1asWKHk5GTb\n89asWaMvvvhC//nPf7R69Wqlp6frrbfesl1PSkrSe++9pxdeeEEvvviiGjZsqLVr1+r666/X8uXL\nKxxTALgUQQhArZOWlqb69etX+rquXbuqQYMGkqQbbrhBv/32W4Wv9/Ly0gcffKB27dpp/vz5uuOO\nOzR06FBb0EhKSlLfvn1lGIaCgoLUs2fPSmuoV6+eduzYYaujc+fOOnr0qO1606ZN1bhxY0nSZ599\npgEDBti+t6FDh2rDhg1l7rljxw5FRUXJy8tLHh4e5QYYPz8/nTt3TitWrFB6erruv/9+W2dLUqmg\n0a1bN9WpU6fc+gcPHixJuv7669W8eXPt3r270u+5PJs3b9aIESMkSQEBAerTp4+++uor2/WS2tq2\nbav8/HylpKSUev/FQWjHjh0aPny4vvvuO0nF49KtW7cKnx8QEKBevXpJqvh3wWq16v3339exY8c0\nffr0Mtfz8/P1ww8/2H7m/fv3l5eXlyTpiy++UNeuXdW8eXNJxeP36aefymq1KikpSf/1X/9l+x7b\ntWtX6r5RUVGSpJycHH399dd66KGHJEmNGzdW586dtWnTpgrvX69ePa1fv14//fST/Pz89Oqrr5YZ\n06+++kq33nqr7fftvvvu0zfffKOioqIKf3aXqurv7KZNmzRq1ChJUlBQkPr06aP169dr165datas\nmZo1ayZJpdYlff755xoyZIg8PT1lGIbuvvvuUr8nvXr1kpubm1q2bKnc3Fz169dPktSyZUudOnWq\nWt8HADA1DkCtExQUVKVF/HXr1rV9bLFYyvzBt2TJEr377rsyDEMTJkxQdHS0QkJCNHHiRE2cOFEn\nTpzQu+++q0cffVSbNm1SWlqa/P39be+vV6+ejh8/XmENRUVFmj9/vj777DMVFRUpMzPT9gegJAUG\nBto+zsjI0IYNG2x/+BUWFqqwsLDMPdPS0hQaGmr7/OKaSoSFhWn+/Pn697//rZkzZ6pLly76+9//\nrrCwsDKvDQgIuGz9QUFBto99fX2Vnp5e4fd7OampqaWe4+/vr9OnT9s+LxkrNzc3Wa3WMt93RESE\ncnNzlZGRoe+++06xsbF68803VVRUpF27dmn27Nm2aYDlqex3ocTp06c1b9489e7dW25uZf+t8Ny5\nczIMo9T9Sn7+GRkZ2r59u2JiYiQVh6qAgACdPXtWaWlppb7/S8eh5FpGRoasVquGDRtmu0dOTo66\ndeumrKysy97/6aef1uuvv67x48crPz9fjz76qC14lkhNTS31u1K3bl1ZrVZbl6+qKvudLSgokCSl\np6dr/PjxslgsslqtysvLU//+/ZWWllbuz6+8GgMCAkqF4pJ1bRaLRZJsIdRisZT73woAVIQgBKDW\n6dChg1JSUrRnzx7dcMMNtq8XFBRo/vz5+stf/lKl+zzwwAOl1lEcPnxY2dnZtns2atRIzzzzjJYv\nX65jx47Jz89PGRkZttenpqbaPr70j+uSwLBmzRpt2rRJ7733ngICArRs2TKtWrWq3HpCQ0M1ZMgQ\nPfPMMxXW7e/vb9sd79I6LtalSxd16dJFubm5mjNnjl588UX94x//qPDel0pLS7Otu0hPT1dAQIDO\nnDlT6o/OtLS0Su9Tv359nTt3ztYZO3fuXJW6ehfr0qWLvvjiCxmGIW9vb7Vs2VLr169Xw4YN5ePj\nU617XY6Xl5cSEhI0atQobdy4scxmDyWBJTMz0xYkzp07J6l4/G677Ta9+uqrZe5bt25dZWdn2z4/\nffq0mjRpUuZ19erVk7u7u/7v//7P9kd+iYSEhMveX5KeeuopPfXUU/rxxx81evRode/eXU2bNrVd\nr1+/vq2rJhWPm5ubW6mwW10V/c6GhYXpv//7vxUZGVnq65s3b77s72/J70mJc+fOqV69eldcHwBU\nhKlxAGodPz8/jR49Ws8884yOHDkiqXhK0dSpU7V37155enpe0X13796tJ554wnZPqXh6T506ddS8\neXN16NBBGzdulNVqVWpqaqk1QiEhIdq7d6+k4vCTn58vqXiNUHh4uO1f7teuXVvqD+KL9e7dWxs2\nbLD9Ybhx40a9+eabZV7XoUMHffnll8rNzVVOTk65nZCSdRxWq1VeXl5q3bq1bb2Ou7t7qUBXkZLQ\ndvDgQR05ckQ33XSTQkNDdejQIeXn55d5vru7e7ldo6ioKNu23KmpqdqwYYNtOlhVdenSRf/7v/+r\nDh06SJLat2+vt956q9xpcZerozL+/v5q0KCBXnjhBc2YMaNMt8TT01OtW7fWxo0bJUkff/yxbS1O\njx49lJSUZJv6+P3332vWrFmSpHbt2ikxMVGStGfPHn3//fflPt9isahnz5567733JBX/Xk+ePFkn\nT54s9/4la77Gjh2rAwcOSJIiIyPl7+9fZh1X9+7dlZSUZFvTtHTpUnXv3r3czldVVfQ727t3b73/\n/vuSiv+RYvbs2dqzZ49uvPFGHTp0yPbf2cXrkqKiorRy5Url5uaqoKBAH330kW1K46UuXUcGANVF\nRwhArfT4448rMDBQjz32mIqKiuTm5qY777yzSmedXG6r3piYGNtOc/n5+SosLFSTJk305ptvysvL\nS/fdd5+2b9+uO++8U40aNVKvXr2Ul5cnSfrLX/6iadOm6YMPPlC/fv1s/wp+1113afXq1erXr58i\nIiI0fvx4/eUvf9HcuXPVokWLUs9v06aN/vznP2vUqFGyWq0KDg62LVC/WO/evbV582b1799fISEh\nioqK0jfffFPqe7vlllv08ccfq1+/fvL09FRwcLDtj/L+/ftr2LBhiouLq/TnFBERocGDBys9PV1T\np06Vv7+/unbtqvbt26t///4KDw9XdHS0bWpUr1699Le//U3Hjx8v9Qfs+PHjNWPGDA0YMEAWi0V/\n/vOfdeONN5Y7Hpcbn1tvvVXPPvusbf1Mx44dNXv2bMXGxpZ57cV1lLd7WmU6d+6sgQMHasaMGWU6\nMNOnT9fkyZP1+uuvKyoqyrZmJyQkRDNnztTjjz+ugoIC+fr6avLkyZKKg8r48ePVr18/dejQQdHR\n0bbv89Lvd/r06Zo2bZqWLVsmwzA0aNAg21S6y91/5MiRio2NtU1Le+CBB8p0nMLCwhQXF6fHHntM\nhYWFioiI0MyZM6v9s7lYRb+zTz75pJ5//nn1799fhmGoR48eatWqldzc3DRx4kQ9/PDD8vX11dCh\nQ23369+/v37++Wfb7nJdu3bVgw8+WO7PiS23AVwtw+rgf1LZu3evnnjiCT388MOX/Z/RSy+9pJ07\nd+qdd95xZCkAYFf//Oc/deTIEc2ePdvsUlDLPPnkk+rcubPtIFwAwLXn0KlxOTk5io+PV/fu3S/7\nmoMHD2rHjh38yw4AwGktWbLEdjZTSkqKvvnmG9sUPwCAORwahDw9PfXGG29UuCA2Pj6+3GkNAAA4\ni5Itofv27asRI0Zo9OjRuummm8wuCwBcmkPXCLm5uZU5Ef1iCQkJ6tatmxo2bOjIMgDAIR577DGz\nS0At4ePjc9nd3gAA5jBts4S0tDStWLFCixYt0okTJ6q0+0vJKeIAAAAAcDmdOnWq9DWmBaFt27Yp\nJSVFI0aMUF5eno4ePao5c+Zo0qRJFb6vKt8UHCspKYlxqAEYB/MxBjUD42A+xqBmYBxqBsbBfFVt\nnpgWhPr166d+/fpJko4fP65nn3220hAEAAAAAPbg0CC0a9cuTZkyRampqbJYLFq6dKnuueceRURE\nlDmtGwAAAACuFYcGofbt29tOJa9IeHi43n77bUeWAgAAALgEq9VqO/Db2Xl6el7xMTwO3T4bAAAA\nwLWVl5fnEkHoar9P09YIAQAAAHAMT09PeXl5mV1GjUZHCAAAAIDLIQgBAAAAcDkEIQAAAAAuhyAE\nAAAAwK4SEhIUHx9/VffIz8/XxIkTde+999qpqtIIQgAAAADs7kq3tS4xd+5ctWvXzk7VlMWucQAA\nAAAcZt68efLx8dHYsWNtX4uLi9O+fftkGIasVqsMw9CCBQvk7+9ve01sbKxSU1OVkJDgkLoIQgAA\nAIATW7Rqt77addyu9+zePlx/HNi20tclJiYqOTlZc+fOLfX1KVOmVPpeb2/vK66vKghCAAAAAOxu\n//792rBhg1avXm12KeUiCAEAAABO7I8D21ape2Nvx48fV2RkpBITEzVo0KBS16oyNc7RnCYI/efz\ngzpxOlN/ube92aUAAAAALi8qKkpjxozR8OHD1aNHDwUHB9uuVWVqnCRZrVZZrVaH1Oc0u8Zt+/E3\nJW771WE/KAAAAADVExQUpHHjxmnGjBnVfu8jjzyiMWPG6ODBgxo4cKCWL19u19qcpiPk7ekuq1XK\nySuQj1cds8sBAAAAXNaQIUNsH8fExCgmJqba91i8eLE9SyrDaTpCvhfCT3ZugcmVAAAAAKjpnCYI\n+XgVN7eyc8+bXAkAAACAms4JgxAdIQAAAAAVc6IgVDw1LouOEAAAAIBKOE0Q8qUjBAAAAKCKnCYI\n+XiXbJZARwgAAABAxZwnCHkWd4SycugIAQAAAGZKSEhQfHz8Vd1j27ZtGjp0qEaMGKHnnnvOTpX9\nznmCUElHKI+OEAAAAGA2wzCu6v3Tp0/Xa6+9pvfee0+ZmZnavHmznSor5jQHqnKOEAAAAFDzzJs3\nTz4+Pho7dqzta3Fxcdq3b58Mw5DVapVhGFqwYIH8/f1tr1m+fLnq1q0rSQoODta5c+fsWpfTBKGS\n7bOzcugIAQAAACXe2blc245+a9d73tr4Zo3scE+lr0tMTFRycrLmzp1b6utTpkyp9L0lIejUqVPa\nsmWLxo8ff2XFXoYTBaHijlBOHh0hAAAAwGz79+/Xhg0btHr16iu+R0pKih577DHNmDFDAQEBdqzO\nqYIQHSEAAADgUiM73FOl7o29HT9+XJGRkUpMTNSgQYNKXavK1LjMzEyNGTNGsbGx6tatm93rc5og\n5G5xk0cdi7LpCAEAAACmi4qK0pgxYzR8+HD16NFDwcHBtmtVmRo3Z84cPfLII+revbtD6nOaXeOk\n4kNVs+kIAQAAADVCUFCQxo0bpxkzZlTrfbm5uVq5cqWWLVumkSNHatSoUVq2bJlda3OajpBUvE6I\nqXEAAACAuYYMGWL7OCYmRjExMdV6v5eXl77//nt7l1WKU3WEfLzclZ1LEAIAAABQMacKQr5edZRf\nUKTzBUVmlwIAAACgBnOqIOR9Yec4ukIAAAAAKuJUQcj3wllC2bnsHAcAAADg8pwqCPl4XzhLiI4Q\nAAAAgAo4VxDyLOkIEYQAAAAAXJ5TbZ/t612yRoipcQAAAIBZEhIS9PPPP2vixIlXfI8PP/xQy5cv\nl8ViUevWrTVt2jQ7VuhsHSEvOkIAAABATWAYxhW/Nzc3V2vXrtX777+v9957TwcPHtTOnTvtWJ2T\ndYR8Luwal5VDRwgAAACoCebNmycfHx+NHTvW9rW4uDjt27dPhmHIarXKMAwtWLBA/v7+kooPVF28\neLEkKScnR5mZmapfv75d63KyIHShI5RHRwgAAACQpEOL/1cpW7ba9Z71buumZo88VOnrEhMTlZyc\nrLlz55b6+pQpU6r0nH/9619655139NBDDykiIuKKar0cp5oa51tyjhAdIQAAAMBU+/fv10svvaS4\nuLgrvsejjz6qTz75RJs3b9Z3331nx+qctCPE9tkAAABAsWaPPFSl7o29HT9+XJGRkUpMTNSgQYNK\nXatsaty5c+f0888/q0uXLvLw8NAdd9yhb7/9Vh07drRbfU4WhIq/nRx2jQMAAABMFRUVpTFjxmj4\n8OHq0aOHgoODbdcqmxpXWFioyZMna9WqVfL29tb333+vwYMH27U+J5saR0cIAAAAqCmCgoI0btw4\nzZgxo1rvq1evnh5//HGNHDlSw4YNU3BwsHr37m3X2pyqI+TpYZGbm8E5QgAAAICJhgwZYvs4JiZG\nMTEx1b7H4MGD7d4FuphTdYQMw5CPpzvnCAEAAACokFMFIUny8a6jLDpCAAAAACrgfEHI0105dIQA\nAAAAVMDpgpCvdx1l5xWoqMhqdikAAAAAaiinC0Lenu6yWqXcfKbHAQAAACif0wWhki202TkOAAAA\nwOU4XRDy8S7eEZyzhAAAAABzJCQkKD4+3i73eumllzRy5Ei73OtizheEPIuDUHYOHSEAAADALIZh\nXPU9Dh48qB07dtjlXpdyqgNVpeLNEiQpO4+OEAAAAGC2efPmycfHR2PHjrV9LS4uTvv27ZNhGLJa\nrTIMQwsWLJC/v3+p98bHxys2Nlavvfaa3etyuiDkU7JGiI4QAAAAoA2rftJPu07Y9Z5t2jdSn4Ft\nKn1dYmKikpOTNXfu3FJfnzJlSqXvTUhIULdu3dSwYcMrrrMiThiEWCMEAAAAmG3//v3asGGDVq9e\nXe33pqWlacWKFVq0aJFOnDghq9X+R+M4PAjt3btXTzzxhB5++GE98MADpa5t27ZNL7/8siwWi5o1\na6ZZs2Zd9fPYNQ4AAAD4XZ+BbarUvbG348ePKzIyUomJiRo0aFCpa5VNjdu2bZtSUlI0YsQI5eXl\n6ejRo5ozZ44mTZpkt/ocGoRycnIUHx+v7t27l3t9+vTpevvttxUWFqYnn3xSmzdv1h133HFVzyzp\nCGXTEQIAAABMExUVpTFjxmj48OHq0aOHgoODbdcqmxrXr18/9evXT1JxoHr22WftGoIkB+8a5+np\nqTfeeEP169cv9/ry5csVFhYmSQoODta5c+eu+pkla4SYGgcAAACYKygoSOPGjdOMGTPMLqUMh3aE\n3Nzc5OHhcdnrdevWlSSdOnVKW7Zs0fjx46/6mb93hJgaBwAAAJhhyJAhto9jYmIUExNzxfcKDw/X\n22+/bY+ySjF9s4SUlBQ99thjmjFjhgICAip9fVJSUoXXs/OKJEknkk9X+lpcOX62NQPjYD7GoGZg\nHMzHGNQMjEPNUBPGoW3btmaXcE3s3r37it9rahDKzMzUmDFjFBsbq27dulXpPZ06darwekFhkbT8\nhDy86lb6WlyZpKQkfrY1AONgPsagZmAczMcY1AyMQ81QE8YhNzfX1OdfS23btpWXl1epr1U1iDp0\njVBl5syZo0ceeeSymylcCXeLmzw9LGyWAAAAAOCyHNoR2rVrl6ZMmaLU1FRZLBYtXbpU99xzjyIi\nItSjRw+tXLlSR44c0YcffijDMDRw4EDdd999V/1cH093ZbFGCAAAAMBlODQItW/fXqtWrbrs9e+/\n/94hz/XxqqPMnHyH3BsAAABA7Wfq1DhH8fV2Z9c4AAAAAJfllEHIx7OOzhcU6XxBodmlAAAAAC4n\nISFB8fHxV3WP5ORkjRgxQvfff79DziFyziDkXTzjLyuHrhAAAABgBsMwrur9c+bM0ejRo/Xhhx/K\nYrEoOTnZTpUVM/0cIUfw9aojScrOO69AP0+TqwEAAABc17x58+Tj46OxY8favhYXF6d9+/bJMAxZ\nrVYZhqEFCxbI399fkmS1WpWUlKSXX35ZkjR16lS71+WUQcjbq/jbyqYjBAAAABd3bN/HOnvSvpuU\nBYW1U0Sruyp9XWJiopKTkzV37txSX58yZUqF70tNTZWPj49mzZqln376SZ07d9aECROuquZLOWUQ\nurgjBAAAAODa279/vzZs2KDVq1dX+71Wq1WnTp3Sww8/rEaNGunRRx/V559/rp49e9qtPqcMQj4X\nghBrhAAAAODqIlrdVaXujb0dP35ckZGRSkxM1KBBg0pdq2xqXFBQkMLDwxURESFJ6tatmw4cOEAQ\nqoxPydS4XDpCAAAAgBmioqI0ZswYDR8+XD169FBwcLDtWmVT4ywWiyIiInTkyBE1adJEu3fv1l13\n2TfMOeWucbapcZwlBAAAAJgmKChI48aNu6LtrydPnqxJkyZp+PDh8vPzU+/eve1aGx0hAAAAAHY1\nZMgQ28cxMTGKiYmp9j2aNGmi9957z55lleKUHaGSIJRFRwgAAABAOZw0CJVMjaMjBAAAAKAsJw1C\nJVPj6AgBAAAAKMspg1DJZglZdIQAAAAAlMMpg5Cnh0VuboZy6AgBAAAAKIdTBiHDMOTj6U5HCAAA\nAEC5nDIISZKPdx1l5xCEAAAAgGstISFB8fHxV3WPjRs36t5779UDDzygJUuW2Kmy3zltEPL1cld2\nHlPjAAAAADMYhnHF77VarYqLi9Obb76pd999V59++qlOnjxpx+qc9EBVqXgL7Zy8AhUVWeXmduWD\nAAAAAODKzZs3Tz4+Pho7dqzta3Fxcdq3b58Mw5DVapVhGFqwYIH8/f0lSWfPnpW/v78CAwMlSV26\ndNHWrVs1ePBgu9XlxEHIXVarlJNXIF/vOmaXAwAAAJhi2Z5jSko+Z9d7dmoQqPtuiKj0dYmJiUpO\nTtbcuXMzYxpzAAAgAElEQVRLfX3KlCkVvi84OFhZWVk6cuSIGjZsqB07dqhr165XVfOlnDYI+doO\nVSUIAQAAANfa/v37tWHDBq1evfqK3j9r1ixNnDhR9evXV0hIiKxWq13rc9og5G07VPW8JG9ziwEA\nAABMct8NEVXq3tjb8ePHFRkZqcTERA0aNKjUtcqmxknSrbfeqltvvVWSNHXqVIWHh9u1PqcNQhyq\nCgAAAJgnKipKY8aM0fDhw9WjRw8FBwfbrlU2NU6SxowZo7lz58rNzU1bt25VbGysXetz2l3jfGwd\nIXaOAwAAAMwQFBSkcePGacaMGdV+79ChQzV69GiNGjVKTz31lG3jBHtx2o6Qj22NEB0hAAAA4Foa\nMmSI7eOYmBjFxMRU+x7R0dGKjo62Z1mlOG1HyJeOEAAAAIDLcNogREcIAAAAwOU4cRAq7ghl0REC\nAAAAcAmnXSNUcnYQHSEAAAC4mry8PLNLcLi8vDx5enpe8fudNgh5e7JGCAAAAK7nasJBbeLp6UkQ\nKk9JRygrh44QAAAAXIdhGPLy8jK7jBrPedcIXegI5eTREQIAAABQmtMGIYvFTZ4eFmWxRggAAADA\nJZw2CEnFZwll59ARAgAAAFCaUwchH686ys6jIwQAAACgNCcPQu7KoiMEAAAA4BJOHoTqqKCwSPnn\nC80uBQAAAEAN4tRByNer5FBVukIAAAAAfufUQcjHq+RQVdYJAQAAAPidkwehC4eqEoQAAAAAXMSp\ng5CvrSPE1DgAAAAAv3PqIORtWyNERwgAAADA75w6CJV0hNhCGwAAAMDFnDoIlawR4lBVAAAAABdz\n8iDEGiEAAAAAZTl1EPL15hwhAAAAAGU5dRDy9uQcIQAAAABlOXUQKukIZeUQhAAAAAD8zqmDkG2N\nUB5T4wAAAAD8zqmDkGcdi9zcDGXTEQIAAABwEacOQoZhyNfLXVlslgAAAADgIk4dhKTis4Ry2CwB\nAAAAwEVcIAjREQIAAABQmgsEoTrKyStQYZHV7FIAAAAA1BBOH4R8vYq30M5l5zgAAAAAFzg8CO3d\nu1d9+vTRkiVLylzbsmWL7rvvPg0bNkwLFy50yPNLttDOYp0QAAAAgAscGoRycnIUHx+v7t27l3t9\n1qxZWrBggd5//3199dVXOnjwoN1rsJ0lxDohAAAAABc4NAh5enrqjTfeUP369ctcO3r0qAIDAxUW\nFibDMNSzZ09t27bN7jX4XJgal01HCAAAAMAFDg1Cbm5u8vDwKPfamTNnFBwcbPs8ODhYp06dsnsN\ndIQAAAAAXMrd7AJKWK1V29UtKSmpWvdNOZ0pSfrxp59lZB+rdl0oX3XHAY7BOJiPMagZGAfzMQY1\nA+NQMzAOtYNpQSg0NFSnT5+2fX7y5EmFhoZW+r5OnTpV6zkZOqrV279VWKPG6tTpuuqWiXIkJSVV\nexxgf4yD+RiDmoFxMB9jUDMwDjUD42C+qgZR07bPDg8PV1ZWlk6cOKGCggJt2rRJPXr0sPtzfLwv\nrBHKYY0QAAAAgGIO7Qjt2rVLU6ZMUWpqqiwWi5YuXap77rlHERERio6O1vTp0zVhwgRJ0l133aWm\nTZvavYaSc4TYPhsAAABACYcGofbt22vVqlWXvd65c2ctXbrUkSXYNkvIYbMEAAAAABeYNjXuWvGh\nIwQAAADgEk4fhHzZPhsAAADAJZw+CHl7EoQAAAAAlOb0QchicZOXh4WpcQAAAABsnD4IScXrhNgs\nAQAAAEAJFwlC7nSEAAAAANi4RBDy9aqj7NzzslqtZpcCAAAAoAZwiSDk7eWugkKrzhcUmV0KAAAA\ngBrAJYKQL2cJAQAAALiISwQhH84SAgAAAHARFwlCxR2hbDpCAAAAAOQiQci3pCOUQ0cIAAAAgIsE\nIR9v1ggBAAAA+J1rBCFP1ggBAAAA+J1rBCFv1ggBAAAA+J1LBKGSNUJZdIQAAAAAyEWCELvGAQAA\nALiYiwQh1ggBAAAA+J1LBCFfL3aNAwAAAPA7lwhC3hc6Qjl0hAAAAADIRYKQZx2LLG4GHSEAAAAA\nklwkCBmGIR+vOmyWAAAAAECSiwQhSQr081Rqep7ZZQAAAACoAVwmCIUF+ygr57wyc+gKAQAAAK7O\nZYJQaJC3JOn02WyTKwEAAABgNpcJQmHBPpKkk6kEIQAAAMDVuUwQCr0QhE4RhAAAAACX5zpBKOhC\nR4ipcQAAAIDLc5kgFEZHCAAAAMAFLhOE/H095Olh0anUHLNLAQAAAGAylwlChmEoNMiHqXEAAAAA\nXCcISZwlBAAAAKCYSwWhkrOEWCcEAAAAuDaXCkKcJQQAAABAcrkg5CtJOsU6IQAAAMCluVQQCg1m\nahwAAAAAVwtCQUyNAwAAAOBiQcjf10NeHhamxgEAAAAuzqWCkGEYCg32YWocAAAA4OJcKghJxdPj\nsnILOEsIAAAAcGEuF4RKttCmKwQAAAC4LpcLQmyYAAAAAMDlgpCtI8SGCQAAAIDLcrkgxFlCAAAA\nAFwvCDE1DgAAAHB5LheESs4SIggBAAAArsvlgpDtLKGz2bJarWaXAwAAAMAELheEpOLpcdm5Bcri\nLCEAAADAJblkEGoQzDohAAAAwJW5ZBAKZQttAAAAwKW5dBA6mZpjciUAAAAAzOCSQSgsiI4QAAAA\n4MpcMgjZpsaxRggAAABwSS4ZhPx86sjbk7OEAAAAAFflkkHIMAyFBnGWEAAAAOCq3B39gNmzZ2vX\nrl0yDEOTJ0/WTTfdZLu2ZMkSrVq1ShaLRTfeeKOeffZZR5djExrso8PJGcrKOa+6Ph7X7LkAAAAA\nzOfQjtD27dt1+PBhLV26VHFxcZo1a5btWmZmpv7973/r/fff15IlS3TgwAF9//33jiynlJINE5ge\nBwAAALgehwahrVu3Kjo6WpLUvHlzpaenKysrS5Lk4eEhT09PZWZmqqCgQLm5uQoICHBkOaVwlhAA\nAADguhwahM6cOaPg4GDb50FBQTpz5oyk4iD0xBNPKDo6WnfeeaduvvlmNW3a1JHllMJZQgAAAIDr\ncvgaoYtdvDFBZmamFi5cqPXr18vX11cPPfSQfv75Z7Vs2bLCeyQlJdmlltTUfEnSj3t/VeO65+xy\nT1dir3HA1WEczMcY1AyMg/kYg5qBcagZGIfawaFBKDQ01NYBkqRTp04pJCREkvTLL7+ocePGtulw\nnTp10o8//lhpEOrUqZNdamuRla9/Ja6V1b2u3e7pKpKSkviZ1QCMg/kYg5qBcTAfY1AzMA41A+Ng\nvqoGUYdOjevevbvWrVsnSdq9e7fCwsLk41M8JS08PFy//PKL8vMvdGZ+/FFNmjRxZDmllJwlxBoh\nAAAAwPU4tCPUsWNHtW3bVsOGDZPFYtG0adOUkJAgPz8/RUdHa/To0Ro5cqTc3d3VsWNHde7c2ZHl\nlFJyltDJ1OKzhAzDuGbPBgAAAGAuh68RmjBhQqnPW7VqZfv4/vvv1/333+/oEi4rLNhXh5MzlJlz\nXn6cJQQAAAC4DIdOjavpQoO9JXGWEAAAAOBqXDoIhZWcJUQQAgAAAFyKSweh0CAOVQUAAABckWsH\nIduhqgQhAAAAwJW4dBD6fWpcjsmVAAAAALiWXDoI1fWuI29Pd6bGAQAAAC7GpYOQYRgKC/79LCEA\nAAAArsGlg5BUvGFCTl6BMnPOm10KAAAAgGuEIMRZQgAAAIDLcfkgxFlCAAAAgOtx+SDEWUIAAACA\n6yEIlZwllEIQAgAAAFyFywehkqlxJ+kIAQAAAC7D5YOQ7Swh1ggBAAAALsPlg1DJWUKnznKWEAAA\nAOAqXD4IScXT43LyCpWRzVlCAAAAgCsgCOn3DROYHgcAAAC4BoKQft9Cmw0TAAAAANdAEJIUFuwt\niY4QAAAA4CoIQrroUFWCEAAAAOAS3Kv6wjNnzujEiROSpEaNGql+/foOK+paKzlLKJkgBAAAALiE\nSoPQmjVr9K9//UunT59WgwYNJEm//fabwsLC9Oijj2rAgAEOL9LRfL3rKNDPU7/+lm52KQAAAACu\ngQqD0KRJk1RQUKA5c+aodevWpa7t3btXb775pj7//HPNmTPHoUU6mmEYiowI1I49J3U2I1dBfl5m\nlwQAAADAgSoMQtHR0YqOji73WqtWrfTiiy9q48aNDinsWmvRuDgIHTh6Tre0aWB2OQAAAAAcqMLN\nEkpC0JNPPqm0tDTb1w8dOqThw4eXek1t16JxoCTpwNFzJlcCAAAAwNGqtFlCz5499eCDD+qpp57S\n8ePH9eGHH2rSpEmOru2airwQhH4mCAEAAABOr0pB6O6771bnzp113333KTAwUB999JH8/PwcXds1\nFeTnpfqB3jpw7JysVqsMwzC7JAAAAAAOUqVzhFatWqW//vWvmjp1qoYOHaqHHnpISUlJjq7tmmvR\nOFDnMvKUkpZrdikAAAAAHKhKHaG1a9dq8eLFtrODoqKiNHnyZC1dutShxV1rLRoHausPv2n/0bOq\nH+htdjkAAAAAHKTCjtD69eslSQsXLix1gOr111+v999/v9RrnEFkRPE6of2sEwIAAACcWoVBaNOm\nTYqNjdWePXvKXNu7d69iY2P1+eefO6y4a61k5ziCEAAAAODcKpwa98ILL2jt2rWaNGmSzpw5o7Cw\nMEnSyZMnFRISorFjx6p///7XpNBroa6PhxrW89WBo2yYAAAAADizStcIDRgwQLfffrveeustbd++\nXR4eHurfv79GjRolLy+va1HjNRXZOFBf7Dyu5JRsNazva3Y5AAAAABygSrvGxcbG6ujRoxowYIB6\n9+6tn3/+WbGxsY6uzRQcrAoAAAA4vyrtGpeWlqY33njD9vnw4cM1YsQIhxVlpt8PVj2r2zuGm1wN\nAAAAAEeoUkcoIiJCp0+ftn1+5swZNWvWzGFFmal5eIAMQzpwjI4QAAAA4Kyq1BE6ceKE+vTpo8jI\nSBUVFenQoUOKjIzUAw88IElasmSJQ4u8lny86igitK4OHjunoiKr3NzYMAEAAABwNlUKQuPHj3d0\nHTVKi8ZBOnoyU8dPZ6pxmJ/Z5QAAAACwsyoFoS5duji6jholMiJQn+44qv1HzxGEAAAAACdUpTVC\nrqZFk5KDVc+aXAkAAAAARyAIlaNZowBZ3Ay20AYAAACcFEGoHJ51LGrawF+/HE9TQWGR2eUAAAAA\nsDOC0GVENg5UfkGRjp7MMLsUAAAAAHZGELqMFiUHqx5hehwAAADgbAhClxF5IQhxsCoAAADgfAhC\nl9G0gb/cLW46wM5xAAAAgNMhCF1GHXc3XR/ur19/S9f5gkKzywEAAABgRwShCkRGBKqg0KpDJ9LN\nLgUAAACAHRGEKtCicZAkaT/nCQEAAABOhSBUgZKd4zhYFQAAAHAuBKEKRIT5ydPDov1smAAAAAA4\nFYJQBSxuhpqHB+joyQzl5hWYXQ4AAAAAOyEIVaJF4yAVWaWDx9PMLgUAAACAnRCEKsHBqgAAAIDz\ncXf0A2bPnq1du3bJMAxNnjxZN910k+1acnKyJkyYoIKCArVp00YzZsxwdDnV1pINEwAAAACn49CO\n0Pbt23X48GEtXbpUcXFxmjVrVqnrc+bM0ejRo/Xhhx/KYrEoOTnZkeVckQb1fOXr5c6GCQAAAIAT\ncWgQ2rp1q6KjoyVJzZs3V3p6urKysiRJVqtVSUlJ6t27tyRp6tSpatCggSPLuSJuboaaRwTq+Oks\nZeWcN7scAAAAAHbg0CB05swZBQcH2z4PCgrSmTNnJEmpqany8fHRrFmzNGLECM2bN8+RpVyVFqwT\nAgAAAJyKw9cIXcxqtZb6+NSpU3r44YfVqFEjPfroo/r888/Vs2fPCu+RlJTk6DLLcDufLUnatG23\nCtL9rvnzayIzxgFlMQ7mYwxqBsbBfIxBzcA41AyMQ+3g0CAUGhpq6wBJ0qlTpxQSEiKpuDsUHh6u\niIgISVK3bt104MCBSoNQp06dHFfwZTS+PlvLvtyg9HxvU55f0yQlJfFzqAEYB/MxBjUD42A+xqBm\nYBxqBsbBfFUNog6dGte9e3etW7dOkrR7926FhYXJx8dHkmSxWBQREaEjR47Yrjdr1syR5Vyx0CAf\nhYfU1a4Dp5V/vtDscgAAAABcJYd2hDp27Ki2bdtq2LBhslgsmjZtmhISEuTn56fo6GhNnjxZkyZN\nktVqVcuWLW0bJ9REt7QJ038+P6gfD6bo5tahZpcDAAAA4Co4fI3QhAkTSn3eqlUr28dNmjTRe++9\n5+gS7KIkCG3/KZkgBAAAANRyDp0a50zaNKsnHy93bd9zstSmDwAAAABqH4JQFblb3NSxZahOpmbr\n2KlMs8sBAAAAcBUIQtVwS5swSdL2n5JNrgQAAADA1SAIVUOn1mEyDGn7npNmlwIAAADgKhCEqiHQ\nz1MtGgfqp0Opysw5b3Y5AAAAAK4QQaiaOt/QQEVFVn2375TZpQAAAAC4QgShamKdEAAAAFD7EYSq\nqXl4gIL9PZW095QKi9hGGwAAAKiNCELVZBiGOrUOU3pWvvYfPWt2OQAAAACuAEHoCvw+PY7d4wAA\nAIDaiCB0Bdq3CJG7xU07CEIAAABArUQQugI+XnV0Y/N6+uVEmlLScswuBwAAAEA1EYSu0C03FE+P\n28HhqgAAAECtQxC6Qp1ZJwQAAADUWgShK9Sofl2Fh9TVzv2nlX++0OxyAAAAAFQDQegq3NImTHn5\nhfrxYIrZpQAAAACoBoLQVeh8Q8n0uGSTKwEAAABQHQShq9CmWT15e7pr+56TslqtZpcDAAAAoIoI\nQlehjrubbm4VqpOp2Tp2KtPscgAAAABUEUHoKv0+PY7d4wAAAIDagiB0lTrdECpJ2r6HdUIAAABA\nbUEQukpBfl5q0ThQPx1KVWbOebPLAQAAAFAFBCE7uKVNAxUVWfXdvlNmlwIAAACgCghCdtClTfE6\noS92Hje5EgAAAABVQRCyg+vDA9Sskb++2Z2ss+m5ZpcDAAAAoBIEITswDEN9uzZVYZFVn+44anY5\nAAAAACpR64JQkbXI7BLKFXVzhOq4u2n914c5XBUAAACo4WpdEJr7xT+VlZ9tdhll1PXxUPd2jXTi\nTJZ2/5JidjkAAAAAKlDrgtC3v/2oyRvidSztN7NLKaPvrU0lSeu+PmxyJQAAAAAqUuuC0KDWffVb\n5ilN3hivb47tNLucUm68vp4a1vfVll0nlJmdb3Y5AAAAAC6j1gWhB9sP0fhuo2W1WvXiV2/ogx9W\n1Zh1QyWbJuQXFOnzb4+ZXQ4AAACAy6h1QUiSbmvSWXHRTyvUt56W/7SmRq0burNzY1ncDK1j0wQA\nAACgxqqVQUiSmgZGaE6fZ9W+wQ01at1QkL+XurRtoEMn0nXwWJrZ5QAAAAAoR60NQpJU19NXz97+\neKl1Q1uOJJldlvp2ZdMEAAAAoCar1UFIktzc3C6sG/qTJOmVrW9q8bcfqqCwwLSaOrYKVb0AL33+\n7THl5plXBwAAAIDy1fogVOK2Jp00u88kRfg31Nr9n2n6Z/N0JjvVlFosboaiuzRRTl6Bvtx1wpQa\nAAAAAFye0wQhSQr3b6AX+kxUj6ZdtD/lkCaue0G7kn8ypZY+XZrKMKT1TI8DAAAAahynCkKS5OXu\nqSe6Pqw/dRqunII8vfD5Ai378WMVFV3bLbbDgn3UoUWI9vyaqqMnM67pswEAAABUzOmCkHThPJ/I\nO/R871jV9wnSst2rNfuLBUrPy7ymdfS9tXjTBLpCAAAAQM3ilEGoRGS96xTfd7I6NrxRu5L3aOK6\nF7Tn9P5r9vyubRvK39dDn+44qvMFhdfsuQAAAAAq5tRBSCreYnvi7Y9p2E2DdDY3TTM+e1nLd6+5\nJlPl6ri7qXfnxkrPytfXu5Md/jwAAAAAVeP0QUiS3Aw33d1mgGb0ekrBXoH64MdVivv8NZ3NcfyB\npyVnCq3fxvQ4AAAAoKZwiSBUonVIpOb2m6zOjdrpx1P79PS6OO38zbG7yjUO89MN1wVr5/7TOpma\n7dBnAQAAAKgalwpCkuTnWVdP9xirhzvep6zzOXph83wt2ZWggiLHreHpd2tTWa3Sx1/+4rBnAAAA\nAKg6lwtCUvGucjEte2vWnU8rrG6IVuxdrxmfztPprBSHPO+OjuGqH+ClNVt+1dmMXIc8AwAAAEDV\nuWQQKnF9cFPF931W3Zt01s8pv+jpdbP05eHtdn9OHXeL7r2zpfLPFyph00G73x8AAABA9bh0EJIk\nnzreGnfrH/XYLSNVaC3Sa9sW6bVti5Wdn2PX5/Tt2kT1Ary0ZsshncvIs+u9AQAAAFSPywchqXiq\nXK/rb9M/+k5Wi+Dr9OXhb/T0ujjtPX3Abs+o427Rfb1bKC+/UAmb7HdfAAAAANVHELpIA79Q/f3O\nv+meNjE6k3NW0z+bp6U/rLDbRgp9ujZVsL+XVm85pLRMukIAAACAWQhCl3B3s2joTQP1916xqu8T\nrP/7KVFTP/mHfss4ddX39qhj0b10hQAAAADTEYQuo3VIc/2j73O6o2lXHUw9rGfWv6CNB7+U1Wq9\nqvv2u7Wpgv09tforukIAAACAWQhCFfDx8Nbjtz6s8d1Gy91w0792LNGcL/5bqdnnrvieHnUsuqdX\nC+XmF2rFZnaQAwAAAMxAEKqC25p01ov9p6p9gxv03W+7FZv4vL749Zsr7g7163adgvw89fGXvyg9\nK9/O1QIAAACoDEGoiur5BGnyHU9oTKcRKrAWaf7XizVvy/8oPTej2vfyrGPR3b1aKCePrhAAAABg\nBoJQNRiGoT6Rt+vFfs/phpBIfX3sO01IfF7fHNtZ7Xv179ZUgX6eWvXFL8rIpisEAAAAXEsOD0Kz\nZ8/WsGHDNHz4cP3www/lvuall17SyJEjHV2K3YTVDdH0qKc0qsM9yjmfqxe/ekMLtr2lzPysKt/D\ny8Ndd0dFKievgK4QAAAAcI05NAht375dhw8f1tKlSxUXF6dZs2aVec3Bgwe1Y8cOGYbhyFLszs3N\nTXe1ilZ8v8lqHtRUmw9/rdi1M7X9+K4q32NAt+sUWLe4K5RJVwgAAAC4ZhwahLZu3aro6GhJUvPm\nzZWenq6srNJdk/j4eMXGxjqyDIeK8G+omdFPa9hNg5SRn6V/fPm6Xtn67yqtHfLydNeQqEhl5xZo\nxeZfrkG1AAAAACQHB6EzZ84oODjY9nlQUJDOnDlj+zwhIUHdunVTw4YNHVmGw7m7WXR3mwGa23ey\nWtRrpi1HduipxOf11ZHtle4sF3PbdQqo66FVXxxUZs75a1QxAAAA4Nrcr+XDLg4FaWlpWrFihRYt\nWqQTJ05UeSvqpKQkR5VnF4MDeynJCNXmlB16desirf5+o/qGdJefu+9l39Ml0lsbdqbplXc2a0Cn\nwGtY7ZWr6ePgKhgH8zEGNQPjYD7GoGZgHGoGxqF2cGgQCg0NLdUBOnXqlEJCQiRJ27ZtU0pKikaM\nGKG8vDwdPXpUc+bM0aRJkyq8Z6dOnRxZsl3cols0OPO/9Mb2d7X71M86kX9aozrcq17NupW7Fuqm\ndoXafewzbf85UyP+q7OuDw8woeqqS0pKqhXj4OwYB/MxBjUD42A+xqBmYBxqBsbBfFUNog6dGte9\ne3etW7dOkrR7926FhYXJx8dHktSvXz+tWrVKS5cu1YIFC9SmTZtKQ1Bt0qBuiKZGPalHO4+Q1WrV\n69vf0cxNr+q3jFNlXutRx6I/391ORVbpn8t3qajoyg5qBQAAAFA1Dg1CHTt2VNu2bTVs2DC98MIL\nmjZtmhISErRx40ZHPrbGcDPcFN38dr00YKpubnSTfjy1T39LnKnlu9eooLCg1GtvbhWqHu0bae/h\ns9q4/YhJFQMAAACuweFrhCZMmFDq81atWpV5TXh4uN5++21Hl2Ka+j7BmtjjMX197Dst/vZDffDj\nKn15ZLv+3PkBtQ6JtL3uT3+4UUl7T+qtj3era9sGCqjraWLVAAAAgPNy+IGqKGYYhm5tfLNeHjBd\nfSPv0In0k5r26Ut6Y/sS20Gs9QK8NaJfa2Vkn9fba/aYXDEAAADgvAhC15iPh7f+1Gm4Zt75NzUJ\nCNcnv3ypp9b8XV8eLt5q+64e1+u6hv5a//Vh7f011exyAQAAAKdEEDJJy/rXa07fZzWi3WDlFOTq\ntW2LFPf5qzqZdUpj724nSVq4fJcKC4tMrhQAAABwPgQhE7m7WTT4hn56qf9UdWx4o344uU9/Wxen\nXZlfqNctDXXoRLpWf3XI7DIBAAAAp0MQqgHC6oZo0u1/0dM9xirYK0D/2bNOP3snyDfstN5N3KOU\ntByzSwQAAACcCkGohjAMQ7eEt9e8AdN1d5v+Ss/PVFHTJBU2/VoLV24xuzwAAADAqRCEahhPdw8N\nu+kPerH/FLULu0GWwDP63n25Xtn0vnIL8swuDwAAAHAKBKEaqpFfmJ7r+YRGtHpAKvDUlpObNX7N\nDNvucgAAAACuHEGoBjMMQ4M79FAv3wd1/vj1OpeTode2LdK0T1/SL6mHzS4PAAAAqLUIQrXAH+9q\nr4YFNyt7Z3e18L9B+84c1LMb4vX6N+/oXG662eUBAAAAtQ5BqBbw8nDX0w92lntRXR3a0kJP3vKY\nGgc00qeHtujJ1dO1cu8GFRQWmF0mAAAAUGsQhGqJZo0CNHpgW2Vk52t1YoZeiJ6kP3UaJoubRe/u\n+j/FJs7UN8d2sn4IAAAAqAKCUC0S072Zbr2xgX44eEYJmw6qb2RPvRbzd/VvEaWTWWf04ldvaMZn\n83Qg5VezSwUAAABqNIJQLWIYhsYN7aj6AV56b90+7TmUqrqevvrjzUM1r/9UdQ5vrz2nD2jyxni9\ntvX/2bvv+DiOw+7/n929vV5wuIJeCBAgCTaJRayiLFlWdU/c5MeOncc9duIWO3Himrj8nPhnO3aU\nOHYcV8WR7FhWr5YtUZREEqxgAcCG3tsdcH13nz/2cDiwiRQJonDer9dqZuf29gaEANz3Znb2xwxM\nDIDmUi0AACAASURBVM12lwVBEARBEARhThJBaJ7xOK186p1rwTD4p1/uZjyWAqDUW8xntn6IL974\nCWr8lWxv38XHH/kSv9j/W2Kp+Cz3WhAEQRAEQRDmFhGE5qEVtUHe9polDIzE+d59068LWh6u52uv\n+Swf3fAevHYPDxx9go89/HkebXlGLKggCIIgCIIgCFkiCM1Tb7u5nuU1AXYc6OHxF6ffU0iWZLZV\nb+C7t3+Jd6x8Axld47/23svHH/0Sz53aiW7os9RrQRAEQRAEQZgbRBCapxRF5lN3rcXtUPnh/Qdp\n6z3zfkJWi5U3NdzGv9z5ZW6vu5Gh+Cjfe+m/+OzjX2NPd5NYYU4QBEEQBEG4aokgNI+F/A7+8m3X\nksrofPPnu4knzz71zWf38t41b+W7d3yZbVUbaB/r5hvP/StfeubbtAyeuMK9FgRBEARBEITZJ4LQ\nPLdpZQmv3bKI9t4o//yLRjT93KM8YVeAj258D9+89XOsKV3JkYFW/v7pf+Kb2/+dzrGeK9hrQRAE\nQRAEQZhdltnugHDp/u8bVtA5MM7Ow738+IEm3v/Glec9vqqgnL+5/iMcGWjlnv33s7trP41dB9hS\ntZ63LL+TEk/4CvVcEARBEARBEGaHGBFaACyKzN+8ez0VRR4eeO4ED2+/sOluy0J1fOXVn+YzWz9M\nZUEZ29t28olHv8y/7fw5/eIeRIIgCIIgCMICJoLQAuFyqHzxfRspcNv4j/sPsvtI3wU9T5Ik1pWt\n4v+75W/55Ob3U+IJ88zJHfzVI1/kh7vvYSg2MsM9FwRBEARBEIQrTwShBaSo0Mnf//l1WBSZb/58\nFye7xy74ubIks7FiDd+69fN8bMN7CTkLefL4c/zlw1/gJ3vuZTR+4ecSBEEQBEEQhLlOBKEFZklV\nIZ+8ay3xpMZXfvQiQ2Pxi3q+LMtcX30d3779i3xo/bsosHt5pPUZ/uLhz/OTvfcxHB+doZ4LgiAI\ngiAIwpUjgtACtGV1Ke++YxmDYwn+4ccvkTjHstrno8gKN9Vs5rt3fJn3rX0HPpuHR1p+z8ce+jxP\nDuwQU+YEQRAEQRCEeU0EoQXqT2+q4zXXVXK8c4x//uX5l9U+H4ti4ZbF2/iXO77MB9e9kwKHjz1j\nh/nYw1/gh7vvYXBi+DL3XBAEQRAEQRBmnghCC5QkSXzkT1ezui7IS4d6+fGDTRjGKwtDYAaiV9du\n5bt3fJnbw9sIOP08efw5PvbIF/jBrl/SNz5wGXsvCIIgCIIgCDNLBKEFzKLI/M2fXUdFkZsHnj3B\nLx47eklhCMAiK6zy1vOd27/IRze8h7ArwNMntvNXj3yJf3nhx7SPdl2m3guCIAiCIAjCzBE3VF3g\n3A6Vr3xgM5+7+3nufaoFWZJ4521LL/m8iqywrXoDWyvXs6Ojkd8deZzt7bvY3r6LtaUredOy26gP\n1lyGr0AQBEEQBEEQLj8RhK4CwQIHX/3wFj73b9v51ZPNyBK849ZLD0NgrjK3tWo9WyrXsbenid8e\neZzG7oM0dh+kIVTHG5fdxuriZUiSdFleTxAEQRAEQRAuBxGErhIhfzYM3f089zzRjCRLvP01Sy7b\n+SVJYk3pStaUruTIQCu/PfwY+3oPc3iglUX+Ct6w9BY2lF+LIiuX7TUFQRAEQRAE4ZUSQegqEvY7\n+dqHt/C3//Y8v3zsKJIEb7v58oWhSctCdSy7oY6TIx3cf+RxXuzYw3de+E9CrgB31t/ETYs2Y1ft\nl/11BUEQBEEQBOFCicUSrjLhQjMMhfwOfvHoUe57umXGXmuRv4JPbH4f373jS9yyeBtjiQg/2Xsf\nH37wc9xz4H5G4mMz9tqCIAiCIAiCcD4iCF2FirJhKFjg4GePHOE3v2+d0dcr9oR539p3cPfrvsZb\nV7wWRVa4/8jj/MVDf8+/7fw5nWM9M/r6giAIgiAIgnA6EYSuUsUBF1//yBaCPjs/efjwjIchAK/N\nzZ8uv5O7X/tV3r/2LkLOQp45uYNPPvYVvvbH77Gv5/AlL+8tCIIgCIIgCBdCXCN0FSsOuPjaR7by\nt3dv5ycPH2YkmuTPX7ccWZ7ZFd6sFiuvWXw9r67dQmP3QR48+iT7eg+zr/cwZZ5ibq+/kW3VG7Bb\nbDPaD0EQBEEQBOHqJYLQVa4k6OKbH72eL/3oBX737HEGx+J88h1rsKozv7qbLMmsL1vN+rLVnBhu\n45GWZ3i+Yzc/avxv/vvg77i5Ziu31t1A0Fk4430RBEEQBEEQri5iapxAuNDJNz96PctrAjy/v5vP\n/2AH0VjqivahprCKj258D3e/9qv8ScMdKJLM744+wUcf+jzf3vEjjg4cE9PmBEEQBEEQhMtGBCEB\nALfTylc+sImtq0s5fHKYz3zvOfqGY1e8H36Hj7etfB13v+5rfHj9u6jwlvBCRyNf+P23+MzjX+Wp\n48+RyCSveL8EQRAEQRCEhUUEISHHqir89f9ZxxtvqKWzf5y//pdnOdY5Ojt9UVRurNnMN2/9O750\n4yfYWLGGjkgP/7H7Hj70wN/ykz330h3tm5W+CYIgCIIgCPOfuEZImEaWJf7v61cQ8jv40e+a+Nt/\n3c7f/Nl61i4tmpX+SJJEQ7iehnA9w7FRnjrxHE8d384jrc/wSOszrC5exq2Lb+DakhUo8sxf1yQI\ngiAIgiAsDCIICWf1+utrCfocfOuXjXzlP1/iI3+yils3Vs9qnwqdBbx1xet487Lb2dm1j8da/8D+\n3iPs7z1CwOHnpprN3FSzhYDTP6v9FARBEARBEOY+EYSEc9q8qpQCj41//PFLfP++/bS0j/LBN62c\n7W5hUSxsrlzH5sp1nBrp5Mnjz/Jc207uO/Qwvz78CGtLVnJz7fVcU9yALIvZn4IgCIIgCMKZRBAS\nADAMAyOTQU9nMNIp9FQaPZOmSk7ztTdU8NOHDnHgj41840gzWxvsjBf4QQKQkCQJyWJBtlqRrSqy\nakW2WZEsFiRpZu9JVO0v5/3r7uJdq9/M9vbdPHX8OXZ3H2B39wFCzkJuqtnCjTWbKXQUzGg/BEEQ\nBEEQhPlFBKEFytA0UsPDJAcGSfQPkB4dJRONkhkfJx0dJzOe3bJ1LR6H8yxPffNkpRPYA/t/cWH9\nMMORFcVhR3E6UZxOLE4nitOB4nRhcZltqseDxetB9XpRvR4sXh+qx42kXNh1P3bVzs21W7m5divH\nh9t48vhzPN++m/9pepD7Dj3MtSXLualmC9eWrMAiriUSBEEQBEG46okgNI9pySSx9g5i7e3Eu7pJ\nDgySHBggOTBIangYdP28z5ftdixuN/aiMLLdboYWVTU3qxVpsq5aQJbBMDjVE+FASz8GsLTKT115\nARKgZ/JGktIp9GQKPZ0291NJtHic1NAwmY7Ol+1XPovbjcXrwVpQgOr3Y/UXYPX7sRb6UQsKsBb6\nsRYWYvF4cqNPtYVV1BZW8e5r/oTtbTt5+sTzNHYfpLH7IAV2L9uqN3JTzWZKPbOzAIQgCIIgCIIw\n+0QQmgcMXSfR08vEqTZi7e3E2tqYaGsn0dN75iiOLGMtLMSzpB5bKIQtFMQWCmItLDRHXdxuLB43\nFrcbWVUvui+LgOgTL3D/zihPj8RZJxfxqbvW4HZaL+xrMQz0RIJMLIYWi6PFYmQmJkhHomSiEbOM\nmGU6EiETjZIeHSNytq81j6Sq2AIBrMEAtmAAWzCINRhgXSDAlrq76FOT/KFvH8+17+SBo0/wwNEn\nWBqs5aaaLWysWIPdYrvofwtBEARBEARh/hJBaA4yNI2Jk6cYO3SYyKFDRA4fIRMdn3aMxe3G27AM\nZ1UlzspKnBXl2MIhbIHABU8ne6XKAla+/fEb+OdfNrL7SB+f+M4f+ey717O4/OWvw5EkCcXhQHE4\nIHDhr2loGumxCKmREVIjI6RHRkiNjJr7wyOkBgdJDg0RaTp0znM0uJxcEwoR8/jotExwQjrIY3sP\n8zufnSVL17JtyfUsDS1GlsQCC4IgCIIgCAudCEJzgKFpjB87zljTITP4HGlGi8Vyj9vCIfxr1uBa\nVG0Gn6pKrIWFM74Qwfn43Da+9P5N/PfjR/mfp1r46395lrtuXcqbb6xDkS9/vyRFyU6DO//S2Ho6\nbV4bNThEanCI5ODg1JTB/n4SPb1Ip5JUABW5Z43BQ4/QZXuUVp8dZ0kJZTVLCVbWYC8uxl5cjOov\nmNV/b0EQBEEQBOHyEkFolhiaxljTIYZ2vMDQCy+RHhvLPWYvLSW4ZTPeFQ14G5ZhD4dnsafnpsgS\n/+f2ZTQsCvDd/9nDzx45wq7DfXziHWsoCbpmpU+yqmIvKsJedPbrfwzDIBONkujrJ9lvhqN4by9D\n7SdRerrxD0yg9J9gZP8JRvLPa7fjKC3BXlKCo7RkWt3i9YqQJAiCIAiCMM+IIHQF6ZkMYwebzPDz\n4k4ykQgAqs9L0S03U7B6Fd6Ghpcd9Zhr1iwN8/2/vom7f72f7fu7+ctvPcP73rCCWzZUzbmAIElS\ndmU6L566xbn2yVo8McHOpuc4cOgFRjrb8EU1/BM6JXELekcHEydOnnFOxeXCUVaKo6wMZ3lZtl6K\nvaTkFV2HJQiCIAiCIMw8EYSugGhLK72PP8HwizvJjJvX+qgFBRTffhuBzRvxLW+Y8et6ZprHaeUz\n71rHhhVd/Pv/HuD79+3npUO9fOyt1+D32Ge7exfMYXdxw7rbuGHdbQxODPNs20s8d2onD0V7wXAQ\nztjZZKumQQrii2RI9vQS7+5m4vgJxltap59MlrGHQzjKynBUlJshqbwcR3kZqsczO1+gIAiCIAiC\nAIggNGP0TIahF16i58GHiTY3A2AtLKTkzjsIbNmId+nSeR9+TidJEq9aU86KmgDf+dUedh3u46P/\n9AwffctqNq0sne3uXbSgq5A3N9zOm5bdxsmRDp5r28nz7bv4XaKZ39FMKFTIlnXr2Vr5LsrdRST7\n+ol3dRHv6s5uXcS7uhhp3MNI455p51Z9vqlwVFGBs6IcZ0WFuBZJEARBEAThChFB6DJLR6P0PfEU\nPQ8/SmpoCAD/urWUvu5OfKtWIskLf0WyYIGDr3xgMw89f4KfPnSYr/1kF9uuLeN9r1+B3zt/Rocm\nSZJETWElNYWVvGv1m2nqb+a5tp3s7NzH/Uce5/4jj1PhLWFT5To2L1tL2XXrpz0/HY0S7+wi3tlJ\nrLOLeEcnsc5OIocOn7HKneJy5UKRo6LcrFdWYg3M7uIYgiAIgiAIC82MB6Gvf/3r7N+/H0mS+Nzn\nPsfKlStzj7344ot8+9vfRlEUFi1axFe/+tWZ7s6MiXV00v3gwww88wf0VArZbqfkztspufMOHGXz\nbzTkUsmyxOuvr+Xa+jDf+dUent3bReORPv7stcu5dUMV8gysLHclyLLMquJlrCpexvvXvoPd3QfZ\n0b6bvT1N3Nv0IPc2PcgifwVbKtexqWItIVcA1eNBXbYU77Kl086lJZMkunuIdXQQ6+gkni2jLa1E\njzZPO1ZxOnFWVOCsnNqM6DiGYYiAJAiCIAiC8ArMaBDatWsXbW1t/OpXv+L48eP83d/9Hb/61a9y\nj3/xi1/kZz/7GUVFRfzVX/0Vzz77LNu2bZvJLl12qZER2n5xD/1PPwOGgS0cpuS1t1P06ldjcc/O\nymlzSUWRh29+bBuPvXCKnz1ymLt/vZ/f72rnI3+6mkWlvtnu3iWxWqxsrlzL5sq1xNJxdncd4Pn2\n3RzoPczJkQ5+sf+31Adq2FSxhg0V1xJ0Fk57vmKz4VpUjWtR9bR2PZ0m0dNDrKOTWHtHbou2tuam\nWU7a+cMfm8Fo8n5SVRU4KyvFNUiCIAiCIAgvY0aD0AsvvMDNN98MQG1tLZFIhImJCVwuMyD85je/\nwe12A1BYWMjo6OhMduey0tNpuh94iM77foMWj+OsrqLy7W+l8Lr1C+7an0ulyBJ3blnEppUl/PD+\ng2zf383Hv/1H3ritlnfcsgS7bf7P0HSqDrZVb2Bb9QaiyXF2du5jR8dumvpbaBk6wU/3/Zq6wCI2\nlpuhKOw6991kZVU1Q01lJWyZatfTaeLdPdlg1E73gYNYIlEiR5uJHD4y7Ryq34+rqnIqJFVV4awo\nR7HPv6mJgiAIgiAIM2FG34EODg6yYsWK3L7f72dwcDAXhCZDUH9/Pzt27ODjH//4THbnsjAMg+EX\nd3LqJz8l0duHxeul9j3vpug1rxYB6GUUeu189t3rufloH//2mwP87x+OsX1/Fx988yquayie7e5d\nNh6bm1fXbuXVtVsZTUTY2bmPlzr30NTfQuvQSX6+/zfU+qvYmB0pKnaHLui8sqriqqrEVVUJbGFw\naT1r165FT6WIdXYRa28n1taeC0qj+/Yzum//1AkkCXtRkTlqVFWFs7ISV1UF9tJSZMv8D6OCIAiC\nIAgXQzIMw5ipk3/hC1/gVa96FTfddBMAd911F1//+tepqqrKHTM0NMQHPvABPv3pT7Np06bznq+x\nsXGmunpB9L5+Mo8/iX6qDWQZZf06LDdsRRKfsl+0VEbn2aYoO45E0Q2oK7Xzmmt9hH0L9747MS1O\ny3gbzeMnaYt3Y2D+6IWthdS5q6l3VRGyXr5FEYxkEqN/AH1gAKPf3PT+fojFpx+oKEjBAFI4jBwO\nmWVRCDwecf2RIAiCIAjz0tq1a1/2mBn9GDgcDjM4OJjb7+/vJxSa+vR7fHyc97///XzqU5962RA0\n6UK+qMtNSyQ49ZOf0/v4E6Dr+NeuofrP34OzvOyK92UuaGxsvCzfh00boK03wn/89iAHjg1yvDfJ\nrRuruOuWpRR4bJehp3PP9WwFIJocZ3fXAV7s3MvBvqM8P7yH54f3UOQKsr5sNdeVX0N9oAb5PKsM\nvpLvg2EYpEdHibW1M9GWHUFqayPW3oHe14+ed6zF7Tan1lVX4aqqyk6xq8TidL6SL31Bulw/C8Kl\nEd+H2Se+B3OD+D7MDeL7MPsudPBkRoPQli1b+P73v89b3/pWDh06RFFREc68N1Hf+MY3eO9738uW\nLVvOc5bZFevsovmb/0ysrR1HeRmL/u978a+5dra7tWBUFXv5xw9tZtfhPn78YBOP7jjFHxo7ecur\n63jDtlqs6sKcbuixubmxZjM31mwmlo6zr+cQOzv3sbfnEA+1PM1DLU/js3lYV7aa9WWrWBFegtVi\nveTXlSQJq9+P1e+n4JrVuXZD00j09U0FpFNtTLS1n/X6I1s4jDM7Rc9ZVYWrugpHWamYGioIgiAI\nwrwyo0Ho2muvZfny5bz97W9HURS+8IUv8Nvf/haPx8PWrVt54IEHaG9v595770WSJF73utfxlre8\nZSa7dFEGtz9P6/fuRk8kKLnzDqrf+25kdeFO3ZotkiRx3fJi1iwN89gLp7jn8WZ+9sgRHn3hFH92\nRwPbri1b0FO0nKqDzZXr2Fy5jrSW5mBfMzu79rG7az9Pn9jO0ye2Y1OsrCxexrrSVawpXUGB3XtZ\n+yApCo7SUhylpQQ2bcy1a8kk8Y5OJtracuEo1tbOyK7djOzaPfV8i8Vc3js7auSqrsJZVYW10L+g\nv3eCIAiCIMxfM36F9Cc/+clp+0uWLMnVDxw4MNMv/4ro6TSnfvIzeh56BNlup/7TnyR0/dwdtVoo\nLIrMa7fW8Kq1Fdz7VAsPPneCf/5lIw88d5x3397AqrrgnHxTrWs6qZRGOqWRSmVIJc0yndJIJTNk\nMjqZtIaW0c16Rsu26Wiajq7p6LqBrhlouo6uGQT0pbxGqyeSmGA0ESGSiDJwOMmjHOFRjuJSHVgN\nlb0vRnGodiRZQpIkZIlcXZLMkKkoMrKSLWUJWZFRlMlSxmLJbqqMoihYVHNfscioqoJqLURtCFFw\nzQZCqoJqVTBiEyQ62rMjSGZIirV3MHHy5LR/G4vHbY4aVVVlp9iZK9kpDscsfbcEQRAEQRBMYqmo\n0yQHBjj6zW8x3tKKs7KCJZ/9NM7y8tnu1lXF7VD589ct547N1fz04cNs39/N3/9gB8trArzztqWs\nrA1e9tc0dINEIk1sIkVsPGWW2S0eS5NMpEnE0yQSaRLxDMlcPU0mrb/8C1wSGRUfp49FZoDuoSgQ\nneHXPztZkbBaLVit9VjDDajlChZJQ04nkVNxmIjC+Ch0j2HpOIXl2VYUPYVFT+P0e/CUhPBWlFBQ\nU4G3pgpnaYmYXicIgiAIwhUjglCekT17afn/v0smGiV0wzZqP/JBcd+VWVQccPHZd6/nzR0j3PN4\nM7uP9PG5u59n1eIgd926lOU1574Xz6RMWiMylmA8kmA8miQaSTAeSTIeSRCNJBmPJpiIJonF0hj6\nhS2gKMsSdoeK3aHi8dqx2S2oVgtWq2IGA5s5amK1WVCtCqqqZEdcFHMERjVHWywWs31yxEaWJ7fp\n+/mjYJJk/mc8Oc7vXnqUYes4B3uPEksnkJBQZZVlwcWsDC9lZXgpAUehOeqkG9nRJ2PavpYxR6Uy\naXOkamrUyhzFyqR10mmNTNoc8UrnleYomDkCFoulSI1k8kKhBfCD6ofCs/0rAmPZrWkYyRjEoqew\nygY2m4zdacXpdeIKeHEVuHE4rTicKg6nit0xVXc4rahWZU6OFAqCIAiCMLeJIIS5klbnvb+m/b//\nB0lRqP3wBym69TXizdUcUVfh54vv20hz2zD3PN7MnuZ+DhzbzjX1Id5yw2KCLiuR0ThjI3HGJsts\nfSKaPO+5bXYLbo+NwqALp8uK02XD4bLidFlxua04XFYcDhW7U8VuV7E7LFjU2X/j7Vd9rCyoY+3a\ntWi6RvPgCfb2NLGnp4l9QwfZN3QQjkCZp5hrSpazuriBhtDiy7LgwvnoukEqmTGnCCYypFIayUSG\nZCJNMpkhGc+QTJqjavGxCWIjEWJjEyQmUiSSGilNIp5Q0FMSjMahPQ70nfc1FUXG4VJxOq25753D\nqeJwWXFN7rusuNy27PdYhCdBEARBEEQQAqD9nl/Ree+vsYXDLPnMp/DULZ7tLglZhmEQG08xPDhB\ncmiCGysLWWTAqbZR9JZB7m8ZOuvzFEXG53cQKvLgK7Dj9tpxe214vHbcHhturx2P14Zqnf8/Aoqs\n0BCuoyFcxztXv4nBiWH29DSxt6eJpr5mHm55modbnkZVVJaH6lhd3MA1Jcsp9RRd9jCQP1qG7+Kf\nb2ga8Z4eoifaGDnRwVhHD9HuQSbGxknLVjKyjbRiIy1b0V0+dKeXjOokpcHYSIb+3gubJmixyGbY\n9diyodeG0z0VllweG67svstjQ12gqxcKgiAIwtVs/r8LvESd/3s/nff+GntxMSu//o9YC/2z3aWr\nkmEYREYTDPZHGegbZ7AvykBvlMH+ceKx9BnHWxQJZ4GDsZTGYCxFEoNg0M2rNlSyaW0FXo8NSb46\nP/EPugq5ZfE2blm8jbSW5ujgcfb1HGJf7+Hc9tN9vybkLGR1cQOripexIrwEt801211HUhSc5eU4\ny8sp2jbVrsXjxDo6ibVNrVw3ceoombbItOcbFhVLeRVKSSVSuBT8ITR3ASnJRjyWOu0asCSD/eOk\nU9rL9stqM0cOXe7JkGQGpOGRCVzWHlweG26PHbfHuiDCtSAIgiBcDa7qv9g9jzxG209/jjUQYPk/\nfFGEoCsklczQ1xOhrztCb9cYvd0RBvvGSSUz046TZInCgJPKRYUUhtwUBp34Ay4Kgy68BQ7kbNA5\nfHKI/33mGC8d6uXQw4e5f2cbb3rVYm5cW7Fg70N0oVRFZWXRUlYWLeVd/AlDsRH29x5hX+8hDvYe\n4akT23nqxHYkJGoKK1lZtJRVRctYEqxBVebOUvGKw4Gnvg5Pfd209tTo6NSKdW1t5g1i2ztInTo2\n7TjV4cBXWYmzqgJnZWXuPkiqz0cqmSE2kWJiPMnEeIpYtjT3k0xEk0xEzf2R4dgZ15I15S0jDnmh\nyWPD480GJK8tNxLpzra5XNarNqwLgiAIwlxw1Qah/t//gRM/+CGqz8eKf/gS9nB4tru0IMUmUnR3\njJqBpytCX/cYQ4MTkPdeUlYkgiE3wSIPwSI3oSIPoSI3hSEXFsvLB5mGRQEaFgXo6Ivy2z8c45nG\nDr5/335+8dhRXn99DbdvqsbtnNlrY+aLgNPPTTWbualmM5qucXy4jQN9RznYd4SWwRMcH27j/iOP\nY1OsLAstZmXRMlYULaGqoAxZkme7+2ewFhRgvaZg+s1hdZ1EXz+xNjMgmeGonfFjx4g2N097vurz\nmfc+qqjAWVVBcWUlzuUVWFxnHx0zdINYLMVENMl4NEnTwaOEgqW5/clyPJpkZGgC4zzrb0iyhNtt\nm5qy6Z2asmmW5uZyW5GVufdvLwiCIAjz3VUZhAZ3vEDr9/4Vi9vN8q98AUdZ6Wx3aUHQMjq93WN0\ntY3S1T5CV/sow4MT046xO1SqagIUl3kpLvVRXOYjGHajWC79jV5FkYe/fNu1vPO2pTz43AkefeEU\nP3vkCPc+1cKN6yq4c8siqoov741I5zNFVqgP1lAfrOFPl99BIp3g8EArB3qPcKDvaG4aHYDb6mJ5\nuJ4V4SWsKFoyI9cXXS6SLOMoKcZRUkxg44Zcu55OE+/qJtY+ef+jduIdHYwdOMjYgYPTzmENBMyA\nVFkxdaPYinIUu92cFue2ES6BkWg7a9fWnrUfum4QG0/mViccn1ZOrWDY3xulp3Ps3F+PRHZ0yZ4L\nTB6vHY8vu2XrTqcYYRIEQRCEi3HVBaGRxj20fOs7yFYrDV/8e1zV1bPdpXkrNp6k/eQwbSeG6Gwb\npbdzDE2buqeOzW6hpj5IWaWfknIz9Pj8jhl/Ax3wOXjPa5fzllfX8/iLp3hw+0ke3XGKR3ecYtXi\nIHdsWcTG5cUo4lP2aeyqnTWlK1lTuhKA4dgoTf3NNPU109TfzEude3mpcy8AfruP5UVLWBGupyFc\nT5Frbt7sNp+sqriqq3BVV01r1+JxYp1duZGjWHsHsfZ2RvfsZXTP3mnH2orCU+GosgJ9YgIt5EyT\n8AAAIABJREFUmUSx2c58PVnKToWzc76VIwzDIBFPMx7JhqNokuhYgvFogujYZGBKMPAygUlWpFxY\nyg9JXt/UvtdnF9cwCYIgCELWVfUXcazpEEe/8U9IskzD5z93xvUGwvlFIwnajw9xcNcoO3//Bwby\nVuiSZYmiUi9llQWUVfopqywgEHLP6ifULofKm2+s4w3batl5uI+Hnz/B/tZBDhwbJOizc9vmam7d\nUE2B58w3sQIUOgvYVr2BbdUbMAyDvonBXCg61NfM9radbG/baR7rKKAhVEdDuJ6GcB0l7vCcD0aT\nFIcDT93iM1aLzIyPZxdoyIajDnOa3ciuRkZ2NeaOe/FH/4W9qAhHRbkZkrJByVFedtaAdDpJkrL3\nSbISKvac8zjDMEgmMkTHErl7Y0UjCaJjZhkZSzA+lqCrYxSj7dxz8sz7X9nw+BxmSCqYDEuOXGhy\nuqzz5vsnCIIgCK/UVROEoi2tHP6Hr2HoOss+91l8K5bPdpfmvHgsxcnWQU60DHDq2NC0aW6qVWFR\nXZCq2gCVNYWUVfrn7BLDiiKzaWUJm1aW0N4b4ZEdp/j97nZ+8ehRfvVEC1tWlXLLxkpW1ARzCzAI\n00mSRLE7RLE7xM21W817b0V6ONTfwuH+Vg4PtLC9fRfb23cB5ojRsnAdDaHFLAvVUeYtnpPXGJ2P\nxe3Gu2wp3mVLp7WnI5HctUdte/bgSiSJtXcwsms3I/kLJ0gS9qIwjooKnBXlZjiqKMdZXobicFx0\nfyRpamny8wUmXTeYGDdHlfJDUv5+dCzBQN/4Oc+hWGRzNKkgO6pUMBWSJutuj01cuyQIgiDMa1dF\nEMqMj3Pkq99AT6VY8tefxL92zWx3aU7SNZ3O9lFONA9wvLmf7o7R3MXeNruFxcvCVNUEiKcHuPHV\nGy7LdT1XWmWxlw+9eRXvvmMZz+zu4KHnT/LHvZ38cW8nxQEnN19Xyc3rKwn4Lv6N6tVEkiQqfKVU\n+Eq5re5VGIZBV6SXwwMtHOpv5fBAKzvad7Oj3QwGbquLpcFaloYWsyy0mEX+Sizy3AzOL0f1evGt\nWI5vxXK6i8OsXLsWgPTYWHZaXXb0qKOTeMdZAhJgC4dxVpSZIal8sizH4r70JcxleWqKHBXnPi6V\nzJwRkiKjcbNt1NzvODl8zgUfJAncnqkRpcmA5PU5sm0OPD7bBS14IgiCIAiz4aoIQif/62ekR0ep\netc7CW7eNNvdmVOikQSth/s4drSfk62DJBPmEtaSLFFeXUjtkhC1S0KUlBfkRksaG8fmZQjK57Sr\n3Lm1hju2LOLwyWGeeKmN5w9084tHj3LPY0e5dkmY12yo4rqGYtR5/rVeCZIkUe4rodxXwi2Lb8Aw\nDLqjfRwZaOXowHGODB5jd/cBdncfAMCmWKkLLGJpqJb6QC31gUU4rfM7fKo+H76VPnwrV0xrT4+N\nEevsJNbeSbyj0wxJ7R2MNO5lpHH6NUiq34+zohxHeRnO8vLsCFI5qr/gsk9Vs9osBEJuAiH3OY/R\nNZ3xaDIbluJERs3glB+Y+roidLePnvMcLrcVb4Eje42SA+/kVLzJ4FTgmLOjyYIgCMLCtuCD0NjB\nJvqfehpndRWlb3z9bHdn1hmGwUDfOM1NvTQf6p32BsYfcLJyTRk19SGqFwexO+bOfWRmiiRJLK8J\nsLwmwAfftJJn93bx1M52Go/203i0H5/byg1rynnVmnIWl1/+N6MLlSRJlHmLKfMWc3Pt9QAMxUY4\nMnCMowPHODJ4zFyIod9czlrCHGFaEqxhSbCW+mDNvFiA4UKoPh8+nw/f8unTcSevQYp3dk4rz7aK\nneJy4iibCkeOsjKcFWXYi4qQlJkLEbIimyM9BQ7g7PdZM3SD2ESKyFg8N7o0NhrPjjCZAWqg7/wL\nPTic6tSIUsFkWDLDk8/vEIs8CIIgCDNiQf9l0VMpjt39A5AkFv/Fh5EtC/rLPSdd02k/NUxzUx8t\nh3oZGYoB5qhP9eIA9cuLqW8oojB46dNy5jOnXeW2TdXctqmatp4IT+5s55nGDh549gQPPHuCspCb\nG9aUc8OaMkqD5/4UXTi7gNPP1qr1bK1aD8B4coKWoZM0Dx6nZegErUMnaR/r4snjzwHgs3upDyyi\nLrCI+sAiagqrsFsWzsIW57oGSUskiHd2EevsJN7ZlQ1IXUwcP8F4S+u0YyWLBXtJsRmQysvMrczc\nLM4rM8ImyRKu7A1kS8rNNsPQMQwdDAPD0NB1jUQ8RXQsTnQsxnjUHFGaiCSYiMaz916K0hvR6Os0\nAAMkyMVgycBms+DyWLPLl08vY6O9jPQfR7Xmh0IJKXcSCSQpe77JugSSnA3b+W0SkiSbz5dks549\nbqqebRcEQRDmtQWdDDru+w2J7m5KXnfnVbdCnKEbtJ8a5tDebg4f6CY2ngLAalNYtqqEJSuKqVsW\nxiFuNHpWVSVe3veGFfzZnQ3sbe7nD3s6eelQL/c8fpR7Hj9KfWUBN6wp5/pryvB77LPd3XnJbXOx\npnQFa0rNqWQZXaNttJPmweM0D56gefA4u7r2s6trPwCyJFPlK6MuG47qgovm1ep0F0qx23EvrsW9\nePr9ifRMhkRvbzYcdRHLlvGuLuIdneYbfosEqoxkkVCDBdiKw9iKAqjBQqyBAix+L4rLng0naQw9\nW2oZdCNjlrn2DIahYegZDF3LPmeqPr3Up9Wn3TH5HDwyeAqAglf+b6WPQ3QcnMCJfX945Sd6RfKC\nkqzk6pKUrcuKWZcn25S8NgVZVpAki9kmW5AnH5+2bzHr00oFWVZPa1eRlOn7k8cKgiAI57Zgg9BE\nWztdv/kt1mCQyrveMdvduSIMw6C7Y5Smvd0c3t9NdCwBgNNlZe2mKpasKKZ6cUBcvHwRVIvMdcuL\nuW55MbFEmhebevnjnk72tfTT0j7Kf/6uiVWLQ2xeXcrGFcUiFF0Ci6xQW1hFbWEVd9TfBJjT6VqH\nTtIydJLWwROcGGnn5GgHTxx/FgCX1cniwipqC6tZXFjN4kA1Bfa5f9Ncw9DRtRRaJomuJdEyieyW\nRM8k0bQEWiaFriWnH6el0OUkWlkKvTiFdK0bu7YIXUthGNoZr5MmQZouoAuimNsrIp35hl1SkBUr\nkiUvAGTb80dNpo2iyDIS8tSoiyRN7Z8xQpN93ezrmxUZTdNJJTIkk+aWSmYYHYmgyFZSiQyJZAYt\noyNJRl7vgey+xSJhtVmw2mSsVgWrTcFqlVGtZmlRZWQZwIDsyNbU6NZkXZ8Kf9OO0adCo5bKhsmp\nNgydK0qSp0KRYpayrCIrKlK2lE8vc3Vr3nHWbLs1d4yiWLPtVmR54U+jFgRhYVqQQcjQdY7/679j\naBq1H/7AFZsiMlv6e6Mc3NPJob3djA6b097sDpVrrqtg+TVlLFocEMvcXgZOu8pN6yq4aV0FI9EE\nz+3r4tk9XexrHWBf6wD//pv9NNQE2LKqlE0rS8TKc5dBwOkn4PSzscJc6TGjZTg12pkNRyc4PtzG\n/t4j7O89kntO0FmYDUVmQFrkr8CpXt7vhWEY6FoStAlikS60TJxMOo6WjpPJxNDSCbRM3NzSibyg\nE88FngsZNTkXOe9NqKr6zDeluTesU29WMWT0iQSZaIzM2DiZ0QipoTHSg8Po8RRkDAzNgOxmcbqw\nB4uwhcM4ikpxlJTiLCvDXlxyQfdEmi2NjY2sza7eB2TvtxTPLeyQXw4Nm4s+JOLpc55PtSp51ytN\nXruUvddS9volh1O96NFIIztVcGo0zRxh0yfbJvf1DIaRV9czuXKqLX3GY7qeRtc1DC2dradzo3y6\nnkHLJMno4+ha+qzB+dLI7Pv973L/D04LSpNtFiuyYpt63GI77VgbisVmltnHzdG0hTXqKwjC3LEg\ng1DvY08QbW4msGUzhevWvvwT5qFEPE3T3i727eygu8Nc8EC1KqxcU8bya8uorQ/N+5Xd5jK/x87r\nr6/l9dfX0j8cY8fBHnYc6Kbp+BBNx4f4wW8Psqy6kM2rSti4ooTiwNV9/dXlYlEsLA6YIz+3cyMA\n0eQ4x4fbOTZ8kmNDpzg2fIoXO/fwYuee3PNKPUXU+CupKayitrCSRQUV2FVz9M7QNTLpOJn0BJnU\nhFnm6jG0dIxMdsuvT366f+TFC+m5hGKxoVjsWO0FKBYHisWObDHf+CnKZN2e3beZ+5NvGrNvDs3N\ncsnXpxiGQWp4mHhXd25LdJtldH8LUf3oad2XsIWCOEpLsZeW4CgtwV5ilrZweM5df2mzW7DZPQSL\nzn2/pdzy4aMJc6GH7MIOY6MJopOhaWDinM+3WOSp1fAK7Hi8UyviTYYnl9s27abS5nVGFpBn/9/L\nHJXMBiotZYalyQClTdZT2Xrq7PtaKrdFo6OodjU7ghknnRxD11KX3lFJPuPnYKo8LTxN+9kxf5bk\n/DaLHXkO/NsLgjB3LLjfCMnBIdp+9gsUl4ua9//5bHfnsjJ0g5PHBtm3s4OjB3vIZHQkCRYvDbN6\nfQX1DWGxstIsCBc6eeMNtbzxhlqGxuK8cLCHHQd6OHRikCOnhvnPBw5RWexhw/Jirmsopq7SjyJu\n3HrZeGxurilp4JqSBgB0Xacv0s2pgRZ6RtsZinQTjQ1B/356Bw8QkSRaZAmvYsEhSahc6HQlCYvq\nRFGd2BwBFNVBJBInVFyOxeJAUZ3Z0tws2bAzGXjm0sX1kiRhCwSwBQIUrFo57TE9nSbR20e8u8cM\nR93dxLt7iHd1M7pvP+zbP/1cioItHJoWjnIhKRSa0VXtLsWFLB+eSWvmaNJYnGje0uH55fDxoXM+\nX5YlPJM3ovVNhaZc3Wfe72k2PrSSJBnFYgWswKV/UNPY2MjytdM/eDQMA0NPm1M6tRR6xizN/eT0\neiaZq0+bFpr3WCY1gaYNY+iZV9xPSVKmPnRQbGd8IGGGJ/tpH0rYcx9k5H6mFeuc+pkWBOGVWXDv\nmk/8x4/Q4nFq/+LDWP1nX+51vhkbibH3pQ727+5gbCQOQCDkYvX6ClatK8crpmDNGQGfg9dureG1\nW2sYjSZ5samHlw71sr91gPuebuW+p1vxua2sW1bEhuXFXFMfxmFbcD+GM0LX0qSTUdLJMbNMRbJl\nlExynHQqSjoZJZMaxzA0rEBVdsMmY77hMxlAXNcZ1XXiOsQNg5hhIFvsuByFFLhChH2llBRU4neH\nUFQXylnCTGNjI5VLF9aos6yqOCvKcVaUn/FYJhYn0dtDvKuHRE9PNiz1EO/pyd4Tafp9kSRFwVYU\nxlFSgr2k2AxIJcXYS4rn5EjS6SyqQmHQdd4VNbWMnh1ZmgxICaKRqXsuRUfjdLWP0qmPnP0EErjc\nNjMUnRaYPN6pESbrPPw9IUkSUnba2+Vk6FpeaEqeUZp1cwpqLkhlEnl1sz2VGLmkaaqykh+OTgtK\nefWzbw4UVYxQCcJsW1A/gUMvvMTwSzvxLm+g6OabZrs7l8QwDE62DrLr+VO0HOrFMMwV3669rpLV\n11VQUe0X86bnuAKPLbccdyKZYV/rADsP9bLrSB9P7+rg6V0dWBSZFbUB1iwJs2ZpmMoiz1X3fTV0\njXRqnHRyjFRiLFtGsoEnG3aSEbRM/LznkWQLqtWD01uGxepBtblRrR4sVjcWqxs1r1RUBwbQNz7I\nyZF2Tox00DPSzsmRDsYjJ4GTufP67F6qC8rNzV9OdUEFJe4wsnz1fRpscTpw19Tgrqk547HM+Djx\nnt5cMEr09JDo6SXe08tI454zTybL5nS7khLsxUXYTyvn8jVJ+RSLTEGhk4JC5zmP0XWDiWgybwpe\ndpRpLJG799JA7/nvtWSzW8zRpWw4MkeaHHl1cyqefBWMNkuygkV2wGW49s+83i89FZwmFy3RphYw\nmbzGT8+ra3mLnKRTURKxgVe0GIYkW84blHL109otee1idUBBeOUWTBDKTExw/Ac/RLJYqP3IB5Hm\n6ZuUZCLN/l2d7N5xisH+cQBKyn2s31JNw+rSefmpoAB2m4WNK8zrhXTdoLVjhJ2H+9h5qJd9LQPs\naxngxw8eIuizc202FF1TF8I9z5c3NwyddDJCKjFqhpzEaLY+mgs96WSU830iq1gcqDYvTm85qs2D\navNlS69ZWj2oNg+yYruoECkBJZ4wJZ4wmyvXZftrMBQbMVenG+mgbbSTU6Od7O89zP7ew7nnWhWV\nSl8ZroyNgdYolb5SKn1luG1X77VgFrcbT91iPHWLz3gsF5J6es2A1GsGpERvrznd7ixUfwH24uLs\nVmRuRUXYS4pRfb559YFB/hS5ssqzH2MYBvFY+qwhKb9tsG/8vK/j9tjOmI43tW8GKfF3ZIokSSgW\ncyEH9RKytzkNMJNdECV/JcjzbdMXU0klxjD0cy/icS6yrJpTci12SGq07tmXC04W1ZEXpibDlWNa\nuyRb5tXPkyBcTgvmt2H7Pb8iPTJC5V1vx1l+5pSOua6/N8ru509yoLGTVFJDUWRWri1j/ZZFlFUW\niF9SC4gsSyypKmRJVSHvun0ZQ2Nx9jYPsLe5n70t/Ty5s50nd7YjS1Bf6Wd1fYjVdSGWVvlR59jS\n51rGnF6Sio+aZWKUVNwsk4kR0snIOT8llSQF1e7DXVCNavei2nxYbV5Uuw+rzZcLPLJy5ZbmlSSJ\noKuQoKuQ68qvybWPJydoG+vi1EgHp0Y7aRvt5ORoB5qusX9Pc+64gMNPZUEZVQVluXBU6inCoiyY\nX7WvyPlCkhaPk+jry40eJXqzgamvj2hzC9EjR894jmyz5YKRraiITDrJsAH2cBhbUXjejCblkyQJ\np8uK02WlqPTcS8Cn09q0YDQVlLL1SIKezjG62kfPeQ6b3YLHa8+NME0rs3W314YiVhu9YOY0QHO1\nxksJVObqfnlhKZ2/2mQCLR1n+gqUiexqlXHSqXHIxIkMnvu6tbP3XckGKUdeeHLk2izq+YPUlfwd\nLQiX24L462wYBoPbd6D6Cyh78xtnuzsXzDAMTh0fYsfvj3G8eQAAb4GdLTfVsWZDJS7P/PtjLly8\ngM/BzddVcvN1lWi6wfHOUfY097PnaD/NbcMcbRvhf55swaoqNCwqZNXiIKvrQuj6K19++UJNBZ0R\nkvFhUvFhkvERUglzX0vHzvFMCdXuw+WrxGovwGr3YbUVmCHHXoDVXoDF6po3Fxu7bS6Wh+tZHq7P\ntWV0jade/D3uMh9to120j3XRNtrF3p4m9vY05Y5TJJkSTxEVvlIqfKVUZssiV/CqnF53OsXhwFVd\njau6+ozH9EyG5MCgGY56+3Jlsq+fRG8vsbb23LFHHnsyV1f9BdjDRdiKwtnAFMYWDpvBKRiYsws4\nXAj1Aq5bMnSDiYlUbgnxyYAUPa0+OevgrCRwuaxmKMqOJrm9+cHJhtt79UzHu1Jk2YKcncL7SjTu\n3s0116zKC0rxaeEpMy1YZZf8z3s8FR++6KXVzel9eeFIdZqBKi9M5RaQmRakzj+1zzAMDEA3DHTD\nLA0DdMx9I9tuYLYbZ7RPncMwDHNZnGy7bph/P80/o5PPn5ybYO5nD8/WDab+O1U511/hjiTYByJn\n/ludUSF3rzRJmmqW8u6jNtUuMfmjJmc/HJ98TMo+X857nixlA3r2ePNYKdcun76fd5x8FX34viCC\nULKvj/ToKIEtm5HVuf/JhK4bHD3Yw45njueWvq6sKWTjthrqG4rEPX+uYoosUV/pp77Sz9tfs4SJ\neJqm44McOGZuk9Po4Ag2VeKagy+xojZAw6IAtWW+i/4E1zB00okxkvFhkvEhkjGzNAPPMJnU2d8o\nSbKKzeHH5a3A6vDnwo1Z92O1eRf8vHWLrBCyFbK2ai1bq6bao8lx2ka76Bjrzm3tkW46Iz280NGY\nO05VVMo8RZR7Syj3lVDuLREB6TSyxYKjpBhHSfEZjxmGQSY6TqKvjyMvvECp02WOLPX2maNJra1E\nm5vPeJ6kKFiDAXP0KBzGFg7lRpLs4TDWQv+8DkoAUnaKnNtjo+Q8EyQyaW1aQIpEEoxHkrmwNB5J\nMDQ4QW/3mW/opr2W24Zs0WjdvzM7mjQVlDxeGx6vHacITFeEgYQuWdAUNxnJSVoxyKgGmqGT0Q0y\nuoGmG6T1qTYt254xso9pGTKZFOlMmlQmRUZLm21ahoymmaWuoel6rtRSOlrCQDMMdCR0Q0JHNvtD\nBoNxdGLoSNk2CQM5V07V8x+fz/+/SLDr2Gx34pJMBiUlF5zM0DS9PLNdkSRzymnevixJKPLUcflt\n+ceZx0i5YxSJ3DFTx0rT2iz5+5P1i/hdsyCCUOSo+cfOu2zJLPfk/DJpjf27O3jhDycYHpwACZau\nLGbzjYspr1oYK9wJl5fLobJhRQkbVpQAMBpNcvDYIPuPDbCrqYuXDvXy0qFeABw2hSVVhayoCdBQ\nE6C+0o9NVdD1jBlsYkMkY0Mk4oO5+rk+/ZMkBavDj8NTgs1RiM1RiNWeLR1+LFa3mK55Dh6bmxVF\nS1hRNPX7yDAMhuIjU8Fo1AxGnZEeTo12Tnu+Klso9RRR5i3ObiWUeYso8RRhFVNQciRJQvV6UL0e\nlMgY5acv3axpJAeHSPT1kezvJ9HXb44k9fWR7B9g7GDT2c+rKNhCQWyhUF5QCk3tz/MRpXwWVcEf\ncOF/mfuc5d+gdjxqBqXxSN4oUyRJZDTB2HDfOc8hSeDymKHI7bHlRpfc2aDk9tpwe8zH5vs98Myg\noZPS9Gxp5OppzdzP6DopXSed/5hukNHMcvLYyXpmstSMqWPzH9N0NMMgo0vw+L4Z+sos2e3CZquY\nIwyTm2HuZ2OOki1ldDAyZvQxNHPLRiMJA0ky8vb17OiHkbeBLMsosowsKciygiKbpSxbUGQFSbFg\nkS3maJtsQVYsKLIFWVFzIyb5oy7TRmYg97fu9NGcvDuEnfG1d3d3UVpadlrraaNK2Z3cSFR29Gry\nmMmRqMl6/mjVVFv+vnFGu57Xpue3nb5PXnveSJtmTB9lMx/Lr0Pa0NF1c8TNLA103UDLO/ds+FDR\nhR23IIJQNBuEPEuXznJPzi6ZSLNz+yl2PneCifEUiiKzZmMlm15Ve957WAjC6Qo8Nq6/tozrry2j\nsUajsqaBQyeHOHxigPauTiaGmzmWjDPSFueoK0GRN4nTkkCSzvxVpKhOHJ5SbM4ANkcAm7PQLB2F\nqHbfvJm2Nh9IkkTQWUjQWci1JSty7bqhMzgxTEekh86xHjoi3XSN9dIZ6aFtrGv6OZAIuwKUeYsp\n9RZT5imi1FtEmacYj00E09NJioK9KIy9KHzWx/VUypx2198/FZQmy4FzByVkGWthIfZwCGswmBeS\nQtiCQWzhEIrdPoNf2ZV3ITeo3b17N8sbVhHNjiiNR7OjS9mRpcnA9HKr4wE4XdZsMDIDk9szNcJk\ntpmhyWpTLvr/e90wg0dS00lmdFKaZtY1PdeemqxnzLBiHmfWU9r0LX1Gu/nmcaYoElhkGVWWzFKR\ncFgULLKERZZITEzg93mz+7JZSnn17KbIcrY9+6m6LGGR5Nyn6Zazfdoun+WT98lzTPvUf2oU4WIZ\nhp53bVQsO5UvhpZOkMmWU/uT0/4mp/fFMTIXd48pWbGZ0/Ry10OdPpXv9P3stD/Ved5FJhrHuli7\n+MyR7KuRflqI0nTzZ0TLa59sm6ozbV/PHq9lRy6nnWdypDPvGM0wYLz3gvq3YIKQbLXiWlQ9212Z\nJpXMsHP7SXY8c5xEPI3NbmHLTYu57vpFeLwL6w+lMPMMwyCdjJCYGCAZG4CJJkZP7iMYG2SDb5gN\n3jMXJYgmrLRHPQzH7AzHHGiKD7+/mIqycpZUl1Bd6sUipmLOGlmSCbuDhN1B1pZO3dhUN3SGYiN0\nRfroivTQFe2jK9JLV6SHPT1N7OmZ/ibdZXVS6ima2rxmWeQOiVGkc5CtVhxlpTjKSs/6+GRQSg4M\nkOgfINlvBqRk/wDJgQFzJoJ+5KzPtXjc2IKh7MhSEGswO8IUCmILBrH6CxbMqNIkSZJwOK04nFbC\nxecOTIZhmCNM2Wl45shS8ozgNDYSp68niqFI6BYJQ5HRFQkjry7bFFSniuJQUewWZKsCVhmyj2sS\nZCRIT4afjEbqMl5bqcoSVkXGqsjYFAWPVcWqmOHEKsu5x9RsfbJdVcwgo+Yek1BlORdsVDn/8cnH\nzP2Xu3ajsbGRtWvrLtvXeKVJkoxFdWJRnUDhRT9f19LTgpF5DVQsG65iZHILTkwPWcn4CHqm5yL7\nai4yYcmGo/xro4iN0XsyOj1YTVuEwn7VfNg4OWXubCNnM6mx8SoJQplYjIm2drzLls6Zm/Olkhl2\n7zjFjmeOE5tIYXeo3Hj7Uq7bWo3NLt6UCOena2kSsQESE/0kxvtJxAZITgyQiA2ia8lpx0YSYFFd\nuHwV2J1BbM5QtjS3lKbQ2jHCkVPDdJ0aobltmOixGOxqAcwFGGrLfNRVFlBf4aeusoCSgEuMLswy\nWZIJuQKEXAGuKWmY9lg0OU5XpI/uaB/d0V66s/UTw220Dp2cdqyERNDppzi7THiJO0yJp4gST5iQ\nK4BlgV/HdSleLigZmkZyaCgvHA1O1QeHiHd3M3Hy5FmfOzmqZAsGzGCULXP1UBDV652Xt4EwDIOk\nppPIaMQzk6VGPK2RyOgkNHM/kX0soWgkPBB3qCQKZRIZG0nNTSJjjs5cHB10HXQgDegGsmYgaTqK\nARb+X3tnHmvXVd/779rzcKY7+3rI5AymGfqSFPoiA0E0EMxr3ysU2qCkgapP1UvoqFYtDUMRqEIN\nbRFVQTRS2qqP9+QqbSHpAAEK4UETSGITF0ycOE5sX/vOw5n2PL0/1trDuYPvuZ6Oj8/6SFvrt4a9\nz77j2Z+zJgKdECYuAjRZhK6IMFQJpqagpMso6QpUidYrosBiEbJAoEpCJjjdSAnn4iNkK/dtvPLi\nRtCNer2CMNlsRT4Why6TquIiEw5C34JrL65ZIfX00R9v8EoAQNgmvKt6n1b3TLHepw7zRFKQAAAg\nAElEQVTRknUQQebv0+eJS8MczoH2y0eBOEZ5T+/nBwVBhANPH8d/fPMVWG0fqibhLe+4AT/9pqu5\nAHHWEPoWHGuOCo81D9dagNueg+/WsXotGiJIVHDMcWjGGDRzDMdPLuEnb38j++RsfXQJuOXaMdxy\n7RgA+pByeqGNI8dXcOTEMl46QeXoxePL2TklXcZ1u2q47oohXLerht07ahitafyf7iVCWS1hz1gJ\ne8Z2d5SHcYR5azETo5nWPGbb85huzeGHc0fww7nOZahT2dpWGsuP8ji2lcYwbo5A5j1JZ4SIIrRx\nusACblxbnyQJwnabCdIi/MWFLPYWF+EtLqH18tFsaPea60tSJkupKCkjI1BHaF4ZHoZSq57XnqU4\nSeCFMRWXMIId5BJjszStc1blGxbwd187BCeMznpOgCoK0Jh4VFUZmiRCkwRooghNEqFKAjRRgMrK\nVZGmiiAAQYzQDRDaAQIrgNf24bQ92uvUCtFuurDaPlwn36fHY0dxoXFC6NA8ky02YZZVmKUNYlPh\nixtdRtCNemlv1FbX7E035k0l6ceHX8Dua65YZxifna/cx5Y99+wlOKs+5Nz0XgtLnuer9a0d3idK\nOt18tzCkj2/C20nfi1C+UELv5gdFYYwD3zuB7/77UbSbHhRVwpvedh3+65uvgd7nG2Jyzo0kSRD6\nLTjtObjWHNz2PJWf9hzCwFrTXlJKKA1dA80cg2aOZ4eyzpyd4zMHzihB60EIwc7xMnaOl3HXG+jO\njq4X4tjpBo5O1XF0agVHT9bxg5cX8IOXF7LzKqaC3Tuq2L2zht07q9i9o4ZtIwaXo0sISRCzoXGr\ncQMXs+0FzLTnMdOaZ5K0gNn2At0sdlV7AoJho8akaBQTpdEs3lYaG+iNY7uFEAK5XIZcLqN0zdXr\ntkmiCP5KHd7iIvxFJklLSzReXIa/tITmi0eAjeacpD1LI8NQRkYgjwyDDI8gHhpBWK0iLFcQ6CZc\nQmAHUXZQyQkzubELorNViSEAdEmEAGBIl7Fd0qBLVFx0SYQuC1msiSwvitBkEZooMNmhQnMxeljC\nIILV9tBu0cNalaZxY8XB/Exr0+vphtwhSTRVaFwqypMCWen7Ry7OBhQ35oVWBeQx1MZ/YvMTGUkc\n0R6nwrynVJRWz4PqWPI8sM9qyXNBVDp7owoiJcqrlj4v7iV1GQ7r6/u/ynSzvfIN12/S8vyTJHQZ\n7G/8y4tYWbIhKyL2vvVa3PGW3TBMLkCDRIfwtOfgWLNZHIXOqtYEij6EavUKaKVxaOYEE56xLYvN\n+UBTJdx4zQhuvGYkK2taPl6ZquOVU3UcO13HsVONNXJkahKu2l7F1dsruGqSpldsK0Pjb/aXHJqs\n4aqhXbhqaNeaOidwMcekaLa9gNnWPGbaC5hvL+Lw/Ms4jJfXnGPIOsbNETq/yRylMROmMXOEz0vq\nEiKKbHjcCIB8VIMfxbCDEFYQoe36aK400Kg30Wq10bZdWK4PKwjhRAkcCPBECZ6iwld1xKIIOACc\nAJhdAnDmzTVVAuiyiJoqY3uJSowhpxIjwmCpLuVlaWzIIlRRACGEzU3p/sGvV0iyiOqQgerQ5v9r\ngyDqECWrzY6WT8vauUAtzJ1hTyaGrIhMkKgoGZkwpflCbCp9v3oep3uIIEJSTEjK1j9kSpIESRx0\nyNH6UpXXZZvwug244Rw23hFpfQRRZRLVKUjrilUmVxo22zuqF/T1E0sSRWi9fBT6ju2QK1sfD3ou\nnDqxgq8/cRhTx1cgCARveOPVeNNd1/FNUAeAMLDhtGfhtGbhtmdpbM2t3VyUCFD1EZSHd0MzJ6CX\nJrIenkt9J+6KqeC2PeO4bU++4lbb9vHqdAPHTtHjlVN1/Pi1JRx+NX/QEggwOVqicrS9gqsnq7hi\nWxnjQwbfQ+QSRT+DJPlRgAVrCXPtBcy1F2lqLWKuvYjp1tyapb9ThrQqm+M0jDFzBONsvtOYOYJR\nY3hgRMmLYlh+CItJDY0jlg9h+RHaQQh7VV2w4YR+BRAVoPCsJBLAkCVUBQINMbQogBL4UFwbsm1B\najUhNhoQV5YgtZpQPBeK70LxPCi+CyHtbRIEyNUqHXI3XKPp0BCU4SEoQ0OQh4ZoWaV02S30sBGy\nLKI2bKA2vLk0RWEM2yoIEhOmPPZgWz6slofZ001EXcx/0nSZDtMrKZkkGSaLTQVGSYFhsvKSAkka\njJ8LpxNCCIioQBEVANUtn58kMeLIL/RAdQ7di4plxU15Awe+20B0ViKlZFKUbbJb2HA3F6k8LxXy\nZ1qxb6v0tQjZU6cQ2TbKd/zXi/aa9WUb//6vL+LwC9MAgBtunMBdP/cTfBnsy5A4CuBYc3BaM7nw\ntGcReKs3FyRQjRGUh66GZm6jwsOkRxD6+k+sg5KhdMw3AgDXD3FytoXXpps4Pt3AazM0/e6hNr57\naDprpyoidk2UceW2Mq6YqODKSZryuUeXNoooZ/sZrSZJEjS8Fubbi5i3ljBvLXbEx5aP4+WlV9e9\nbk2rYMwYxog5jDFjmAnSEEYNKk+mcvF7Rs9EnCSwgwhtP0Q7CGH5IdpMXtqp0KQxy59ZaNZiSCJM\nRcJ2TYcpizBlCaZMe11MWVqVijBYnPbIdEPkOPBXVuAvLcNfXoG/vMwOGntLS3CmpmAdO7bxRQiB\nXKlAGWZyNDQEZaiGsN3CoutDGapBHqpBqdUg6nrXX3+/I0oCylUN5ermK8KmK+dRSfJhp7LU9mG3\n/Ty2aLqybCPp4ndJUSVIcoIXvvsdGKxXKRMpU2XilB+qdv4eJjn9CyECEwwNCra+p2WSxIhDj/Y4\nrRnKlwqU2yFYaY9V4Lfg2gtrFprY/J7FVbKkZT1PadztqoN9/ZTWTIfFXYSFElwnwHe+cRTPfuc1\nRFGMyZ1VvO2//wSu2j16wV+bc2FJkhi+swy7NZPJjtOagWcvYvWnHLJWQ2V0D/TSBPTSJPTStr7o\n4blQaIqE668YwvVX5P88kyTBQt3B8ekmTsw2cWKmhZNzTRyfbuKVqXrH+boqYed4Cbsmytg5XsLO\n8TJ2TZQwOWJC5JOQL2kIIahpFdS0Cq4fvWZNfRzHWHbrWLCWMN9ewoK9hHlrCQvWEhatZbxan8LR\n5ePrXluXNIwYQxg1hjBiDLN0iMnSMIaNobPuVeqQGiYvLRZbQYh2QWrafpj11HSrNLokoqSI2KHp\nVGYUKjAlmYpOJjmF2JDFizI/RtR16LoOffv6K+EB9O83smwqTMvLLF1BwFJ/hR7u7Bys1453nPvS\nV7/ekRc0DcpQjfYo1WqQa1UWVyFXa1SaalUotRoEZXCGkxNCoOkyNF3GyNjm7ZM4geMEVJisVJx8\n2FYuTmlcr7cxc7qBONr8N1YQCOthyuVINzplSTc7685m7ybO5Q0hQrbiHc5KpBLaI9XR8+R29k5l\nklWoZ0Lluw0kcbD2wiP3dPX6fS1C6Wo7lQsoQkmc4NDzU/jGv7wI2/JRqWn4mXe+DjfdugOED/Xp\nO6LAgd2egdOagZOls4gjv6OdKOkoDV0NvbSt46B/6JwzQQjB+JCB8SEDb7gx70mIohjTixZOzrVw\ncqaJE3MtTM3R3qSjqwRJEgkmR03sGCtlx/axEnaOl1AxFf5G3AcIgpBtIvu6sbX7msRxjLrbxKK9\njAV7CYvWCkuXsWivYMlexqnmxvt6lNUSRvQahvQRBG2C//zBMlSpAlk0QQQdcSLDDRMmPBFafpD1\n4nQjNQIBTFlCWZUxWdJRUkSUFIlKDZOYPJ/24EgQ+/x9gRACqWRCKpkwdu08Y9vIceDX6/CXV/DS\ngQPYOTSEoN6Av1JHUF+Bv1KHv7LC9lw68ye+omlQOapVIVermTjJVSpKcq2aCZSoD1ZPMkmFxVSw\n2UevBw4cwG233QbPDakcWVSUHBanwmQX8s2629XCEAAgigJ0U14jTbohU2kyqDzpRt5G12X+vMTZ\nELrQhApRUoGz3GIzjkMmS27W43T0+OrRO+vT9yIkmib0nTsuyPXnppv413/8T5w6vgJZEfHWd+7B\nT7/5GsgyH4d7qZMkMV2SsjWdi09rBr670tGOEBGaOQa9PJn18OjlSchqdaDeaC8Goihg10QZuybK\n2HtL/ol0FMWYW7YxNdfC1Hwbp+ZbODXXxtR8C1PrTEA2dRk7xqgkTY6WMDlqYvuoiclRE2W+SmPf\nIAgCho0aho0argftUUqSBHYYoeXR3pglx8Fcu4kF28KK66DhBbCCCG4IhImI5VDBSpu+jU1lzuSz\no0gCiURQxATDmoCyIqGqKRjWdIzoBsqqjJJCBafEBEeX+Cffm5H1ME1OQnQdbL/99nXbJVGEoNVC\nsFKHX68jqNepLDUaeVyvI6g30Jyd3VSaBEWBXK1QYUqPWhVyJS3LU6lSgagO1tzdYo/T8Gh3k++j\nKIZjB7Atv1OaLDpEz7EC2Laf1Xe7qh69IUDXZbbhbkGYWJyVG3K2Ka9uyHzoHqdrBEGCoJQgK4Vp\nKscPdHVu34qQX6/DnZ3F0O23nfdN5zw3wFNPvoxnv/sakjjB626ZxNv/+42oDvHegEuRKHThtGbY\n0LbpTHriVV2lklJGZeT6XHrKk5fdPJ5+RBQFbGc9Pj9dKE+SBPW2h+kFC6cX2jg938bphTamF9t4\n9XQDL5+sr7mWqctUjEZMbBs1sW3YwLYRExMjBkaqet9/Wt9vJEkCJ4zQ8kO0PDoEjR7BOmVUfqKN\nloqGzA5AEQUMM2nRZQF2cxlDNR1x4iKILPhhC3ZQR8tbRsNZgBU0sNFk3nSI37BWw5BezY6aVsUw\nS4f0KqpqGUIfbnB6KUBEEUqNzhva7LGcSlObiVEdQaOZyVNQbyBoNqlANRqwT04h9s8wn4khaBqV\nowqTpEolk6Q0lissX61A1PWBewAXRQEltndSt6yWJycVpbTMZlJlB3BtmtaXbcRdzp0jAqFypMvQ\nVsmSpq8TM9nSDJkPreZ0Td8+AabD4s7n/KAkSfDjQzP42uOH0Wq6GBoxsO/dN+PawspZnN6RJAkC\nrwG7OQ2nPU3T1jQ8Z9XysESAbk5AL0/CKG9n4rMdssoXtOgnCCEYKmsYKmsdS3sD9A14fsXBzJKF\nmcXCsdTGiZm1c5EAOtxubMjI5WjYwPiwgYlhA2NDOmoldeAefs4GL4zQTOXFy6WmWYiLkrOx2ORo\nEu2lubJqoMx6ZsrsKMZlVUJJkaGuesihSzf/lw2v74YeVpwGlp06luwV1N0Glu06lt0GVpwGVpw6\nTjZO49jKiQ2vQQhBVS1jSKuipldQZfOj6FGlqU7zujRYQ7fOJ1SaqlBqVQBXnrFtkiSIHDfrWaKS\nlIoSTcNmnrdeew1JGG5+D5IEqVyGXCkzQSpDrlQhlUtUnCqVLJYqdK8oQRu8n/nZyFOSJPC9iEqS\n7cO2Ajg23eg2zbs2lSnH9uE4ARyLLhjRzbynFFkRmRxRMdL0VKjWiZlMpeV82fLBom9F6HwvlLC0\n0Ma//eMP8drRRYiSgDvffj32vvVaSHwYXE9I4giuNQ+7NQ27RYXHbk2vWaJalA2Uh3ZDr2yHUaLS\no5UmeC/PZY4oCphkw+Gw6l9AHCdYariYWWpjdsnG3LKN2SULcyymeyEtrLmmIosYq+mZII0P6Rir\n6RgbMjBW0zFc1SBdhp8yhjGdR9PyA7S8kEnORnEIv4tlf1VRQEXNxaYoMlRuZFQKkiNf4O+rJqmY\nLI9jsrzxh1pJksDybSw7dawwQaq7TSpKbgN1p4EVt4np1hxeq0+d8fVkUUZNLaOqVVDVyqhpVZbS\nfFVN0zJMhW9MfLYQQiAZOiRDhz65dmXD1SRJgsi2ETSbCJstKkipPKVlzTz2FhdhnzjZ3b3IMuRy\nGVK5RCWqXM4kSUrLS1SupBJtI5VMCNJgvVcRQqBqElRN6mpZ8pQkSRD4qUAFcJyiMNHDdfyO2HUC\n1FdseDOby28RSRZygdIkaIYCTZegaVSWaLmcyZOmS1msajLfKqLP6Nu/wNaRlwBBQPm6a8/pOnEU\n45lvv4qnnnwJURhj954x7HvXzV2Pq+WcO/kCBkx6mtNw2rNrdkpWjVGUh6/NenmM8nY+l4ezBkEg\nGBvSMTak45Z1/j04XpjJ0fyKjYUVB3PLNuZXbMwvOzi9sP7GiAIBhipaJkejNR1OswVXnsZoVcNo\nTUetrPV8+B0djhYXBCZgvTUhml7eY5PGVrD5juSSQFBRJEyaGuuVkVBRJFRUeZXo0LzSh8JICEFJ\nNVFSTVyBjeedJkkCN/RQd5uou1SW6k6T5enRcJtouC28Vp9CFJ/5+ysSARW1TMVIK6OsUkGqqCV6\naMV8Gbo8eD0P5wtCCCTThGSawORkV+fEQYCw3UbQaCJstRAwWUrjsNVC2Gpm8VbkCaDzrHJRooec\nxuVUmvI6upBFCYIyWIvGEEKgqBIUVUJ1iwuTxVEM1w1ZrxOTpFSmCgety49208XiXIAuOrU7UFQJ\ngpjguW8+BTWVJU1ioiRB1fIyNRMoKlqqJkFW+PzEi0lfilAcBGi/cgzm1Ved0z4FC7MtPL7/BUxP\n1WGWVex710143S2T/BfwAtExtK11Ouvt8Z3ljnZEkKCXtzPh2Q6jTOfziNJZLifC4RTQVQlXTVZw\n1eT6mzDbboCFFQfzKzYW6w4W6g4WVlhad3B0qo4jJ/JFN7568LksFgSC4bKKkZqOkaqGkaqO4YqG\nkarWkRra1pZ+TnttmkxuWkxumn6IlhewlJX7IcJNxuATACYTmZ1lnfXUyKioEioKXTiAxrRck7rf\nq+ZyhxACXdagy9oZe5gA1ssU2EyOWmgwUWp6bTTdFhpei5Z7Lcy1FzfcoLaIJEgoqyYqSgkVrYSy\nUkKZSVMxLSs0LqnmwGxgeyEQZJntldT903c6z4lKUgtBKxWmNpWqNG61WL4N59RpxJ7X9WsQWaZS\nZOZyJJVMBLaNky8dzfKiWYJUMli7EiTTGLhhfIIoZKvbbZUkTuD7IZOjsEOUXIfKlOd21nlOgEbD\nQrPhwp1rbXWvUQgCyYWJyVJRlNK6rEyXoKp5marRvNCHH0j1gr4UofaxV5GE4Vkvmx1HMZ5+6hi+\n/eTLiKIYN9++A3f/j5vO6o+Esz50aNsC7NbprKdnvaFtkmyiPHwdjMp2GOUd0MvboRmjIAIfksjp\nDYYm48pJGVduIEpRnKDecrGw4uDZHxxGdWQ7FusOlhouSx28MlXHSyc2fvfTVRFDNQ2Vqo5SRYVm\nylA0CaIqIhEJIoHAS2I4YYymH3TVayMLBBVVxq6yzkRG7uy1ScVGlVG6DJZ57gcIISgpJkqKiZ2V\nzXsg/NBHw2tRUfJaaLrtPO+2aJnXRstrY95awonG6a7uQ5VUVBSTCpJK76eslFBSjSzOylmqyxoE\nwh+kzobOeU7dk/Y+5cLURtimshQ2Wwgti8Ztix10eJ8zPd2x0t7Us89ven+iaUIyDdpDVipBNA1I\nhklT1mvWERsGJNOAaJoQNe28L1J1qUIEwgRD3lJPFJ23eHtBpEK4LpUk1w1pmsZuAI/1WNE2tMx1\nQywvWfC9zf//r4esiJkUrZYkVaPvOTSmqZLGWhrLUFURknx591D1pQjlCyXs2fK58zNNPPH3L2B6\nqoFSWcV/e88tuOGmzccWczYmX7Utn8/jtGeRxJ3jcotD29LeHlmtXNZ/YJzLD1EgGKnqGKnqsJYM\n3H77bgBprw3tkWm6AeZaDuabLpYsH3XXR8sP4UQx/CRBJACxQFAHQJd1iIAwAgp/MkmSIAliIEog\nxYBKCHSRLu1c1WQM6wpGTRUTVR2TNR2j5ctzDtMgoUgKxqQRjJkjmzcGEEQBWr6FpttGy6fy1PIs\ntLw2Tf12nvctnG7OwotWLy2+PoQQlGSDiZyBkmrCTGPFgMnqTIWmi/4KVpwGTMXgPVBnydn0PgHp\nohEOwnYbP3zueVy3axciy2LixOSJxVFaxur9pWXEfne/ExmEQDT0XJAMIxepVJgMg7ZJ5YrlRZ3V\n6zqIePl/4NkhUji7EUxxnMD3qCh5bi5JqUB5xdijkuV5YVbnuiEadQdhsPn8zg2/BlWCooqZMCmr\nBErRJChKUajEvF3xHFW65Baj6FMRogslVF7XfY9QFMV4+luv4P997SiiKMYtP7UTd/+PG6HzfUe6\nJkkSBG4d8E9j5tjymYe2lbYVhrfR+Tx8aBunn0iXfm56+ZLPq+faTC8DX/724a7n2sgyQU1VOlZE\nU0FA4gTwYwReBN8OYLV9tFse6uxYbHnwN7k+IUDFVFAtqaiV1CyumgoqpoJKSUW1pKBq0rqyqXBx\n6nNkUcawXsOwXuv6HD8K0C5IUtunBxWnNG+j7bVp6luYt5c2nesEAI+e/MfsvkxZp5IkGzAVAwaL\nDUVHSTFgyAZMRYcp64XYgC5rEPmIgC1BF42gsiFsm0Dtlpu3dH7s+whtG5FlZ4IUWRZC287lKa23\nraxdZNvwFhZg2w62PJEGgKCqTKR0Kk66nud1Jk6GAVHXqEAZetZG1LXsnMt9vpQg5PtCnQtRFMMv\nCFIqVL4XdpZ7IXw3hOflcpW2abc8eIvWllbwW/P1iKRDjhRVgqKIBWkSIStpnQhFKaadZTJLRfHs\nh2/3nQglSYLmiy9BGRmGMrrZHsuUpYU2vvR/DmJ6qoFyRcN/e+8tuP4nJi7wnfY3cRTAtebo3jyt\n6SyNQgcAMM32URNlo7CAAR3eppljfGgb55IjSRJ4UZztV7Pecs/NVfluln4ukWjtXJtsKJqcpRVV\ngnqW/6yTJIHjhai3Paw0qRw1LA+Nlod620Oj7bPUw3LDxcnZ7jY6NDUJlYIYVQpHyVBQMRSUDJnm\ndQVlU4am9N3bBqeAIsrZRrbdkiQJvNBjYkTlyApstD2W+jaOnz4BvWrC8m1YgQ3Lt9F0W5hpzSNO\ntvZJtCqpTJDoYSo69ELekLUNYp3N39Ih8fegrhEUBYqiALXufyeKJHGMyHEQ2Q4VJjsXpdCi+ci2\naa+VZSNy7M627Tbc+QUkQbD5i637BQhUkHSdSZO+6mBlmrZBXoegabRc0yCol+dWCqIoZBvWnith\nGMFjEpWKk+9HmVBl5V4I36Plvs/qWDvfC9FuuvC9CFEXq5GeCUEgkJlMpVJ125u7W/Ss797RvLk5\nBPU6RvbesekvapIkOPTcKXzlSz9E4Ee45faduPvneS9QkSRJEPotNqRtJktdewHoePMiUI0RVEau\nw0ozwbV7Xs+HtnF6ymqxWb2vTcfhhWj7AfwuNvJLl36+oqpnAlNmiwYU59qUFBlHf/SfeP1P3XLB\nv1ZCCAxNhqHJ2D66+X5YYRSjaflotD002z4alsfyLG77aNk+mpaPpuXh2GkbYZef8CmSgJKhoGzI\nKBkKSrqMkiGjzKSppOdlJV2GqdMyU5chX2JDIjjdQQiBJmvQZA2j5vC6bQ4EdE7EatJV9iwmUXbg\nwA7ymIqTA9t3YAWs3ndgBw7qbLnyrYoUQIVPl3UYklYQJA26pK2NV5VpsgpD0qHJKjRJ5XOlNoEI\nQjaXqPsdhdYSBwEix+0UJcdBZLHUSctclmdx2s5xEdQbcGdmu9ovauMviFAhKoqTqkLUWZmms3qV\nyZQGQaUSJWoqBE1DfHoa9th41kZQ1cuq50qSREglEWbpXH7iOVEYw/cL4sSkKfBzicqFKhcp348Q\nsLrAp+e5bohmwwU23b6ZfS3n5Su4iDTZ/KDKJvODXCfAv/7Df+LwC9NQNQnvvu823HTrxkuiDgJx\n5MNpz8FpzcBpz7B0FmFgdbQTRBVmdVe2Lw/dkHQSokR/4Q8cOIDq2Ot68SVwLmPiJIETRJnYtIPO\njTkz2fEDtP2oa7GRBYKyImOypGf72BSXe66cw9LPl+p6A5IoYLhCV6jrhrTHqWnlgtSyA7RYvmX7\naFlBHts+lhouTs61tjQiRlXETI5MLZUkltdlmJoEU6fCZ2oyDF2iqSbB0GRofFnZvqO4yt5GEnUm\n0t4oO3BhBTacwGUyVTxomVNIncCFHdJ4yVmBH51lbwNoD5UuqZkkaZIGXaKSpMkatLSOlelyHq93\nyKLMf4/XQZBlCLIMuVI+52vlUuXkh5vnY9ct1Lu0zi2W03xk2/CXlxG77pbv4QdrvkABgqLkwqTm\nkpSJlZqmxXqFipaqdtQJajFW+lq0REmALp2f3qqUAwcOdNWu70QoXyhh4/lBU8eX8aX/cxD1ZQc7\nrxzCu++7bUsbd/U7SRzBc5bgtGbhtPPDsxexeh1HVR9Baegq6KXJbKlqRR8G4Z+Acc6BtLfGCkK0\n/YLcMMFJpaZdEBwrCNGF10ARBZQVaY3YlJS1+9mUlbMfjjZIFHucto10v4daHCew3YBKk+2j7QRo\nZ2mAthPAcgK0Hb8jv9RwcWqu1dXPu4ggEBiqBEOXacoEybWbeObVF9jXIMFQJegqrdOzuDMV+fyo\nvqDYGzWMsxu6BQBhHMENXDghk6TAhRvS1AmcrNwJvbxdIXYDD07oYtltwAu7X+Z6w69JpFKkSgpL\nC3mRprRMgSoW2+V5VVTydqICRVKQnMVcncuR8ylVAB3+F/s+kykXsZeLVOx5TKRcxC6Np0+cwFit\nlrd1PdrOcRF5tF3QaiFy3I4V/84JQiAoChMkpVOWFKUgTKlAKVlPlchEKs0X46xOSa+jgEjSZfO+\n2pciJCgKzGuuXlMXxwm+++9H8e2vvQwkCd70tutw59uuv2zXUk+SGL6zAseag9ueo7087Vm47fk1\nm5GKko7S0NVMeCZhlCahlSayXh4OZyNitmiA5YdoB2kawvKjTGraxTIWb7aXTYohiygrEsZNlQqN\nnItNp9zQ4WjqZfr33I8IAqHD4wwFk10OQ0iJ4wSuH8JyQlguFSQqTQFsN4DthrDdAJYbwnYCWKzM\ncgM4XoiFFRu2F2Y9Uj86cWJLry9LQiZJxUNTRZoqEjSFxSyvqyKLxaxeU6SsTFaBUBcAABWPSURB\nVOb7LV2ySIKYbZh7rsRJDC/0qSBlsuTBCz2aX3U4AW3nhT7csBjT+obXght6501ilON/xyRJLciS\nAkWk8qRIChRRzuqyclFmeRlKRz4tk7PzFFGBMCBLaAN0+B/tydHQjY8vHDiA3esMFV2POAiYTDFZ\n8nKhonlaHnv+mrLI9RD7Pqv3EHks9j2ErRaihUW6KuD5FmTWuyUoCpXOTJbWO+Qzl8mFvJyXE1le\nU34hBKzvRMg6cRKV1+2BIHXeemPFwZf+70GcfHUZlaqGd917G67c3d0SpJc6tIdnGa41B6c9x9J5\nuNY8krizu58IMhvKti07tNI2PpeHgzhJ4IYRLCYzdhDRHhuWWj5LC3EqPt3+C9UlASVFwk5Nz0Sm\nJOdCU1LEjjKT72czsAhC3gs1dpbLyiZJAteP8L1nD+La61+XiZPjhXDS1KNClcchXD+vc7wIC3UH\njhci3moX1TpfE5UjEaosQWWxptBYLcS0DS2jqVSIWSqLUAp5RRYhiYT/L+8xAhGy4X7niyRJEMRh\nJlOpKHmRz8poSvM+vKhQFvpwIw9BFGBxZQmKrtJ2kY+2b2HRWYEf+ki2urPnJoiC2CFNiihDEVgq\nyZBFJc+LMmR2FKVKFmTIosSuIdE2Qtqe5hUhj2VBgiRcPr0RQN57JZU2n/95NtCtGALao1WQqrSH\nK/Z9JlOsPhWrtJzlI8/vLGPnxL6PyHEQNBqIPf/c5md1QSZIqUDJMi0r5AVFAd7xtq6u13cihDhe\nMyzu1ZcX8I//+wAcO8Cem7fh537xJ/tyQYQwcOBZC3Ctebg2S615ePbSmh4eIkjQzAnopXGWTkAv\nbePD2i5zqMzEcMIQiwHw0lKLyUsEO4hgB6ng5HmLiY4dRF2/DQoEMGUJJVnENlOlsSLBlMVMYEqK\nmJWnddIAfULI6T2EEOiqhIohYtfEuQ2BSZIEQRhnguT6EdwspsLk+lSwXJ/Gnh/BSVOvkAYRPD9E\nw/Lg+tE5C1YRQSBQZQFKKkkd6dpyRSqWCZClQjtJhCwLeZssT9vIEj1flkX+gcUFhhCSyUFZPfsH\n4nQjz9WkouVHPvwwyITKj6hw+VHADlrmhTT2Ih9+6Bfq0zZ57EU+gihEy2tn5WezwMVWoIIkQcpS\nCYog01SUIQm5OMmFWBI787JIxSotkwQJkiBS8RIkSEzCJEFk58t5zM4ThUt77iIhBIT1slwo2SqS\nRBHiMMwkKQ6YMAUBYt9D7AeZRCVhkOf9tE1BtIIQse9nIkfrA3pNVh5aNssHHSsPapetCAGoMBFK\nkgT/8c1X8K2vHAERCN75Czfj9juuvKR/IaPQg2cvwrOX4NqLLF6Eay8i9NcueStIGvTydmjmGO3d\nYfLDhac/CaIYbhjBCSM4YQw7YDFL7WIchKwNlZi0Ln+kIsD3j57x9SSBwJRFVFQZkyUNpizBkKnA\nmIoIU2IpExpDFlGSJWh8iA9nwCCEZMJQPU8rIaUEYQzPzwXKD2J4fgQvoGU0pmla7wd5mRdE8IPC\nuSzvBRFatk9jP9rynKutIAoEiixAElNJoqIkS1SkXMfGEweeYeWd9dkhCpDScpFASuuz8lWxJEAS\n16YSS7mcdU9RtHARPicO46hDmAJ2ZPk4QBCFWZsgChHEQRb7TK58Vhay+mK7kNUHUQg7cNGIWgji\nEME5LIxxtmQCxQQpCiOYc09k5RIrT2O5o1yEWIiLKS0XO64hCgJNSVomFNpKEInQcX52DSJm+Qu5\nEiIRRYiiCFG9+FMvkiRBElJ5OsT2HN2MvhSh8p4b4DoBHt//Al760SzKVQ3vff9PYeeVW9uN+UKQ\nJDECrwnPWYbvLOepvQzPWULgNdc5i0DRh1AZuQGaOQ7NHMtSSSnzB9IeEycJvDCGG0VwQyoybhjD\ni6IsdsKICU4uOml5KjZOGHU9b6aIKgowZBFDqoztTGZ0WUR7eQlX7ZjM5IYetGcmjRWBD6PhcHoN\nfahXULqAa/YkSYIwSuAHEfww6pCpII1DFhfqgzCCH9LYD2IEYYQgjGl9FrOU5QPWznZDmg9jhFGM\n4/PzF+4LXAeBoEOM0lgWSV4upPUkbyMKEDvyJGublosigSwKEEUBkkBoKrJ0VbtiXhBIx/VFgdAH\nV3auKJCOusv1/zN9EKd7O11skiRBFEfw41yWqEiFCKIQYVyMg85y1i5kQhXEIcIoRBhHeXlWlraN\nEBbKwjiCFdIVDoM4RMTO7WZT4osFIYRKVCpHRMilqSBMHbEgQCBry7Nzs7SzvcTEi5YLWX3+mrRM\nWHOd9PWEtXHajogQWFkWs32luuWCi9CnPvUpHDp0CIQQPPTQQ7j55nzH46effhqf+cxnIIoi3vzm\nN+PBBx/c9Hra9u1YsQke+9vvYGnBwlXXjuAX7rsdZvnimGcUuvDdBny3joClvlenqbMC31lZM4yN\nQqBoNZRHroOmj0I1R6Eao9CMUSj6MAShL530kiKK6UplfhTDjyL4UQwvSuBHEbwohhfGWb0b0Td/\nL6KHG0YdqZeJDq0/WxSBQGdiMqIr0CURuizSVBKhSVRyDEmCLgvQJSo1ukTP0SQR0gafeh44sITb\nr99+1vfG4XAuHwghkCUCWRJg4tx2oD8bnnv+edzyk7cyMaLCFIYx/EK+eITRenGEMErWpGF6XhQh\nihIEEb12GHVeJ4oShHEM240KdQnCc9ys8UIiCASiQCCJBEIqTAJhD3R5eRqLApUtkbXL8qysUa/j\nqSMHsrK8jl5DILSdIBCIhEBIr5mWk/zaHWXsdQQBhZhdo/A6AjtvwzJCr5HG652TxmcLIQSSSIfB\n9eBPAcD6QxRTQQsL8pQKUthR3tkmSlLRivK40C6K0/JiWZzVhawuSo9k1bmsDa2L4URBZxkr7zf+\n4Nr/2VW7C/r0/dxzz+HEiRPYv38/jh07hg9/+MPYv39/Vv/Hf/zH+Ou//muMj4/jvvvuw913343d\nu3ef8Zoru27F1z77HQR+hDveshs/884957wqXByHiAIHod9G4LcQeOzwWwhZGngt+F4DcbjxWvKS\nbEIvb4dqDEPVh6HoeapotYGQnSRJEMbsSOibEs3HCKIEAcsHq/J+lKdBHHfU+xGN/TiVnBhBFLN8\nkpVF52FVFAJAlQSooghVFFFVZWiSCFUUoDFx0SURqiRCY2W6lKZUXHSZtRX5uHoOhzMYCIRkCzz0\n7OlzA+gDaMLkKEEUxR1xKlZpm1S2ItYmLMRRXLxGZz47v3CdMIoRF8pTWYtZGhWuEcc0pm3oNf0g\nyV6H1tPjjPPOTp66eN/cCwiVIqwrSZlQsTzZpFwkBIQgK6O9cbQdSc9j5xJCCufn0kZI53UJAb1u\n4Vppu7m5Bl6cf5FdCx1tsrJVcd5OhEDEdduJhEAmBETIzwFYO5m+PoCO+yUCQEDzpHCPxTwICuUs\nRWccI0aCBDFixHHE8jHihMZxQo8EMaIkRpJEiBAjSWJESYQ4SfK2MS1L28bZEdG/gSRGFEeIE1bP\nZCxKInZunEkdrU9fI2bnd9/7dkGfzJ955hncddddAIDdu3ej2WzCsiyYpompqSnUajVMTEwAAO68\n805873vf21SEnnVqkE0fd/3C9bjm2mEsN2eBJKHf6DhAHAVIIp/GoYc4ChBFPuLYRxS6iAIXUegg\nDBxEoYMocBBHfsdrJFj78CpIGmR1HFKpAlnND0kt01SpQBDlbP5GkgAJEtgJYMdAYocAgmwMd5LQ\n9Vtouzwfs/OShA7JyuoS0F85Vh4ntDwGa8fKoiQ/N42jJMnycZwgKpTF7A0iYgITFfJZmuT/fMMk\nQdsC/umpw/k5cYwgzs+/0MgCgSLSseQq21NGFQUoqw51VZwLDquTBGiiAEWkgqNKIh9KxuFwOJcZ\ntIeADke7XEjS9/P0YKL1gxcO4aabbmblVKrigjxFcVyI8/LVbTrz7FkhYs8Nq+rS9nHMnlHite2K\nZXGcP4+sLqcx8rLV6TqvEScJYtb7l9XF6XNRgijOv1/ps9JF4cdr531zNieTMaQiJoFAAjK5A4Bc\n0FAQwqLg4ee6e70LKkKLi4u46aabsvzQ0BAWFxdhmiYWFxcxPJzvMj08PIypqalNr/naHVcBAF6e\nd4H56U1aq+w4D0QA1t1DzWbH7Pl5nUsUAjpZVhIIEANxFEMSCFRRgCiLkAXCJuyRwkHzciGVWZ0s\nrqoTBSgCHdstCwLL03JZEDLxkYX8Ew8Oh8PhcAYRkg5hEzvLy7qI0drFn5fTT2QfLrMPkaOY5Qui\nVBSpOBUpdiSrRAxI2yNr8+KLR3D99TcgZp92x5mI5a+bJHRIP5B/uJ3ExQ+3E7bXauHD76xd/sE4\n/fy58z4B5Oen57EP2ZPCfUdx3ja9TxSum14rOy/Jr0HTzusW8+lrdF5n/bbrXod1BmT3wy6WAEji\nvH163Zg1Tq/XLRd1rNaZNgvrdiOx/zXBd03uHcXvvb9hq47mETu6IAZ1zXPbs3uwOHDgQK9vYeDh\nP4NLA/5z6D38Z3BpwH8OveeKMRXuyvF16wg7AEBct0Wh4RkbXCqQVWl/cUFFaHx8HIuLi1l+fn4e\nY2NjWd3CwkJWNzc3h/Hx8TNeb7218TkcDofD4XA4HA5nq1zQAbN79+7Fk08+CQA4fPgwJiYmYBh0\n/dAdO3bAsixMT08jDEM89dRTeOMb33ghb4fD4XA4HA6Hw+FwAAAk6XZM2lny53/+53j22WchiiI+\n9rGP4cc//jHK5TLuuusuPP/88/jTP/1TAMA73vEOfOADH7iQt8LhcDgcDofD4XA4AC6CCHE4HA6H\nw+FwOBzOpcbls5Ykh8PhcDgcDofD4XQJFyEOh8PhcDgcDoczcHAR4nA4HA6Hw+FwOAPHRd1H6Fz4\n1Kc+hUOHDoEQgoceegg333xzr29pIDly5Ah+4zd+Ax/4wAdw77339vp2BpKHH34YBw8eRBRF+LVf\n+zW87W1v6/UtDRyu6+JDH/oQlpaW4Ps+HnjgAbzlLW/p9W0NJJ7n4Wd/9mfxwQ9+ED//8z/f69sZ\nOJ599ln81m/9Fq677jokSYIbbrgBH/nIR3p9WwPJE088gUcffRSSJOE3f/M3ceedd/b6lgaKf/iH\nf8Djjz8OQgiSJMHhw4dx8ODBXt/WwGHbNv7gD/4AjUYDQRDggx/84BlXpe4LEXruuedw4sQJ7N+/\nH8eOHcOHP/xh7N+/v9e3NXA4joM/+ZM/wd69e3t9KwPL97//fbzyyivYv38/6vU63vWud3ER6gHf\n/OY3cfPNN+NXf/VXMT09jV/5lV/hItQjPv/5z6NWq/X6NgaaN7zhDfjsZz/b69sYaOr1Oj73uc/h\ny1/+MizLwl/8xV9wEbrIvOc978F73vMeAPS59atf/WqP72gw+dKXvoRrrrkGv/M7v4P5+Xm8//3v\nx1e+8pUN2/eFCD3zzDO46667AAC7d+9Gs9mEZVkwTbPHdzZYqKqKv/qrv8IjjzzS61sZWF7/+tfj\nlltuAQBUKhU4joMkSUBIf+7o3K+8853vzOLp6WlMTk728G4Gl1dffRWvvfYaf+DrMXzx2d7z9NNP\nY+/evdB1Hbqu4xOf+ESvb2mg+dznPoc/+7M/6/VtDCTDw8N46aWXAACNRgPDw8NnbN8Xc4QWFxc7\nvpChoSEsLi728I4GE0EQoChKr29joBEEAbquAwAee+wx3HnnnVyCesg999yD3//938dDDz3U61sZ\nSB5++GF86EMf6vVtDDzHjh3Dgw8+iHvvvRdPP/10r29nIDl9+jQcx8EDDzyA++67D88880yvb2lg\n+eEPf4jJyUmMjIz0+lYGkn379mF2dhZvf/vbcf/992/6HtEXPUKr4Z8+cQadb3zjG/inf/onPPro\no72+lYFm//79OHLkCH7v934PTzzxRK9vZ6D48pe/jNe//vXYvn07AP6+0CuuvPJK/Pqv/zr27duH\nqakp3H///fj6178OSerLx4u+JUkS1Ot1fP7zn8epU6dw//3341vf+lavb2sgeeyxx/Dud7+717cx\nsDzxxBPYtm0bHnnkERw5cgQf/ehH8dhjj23Yvi/+U42Pj3f0AM3Pz2NsbKyHd8Th9I7vfOc7eOSR\nR/Doo4+iVCr1+nYGkh/96EcYGRnB5OQk9uzZgyiKsLy8vGkXPOf88e1vfxunTp3C1772NczOzkJV\nVWzbtg133HFHr29toJiYmMC+ffsAALt27cLo6Cjm5uawY8eOHt/ZYDE6Oopbb70VhBDs2rULpmny\n/0k94tlnn8XHPvaxXt/GwHLw4EG86U1vAgDs2bMHs7OzZ5xC0BdD4/bu3Ysnn3wSAHD48GFMTEzA\nMIwe3xWHc/Fpt9v49Kc/jS984Qsol8u9vp2B5fnnn8ff/M3fAKBDdx3H4Q8cF5nPfOYzeOyxx/D3\nf//3eO9734sHH3yQS1AP+Od//mf85V/+JQBgaWkJy8vLmJiY6PFdDR579+7F97//fSRJgpWVFdi2\nzf8n9YD5+XmYpsl7RHvIlVdeiRdeeAEAHTJqGMYZpxD0xU/q1ltvxY033oh77rkHoihy0+4Rhw4d\nwkc+8hEsLy9DFEXs378fX/ziF1GtVnt9awPDv/3bv6Fer+O3f/u3s084Hn74YWzbtq3XtzZQvO99\n78NDDz2Ee++9F57n4Y/+6I96fUscTk9461vfit/93d/F+973PiRJgo9//OP8IbAHTExM4O6778Yv\n/uIvghDCn5N6xMLCAp8b1GN+6Zd+CQ899BB++Zd/GVEU4ZOf/OQZ25OED6zmcDgcDofD4XA4A0Zf\nDI3jcDgcDofD4XA4nPMJFyEOh8PhcDgcDoczcHAR4nA4HA6Hw+FwOAMHFyEOh8PhcDgcDoczcHAR\n4nA4HA6Hw+FwOAMHFyEOh8PhcDgcDoczcHAR4nA4HA6Hw+FwOAMHFyEOh8PhcDgcDoczcHAR4nA4\nHE7f8bd/+7f46Ec/CgB49dVXsW/fPti23eO74nA4HE4/wUWIw+FwOH3H+9//fhw/fhwHDx7EJz7x\nCXzyk5+EYRi9vi0Oh8Ph9BEkSZKk1zfB4XA4HM5WOXnyJO677z7s27cPf/iHf9jr2+FwOBxOn8F7\nhDgcDofTl9TrdZimiZmZmV7fCofD4XD6EC5CHA6Hw+k7PM/Dxz/+cXzhC1+ALMt4/PHHe31LHA6H\nw+kz+NA4DofD4fQdn/70p1EqlfDAAw9gaWkJ99xzD774xS9iYmKi17fG4XA4nD6BixCHw+FwOBwO\nh8MZOPjQOA6Hw+FwOBwOhzNwcBHicDgcDofD4XA4AwcXIQ6Hw+FwOBwOhzNwcBHicDgcDofD4XA4\nAwcXIQ6Hw+FwOBwOhzNwcBHicDgcDofD4XA4AwcXIQ6Hw+FwOBwOhzNw/H/g2xA41w74FwAAAABJ\nRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Here we show what a chi-square looks like\n", "x = np.linspace(0, 8, 100)\n", "y_1 = chi2.pdf(x, 1)\n", "y_2 = chi2.pdf(x, 2)\n", "y_3 = chi2.pdf(x, 3)\n", "y_4 = chi2.pdf(x, 4)\n", "y_6 = chi2.pdf(x, 6)\n", "y_9 = chi2.pdf(x, 9)\n", "\n", "fig, ax = plt.subplots()\n", "ax.plot(x, y_1, label = 'k = 1')\n", "ax.plot(x, y_2, label = 'k = 2')\n", "ax.plot(x, y_3, label = 'k = 3')\n", "ax.plot(x, y_4, label = 'k = 4')\n", "ax.plot(x, y_6, label = 'k = 6')\n", "ax.plot(x, y_9, label = 'k = 9')\n", "ax.legend()\n", "plt.title('Chi-Square distribution with k degrees of freedom')\n", "plt.xlabel('x')\n", "plt.ylabel('p(x)');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We calculate the $\\chi^2$ test statistic as:\n", "\n", "$$ \\chi^2 = \\frac{(n - 1)s^2}{\\sigma_0^2} $$\n", "\n", "Where $s^2$ is the sample variance and $n$ is the size of the dataset. The number of degrees of freedom is $n - 1$ and this is used in conjunction with the test statistic to determine the critical value(s) of our $\\chi^2$ hypothesis test." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false, "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0sAAAHiCAYAAAA5yFd5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XuYJHV9L/53d/V17jN7mWUHWGAhKyBEWIUQVNaTReGo\nSTwahR8R0SSeRPGQA49PEm6S82BQjDHkYNSjR/QkGhJAVKKAKywX2QWWBbmsC8vO3i8zs3Ptnr53\nVf3+qP7Wrau6q29VMzvv1/P4yF56u7qnu77fz/fz+X6+IVVVVRAREREREZFFOOgLICIiIiIiWogY\nLBERERERETlgsEREREREROSAwRIREREREZEDBktEREREREQOGCwRERERERE5iATxpHfccQdefvll\nhEIh3HjjjTjnnHP0PysWi7jllluwe/duPPDAAwCA559/Htdddx3OOOMMqKqKdevW4eabbw7i0omI\niIiIaInwPVjatm0b9u/fj3vvvRejo6O46aabcO+99+p/fuedd+Lcc8/F6Oio5XEXXHAB7rrrLr8v\nl4iIiIiIlijfy/C2bt2KjRs3AgDWrl2LVCqFTCaj//kNN9yADRs2VD2OZ+cSEREREZGffA+WJicn\nMTQ0pP96cHAQk5OT+q+TyaTj40ZHR/GZz3wGV111FbZs2dLx6yQiIiIioqUtkD1LZl4yRmvWrMG1\n116Lyy+/HAcPHsTVV1+NTZs2IRKpffnbt29v12USEREREdFxav369Y6/73uwtHLlSksmaWJiAitW\nrKj5mOHhYVx++eUAgJNOOgnLly/H+Pg4RkZG6j6f2ws/nmzfvn1JvE6zpfia3fC94Htgx/eD74EZ\n3wsD3wu+B3Z8P/geALUTLL6X4V188cV49NFHAQA7duzA8PAwurq6LH9HVVVLxumhhx7C3XffDQCY\nmprC9PQ0hoeH/btoIiIiIiJacnzPLJ133nk4++yzccUVV0CSJNx666148MEH0dvbi40bN+KTn/wk\nxsbGcPToUXzwgx/ENddcg8svvxzXX389rrzySqiqittuu61uCR4REREREVErAok4rr/+esuv161b\np//3Pffc4/iYb37zmx29JiIiIiIiIjPfy/CIiIiIiIgWAwZLREREREREDhgsEREREREROWCwRERE\nRERE5IDBEhERERERkQMGS0RERERERA4YLBERERERETlgsEREREREROSAwRIREREREZEDBktERERE\nREQOGCwRERERERE5YLBERERERETkgMESERERERGRAwZLREREREREDhgsEREREREROWCwRERERERE\n5IDBEhERERERkQMGS0RERERERA4YLBERERERETlgsEREREREROSAwRIREREREZEDBktEREREREQO\nGCwRERERERE5YLBERERERETkgMESERERERGRAwZLREREREREDhgsEREREREROWCwRERERERE5IDB\nEhERERERkQMGS0RERERERA4YLBERERERETlgsEREREREROSAwRIREREREZEDBktEREREREQOGCwR\nERERERE5YLBERERERETkgMESERERERGRAwZLREREREREDhgsEREREREROWCwRERERERE5IDBEhER\nERERkQMGS0RERERERA4YLBERERERETlgsEREREREROSAwRIREREREZEDBktEREREREQOGCwRERER\nERE5YLBERERERETkgMESERERERGRAwZLREREREREDhgsEREREREROWCwRERERERE5IDBEhERERER\nkQMGS0RERERERA4YLBERERERETlgsEREREREROSAwRIREREREZEDBktEREREREQOGCwRERERERE5\nYLBERERERETkgMESERERERGRAwZLREREREREDhgsEREREREROWCwRERERERE5IDBEhERERERkQMG\nS0RERERERA4YLBERERERETlgsEREREREROSAwRIRERERLXhz8wXsO5oK+jJoiWGwREREREQL3v/5\n8au44a6nUCzJQV8KLSEMloiIiIhowZvPllAsycgVykFfCi0hDJaIiIiIaMGTFQUAkC8ys0T+YbBE\nRERERAteJVZCocjMEvmHwRIRERERLXiKqgIACtyzRD5isEREREREC54sswyP/MdgiYiIiIgWPD2z\nxGCJfMRgiYgCNzdfwOv7p4O+DCIiWsBkhcES+Y/BEhEF7l8feR1/9b+fRipTDPpSiIhogVJEsFRi\ngwfyD4MlIgrcfLYIRQXmcwyWiIjImQiWuGeJ/MRgiYgCxzp0IiKqh2V4FIRAgqU77rgDV1xxBa68\n8kq8+uqrlj8rFov4q7/6K3zkIx/x/BgiWtxkWRsAi2wHS0RELphZoiD4Hixt27YN+/fvx7333ovb\nb78dX/ziFy1/fuedd+Lcc89t6DFEtLiJzFKxpAR8JUREtFAZmSXuWSL/+B4sbd26FRs3bgQArF27\nFqlUCplMRv/zG264ARs2bGjoMUS0uBmbdrlaSEREzliyTUHwPVianJzE0NCQ/uvBwUFMTk7qv04m\nkw0/hogWNwZLRERUjyjZ5lhBfgq8wYNaWSXo9GOIaOESpRXcs0RERG5EZol7lshPEb+fcOXKlZas\n0MTEBFasWNH2xwjbt29v7kIXmaXyOs2W4mt2s9jfi7lUCgDw5u496MNEU//GYn8P2o3vB98DM74X\nBr4Xi/c9KBZLAIDxY1NtfQ2L9f1oJ74H7nwPli6++GLcfffd+OhHP4odO3ZgeHgYXV1dlr+jqqol\ne+TlMW7Wr1/f1utfiLZv374kXqfZUnzNbo6H9+I/tj4NYBqrVp+I9evXNvz44+E9aCe+H3wPzPhe\nGPheLO73IPTgOAAFya6etr2Gxfx+tAvfg9rBou/B0nnnnYezzz4bV1xxBSRJwq233ooHH3wQvb29\n2LhxIz75yU9ibGwMR48exQc/+EFcc801+PCHP4yzzjrL8hgiOn7w7AwiIqqHrcMpCL4HSwBw/fXX\nW369bt06/b/vuecex8fccMMNHb0mIgqOorB1OBER1caFNQpC4A0eiIiMc5Y4ABIRkTOFwRIFgMES\nEQWOrcOJiKgeRdGqDwolHkpL/mGwRESBY+twIiKqRVVVVIYK7lkiXzFYIqLAMbNERES1KKYjNlmG\nR35isEREgVOYWSIiohpECR6gVSOUymwIRP5gsEREgRMNHrhaSERETmRzagmsRCD/MFgiosDpe5a4\nUkhERA4Ue7BUZJMH8geDJSIKHPcsERFRLdXBEscL8geDJSIKHPcsERFRLfYyPHbEI78wWCKiwHHP\nEhER1cLMEgWFwRIRBU6WmVkiIiJ3YlFNyHPPEvmEwRIRBU4MggyWiIjIiVhUE7jHlfzCYImIAmc0\neGA3PCIiqmbPLLEMj/zCYImIAic27pZlpWoTLxERkRgbYhFt6soGD+QXBktEFDjzxl2W4hERkZ0Y\nJ7oSUQBAocQ9S+QPBktEFDhzeQWDJSIishOZpWQiAoBleOQfBktEFChFUWEuRecASEREdkZmicES\n+YvBEhEFqmrTLjNLRERkowdLca0Mj3uWyC8MlogoUPaDBlmGR0REdrKidUvVM0scK8gnDJaIKFDV\nwRLbhxMRkVUlVkIyrgVLPJSW/MJgiYgCVV2GxwGQiIisRGaJDR7IbwyWiChQ9nOVmFkiIiI7sbDW\nFWewRP5isEREgbKX4bEOnYiI7GRZGysS8QhCIY4V5B8GS0QUKDZ4ICKiekRmSQqHEI9K3LNEvmGw\nRESBEmV44ZD2a64WEhGRnVhYk8IhxGMSy/DINwyWiChQYgBMVOrQmVkiIiI7fWEtHEY8FuHCGvmG\nwRIRBUqUVoh2sBwAiYjITtGDJWhleAWOFeQPBktEFCg9sxQTmSV2wyMiIiuRWZJCISRiEhfWyDcM\nlogoUGIA5NkZRETkRs8sSWHEYxKKJbmqQRBRJzBYIqJAicGui3uWiIjIhdEMKGSqROB4QZ3HYImI\nAiX2LInBj6UVRERkZ+mGF5UAAHlWIpAPGCwRUaD0Mjw2eCAiIhdiYS1caR0OcLwgfzBYIqJAGa3D\ntcGPZRVERGQn285ZAsCDackXDJaIKFCKLbPEYImIiOyM1uFGGR4bApEfGCwRUaDEamEsKiEcDrF1\nOBERVZEVbWwIh40GDwyWyA8MlogoUHodeiiEeDTMwY+IiKpUYiVLGR73LJEfGCwRUaAU2VxaEeHg\nR0REVRRLZol7lsg/DJaIKFCy3uEIiEXDKJYZLBERkZXs0DqclQjkBwZLRBQo4+yMMGJRiQ0eiIio\nirlkm+fykZ8YLBFRoBTTqezxmMSVQiIiqmIp2RZleAWOF9R5DJaIKFCyqR1sLKJlltTKCiIRERFg\nlGyzwQP5jcESEQVKUa116IoKlGUGS0REZLCcsySCJTZ4IB8wWCKiQJkHwFiUq4VERFRNMTV44DlL\n5CcGS0QUKNlhtZBNHoiIyMwyVkRF63COFdR5DJaIKFDmBg+xqHZLYrBERERm5s6pCe5ZIh8xWCKi\nQJlLK1iGR0RETpz2LPFQWvIDgyUiCpR+dgYPGiQiIhd6GV4IHCvIVwyWiChQTnXoLMMjIiIzvXOq\nFIYkhRGRwgyWyBcMlogoUHoZXsgowyuWlCAviYiIFhhZNva3AtAOMefCGvmAwRIRBUqvQ5e4Z4mI\niJyZz+QDgERM4p4l8gWDJSIKlGzqhsdT2YmIyIm5wQOg7VtiGR75gcESEQXK3A0vztbhRETkQFbs\nmaUIF9bIFwyWiChQ5m54MTZ4ICIiB1WZpZiEfFGGWhlDiDqFwRIRBco8ADJYIiIiJ7KiNf4xB0uK\noqIsM1iizmKwRESBkk3d8Hh2BhEROanESnoZnjFesMkDdRaDJSIKlOJwzhLr0ImIyEzPLIWMPUsA\nxwvqPAZLRBQoxz1LZZ6zREREBr0ZkGSU4QFAnpUI1GEMlogoUOZueLFKNzyW4RERkZm+sBayBksc\nL6jTGCwRUaBkSxmeVlbBBg9ERGQm27rhJfTMEvcsUWcxWCKiQCmmQ2n1zBKDJSIiMlEUFeEQEArZ\nGzxwvKDOYrBERIESpRWSZDR4YGaJiIjMZEXVs0oAEK80eOCeJeo0BktEFChrZond8IiIqJqiqAiH\njWmrvmeJ4wV1GIMlIgqUuQ49HA4hGgkzs0RERBayokIyzVoTMZ6zRP5gsEREgTJ3wwOAWFRCscTW\n4UREZKjKLHHPEvmEwRIRBUqxdTiKR8MsqyAiIgtFVfW24YBxKC33LFGnMVgiokDZT2WPRyNcKSQi\nIgtZVvUKBIB7lsg/DJaIKFCVWEnPLMWi3LNERERWimrvhscyPPIHgyUiCpTeOtyyZ4mDHxERGapa\nh0d5KC35g8ESEQXKvmcpFpVQLCv67xMRESmKtQxP7FliGR51GoMlIgqUvmdJNHiolFYUyxwAiYhI\noygKy/AoEAyWiChQ+p4lvcFDJVhi+3AiIqpQFDg3eGCwRB3GYImIAlW1ZykigiUOgEREpLHvWYpF\nwgiFuGeJOo/BEhEFquqcJbaDJSIiG0VRLOcshUIhxKMSxwrqOAZLRBQo+56lWFS7LTGzRERusvkS\nfrN3KujLIB8pqgpJCll+LxGLIF/gWEGdxWCJiALltmeJq4VE5OaBzbvxV3f/CkcnM0FfCvlEllVL\nZgkAYjFmlqjzGCwRUaAUVUUoZG0dDjCzRETu5rNFAMBsuhDwlZBfFNXaOhwAEjEJBe5Zog5jsERE\ngVIU62qhnllihyMiciFX9jpyc//SYW/wAGjjBccK6jQGS0QUKNl2dkaMrcOJqA6FwdKSoqoqVBWQ\nwtZpayIWQbGs6MEzUScwWCKiQNlPZY9xzxIR1WFklnifWAqMrqnW39cPMed4QR3EYImIAqUocDyV\nnYMfEblRGCwtKSI4tjd44MG05AcGS0QUKNl2dka80jqcmSUiciOCJW7uXxrEz1uSrNNWsceV5ZjU\nSZEgnvSOO+7Ayy+/jFAohBtvvBHnnHOO/mdbtmzB1772NUiShHe/+934zGc+g+effx7XXXcdzjjj\nDKiqinXr1uHmm28O4tKJqM0UVXXZs8RgiYicsQxvaXHLLCV4iDn5wPdgadu2bdi/fz/uvfdejI6O\n4qabbsK9996r//kXv/hFfPe738XKlSvxx3/8x3jf+94HALjgggtw1113+X25RNRh3LNERI0Sh1nn\nC8woLAWKKjJL9jI8bRrLMjzqJN/L8LZu3YqNGzcCANauXYtUKoVMRjtU7uDBgxgYGMDw8DBCoRAu\nueQSPPvsswC0TihEdPyp2rPE1uFEVIc4zJqZpaVBll32LHG8IB/4HixNTk5iaGhI//Xg4CAmJycd\n/2xoaAgTExMAgNHRUXzmM5/BVVddhS1btvh70UTUMfbW4XGW4RFRHXpmiXtVlgSRWbKfsyTK8Pg5\noE4KZM+SWa2MkfizU045Bddeey0uv/xyHDx4EFdffTU2bdqESKT+5W/fvr1t17qQLZXXabYUX7Ob\nxfxe5AtFhEPGa5hOa4PekbGJhl7XYn4POoHvB98Ds+PtvZiZnQMAHB2fbPi1HW/vRTMW23swl9XG\nhdnZGcu1j4/NAwB2vvEmwrnDTf/7i+396AS+B+58D5ZWrlypZ5IAYGJiAitWrND/7NixY/qfjY+P\nY+XKlVi5ciUuv/xyAMBJJ52E5cuXY3x8HCMjI3Wfb/369W1+BQvP9u3bl8TrNFuKr9nNYn8vIv/5\nCBKxiP4apuZywENj6Osb9Py6Fvt70G58P/gemB2P78WPnn8GQAFd3X0Nvbbj8b1o1GJ8D8ans8CP\nx7Bi+TKsX3++/vsz8n48vP3XWD2yBuvXn9zUv70Y349243tQO1j0vQzv4osvxqOPPgoA2LFjB4aH\nh9HV1QUAGBkZQSaTwZEjR1Aul/HEE0/gne98Jx566CHcfffdAICpqSlMT09jeHjY70snog6oPmep\nsmGXZXhE5EJ0R8uxwcOSoLcOD9v3LHG8oM7zPbN03nnn4eyzz8YVV1wBSZJw66234sEHH0Rvby82\nbtyIL3zhC7j++usBAB/4wAewZs0aLF++HDfccAOuvPJKqKqK2267zVMJHhEtfNV7lnjOEhHVxnOW\nlhaxR82+ZykeFw0e+Dmgzgkk4hDBkLBu3Tr9v9/+9rdbWokDQHd3N775zW/6cm1E5C976/CIFEYo\nxAYPRORO4TlLS4r4eVcFS+yGRz7wvQyPiMjMfihtKBRCPCoxWCIiV0Y3PN4nlgJRdim5HErLzwF1\nEoMlIgqULKtVZ2fEohLL8IjIlThnieVXS4NrZol7XMkHDJaIKFD2zBIggiUloCsiooVOZJZyBU6S\nl4J65yyxDI86icESEQXKvmcJ0Jo8sAyPiNyIyXNZViDLXFg53smu3fB4KC11HoMlIgqMqqpQVKdN\nuxGuFBKRK1k2DrTnfpXjn3sZXiWzxMU16iAGS0QUGH0ArNqzxMwSEbkTmQaAWYWlQGY3PAoQgyUi\nCoxbHXosKkFWVJbXEJEjce8AOFFeCoxDaa3TVkkKIyKF+RmgjmKwRESBcatDj0VZWkFE7liGt7QY\nmaXqP0vEJGYXqaMYLBFRYFiHTkTNUExleLkCJ8rHO7eSbUAbLzhWUCcxWCKiwLgNgKIOvcj24UTk\nwLxniSVYxz9RdmkvwwNEZomfAeocBktEFBi9DE9yLsNjkwcicqIoxkIKS7COf6Ls0l6FALB7KnUe\ngyUiCoze4MEls8TSCiJyYm7wwKzC8c/ILLmU4RXLUE2fCaJ2YrBERIFx27MUi2q3Jq4WEpETc4OH\nAjNLxz2lVmYpJkFRtQOKiTqBwRIRBabe2RkswyMiJ7KlwQPvE8c72eWYCUDbswQww0idw2CJiAKj\n1GkdzmCJiJxYz1liZul4J/aoOZbhRSMAWIlAncNgiYgC47pnKcZueETkTFFUqKqxqMKMwvGvVuvw\nRFx8Dhg0U2cwWCKiwLh1OIpFRIMHDn5EZCVK8LoTWkaBk+Tjn9iOZO+cCpgaAjFopg5hsEREgVFc\n6tCNbnjMLBGRlbhvdCWiAJhZWgpEGZ7bobQAu6dS5zBYIqLAuO9Z0m5N3LNERHZyJc3QnWw+s1Qq\ncyFmMVFczuQDjGCJQTN1CoMlIgqMW+twrhQSkRvRCK/ZzNJro5P46I0/w2ujk+2+NOoQucaeJTZ4\noE5jsEREgXEbANkNj4jciMxSMh5BKNT4JPnwsQzKsoKDE/OduDzqALeSbcBoHc6uiNQpDJaIKDBu\np7LHoswsEZEzc/luPCo1XIYn9r9wMWbxcCvZBliJQJ3HYImIAuNahhdl63AicmbOMiRiEeQbPJRW\nZLRZtrV4uB1gDvBQWuq8hoOlYrGIo0ePduJaiGiJqRcssayCiOzEkQNSOIREvPHMkh4sMROxaNTM\nLHHPEnVYxMtf+ta3voV4PI6Pfexj+PCHP4zu7m5cfPHF+Mu//MtOXx8RHcfEpEVy3bPEzBIRWen3\njXAYiVgE6WyuscdXgi2W4S0etTJLRjc8Lq5RZ3jKLG3evBmf+MQn8Mgjj+A973kP7rvvPrz44oud\nvjYiOs7pmSXJuXU4V36JyM5chhePSQ1noOXKniVmIhYPxRQg23HPEnWap2ApEokgFArhqaeewsaN\nGwEYGySJiJqlT3pCbnuWOPgRkZXohieFQ0jEJJRlFWXZ+5yEZXiLT63W4UY3PP48qTM8BUu9vb34\n9Kc/jdHRUZx33nnYvHkzQg4fWCJauI5OZvDrXRNBX4aFWx26JIURkUKczBBRFXHOkmjwADS2uV+U\n4fH+sngY+1ur/4x7ljrj4Hga//HLXfp7v5R5Cpa++tWv4qMf/Si+973vAQBisRi+/OUvd/K6iKjN\nvv2TV/G333nW97rusqzgp0+PIpsvVf1ZrTr0WFRiZomIqlgzS5VgqeD9vsYyvMXHOGaietqaiHPP\nUic8snUf/uXhnXjz4EzQlxI4T8GSJGkfxM2bN+P+++/H0aNHsWXLlo5eGBG115FjGZRlteE2u616\nbscYvv3j1/Dki4eq/sytGx7AYImInJkXWZqZKIv7TiP3F1VVsX8sBVXlKnsQajZ4iLIMrxNE5vXY\nbGMNVI5Hnrrh/cmf/AnC4TBGRkYsv/+Rj3ykIxdFRO2lqiom57Qbnt+lJ9NzeQBAJl89mdFXCx3K\neuNRCQV2wyMiG/Nh1vEmzthpZs/Si29M4LZvP4ubP3kBLnzrCQ1cLbVDrdbh0UgY4RDLKtutVNbG\n38nZfMBXEjxPwVK5XMa9997b6WvxxQs7x/HiGxP4sz94K/dd0ZKRzpb0VTe/szVz8wUAQMnhecXe\nAbfM0my60NmLI6JFx3zfSEiN71eRm8gsHRhLAwAmucoeiFqZpVBIC5p5KG17iaYpU3P8zHsqwzv9\n9NMxM3N81Cz+7Jm9eOjpPZjhJIyWkGMzWf2//S5VmMsUted1mJiYWwDbxaNhFMsc/IjISrGcs9R4\nGZ6YBDZyL5xOaavrJZlleEGolVkCtCYPLMNrL/E9YRmex8zS2NgY3vve92Lt2rX6/iUA+MEPftCx\nC+uUdGXixr0QtJSYb3Z+lyromaVydUldzVPZYxEUSzJUVWUWmIh05r2OehleA3sxlSbK8ESWu8QF\nnECIphxOC2sAmjpvi2orl7XvyRSDJW/B0qc//elOX4dv5jLaDY/BEi0lx2ZMwZLfmaVKsOSYWarV\n4CEShqpqQVYsKlX9OREtTbJpkSWptw5voBue3HgZnsgslZlZCoRS45wlQAuWZlLVHVepeWJhgKWn\nHoOlRx99FLfcckunr8UXKZFZcljlJjpeWTNL/q6+zc1r3zmnzFKtgwZjpoNpGSwRkWAu323qnKUm\nWoeL0v1GDr+l9qn8yCBJzsFSgnuW2k4sDEynC5BlBZLkaefOccnTK49Go9i6dSsKhQIURdH/t9iU\nygqylY5cfmeWsvkSvn7/yzhybN7X5yUCbHuWfO4wl8rUyCzVODtDbwfLLDARmZjPWYrHRdvoRs5Z\nqmSWyornAzdnxJ4lLrQGQi/Dc8ssRSMolRX9Z0utEwsDiqIu+X3+njJL9913H77//e9bzhcIhULY\nuXNnxy6sE9LZov7fJZ8njK/tmcIjW/dh+UACH9u4ztfnJrJklnxcfSvLCtJZrTTC6TtXqwxP7EUo\nsn04EZmYy/ASLbQOB4BiWdazU25KZRnzOe0+xsxSMGo1AwKM8aJQLKMrEfXtuo5nJdNnfXIuh+UD\nyQCvJliegqXt27d3+jp8IUrwAPjeZUtksnIOZ80QdZplz5KPZXhp83eu5p6l6sfGmFkiIgctl+GZ\nJoGFYv1gaSZlrKozsxQMsc/MtRtezBgvGCy1R9n0WZ+czQFrAryYgHkKlu666y7H37/uuuvaejGd\nJsqBAP/3LImJImtqyW+lsoKZtHGonJ+Zpbk6CxRe9ywREQnmibOeWSo0XoYHeMtcm++fZQZLgaiX\nWUromSWOF+1SsgRLS/tgWk97liRJ0v+nKAqee+45pNPpTl9b24mN5oD/EzBxQ841cEMnaoepuRxU\nFVgxqKXQ/czUzKVrL1DorcMdNo5yzxIROTEOKA2bMkvNBUteMu3TpswSy/CCUetQWsA0XjBYahvz\nZ32pd8TzlFm69tprLb+WZRmf+9znOnJBnWQpw/N5H4RehsdgiXwm9iuduKIHx2Zyvn7258zZ3FqH\n0jpmlsKWx/3smb1YMZDEBWev6sSlEtEiYZzPZpRfNVK1ociNZZZmTZmlpVCGVyzJUGEEIAtBvUNp\nmwmaqbayrFTOr5IxObe0g6Wm+gCWy2UcOHCg3dfSceZgye+D5cSqeiOlAkTtIPYrnTjcC6CxrlGt\nMmdznRo8yDX2LJlXClVVxbd//Cr+bdMbnbnQBqiqiie2H7Q0jCEi/1gyS3FtktxIRsGSWfLwuKWS\nWUplivjho6/jE3/7KD73lc2Wpl5BU0w/cyfmPUvUHmVZwfL+BKRwiJklL3/pkksuQci08js3N4cP\nfehDHbuoTknVWeXupBIzSxSQY7Na2/CRFT0AfC7Dmze+cw0fSmvas5QvypAVdUE0SNm5bxpf/eGL\n+PjlZ+IZzqkcAAAgAElEQVSjG38r6MshWnLM+1dikTBCoUbL8EwNHjyU4c0c55ml6VQeDz6xG49s\n3adn6OZzJRTLyoLJLhn7W53/nHuW2k8cCL+sP4EpBkv1/fCHP9T/OxQKoaenB7FYrGMX1SnWbnj+\n3vAKbPBAAREbM08UwVIADR6kcMgxm2uUVjjsWdJXChVkKm17O1FiMT6dxfKBpGt5h53ojOVnZun7\nP/sN3rJmEBe+9QTfnpNooVJM5yyFQlpHvHyhydbhXho8tJhZms+V8LmvPI6PXboOl110SsOP75Sx\nqQx+tHk3Nj1/AGVZwVBfAldddiZefvMYXtg5jmyutGCCJUVREa78vJ2I6+Qcq33KZQURKYxl/Um8\ncWBmSR9M6+lV33rrrRgZGcHIyAhWr16Nvr4+XHXVVZ2+trZLBdjgQaxGdSqzlM4W8a8P72S9LlUR\nB9KOrAwus7SsP+F4GG7tPUsiWCojk68ES23+/uw9Moc//eImbHpuv+fHpCpBkl/vYzZfwv2Pv4n/\n/NVeX57PrCxbOymS1cRMFtnKZ5P8I9v2ryRiUmOZJVvr8Hpm0nlEI2GEQ81llsamMpicy+O10amG\nH9spB8ZS+IsvP4aHt2rnP177R7+N79y0EX94yVoM9SUAQL/vLgSKoroeSAuYz1lisNQuZVkLllYM\nJJf8wbQ1M0s//elP8fWvfx1HjhzBhg0b9N8vlUpYvnx5p6+t7YJs8FDocBneE9sP4d9/uQsnDvdi\nw/knduQ5aHE6NptDdzKKgd44AH8XClKZIsIhYKgvgWOzOaiqalkZFC2Aa+1ZKpYUZHPa9yZXKFf9\nG63YdzQFANh9aNbzY+ZFsOTToCxWSoMo4f3uQzvw6LP78S+3vY9nl9hk8yV87u8346JzTsBfXnF+\n0JeDI5PzOGFZd9u+GwuZvY10IhZp+lBaL4seM6k8BvsSmE0XLAd1eiXuueaGN0HbeySFsqziDy9Z\ni2vef5YlY9CV0KaG2QVQ9izIquraCQ8A4jGxd23hXPNiJisqFBWIRsJYVjmMdikfTFszWPr93/99\nvP/978dNN91k6X4XDoexcuXKjl9cu1nPWQoms9Tsyvh8tohkIupaKiQmcDMprgKTQVVVHJvJYnio\nGxEpjIgU8nXlbTZdQG93DIlYBKqqrVRFI0ZZh5j0OJXhmbvhiRVORUVb6+hFec3EdNbzY9JZ7Vr8\nyiyJFfNcAJOAsakMiiUZc/NFBks2e4+kkM2XcXQyE/SlYMeeKfz113+FG65avyQWy+wHlMZjkmV8\nr/v4BoIlsaJ++kkDyORKTZ2zJO655uqWoImM8VmnLqsqrepOat/1+dwCyizJas1SaTZ4aC9RNh+J\nhLF8QMs0tutg2pl0HlCBwUoGczGoW4YnSRK+9KUv4c0338TmzZsxMjKCUqnk2pFkoVJVFalMEb1d\n2k3AqTNXJ4kvcLGsWEoAvMgXyvjU7b/A9/5zh+vfma9MJs0b6oky+TJyBVk/YykWlXwdTFKZAvq6\n46ZmDdbPfq0GD3FTg4eMadBuZymemDCMNxIsVTLUfmXoxEQriE6aYmWZjWmq7Tk8BwCWz2ZQjhyb\nBwDs3Ltwyrw6SbbtddTK8GTP3dtkS+vw2t/jdLYIWVEx1JdAVAo3VYa3EDNLosPfUF+86s+6Kwsj\nC6nEVKmTWUo00UKe3JUr35GoFMby/kpmqU0H0/6v//scbvvOs235t/ziKeL5yle+gvvvvx8/+tGP\nAAAPPfQQbr/99o5eWLsVijKKZQXLKj90/7vhGTfYXINf5nS2hFxBxsSM+4RODNhLuaY0SN/60Sv4\nj1/uCvoyqoj9SisqqfN4VPItsyTLCtLZEgZ64ojazkwSvHTDKxRlS+18Oyfu05VM7MRMTr+WetJ+\nl+EVRBme/5MA8V4zWKq294gWLDmtvj+/Ywyf+/vNvjUByVSC2oPj8748X9CMMjzt14l4BLKiem6+\noDSQWRJj6kBvHJFIuKkGD+I55uaLC6Ydt6hCcVrd705qRUeZ3ML53stKncwSD6VtK5FBjUhhvfSu\nXe3DD42nMTYVfEa+EZ6CpW3btuHuu+9Gd3c3AOCzn/0sduxwz3IsRKIrl/ih+12GZ54kNrpCLG7O\n5bL7TVasAM8ys+Q7VVXx8NZ92Lz9YNCXUkUcSLtisAuAVqrgV2ZJ7BHs64kZWSLbqmytdrD64GfP\nLLVxMBRleI00MhCTY7/L8IJo3sJgyd2eI+6ZpRdeH8e+oyk9oOo0kQE4MJ7y5fmCZpThGZklwPu9\nwdI6vM5jRFDRSmZJPEdZVhbMd0ksFA32VmeWuhZiZklR6mSWeChtO4l5pyVYasPBtPlCGfmijGy+\nbCmHXeg8BUvxuPZlEhtHZVmGLC+u6F3UM6/QgyV/y/DMwVmjN0s9WFLcr1kM2J0qw3vwid349B2/\nxCwzV1UylS/9QhkEzcSBtObMkl9ZVbFA0d8dQzTiklkSe5Yc2pGKGvRiSbFsNO5EGR4ATEx7GwhE\nEOh3g4dSWfH9QMwcy/AclWUF+4+mAWg/H/vPRZRq+rUyn9HLsItLohTbqcEDAM/tw8sNlOGJe8Rg\nbxyRSKip76D5OeYC2reUL1j3182k8+jtilr2kAqiDG9hdcMD9yz5SA+WIiH098TbdjCteUF/IQXj\n9XgKls4//3z89V//NSYmJnDPPffgqquuwgUXXNDpa2srMcFZVtmo5ncZnvn5mg2Wau11EqvdnQhm\nNj23H999aAeOTmbw6uhk2//9xU4E4gtxQqmX4VX2LMVj/pXhiUnbQE/csv/ITC/Dq9E6vFi2Zpba\n+T6bG6KMT3srC5j3uXW4ubuT3/uWsswsOTo4nrZMmu3ZpZQeLPkzGciagrID42lfnjNIsumcJcCY\nKHvNKiiKCnHLqVuGV8k+D/YlEJWklsrwgOD2Lf3wF2/gs195XM8oTacKrhvsF2Q3vDqZpXib9izd\n//ib+NeHd7b0bzRix54p3PPQjgVTnimIDGo0IkEKh9p2MK15MWch7Pf0ylOwdM0112DDhg246KKL\nMDY2hk996lO44oorOn1tbSUGr4GeOCJS2PcGD+ZMVqNpYj2zJLt/mcyZpXZ+6ba/Po67738ZEUm7\nSY020GJ5qRCfrXylrfVCopfhDWhleLGohGJZ8bw/pxXiptjXE9czS/YSFrmJPUvtKrMolGRk8mX9\nsz1eY0+goKqq/3uWiuaFFv8WeWRZ0YNbBktWormDmKzbB33xGfFr5dT8/Ti4FIIlxTmz5PU7KSsK\nkvHKY+oES9O2zFJTZXim+UZQHfEOTaRRKivYfzSFUllFJlfCUK9zsCS64S2kyWyxrCAWcZ+ytmPP\nkqKouO+xXXjwyVHfxvIfP7kbP3piN8amvDcZ8oNRhqd9x5b1JzGdyjfcoMzOvKAvFvmnU3n8fMve\nBTd/MqsZLL3wwgt417vehcsuuwz/+I//iGuuuQZ/8zd/g4mJiUV3KK2+f6I7hlg03NKepVyhjG88\n8HJDHbQsmaUGV2vEXqVaK1piUC7LaltvcD99ag8URcUtn/odAMDoIX9q8BcTMfgp6sIrATg2k0M4\nHNI7HrlleDpBlJv0m/Ys2d+fmpmlysBo37PUroBBZJVOG+kH4K0MTyu5UvXr8oM5WPKzHj9XbD4b\nbqaqKl7dPam3oj0eiP1KZ5w0AKC6yYPvmSVTsHRg7PgPlqrL8LT7i9f2+rKioivuLcCa1bvGJRCN\naJmlRid15uxwUGWSYpwam8pgPq+95kGHTnjAwgyWCsUy4lH3027iDQbMTsans8jmyyiWZN8WiESQ\nJMaTqbkcPnPnY9ixJ9jOliVTgwdAK+VX1NabiM2aFgvE5+uhp/fgGw+8gl0HZlr6tzupZrD0ta99\nDd/73vfw3HPP4fOf/zxuvfVWfPzjH8ezzz6L++67z69rbAsjWIojFmlt38avd03g51v24YePvu75\nMcUWuuHVK8NTVWuA1M6OePO5IqKRMM5/y0qcsLwbuw/NLujoPwjm8z0W2gr8sdkclvUn9D1BftZ1\ni3KT/p44opVgyb4qK4IlSaoOlkKhkJYJK8nWPUttChhEOcq6NUMAvJ21ZO5u5ldmyTzR8vPzZZ6A\nN7rAY/bq6CRu/MYzePyFhdcApVl7D6cQCgFvXasdzm6+/6qqauxZ8qmMKZMvQwqHEAp5zyzNpPO4\n6RvP+NaEop0U2zlLCY+BjyArKroqAYGXzFIopN3HIlIIqoqGN6Zby/CCySyJvSJHJjNI57TrGXIr\nw4svrDI8VVVRKMr6+OVECocQjYRRKDV/zaOHjcoZPzoLq6qKo5WucOI+v+vALA6Oz+PFNyY6/vzC\nEy8ewsSsNTAW805RFbKsTR3xnMrwxL5AcYbhQlQzWAqHw1i7di0A4Pd+7/dw+PBhXH311bj77rsx\nPDzsywW2i14SpGeWmk8lignLr14+4nnlpR17ltzK8Ipl7aRlwb5y9cruY9i5d7qh5xSy+bJev7x2\npB/zuVJDGbWlIGUa/BZSsCTLCqbncvoZCYC/7VX1zFJ3zJIlslyj6p5ZAoB4NGw5lBZo374dMRiu\nGurCQG/c0+c6bfpZl2XFl24++TZleBplfq5WnvfIMW0yIM51WexUVcWeI3NYvbwby/u1yaY5sySO\nqQD83LNUQm93DCsHuzzvWXp51zG8snsSz+0Y6/DVtZ9xzpI1s+R1IUWWVSQrmYi6DR5SBfR1xyqH\nemv3sUYPpjUvljaSWdp/NNW2Uk6xqHd0MoP5nMgsOQdLkhRGIiYtmAYPpbICRTV+zm7EeVvNMlfO\nmPezdspMuqCPxeIzYrSZ9+d+OTmbw1d/sB2bX7V20tT3LFU+8/rBtC12xJt1CJbSGe3/F3Inw5rB\nUsg2gTnhhBNw6aWXdvSCOsVchheNSC3tWRJlQMWSjKd+fdjTYyx7lpoOlpyvOW97Lfb24V/6/gv4\np/94qaHnFLL5Mrri2grc6SdqJSejhxffSmQnWYKlBbISBwBTqTwU1WjuAJhKFVrMLJVlBf9474v4\nTY1DMMXNvr/HOJS21MA5S4BxiG4ny/AGexMYHuzCsdls3eBn3rby5Uc5Yz6gBg+WYKmFQUwEpYUF\nPBA2YmImh0yuhFNX9zuWK6VM2Ue/JpvZfBndiQhOGu7FbLpguSe5EeOEl7+70LiV4XnthicrCiKR\nMGKRcP3W4ek8Bit7e8Qqe6NNHszP4fX9npzN4bp/eKIt5/cVSrJ+3zw6lUE6p12/254lQCvFWyjd\nysR4VSuzBLR+juAe09zGj8ySuTuheI3i+v0KlsTiigigBaMbXiVY6m9TZslhz5LeJGsBzZ/sPDV4\nEOzB02KSyhQRCgE9XVpmqZXJonnCsum5/XX/vqqqlnr9ZoMl2SWzlC9qv9/bFQNg+zBmi0hni01/\n8XOFEpIis3SitreDTR6szK1gF9Lp4ZOz1rbhABCLOmd4GrXn8Bwe23YQv3z+gOvfSWWKCJu+c9rz\nupTh1QiWtDK8kt69qt1leIN9cawc6kJZVuuuJqZz1omOHxk683M0WsLbCvPA1cogJkosFtp+vmbt\nqZTqnDbiEixlqmvyOy2TL6ErEcWaVb0AvJXiiY3Wi7HVuP2cJWO/Sv3PqaKqUFXtnhOP1S7JzxfL\nyObL+llEIrPUaJMH8x5pr+/34Yl5yIralkoO83OOmcrw3PYsAdpZS/bPbzZfwu3ffc73OYAIgkUj\nDzetnCOoqqq1DM+HzJL5YFZxnxdlhH61mD9UuVdkCtbPdNm2Z8k4mLa198Uxs1RZYFpIlTl2NT95\nL730EjZs2KD/empqChs2bICqqgiFQnjiiSc6fHntk84W0ZOMQgqHEItILW02FqusvV0xvHlwFvuO\npnDKCX2uf1/bEKqt1GRyJb0dr1eiwUPJLbNU1H5/ZEU3Xt9fxIz5xljZPJjJlSDLiuN5Nm60s4Nk\nowxPZJbY5MFioZbh6WcsVQ6kBdpXhicyLPaN7Waz6QJ6u2Pad07fs2Qrw6uTWYpHJcym88gVZAz1\nxTGdKrTtPZ4xbdweHtLeo/HprD4oOBFleBEpjLKs+BIAWBo8+LlnqU1leGLS4dcer07bc1grVzlt\npF/vqGbOIJlLNf1YmS+VZZTKCroTUZxcCZYOjKVw9mnLaj5OLKAF1Z2tFe4NHup/xsRxheHKfanW\nd1gElKJcTe/q2WRmKRzyvmdJdDJtR8BtDpaKZQVHprVrcNuzBADdiQgOHyvr8z0AeG10Cs/tGMPJ\nq3r1+YAfRABRN7MUi+iLYI2aTuUxN1/EQG8cs+mCP5mlKffMUsqnFvMHJ+YBANmCPbOkfceqgqUO\nlOGJOdRCmj/Z1QyWHnnkEb+uo+PyhbK+CTQWlVCWVciKWvOQMzfiw3zZRWtw32NvYtPz+/Fnf3CO\n698Xtaj93TFkcqWGsw/iMFq3Bg+iDG/1ih68vn/GsiJhXpVKZ0sYcDit242YmIkyvN6uGIaHuvQm\nD4s509hOlgYPCyiNrLcNt5ThtafBg1gJqlVSksoUMFAp84hFXM5ZUusHS6J8ZKg/ielUwXOpTT36\nYZN9CaysBEsTM1mcDfdJptiAuqw/gfHprC+lZfmAGjxYMkutBEuiDO84ySyJhginjfTrgZG5PNOa\nWWr8fSvLCl55cxLnnL7M8cBQO/EcXUmtDA8wJkC16JmlgM79aYXs0uDBS9ZZPwg7HKrcX9wfo5+x\nZMssNbpnSXz2h/oSSHnMLE1VJqXtaLIg5gTRSBilsoJDk9qv3fYsAUBXMgpF0RoriPdXfJf9bvwg\n5kxey/CamZ+IReD1b1mJx7YdtBxY3iljk8b8TA+WKv8/61dmaUIcrq1aFtRLtjK8dh1MOzdf0M97\nnM+XICuqvui6kIOlmmmGkZGRmv9bTPJFWV99ilZKguz7J7wSP9B3vW0E/T0xbH7hUM1MlZgg9vdo\nN9zGW4fX3rNUqJThnbiyBwAwm3Y+aLPRlQpxQxSZJUArxUtlivpEnKwrhY1mDTtJP5B2wNzgofX2\nqoCRUZrPOt/QZVnRgvPKZ16U4dkbq4iuVm4NHkRGCoC+mb5dZXgzqQKScQnJeATDg0ZmqRYRJIpV\nNj8CgEJAmaV2NXgw9iwdH8HS6OE5DPbGMdibcCzDS7e4Z+nF1yfwhW9vxdMe98OK7FV3IqpnCuY8\nrIqLYKmRPUuqquLF1yd8PxzZTlash9KKsd3LZ0xsS4xIYb3M1820aUEFaCGzVNI6ufX3xhvOLNXK\n3nslxn6x77hYVvV7n5vuROWzbfoMz85r74ffe5nEzzUerd/gQVEbL5MEjO0Fbz9Ta17mR2bJsQyv\n8v+ZXKmp19GoQ+PGwop5v2W5MqcVDR7acTCtLCtIZYoYWa7NVTO5EuazRYgGy4s2WDqeaDerSmYp\n4jxx80qsbPd2xfCe9SchnS3W7CgknqevW9tT1O5DaUVmaXioC+FwyHLol/mgs0bbMmYL2t9PmoKl\n01mKV8U82VhI3VyMzJKpDC/WnnOWRJCUdgmW9IYqPdpnPlons+SW4TWvJC6rbDBt1w11Op3XM18r\nh7R/u177cPF6l1UCNz8CAEtmyceAQ3z/gebfc1VVMXscleGlMkVMzuZwauVsLhEszefd9yw1etSC\n+Ix5XZASk9muRBQ9lX2rbt9LMzHxnZsver7GJ148hC98eyse2+a+V9EP1WV4IrPUWBlevT0u4rMr\nGiGIVfaGM0tFGbGIhP7uOApF2dM4MTXXvsBkNq19Ht5yypD+e4M1mjsAxmfbnEWaDSizJO4dXvYs\nAc0tYonGVWedugzJeEQ/X6uTrGV45cr/m5uBdPYa0tmipSzOfO8qiTI800HArR5Mm6oERsPLuhAO\nafdH873Kyzjz4usT+M5PXmv5cNxGLYlgSaSSxaqE2/4Jr8SNLhGP4NILTgYAbHrOffAQE0QRLDU6\n8SjVOWdJ7FnqScYw0BNzLcNr9IsnMmBdptWntSMiWFrcTR4URcXETOsbZ8uygkyuBDHXFz/bZ14+\ngr/551+1ZVWwWcdmckjGI+g2BbvxNjV4EIF3Ous8GRSrp/2Vz7xxGK71M1xvz5LISAHa4kQsEm5L\nsCTLCubmC/pK/EqPmSVRbrXCx8xSUHuWzBnwZp83ky/ri0XHQxne3sqEam0lWIpHJUSkMDIOZXhD\nfQnIitrw6xaLY/bOi26ylTK87kQE8aiEWFRCus59R1FUvcynLCuev1M/f2YvAP9KhNzYy/DiDbQO\nNzeViYuSfJexdboSHAxUGiFEpeYyS8VKZkksHnnZJzbZxj1LYuw/85RB/fdqleAB0McNc2ZJZFv8\nbinudc+SHjQ3UaotMsZDfQkM9sb1rGKnZPMlpDJFJOPWsbGZzonNElklUdhhfr6yrXU40PrBtGJu\nOtgb1xuIiLbhgLe58U+eHsVPnhrFLzw0V2unJREsiU40IlVv7J9oMrMkgqWYhJNX9WHdmkG8tGtC\n31Bf9fyVwTKZiDQ12RMDQ73W4d3JCAZ6EvqKIWBN86YyDWaW9DK8qP57eke8Rd4+/PEXDuJPbt/U\n8oGMeqahMnkWE8xnXzuK10an8PgLwa3AHpvNYcVg0lK73a4yPPG6S2XF8d8ytw0HjNLXom2BQlFU\n10AJsJbhdScjSMQjbcnezc4XoKrGXoRYVMJQX7xuAJ3Oah3+REbKn9bhshGM+5i5FPep7kQEuUK5\nqcOozR2ljofM0p7K/eLU1dp9MBQKoScZtSyKiH1MJyzvBtD4ZFeU3nidKOmZpaTYWxp1LY/VrzFb\n1IMGwFvnrb1H5vD6/hkAwQe+9kUWY5LsZc+S9v9SOKzfX9xej/j8ikWVpjNLJRnxaBj93dr9xss+\nMZFZLJaVlhpSAcam+jUn9OkBR63mDoAx7ps/v0FllvJF6xzOjZFZauz68kVFyxhXvteDlb1lnTxH\nT7QNP3mV1hzM6IbXeOfEZh2s7FdaU7kGcxCvtw43HRjf6sG0YovIQG8CPV3afdOy59vD91dk/H7w\n6OtNLyTMzRfwpe9vw5HJ+ns7hSURLBVsmwP1iVuTN/x8QbYcUHfpBWugqsBjLhNjEZTFIlJTkz3x\noVVUWAY4/Xoqe5a6k1H098SQK2hpfllRMWEK4LyUZpiJMhzznqX+njhWDCb1Jg+L1a6D2qBvPueg\nGeLmIrqpiS+7qP39xbP7A3mfsvkSMrmSZb8S0L4GD9Y9GtU3LHuw5NrgQVFd9ysB1hr1rkQUiXik\nLecsiZUx84Rh5WAXjs3kag6Q6WwR3cmYvhroT+vwMvq6m9vv2ArxWR7q11YTm/nMmEuCG53ALEQi\nWBKZJUAL4jMOZXjintDoxFLc773er409S9p9urcrVrfk2n4Wn5fJ+8Nb9+n/HfSZWfYyPPF99FSG\nJ0p/pVDd+6G4T4hFlWiTrcO1ypYI+iuZpXrBaa5Qttxjm2kUYiaeb6AnjhOWaUF8rbbhgPF5ypqe\n2wiWWsss7dgzhdf3TXv++8YczlsZXqNNtKbS2mscqez7HuiNQ1HhuRlHM0QJnuikbO+GB3Q+gyuO\nGBCdM82Bi7gPmZvMtHow7az+OYzp3aEbLcMTjTfm5otNn0H21EuH8cwrR/DMy0c8P2ZJBUti9Ukv\nCWpytSZXLOs3ZwB419tWIxGTsOn5A47BjHieWFTbUNnoZM+8iiU2tprpmaVEVO92NzdfxPRcHmVZ\n0QftRlO6Tg0eAG2iMJsuNN2icyEYr+zlavVcJPvESHzZxery/rE03jgw09JzNMNpvxLQvtbh5huc\n06RODM5ichDTm6rYyvBUFZLkLVjqTkaRjEltKUXTD6Q1B0tDXZAVVe9C5SSdLaGvO2q8jz5llsT3\n2s89ceL7v6zyHjVT/mjuKHVcZJYOzyERk7CqMuEEjCMhhFRWK60RE+xmM0tpz5klawVAT5d2PbWC\nfjHpFSv19caGbL6EJ7YfrJuJ8YtiO2cpIoURDoe8NXio3IJEGR7gXmUyk84jHjMaITR7KK1ehldZ\n9KhXEm9fuW81OJmbLyAaCSMZj+gZz3p7lkSm0trgoVKG10LwNpPO49b/sxVf+PZWz2XqeY8NHpod\n36ZSlWCp8t6IRTRzuVkmV8LX73+55vjQCLFQK4IlsZBoXlDsZLAGAIcqXTPPOlXby2ZuPiLuQ5GI\nMT63ejCtuO8M9MbRnYgiX5Qt73G9ubGsqJibL2Dtif1YMZjET5/eg1d3TzZ8Hbsqc7JGzrJaEsGS\nmGCIL5K44TVfhme00gS0Qeqdvz2Ciems4w9OfPhjlZtVo5OOsmnQc1rREnuWtMySdjOeTef1Tnhn\nnKTtM/I6+ApispSMRy2/fzw0eRDlibUG/Zl03lLG6MQIlrSbrB4smQKIXzzrb20tYDpjySWz1Gr5\nmHnl2jFYqkwGRNmJ2ySrXmbJUoaXiCDZpjK8aVtLYMAIeN2aPKiqivlsET1dMWNFusMBgNhv2Z2M\nIiKF29Y23QvxWRYr0M0ES9Mpc2ZpcQdLhZKMQxPzOHV1v6V0tCcZ08pRS+J8lCJ6u2JGGVODE12x\nOOa1IU82Z3TDA4zDyWsFaWLSIs5lqjcpe+qlw8gVZGx8x0kAgg987Y1hQqEQEjGpsdbhUtg0uXZ+\n3Ewqj6HehF7K3MyhtGVZgayoiEXDnjNL9sloq3uE5jJF9HfHEAqF9MzSUL3Mkt7gQXvuUlnWP1O5\nQuONS4SfPDlaOWi8jIee3uPpMQXT1odaErHmysyn0trrWr1CyyyJccG82LP11aN4ZOs+bKpxEHsj\nRPOtNfYyPNO1e+2c2KxDE2n098QwUnndlj1LehmeESa0ejCtueJEfL7M1T31xph0pghF1cbqv/hv\n5wJQccu3tuDnW/Y2dB0iWGpkH/+SCJbEICYmOLFoaxPGfKFc9aW99EKt0cMvnq+eGIsNziKzlG+w\n/t+aWap+XKGkIBrR6q8HTZkl8WU84yRtU2ejmaWcKO9I2jJLlWBp9yJt8mAuT6xVTvIPP3wRn73z\nccmkmRgAACAASURBVOypsT9LfNmqMkvZEk4a7sXKoS489evDvrdaFZkl+wGr7VoZnq+TWUpVZZZE\nUxWjDf6/PrwT+47M6e3FncRsmaVEPIKyrLbcUlUM+mJiCZiCJZd9S7lCGWVZ1RpN+LTCXjTdu5Lx\niKc9S7KstKX0M1coIxaV9A5rzQRqokY9HAp+gt2qA2MpKIqK00wleACq2oens0X0dccc24p7UWqw\nDE/PLFXu0z2iQ1+Nx+t7WCoTtVqTd1VV8fDWfQiHQ/jAO08D0PxCY7s4NYbRgqUGM0sx98ySXGmC\nYT6bsJnMkv4djkaMPUt1glORvRDnv7Xa5CE1X0B/5XX8zltPwLK+CN562vKajzFah2ufL9FRD9A6\n8zbTTTiVKeJnz+zFUF8cvV0x/PSpUU9jo30O56bZPUv2Mjw9WDJVz4hxwdxquxViIVYsWNjPWQI6\nu2epUJIxPp3FiSt79UV2854lPbPkGCw1l1kSr2egJ67fp8Q8NephP79+NmJvAu84axVu//OL0Z2M\n4hsPvILnf+PekdosnS3iSCVAayQYXRLBkv1AM7F/otkJlxYsWQOIM08ZwsiKHmx99WjVIKVnlqJh\nJGISZKWxyZ75xux0k84XVX1gFh/6mXRB7+x12kgfwuFQE3uWrIfSCnqTB4+Zpb1H5nD1bY/g7773\nPF7YOd7RTZNeiPJEoHYZ3kwqj2JZwd9973nXiYf4sg32xvXmHXKlQ15/TwzvveBkFIoynnzJ25kp\n7aKfsTRoyyy1oQxPVVXHDe1ms/YGD5K1C98X73ke//7LXVg+2IXrrzrf9bnipm543YmoXg7TanbJ\nKI01/n29I96Uc7AkupP1dkXbVs5Yj3ljczJe+wBNQJtkXXnLw9j2Zmt78QAts9wVj+gLQ82V4Wmf\ng+UDSRTLimOZ8mIhFk3EJnDBHBQVSjIKRRm9XTFTN7FG9yxp79G8rQmDG/M5S4CxAFDrfi8mgWKi\nVmvS8ObBWew5PIcLz16ll3AFvf9MlpWq4wbisYinvVTmrFStRY9UpgBFUS37GvVDaRsIlsQ9wpxZ\nqrdweayycr+m8vNp9DNkli+WkS/KeqB25qlD+NwHVumBmBtRfi8CNXPjKKC50sCfPj2KfFHGhzac\ngT+45DTM50r42TP1swJ521YKN4lm9yylyohFwnqZmWjgYy4R04OlY+mG/m03R6cyWNaf0BejiqY9\nS+J4m04GS7v2z0BVtfM5eytda+cc9ywZY+SAOJi2yVLEGXMZnp5Z0oLPlYNddRsJ2fcQnn3aMvzP\nK7X5w+6D3hbv3zxg/L1GyhyXRLBk37MUc+nM5YWsaCsq9sPcQqEQ3nvhySiVFTz54iHLn+kNHqKS\nXr7XyMTD3Ka0XHZo8FBS9IFZrIIdmkjrZXirlnWjtyvatj1Lg70JDPUlPGeWXnpjAjPpAra+ehR/\n+51n8adf3IQfPvp63TNtOsV8UG+tya4YQMens/jqD190nLjo5wl1x5CsdA2bN2UtNl5wMsIh+N7m\nUt+z1IEGD4WSjFLZmKw4lQulMkWEQtAHgnA4VDk9XkahJOOFneM45YQ+/NP1G/CWNUNVj9ev155Z\namHibmYsYBj/vsgsjbtklsTks9dchtfhzJLRebPSCbDO6965bxq5QhmHp1ov38gVykjGI/q9zut7\n/vCWvbjuH55ANl/SJ+WiTNWP7oGdsudwdXMHwNRiOVfSFw76uuOeMksz6Tzu/JcXcMNdT+rtq0Xn\nM0X1dsi1+ZwlQNuzBNQu4xOLGSfrmSX3ScPDW/YBAC6/6BREpDAk296gsamM7/tXFbW6i2YiJnna\nDyyG07Bpz5LTODCbri7VFd3wGlnsNGdF+nqMyo9axMq9yPy1klmyZ/m9sh9KO2trF91o45JSWcF/\nPr0H/T0xXPY7a/CBi09DdzKKHz85Wve+Zm/S5aaZRSxVVTGVLmP1ih79M2WU4RmvWZS2H5qYb3nR\np1SWMTmbw6pl3ZDCIUSksKkbXhlD/QmEw6GG9tQ0Yt/RFO74/jaEQlqmMR6VEI2ErOcsOWSWwpWD\naVvJLIm9cyKzNDmXRyhUaUuu1M5YmrvpCWLcFueS1WPeQ87Mko399Ge3AzK9/VvG5MXuPetPQjgc\nwi9sNa1i8ItFJNPKuPfnlk2H0To2eCgq+sB85ilDGOqL4z9/tQevjk4hHA5h+UASfd2xJoKl6kNp\nhdNPHMB0Km9JU7sRKc/r/7/zcdlFpyCTK+HffvEG/vTvNuEL397a1Aa9VpgP6q2VoSgUZaxa1oXz\n163ECzvH8e8OnVeMgSiOREwLlswB1LL+JN5+5irsrqzO+uXYTA6hkHGQq9COjIjIsIiblHODhwL6\numOW1d9YJIxiSdEnZqes7tM/t27MwYzohge0ft6QGAhipk4/Wpt1YGLaeSAQr7OnK+ZbZsk8SUjG\n6jeH2XckBQDI5FsvkxLBkjhnzWsnvpd2HcOew3N4adcxzKQL6EpE9DPm/Nq39PDWfTg63d6Jxp7D\ncwiHQ3o2RhALAlob3EpA3R3Vgxe3Ffjnd4zhs3duxtO/PoxdB2b1RRbz4eNe9pnq5ywljW54QJ0y\nvLQow6vsWXJ5nvlsEU/9+jBOWNaN3z5jBQBUHeR64zeewZf/37aa1zg3X8DPt+zF7d99Ds++drTu\na6pHVtSqzFKiklmqV4JqzizVWvSYdmgCE22idbgeLEUldFeOD6m3Mi/+XPx8Winjtmf5vRINHsTn\nS3xmvOyJczI5m0MmX8b6twwjEY+gOxnFB995GlKZIh55dl/Nx+Y97llqZhFrJl1Asaxi9QqjaYve\n4ME0vxGVOoWi7Hli7mZ8OgtVhb5/zPydKhRlJGLaPbMTmaX9Yync/M1nkM4Wce0fvQ1vP3MYANAd\nDzvuWTJnlgBtTjHT5MG0s/MFDPTGEQqFLGN/TzKqlxHXGttnxF5j0347cUC818YbYr/S8v4EGzzY\niZIB8UWLR5tv8CBWV52+tIN9CbzjzGHsOTxnObTVXIbX6CotULsMr1iSISvGKlBXIorrPnY+yrKK\nydkclg8kEZHC6O2KIZMr1i2By+ZL+nPoZXiJ6gnt6Q2ctyQ28P3uuavx2Y/8Nr7/hffhf3z0bVh3\n8iBefH0CX/6Xbb621zYfPFprslssaTetG65aj5WDSfzbL17H9tfHLX9HpK17u2P6fjR9Ul25Gbzv\nd9YAAB6tMyC00+RsDoO9iaobXTsaPIjXJ0py3IMl6+Aci0oolmSjI46HwVsES7FIWFuRijW+2OCk\nYPpOCtGIhKG+RI3MkjY56OuK6i1s/cwsJeMRlGWl5qr2vqNasJRtsRGEoqjIF8tIJiL6YomXLAdg\nfB627xzHTDqPwd64bw0xAO2z/8/3v4zHX0m19O8oiqovdMmKin1HUzh5uNcSwANGGd68LbPUY/p9\nu1SmiL//wQsolGS9HErfz2f6+Xopnc7kS4hGwvoioFGGVzuzFI9pn/eIFHbd6Pz49oMolmRcdtEa\nfdU9HpX0n6OqauPM7oOzVWPLfLaITc/txy3f2oKr//ZRfOOBV/DcjjH87FeNbcZ2IstOwZIERa2f\n9dH3LEm1z1nSO2aaM0tNHEprlOFJCIVCWL2iB0cn52uOeZOzOXQnIvq5Nq0cbi4mwA0HS/EIQiEj\nsySyLCOVoKLRYwzEZFZMbgHg9999GpJxCT/avLvmvdS+4O0mHmu8TPvwMa0MTDQ5AIC+njjCIeM1\ny4pqyaYcmmitFE8s2K5arn3341HJsmcpHpPQ3x1re4OHA2Mp3PyNLZibL+KzH/ltvPfCNfqfdcXD\nSM0X9M+lqGIyZ5aA5g+mVVUVc+mC/jk0B0t9lfkTUHtuPOMwd+hKRJGMS54CWFVVsevADFYOJnHy\nqj4US7Lnz8qSCJbse5aiLbQO12tn4861s+LDZ+6YUjStYiebWBk3D57mVUfAWN0xf/DOf8tKfODi\nUwEAqyoDcV93DIpaezUoXyzjv9/xGL7zk9cAaDdDKRzS62fNGmnycOTYPJb3J/QbXTIewaUXrsFX\n/se78Y6zhjE3X+z4SdVmYw2U4WntXmP460+8AxEpjL//1+22g36LSMQkxPW28GXThEmbtKx/y0oM\n9SXw5IuHfGn9LNpf2/crAaYWuw4Dkywr+Pw/PYV/fuDlmgO5GLj1YMl22LEsK0hnS1VlH9GohGJZ\nqTqDqRbxnRWf72bKWJ2UTKWxZisHuzA5m3NcNRP1zZbMUseDJWPPUkI/28n9tYtgKVNoLbOUL5ah\nqmiqDE9kHrftHEcqU8RgX8LXVutiVX4y1dqm+H9+4GV8+o7HUCjJGJvKIF+Ucerqvqq/12M6vFPP\nKneZMksObZZ/+vQocgUZH7/8TJy7Vttob25+Ini5L2bzJX2xDDDK8OpllgZ6tBXe/p6Y4wqrqqp4\nZOs+RKQwfu8dJ+u/b1kFL8lQVW2ME+XN+46m8L/+77P4+G2P4J/+49f49a5jOP3EfvzJ75+Ngd44\nDh1rfYO8Yxmex6oNkVmKWFqHOwRLogzPIbMkflaZXKnu/iVzkxYAWL2iG7mCXHOyKRY6u/XsZPP3\nO7E41d/dWBleOBxCMh7Rs1oiQyU6xjXaoU9k6szVDr1dMbz/4tMwky5gU41Sdc/nLDWR8T9S+Tyu\nXm4ES1I4hL6euB4wz6TyWkfDys//YIvBklhA1jNLlQWIsqygLKuIRyX098SRyZVabmYkHBxP46Zv\nbsHsfAF/8eFzcdlFp1j+vCseRtF0yLxTNzyg/sG0mVwJv941UfX7uUIZxbKiBzrmOWtvl9dgyWjw\nYDbUl/RUCjw+nUUqU8RvnTyIPrF/0GN2aUkES1V7llpoHa5nluLOKxzaxDiOJ148pA8o5v0R4nFe\nV2kB254l24153iFYAoBPfOAsvPu8EVz2O6cA8Lbp99D4PGbnC3izcmBrNl9CVyKit001M5o81A6W\nCiUZk3N5/QZrd/KwVmYg+v37YdxShud8UzXftACto+Cf/7dzMZ8r4Uv/b5ulTbCoQ08mIlBUYKry\npRXvuSSFcekFJyOTLzd0CFqzZtN5lGW1ar+SYF4ZNtt1YBav75/Bw1v24ac1WrqKSdjwUBfCoerP\nlDiQ1x4MaWV4sqUjTj0imBETT/3wyTbtWbJn3oaHuqAoKiYdVqn2jWkD5MjKHt8yJeZ7l5gMut07\nsvmSnjXNthgsiftclylY8hroi3vSbLoAVdUGNuOwSOd/Yz5b1MsjWiUmOLMZWc8MNeOlXccwOZvD\nq7snsafSzMbeCQ8wZ5aK+mdf27MkGjxYJ5WZXMmyd8OYgMuV/zd+drUCHv3fy5ct+0r1e73Lwpiq\nameViP2t/d1xx8zSjj1TODg+j4vPXW35LpvvH+YOiQcq3497N72Bbb8Zx0nDvbj6v56Jb9+4EV+9\n7hL84SWnY82qXkzO5lr+/mqZJeeseb3PqUiAhc2H0jp8j6drZJbKsgpZUfHnX34M//NrT1bt5zEz\nl+EBRgbjsEvQmM2XkM2XsXwgWdVkoRniZ9vf21hmCdDuu0Y3PJFZ6tGvsxFi5d/cMAMA/vCStYhF\nJTzw+Juu39dCSUY4HEKkxpl8gFHxI36e3/7Jq/j6/S/XfMzhY1rgMmKbowz2xvWAVtxX31pZ2Gh1\nviIWXFfZyvDMgbXeoa6B9tZuDh+bx83ffAaz6QL+/EPn4L/+7qlVf6erMraKbJZbGV69g2kffHI3\nbvnWVhwYs2b2Z23jfo8lsxTXx5laCwPGOU3WwH9ZfwKpTLHu/f6N/doYs27NoNGZ0uP7uySCJfuB\nZnob46b2LGmPSbqscEhSGP/l7Scjkyth66tabbYIyqJRUxlRA4OFec+SPViyd0ISErEIPv/Hb8e7\nzhsBYGQ5akXRYrVE9NDPFspIOpTgAdoNb6A3jt11OuKNiRWU5d2Of35ipVVnq2ntRoxPZ7C8Ugrg\n1tXJqQHAey9cg/deuAajh+bwzQdegaqqWrBUeW/Fz1Y0rug1reRdeuEahELAoz6cueR2IK2g3Zir\nX/f2N7QSQykcwncf2oFXdh9zfLxejtYdQ09XrCpY0g+kta1kxqISSmXZOMXbw+AtvrPixioWPHIt\nBikiq2wv61hZ46ylPYdnIYVDWLOqt+XjB7zSy/DiUt17h5isAkCprLaUxRHBUjJhBGley24yOevn\nYbA3XnfF9/s/34nP/++n23Lg43RlUqaqxn7JRmXzJf0zsO03Y9hzxD1YEpmcTK5s2bOUjEcQDlVP\ndH/2zF5k8mX8wbvXIhGPVGUrLJklD8FSNlfS95eYr8dtYWw+V0JZVvVJS193DLmCXPVZfnjrPgDA\n5b97iuX3zZklc2BycFz7/L15YAYDPXHcdf0G/NHv/ZblAN96gYJXzg0evI2tRuvwsKfMklM3vFJZ\nRq5Qxmy6gH1HU7jxG79yXdm2l5CJDMYRl/dg0nTsQ0+T7efNZl3ux150JyJGN7zK+yHG8kazXUZm\nyRos9ffEcflFp2ByLo/Hth10fGy+qB3X4rRwa2bfs/T0S4fx9EuHaj3EyCytsM5RBnsTyBXKyBfK\nenfZt/2Wtm/vcIvB0hHbvCheKVE3f1bEzyuVKeKZV47g5Tedx+O6z3VsHjf+8zOYThXwZ3/4Vry/\n0v7friserjyf9nM2DqW1BUt1DqYV9197tnoubW00YsksdUc9l+H1dkX1kmPB2Lfknl1SFFU/1+ut\npy3X521e9y0tiWBJlK3E49bW4c2cEyB+kLW6slx6gVay8MvKmUtF08pSM62PzYOnXFWGJzb31t4o\nLz4YtTJLYrCbTWub90TrYCehUAinnziAydlczU2I4qaw2jVY6q08tz+ZpUJJxnSqgNUrehCRQq6Z\nJbdzHf77h87B6Sf245fbDuC6f3gCxZJsBEuV90qsQtnP8HnbGSuwc9901YpLu7kdSCu4ZZZeemMC\nUjiEmz91IUIA7vyXFxzPHJo3NTro7YrqZVeCW5ldLBJGoWQuw6s/eIs9RWKFtV0NHowFjOoyPMC6\nrw3QSgv3HUnh5FW9iEYkSJXufn62Dq9XZiRK8MRejlY2B+vBUoNleGVZQa4g47TV/RBz2QHzniWX\nAO71fdNQFNXSfKVZU6ZJa7OTmgPjRuC5bee4a9twwNo6XEw0+rq1EjdtZd74fuQLZfz4yVH0JKN4\nf6VU2h4smSsJ7CWudqWygmLZ6IYKmDJLLiV8s6b2vQCMchTT359NF7DllSM4abgXZ51q7VYZj0ZQ\nKmsHrZo/EwfG0phJ5zExk8P/z957x0lylVfDp0LnNDnszOzM5hxndyXtrvJKQkhIIAxIgDDY8IEw\nGAM2vI7gF0T6+ffiBMYGjM3rFwkkJEBIIBRQWq02zOYcZ3Zy7ukcq74/qu6tW9VV3dXdM6tdSecf\naWemU/Wte5/nOec5z5L5NaaBLdnvq63M5yVzNzzAhgxPYgweSvQs8RyocgBg5yzJtHjgcYnoH43h\nwR/tNn09owxPSxjNE3nCajfUeGixshoZXjmyZyO8bgeSKWUAbTiWQsDrQJAYPJTds2SeLAHAPTcu\nhkPk8cjzZ0xljYrpQfF+JYBNmPO0mBlP5YqaEQyOx+B2cvQcJyDJ0/mhGTqXsaM5gKZazyz0LMXh\n9zjovaoUEiVdfEnW3fHzk/jmj/fiS/9RmRnWvz9+BFORFP74rtW469pFln/nc5NkSc8sGWV4pQbT\nkv3OGOMS63my71gxS8Vi43A0pXPCIyDSzmLJ0tO7+3Dq4jSuXd+GxR01tm38Cd4kyZLBDY8aPFTS\ns6RtkFaY1+jHqoX1OHRmAuFomlaxHSJfdpUWKG7wQHuWTBzrWJCbstjCIAeYJANTkTSSqgzPCnbm\nLREP/dYGcxnepWaWSLW4pd6nzuWwSJYsGkqdDgF/+YdbsHZxA71e5DOQRniSrAS8+gT2NlUS+bvd\nszMB3Ao0WTLpWQJIZVi/jmZiaZzpD2PFgjpsWtGMj71zDWZiGXz9v/cW3CdEZkU2+2gio+txYh0C\nWTgdAiRJppUnWz1LRIanbqwem1KbUqBzlgxVsxaLwbQD4zFkcpKOWXA6hEtm8OBylk5aSLK0rFMd\nQl2F7SwdG1BmskT2o+Z6L5Z3KUF2HduzZHK/ZXN5WqghmvRqQByTgMoZjL5h5f24nALGp5M4fHYc\nTbUeXQGEwMf0LJHkhvyd1+NAgmEFfrOrF9FEBnddu5BKS4121LkyZHgJg204oCQNosAVFDEIjLr/\nELWz1q7bc3svIpeXcfs1XQVJD2sSw36fF0ejOKPOOiGD0I0ge2XVzJLJnCUSKJcqYBAZns4Nz+Qx\n02ozOvs6rGQymVau7/Ub27F+SSNOXwybMqNpg0qBBOElmaWQB4LaN1SdDK8ygwdAKQRIMiiLVhNw\nU9eycmV4U2ryaSa/rgu6cetVnRibSuCFngHIsoyh8Ri9J1KZPFyO4jEOoB9Km0jlqOmIlUFGPi9h\nZDKO+oCjYJ2Tob1Hz03S86Cx1oP25gCmIumKvxNJkjE6lUALU0Am75swyS6HgBo1mH/4mdOQZaVA\n8PX/3qvrmS4FWZZxpj+M1gYf3nm9daIEaMwSYVqyOQk8h4L7rNRgWtKjaRxiThUlpGfJzfYsMcyS\nRWyczeURTWR1slgCkoBPWSRL09EU/vvJ4/C6RfzxXasAgBpQ2ZU5vimSJeNAM0q9V8AskQVQajga\nSSQmwklaxWaZpXJkRMWSpVjKvGfJiKCvdLLUz1RThyZikGRzJzyCRW2lTR5KMUt+r1Np+r1EPUua\nVthrybAAxSeGN9V58eAD2/DTB+/Ad/7iRvzh21cCYJil6UIZHgBsWdWCkN+J5/f1V9VLUQrjYXVj\nt2CWzIL8g6fHIcvAxmVNAIC3b+3CzZs7cLY/XGD4EE1oAWHA5yyoMIctmCMSLJCDx07PUl3IA5dT\nQIdakdYMHqqU4WXzcIh8wQFJZHhGZokwC2yyVGz9zBbSDLNE+rWKJUscp+nq7WqxzcDK8LxlJEvs\njLFta+cBUKqxxZil/tEYDWpmY14P+xyV7it9Kvt7m2rYk8vLpqwSoO295wbD2HN8GG6nQNe+n2GW\n0tk8Hn/hLDwuEXdeq0lhCpilnH0ZXtxEhs1xnKk8lsDILIXoQErt73cdHYYocLhxU0fB41npGrsm\nBkajONk7BQBYOr/G9LXbaHFsLmR4dnuWCq3DkyaPmY6kChrJ2Z4lln3doO6bZpV/Y89S0OeE3+Ow\nTBg1GZ7y2j63WLaZAgsy28YOM2MEWVeReIYGqt4K2a7JmSRqAi4IgnnY+e4bl0AUODz0zCn8xb+8\njI9/4zk8uVORTRGzpVJg2UU21rGKe0anE8jlZdQHCuO5VQvrASi9e6TI2lTrrbrAOzmTQjYnUXMH\nQFsbhA12OUXKLIVjacxr8OGT716LaCKDB3+0x7bZzkwsg2giQ3vDi4H0LLHMkpFVAkoPpo1ZMEtG\nhtPlFGgiZscNL6zK+Iz3JMDI8CLm7+lHTxxDPJnF/bevoCwU2aPfkuExMAa+DnFumSVACwTDsbTW\nTM4mSxVahxtleAkLgwcjAiVkeNmcpNP3k8TJSoYHKLOWACVIsAJxfWmxSJYApdo4Np24JE5ZJAhu\nrvPC7RQsD1Y7VqUOkcf8liBNAshGbZxHwf79zZvmI5rIzKnRg8YsWfQsqfpodrDe/lOKe033cmXm\nAsdx+OS712FxewjP7e3HU+pgSoCdN+QwZSxJkB4qsA5X7rux6SS8brHAic4Mfo8DP/7SbXj/bcsA\noKL7xwyZrGT6+g01yqwlq2SJFAiAwnkzcwG20FOsJ0OWZfQNRzCvwUeT5GoGGmqBoD0tOQFrm3/n\n9oX47hduwtL5tZrVuklyyc4fs6oMloOpSApupwCeq4ZZUpKld16/mAblZv1KgHJfu5wCRiYTSGfy\n+LN7N2rGJB5lNlY+L+HZ3X2YjqZxx7YFur3BIag9tDnNhYrkAaXmLJEqLqn2EwS8DkvrcJJMajI8\ntcLKMEvReAYBr1MnlSFg2Rh2/8zkJLyi7mtWzFKDWvyoVklgPmfJrgxP+a8gWI/ySKZzSGXyunku\ngH7OEpssrV2sFCiOnJsseD3WOhxQ9ta2Rj9GJuOm8jC2ZwlQzvZqmKVYIouA11my38cMzfXKGUKG\nqtf4XZrpRBkJnCwrigKjuQOLxloPbt48H2NTCdqIT+T56UzOVrIkCjx4TrnmbKxjxbIOqVLI+mBh\nnFMTcKG9yY8TvZMYmUxQxzY7UtLJmST+5zcnTJ3s2IItATkbyTnK9iwBwD03LsHtWxfgjm0L0Dsc\nwbcf2m9rMO7FUWUfM86GM4NZz5LR3AEoPZiWxKTGAoSxSKMUdZT9xU6yRBnxoBmzZC3DO3x2HL/v\nGcDi9hBuZ4wttJ6ly5hZ+vrXv457770X9913H44cOaL73auvvor3vOc9uPfee/Hd737X1mNKwTjQ\nrJrmbDs9S4CWLM0wyZKLmbNUnnW4tcFDfJaYpeEJZSo1eR6i2TcbSEvQUONG0OcsavIwNB5DQ42n\naNLR3hRQmrGZwCafl/Dc3ouzbrVN5xvU+4oGu5ls6WTJCDax9LpF06rMrVd3gueAf/rpAfzoiWNV\nDRsElABrKqq/RuPhJJwOoUAGSEBlNGpwJkky9p8aQ03Aha5WzRrZ6RDwlx/egqDPie//4giOnVcC\nAdqz5HEyAzC1z0HkX0Ejs6T2Ck5HU2VJQrxuTSJRyf1jhkw2b2qJ7xB51AfdBTK884Mz4DjorKNd\nl1SGp/UsmbHSkzMpxJJZdLYGGS125cwSK8MTBB5OkbfHLKnrwO91gOc5dKgVzWK9IReGtf2j3Nkd\nZpiKpNBQ40FtQMTgWPF5NlboG4mguc6LxloPVqhyQqtkCdAKI5/8g/XYtm4e/TlbmX/092fhdAgF\nchjKLOU1ZsnjUooJVo52BGbMEnk/8WSmIKDK5iQ89WoveJ7DIvXzBE2YJTKQ2Azsd0kYXjKgCerq\nkgAAIABJREFUengijtZ6X0H/BwHPc2hr8GNwPG4r2LOCZJIsuewaPDDMktXAZW3Gkj64Z1lANlla\n0BaC1y3iyLkizBITM8xr9CGXl2kvDAtWhgco+19C7RuqBLFkhgal5eId2xfC6xbx89+fBaAEumSt\nldNKEEtmkclJBUPSjbj/9hV4746l+MrHrwGgxE/EmdYOM8ZxHJXXs7FONGke95BiihmzBCgsfTKd\nx/BkHE11yntvt8GO/u61Pvz02dPYe3yk4HfDk3rbcEBbuyTBY93w6oIu3LSpHQDw0btXY+3iBuw6\nMoyHfndK97z9o9GC+LBfNf2xxywV9iwZzR0Iig2mpUy64ZwyuuEB2r5lxzq82HxGK4OHbC6P7z56\nGBwHfPIP1un2DM1t8DJllvbu3Yu+vj48/PDD+OpXv4oHH3xQ9/sHH3wQ//qv/4qHHnoIO3fuxLlz\n50o+phSMLAF1w6tEhkfc8EowS8SmcyaWRiYngeOUqgexDh+3yMrNYMs6vIhcDihtHd6v3vikQkaZ\npSLPS0wexqYSps9LbcOLsEqA+ebz7N5+/OPDB2bdPY5UdRRmSUQqkzc9hIrJ8KzgMWmyNqKt0Y+/\n/shVqAu68dgLZ/G1/9pTztsvwGO/P4t/+fWITsc8Pp1EY43HspJo7B+5MDSDcDSNDUsbC6QtTbVe\nfPFDmyAD+MaP9yISzyCWzMLjEuAQeZqQsXIhs00R0O47WbYnwTOD5oZXbc+SObMEAM31PkyGk/Re\nk2UZ5wZn0Frv090PLuelleF5iySKpF+pqzVEtdizwiypa9rjFsuS4RkZiWK9IRcGFfkgUL0ML5uT\nEIlnUBd0oyEgIsbMPrKLcDSNmViGFg7eef0irOiqo/JGM3ziXWvwhfs30QHUBKT49MQr5zERTuL2\na7oKCgVmbniiyCPodZRmlkx6lgBl/5HkQpv5J3dewPBEHG/f2kVd6kImhbRkOmdZKDNjlpbN15ik\nJRYSPIL2Jj8y2bxlZdoOzAwetAZxu8wSZzm3TZuxpP+uNBmePlkSeA6rFtZjeCJe8LlYGT5BMVfA\niZkk/B4HfW9s3xCLRCqLp1/rw3/84ohlgihJMuLJrClDaAc1ARfee/NSmtjWBFxwiDxEgSuLWZqy\nsA03IuR3KbPHFitnUSSeYeK30j1LgOb2yhaLrO4jmiyZMEuAJsUDNPMfOzK8KXX9mH2/lFlqKJTh\nsczSvEY/buxuxyfuWUfd30SBxxc/tBnNdV48/MwpvHJoEADwixfP4ZPfeh6/3dWre60+NY6b31I4\nH84I02TJQjJJBtNORfTFLVmWqemY8T4MR9PgOOgKKWR/rJZZqlGHCBt7Bh974SwGx2O4Y+uCArbb\n53bQNWYHlzxZ2rVrF3bs2AEAWLRoESKRCOJxZfH09/ejpqYGzc3N4DgO119/PXbt2lX0MXaQzuQh\nCjzVyjpnQYZXqspBgsHpaFrtj1BsL5tqvWhr9GHXkWFqY1gKeV2yVHoorRn8Xic4zjqLHlBvqg2q\nNeaASn8XM3gAis9bKmUbTkD6UQaYnqmek4qN9dl+a4nfb3f14qv/ubugupHK5PD3P3iNWrezGJ1K\nwONSBs26nIrhgJX7DlAes8Qm0FasDqD0Ln33izcj5HcWyL3KxemLYciyltym0jlEExlLcweAbdBW\nPve+E8q13ryixfTv1y5uxPt2LEU4msauI8OIJrLweZQNj8o7DfpwjlPWHAuWybHjhGeG2ZqzlM3l\nqfTBiKZa5SAgQc/YdBLxZLaAWXA5BOTyUlGnpWrB9ki6i3x2LVkKlO3yYwY2ECSvb8vggWEdWVgx\nS7Is48KQkoj63CKt6LM4em7C9OdmIAdqXdBNA6By+2NIvxKRrly9uhXf+vS1RQPOq1a34tr1bQU/\nJ/vyL186D4fI4103FDZZmyVLDoEv2ndEQN1QDfu02WDamVgaD//uJPweB+67dTn9udHgQZJkpDJ5\ny4Kgk/kuyfpc2qkFIkvnm0vwCGjfUhUmD2YyPLtzlvJqcYzneYgCD4fIFzxmyoJZ0qzDJcqskCKG\nJsXTs0vUjdfBMktFkqVwikrwABQMppVlGY88dxr3f/lp/OsjB/HEy+ex87C5rDuZzkGSC+/HcvCO\naxdS5rA2oLk8lqOKKOaEZwaeV9zpIvG07ZiLwOUQCnqWrCSpQ6WYJZNkqcbvgt/jKLqvkHtpyMTx\n0DiQFmAMHuIasyTwHD73/m5cs6ZV9/igz4m//aOr4HEJ+PZDB/DY78/iR08cBaDvOwcUh0qe0+65\nYvA4FQkjee+5nHWyRAbTGpOTTE6i8ZTxnJqJpRHwOnU9a2R/DNjqWSIyvsI1JAg8agJuHbM0PBHH\nz545jdqACx+8fUXBY8gau2xleBMTE6ir06xIa2trMTExYfq7uro6jI+PF32MHRibA2nPUhUGDyWZ\nJeYAyuYkGiiKAo8vf+wa1ARc+P4vj+Dlg4MlX1Pfs2Scs2TPOlzgOfg9DssAimiD1y5pBMdp7ECx\nniUAWNROTB4KpXiauUPxG9XILOXyEg6eVmYKnBs0l/iNTGfwvccOY/exEWqoQHD8/BT2nRjFq4YD\nRJZljE7F0VznU+j6Ig5dlTBLrOmHFbNE4HII8LocVc/pGZ5Urhk53OmMJQtzB/LagDZjau/xUfA8\nhw3Lmywfc2N3h/q3I4glMjQZDHiIDE8flAW8zoJghrXprsSZCWClNtp1y+cljM+UJ2ckBQwzGE0e\nzqs9eQXJUgk7bBZTkRQ+8r+fxov7i8/8MIINFMj6MhtK28cwS2buZuWCDqUlzJKrPGbJ57XHLI2H\nk4gls1jQFkJt0F3ALI1NJ/DX/7YT//XkcVvvmwa5QTcagsp7MAtqRqcSeOLl8/ib7+3EPV98Ak+/\n1kt/R65lp41qbCmQ65fJ5nHLlvmmMqSCZCmnMks+JxKpnGkxh4AyS55CZgnQKwl+8vRJxFM53Hfr\nMtPqLim8lerLZfdN8redLQF6xi3pKM0sAdU5oCoyPH34Qt5vqf4ebc6SJu0tZJbMmRDNOlyi9yFh\n4AjzaDR5oMySszSzFE9mkUzndMkS6UeLJxUp3g9/dQw/fuoE/B4Hbr+mCwBwss98oDNleiuU4QFK\ncvzAu9eiuc6LFQuU5MHndpRl8DClNt6XYpZYKIFspuyz2K0y/vpkyYpZUmYumkmyAaVvjPQWNakF\nSI7j0N7kx/BE3PLeDJdglhwir7sWZj1LxdDZGsTn3t+NTDaPH/36GFWRGPfP/tEomut9toq+PK8Y\nw2jMkmzaswRo5iNGhRR77xmZpZlYuuDcv/WqTtx+TRdq/C56H1kzSyrbazGfsT6knB+yLEOWZXzv\n8cPI5CR89O7VlvFxyOfUyY+LwR6vOYcopsO1+l052t2enh7MROPg1f8nEHhgOhzR/cwOhkaUvo1T\nJ49j+KL1AiSJ2MWhcUSieQCS7rXety2EHz07jn/4f/swMtiLhS3Wm0gipQU95y70ok7UNuPR8Wlw\nHHDsyMGSDZwOQcbUTNz0M5/qHYUocBjqOwmfi0cspbz/sZFB9PRYszvJmLKw9x25gAUhbX5QPJXH\nU/uUxyVmRtDTY93XJMkyRIHD6b4x9PT0oHcsTW+YgbEodu3eq9vM8pKMX7w2TR209uw7jI5G7QZ6\n4YjyPgZHJnSfNZ5SNPYuIYOenh4kYsp72tNzACGv/lY4c1bZ5AYHLqKnp7Bp1wz9E9r3lE3HSq6t\nfC6NRDJf9hokkCSZVsaOnryABsckzg4rm2U2GbZ83vC08r0cOHQU5zwCTl2cRleTC6eOHy76eg1B\nET0nR5HLy5DzafT09GB4RHm9k2f70OJRDuzJcAJ+D1/w+pMT2hpIRqcq/twCD0xMzdDH7zsbw6/3\nhDEZfQXL24tr4gnSmTyy6aTpe0hGlCR/z4ETyEUu4pXDyvuWEuPo6dECvERMWWd79x2A31P8MDre\nn8TETAo/+c1h+OVRW+8RAMYnlWt67OhhTKv3Wv/gCHp69InQ8fOjcIgcBnpPAAA4Dhgarfwa9w8q\nrmZnz5zE1LCIfC6FZDqHffv2Fd1nzvUqa2ug7xzkmDZgkiSzA0P6935qQDlsXXIMDi6LaCKL3Xv2\nQRSU1zh+MQFJBk6cH7H1WY73K8+XiIxjXp2SEOw/ehZ14jiGp7I4NZDEqcEURsPaoc5xwI+eOIIQ\nNwGHyKHnqHLN49MD6Omx/12ZYXpCWS88ByxtTJl+hovqe77Q24ce9xQSqQy8Lh65tLK/7XxtH/xu\n8/V15ry61/VfQE9WY9Ij08rP9x86jsiYG2PhLH6zawD1QREtnmnd+yBn1cjYJHp6ehBJKEFOMm5+\nPo6p1evjJ0/j4rjyXV7sPYeGoIDRsISZsfPomeq1vCaRaSU4OXDsAtq81mdLMeTyEhIJ/VmWzEgQ\neODFnl6sbklarlPSs9TbewHe/Ah45DET1e8FJ04r9/zYcC96csMFj52ansGFPuV7u9h7DlxiAJIk\nw+3gsO/4IHp6tCB6eFQ5P06eOIZBDymwKL8/eW4YPT1acEjWpZzVzo9oWHkv+w8dxUNPJrHzRAwN\nQREfuqkWPncWz+7hsP/EoO556GtPKdc6Hp0u+C7L3RseeFsdRi6ewshFQJYyiMZztp/jyAllPU6O\nDaCnx16hm5cUyXfPAaVHfSZsbz/LZVNIprM436cVS8/3DaKnR19UzeQkTISTWNCsxA5Wz90SAkYm\ngcjUMI2F3EIaeUnGsy/uQWOoMBAfnVA+b99w4Tk8MBpByCvgwIH99Gfj6j01pK6Vgf5e9JQ4JxwA\ndqwP4veHI7jrqhr8avc0+ocn6evFUkrC2FpTeBZbQeQlhCMJ9PT0IJnOwCVKpo+dmVTW/v4jp7H/\nyGn4XAI2LPLpipZDI2P0sXlJRjSRRX1A/168AK5aAOzfv5+qpkbHC9cqAJy/qFybixdOYWq4cD8U\nZMVl8OVX96J3LI39J6ewsMUFb37Ech/npAziySz27N1XUNwtuDZFfzsHaGpq0rFCY2NjaGxspL8b\nH9emFI+OjqKpqQkOh8PyMaXQ3d0NPPFbBHyi8v8q3I+Pwuny6H5mB08efA1AEldt3lC0nwcA3L/4\nNWTeDV5Iw+/iC16ro2scX/7+a3hkZxhf/+Q2ytIYwf1iDICy6bW1daC7W7Od/eFzz8PtyGHTpk0l\n33vTzpdw6uI0fn0gi0VtISxqD2FhWw0aajyYeuRJzG8OYvOmTWh55UUqf1uxfDG6186zfE5ZlvHD\nZ36Dqbj2+V46MIB/euIgMtk8Gmo8uOuWLZYNvwTzX3wBA+MxrN+wEcd+ewLAOOY1+DA0EUddyyIs\n69SYxYeePomR6UHVUjWHlvYF6F6tUdW/2r8LQAS8Q//9nr44DWAYyxe2obt7NXadP4gjfX1YtnwV\nrfQRDMbPAQhj+dLin59Fw0gE+N3vAQBd7S3o7l5b9O9DL7+IcDxS9hokGJtKIC8pzKTLV4vu7vWY\neK0PwATWrVyE7u75po8bz/Ri96lDGI774QmFAAzjpqsWo7t7cdHXu27oGB57QWn0nddch+7ubtQM\nhPF/n38RwZoGdHevQT4vIfmTASzqqC34XOemTwNHlWB+xdIu3TouB95fjEJwuOjz7zx7AEAYhy7K\n+MDdpa9lPi9B+skAamuCptdeDI7jV7tfhSfYiO7uFfjNod0Aorj1+m7UMtXAl07vx7GL/Vi2YhXt\n/7BCX+QsgEkMTWXR1rW85N8TPLzzJQh8Bldt2aS4HD75OwSC+mubzUmY+umvsbAthM3qPuB9fBh5\nONDd3a2uE7mkHJbF747uAZDAlu71CPld+NX+XegfH8PqNetpL4UZXjlzAEAMmzeu1b3e2HQCePIZ\nBEP693526hSASWzfvALSgUFcGB3AgsUrKbt3fOwEgClEEjI2btxYsiA0kjwPYBLrVi6BnFDujVND\nOZwcnKRVV1Hg0b28CVetbsWWlc14cucFPPLcGYxlavGOLQvxPy+9CIHncMv1Wywrq3Yxne/D7w4c\nxM2b5+Pm6zaY/o3sHQVenkRzyzx0dy8F99gIAn4vOtpqcby/DwsXr6BGGUbs7j0EIIItG9fozFlG\n0xfw/OHDaG3rxMb1bfjsPzwNWQY++Z5ubFmpl9vKsgz+0ScgOr3o7u5WpTzDaGttQnf3+oLXHM/0\n4un9h9De0YmZ3BSAGDasW401qyVEYhmsW1r8bE6lc/j33zyJjFz++Uver/yTAQSDgYLH7zq7Dy8d\nHIS/YSGd82XEqydeAAAsXbwI3atbUfP732N8OqF7rpfP7AcQxdWb1hXcN8JPh+Dx+hCqDQGIYv3a\nVZR1XndkN3YfG0HHwhVUtvXUwd0AktjcvUFX4a7/3dOIpjnd6yry81GsWNKB7m7FAfTCzBm8cvw4\n5rUvwMMv70d9yI1//NwNtEq/fO9OHD0/geUr1xZU0A+dGQcwhkWdbeju1qSXPT09FZ87ANC4eydG\npiewfsPGkkEmoK3Tqzfp12kxPHNsL3rHhtDQ0gVgDB1tLejuXlXycY/t2YnByQmIrgAApfDl8dUU\nfN4LQzMAhrB8YSuAnOX1qGudwaPPn8E9b1tHY77emTM4eP44Qo2d6DbI5AAg9diTAIBEWsKyFWuo\nJD2ayCCVHcCaJfW61xvL9AL7D0HmXQAyWLl8KbWjL4bubuCBbB5Oh4Cdp55BKifR5z18dhzAMNYu\n70B398qSz9XT04P6Gj96h5WYRH5kGIGAz/S6BBqn8bOXX8ILR6LI5WXUBd346Huvw8m+KQBKYuL1\nhehjFbneIDpaG4quO/HRYTgs4vKfvvoyeD6F7ddsNl1ze/sO4+TABdS3LsIPn90Hh8jjix/eTiWv\nZiBrbMmy1agNuosmlZdchrdt2zY8/fTTAIBjx46hubkZXq+yqbS1tSEej2NoaAi5XA4vvPACtm/f\nXvQxdpDK5AvmIjlFviInK9rLUmLOEqA0QypDaSVTyc+6JY34/Ac2IpXJ4cs/eI1qWY3IS9YGD4lU\nFm6nPUvQHVs6UR/yYN+JUfz02dP42n/txUcffAYf+NunkMnm0d6sLKoGRldcSoZHTB6GJ+OU8n/0\n+TOQJBn/3zvX4N++eFPJRAlQNO+ZbB6PPncaPSfG4BB53KXOImGthc8PzuCnz55G0CvgA29TdKis\n3EiSZJxWJQnGgY6jk5ptOKBR3am0InV58Ee7seuIUo2qyOCB7Vmy8ZmdDgGZnGSbKZVlGS/09OOA\navPNrhei1SV9NsV6lm7ePB+tDT48tfMCnnz1AgBg88rmkq/P/g3RwFPrcPVak/8abcMB6AwVKpXh\nAcqsJdYRjsisTvRO4VTfVMnHk0q6pcEDGUyryvB6hyMI+Z26RAkoT4Y3MqV9V3aktwQpZnK9lUxh\ncDyGXF5GV6smE/S5eCov+PIPXsPf/vurtl8T0JyuWBkeUNpYg7WVZ0HvNYM04/yQcm8vmBei13eK\nGUxLeiHjqZxl3wGLyYjWBOx18agPuelck5s2deAv/3AzfvKV2/Hlj12D26/pQn3Ig7uvWwS3U8DP\nnz+L7z12GGcHZrCss7bqRAlQ+p3uuWEx7n97oWaegLWjBoBsXoYo8LZm42mubfr7ichjo4ksek6O\n4dxIGuuXNmLzisL7nOM4+NwilZUZ+9WMYNc96UtwO0UsmBcqmSgByv1bF3RV3K/JDpU14uYtSoHo\nmT3Wg7/p49XeCSLDY/dhMtjYTPIjijyyeUlzjGT6xYgU7yhjIU6k1sb9pj7kRjia0r2u0QkP0GSS\nR85NIpHKYdOKZt3+ubyrFrIMnLpYKMWzksVWC28JyZQRdg0eWJD1P67K7IsVaViQ68xKxMwMHkg/\nUbFgGlD2pr/44CZdcbyYlDSTzeskiuxIFrN+JUBxSgb0PUt2QT5vfdCN6WiaKm6IE55VocUMfo8D\n2ZyETDZPeyfNQGT+ubzSOzgTS0OWZTrKAND3Ds7QQfXF4yLlXjQ/T8PRNGr8hfJ+ArK2vvfYYUxF\nUnjPTUtKfrdmM+ascMmZpQ0bNmDVqlW49957IQgC/u7v/g6PP/44AoEAduzYgS996Uv43Oc+BwC4\n88470dnZic7OzoLH2IUsy6YDzRwOAdkKrcOdDsFWNSXkd+FsfxiiyNObwYjt69oQjqbx748fwZf+\nYxe++entBU2l7ET3AuvwZBa1PnuH+m1Xd+K2qzsxE0vj/OAMzg3O4NxAGOcGZ5DM5OlAUlZXX8rg\nAVBMHg6eGcf5wTAWt9egbziC5V11eMe19pmDD75tOfadGMVPnj4JSQbWL22k+mjSt5TNSfj2Q/uR\nl2TctaWWTkJnXb+GJmL0gDAGVyRgJRpkrSE4j6HxGF47OgKHKOCaNfOqNniwoxF3Mr1zpV4nlc7h\nn392EC8fHETQ58T//P3bMMQ44Gk9S9qkcSs4RB4fvmMlvv7fe3FWne5tZNbMsKKrDn6PA7FkVutZ\nMhg8FNsUWUOFSt3wACUwYxPkgbEYBB7IS0oj/RfuN68oE2jBi7VOnVdnLSVSWYxOJWjzNgt2OGcp\nkERd4Dm8cnAI77l5acnHAEpxhhRmSNJkDFCIuUNnq3Yoet0CxmbSmJxJ0qbfRCpbkg0nSKRzEAWO\nFnnYwbS1Rc5ecu8ZX8cqsbwwFEHA60B9yI061eWInbXEFkqGJ2II+op/t+Q+qAu5MRzm8NVPbEUk\nnsGy+bWWwzBDfhdu37oAj79wFk+92ovOlgC+cH9ppt4O/F4nPvKO4tVwo3V4LqcYEmm2/MWSpTRE\ngSsoSJH9JxxN49evnAfHAR+9a7UlM+dxO7T5KKRfzZZ1OEmsyht4Wht0o39UsXUvd/6PpBYPjW54\ngFKAbKjx4OWDg/jY3atNA2zWOlx57yIkWb8PT0dT8LhE08eLAl8wZ4lgzSLlzDpydgI3qQN909k8\neJ6j0lKCgNeJXF5vpjFumLEEaOYdu44Oq6+h34uItf3J3il6hhNQK/8qDB7MQOKChInT3vh0EnuO\nDaOtyY8F85QeyslISueeagek4EZ6ku0aPJC/G59OIuB1IpPLm1qHk36itkYfkCxPDkoSELN+SNLv\nzXGK8+vgeIyangxbmF4Rpz+7PUtmqAu5IUkyZmJp1AXdmhNeGckSScyjCWXsgJXBQ23QjftuXYZ5\nDT68cmgIu4+NIJ7MGnqWmEH1hhlLVijmujodTRXtfyfmIb3DEbQ2+PDum5YUfS2g0NymGF6XniWS\nDBEsW7aM/v+mTZvw8MMPl3yMXeTyEiRJLkiWXA4eMxU4aqUyOds3bY3fhbwkI5+xbiYHgDu3L0Q4\nmsZPnz2N//2D1/APn7lel4zpDB6Y2RS5vIRUJg9XbXlfY8jvwoZlTTqal3UXYh1r7ARX1OShfway\nrFTulncWD2rM3tMXP7QJf/mdVyDlZXQvb0JHcwCiwKl0OfCzZ0+jdziCW6/qxOJ5edOFfoppdI2p\nDbHkMB4xMktsAKcWOUnDdLXMUrCEwQOgn/dVbHMcnojja/+1B73DEWp1OTQR182lIgEmGUjbUGKe\nxTVrWrFqYT2OnZ/E5pXNtgIWQeDRvbwZLx4YoLICt1OA0yHQA8I4pVv3eUWWWar88A75nRgciyKV\nziGdVYYPLm1zIys7sfPwEMamE1QCYwbScG3FLIkCj/oaD8amEnTemJl0pJgdthEjk3EEfU4s66zF\n3uOjGBiL0uGGxZDKaPNurJy7iCHBAgOzBAB7jmta7ZHJRNFZQSxiiYzu3qcWyyWauuPJLHxusaCY\nRL579lolUlkMT8SxdnEDOI6jRSLClkxHUrq5S8OTCZ0c1wyEEagLuDEM2LrGAPCuGxbh9/v6Ma/R\nh7/9o6sKnBznEqzBQ16SIcnQBZbFHPEmIynUBNwF9y9JtH67qxfhWBqbFvvQWUT+5HOLlOkx2sYb\nwa77cpQWLGoDbpwbmEEilStpTmQEOQPNCpYCz+HmzR346TOn8eqRIdy0qVCKzFqHAwxrmsppyVIk\nTZN3IxwiXzBniWDBvBD8HofOES+t7u8F3xFTaCLPMRlW1j5r0EOuD2G6jYUbck+c7C1k1eNJc6a3\nWlCHPkMMlUrn8OUf7MJFldUQBQ5/8cFNdCBtOYkxOSPImWY3gSDrM5rIoK3Rh3RWMGWWtGTJj2Fr\nItIUzXVeiAJnyiyRxKCzJYje4YjO5EEbSGtIltT3TCzay4k7COoJM69e6/7RKDgOaC+HWVL3DfIZ\nirHr779NkXUeVecvTkfTOjt5liGyGidihMcpYMJksCwZEl1jcU8C+rj1gXvW2hp6T9l7G2M2Xpeh\ntJcSVgyBQxQqtA7P26aD2YCx1I3+gbctx8blTTg7MINRhjEghyeporEsE8ni3Y7yJ3MbwR485TJL\ni9Vk6dxgmCYry7uK28eaYXlnHT5xzzo01Xmxde08OEQe81uC6B2K4PTFaTzy3Gk01Hjwx3cplVpS\neQqbJEt1QaXKwlYpRlVmifRDEGlmOpOjAQmhz9MW0oliIMEsYE+GZ4eZ2H9yDJ/7xxfROxzB27d2\n4SN3Kp/9xIUpWqVqDIkIq8P7xsNJ1ARcJd83x3F44J61WLWwHm+7usvOxwMAXLdBsUcmTBTHcWis\n0aZ5k00nZPL5WSanGhne4vYaSDJwdiBMK3uNQRF3X7cIkiTj169cKPp4MozXWaSA0VTrxWQkhXNq\n755ZoFls0CqLvCRjbDqBlnovtZd++aC51a8RRgmxYuGtfz2NWdLeI5mZseeYNhTRSuZb+Jo5DE/E\ndfKNUrauBLFExjTR4HkOTsMQ375hJdBYME9J4OpCRIan3M+EUV7Wqa/KFsNUJAWv25wRKIbagBs/\n+Jtb8I0/2X5JEyUAtJCWZWx3RVFjliJxc/mhLMsIR1OmQT1llmJpeN0iblxbvE/E63YoNtOSTPdA\nW0NpM4SBLC+UIJKZSuZqkYDSjFkCgB2blQTp2T39pr+XaLKlyfAAbW3n8xJm4mlTi2Jm5qW8AAAg\nAElEQVRA2eez6pwlgdd/dl6dtzQ6laDJTTpjXgwzcywk+2gdE/ixMxQ7mv0FcuCgz4m2Rj9OXZzW\nFVOV5zafe1YtSCJtdB783uOHcXEkiuvWt+G9O5ZCEHj8y88OIhxN2bYNJyCBLBkQbjchZ/fLoM+F\ngNdhKuEdGo9B4DkaD5QDQeDR2uDHgMnQa1IwXLmgTn0dRoY3ac4sGVUOdmdKsTDeUxdHomips+eE\nR0BYTBJTWTFLLNiiNbse0mbMUqlkyUQSCzAzloowU+1NAQg8hxu62231ewFaDGlngPsbPlkiGnmz\nnqXKrMNz8NjM+tnqucNC8kPAcRya1Wo4u+ERq3DCZrEsEznU3M7Z/RqJLSRQ2iIdUGRtPreIcwNh\ntcGvfGaJ4LarO/HDv76FMgOL2kLI5JR+orwk49PvXU8r3nSeDFMVONU3DafIY7Uqh2A3yZHJBOqC\nLroW3EyFlFSeEobp0+XS4eR6lbIOB/TzSowgszS+/INdSGXy+NP3rscD715HZR4n+6YwPBmH1y2i\npUa5HlMzKUyEk0Vtw1l0tgbxjT/ZXpamecuqFnz/r3bg6tVak3h9yIOZWAaZbB4z6qYTMtnUyOfl\nec7W9bECkTScvqglSw1BB67b0IbagAtPv9ZbdAZIKRkeoFQOZRnYd1LpD6uGWZqcSSKXl9FS58NV\nq1rAcYX2wmaQZRnpTE5XZfS4xYLP1jscQV3QpZNikWRJafBWMDxpL1m6OBKFJAML5mmfmQQ6Y9PF\n+0xiyaxlFdvl0A/xJf1KC9uU1yGHPWGWiARv+zrFYGXExvufVKuqlcCs+n8pwDJLxD7cIfC04BIz\nkRABimQnl5cLZNuAfv95345l8Fm46RF43SJkWUmUbfcsZZSeJePZagdksOR0tPxkqRizBChV+zWL\nGnDk3ITpmjH2PJH5ZeRzh2NpyLJ1f41D1GR4HpdYsGbWGOYtpbN5OE1iBtNkaUaRjrHXlC1Yrl1s\n3hO2oqsOiVSuYM6O1ZDoaqHNftL2omf39OG5vf1Y3FGDP7tvA+6/fQU+etdqxJJZSEWupxVIIDs2\npTJLZcxZIgj6nAh4nUimCy34B8fjaKn32koIzNDe5EcildOx34CWGCxqr4HTIRiYpQR4DgXKB2Oc\nURGzpO7RkzNJhKNpROIZOivOLgiLSRI+UbTTbqL2/cQyOmaJ7U+lipNSMjyXCEmSC2LzMLUNt15D\nDTUe/Mdf7cCfvc/cSMcMQfLebfQsveGTJSs5ldOhDCQtd6BkMm2fWWKzaDsMBamUGaV2gBbYs7/T\nmKXZ/RoJs8RxhUmmGTiOw6L2GgyOx3H8/CSa6rwF1a9KQWRDU5E0bru6U6fJdjoEeN0irYKk0jn0\nDs9gcUcN1caSgyivsi7NdYVTs1OZvMYspfXMUrmbFlkbdkwtSLCezRYO1f3mj/fhx0+dQH3QjW9+\najtuuaoTgBK0u50Cjl+YxMhEHPMafAh4lfd4fmgG2ZxUtF9pNtBS79MFCA10QF2KfhemBg9qBT3k\nc1pWhe1AS5amqQyiISjCIQq4Y9sCJFI5PFukwZsmS0WYJSLVPHRmHBxnrvsm1b9SzBI1Fqn3wut2\noKnWi34bM2ayOQmSrNfqN9Z4MBVJIauyY7FEBhPhpM7cAQANjrM5ifaT2GWWSJKycJ72nGTm0IWh\niOljAE0WbBWYuZx6ZukCY+4AaFVDYtJwTp1vdfXqVvA8V/L9Z3PKfVxpsvR6wUEHneapckAUeDTX\necFxerMAFiRIqzOp2HvdInweB1obfHjHtQtKvgevi8xaspEs6Zgl++chC01yWf4sMCMzZIYdW5R+\noWf3Fu4DpGeJ5w0yPPVzl5rnIgo8ciqzZCZVNA6nVWTWhe81SGSWKnMoy7JpsYuVKa4x6Z0EQJ3/\nThikeDFquDLLPUse/aDcvuEI/u2xI/C5RXzx/k2ULb3t6k5ctUoprJmt02IggSw5m8vtWQK0ZIl9\nHkApNEQTmZIGAMVgZfJAzsDagAvzGnwYntDYp+GJOBpqPAVMrJE1qyRZItd3MpKiSXM5hVCgUIZn\nJ5EkcW44mqIxqcsp6IbS2pbhuckcRePcs+L3JEFTrdeyN9UMhBUL2+hZesMnS5pbT2GyBJQ3mDaX\nV2QSdm9aVmpkNfSMBal0SUxCRCqN5GYyleHNMrNEtK8el2g7qCV9S/FUDss7y5fgWYEkS421HvyR\nSaN0yOeiFOqZgTAkWdFwG5ujx8NJSJKM5nqtokMHnGbylIEiTc6VMkukKdrO4WTFLH3n0UPYeXgI\nqxbW49ufvYEmB4BC/y+dX4v+0RgyOQmtDX4E1NkdRILYYJNZmi2Q15uYSVKWL2jSk0TY1WokeIAy\nHLDG78Kpi9OUWapXB5C+7ZouOEUev3r5fIEkhaCUG57yGso6yeYktNT5TANCu8ySUafe0RxAOJou\n2rgPMKw489qt9T7IsjYwt0/tDTDKBAmzBABXqbb65H0kUlnsOT5ieX2oQ10bmywphy7pjzJDqWZy\nt1NAJqNPlkSBo31FXrcDbqegY5YCXiea67xoqvWUZMZov9KVliwxRi+kOOYQedSHPNi4rAkneqd0\nRhcE1MzC5PNyHIdvfmo7vvEn24v2yxKQwaeJdNYGs0TkywqzVK65g/Keq2eWip1NW9fMg8cl4rm9\n/QXrnPQsiYK5DG+aGWxsBtqzlMqZXqPOlqDat6QkuWmLnlRqJ60yh/FkFqlMHvU1+tdlZXhGcwcC\nIns39i3NFbNEzrlESlkv3/jxXmSyeXzm3o26fhyO4/Dp967HLVvmU3mkXRgLjuX2LAEKe0eY7hij\nMhli+pUqhZXJAzE5qgm4MK/Rh2Q6j+loGulsHlORlOnYCONnsxMvGkGK3FMzKVwcUfbpcpklv5vI\nd5XPYEdeSwrT4VgGcdUNrz7oRkbtwVR+Zy9ZIsV5o9w7TF0/Z3dvJ8nXtA058Bs+WbJiCOgBVaQq\n/NNnTuE7jx6i/7aS9FmBdf4oj1kqNHSgMjxm44+lZq9niYXbpVQlS9mGs1jEBFaVSvDMsLyzDu+/\ndRn+5iNXmZpNhPzKlG9JkjHANOMH1MOBHBZG23CAkeFlczpmSZZlui7KTZYaajwIeB1U+1sMTpOe\npef3XcQLPQNYNr8WX/n4VlP3GHZ+SGuDryBZaqwpX4NdDWiyFE5SGZ7ZpkiuZTVOeIByAC+ZX4OJ\ncBIneqdQ43fR5CDkd+HGTR0YnUpg99Fh08dnqcFDcRkeAesyx4JUi0sxSyNqYkNcGElFsn+00EmJ\nBTFyYPeulgblOYhZSa+a2Bhlgj639tnWLmpAQ8hNLWwfee4MvvLD3fjOIwd1hRmCC4MzEHhOx6b5\nvU401HjQN2KdLFnZhhMozJLaFyLJ6B2OoqM5oDuQ64JuTEcU7fvIZAKL2kLgOA6t9T6Eo+mi8sqp\nEkHu5QrWOpz2LKmB/B3bFFboyZ2FfXjTJQKIzpag7cSRyqrKZJbMxnLYAbWJr4BZyueLy/AA5Qy7\nbkMbJsJJHGakqEChG563TGbJIWgGD2bXiOc5rF5Uj7GpBEYm4wqzZHKNjE6ipLHdWOxyOQX43CIW\nt4csFQsdTQH43KJpsuQU+bJ6b+2AsF3xVA7feeQQBsZiuPu6RbjGZOZQyO/Cn75vA2WQ7SJoUCfY\nXWcuXc+S09SCn0jjZoNZMkofCSsT8rtoMjY4HqPFKrN5d+xZ5HJWJgdmmfmLFTjhAdr3Go5qM+lK\nQdezpO7PJHEjfUszsTRcTqEkC228FwnIPVnM4KESBH1OOEXe1FTCiDd8spTKmCdLWnO9ObMkyzJ+\n+dJ5/HZXL22gTpU4RIwoW4bHFTJLhEkiGwUrG0zMEbMEAPe/bTnee8uy0n+oYnGHNlC3EnMHK/A8\nh/tuW27p4hVSHQfjqSwNBuc1+OCj1LtyjWjAysrw2J4lNdBTdPt5pLN5iAJXFqULAJ96zzp869PX\n2trsyAZJ1uDgeAz/9vPD8LpF/PkHuy2rOiuYZGlegw9BVYZ3pl9NluZYhmcEmcs1EU5iJpYBx5kz\na+TzVMssAcAylW2LJ7N0PhjB3dctAgD88qVzpo8lyU2xinuTLlkyb46nMjwTZunsQBi/2dWLvCTT\nRJ2sPcKklJLipU2KM2Q+B5Gk9Y6Yu/V5mWr/8q46tDT4MDmTRCabp31Mz+y5iO/+/JBuv1GSmAg6\nmgMFe1ZXaxBTkbTl3J94iSo26VmSZRlD4zFksvmCAKo26MZMPI1dR5REl9z3LWqAUWw2D5WlzfKB\nOtcQTXqWyM82Lm9Gc50XL+wfKGAiNWap+s9LraDTWep4aOWGR/atZDqHTLbCZInI8CpglowyOito\nRg96KR6pRfK0Z6k8ZkkUFRleXpItYwEilztwagyybM4UaG6Hyn1DZ+QZkiWO4/CVT2zFF+7fbPVR\nwfMclnXVYWgirnOHjSesewirAfncv9vdhxcPKMW9P7yj9ODTcuAQeV2/VqU9S4TpZu8fnW14hSCJ\nUCGzpBUMidV1/2gUIxPmTniAPsGrxDYcUJh5j0tUmCXVCa+tqbxkkB05AMByzhKLGkbKFk9mwfMc\n7WMi8Xc4mrZ17pM9J5GqTIZXLjiOQ32Nh957xfCGT5Y0OZV+U9Oaas2rwtPRNA2gn1N1z2QzrcQN\nz5YMT7DuWSIbRZZJlkgWbzXDqRrcsX0hbr+my/bft9b74HGJcDqEsitI1YCtarBypwCl3pXvcNQw\nYwlg3fDyVDcOKNICKwejUqgPeWzbFRvd1J569QJSmTw+/q61phsqwTJG5sgyS2RjsmvwMFvQMUux\nNAJe88Fx8xr9WLmgDlevaSn4XblYwkgTjde7ozmA7uVNOH5hCqdNBjWSe77YfdMQctNgymriPLkn\nWWYwk83jx08dx+f/6SV899FDePXQEEam4hB4ZVNW3p95RdKI11RmjGUpyboga713aAY8z9HnJCDW\n4T6PA22NfirfuzCkzFZb2BbCwrYQnn6tD//++GGqqR+ZjCOVyevMHQhKSfGo5MdCgupyCJBkZU/r\nVXufjHtFXdANWQa++/NDcDkF7FCHjM5Tk6WhIn1LxWzrL2eYueGR80ngObx9axcy2Tye3at3d6MB\nxCwwad4KmKWIer3dFcjwypG/GEGUF6VmHS7rrEV7kx+7jg7rAuU8YZaM1uFlMEsElsmSKpfbd0Ix\niDEL9I29NGTGUr3J2IclHbWmjAQLdt4SQSyZgW+WZywBGgMxPBGH3+PAF+7fNCtDnI1ge19tJ0uG\nnqWgT5+UAppDXTUyPK9bmQ9nTJaIA6XTIWDlQuU7efXwEIbVoplxIC2gT5Aq6VciIEO4iRNeuYUM\nzeBBWZOije/U73WC50CZf59bpPdFSlXqzMTSqLWTLFkyS8o+YeVQWQ0aQh6Eo2laqLLCmyBZKt6z\nZCWh6WUCghf2DyCfl6gsxm7PUsDnBCEYKmWWSHJEFhGRIABacOJ2XnoHJyN4nsMf37UaH717dcXu\nMpWAdWIZmUzA4xIQ8rNNnUYZXiGzxBo8AEpVw2yQ8WzDKMMjmmpiOWqFgNdJg+N5DX74Pfr3ecmZ\nJcbgYSaWsQxWXQ4B3/zUtdi+rq3q11zKMJntJtWzd15vzS5lbDBLgsDTz0XMDYwwJrun+qbwZ99+\nAY88dwb1ITc4DvjFS2cxMhlHU52XBnfFBhoCCqv9/357Ej9+6gTqgm7cxli7k4BpeDIOWZbRNxJF\nW6O/4LN4XDzqgi50L2sCz3P0cc/t64ckA5tXNOMrH9+KrtYgnnq1F9//5VHIsqyZO7TVwAiSNPZa\nJUtEhlfE4AFQihNGJzwC4pKWzUn41HvW02tFk8Q3YLIk8Bx4nkM2l9eYJWYP3bGlE06Rx1OvXtCd\nDcV6lsqFjlkiQ2ktZuwJAg9R4KmDlKcCZsnpEOD3OCqS4ZWyDifgOA63bJmPbE7CiwcGmccr/zVa\nhxPlSKnrygaQVslSZ0sQAa8Th84qLK7Z+W+Uh01aMEt2saJTb/IgSTLiJkNjZwMs4/PZ92+syH7b\nDljZod3ipd7gwaX1hhmYJbdTqPreaW/yYyKc1AX34ZjGosxrUAqEh89O4LC6FtiCLYEocCDLuVJm\nCVDWbDSRQSSeKdvcAdDkuOVYhws8h6DfRa3DvW4HJRRSmTziqRxyednWvuymfeSFzJJD5G21N5QL\n0iNYaozBGz9ZKuKGB8AymySVz6ZaJevcf2qs7J4lgdcmq9tJlgS+kFkiyRF5/5fCOrxS3HZ1Z1ls\n1GxAc2JJY3gyjtZ6PziOY5o6lQ1yZCoOUeB1jjxumizldBtpPJVFJpufdZ23EcSNjQTvWjJeen3d\nd+tyvPvGxQj5nXAImhW3Q+RNnejmEn6PAy6ngNGpBKKJTFUDZ22/ptdJJRRmydK6JY3oag3ilUND\ndKghATF4KHUoLe2oQX3ITVkNI8g9GYln8J9PHMMX/uVl9I/GcOe2BfjOX9yELStbcPpiGDOxDFqY\nYCLgdaLG7zJlliRJxg9+eRQPP3MKLfVefPNT23UV5YDXCZ/HgZHJOMamlUPajPkSeA7f+Yub8On3\nrQegJVkv7h8AoFS+gz4nvvqJrZjfEsATL5/Hfz5xjEmWTJgl9XWs+pY0ZslKhqe5Bxqd8AhIr9jb\nt3bhho3t9OdskmgF1oXqSoNDVGb3aMmSlggEfU5cu6ENwxNxHDyt9d9MR1LgudlJDkmQRNzweJ4r\nqoZwOQXMRAmzVFkAUxt0096IcmDH4IHgxu4O8DyHZ/f00Z8ZrcOJ9IeV4QlFxhuwDIrVHELSt1TM\nKMjjUoY3xwzMUqUGPUvm14DngJNq72oynYMkz/5AWkBp4F+7uAEfvmMltqysXilgBdYoyO460xk8\n+BwFDJ4kyRiaiGNeo7/qUQEdqqqByPrykoxILK1rwdixeT5kGdirDgg3Ywg5jqPvu1pmiaBccweg\n0DrcLltYQ5Ildcg0ia2S6Ry9x836r43wuMxleOFICrUB15yMdmgIacqYYrg8ouw5hJbgmLuNEMbB\niN5h5TC//+2KDve5ff1Mz5L9xUwOMjsyPLL5SyYyPBJAs8nSXFmHX0kIqte3dziCdCZPG+CpTpkY\nPEwl0FTr0Uk3XDoZnoFZqlCGVw5o35waIFmtVTNcu74NH75zFd08yCbZUOOpypa7EnAch4aQm1qo\nXqpkbe3iRogCZ5oscByHu69bqA6pPa/7HWWWStw3n7l3A/71z2+07Fsj39/z+/rx+Atn0Vznw9c+\nuQ0fv2ctPC4Rd6vsFlCoU29v9mNsOqFjtvN5Cf/8swP41cvnMb8lgG/8yXZTOWZrvRcjkwmacFjJ\nBP3MvBbyPImUMkR0mdpXGPK78NVPbEVHsx+/ePEcvVZmUloy9M+SWSrVs8QwuReGIqoZij4gvWVL\nJ/7XhzbjY+9co/t5i6FXywxEOnKlMUuAZhqgyfD0e4CZ0cN0RKlgl5Kj2YHHwCyZzQ9i4XIIdN+q\nRIYHKEltNJG1lMJbQbMOL/25a4NubFrejLMDM/R+oY8nMjwn+eyaDK8m4LLcR0UbMjxA71xndpZw\nnJKQkSB+gsrwKmM7vG4HOluDOHNxGrm8NGdOeIDCLj74wDa8+6Yls/7cLMhZwnH2HeLMhtICmnJj\nciaFTDZflQSPgNqHq4WvWCIDSdYnBtvWzaN7X8jvtGRsSTGpWmaJoJJkySHycDkFWpCwqxIK+Z2I\np5RCi8/t0LU4aPty6SKqz1OYLMmyjHAsPetOeASaMuZNnywRRyn9prZlVQtEgcN3Hj1oqsHvG47C\n6RBw7fo2dDQHsPvoCJ0oX04ljVQYynHDk5jpxVlq8KDOWWJkeHNlHX4loUa9AckwXKIHJhWSaCKD\nRCqrVPcNgSfV3sczOgv55CWS4TmowYMSLKQzeeVQqGCzJIzZpe5XImio8SCnrk0z2/C5wIfvXIl/\n/vyNphp/ALh+YzsCXgdePDCgmwieoW54xa+z2ykWtYAnVWWOU0wl/vnPb9AFSKsX1msGBQbpRUdT\nALIMDKpSvGwuj2/9zz461PHrn9xu+bla6n3I5iTsLzIw1whWJ790fq0uoKgNuPHgJ7ahrdGPVCaP\nxtrCJAZQDtK2Jj8ujkRMXfRKWYeT+2lsKoGpSMq0L8rjErFt3byCQ9rlENDW6Mfpi9MFEg0C0pRs\nZ8bZ5QZiR6254ekD9SUdtVg6vwZ7T4xgdCoBWZYxFU3NmvOfNmQ0h4SFyxsL3aDkCmR4ADuEuDwp\nnjaU1t65Z5y5pDFLhdbhsixjWq1iW8FhQ4YH6GciWZ0lfq+DSsUnZ5II+Z1VKRqWd9Uhk5NwfnBm\nzmYsXUqQe7mcgdHkXOc5JQ4ge1lEvR5D1AmvcnMHAtIvSyTVZhbZXrcD29Yqg7WL9SKTwcVVJUtM\nol2JDA/QW9XbT5a0z+vziNqg50yO7st2XHCpy2JS6y+LJbPI5WVbzFQlYA2qiuENH2Vb0eBL59fi\nM+/bgHgqhy99f5dOqpPLS7g4GkVni1JJvfeWpcjlJTz09EkA9nuWADZZsj9nSSfDk/QGDyyzRCpH\nLhtTlt+oIDcpaeQnm5HAc/B5HIglstRBq9kQsDpEHgLPYUKtKJC9OJbMIJuTCkxBZhvGnqVUJgeX\nQ6iIGSKzsS51vxJ9fSawr9Ya3C68bkfRA8EhCli3pBGTMyndFHVtKG1125/f68Sff6Ab//Cn1+Gj\nd68ukE9yHId7b1kGngNWdNXrfkcc/AbGokilc/jKD3fj1cPDWL2oHg9+YmvRgJ/IOHYfUwwgrNz6\nWPg8DvqcZrNaaoNuPPjAVixuD+G69dY9ZV0tQSTTeYxNFzLyJa3D1fVOZELlGsFsXduKVCaPA6fG\nTH8fjqUR8Douac/kbIEkS6Q4ZiZ/uWPbAsgy8JtXLyCZVtjv2ZopRXuWUlnL+UEsZqMhndqHlynF\ns9uzRLBpRQtCfide6BmAJMkF1uFUhpfKIZHKIZOTiiah7PoqNl5jfnNAF+ybIeB1KmyEJGM8nKp6\nRh5r8jCXzNKlAmEjyjEqIOvRrxoNkWSRJI+DE9XPWCLQ9nE1WYqa903evLmj5GsSw6HqZHjK+uE4\nc3m6HbD7t2gztmQTGa+OWcppCaSNZIfKgZkREaXcKatFPZ0T+WbvWSoibbqhuwMfuXMlJmdS+PIP\ndtHNZXA8hlxeohXb6za0453XL6IVqXJu3FCgHGZJ+Tr01uHK/ztFARxn7FnKwuu2Pzj2jQiyKRHa\nVt/f4UAskaHJUotJE6rbKWBSvUlIwkE2vLlmlowGAal0riIbXkCr0l7qGUsELKMVuowq++uWNAIA\nDp2ZoD+zM5TWLq7f2K4bGmzENWta8eg33oEVBtMOonU/1TeNv/uPXThwehybVjTjyx+7xlKmQUBY\noqlIGh6XiCabCTK5N6wGW9aHPPj2Z2/Ah+8sHP5M0KWyQb986Rz2nRjF0ESMjjOIl3LDU+8n4ta1\nsOxkSanO7jxkPj9rJmbPnvZyhEMUdHOWzCx7t69rQ9DnxO92X6R72mz1Z3kZZimZzpacsadjlirs\nWaKDactllmzMWWLhEHksm1+HSDyDRDrHGDyo1uFMU/mUjeGXLOtnZa8OaH1LgPVeE/Q5IalDpjPZ\nPO2fqBRkxuHJvmmG6b1ykyXa813GWUzWJtvH63EJ1PF2cBYG0hLUBd3wuEQqQZ+xSAzWLGrA59+/\nEffdaj2OhcQD1RRpSQzTXOetOJZgmSU71uGAvkDqZ3qWUpl8WcY7ZszSXNmGE9jtWZrb0vllAGqv\nbXGzveuGxZiYSeGJl8/jwR/txt9/7Boqy2PlLR++YyX6hiM4cHq8LDqQfMF2Fi5RFZhZhyssCF8g\nw/NdwRvhbMBYgWflRn6PA/1jMTrAs9l0voGAuJpoNdf7MDGTogemHTawGhjnLKUy+Yr1/421SpLU\nPEeuRKVQzyRLwcsoYNWSpXHa95ElzNIc96QRmLEERL7xq5eVHqHr1rfhs+/faIsVaWEKAl2tQdvy\nlC0rW5BK57C8hNtiMZCByL9+5QJ+/YrSPyPwHFrqfQjH0uA462o7CQZOqZJZMxleMSxqC6G5zos9\nx0cKDFjyeQnRRKYinf7lAIVZytO5emaWvU6HgFu2zMfPf38Wv3pJWTezzSzNxNLI5a3nBxGwTEml\nQVlNhbOW7M5ZYkEHkGdyBT1LDlFx91Oa0YkdezEZnv1Ece2iBrx6eNgyqSJVfNJPVS2z1FLvRY3f\nhRO9U1i3pEH3GlciyFlSjpqHrEc2Ngh4nYgmiQxPm8dYLTiOQ3uTHxeGIshLsqXkjOM43NDdUfS5\nSKtINUVaoiyxcnC1AzamtGvwEDLIDt2MwyS9JnaYpSLJ0lzJ8II+J0SBV3uWrBPoN3yydGFQSXys\nNnSOUyyvp2ZS2Hl4CP/nof2UgehiDnNB4PFXH9mC4xemdENBS+G2q7vAcRzWL20s+bdCEetwUeAh\nCpx+zlIyS4PkNytEgUdA1X2LAqcL2v1eJ9KZPK36mCUSygaVpr8/dn6S3pxzbfBQKMPLWzowlcIN\n3e3IZPO4bkP1ttyVgGWWLpUMzw5a6r1oqvPiyNkJ5CUZAs9RJq9aGV41aKhxw+MSkEzncdvVnXjg\n3etsV8rZgoCdfiWC9+5YivfuWFr2e2WxZlEDvvuFm9A3EsHgeAxD43EMjccwOB5HPJnF/JaAZRBL\ngoB4Kge3Uyiq3zcDx3HYtnYeHnvhLA6eHseWVZoLVySRgSxfmeYOgFnPkvnavH3rAjz2wlk8v0/p\nv6mr0AzACFHg4XRoLHsxxgSYXWaplGWvEXbnLLFgbevJ8crz+t6jZDpny45dxyyV+Ow7rupEPJWz\nlLaS/f6C6r5bbbLEcRyWd9XitaMj1IjFqofwSkCohIzRDG6ngB2b52N5l8b4+71ODKvyu8HxGEJ+\n56z1crU3+XGmP4zRqXhZkjMjyHlUrQzv8x/oxuL2ymdd6mR4FTBLPgOzZNbHZY5/9OoAACAASURB\nVAVSaGNleMRNb66YJZ7n0FDjxkQ4hTd1skRc7YotQIHn8Ln3b0Q4lsbOQ0N00Rqzc7dTxMZlTWW9\nftDnxB/YdIzh1YWptw7XGn5Fgaf/liQZiXTuTc8sAUqAFE1k0czMsgG0g+jcQBiAxeRsZhMmyZQm\nw5vb20Nzw9NkeJVulC6HgHdcu3DW3lu5YB2cLpXBgx1wHId1ixvwzJ6LOD8YxpKOWtoXcqmYJav3\n9ZE7VyGZzuNdNywqyxK1LuimwbWdfqXZRkdzwLRXLBLPFHUKZe+1rtZgRfLhbeuUZGnn4SFdskQc\nly6nRL0cGK3DrSq6zXVebF7Rgj3HRwAUl4uVC69b1JKlcpilit3w9LJnuyjHDY+AJkvZPCRZBsfp\nH+9xi0imcrYkP+UwSy6HULRAoSVLKrM0C8nviq46vHZ0BPtOKFbVV3KMEPTZV+YQcByHz9y7Qfez\ngNeB8+k8leUvKyKdLhesyQO5fyoZn+GaBYMHALqRC5XAzxo82LUOZ+4Xn1uk31cyncNMLA2es2c0\nIgg8PC5RzyxFyD05Nz1LgJJkHr8wWfRv3vA9S1qfUfEF6HQI+JuPbEFHcwCZnIS6oOuSVynNhtLm\ndMwSTx3HFOcevb70zQryPbU26KsCRKvdOxyBz+Mw1W6z64IkS0QWMtfMEgmIMlklSMpLcsXOUq83\n9D1Ll1fAauxbStOhtK/v9nf71gW458bFZc+O4HmOuuuVwyzNNYI+Z9FBv2zAs6Ctssrnko4aNNR4\nsPvosG5GHqk+XsnMkixr4wOKVXSJnBTQ2JnZgM8t0vOmHDe8SmV41OChbGapEhkekQXlIUmFiZbX\nJSKZydtqJmeb3itl1QgCKnNyYXh2mCVAk8oS+XngCpbh1QRcyuzAKgtwpK/0W/93HyRJnpV+JQJi\npLD/5BheOTiI2oCrIjk8tQ6f417pUvBVwCyFLJildCaPcDSNYBkjDnweB22NAFAVW2cXDSEP5EKD\nVx3e8MkSoFhI2vnS/V4n/v5j16Cl3ovu5c2X4J3pQRaTJGlBQFY1eBBFRYaXMzRTez1XZnA9myAb\nqdGemdDJubxsOjUb0B/0ZIMjU+XnumfJxcjw0tTi/vXdKCuFTx1My3FaAHC5YK2q3T90RhnombU5\nlPZyxsJ5NXA5hcsqWSoFdm2X64RHQKR48VSOfp8AEKbM0uW19uyCJJlkMGqxiu76pY3UrKMuOHvu\nlx6m8FYqCXDqepYqu498bhFOkacJil3kK2CW2AHkkizrJHjk98l0jjrzFatiO3RzlqpLRIJqtX1M\nNeyYjWRpcXuNTip4JVuHe1wivvbJbfijd6yu6nned8sydLUGcUAd6jwbtuEEJFl6cucFZHIS/ugd\nq4oWjaxA4o3X+1zyV9KzxJz5Po/Ws5TMKMxSOYy/3+MwMEv2h9pWioaa0qzVmyJZcjmLD9hj0Vjr\nwff+1w786fs2lP7jWQZPrcO1n7HMksDI8Iim0/8Ws6QxSwaZHdv/01JnvjmyAVxdyA1R4GkP0Vwn\nLk7GDS+ZJq6NV2byy3Ec2hr9aKzxzMqQzNlEbcCNjuYATvROQZZlZijtlZssffyeNfinz91wRUls\n2CBgYZnmDiy2rm0FALx6eIj+zMqF6koBCUqIq2ex4h7Pc/jM+zbgQ29fMaujAnxMn1I5MrxK2RWO\n41AbdNPilF1o1uH2wxdWhpc3YZY8LhGSJNOkpZgMj01kS/V2lYLRfKHSgbQsnA4Bi9pqtNe4gvYI\nMyzvrKt6nbscAr5w/yaaNM8ms9Ta4Kex26qF9bi+QhkcleG93sxSBXOW3C6RXlt2KG00nkE8lSsr\nWfK6RSRSWXqfT0fT8DLSvrmAnSLFmyRZKm/xvV7BHmWWZKueJQ45dQGRzPtKCpbmCsQuc55hA2Tl\nB1a0OLs2Al4ndYUCqrPwtAOHyIPjFGaJDNqsVP9/OeCL92/C33306tf7bZiiuc6LdCaPZDqHTDYP\nUeAuu6SuHAS8zlk98C8FyL3GcdW5NS3vrENd0IXXjg7TYlI59rSXIwhbkVCLYKUquqsW1uM9N1dn\n1mGEtwxmSSfDq0KKVhd0IxxL60ZilIImw7P/Oi5qD64YPBQkS+q+PzQeh8/jKNrPqGeWqjsjWMc2\nRXI2O/s/keI5Rf517c28nNDRHMBn79uIFV11WG0xPqESOEQebY0+8DyHB+5ZW7asmkCzDn+dmaUK\nZHiAVqjyeRy0d5WMOChnX/Z5HJBljWUPR9NzZu5AYDUAnsWbIlmqVCZwqUGqExJzcBT0LOX0Mry3\nkiWl9+OTf7CuwHzDx7gAWcnwyMbEcUpFhK2qzHWFh+M4OERBleFd2cwSoCSr1QTBcwki1QzH0shk\npVkLSt6CfZB7bV6Dv6oAm+c5bF0zD9FEFkfOKn1o5UyJvxxB2AoSINidbzKb8FbILFVzvrY3+SFJ\nsm5odClIdM6S/WtktA4XhEJmCVD2h1J9YA7GtazaggurfpgNCR4Bcey9km3D5wJb187Dtz59bdGh\n35Xgz+7diC999OqqDHdmwzp8NlCJdTigJURetwhR4MHzHGVqQwH715vah6eyyOclzMTTdMzAXOEt\nGZ6K1ztTtwuy8eZlc+twQeCpbSqR4ZUaYPlmQNDnxO3XdBU0/OqZJXMZHgna/B4HeJ7TySpcc9yz\nRF4jk5M0ZukKSeyvNBDTiUgsg0wuf8XsCW8kkMBtcXtNib8sja3r1AG1qhSPuOFdscySIVkqp6I7\nW9AxS2VYh1fjGkp67npV62w7yFcwZ4kOAKfMkv76ssY6pVy3yHdTLasE6JOZ2XDCIyC22b4r2Db8\nSsLS+bVlOyUbQfotX+89rBIZHgCsX9KIxe0h+L1OcBwHj1OgA+DL6llya7OWZuLKSIi5llfbGQZ9\n5Zaxy8CVUq2nzBLrhkcMHgRi8KD8O5ZkpnPn8BZMoOtZsjR40E/7vpQyPEDRlysyvEvTJ/VmBTmA\nZmJpZLJ5OC5BIvwW9KgPefBXH96Mxe3V2/auXFCPGr8ixXvgnrUIx1IQBV53/15JMPYsvR5OjeUx\nS8rvnY7q2BUyy7BvxH6yJFUwZ8nNyvAkGQ6nuQwPKJ0sEVZ6NpIlt1MxucjkpFlllupDHtywsb1A\nmv4WLl/cvHk+2pr8WLWg/nV9H6whSDn70AdvX4EP3r6C/tvlFKmrXTnJEjuYlsTCcy3DC/ldJe/n\nN3zEUON3odkiUL7cIJgkS4RJ0qzDlX+TQ9X3lhueJUjVjuNgObyXVBxJsnQpZXgA4BQFXc/SbBzA\nb6EQRIY3E88gk5PgfEuG97rgmjXzZsWUQOA5XLOmFTOxDI5dmEQ4lkFNwFVxv8DrjXLc8OYKXsbZ\nzWuzZ6nYXC07ILLdC2UwS9XPWTI3eCCoLSHDI05zs7VXk+DUTnW7HHz+A92479Zls/qcb2Hu4HQI\nWLu4saL5c7MJVoZXDcPNqmRCZSQ7XoZZ0uaeza0Mj+c5fO2BbcX/Zk7fwWWAf/7zG/Cp96x/vd+G\nLWhueIwMT6UxRVEZSivLyu+pdfhbMjxLkEOoPuSxrJAQCQmxu9bL8C5BsuTgkc5KSFE3vLeC+LkA\nyyxls/k5t4V/C3OPbWtVKd6hIdWe9sqVHF0OMjy28Ga3Z6la1UbI70Jd0IXe4TJkeBXMWXKx1uHS\n/9/encZHUWZrAH+qegkkIQkBAwRQgyjKKqDDpkNAQOXCRIEAkgWDgyCCInsUAXUYRETH4E/vZMBB\nTAAvIFxgMjiO23VhcUHQccEgCCRsQQgkZOvu937oVPWaPemq7n7+X8ROd6equlL9njrnPa+oPliq\nqQzP2HhleICjyUNjZpaI6is0xAjlnlODgiWnv496ZZZKLepc1KbOLAFA547Vl4cH/IihZYtmfnO3\nvjaL0iqPFTuX4ZFXISYD2l8Tjq5x0VU+RwlOlCyUzzNLJtfMUkPq/6lqyoCksKgcZRXMLAWC7je0\nQotQMz75Jg9l5VbNa/0bwj1Y0qQML6Tu3fAa47v1+naRKLhUopaW16Qh6ywpc5Y811mqfWbJ1MjB\nklLVwGCJ9ECWJfUmvPMCzHXlfOO3russAUpmqeZFon0l4IMlf6J06HEpw7M65iwpP7dabWqDB3bD\nq96aefF44oE+Vf5c+dKP8DJnyRctV80mAyosNnWQ5C+Bvb9RBtKXrtjbFLOdrv8zGGQM6NEOV67a\nr4V+HSwZXOcsadLgwSmzVNPcL0dmqeF/R0qTh19rmV1ylOHVYZ2lyjlWZZVzlqpqHQ4A0bVs8FBT\nqWJtKSXCjblmFlFDKOPKhnSNdc4s1aUMT8lwF5dWOLqc6mD9PAZLOqJklqw1ZpZYhldbJqOh2oGH\nI7OkBEtOmSUfDKiV36EM+NjgoWkoK4wXFJYAABs8BAilFA/w37bhgCNbYXFaV8/X6pNZaozmSdep\nHfEKa/X8+qyzpKxfV1pugU14Hl/n/Y2qbWapkZqJTBzRBY9PuBUxVcyrJfI1pSNdQ65DzZyyz3UZ\nS4U19zZnSftrO29j64hyp8xWRetw9zI8s8mgSblGIOnWqTX63ByDgT3aAXDrhueTMjz753e52H5R\n4JylptEsxIgQswHnL9mDJbYODww9b2yN8OYmFJVU6OLuY325X8e1WAdMySyZjfZlKqqjZpYaYRHt\nuMqOeMfPXKnV860NWGfJviit8Hitc5YouoaSn5iWoQhtZkSn9pG1/v3Vua5thG7Xp6Pg1DIiBOZz\ncoPWe1NupNT1JlZYM88yPD1UDTBY0hHl+q18GQBQF6E1GiS1DM8eLFkQzk54DRYRZsYzUweo/+/r\nzJIyd+ZysX2dGH9pc++PIsPMuFAZLPEmQ2AwGmT0694W739xUhdfqPXlfj5qmVmqTcZEmVfgvDxD\nfXWICYcsS7XOLNnqsc6S0SBDlpQyPM/XKiVDRoNc4zzgyPAQbHz23hoDSiJ/NX1MT1woLG3QOa7c\noKjrTSznRWkvXi5DRJhZk7JkdxyZ6Yi3zJJScmA0yjBW/txqFSgurVBrnanxaDFnCWCw5AsR4SE4\nd5GZpUBz/+DOuHi5DL1vukbrTak350yS0SBp0gJdmStQm3mTLSOa4ekp/RAX2/DsisloQIeYcPx6\n5jJsNlFjEKQsp1GXYEmSJISYjY5Faasow2sZUbv28wyUKJC1bRWGtq3CGvQeyt9UXcepzq3DL10p\n1U3jE/7F60i1rcMNstqyVCnDC+N8pUanlGPIsuSTu7tqGV5RZbDUCGUt5J1zOQAzS4HjunYReObh\nAbromFRfzuejVudmM7O9ZXBtm8z8rlvbRmtKcH3bCJSUWdUy2epUxkp1Xgw3xGzA1bIKr69VgyU/\nLuUk0hOls29UHddIMhllhJgNuHilDMWlliZfY6m2eBtbR7wtSuvS4KHy58UlFbDaBELZCa/RKSng\nEJPBJ3d3HZklZc4S/ySbitI+HPBN1pCotpwDJK1KTmRZwuA+HdAhJtznv1sp1SmuRfvw+mSWAHtZ\nUHGJvdug+5ylsOYmxMVGoNeN/pudJNITZcHq+lRAhTUzIv98MYCaG674CkdmOuIts+TcHUlJ/RcW\n2QfW4cwsNTrlDqOvutIp5WDFpRYYZIkZjybkPKeFwRLpiR6CJQCYO6mvJr9X2f/yCmuNz7XVY50l\nwH4j6nxlGa57GZ5BlpAxd0id3o+IqhZSzwYPgP3mxW+XlU54+sgscWSmI7KXzJLVal8TQpIcZWGF\nlfNbuMZS43POLPmC86CdnfCaVqRzZolBKemIy5ylIDw3lettuaXpgqUQk6FeC9oSUd31vukadOvU\nCrfd0qbOr3WeYqKX0lhmlnTEWxlehdWmfnka3TJLNS0cSHWnZJZ8lXkwO63304wL0jYp53IAZpZI\nT1zmLAVh8wCTEixV2Gp8rmOdpbrPWVLUpe04EdVd21ZheP7RO+r1WudEgF6WhOAVQ0cci9I6vjAs\nFps6V0kJmi4zs9RkjAYZEWFmn3UaZGbJd1zK8ILw7j3pl0sZXhCem8pNo9qU4TmyQ3U7Ts7zQZlZ\nItIv57EtM0vkQamjdoqVYLU5MkvKBV6ds8RgqUk8N22gz7J2ZqfymxA2d2hSnLNEeuU8T0kPa4r4\nmnIdbMo5S86ZJVmDdayIqHZcy/D0MWeJozMd8Z5ZEuqXp1qGx8xSk2qsldlrI4SZJZ9x7oZnYrBE\nOqKH1uFaMqtzlpquDK+ZSxkegyUivWIZHlVLbfAg3OYsuQdL6pwlBkv+jnOWfMc5sxRi4qWP9EMv\n3fC0UpcyvIY0eFAE4zEm8hdKsGSQJbQI9c2UiJrwiqEjysXfanVtHa50wVP+q8xZYhme/+OcJd9p\nZjaoc5Wcu48Rac35fAzGBg9qZqlWc5bqt86SSxkeM0tEuqUES1EtQnTztxp8V2Ud85ZZsjpllhzr\nLLEML1C4BkvMLDUlSZIQWZnS91VreKLaCPoGD8o6S01ZhhfCBg9E/kBZQ1QvzR0ABku6UtWitO6t\nw5W7bwyW/J9LGR4zS01OWWvJxDI80hHOWfJBgwcTW4cT+YPQ5pUL2uqkuQPAYElXvK6zZBEwykqw\n5PrlwHWW/B8zS74VEc7MEumPfeFx+7+DcT6NoxseGzwQBTslEcDMEnklVwZFSrAkhPCaWbL/W+KA\nLwCwG55vKRffEB5r0hFJktS5SsGZWapPg4e6HSfnpRkMbB1OpFudYiMxoEc7DO7TQetNUfFWto4o\nN7uUO2fKl4KjwYPjyyGsuQmSxAu+v3PJLLEbXpMbE98ZcbGRaNcqTOtNIXJhMsoot9iCM7Oktg73\nzTpLLMMj0i+zyYAnH/yd1pvhgqMzHZEkCbIsqV8GFVZ7SYKjwYPjy4FtwwMDu+H51rVtI3Bt2wit\nN4PIg70jnsWj3DoYOOYs+agMLwiPMRHVH2+v6IwsOYIli1XJLHmW4bG5Q2AwO5XchHDOElHQMgZx\nW3vfN3hgsEREtcdgSWcMBgnWytbhVrfMknOwFM7MUkAwGWV1YnfzkOAbJBGRndnovZFPMFBbh9cQ\nLJWWW3DmQjEkqe4Bj3MDHQZLRFQXDJZ0RpYk2KxKZqnqMjxmlgKDJEnqnWRmloiCl9LYIRjXWTLV\nYp0lq03gxayvkF9QjGG3X6uuO1hbrovSBt8xJqL64xVDZwyypC5KW1H5xWHw0uCBbcMDR0hlJyjO\nWSIKXkrAYArCBg+SJMFslKvNLK3f/R/s/88Z9LqxNR4Z26vOvyOErcOJqJ6C76qsc7IswWqzB0lK\nZsnkpXU4M0uBQ6nXb85ueERBS8kwB2PrcMB+HayoIrMkhMCevcfROrIZ0if/rl7HyLkMLxhLHYmo\n/oLzqqxjzt3wrG4NHpzvhoUzWAoYSrDEtX+Igpe3m2LBxGySUVZFZunilTKUlltx03Ut632jsBnL\n8IionnjF0BmDLKEyseTROtz5bhpbhwcOZXJzM85ZIgpaxiCeswRUZpaqCJbyzxcBAGJbh9f7/Z2b\n6bAMj4jqIjivyjrmrQxPKRlwXkiPZXiBQ8kscc4SUfBS5ioF45wlwF6GWFbFOkunC4oBAO1a138x\naUmS1Gss11kioroIzquyjhmcyvAsFrfW4UaW4QWi8OYmmIwyu+ERBbFg7oYH2BvdlFuqyCxVBkux\nDQiWAEfHUWaWiKguODrTGVmS1BXKlTlLBi5KG9Cm3tcDFwpL+AVOFMSCfc6SyWgvwxNCQJJcr4WN\nkVkCHAvTGjhniYjqgMGSzhgMTq3DPcrwHF8gbB0eODq2aYGObVpovRlEpKFg74YXYjLAJgCLVcBk\n9AyWQswGREc0a9DvYBkeEdVHcF6VdUyWJDWjZK2mwQMzS0REgSPoM0uV681VuJXiCSGQX1CEdq3C\nPDJOdaV0HGUWn4jqIjivyjpmkGU1s2TxaB3u+Lg4Z4mIKHAE86K0gKPRjXv78EuVbcNjr2lYCR7g\n6DjKMjwiqgvWcumMLEOds+TeDU+WJSg3xNhmmogocCjLQTQP0hJrZQmFCreOeEpzh3atGh4sMbNE\nRPURnFdlHTPIsmNR2soW4ganO41GgwyTyQCZF3siooAxcuD1aNcqFJ07RGm9KZqoKrN0usC+xlK7\nBqyxpFAaPMics0REdcBgSWdk59bhbmV4gD1w4nwlIqLAEhkegvi+HbXeDM0owVKFxXtmqXHL8Bgs\nEVHtMVjSGfuitN7L8ACgY5twtGzRsI5AREREeqKU4ZW7ZZYaa40lwNENL1ibaBBR/TBY0hnljpfN\nJtRgybkMb+XMOxvcEYiIiEhPlMyS+8K0p88Xw2xqeNtwAOjUPhIhJgnXtGze4PciouDBYEln5MpA\nyGoTagtxo1PJAO+IERFRoFGDJacGD0IInL5QhNjWDW8bDgDD+12HKPk8qzOIqE448tYZZeKpTTgy\nS8YgXaSQiIiCg9nkWYZ3qagMJWVWtGuEEjwFmyMRUV1xFK4zambJanM0eOCaEEREFMDMRiWz5AiW\n8s833nwlIqL64ihcZ9Q5S8IeMAGAgW1OiYgogDlahzvK8E4rayw1QttwIqL6YrCkM7KXBg8swyMi\nokCmlOFVODV4yK9cY4mZJSLSEkfhOqNklqw2luEREVFwcDR4cARLjswSgyUi0g5H4TrjnFliGR4R\nEQUDdZ0lp0Vp8wsar204EVF9MVjSGVl2tA6vUBel5cdERESByz2zJITA6YJitGsVyg52RKQpjsJ1\nxuCSWaosw2OwREREAczRDc9+k9DeNtyC2GvY3IGItMVRuM4orcNtNgGLjWV4REQU+NzXWVLnK7Xi\nfCUi0haDJZ0xVGaRrMwsERFRkFDL8CyuwVLsNQyWiEhbHIXrjFKa7dI6nMESEREFMMecJfv3Xj47\n4RGRTnAUrjNKZskmnIMlluEREVHgUrvhuZXhxXJBWiLSGIMlnVHmLDmX4RmYWSIiogDm3g0vv6AI\nZqPMtuFEpDmOwnXGuRsey/CIiCgYmJzWWVLahrdtHca24USkOaOvf6HFYsGiRYuQn58Pg8GAFStW\noEOHDi7P2blzJzZs2ACDwYDExESMGzcO27dvxyuvvIJrr70WADBo0CBMmzbN15vf5GS3YEmSHAEU\nERFRIJIkCWajjPIKKwqLynG11IJYzlciIh3webC0e/duREZG4sUXX8Rnn32G1atX4+WXX1Z/XlJS\ngtdeew3btm2D0WjEuHHjMGLECADAyJEjsWDBAl9vsk85L0prtQoYZGaViIgo8JlMBlRYbI624Zyv\nREQ64POR+N69ezFs2DAAwMCBA/H111+7/PzQoUPo2bMnwsLCEBISgj59+qjPEUL4enN9zrkMr8Jq\ng8nIrBIREQW+EJOMsgor8guKAICZJSLSBZ8HSwUFBYiOjgZgT7vLsgyLxeL15wAQHR2N8+fPAwC+\n+OILTJ06FWlpafjhhx98u+E+4sgs2WC12phZIiKioGAyGlBeYXXKLDFYIiLtNWkZ3pYtW7B161ZI\nlR3ehBA4fPiwy3NsNlu176Fkk2699VZER0dj8ODB+Oabb7BgwQLs2rWraTZcQ47MEmCxCjZ3ICKi\noGA2GXC11MK24USkK00aLCUmJiIxMdHlsfT0dBQUFKBLly5qRslodGxGTEyMmkkCgLNnz6J3796I\ni4tDXFwcAHvgdPHiRQgh1ECsKl999VVj7Y5P5OdfAQD8dOQIrpaUwGqt3T742342hmDc56rwWPAY\nuOPx4DFw5g/HwlJeitIyC34+cQ4GGTh+9D84UcN3fH34w7FoajwGrng8eAyq4/MGD4MGDcKePXsw\naNAgfPDBB+jXr5/Lz3v16oWnn34aRUVFkCQJBw8exFNPPYW1a9ciMjISiYmJyM3NRXR0dI2BEgD0\n7du3qXalSZwsygW+KUSnTjfA8M1hmM1yjfvw1Vdf+d1+NlQw7nNVeCx4DNzxePAYOPOXYxH1+Sc4\nc+k3XL4qEHtNC9x+222N/jv85Vg0JR4DVzwePAZA9cGiz4OlkSNH4rPPPsOkSZMQEhKC559/HgCQ\nmZmJfv36oVevXpg7dy6mTJkCWZYxa9YshIeHY/To0Zg3bx527twJm82G5cuX+3rTfUJZlNYmBCw2\ngRAzGzwQEVHgCzEZIARQXGpB9xs4X4mI9MHnwZIsy1ixYoXH4w8//LD67xEjRqjtwhVt2rTBW2+9\n1eTbpzWDS+twGwycs0REREHAZHJ837G5AxHpBUfiOuO+KC0bPBARUTAwmwzqv2OvYXMHItIHjsR1\nRq5sFW61icpueCzDIyKiwGc2OoYksa2YWSIifWCwpDNKIsmmlOFxnSUiIgoCzpmldtcwWCIifeBI\nXGeUMjyL1QabAExGfkRERBT4lGDJZJTROrK5xltDRGTHkbjOKGV4ZRVWAI6GD0RERIFMKcNr2ypM\nvXFIRKQ1Bks6Y6hsHV5eYbP/Pxs8EBFREFAyS7HshEdEOsKRuM7IlQ0dKiozS2zwQEREwUAJltg2\nnIj0hMGSziiL0papwRI/IiIiCnxKGR4zS0SkJz5flJaqZ1AySxZ7GR6DJSIiCga3d22Lw7kF6N+9\nndabQkSkYrCkM+6ZJQPL8IiIKAi0ax2GxVP6ab0ZREQumLbQGaX7XTnL8IiIiIiINMWRuM7Isms3\nPAZLRERERETa4EhcZ5RgiWV4RERERETaYrCkM+5leCZmloiIiIiINMGRuM4omSWlGx4XpSUiIiIi\n0gZH4jpjcCvDM8oswyMiIiIi0gKDJZ1RWoeXq3OW+BEREREREWmBI3GdUYKjci5KS0RERESkKY7E\ndUapunOss8QyPCIiIiIiLTBY0hk1s8QyPCIiIiIiTXEkrjPuc5ZYhkdEREREpA2OxHVGaR1usQoA\nLMMjIiIiItIKgyWdMbi1CmcZHhERERGRNjgS1xnZLVgyMVgiIiIiItIER+I645lZYhkeEREREZEW\nGCzpjHtmiQ0eiIiIiIi0wZG4znhklmRmloiIiIiItMBgSWeU1uEKo5EfEGB6OQAAGqxJREFUERER\nERGRFjgS1xn3OUpGmR8REREREZEWOBLXGffMEhs8EBERERFpg8GSzni0DmcZHhERERGRJjgS1xlJ\nkuAcL7HBAxERERGRNhgs6ZBzdomtw4mIiIiItMGRuA7JTk0dGCwREREREWmDI3Edco6P2OCBiIiI\niEgbDJZ0iJklIiIiIiLtcSSuQ87tww0MloiIiIiINMGRuA45l94ZWYZHRERERKQJBks65JxZYhke\nEREREZE2OBLXIefMEtdZIiIiIiLSBoMlHVIyS0aDBElisEREREREpAUGSzqkLErL5g5ERERERNrh\naFyHlNI7I0vwiIiIiIg0w2BJh5TMktHIj4eIiIiISCscjeuQklkyyPx4iIiIiIi0wtG4DqmZJa6x\nRERERESkGQZLOmRggwciIiIiIs1xNK5Djtbh/HiIiIiIiLTC0bgOKRklluEREREREWmHwZIOKZkl\nluEREREREWmHo3EdUprgmRgsERERERFphqNxHVJahhtYhkdEREREpBkGSzqktg7nOktERERERJrh\naFyHlNbhRiM/HiIiIiIirXA0rkNKZkkJmoiIiIiIyPcYLOmQWobHBg9ERERERJrhaFyHDGrrcGaW\niIiIiIi0wmBJh2QDM0tERERERFrjaFyHlEVpGSwREREREWmHo3EdUho7sAyPiIiIiEg7DJZ0SGnw\nYGJmiYiIiIhIMxyN65DaOpzBEhERERGRZjga1yF1UVqW4RERERERaYbBkg5xnSUiIiIiIu1xNK5D\nBtn+sbDBAxERERGRdhgs6VBlYglGmR8PEREREZFWOBrXIaWxAxs8EBERERFph6NxHVIWpTWxDI+I\niIiISDMMlnRImavEzBIRERERkXY4GtchJbPE1uFERERERNphsKRDbB1ORERERKQ9jsZ1SFmUlmV4\nRERERETa4Whch1qEmgAAEaFmjbeEiIiIiCh4GbXeAPI0uE9HtGsdjluuj9Z6U4iIiIiIghaDJR0y\nGWV069RK680gIiIiIgpqLMMjIiIiIiLygsESERERERGRFwyWiIiIiIiIvGCwRERERERE5AWDJSIi\nIiIiIi8YLBEREREREXnh89bhFosFixYtQn5+PgwGA1asWIEOHTq4PKewsBBz5sxBeHg4XnnllVq/\njoiIiIiIqLH4PLO0e/duREZGYuPGjZg+fTpWr17t8ZxnnnkG/fv3r/PriIiIiIiIGovPg6W9e/di\n2LBhAICBAwfi66+/9njO8uXL0atXrzq/joiIiIiIqLH4PFgqKChAdHQ0AECSJMiyDIvF4vKc5s2b\n1+t1REREREREjaVJ5yxt2bIFW7duhSRJAAAhBA4fPuzyHJvNVq/3ru3rvvrqq3q9v78Jlv10Foz7\nXBUeCx4DdzwePAbOeCwceCx4DNzxePAYVKdJg6XExEQkJia6PJaeno6CggJ06dJFzQwZjTVvRkxM\nTJ1f17dv33puORERERERBTufl+ENGjQIe/bsAQB88MEH6Nevn9fnCSEghKjz64iIiIiIiBqDJJwj\nEh+w2Wx46qmn8OuvvyIkJATPP/882rRpg8zMTPTr1w89evRAQkICSkpKUFhYiLZt22LhwoUYOHCg\n19cRERERERE1BZ8HS0RERERERP7A52V4RERERERE/oDBEhERERERkRcMloiIiIiIiLxgsORjeXl5\n6NOnD1JTU5GSkoLU1FSsWLGiyuenp6fj448/rvY9X3jhBUycOBGJiYl47733AABnzpxBSkoKkpOT\n8cQTT6CiogIAUFhYiIceegiPP/64+vrt27cjPj4eqampSE1NxV//+tdG2FOHvLw83Hzzzfj2229d\nHh83bhzS09Pr9Z563+fa2L17N7p3745Lly7V+z3efPNNtUX/xo0bAQBFRUWYNm0aJk2ahKlTp+Ly\n5csAgPLycixcuBBjx45VX3/gwAEMGDBAPR//9Kc/NWynatAU5wJg3+cZM2aon/8vv/wCAPj888+R\nmJiIiRMn4rXXXlOf/+OPP2L48OHIzs5WH0tPT8fo0aPVc6Kmv7vGNnXqVNxxxx0N+r2BcByA2h2L\noUOHoqSkxOWxH3/8EUlJSUhJScHMmTNRVlYGAFi7di0SExMxYcIEl/fMyclB7969kZub6/K+ycnJ\n6vX53Llzjbx3tdMY1wfFvn37MGHCBEyaNAlPPfWU+viKFSswceJEPPDAAy5/k2+++Sa6d+/ucny7\ndevm8r3lq+nO2dnZmDBhAlJSUjB+/Hjs3bu3Qe/nr+fIyZMnMX36dCQmJmLMmDH405/+pG67N6dP\nn/ZY1xLw73MhLy8PXbt2xZEjR9THtm/fjh07dtT7Pf3tfHAfQ6alpTX4b+LMmTNIS0tDSkoKpkyZ\nggsXLgAAdu7ciXHjxmHChAnYunWr+vz9+/dj4MCBLsclJSUFiYmJ6jH4/vvvG7RNuiPIp06dOiXG\njh1b6+cvWrRIfPTRR1X+fN++fWLq1KlCCCEuXrwo4uPj1de9++67QgghXnrpJbFp0yYhhBBPPPGE\nyMzMFI899pj6Hu+8845YuXJlnfeltk6dOiWGDx/u8jvy8vLE8OHDxaJFi+r8fv6wz7Uxbdo0MWfO\nHLF58+Z6vf7EiRMiISFB2Gw2UV5eLoYMGSKuXLki1qxZI9atWyeEEOLtt98Wq1atEkII8dxzz4ms\nrCyX82///v0ux6WpNfa5oMjIyBCZmZlCCCE++ugjMXv2bCGEECNHjhRnzpwRNptNTJo0SeTm5oqr\nV6+KBx98UCxdulRkZWWp71HT35ovNHQbAuU41GY7hg4dKq5everyWHJysjh06JAQQoiVK1eKjRs3\nipMnT4oxY8YIi8UiLly4IO655x5hs9nEvn37xNNPPy0eeOAB8fPPP7u8b0lJSdPsVB009PrgbMSI\nEeLMmTNCCCEee+wx8fHHH4sDBw6IadOmCSGEyM3NFRMmTBBCCLF9+3aRkZEhhgwZ4nJ8+/fv3+Dt\nqKtTp06JhIQEYbVahRBCHDt2TCQnJzfoPf3xHLHZbCIhIUHs27dPfeyNN94Q8+fPr/I177zzjsvf\ntcJfzwUh7OfDqFGjxMMPP6w+9s4774jt27fX+z397XxwH0OeOHFCjBw5Uvz000/1fs+FCxeKnJwc\nIYQQWVlZYtWqVeLq1avi7rvvFkVFRaK0tFSMGjVKFBYWil9//VU8+uijYtasWS7X5+TkZJGbm1v/\nHdM5ZpZ05OWXX0ZKSgomTZqEnJwc9fH3338fDz74IO6//3788MMPLq+5/fbb8corrwAAIiIiUFJS\nApvNhgMHDmDIkCEAgCFDhuDzzz8HACxfvhy9evXy0R459OzZE/v27VP//91338Udd9yh/v+uXbsw\nfvx4JCUlYcmSJQDsd4zmzJmD5ORknD17Vn2uv+xzdQoLC3H8+HE8/PDD2L17t/p4SkoKVq1ahdTU\nVEycOBGnT5/GgQMHMH36dKSmpuK7775Tn9uxY0dkZ2dDkiSYTCaEhoaiuLgY+/btw/DhwwG4Hoe5\nc+ciPj7eY1uEjxti1udcGD9+PE6ePAnAfhdszJgxLu85bdo0PPjggwCAli1b4tKlSzh58iSioqLQ\npk0bSJKEwYMHY9++fQgJCcFf//pXtG7duon3tP62b9+OlStXAgCuXr2KoUOHAgBGjBiBdevWITk5\nGRMmTMDVq1ddXhdoxwGo+lh4O29ff/119OzZEwAQHR2NS5cuYf/+/fj9738Pg8GA6OhotG/fHrm5\nuejZsyeeffZZGAwGl/cQbmv8aaG664NyRzs7OxuvvvoqLBYLZs+ejYkTJ2LlypVe/8a3bdumLrWh\nHJe9e/di2LBhAIAbbrgBly9fRnFxMe6++27MmjXL4z20OCZXrlxBeXm5erf/+uuvx1tvvQUAOHr0\nKCZPnoy0tDTMnDkTRUVFyMvLw7hx4zB//nyMGzcOzzzzjMd7+uM58umnnyIuLs5lfcm0tDQcPnwY\nv/32G/Lz89Vs8oIFC3DhwgWsWbMGGzZswIcffujyXv56Lii6d++O0NBQl+8QxZtvvomJEydi4sSJ\nWLt2LS5duoS7775b/fmOHTvUa4nCH88HZx07dsQjjzyiVgdkZ2fjgQceQHJyMtavXw/A/nc0bdo0\nJCUlYfr06R4Z+aVLl6rHSTkGhw4dQs+ePREWFoaQkBD06dMHX3/9Ndq2bYtXX30VYWFhHtui9XWz\nKTFY0oC3E+rLL79Efn4+3nrrLaxfvx6vvfYaysvLAQCyLGP9+vV4/PHH8frrr7u8TpZlNG/eHACw\nZcsWxMfHQ5ZllJSUwGQyAQBatWqF8+fPA4D6XHcHDhzA1KlTkZaW5hGQNQaTyYSbb75ZLQv48MMP\nMXjwYPXnZWVlWLt2LbKzs3Hs2DH8/PPPAID8/HxkZWW5rKnlL/tcnT179iA+Ph5dunTBuXPnXNL2\nUVFR2LBhA0aNGqVe7I4cOYI33ngD3bt3d3kf5YL16aefomXLlmjTpg3Onz+Pli1bAqjdcTh69Chm\nzJiBpKQkNbBqSvU5FxISErBz504AwL///W+MHj3a5T3NZrP62SvHrqCgANHR0epzoqOjce7cOciy\nDLPZ7HXbsrKyMHnyZMydO7dRyp8aQpIkj39bLBZ07twZWVlZaN++vUf5RSAeB8D7sfAmPDwcgD2o\n+t///V/cfffdXvf//PnzVf49APbBw6RJk/DSSy81wtbXXXXXB3effPIJKioqsHnzZvTr18/rc5Xj\ncu7cOXz++ecYPHiwx3Fp2bIlCgoKqjwuZWVlmDdvHiZNmqRel5razTffjB49euCuu+5Ceno6/vnP\nf8JqtQIAnnvuOTz33HP4+9//joEDB6qDxZ9++gnz5s3D1q1b8e233+Knn35yeU9/PEd++eUX3HLL\nLR6P33TTTTh+/DhefvllPPTQQ8jKykJMTAzy8vIwZswYpKamqjcQFf56Ljh74okn8Je//MXlsVOn\nTmHHjh3YtGkTsrOzkZOTgytXriA2NhZHjx4FYL/x7Bw8Af55Prjr1q0bjh49ilOnTuHdd9/Fpk2b\nkJWVhT179uDMmTNYt24d7rzzTmRnZ2PAgAEe3/PNmzeHLMuw2WzYuHFjld8b58+fr/I7AwAyMjKQ\nnJyMpUuXquPXQGHUegOC0bFjx9Q6X0mSMGjQIMiyjMOHD7vU/ypfesrdpJ49e2L16tVe3/Pf//43\n3nnnHbzxxhsAXAcUNUX7t956K6KjozF48GB88803WLBgAXbt2tXg/XR3zz33ICcnBzExMYiKinK5\n8LRo0QKPPvooAPvgXRmg9ejRo8r384d9rsru3bvVOVRDhw5FTk6OmhEYOHCguo2ffPIJAPugwWj0\n/uf6zTffYNWqVcjMzATgeRyqG1xed911mDlzJu69916cPHkSqampeO+996r8XY2lrufCf/3Xf2Hy\n5Ml49NFH8f7773vcHVSsWrUKISEhGDt2LA4ePOjys5rOiYSEBERFReHmm29GZmYm1qxZg6effrqB\ne9r4+vbtCwBo06YNrly54vU5wXAcqnL16lXMmDEDDz30EDp16uTx85r2//HHH8edd96JqKgozJgx\nA//6178wYsSIptpcr6q7Prg7evQo+vTpAwAYPHiwx11vxYULF/DII49g2bJliIyM9Ph5Tcdl0aJF\n+MMf/gAASEpKwu23345u3brVdpfqbeXKlfjll1/w6aefYu3atdi8eTPefPNNHD58GIsXL4YQAhUV\nFep3xfXXX6/eXOvVqxeOHTuGLl26uLynv50jkiTBZrN5PG6z2WAwGPD9999j8eLFAIB58+YBAP7v\n//6vyvfz13NBce2116Jbt24uFTg//PADbr31VkiSBIPBgD59+uCnn37C8OHD8cEHH6Bjx47Izc3F\nrbfe6vF+/nY+uCsuLlbHkL/++qs6jiwpKcGpU6fw/fffY/bs2QCAyZMne30Pm82G+fPnY8CAAejf\nv79LRhuo+RhMnjwZXbp0QceOHbFs2TJkZ2cjLS2tcXZQBxgsaaBTp07YsGGDy2Pr16/H2LFj8fDD\nD3s8v6a7qp988gkyMzOxbt06NdMQGhqK8vJymM1mnD17FjExMVVuT1xcHOLi4gDYB+gXL16scZBd\nHwMGDMDq1asRGxurlokBQEVFBZ599lns2rUL0dHRmD59uvoz5S65O3/ZZ2/Onj2LQ4cOqc0USktL\nERERoQ6GlC9F5+2p6jj8+OOPePrpp5GZmakOEGJiYlBQUIDw8PAaj0ObNm1w7733ArCn81u3bo2z\nZ8+iffv2jbKvVanruRAVFYWOHTti7969kGXZ6z5lZGTg4sWL+POf/wzAfhyUrBqAGo9F//791X/f\nddddWLZsWUN3s1auXLmC5s2bw2g0qoMf5/PQYrG4PL+qwbDCX48DUPdj4c5qteLRRx/FH/7wB9x3\n330A7Pt/7Ngx9Tk17X9CQoL679///vc4cuSITwc+1V0fnI+F0sAGsGfbFd6uYUVFRZg6dSrmzp2L\nAQMGAHBcJxTnzp3DNddcU+X7TJgwQf33gAEDcOTIEZ8MkMvLy9GpUyd06tQJycnJuPfee5Gfn4/Q\n0FCP79G8vDyXoMLbNd0fz5FOnTph06ZNHo/n5uYiLi5OzQrUhj+fC86U4CYpKQkmk8kjoCwvL4ck\nSRg2bBhmz56NG2+80aXcW+GP54O77777Dl27doXZbEZ8fLxH+enatWtrPD/S09MRFxeHGTNmAPD+\nvdG7d+8qX6+UcQL28v89e/bUZ1d0i2V4GvAWoffq1QsffvghhBAoKytz6Ur25ZdfAgAOHjyIG264\nweV1RUVFWLVqFf77v/8bLVq0UB8fMGAA3n33XQD2OSF33nmny+933oa1a9diy5YtAOwX3+jo6CYJ\nGkwmE7p27Ypt27a5lAYUFxfDaDQiOjoap0+fxnfffVdtCtef9tmb3bt3IykpCTt27MCOHTuwZ88e\nFBYWqnNyvvrqKwD2jJH75+3MZrPhySefxJo1a9CuXTv18TvuuEO9UP3rX/+q9jjs2rULr776KgD7\n3cbffvvNpeSxqdT2XPj222/VQWFCQgKWLVuGkSNHerzfl19+icOHD6sBAgC0b98excXFyM/Ph8Vi\nwUcffeT1y1Lx2GOPqSU7X3zxBW666abG2t1qPfPMM3jvvfcghMAvv/yCuLg4hIeHq5ll5e+/Nvz5\nOAANPxaZmZno16+fy5y2/v374+OPP4bFYsHZs2dx7tw5dO7c2eV1yt9EUVERkpOT1TkyX375JW68\n8cbG3MUaVXd9aNGihTqA+frrrwHY77Ir3cs+/fRTtUzN2fPPP4+0tDQMGjRIfWzQoEHq9fI///kP\n2rRpg9DQUPXnzteJY8eOYcaMGbDZbLBarTh48KDHMWwKW7ZsQXp6urotly9fhhACrVu3RpcuXdTs\nSU5OjjqH5cSJEygoKIDNZsOhQ4c8ttMfz5FBgwYhLy/PJVu0fv163HbbbYiIiHCZB5qRkYG9e/dC\nkiSvNxf89Vxw16pVKwwbNgybN28GANxyyy04dOgQbDYbLBYLDh8+jK5duyImJgaSJGH37t0eJXiA\nf54Pzp/HiRMnsH79eqSlpaFbt27Yv38/SktLIYTA8uXLUV5ejh49eqjnx9tvv+3RPXDnzp0wm82Y\nOXOm+livXr3w3XffoaioCMXFxTh48KBa1eBtO1JSUtSAW4vrZlNjZkkD3gblvXv3Rr9+/dQ7NpMm\nTXL5+fTp03H27Fm88MILLo/n5OTg0qVLmD17tnoX7YUXXsCsWbOwcOFCvP3224iNjcX9998Pm82G\nhIQElJSUoLCwEKNHj8bChQsxevRozJs3Dzt37oTNZsPy5cubbN/vueceXLx4Ua0TBuxZg4EDByIx\nMRGdO3fGH//4Rzz//PNITU31+h7+ts/u/vGPf3h8jvfddx/+8Y9/QJIk5Ofn449//COKioqQkZGB\n48ePe32fvXv3Ii8vD0uWLFGPw/z585GcnIz58+cjKSkJERERWLVqFQD7hOAzZ87g9OnTGD16NB58\n8EHce++9mDNnDh544AEIIbBs2bImL8FT1OZcmDp1KlasWIEdO3YgPj4eixcv9vqFt2nTJpw5c0Yt\nP2jZsiUyMjKwdOlSzJkzBwAwatQoXHfddTh06BAWL16M3377DQaDAZs3b0ZWVhaSkpKQnp6OsLAw\nhIWFuQQcTUk5bzds2IDBgwejffv2iIyMxOuvv47U1FSX0qqassz+fByA+h8LxcaNG9GhQwd89tln\nkCQJ/fv3x4wZM9SGIZIkqXdds7Ky8Pbbb+PUqVOYOXMmbrjhBrz22msYMWIEJkyYgLCwMNxyyy1e\nz7emVNX1IScnB+PHj8eyZcsQFxeHjh07AgDi4+OxdetWJCUl4Xe/+x2ioqJcXltaWoqdO3fixIkT\n+J//+R9IkoTRo0cjMTERXbt2xcSJE2EwGLB06VIAwEsvvYQPP/wQ58+fR2JiIm677TYsW7YMnTp1\nwrhx42A2mzFkyJBqS6Qby9ixY3Hs2DGMHz8eoaGhsFqtWLx4McxmM5588kksWbIEf/vb39CsWTOs\nXr0aV65cQVxcHF566SXk5uaib9++Hjec/PEckSQJ69atw5IlS5CRkQGbzYbu3burpXezZs1Ceno6\nNm7ciNjYWMyaNQtCCCxatAitWrXCqFGjAPj3ueDNlClT1GCpffv26mcohMD48ePVm4hDhw7FW2+9\nhRdffNHjPfzxfDh+/DhSU1NRXl4Om82GpUuXqjc5J0+ejKSkJBiNRtx1110wm82YPHkyFixYgJSU\nFISHh3tM59i4cSPKy8uRkpICSZLQuXNnLFmyBHPnzsWUKVMgyzJmzZqF8PBwvPfee8jIyMC5c+ew\nf/9+rFmzBtu2bVOXKgkPD0dMTIxL4BUIJBHI7SuI/ExKSgqWLl2qyZ06vfvss8+we/fuatclIwo2\nhYWF2L9/P0aMGIGzZ88iLS3NZS5HMMnLy8Njjz2Gbdu2ab0pRBRAmFki0hFflQL6m7/85S/Yu3cv\n1qxZo/WmEOlKWFgY/vnPf2LdunUQQuDJJ5/UepM0xWsoETU2ZpaIiIiIiIi8YIMHIiIiIiIiLxgs\nERERERERecFgiYiIiIiIyAsGS0RERERERF4wWCIiIiIiIvLi/wHNy9dncRELQwAAAABJRU5ErkJg\ngg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "start = \"2015-01-01\"\n", "end = \"2016-01-01\"\n", "pricing_sample = get_pricing(\"MSFT\", start_date = start, end_date = end, fields = 'price')\n", "returns_sample = pricing_sample.pct_change()[1:]\n", "plt.plot(returns_sample.index, returns_sample.values)\n", "plt.ylabel('Returns');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we will use a $\\chi^2$-test to test the value of the variance of Microsoft stock. Let's say that we want to use $\\alpha = 0.01$ to test whether the variance of MSFT is less than or equal to $0.0001$ (that the standard deviation, or risk, is less than or equal to $0.01$).\n", "\n", "$$ H_0: \\sigma^2 \\leq 0.0001, \\ H_A: \\sigma^2 > 0.0001 $$\n", "\n", "So now we calculate our test statistic:" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Chi-square test statistic: 805.372389966\n" ] } ], "source": [ "test_statistic = (len(returns_sample) - 1) * returns_sample.std()**2 / 0.0001\n", "print 'Chi-square test statistic: ', test_statistic" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Critical value at a = 0.01 with 251 df: 304.939555734\n" ] } ], "source": [ "# Here we calculate the critical value directly because our df is too high for most chisquare tables\n", "crit_value = chi2.ppf(0.99, len(returns_sample) - 1)\n", "print 'Critical value at a = 0.01 with 251 df: ', crit_value" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Because we are using the 'less than or equal to' formulation of a one-sided hypothesis test, we reject the null hypothesis if our test statistic is greater than the critical value. Since $805.372 > 304.940$, we **reject** the null hypothesis in favor of the alternative and assert that $\\sigma^2 > 0.0001$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Comparing Two Variances\n", "\n", "We can compare the variances of two separate things using the $F$ distribution. When constructing a comparison of \n", "variances using an $F$-test, the hypothesis formulations are (in case you don't feel like scrolling up):\n", "\n", "1. $H_0: \\sigma_1^2 = \\sigma_2^2, \\ H_A: \\sigma_1^2 \\neq \\sigma_2^2$\n", "2. $H_0: \\sigma_1^2 \\leq \\sigma_2^2, \\ H_A: \\sigma_1^2 > \\sigma_2^2$\n", "3. $H_0: \\sigma_1^2 \\geq \\sigma_2^2, \\ H_A: \\sigma_1^2 < \\sigma_2^2$\n", "\n", "The $F$ distribution is similar to the $\\chi^2$ distribution in that it is asymmetrical and bounded below by $0$. The $F$ distribution is defined with two different values of degrees of freedom. For the purposes of hypothesis testing, each one correlates to one of the factors that we are comparing. An $F$ distribution can be constructed from two separate $\\chi^2$ distributions. $X$ is a $F$ random variable if it can be written as $X = \\frac{Y_1/d_1}{Y_2/d_2}$, where $Y_1$ and $Y_2$ are $\\chi^2$ random variables with degrees of freedom $d_1$ and $d_2$, respectively.\n", "\n", "The an $F$ random variable is essentially a ratio of variances. Consequently, constructing the $F$ test statistic is done by taking the ratio of the sample variances of the data that we want to test. We can simply choose $\\sigma_1^2$ and $\\sigma_2^2$ to represent either of the variances that we are comparing in order so that our F-statistic is greater than $1$. \n", "\n", "$$ F = \\frac{s_1^2}{s_2^2} $$\n", "\n", "Let's compare SPY and AAPL to see whether their variances are the same (a 'not equal to' hypothesis test). We will use a $\\alpha = 0.05$ test. Recall that for a two-sided test, we calculate the lower and upper critical values using values of $\\alpha/2$. We gather the data and calculate the test statistic." ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [], "source": [ "symbol_list = [\"SPY\", \"AAPL\"]\n", "start = \"2015-01-01\"\n", "end = \"2016-01-01\"\n", "pricing_sample = get_pricing(symbol_list, start_date = start, end_date = end, fields = 'price')\n", "pricing_sample.columns = map(lambda x: x.symbol, pricing_sample.columns)\n", "returns_sample = pricing_sample.pct_change()[1:]" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "SPY standard deviation is: 0.00989055656074\n", "AAPL standard deviation is: 0.0168746184335\n" ] } ], "source": [ "# Take returns from above, AAPL and SPY, and compare their variances\n", "spy_std_dev, aapl_std_dev = returns_sample.std()\n", "print 'SPY standard deviation is: ', spy_std_dev\n", "print 'AAPL standard deviation is: ', aapl_std_dev" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note that the standard deviation of AAPL is greater than the standard deviation of SPY. As a result we choose $\\sigma_1^2$ to represent the variance of AAPL and $\\sigma_2^2$ to represent the variance of SPY." ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "F Test statistic: 2.91089447015\n" ] } ], "source": [ "test_statistic = (aapl_std_dev / spy_std_dev)**2\n", "print \"F Test statistic: \", test_statistic" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Degrees of freedom for SPY: 250\n", "Degrees of freedom for AAPL: 250\n" ] } ], "source": [ "# Since these values are taken over the same time period, they will have the same number of degrees of freedom\n", "df1 = len(returns_sample['AAPL']) - 1\n", "df2 = len(returns_sample['SPY']) - 1\n", "\n", "print 'Degrees of freedom for SPY: ', df2\n", "print 'Degrees of freedom for AAPL: ', df1" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": true }, "outputs": [], "source": [ "from scipy.stats import f" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Upper critical value at a = 0.05 with df1 = 250 and df2 = 250: 1.28208064948\n", "Lower critical value at a = 0.05 with df1 = 250 and df2 = 250: 0.779982133263\n" ] } ], "source": [ "upper_crit_value = f.ppf(0.975, df1, df2)\n", "lower_crit_value = f.ppf(0.025, df1, df2)\n", "print 'Upper critical value at a = 0.05 with df1 = {0} and df2 = {1}: '.format(df1, df2), upper_crit_value\n", "print 'Lower critical value at a = 0.05 with df1 = {0} and df2 = {1}: '.format(df1, df2), lower_crit_value" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We see that our F-statistic value is greater than the upper critical value for our F test. Thus we **reject** the null hypothesis in favor of the alternative and conclude that the variances of AAPL and SPY indeed do differ." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Other Resources\n", "Some of the content featured here is adapted from \"Quantitative Investment Analysis\", by DeFusco, McLeavey, Pinto, and Runkle.\n", "\n", "More common test statistics and tests can be found [here](https://en.wikipedia.org/wiki/Statistical_hypothesis_testing#Common_test_statistics)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "*This presentation is for informational purposes only and does not constitute an offer to sell, a solicitation to buy, or a recommendation for any security; nor does it constitute an offer to provide investment advisory or other services by Quantopian, Inc. (\"Quantopian\"). Nothing contained herein constitutes investment advice or offers any opinion with respect to the suitability of any security, and any views expressed herein should not be taken as advice to buy, sell, or hold any security or as an endorsement of any security or company. In preparing the information contained herein, Quantopian, Inc. has not taken into account the investment needs, objectives, and financial circumstances of any particular investor. Any views expressed and data illustrated herein were prepared based upon information, believed to be reliable, available to Quantopian, Inc. at the time of publication. Quantopian makes no guarantees as to their accuracy or completeness. All information is subject to change and may quickly become unreliable for various reasons, including changes in market conditions or economic circumstances.*" ] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.12" } }, "nbformat": 4, "nbformat_minor": 0 }