
Idea Conceived and written by Piotr P. Nikiel
Discussion, comments and follow-up by Paris Moschovakos & Piotr P. Nikiel
21-Oct-2022

Executive summary is available towards the end of this document

Quasar Thread Pool, its relation to execution order preservation and worker
starvation and particularly to problems of interfacing WinCC OA w/ CANopen NG

Scope of the writing

This concerns applications of quasar source variables and methods configured to run
asynchronously to the network stack and utilizing quasar synchronization domains.

Introduction

In the quasar architecture, SVs (source variables) and methods (M) which are configured (by
Design) to execute asynchronously to the network stack, are queued –as so called jobs – in
the so called Quasar Thread Pool (QTP), sometimes referred to by its earlier name of
SourceVariablesThreadPool.

QuasarThreadPool's stash of jobs is internally organized as a double-ended queue with a
std::list as its storage.

There is a pool of workers, constrained in numbers between minThreads and maxThreads,
with 10 being a default value of maxThreads. The pool of workers is notified by a condition
variable whenever one of the workers can wake up and take on a job, either because a new
job was inserted into the queue or an earlier job got finished, making a worker idle. So far, so
good and so simple.

Things complicate a bit when synchronization domains are used. Synchronization domains
are basically mutual exclusion zones with a synchronization primitive like a mutex. In quasar
server Device logic, mutual exclusion can be easily achieved by defining a mutex on the
top-most node of DeviceLogic tree (by mutex attribute of devicelogic Design element), and
using such mutex from source variables or methods that are "under" the node, either
indirectly1 (using quasar's addressSpaceReadUseMutex, addressSpaceWriteUseMutex or
addressSpaceCallUseMutex attributes of SV or M) or directly (by establishing lockguard, or
locking/unlocking the mutex in the device logic code).

quasar synchronization domains were designed as means to guarantee no race conditions
because it is expected that a quasar server is a multithreaded application with possibly
multiple application threads, multiple toolkit threads including possibly multiple network stack
threads (each of these opening potential of race conditions of not sufficiently well written

1 quasar will then generate and apply wrapping code with locking/unlocking.



device logic). Such race conditions are believed (with evidence existing…) to be well
avoided by current quasar architecture.

However when both asynchronous processing (with the number of worker threads higher
than one) and some exclusion zones are used, and a series of requests arrive to the same
exclusion zone and multiple concurrent processes run within an application, a number of
less usual corner cases might apply. All of them are grounded on the same realization which
is that the asynchronous jobs dispatcher (i.e. what makes jobs being dequeued and
processed by workers) does not profit from information on how and where the exclusion
zones are applied.

An example scenario is that for a thread pool with max 5 threads, 50 jobs are added
(queued) which all relate to the same exclusion zone (same mutex) - assume they relate to
writing or reading of the same SV instance. All 5 threads will receive jobs to execute and will
keep getting the queue processed, but because an application developer does not know the
order in which the operating system "wakes up" one of these 5 worker threads waiting on the
same mutex, it is impossible to predict the order of such batched execution. In some
applications it does not matter. In other applications UaO is used which makes it easy to do
sequential programming. But in other applications the order can not be ensured by the client
(e.g. anything done WinCC OA) and multiple operations to the same variable or scheduled
at once.

A supplementary scenario is that it is possible to show that with many requests coming to
the same exclusion zone (e.g. same variable) starvation might happen because all workers
will wait on the same mutex and other requests won't be getting executed. This won't
generate artificial CPU work but one can imagine a much faster execution scenario in case
the dispatcher knows where exclusion zones are.

Proposal: A slightly smarter Quasar Thread Pool

Piotr's proposed idea is that Quasar Thread Pool could profit from the information about
exclusion zones and dispatch the asynchronous jobs such that a situation in which multiple
workers take jobs that wait on entering the same exclusion zone is avoided.

Piotr beliefs that the (runtime) cost to determine if to pass given job to a worker or not could
be done at relatively small cost, changing the present front dequeuing – O(1) – into
front-back search – O(n) worst-case – but for n being within thousands and small amount of
work per every queue element it is rather cheap. Put side-by-side by its benefit of avoiding
the starvations and solving the issue of order of requests, the benefits seem obvious and
definitely worth it.

CANopen NG context

Out of many known OPCUA servers, the situation seems to affect certain CANopen NG
installations - for instance the TRT DTMROC:

1. TRT DTMROC wants to do sequential I/O - individual dpSets/ SQ to write/read custom
SPI implementation of custom ELMBio firmware



2. But they want to do it from WinCC OA (no resources for a UaO-based approach) and
DirectIO is not yet available
3. Different nasty problems of the WinCC OA OPCUA driver become visible - for instance,
often many individual dpSets thought to execute in sequence get sent to OPCUA server as a
batch of e.g. 42 writes
4. These 42 writes all relate to the same ELMB, and per quasar definition it is in the same
exclusion zone (because one ELMB can only process one SDO at any given time).
5. There are multiple worker threads
6. So the order in which actual SDOs will be dispatched is actually difficult to predict and
certainly different from the order of initial dpSets
7. When concurrency is disabled (maxThreads=1) the order is preserved (but of course it
takes much longer to perform the same jobs with SDOs than when the concurrency is
enabled).

NOTE: Independent validation with a Python-based script yields no problems.



Executive summary

The cost of prototyping + development by Piotr is in order of 3-10 working days.

Paris believes that there are obvious advantages coming along with this proposal. Some
measurements should complement it to ensure that current servers will not be overpaying
things they might not use.

Known applications that can benefit: SCA, ATCA, CANopen NG, HVSys, LAr Periph.

The table below summarizes what could be achieved by that work for quasar and
subsequently for the CANopen NG server.

Aspect
scope

Aspect Current
implementation

Proposed implementation

quasar
generic

Order of execution of
requests in exclusion zone
with concurrency enabled

Not guaranteed
(and seen being
broken)

Guaranteed

quasar
generic

Starvation of workers by
inefficient waiting on
"wrong" mutexes

Might happen Excluded

quasar
generic

Time to complete groups
of operations (e.g. full time
of configuration)

– baseline – Shorter (i.e. the proposed
implementation should be
faster at about same CPU
effort)

quasar
generic

Can the validity of existing
applications be violated?

– baseline – No

quasar
generic

Algorithmic cost of
dequeuing

O(1) O(n) worst-case with
n=maxJobs

quasar
generic

Additional algorithmic
notes

None cache misses cost probably
negligible, but worth to be
measured.

quasar
generic

SV engine + ThreadPool
software complexity

– baseline – Slightly more complex

CANopen
NG

The order within
sequences of writes to
SDOs are guaranteed to
be fine w/o having DirectIO

No Yes

CANopen
NG

Alternated writes to SDO
(dpSet) and reads from
SDO (SQ) preserves order
("the read-write mixup
problem")

No No



Photo from the discussion between Piotr and Paris


