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Abstract. The knowledge about how an interpreter executes programs
allows writing faster code and creating powerful source-to-source com-
pilers. However, many languages and environments either lack a speci-
fication of the execution semantics, or the semantics frequently changes
with new releases. In this article, we present (1) performance event pro-
files with execution regions, inventive use of event-based sampling on
processors where we correlate profiles of many performance events to
find regions with desired properties. Furthermore, we use the perfor-
mance event profiles to deduce (2) a static, tree-based execution model
of MATLAB with the Just-In-Time (JIT) compilation. The environment
of MATLAB is closed-source, which makes it a perfect testbed for our ap-
proach. With the new model and better understanding of how MATLAB
executes programs, we propose a new code transformation, (3) repacking
of array slices, which can increase the amount of JIT-compiled code in
MATLAB programs.

Keywords: Hardware performance counters · Event-based sampling ·
Performance event profile · MATLAB · Just-In-Time compilation · Exe-
cution model · Repacking of array slices.

1 Introduction

Listing 1.1 depicts how MATLAB programmers express element-wise computa-
tions as loops or array operations (with or without array slicing). All three codes
perform the same computation producing the same result. However, they use a
different type of floating-point operations, execute different number and kind of
CPU instructions, and, more importantly, have vastly different performance.

Listing 1.1: Three versions of the striad kernel (the Schönauer Vector Triad). In
MATLAB, it is common to express loops as array operations (loop vectorisation).
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1 % Scalar loop code (loop)
2 for k = 1:N
3 a(k) = b(k) + c(k) .* d(k);
4 end

1 % Vector code with array slicing (vec)
2 a(1:N) = b(1:N) + c(1:N) .* d(1:N);
3 % Vector code on whole arrays (vec_O1)
4 a = b + c .* d;

To find out about what kind of instruction codes from Listing 1.1 execute, we
could use dynamic binary instrumentation with tools, e.g. DynamoRIO [2] or
Intel PIN [11]. However, MATLAB is a closed-source environment with no link-
ing symbols available. This closed nature of MATLAB makes even the task of
matching machine code to a specific language component (e.g. garbage collector,
JIT compiler, external libraries) hard. Moreover, the machine code of the MAT-
LAB environment is mixed up with the dynamically generated code created by
the JIT compiler.
Instead, we could analyse how codes from Listing 1.1 execute using popular
metrics and performance model. For example: the Roofline Model by Williams
et al. [20] which graphically shows if the code is memory or compute-bound;
the Top-Down µ-architecture Analysis Method (TMAM) by Yasin [21] which
indicates which part of the processor pipeline is the execution bottleneck with
a detailed 4-level hierarchy of 33 metrics; or to use metrics like cache miss ratio
or cycles per instructions (CPI) [10]. However, at the core, metrics and models
mentioned above do not consider how the program execution changes over time,
which is the key to successful analysis of MATLAB programs.

loop vec vec_O1
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Run on Intel® Core i7−6600U with 16GB/2133MHz/DDR4; MATLAB=R2018b; threads=1; sampling threshold=100000; N=1000000.

Performance profiles for Schönauer Vector Triad (striad)

Fig. 1: Performance profiles of three versions of the striad kernel: loop computa-
tion (loop); vectorised operations with array slicing (vec); vectorised operations
on all data (vec_O1). The figure depicts four distinctive regions: JIT-compiled
scalar loop, data copy, JIT-compiled vector code, and data store.
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Figure 1 shows how the program execution of the three codes changes as more
instructions on the processor retire. The graph depicts several performance event
profiles built with the Event-Based Profiling (EBS) [16] of four performance
events: scalar and vector floating-point operations, load and store instructions
(from top to bottom). By aligning the profiles together, we find execution regions
with particular properties, e.g. data copy or computation. Moreover, we can
draw several observations from Figure 1: (1) loops perform scalar arithmetic
instructions; (2) array operations perform vector arithmetic instructions (e.g.
with Intel SSE, AVX extensions); (3) array slicing requires a copy of the data;
(4) loop and vector codes without array slices are perfectly regular.
Throughout this paper, we use the two concepts of performance event profiles
and execution regions to discover rules of program execution in the MATLAB
environment. We analyse built-in and user-defined functions, common arithmetic
operators, array referencing and slicing, and the impact of the JIT compilation.
Finally, we build a simple execution model of MATLAB programs from which
we can derive promising code transformations.
In the paper, we make the following contributions:

– We describe performance event profiles built using hardware event-based
sampling on processors (Section 2). The profiles consist of values of several
performance events sampled over time. With a notion of execution regions
in the profiles, we can find parts of programs with desired properties, e.g.
data copy or floating-point computation.

– We briefly present our open-source tool mPAPI3, which gives access to hard-
ware performance counters from the MATLAB/Octave programs (Section 2).
The tool uses the PAPI library [18] and supports two measurements modes:
counting and sampling.

– Using performance event profiles, we deduce and build an execution model
for MATLAB expressions in the presence of JIT compilation (Section 3). The
proposed model takes source-code of expression and predicts how MATLAB
executes it. Furthermore, the model uses easy-to-follow graphical tree struc-
ture, called (minimal) instruction tree, obtained directly from an abstract
syntax tree (AST) form of this expression.

– Finally, with the knowledge obtained from the execution model, we propose
a new code transformation, repacking of array slices, which increases the
amount of MATLAB instructions that the JIT compiler executes together
(Section 4).

Complementary materials including more experiment results and the implemen-
tation of the model are available online4.

2 Performance Event Profiles

Performance event profiles describe the change in performance events measured
over time. Fortunately, hardware performance counters in modern CPUs work
3 https://github.com/quepas/mPAPI
4 https://github.com/quepas/lcpc19-execution-model

https://github.com/quepas/mPAPI
https://github.com/quepas/lcpc19-execution-model
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in two modes: (1) counting mode where the values of a performance event ac-
cumulate in a single register; and more importantly (2) sampling mode where
a program interruption occurs and a measurement is taken every time a sam-
pling event used as “time” reaches a specified sampling threshold. Therefore, the
capabilities of building performance profiles are already built-in inside modern
CPUs with mechanisms of counter overflow, Event-Based Sampling (EBS), and
recently Precise Event-Based Sampling (PEBS) on Intel processors [16,4].

2.1 Concept Definitions

Performance Event Profile. We define a performance profile as P = (T,M)
where T = (t1, t2, . . . , tl) and M = (m1,m2, . . . ,ml) are sequences of the sam-
pling event and measurement values such that ti,mi ∈ N, and the sampling
event values are strictly increasing ∀i < j : ti < tj . Both T and M have the
same length l, and the length of the profile is denoted by |P | = l. Moreover,
T and M have their event domain E , which states what performance event the
sequence represents. The universe of event domain E contains any performance
event available on the CPU. For example, a sequence M of L1 cache misses
measurements has the event domain as follows E(M) = L1D:REPLACEMENT. The
event domain of the performance profile E(P ) = (E(T ), E(M)) with sequences T
and M creates a full description of the profile. Event domains specify the profile
content, where M holds the measurements and T stores values of the sampling
event.

Profiles Group. Building only one performance profile at a time would result
in poor resource management, as the rest of hardware performance registers are
unused. Therefore, it is beneficial to measure several performance profiles at once,
creating a group G = {P1, P2, ..., Pg} of g profiles. In a machine with N hardware
performance registers, we can create only g = N − 1 profiles, because the last
register measures the sampling event. Moreover, profiles in a group are aligned
because they are measured together; thus, we can simplify the group definition
to G = (T, {M1,M2, . . . ,Mg}), where the profiles and their measurements share
the sampling event from T . As in the case of performance profiles, groups have
their event domain E(G) = (E(T ), {E(M1), E(M2), . . . , E(Mg)}).

Execution Region. A section of the program execution with particular properties
is an execution region expressed as a binary predicate ϕ : T → {0, 1}. The
predicate marks the desired region in the domain of the sampling event. Thus,
the predicate indicates when the region starts and ends during the program
execution. Moreover, the data copy region indicates either the occurrence of array
slicing or at least where program execution has properties similar to the data
copy. In the construction of the predicate ϕ, we use only aligned measurements
coming from the same profiles group. Otherwise, ambiguities can appear, e.g.
when two performance profiles P1 and P2 have different length |P1| 6= |P2|.
Nevertheless, it is possible to use performance profiles from two or more groups
after aligning them using, e.g. dynamic time warping (DTW) [7].
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2.2 Performance Profiles with mPAPI

Apart from manually programming hardware performance counters, several li-
braries give easy access to both modes of measurement: counting and sampling.
In our work, we have focused on the PAPI [18], because it is a comprehensive,
open-source, up-to-date, actively maintained library with a C API which makes
it possible to integrate with MATLAB through C MEX API5. In order to access
performance event directly from MATLAB source-code and to mitigate the pos-
sible imprecisions and overheads of measuring hardware performance counters
[19,22], we have built mPAPI, an open-source tool for MATLAB. mPAPI supports
counting and sampling modes of collecting performance events, along with mul-
tiplexed and per-thread measurements.

3 Execution Model for JIT Compilation in MATLAB

Without a Just-In-Time (JIT) compiler, MATLAB would be an interpreter
which executes (interprets) instructions step by step. The interpreter fetches,
decodes, and executes each instruction in isolation without any knowledge about
future instructions. However, with the JIT compiler, MATLAB can defer execu-
tion of the instruction as long as possible (in the APL interpreter, this concept
is known as drag-along [1]). This delay often creates new optimisation oppor-
tunities for the JIT compiler, because the compiler carries information about
future instructions. The opportunity leads to better instruction scheduling, reg-
ister allocation and code optimisations, especially involving the execution of two
or more instructions which can execute together. In this section, we prepare a
model describing when the JIT compiler optimises code regions consisting of
many instructions.

A = sqrt(B) + C .* compute(D - E(1:N), F(1:N));

Built-in functions User-defined function

Array references Array slices

Fig. 2: Common components of expressions with array operations in MATLAB.

Scope of the Model. We focus on expressions consisting of four components
depicted in Figure 2: (1) built-in functions; (2) user-defined functions; (3) array
references; and (4) array slices. Our model aims at expressing these components
and their order of execution.
5 https://www.mathworks.com/help/matlab/call-mex-files-1.html

https://web.archive.org/web/20181002124750/https://www.mathworks.com/help/matlab/call-mex-files-1.html
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Instruction Block. Instead of compiling only single instructions, the JIT com-
piler can compile whole blocks of instructions, thus, benefiting from new opti-
misation opportunities. We define the instruction block Γ as a program segment
containing one or more instructions Γ.inst = {γ1, γ2, . . .}. Each instruction γi
indicates a call to the MATLAB built-in or user-defined function. Array slicing
is expressed separately, because it always performs the same operation, a data
copy. Furthermore, a single block can contain multiple calls to the same function
(thus, Γ.inst is a multiset).
All instructions from the block are scheduled together for the execution by the
JIT compiler. Therefore, we say they are JIT-compiled, which means, the JIT
compiler is responsible for fetching, decoding, optimising, and scheduling them
together for the execution. However, we are not concerned about their order,
because in many cases, the original execution order would be hard to deduce
and highly dependent on the compiler, compilation heuristics, and the target
machine.

Detecting Instruction Blocks. The result of the JIT compilation of an instruction
block is a machine code stored in the instruction cache on the processor. Before
the execution, the processor fetches and decodes this machine code into micro-
operations (µops), executable by the processor. The fetch-decode phase results
in several observable performance events on the processor, such as instruction
cache miss (L2_RQSTS:CODE_RD_MISS) and hit (L2_RQSTS:ALL_CODE_RD). Therefore,
an activity of the performance events related to the fetch-decode phase could
indicate the beginning and end of the instruction block execution.

cos(cos(A1)) sqrt(sqrt(A1))

FP_ARITH_INST_RETIRED:SCALAR_DOUBLE
(Scalar floating−point instructions)

MEM_INST_RETIRED:ALL_LOADS
(Load instructions)

L2_RQSTS:CODE_RD_MISS
(L2 instruction cache misses)
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Detection of instruction blocks

Fig. 3: Code examples generating one and two instruction blocks. In this example,
cos is a combinable function.

Figure 3 presents how the activity of the L2 instruction cache misses indicates
boundaries of instruction blocks. The first code cos(cos(A1)) is JIT-compiled
and executed as one instruction block because we observe the activity of the
cache misses only at the beginning and end of the computation. The second
code sqrt(sqrt(A1)) is also JIT-compiled; however, the code is divided into two
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instruction blocks marked by the spike of cache misses in the middle of the
computation. The existence of two instruction blocks indicates here that the
sqrt function is not combinable with itself and requires one instruction block
for each call. In the next paragraph, we use the concept of combinable function
to find which functions can coexist with others in the same instruction block.
The execution of fewer instruction blocks resulting from the use of combinable
functions can improve program efficiency.

Combinable Functions. Instruction blocks can potentially contain any combina-
tion of functions which make it infeasible to test them all. Therefore, we propose
to use three simple detection patterns in Table 1, to assess if a given function is
combinable, meaning, it can coexist with other functions in the same instruction
block. Every pattern in Table 1 is a composition of at least two functions because
only then we can observe if the JIT compiler creates two instruction blocks for
one expression and if the function is combinable.

Table 1: Three detection patterns used for finding dynamic (JIT) compilation
of MATLAB functions. The presented patterns use built-in functions, cos and
atan2.

Detection pattern Unary Binary

Self-composition cos(cos(A1)) atan2(atan2(A1, A2), A3)
Composition plus:+ cos(A1)+cos(A2) atan2(A1, A2)+atan2(A3, A4)
Arguments plus:+ cos(A1+A2) atan2(A1+A2, A3+A4)

Table 1 presents code patterns which we use to detect if given built-in functions
(unary and binary) can be a part of a multi-instruction block. The first pattern
is a self-composition f(f(A)), which is the simplest way for one function to
create a complex expression. The next two patterns compose function f with
addition operator +/plus, which is JIT-compiled (we have verified this using
the same approach as described). The second pattern f(A)+f(B) tests if the plus
composes well with functions f as its arguments. Finally, the third pattern f(A+B)
validates if the function f executes with a complex expression as its argument
inside a single instruction block.
Using these three patterns from Table 1, we have executed various built-in
functions to find out several combinable functions: abs, ceil, cos, exp, floor,
ldivide=.\, minus=-, plus=+, rdivide=./, round, sin, tan, times=.*, transpose,
and others. The list of non-combinable functions includes acos, cumsum, diff,
fft, log, mtimes=*, power, prod, sqrt, sum, and much more. Furthermore, al-
though not shown in the paper, the user-defined functions are never combinable,
and they evaluate just like non-combinable built-in functions do.
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3.1 The Minimal Instruction Tree Model

The knowledge about (non-)combinable functions and the content of particular
instruction blocks lack the information about the execution order of these blocks.
Furthermore, because instruction blocks do not express array slicing, we would
also like to track when the slicing appears. For this task, this section introduces
instruction trees.

Instruction Tree. Similar to the abstract syntax tree (AST), the instruction tree
represents instructions and usages of variables. However, unlike in the AST, a sin-
gle inter-node in the instruction tree can represent several instructions enclosed
inside an instruction block. Steps 1 and 2 in Figure 4 visualise the difference
between the AST and the corresponding instruction tree. The initial translation
from the AST to the instruction tree is straightforward, as it only requires a
one-to-one mapping of each instruction to instruction block node; each array
reference to array reference leaf; and each array slice to array slice leaf. For
simplicity, and because it does not generate any execution regions, we remove the
leaf of the reference A3 and instead, we store it in the corresponding instruction
block (grey set in step 3 in Figure 4).

1. +

sqrt

A1(1:N)

abs

.*

A2(1:N) A3

2. {+}

{sqrt}

A1

{abs}

{.*}

A2 A3

3. {+}

{sqrt}

A1

{abs}

{A3} {.*}

A2

4. {A3} {+, abs, .*}

{sqrt}

A1

A2

Fig. 4: Steps required for obtaining the minimal instruction tree: (1) conversion
to the AST; (2) one-to-one translation of the AST to the instruction tree with
the removal of array references; (3) application of Algorithm 1; (4) the result
minimal form of the instruction tree.

Minimal Instruction Tree. At this point, our instruction tree is in the maximal
form, because each instruction has its block. However, the JIT compilation in
MATLAB can combine such blocks. Algorithm 1 expresses this merging as a
repetitive process which combines pairs of instruction blocks as long as there
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exists any pair of combinable blocks left. Therefore, the result of Algorithm 1 is
a minimal instruction tree consisting of a minimum possible number of instruc-
tion blocks, such as the tree from step 4 in Figure 4. The resulting tree indicates
the order of execution regions occurring during the execution of MATLAB ex-
pressions.

Algorithm 1 Building of a minimal instruction tree by the repetitive merging
of instruction blocks inside an instruction tree.
Input: the root node of the initial instruction tree
Output: minimal instruction tree

1: function canMerge(node)
2: correctInst ← node.inst ⊆ combinableFunctions
3: return isInstructionBlock(node)∧correctInst

4: function buildMinimalTree(node)
5: revChildren ← reverseList(node.children) . Visit from right-to-left
6: for child in revChildren do
7: buildMinimalTree(child) . Recursive visit of the tree
8: if canMerge(node)∧canMerge(node.parent) then
9: if ¬hasRightSibling(node) then
10: node.parent.inst ← node.inst ] node.parent.inst
11: attach(node.children, node.parent)
12: removeFromParent(node)

Obtaining the Minimal Instruction Tree. The main function buildMinimal-
Tree from Algorithm 1 is a recursive method which traverses the input instruc-
tion tree and finds candidates of instruction blocks for merging. The routine
traverses the tree in a post-order, but with children visited right-to-left (lines
5–7). The reason for the reversed visit of children is the evaluation order of argu-
ments in MATLAB, which is left-to-right. Hence, MATLAB evaluates expression
e1 + e2 starting with arguments e1, e2 and finishing with the + operator which
creates an evaluation sequence: e1, e2, +. With the standard post-order traversal
and left-to-right visiting of children, we would never merge e1 with + (even if
possible), because the second expression e2 stands on the way — e2 evaluates
in between e1 and +. However, if we visit children right-to-left, then we could
merge e2 with + and give to e1 an opportunity to combine with a newly created
block of instructions {e2, +}. Therefore, the merge of a node with its parent is
possible only when the node has none of the right siblings (line 9).
The presented perspective on merging nodes (instruction blocks) is related to the
structure of the instruction tree, which encodes the evaluation order of MAT-
LAB operations. However, the lack of right siblings node is not the only condition
required for merging instruction blocks. The other condition, even more impor-
tant, is if both instruction blocks contain only combinable functions which can be
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merged. The function canMerge from Algorithm 1 encapsulates the condition,
and it is used in line 8. Moreover, the canMerge can work only on instruction
blocks; hence, the use of the isInstructionBlock predicate. Finally, we merge
two nodes by adding together the instructions from both merged blocks (line 10).
The operation ] is a multiset sum, which not only performs a union between
two multisets, but it also adds repeated elements multiple times inside the result
multiset. The subsequent operations rebuild the structure of the instruction tree
by connecting child nodes (line 11) and removing one of the merged nodes (line
12).

Instruction Chain. Finally, we flatten the minimal instruction tree (step 4 from
Figure 4) by traversing it in the post-order manner (left branch, right branch,
root). The result is an instruction chain which represents the order of execution
regions during the program run presented in Figure 5.
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A1 {sqrt} A2 {+, abs, .*}

Fig. 5: Prediction of execution order and regions from the instruction chain.

4 Repacking of Array Slices

Array slicing affects the performance of MATLAB programs in two ways: (1)
it creates a copy of the requested subset of an array; and (2) it sometimes pre-
vents the JIT compiler from merging two or more operations into one instruction
block. Usually, array slicing is necessary for programs, and we need to perform
the copy at some point. However, it is possible to move the copying before the
computation. Therefore, the computation uses only references to the already
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copied array slices, which allows the JIT compiler to merge and execute oper-
ations together. In this section, we show how to extract array slices and better
schedule computations by repacking array slices into new variables.

Listing 1.2: Repacking of array slices on crni3 loop from the LCPC16 suite[3].
1 % Original code
2 X(1:(N−1)) = (B(1:(N−1)) − C(1:(N−1)) .* X(2:N)) ./ D(1:(N−1));
3 % After repacking of array slices
4 tmp_b = B(1:(N−1));
5 tmp_c = C(1:(N−1));
6 tmp_x = X(2:N);
7 tmp_d = D(1:(N−1));
8 X(1:(N−1)) = (tmp_b − tmp_c .* tmp_x) ./ tmp_d;

Transformation. Listing 1.2 presents the simple idea behind the repacking of ar-
ray slices. The transformation replaces every indexed read reference (array slice)
in the right-hand side of the assignment (line 2) by a reference to a temporary
variable tmp_* which holds the array slice (line 8). The code on lines from 4 to
7 depicts how array slices are repacked into new temporary variables tmp_*.

Application. The transformation is especially useful in cases where array slicing
prevents the JIT compiler from executing operations together. For finding good
candidates of the repacking, we propose to use our execution model, which pre-
dicts the order of computations in the expression before and after the repacking.
Furthermore, the model works directly from the source code of the program and
requires no prior execution (static model).
The knowledge about the order of computations after the repacking shows
whether the repacking creates new instruction blocks, regions where many op-
erations execute together. In general, the repacking yields two results: (1) no
change to the order of computations; or (2) creation of new instruction blocks
by merging other blocks. In the first case, the repacking does not improve pro-
gram performance. However, the sole existence of new instruction blocks (2) is
not sufficient to guarantee the performance improvement.

Results. Figure 6 presents the relative increase of the performance after the
repacking of array slices measured on three kernels: crni3 loop from LCPC16
[3], state_fragment (kernel 7) from Livermore 6, and s211 from TSVC [12] bench-
mark suites.
One occurring pattern in the data from Figure 6 is a better performance of
the repacking obtained on the newer version of MATLAB R2018b. A possible
explanation of this is the improved JIT compiler. In that case, the repacking
reveals a massive opportunity for the JIT compilation, which the results show.
The repacking for TSVC:s211 kernel decreases the performance for the majority
of tests. However, the execution model can predict this outcome. The result is
6 https://www.netlib.org/benchmark/livermore

https://www.netlib.org/benchmark/livermore
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Fig. 6: Result of applying repacking of array slices. Not every computation ben-
efits from the transformation (TSVC/s211).

the same instruction chain of the code before and after the repacking. In other
words, the repacking is not profitable because it does not decrease the number
of instruction blocks required for the execution.
Other two loops LCLP16:crni3 and Livermore:state_kernel are perfect examples
of how the performance gain from the repacking depends on the size of input
data, the number of threads, the MATLAB version, and the code itself. In the
current form, the execution model is insufficient to answer if the repacking in-
creases the performance. Thus, the repacking should be considered with the code
profiling to find out if the transformation is beneficial in the given context.

5 Related Works

In our work, we have utilised and combined various concepts, such as: analysing
large-scale and time-varying behaviours, characterising programs with perfor-
mance counters or vertical profiling. Nevertheless, we have not found works sim-
ilar to ours. We suspect that the main reason for the lack of similar works is
because the bulk of research work analysing programs behaviour deals only with
open-source, freely available solutions. Therefore, the problems which we deal
with in this paper are unnoticed, as the source code is provided.

Time-Varying Behaviour. One of the first studies of program properties chang-
ing through the program execution was a study of large-scale patterns in the
SPEC95 benchmark suite by Sherwood and Calder [14]. The work looked for
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patterns in performance profiles of, e.g. instructions per cycles (IPC), cache
miss rate or branch prediction miss rate, in terms of committed instructions.
A new result of the study was finding cyclic behaviours in benchmarks which
specify how long we should run the benchmarks to obtain representative results.
Subsequent studies by Sherwood et al. improved the idea of time-varying, large-
scale patterns by either creating an automatic machine-independent technique
for finding large-scale pattern [15] or proposing a hardware (and software) track-
ing and prediction method for reoccurring phase behaviours [13]. Although our
work deals with small scale time-varying changes and lacks phase behaviour, the
work of Sherwood et al. is an early example of the detailed analysis of perfor-
mance profiles. In another interesting study, Duesterwald et al. [5] argued that
time-varying behaviours are essential and should be incorporated into adaptive
systems to improve program performance and energy consumption. The results
show that programs present time-varying behaviour at even small scale which
could be used, e.g. to predict the value of one metrics based on another.

Characterising Programs with Performance Counters. The study by Eeckhout
et al. [6] used hardware performance counters to analyse interactions between
various Java Virtual Machines (JVM), processors, and programs. The results
show that differences between JVMs implementations are more significant than
differences from running various benchmarks on the same implementation. Sim-
ilarly, to our study, Eeckhout et al. looked directly into the performance events
to see how interpreted programs perform on processors. The use of traces with
performance events (similar to traces from mPAPI tool) was visible in the study
by Sweeney et al. [17] which described a methodology to analyse the perfor-
mance of Jikes RVM, research virtual machine. The traces allow understanding
better the interactions between various components of Java program execution:
the application, virtual machine, operating system, and the µ-architecture. How-
ever, the authors noted that traces of performance counters are not enough to
explain certain performance phenomena. Therefore, the work was just a prequel
to vertical profiling.

Vertical Profiling. Across three papers, Hauswirth et al. [9,7,8] explored the
idea of vertical profiling, a methodology for understanding and correlating per-
formance data over time from multiple levels of abstractions: server, hardware,
virtual machine (VM), operating system (OS), application. At the core, in cor-
relating performance from multiple levels of abstraction lies the same idea as in
our use of performance event profiles, however, in our case, we correlate multiple
performance events coming from the same abstraction — a processor. In the sec-
ond paper, authors evaluated several techniques for automated trace alignment
coming from different measurements [7]. So far, in our work, we have used only a
small amount of performance events which are measured at once. Nevertheless,
in the future, we plan to consider trace alignment as well.
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6 Conclusion

In the paper, we have described two concepts of performance event profile and
execution region which originated from the need for describing program execu-
tion of the closed-source MATLAB environment (Section 2). The combination of
performance event profiles with execution regions captures the time-varying be-
haviour of programs by tracking their execution directly on CPU. Moreover, we
have presented our open-source tool mPAPI for accessing hardware performance
counters in MATLAB/Octave programs and building performance profiles.
Furthermore, we have used performance event profiles and execution regions to
build a tree-based execution model for expressions in the vectorised MATLAB
programs (Section 3). The model predicts execution regions and their order for a
given MATLAB expression. Moreover, the model highlights functions scheduled
for the combined execution, by the JIT compiler (as instruction blocks).
Finally, with the knowledge about program execution in MATLAB, we have in-
troduced a simple, yet powerful code transformation repacking of array slices (up
to 80% of performance increase on benchmark LCPC16:crni3; but when misused,
the repacking decreases performance up to −20%). However, for now, the trans-
formation should be considered in the context of Profile-Guided Optimisations
(PGO), until we further develop the execution model to predict the performance
gain of the repacking.
The work presented in this paper is the first step to obtain an entirely usable
execution model for MATLAB programs. The future work includes: (1) consid-
eration of vector instructions; (2) prediction of parallel execution; (3) extending
the model with control-flow; (4) quantifying the precision of the model and ac-
curacy of measurements of performance events. Moreover, we plan to test the
approach on other interpreters with JIT compilers: PyPy for Python7 and Julia
8. However, we do not plan to go beyond the domain of scientific computing.
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