Keyword | Rate $\\gamma_j$ | Lindbladian $\\mathcal{L}[\\rho]$ |

$\\texttt{emission}$ | $\\gamma_\\text{E}$ | \\begin{eqnarray}\\mathcal{L}[\\rho]&=&\\sum_n^N \\left(J_{-,n}\\rho J_{+,n} - \\frac{1}{2}J_{+,n}J_{-,n}\\rho - \\frac{1}{2}\\rho J_{+,n}J_{-,n} \\right)\\end{eqnarray} |

$\\texttt{pumping}$ | $\\gamma_\\text{P}$ | \\begin{eqnarray}\\mathcal{L}[\\rho]&=&\\sum_n^N \\left(J_{+,n}\\rho J_{-,n} - \\frac{1}{2}J_{-,n}J_{+,n}\\rho - \\frac{1}{2}\\rho J_{-,n}J_{+,n} \\right)\\end{eqnarray} |

$\\texttt{dephasing}$ | $\\gamma_\\text{D}$ | \\begin{eqnarray}\\mathcal{L}[\\rho]&=&\\sum_n^N \\left(J_{z,n}\\rho J_{z,n} - \\frac{1}{2}J_{z,n}J_{z,n}\\rho - \\frac{1}{2}\\rho J_{z,n}J_{z,n} \\right)\\end{eqnarray} |

$\\texttt{collective}\\_\\texttt{emission}$ | $\\gamma_\\text{CE}$ | \\begin{eqnarray}\\mathcal{L}[\\rho]&=& J_{-}\\rho J_{+} - \\frac{1}{2}J_{+}J_{-}\\rho - \\frac{1}{2}\\rho J_{+}J_{-} \\end{eqnarray} |

$\\texttt{collective}\\_\\texttt{pumping}$ | $\\gamma_\\text{CP}$ | \\begin{eqnarray}\\mathcal{L}[\\rho]&=& J_{+}\\rho J_{-} - \\frac{1}{2}J_{-}J_{+}\\rho - \\frac{1}{2}\\rho J_{-}J_{+} \\end{eqnarray} |

$\\texttt{collective}\\_\\texttt{dephasing}$ | $\\gamma_\\text{CD}$ | \\begin{eqnarray}\\mathcal{L}[\\rho]&=& J_{z}\\rho J_{z} - \\frac{1}{2}J_{z}^2\\rho - \\frac{1}{2}\\rho J_{z}^2 \\end{eqnarray} |