{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# QuTiP Example: Superoperators, Pauli Basis and Channel Contraction" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "[Christopher Granade](http://www.cgranade.com/)
\n", "Institute for Quantum Computing\n", "$\\newcommand{\\ket}[1]{\\left|#1\\right\\rangle}$\n", "$\\newcommand{\\bra}[1]{\\left\\langle#1\\right|}$\n", "$\\newcommand{\\cnot}{{\\scriptstyle \\rm CNOT}}$\n", "$\\newcommand{\\Tr}{\\operatorname{Tr}}$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Introduction" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this notebook, we will demonstrate the ``tensor_contract`` function, which contracts one or more pairs of indices of a Qobj. This functionality can be used to find rectangular superoperators that implement the partial trace channel $S(\\rho) = \\Tr_2(\\rho)$, for instance. Using this functionality, we can quickly turn a system-environment representation of an open quantum process into a superoperator representation." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Preamble" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Features" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We enable a few features such that this notebook runs in both Python 2 and 3." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from __future__ import division, print_function" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Imports" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import qutip as qt\n", "\n", "from qutip.ipynbtools import version_table" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Plotting Support" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Settings" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "qt.settings.colorblind_safe = True" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Superoperator Representations and Plotting" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We start off by first demonstrating plotting of superoperators, as this will be useful to us in visualizing the results of a contracted channel." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In particular, we will use Hinton diagrams as implemented by [``qutip.visualization.hinton``](http://qutip.org/docs/3.0.1/apidoc/functions.html#qutip.visualization.hinton), which\n", "show the real parts of matrix elements as squares whose size and color both correspond to the magnitude of each element. To illustrate, we first plot a few density operators." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeYAAAFxCAYAAACm8As0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHzJJREFUeJzt3X+sZ3V95/HnC6zJpFiBnXQAlR0aSbtsk2JF21hEtNLi\nxN2hO8kKf1BpuplF8Nca/8Cuf1T/cJtmi9AEnIwbFzVptduJMDZjQTGGrNp1IBILqJHgVYfC0Cli\nQ7iKM/PeP77nypev986cc7/fe+853/t8JCfzPT8+53w+kwOv+Zwfn5OqQpIk9cMpG10BSZL0HINZ\nkqQeMZglSeoRg1mSpB4xmCVJ6hGDWZKkHjGYJUnqEYNZkqQeMZhbSnJpkoV1PuY1SS5Yg/3alumO\nOfO2zEs7mv3alumOuSZt0XAYzFNIcl2S7yb5cZL7krx2xuUvAq6bXY2nqsuJyl6SZH+SR5NUkmuW\n2WwobXlfkoNJ/jXJPyf5bJJfn9hszdvS8u/0ZPvoxfk1bVv6dH7NoC29OL/UbwbzKiV5C3Az8CHg\nFcBXgM8lOXeG5e8Ads6y3lPU5UROAx4A3gUsrrDNUNpyKXAr8BrgDcBR4AtJzhzbZj3a0ubvdEV9\nOr+Ysi0tyw+lLZfSj/NLfVZVTi0mRv9BLYzN/z/goxPbfAf4Hy33d9LywC8ATwGv7HNbJso9DVyz\nzPLBtaUpexpwDPgPa9mWyXa0+Tsdyvk1bVv6dH7Nsi3reX45DWuyx7wKSV4IvBK4a2LVXYz+JTyT\n8lX1U+BzwBXT1HcWdZnWgNvyIkZXln64tGA92jKNPp1f62XAbRnc+aW1ZzCvzlbgVODwxPLDwFkz\nLn8Ha/sf6LRt6WKIbbkZuB/46sTytW7LNPp0fq2nIbZliOeX1pjB3H+fA/59h3ukfTaotiS5EbgY\n2FVVxyZWD6otJzAv7YCBtWWTnF9ahRdsdAUG6gij+0LbJpZvAx6fcfl/CzwDPNG9mq1M25YuBtOW\nJB8GrgReX1WPLLPJWrdlGn06v9bTYNoy8PNLa8we8ypU1bPAfcBlE6suY/T06yzL7wTurKofr662\nM63LtAbRliQ3A1cBb6iqb62w2Zq2ZRp9Or/W2SDaMvTzS2vPHvPq3Qh8MsnXgC8D1wLnAHtmXH4n\n8JczqfH0dVlWktOAlzezpwDnJrkQeLKqvj+26RDacgtwNaP7ez9MsnRP9umqenps0zVtS4e/05X0\n5vyati19Or9m0JZenF/quY1+LHwoE8u8NsFoEIAF4CeMeiiXTKy/Bihg+wr7PFn5lwI/Bc7sc1ua\n/dUy020DbMty7SjgT9eyLZPtaPl3Oojza9q29On8mkFbNuT8chrWZI95ClV1K6PBAlZyHvAQcGiV\n5f8j8H+r6slVV7KladpSVV8CcpJDDKUtJ2sHrENbWv6dDuL8mrYtfTq/ZtCWXpxf6jfvMa+tHcD1\nVXV0leV3ArfPsD7TsC3P6Utb5qUdYFvG9akt2gD2mNdQVb1qyvK/P6u6TMu2PK98L9oyL+0A2zJR\nvjdt0cawx9zeAnDTRldiRhawLX2zwHy0A2yLNJXU6GEDSZLUA/aYJUnqEYNZkqQeMZglSeoRg1mS\npB4xmNdJkt0bXYdZsS39My/tANsiGczrZ57+A7Ut/TMv7QDbok3OYJYkqUcM5vWzd6MrMEO2pX/m\npR1gW7TJOcCIJEk9Yo9ZkqQeMZglSeoRg1mSpB4xmCVJ6hGDWZKkHjGYJUnqEYNZkqQeMZglSeoR\ng1mSpB55wUZXoA/27NnzOLBto+shSatw+Nprrz1royuh2bHHPGIoSxoq//81ZwxmSZJ6xEvZY3bt\n2sWWLVs2uhqdLS4usm/fvo2uhiRpBuwxjxliKMNw6y1J+nkGsyRJPWIwS5LUIwazJEk9YjBLktQj\nBrMkST1iMEuS1CMGsyRJPWIwS5LUIwazJEk9YjBLktQjBrMkST1iMEuS1CMGsyRJPWIwS5LUIwaz\nJEk9YjBLktQjnYI5yXVJtq9NVZY93qVJFtbreJIkbbTWwZzkXOAm4KmxZdcl+W6SHye5L8lruxx8\n2vKSJM2bLj3mncA9VfUUQJK3ADcDHwJeAXwF+FwT4Cc1bXlJkuZR12C+Y2z+PcBtVfXRqvpmVb0D\neAx4W8v9TVtekqS50yqYk5wOXALsb+ZfCLwSuGti07uA17TY31Tlx/azO8m9zbS7bTlJkvrqBS23\nezPwYFV9r5nfCpwKHJ7Y7jDwxhb7m7Y8AFW1F9jbdntJkvqu7aXsHcCBtayIJElqH8wLwPax+SPA\nMWDbxHbbgMdb7G/a8pIkzaW2wXw7sCPJCwCq6lngPuCyie0uY/R09QlNW16SpHnV9h7zQeAZ4HXA\n3c2yG4FPJvka8GXgWuAcYE/LfU5bXpK0yVx++eV15MiR1tvfd999d1bV5WtYpZlrFcxVVUn2M3pl\n6u5m2aeT/Bvg/cDZwAPAjrEHxEhyDfC/gfOqamFinyctL0nSuCNHjnDvvfe23j7J1jWszppo22OG\n0TvMe4B3Li2oqluBW09Q5jzgIeDQcitblJck6XmqaqOrsKa6DDDyReCMJBd2KLMDuL6qjnarliRJ\nm1PrHnPzwNaLu+y8ql7VuUaSJJ2APeaNtcDowxmSJG0KXe4xr7vmgTGDWZL0M/aYJUnSujGYJUmD\nUVWdpjaSXJ7k20keTnLDMut/LclXk/wkyXsn1i0k+cck9ydp/x7XCfT6UrYkSWspyanALYxGnjwE\nHEyyv6oeGtvsSUavCl+xwm5eX1XtRz05CXvMkqRBmXGP+dXAw1X1SPP20acYDaY1frwnquog8NPZ\nt+bnGcySpM3sJcAPxuYPNcvaKuALSe5LsnsWFfJStiRpUDo+lb114t7v3qraO8PqXFxVjyb5ZeDz\nSb5VVfdMs0ODWZI0z45U1UUnWP8o8LKx+Zc2y1qpqkebP59I8hlGl8anCmYvZUuSBmXG95gPAucn\nOS/JC4Ergf1tCib5xSQvWvoN/B6jDzJNxR6zJGnTqqqjSd4O3AmcCnysqh5Mcm2zfk+Ss4B7gV8C\njid5N3ABsBX4TBIY5elfVdXfT1sng1mSNCizHvmrqg4AByaW7Rn7/TijS9yT/hX4jZlWBi9lS5LU\nKwbzmMXFxY2uwqoMtd6SpJ/npewx+/bt2+gqSJJOoMtQm0NlMEuSBmXeg9lL2ZIk9Yg9ZknSoMx7\nj9lgnlO7du1iy5YtG12NzhYXF73XL2lTM5jn1BBDGYZbb0nrZ957zN5jliSpR+wxS5IGxR6zJEla\nN/aYJUmDsRkGGLHHLElSj9hjliQNij1mSZK0buwxS5IGZd57zAazJGlQ5j2YvZQtSVKP2GOWJA3G\nZnhdymCWJA3KvAezl7IlSeoRe8ySpEGZ9x6zwSxJGhSDWZKkHjGYJUnqic3wVHanh7+SXJdk+9pU\nZdnjXZpkYb2OJ0nqv6VwbjMNUetgTnIucBPw1Niy65J8N8mPk9yX5LUd9ndJkv1JHk1SSa7pVHNJ\nkuZQlx7zTuCeqnoKIMlbgJuBDwGvAL4CfK4J8DZOAx4A3gUsdqiHJGkTs8f8nJ3AHWPz7wFuq6qP\nVtU3q+odwGPA29rsrKoOVNWfVNXfAsc71EOStInNOpiTXJ7k20keTnLDMut/LclXk/wkyXu7lF2N\nVsGc5HTgEmB/M/9C4JXAXROb3gW8ZhYVa1mv3Unubabd63VcSdLGmWUwJzkVuAV4E3ABcFWSCyY2\nexJ4J/A/V1G2s7Y95jcDD1bV95r5rcCpwOGJ7Q4DZ01bqbaqam9VXdRMe9fruJKkufFq4OGqeqSq\nngU+xegK8c9U1RNVdRD4adeyq9E2mHcAB6Y9mCRJ0+jSW255KfslwA/G5g81y9a67Iravse8AGwf\nmz8CHAO2TWy3DXh82kpJkrSSjg91bU1y79j83r5fYW0bzLcDdyZ5QVUdrapnk9wHXAb8n7HtLgP2\nzbqSkiQt6RjMR6rqohOsfxR42dj8S5tlbUxTdkVtL2UfBJ4BXje27EbgmiT/Jcm/S3IzcA6wp80O\nk5yW5MIkFzb1OLeZb/u6lSRJ0zoInJ/kvObB5itpHnRe47IrahXMNfrnyX7GbmpX1aeBdwPvB+4H\nLgZ2jD0gRpJrmsFDti+z24uArzfTFuADze8PrqYhkqTNYZb3mKvqKPB24E7gm8DfVNWDSa5Nci1A\nkrOSHGL0mvD7kxxK8ksrlZ22fV3Gyr6DUW/4nWMNuhW49QRlzgMeYnRD/Hmq6ktAOhxfkqSZDxxS\nVQeYeMC5qvaM/X6c0WXqVmWn1WWAkS8CZzSXntvaAVzf/KtCkiSdROsec/OO1ou77LyqXtW5RpIk\nrWDIQ2221ffPPi4w+nCGJEmA32PeUFW1gMEsSRoz78Hc6XvMkiRpbfW6xyxJ0qR57zEbzJKkQZn3\nYPZStiRJPWKPWZI0GL4uJUlSzxw/fnyjq7CmDGZJ0qDYY5YkqUcMZkmSemIz3GP2qWxJknrEHrMk\naVDmvcdsMM+pxcVFtmzZstHV6GxxcXGjqyCp5wxmDdK+ffs2ugqStCYMZkmSesRgliSpJzbDU9kG\nsyRpUAxmaYPt2rVrcA+yLS4uep9fWiMGs7TBhhbKMMw6S0Mx78HsACOSJPWIPWZJ0qDMe4/ZYJYk\nDYZPZUuS1DMGsyRJPWIwS5LUI/MezD6VLUkalKX7zG2mNpJcnuTbSR5OcsMy65PkL5v130jym2Pr\nFpL8Y5L7k9w7i/bZY5YkDcasH/5KcipwC3AZcAg4mGR/VT00ttmbgPOb6beAjzR/Lnl9VR2ZVZ3s\nMUuSBmXGPeZXAw9X1SNV9SzwKWDnxDY7gU/UyD8Apyc5e7ateo7BLEkalBkH80uAH4zNH2qWtd2m\ngC8kuS/J7lU26Xm8lC1JGpSOl7K3Ttz73VtVe2dYnYur6tEkvwx8Psm3quqeaXZoMEuSBqVjMB+p\nqotOsP5R4GVj8y9tlrXapqqW/nwiyWcYXRqfKpi9lC1JGowul7FbBvhB4Pwk5yV5IXAlsH9im/3A\nHzZPZ/828KOqeizJLyZ5EUCSXwR+D3hg2jbaY5YkDcosn8quqqNJ3g7cCZwKfKyqHkxybbN+D3AA\n2AE8DDwD/FFTfBvwmSQwytO/qqq/n7ZOBrMkaVBmPcBIVR1gFL7jy/aM/S7g+mXKPQL8xkwrg5ey\nJUnqFXvMkqRBcUjOMUmuS7J9baqy7PEuTbKwXseTJPVbVXH8+PHW0xC1DuYk5wI3AU+NLbsuyXeT\n/Lh5ufq1Hfb3viQHk/xrkn9O8tkkv96t+pKkzWbWY2X3TZce807gnqp6CiDJW4CbgQ8BrwC+Anyu\nCfA2LgVuBV4DvAE4ymj0lDM71EmStMnMezB3uce8E7hjbP49wG1V9dFm/h1JLgfeBrzvZDurqt8f\nn09yNfAj4HeAz3aolyRpExlq4LbVqsec5HTgEpqXrpuXsF8J3DWx6V2MesCr8aKmPj9sWyDJ7iT3\nNtNMxiiVJPXXZrjH3LbH/Gbgwar6XjO/ldGL2IcntjsMvHGVdbkZuB/4atsCzXinsxzzVJLUc/Pe\nY24bzDuYePl6lpLcCFzMaDDwY2t1HEnS8BnMIwvA9rH5I8AxRsORjdsGPN6lAkk+zGhs0tc3o6hI\nkrSieQ/mtk9l3w7sSPICgOZj0vcBl01sdxmjp7NbSXIzcBXwhqr6VttykqTNy6eyRw4yGrj7dcDd\nzbIbgU8m+RrwZeBa4Bxgz7J7mJDkFuBq4Argh0nOalY9XVVPt6yXJGkTWXr4a5616jE3A3jvZ/TK\n1NKyTwPvBt7P6KGti4EdYw+IkeSaJLXCaGHXMXoS+27gsbHpvatpiCRpc7DH/Jw7GPWG37m0oKpu\nZTRIyErOAx4CDk2uqKp0OLYkSYD3mMd9ETgjyYUdyuwArq+qo92qJUnS8uwxN5oHvl7cZedV9arO\nNZIkaQVVxbFj8/1Wbd8/+7jA6MMZkiQB838pu9fBXFULGMySpDEGsyRJPTHke8dtGcySpEGZ9/eY\nDWZJ0qDYY5YkqUcMZkmSesJ7zJIk9Yz3mCVJ6hF7zJIk9YSXsiVJ6pl5D+YuH7GQJGnDzfojFkku\nT/LtJA8nuWGZ9Unyl836byT5zbZlV8NgliQNyvHjx1tPJ5PkVOAW4E3ABcBVSS6Y2OxNwPnNtBv4\nSIeynRnM6r3FxcWNrkJnQ6yzNARdesste8yvBh6uqkearyh+Ctg5sc1O4BM18g/A6UnOblm2M+8x\nq/f27du30VWQ1CMzvsf8EuAHY/OHgN9qsc1LWpbtzGCWJA1Kx2DemuTesfm9VbV3xlWaKYNZkjQo\nHQcYOVJVF51g/aPAy8bmX9osa7PNL7Qo25n3mCVJg7EG95gPAucnOS/JC4Ergf0T2+wH/rB5Ovu3\ngR9V1WMty3Zmj1laR7t27WLLli0bXY1OFhcXvc+vXpnlPeaqOprk7cCdwKnAx6rqwSTXNuv3AAeA\nHcDDwDPAH52o7LR1MpildTS0UIZh1lnzbdYDjFTVAUbhO75sz9jvAq5vW3ZaBrMkaVD8iIUkST3h\nWNmSJPWMwSxJUo8YzJIk9YjBLElST1SVD39JktQn9pglSeoRg1mSpB4xmCVJ6hGDWZKknnCAEUmS\nesZgliSpRwxmSZJ6xGCWJKlHDGZJknpiM4z8dUqXjZNcl2T72lRl2eNdmmRhvY4nSeq/pSez20xD\n1DqYk5wL3AQ81cxfkmR/kkeTVJJruh68CfrvJvlxkvuSvLbrPiRJm4vB/JydwD1V9VQzfxrwAPAu\nYLHrgZO8BbgZ+BDwCuArwOeafwBIkrQsg/k5O4E7lmaq6kBV/UlV/S2wmgv+7wFuq6qPVtU3q+od\nwGPA21axL0nSJtAllOc6mJOcDlwC7J/FQZO8EHglcNfEqruA18ziGJKk+WQwj7wZeLCqvjej424F\nTgUOTyw/DJzVdidJdie5t5l2z6hukqQem/dgbvu61A7gwFpWZDWqai+wd6PrIUlaP/P+ulTbYF4A\nts/wuEeAY8C2ieXbgMdneBxJ0hwZck+4rbaXsm8HdiSZyYAkVfUscB9w2cSqyxg9nS1J0rK8lD1y\nEHgGeB1wN0CS04CXN+tPAc5NciHwZFV9v8U+bwQ+meRrwJeBa4FzgD3tqy9J2mzm/VJ2qx5zjf7Z\nsZ/RK1NLLgK+3kxbgA80vz+4tEGSa5rBR7Yvs89PA+8G3g/cD1wM7JjhA2aSpDlkj/k5dzDqzb4T\noKq+BOQkZc4DHgIOLbeyqm4Fbu1QB0nSJjbkwG2rywAjXwTOaC5Xt7UDuL6qjnarliRJy1uvHnOS\nM5N8Psl3mj/PWGG7y5N8O8nDSW4YW/6nzbDV9zfTjjbHbR3MVfVsVb24qu7vUOZVTc9akqSZWMdL\n2TcAd1fV+Yyer7phcoMkpwK3AG8CLgCuSnLB2CYfrqoLm6nVa8edvi61ARYYfThDkiRgXYN5J/Dx\n5vfHgSuW2ebVwMNV9UjzxtGneP7zWJ31OpiraqGqDGZJ0s+sYzBvq6rHmt+P8/NjbwC8BPjB2Pyh\nZtmSdyT5RpKPrXQpfFKvg1mSpHFdQrkJ5q1jQzf/3PDNSb6Q5IFlpp0Txy2ga9J/BPgV4EJGH2n6\nizaFZjJgiCRJ66VjT/hIVV10gn29caV1SQ4nObuqHktyNvDEMps9CrxsbP6lzTKq6mffg0jyUeDv\n2lTYHrMkaVDW8VL2fuCtze+3Mvbp4zEHgfOTnNd8OfHKphxNmC/5A+CBNge1xyxJGpR1fI/5z4C/\nSfLHwPeA/wyQ5Bzgf1XVjqo6muTtwJ2Mvpr4sap6sCn/580rxsXoYeb/2uagBrMkaVDWK5ir6l+A\n311m+T8xGqdjaf4Ay3yBsaquXs1xDWZJ0mBshpG/DGZJ0qAYzJIk9YjBLElSjxjMkiT1iMEsSVJP\n+PCXpJlaXFxky5YtG12NThYXFze6CtLzHD9+fKOrsKYMZmkd7du3b6OrIA2ePWZJknrEYJYkqSe8\nxyxJUs8YzJIk9YjBLEkTdu3aNbiny2H0hLkP4A2fwSxJE4YYyjDceus5VeXrUpIk9Yk9ZkmSesRg\nliSpRwxmSZJ6xGCWJKknHGBEkqSeMZglSeoRg1mSpB4xmCVJ6gkHGJEkqWfsMUuS1CP2mCVJ6glf\nl5IkqWfsMUuS1CPz3mM+ZaMrIElSW1XFsWPHWk/TSHJmks8n+U7z5xkrbPexJE8keWA15ScZzJKk\nQVm6z9xmmtINwN1VdT5wdzO/nNuAy6co/zydgjnJdUm2dykzjSSXJllYr+NJkvrv+PHjracp7QQ+\n3vz+OHDFchtV1T3Ak6stP6l1MCc5F7gJeKqZvyTJ/iSPJqkk17Td1yzKS5I2ny695Rn0mLdV1WPN\n78eBbetRvsvDXzuBe6rqqWb+NOAB4BPN1NW05SVJm1DHwN2a5N6x+b1VtXdpJskXgLOWKfffJ45Z\nSVad9F3Kdw3mO8YOcgA4AJDkti4VnEV5SdLm1PES9ZGqumillVX1xpXWJTmc5OyqeizJ2cATXQ4M\nrKp8q0vZSU4HLgH2d6zUmkqyO8m9zbR7o+sjSVp763gpez/w1ub3WxnrnK5l+bb3mN8MPFhV3+tY\nqTVVVXur6qJm2nvyEpKkIVv6iMU6Pfz1Z8BlSb4DvLGZJ8k5SQ4sbZTkr4GvAr+a5FCSPz5R+ZNp\neyl7B81lZ0mSNtJ6DTBSVf8C/O4yy/+JUS4uzV/VpfzJtA3mBWB7151LkjRr8z7yV9tgvh24M8kL\nquroWlZIkqSV+D3m5xwEngFex2j0EpKcBry8WX8KcG6SC4Enq+r7J9vhtOUlSZvTvPeYWz38VaO/\nhf2MXplachHw9WbaAnyg+f3BpQ2SXNMMHrJ9md2etLwkSZPW8eGvDdHlPeY7gD3AOwGq6ktATlLm\nPOAh4NDkipblJUl6nnnvMXcJ5i8CZyS5sKrub1lmB3C996UlSbPgPeYxVfUs8OIuO6+qV3WukSRJ\nJ2CPeWMtMPpwhiRJgMG8oapqAYNZktTwUrYkST1jj1mSpB6xxyxJUo/YY5YkqSeqimPHjm10NdaU\nwSxJGhR7zJIk9YjBLElST1SVwSxJUp8YzJIk9YivS0mS1CP2mCVJ6gnvMUvSMhYXF9myZctGV6Oz\nxcXFja6CZsBglqQJ+/bt2+gqaBMzmCVJ6hGDWZKknvCzj5Ik9Yw9ZkmaY7t27Rrcg2yLi4ub+j6/\nwSxJc2xooQzDrPMszXswn7LRFZAkqYuld5nbTNNIcmaSzyf5TvPnGSts97EkTyR5YGL5nyZ5NMn9\nzbSjzXENZknSYHQJ5Rn0rG8A7q6q84G7m/nl3AZcvsK6D1fVhc10oM1BDWZJ0qAcP3689TSlncDH\nm98fB65YbqOqugd4ctqDLTGYJUmDso495m1V9Vjz+3Fg2yr28Y4k32gudy97KXySwSxJGpSOwbw1\nyb1j0+7xfSX5QpIHlpl2ThyzgK5J/xHgV4ALgceAv2hTyKeyJUmDsYqe8JGquugE+3vjSuuSHE5y\ndlU9luRs4IkuB66qw2P7+ijwd23K2WOWJA3KOl7K3g+8tfn9VuCOLoWbMF/yB8ADK207zmCWJA3K\nsWPHWk9T+jPgsiTfAd7YzJPknCQ/e8I6yV8DXwV+NcmhJH/crPrzJP+Y5BvA64H/1uagXsqWJA3G\nen6Puar+BfjdZZb/E7BjbP6qFcpfvZrjGsySpEGZ95G/DGZJ0qAYzJIk9YjBLElSjxjMkiT1RFXN\nYqjNXjOYJUmDYo9ZkqQeMZglSeoRg3lMkuuAA1W1sDbV+bnjXQrcVlXb1+N4kqTeuxPY2mH7I2tV\nkbXSOpiTnAvcBPxVM38J8F7glcA5wB9V1W0d9vc+4D8Bvwr8BPgH4H1V1WosUUnS5lNVl290HdZa\nl7GydwL3VNVTzfxpjAbkfhewuIpjXwrcCrwGeANwFPhCkjNXsS9JkuZCl0vZOxn7skZVHQAOACS5\nreuBq+r3x+eTXA38CPgd4LNd9ydJ0jxo1WNOcjpwCaNPYK2VFzX1+WHbAkl2r/Txa0mShqhtj/nN\nwINV9b01rMvNwP2MPp3VSlXtBfauWY0kSVpnbYN5B81l67WQ5EbgYuDiqpr6A5qSJA1V22BeALav\nRQWSfBi4Enh9VT2yFseQJGko2j6VfTuwI8lMByRJcjNwFfCGqvrWLPctSdIQtQ3ag8AzwOuAuwGS\nnAa8vFl/CnBukguBJ6vq+yfbYZJbgKuBK4AfJjmrWfV0VT3dvgmSJM2PVj3mGo1/tp/RK1NLLgK+\n3kxbgA80vz+4tEGSa5JUku3L7PY6Rk9i3w08Nja9t2sjJEmaF10uTd8B7AHeCVBVXwJykjLnAQ8B\nhyZXVNXJykqStOl0Gfnri8AZzeXqtnYA11fV0W7VkiRpc2rdY66qZ4EXd9l5Vb2qc40kSdrEuvSY\nN8ICow9nSJK0KfT6e8zN5yUNZknSptH3HrMkSZuKwSxJUo8YzJIk9YjBLElSjxjMkiT1iMEsSVKP\nGMySJPWIwSxJUo8YzJIk9YjBLElSjxjMkiT1iMEsaVNbXFzc6Cp0NsQ6q71ef8RCktbavn37NroK\n0vPYYx45vNEVkKRV8v9fcyZVtdF1kCRJDXvMkiT1iMEsSVKPGMySJPWIwSxJUo8YzJIk9YjBLElS\njxjMkiT1iMEsSVKPGMySJPWIwSxJUo8YzJIk9YjBLElSjxjMkiT1iMEsSVKPGMySJPWIwSxJUo8Y\nzJIk9YjBLElSjxjMkiT1iMEsSVKP/H+KJcjsONnE0wAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "qt.visualization.hinton(qt.identity([2, 3]).unit());" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAc8AAAFxCAYAAAAVuCMuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEqxJREFUeJzt3W+IZfd5H/DvI6mbCpTGjhdkWbIqQ/SiCjRWrTohaWy3\nkai8NV4XFeL+Sa1SIxTFrksKrdqEQvoipG+MHLCzbFJj9Q840A3WYlZIiRxhUpNWq25ILQvXwl7H\nUvSHteu24DVT7T59sXfDeLzavb+ZO+fO3Pv5wGXvOfc35zyzHObLc87vnFvdHQBgflctuwAA2G+E\nJwAMEp4AMEh4AsAg4QkAg4QnAAwSngAwSHgCwCDhuYKq6l1VdXrwZ+6tqtt2qSRWiOMLhOfaqKoH\nquprVfXdqnq6qn56y5A7kjywjNrY36rqHVV1vKpeqKquqnsvMczxxUoRnmugqn42yceS/GqS25N8\nIcmjVXXzpmGPJDm8hPLY/65L8sUkH0ly9jXGOL5YKcJzPfxikk91929297Pd/eEkLyb5+U1jnkzy\ng1X1tmUUyP7V3Se6+191939Ocv41hj0ZxxcrRHiuuKo6kORtSR7f8tHjSX7y4kJ3/78kjyZ533TV\nsS4cX6wa4bn6Dia5OsnLW9a/nOSNW9Y9En/c2D2OL1aG8GSzR5P86JZrobAoji9WhvBcfWeSnEty\n/Zb11yd5acu6v5jkO0lemaAu1o/ji5UhPFdcd28keTrJXVs+uisXZt1udjjJY9393SlqY+04vlgZ\n1yy7ACbx0ST/oar+W5L/kuT+JG9KcmTLuMNJfn3i2tjnquq6JD8yW7wqyc1V9dYk3+ruP9k01PHF\nyhCea6C7f7uq3pDkl5PckAv35B3q7q9fHFNVNyX5sSSfXU6V7GN3JPn9Tcu/Mns9nOTexPHF6hGe\na6K7P5HkE5cZ8t4kf9Dd35qoJFZEdz+ZpK4wzPHFSnHNk4sOJ/nMsotgZTm+WCk6T5Ik3f03l10D\nq8vxxarRea6m00keWnYRrKzTcXyx5qq7l10DAOwrOk8AGCQ8AWCQ8ASAQcITAAYJzzVUVfctuwZW\nl+OLdSA815M/buwmxxcrT3gCwCDhuZ6OLrsAVprji5XnIQkAMEjnCQCDhCcADBKeADBIeALAIOEJ\nAIOEJwAMEp4AMEh4AsAg4QkAg65ZdgGLcOTIkZeSXL/sOgC24eX777//jcsugjGr0nkKTmC/8vdr\nH1qV8ASAyQhPABgkPAFgkPAEgEHCEwAGCU8AGLQS93leyT333JNrr7122WWwR509ezbHjh1bdhnA\nPrIWnafg5HIcH8CotQhPAFgk4QkAg4QnAAwSngAwSHgCwCDhCQCDhCcADBKeADBIeALAIOEJAIOE\nJwAMEp4AMEh4AsAg4QkAg4QnAAwSngAwSHgCwCDhCQCDrll2AcD3uv3223PgwIFll7G2NjY2curU\nqWWXwR6n84Q9RnAul/9/5qHzBGAyd999d585c2bu8U8//fRj3X33Lpa0LcITgMmcOXMmJ0+enHt8\nVR3cxXK2TXgCMKnuXnYJO+aaJwAM0nkCMCmdJwCsIZ0nAJPSeQLAGtJ5AjCZ7tZ5AsA60nkCMCmd\nJwCsIZ0nAJPSeQLAGtJ5AjApnScArCGdJwCT0nkCwBoSngAwyGlbACbj8XwAsA0XA3Se1zyq6u6q\n+nJVPVdVD15m3F+tqler6u/s9HcQngDsW1V1dZKPJ3l3ktuS/N2quu01xv3bJI8vYr/CE4BJLbjz\nfHuS57r7q929keTTSQ5fYtyHkxxL8soifgfhCcB+dmOSb2xafn627s9U1Y1J/naS31jUTk0YAmBS\ngxOGDlbVyU3LR7v76OAuH0ryL7r7fFUN/uilCU8A9rIz3X3HZT5/IcmbNy3fNFu32R1JPj0LzoNJ\nDlXVq939me0WJTwBmNSCb1V5KsmtVfWWXAjN9yf5e1v295aL76vqU0k+u5PgTIQnAPtYd79aVR9K\n8liSq5N8srufqar7Z58f2Y39Ck8AJrMbD0no7hNJTmxZd8nQ7O57F7FPs20BYJDOE4BJeTwfAKwh\nnScAk1qFzlN4AjCpVQhPp20BYJDOE4DJrMr3eQpPACa1CuHptC0ADNJ5AjCpVeg8hScAkxKeADBI\neALAgFWZbTs0YaiqHqiqWwbGv6uqTg/WBMAKuxig87z2qrnDs6puTvJQkm9vWvdAVX2tqr5bVU9X\n1U/vRpEAsJeMdJ6Hk3y+u7+dJFX1s0k+luRXk9ye5AtJHp2FLABc0lp1nrkQno9sWv7FJJ/q7t/s\n7me7+8NJXkzy84ssEIDVsjbhWVWvS/KOJMdnyweSvC3J41uGPp7kJ+fc5n1VdXL2um/+kgHYz1Yh\nPOedbfueJM9099dnyweTXJ3k5S3jXk5y5zwb7O6jSY7OuX8A2DPmDc9DSU7sZiEArL693lHOa97w\nPJ3klk3LZ5KcS3L9lnHXJ3lpx1UBsLJWITznnTD0mSSHquqaJOnujSRPJ7lry7i7cmHWLQBc0ipc\n85w3PJ9K8p0k79y07qNJ7q2qD1bVX6qqjyV5U5IjC64RAPaUuU7bdndX1fFcuF3lidm6366qNyT5\n5SQ3JPlikkObJhUBwPfZyx3lvEbu83wkyXs3r+juT3T3Ld39A939tu7+/GLLA2DVrNNp2yT5XJLX\nV9Vbd6sYANgP5v5WldkkoR/axVoAWHF7vaOc125/JdnpXHiYPAAkWY1rnrsant19OsITgE1WITyH\nvs8TANj907YA8D1WofMUngBMahXC02lbABik8wRgMm5VAYBtOH/+/LJL2DHhCcCkdJ4AMEh4AsCA\nVbnmabYtAAzSeQIwKZ0nAAxa9Pd5VtXdVfXlqnquqh68xOd/v6r+uKr+R1V9oap+bKe/g84TgEkt\nsvOsqquTfDzJXUmeT/JUVR3v7i9tGva1JO/s7v9VVe9OcjTJj+9kv8ITgEkt+LTt25M8191fTZKq\n+nSSw0n+LDy7+wubxv9hkpt2ulPhCcBkdmG27Y1JvrFp+flcvqv8x0ke3elOhScAkxoMz4NVdXLT\n8tHuPrqd/VbVX8+F8Pxr2/n5zYQnAJMaDM8z3X3HZT5/IcmbNy3fNFv3ParqLyf5rSTv7u5vjhRw\nKWbbAjCpBc+2fSrJrVX1lqo6kOT9SY5vHlBVNyf5nSQ/193/cxG/g84TgH2ru1+tqg8leSzJ1Uk+\n2d3PVNX9s8+PJPnXSd6Q5BNVlSSvXqGbvSLhCcCkFv2QhO4+keTElnVHNr3/YJIPLnKfwhOAyazK\ns22FJwCTEp4AMEh4AsAg4QkAg4QnAAwwYQgAtkF4AsAg4QkAg4QnAAwSngAwwIQhANgG4QkAg1Yh\nPH2fJwAM0nkCMKlV6DyFJwCT6e6cP39+2WXsmPCEPWZjYyMHDhxYdhlra2NjY9klrDydJ7Bwp06d\nWnYJsKuEJwAMEp4AMMA1TwDYBp0nAAwSngAwSHgCwCDhCQADTBgCgG3QeQLAIOEJAIOEJwAM6O6c\nO3du2WXsmPAEYFI6TwAYJDwBYEB3C08AGOU+TwAYpPMEgEHCEwAGuOa5j5w9ezbXXnvtsstgjzp7\n9uyyS4C14prnPnHs2LFllwDAjM4TAAY4bQsA27AK4XnVsgsAYL1c7D7nec2jqu6uqi9X1XNV9eAl\nPq+q+vXZ539cVX9lp7+DzhOASS1ywlBVXZ3k40nuSvJ8kqeq6nh3f2nTsHcnuXX2+vEkvzH7d9t0\nngBMZqTrnLPzfHuS57r7q929keTTSQ5vGXM4yb/vC/4wyeuq6oad/B7CE4BJLTg8b0zyjU3Lz8/W\njY4Z4rQtAJManDB0sKpOblo+2t1HF1zSMOEJwKQGr3me6e47LvP5C0nevGn5ptm60TFDnLYFYDK7\ncM3zqSS3VtVbqupAkvcnOb5lzPEk/3A26/Ynkvzv7n5xJ7+HzhOASS3yPs/ufrWqPpTksSRXJ/lk\ndz9TVffPPj+S5ESSQ0meS/KdJP9op/sVngBMatEPSejuE7kQkJvXHdn0vpP8wiL3KTwBmJQHwwPA\nAM+2BYBtEJ5A7rnnHt8Xy2s6e/asr0XcQngCgpPLcnx8P+EJAAO624QhABil8wSAQcITAAYJTwAY\nJDwBYICHJADANghPABgkPAFgkPAEgEHCEwAGeMIQAGyDzhMABglPABgkPAFggIckAMA2CE8AGCQ8\nAWCQW1XW1O23354DBw4su4y1tbGxkVOnTi27DGAbXPNcY4Jzufz/w/4mPAFgkNO2ADBI5wkAA1zz\nBIBtEJ4AMEh4AsAg4QkAg4QnAAwwYQgAtkF4AsAg4QkAg4QnAAwSngAwwIQhANgG4QkAg1YhPK9a\ndgEArJeLp27nee1EVf1wVf1uVX1l9u/rLzHmzVX1+1X1pap6pqo+Ms+2hScAk5oqPJM8mOSJ7r41\nyROz5a1eTfLPuvu2JD+R5Beq6rYrbVh4AjCZkeBcQHgeTvLw7P3DSd53iXpe7O7/Pnv/f5M8m+TG\nK23YNU8AJnX+/PmpdnV9d784e/9SkusvN7iqbklye5L/eqUNC08AJjXYUR6sqpOblo9299GLC1X1\ne0neeImf+6Ut++yqes0dV9V1SY4l+afd/X+uVJTwBGBSg+F5prvvuMy27nytz6rq5aq6obtfrKob\nkrzyGuP+XC4E53/q7t+ZpyjXPAGYzMTXPI8n+cDs/QeSPLJ1QFVVkn+X5Nnu/ui8GxaeAExqwvD8\ntSR3VdVXktw5W05VvamqTszG/FSSn0vyN6rqj2avQ1fasNO2AExqqockdPc3k/zMJdb/aZJDs/d/\nkKRGty08AZjUKjxhSHgCMJnunvJWlV0jPAGYlM4TAAYJTwAYJDwBYJDwBIABC7p/c+mEJwCTEp4A\nMEh4AsAg4QkAAzwkAQC2QecJAIN0ngAwwK0qALANOk8AGKTzBIAB3Z1z584tu4wdE54ATGoVOs+r\nRgZX1QNVdcvA+HdV1enBmgBYYefPn5/7tVfNHZ5VdXOSh5J8e7b8jqo6XlUvVFVX1b27VCMAK+Li\nbNt5X3vVSOd5OMnnu/vbs+XrknwxyUeSnF10YQCsplUIz5FrnoeTPHJxobtPJDmRJFX1qcWWBcCq\n2sunY+c1V+dZVa9L8o4kxxe146q6r6pOzl73LWq7AOxt69R5vifJM9399UXtuLuPJjm6qO0BsPet\n24PhD2V2ihYAdmIvd5Tzmjc8Tye5ZffKAGBdrFN4fibJY1V1TXe/upsFAbC61u207VNJvpPknUme\nSJKqui7Jj8w+vyrJzVX11iTf6u4/WXShAKyGVeg855pt2xd+0+O5cLvKRXckOTV7XZvkV2bv/82C\nawRghazCE4ZG7vN8JMmRJP8kSbr7ySS1CzUBsMJWofMcCc/PJXl9Vb21u/9otwoCYHWt2zXPdPdG\nkh/axVoAWAPr1nlux+lceJg8ACQRnlfU3acjPAGYWbvTtgCwCDpPABik8wSAQTpPABjQ3Tl37tyy\ny9gx4QnApHSeADBoFcJzrmfbAsAidPfQayeq6oer6ner6iuzf19/mbFXV9WpqvrsPNsWngBMaqrw\nTPJgkie6+9Zc+EawBy8z9iNJnp13w8ITgElN+K0qh5M8PHv/cJL3XWpQVd2U5G8l+a15N+yaJwCT\nmvCa5/Xd/eLs/UtJrn+NcQ8l+edJfnDeDQtPACazjdOxB6vq5Kblo9199OJCVf1ekjde4ud+act+\nu6q+b8dV9Z4kr3T301X1rnmLEp4ATGowPM909x2X2dadr/VZVb1cVTd094tVdUOSVy4x7KeSvLeq\nDiX580n+QlX9x+7+B5cryjVPACY14YSh40k+MHv/gSSPXKKWf9ndN3X3LUnen+RzVwrORHgCMLEJ\nw/PXktxVVV9JcudsOVX1pqo6sZMNO20LwGSm/Eqy7v5mkp+5xPo/TXLoEuufTPLkPNsWngBMahWe\nMCQ8AZiU8ASAQcITAAYJTwAYsKBZtEsnPAGY1FSzbXeT8ARgUjpPABgkPAFggGueALANwhMABp07\nd27ZJeyY8ARgMk7bAsA2CE8AGCQ8AWCQ8ASAQcITAAZM+WXYu0l4AjApnScADBKeADBIeALAmMeS\nHBwYf2a3CtkJ4bkNGxsbOXDgwLLLWFsbGxvLLgHYpu6+e9k1LILw3IZTp04tuwQAluiqZRcAAPuN\n8ASAQcITAAYJTwAYJDwBYJDwBIBBwhMABglPABgkPAFgkPAEgEHCEwAGCU8AGCQ8AWCQ8ASAQcIT\nAAYJTwAYJDwBYJDwBIBBwhN26OzZs8sugT3M8bGarll2AbDfHTt2bNklABPTeQLAIOEJAIOEJwAM\nEp4AMEh4AsAg4QkAg1YlPF9edgEA2+Tv1z5U3b3sGgBgX1mVzhMAJiM8AWCQ8ASAQcITAAYJTwAY\nJDwBYJDwBIBBwhMABglPABgkPAFgkPAEgEHCEwAGCU8AGCQ8AWCQ8ASAQcITAAYJTwAYJDwBYJDw\nBIBBwhMABv1/y2jnpeFbQdEAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "qt.visualization.hinton(qt.Qobj([\n", " [1, 0.5],\n", " [0.5, 1]\n", "]).unit());" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We show superoperators as matrices in the *Pauli basis*, such that any Hermicity-preserving map is represented by a real-valued matrix. This is especially convienent for use with Hinton diagrams, as the plot thus carries complete information about the channel.\n", "\n", "As an example, conjugation by $\\sigma_z$ leaves $\\mathbb{1}$ and $\\sigma_z$ invariant, but flips the sign of $\\sigma_x$ and $\\sigma_y$. This is indicated in Hinton diagrams by a negative-valued square for the sign change and a positive-valued square for a +1 sign." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcwAAAFtCAYAAACKm1rNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGK1JREFUeJzt3X+sHXd55/H3J4aI4NLlh0UwSVpS1Vo1lUq2DYHSqE02\nSeUEWsOGVmERDdDKm4qglMJSS2wKf1FaoCiogOWWKGZZCK1MiMsasklElWUj2jgoyg8gG2+WKjZO\nIqcUWOM2tf3sH3ccndzee8/33DP3nnOu3y9p5PnxnZnnHol8eGbmzElVIUmSlnbKpAuQJGkWGJiS\nJDUwMCVJamBgSpLUwMCUJKmBgSlJUgMDU5KkBgbmiJLcmORLk65jmiU5JcmdSf563vrnJnkoyfZJ\n1TaNknwmyb1JTp23/uIk/5Lk1ZOqbRoluTBJLTF9ddI1am0yMNW7qjoOvAW4KMnbBjb9MbAOeNck\n6ppi1wAvAt53YkWSHwduAD5UVXdNqrApdRewcYHpPwEFfGJypWkti2/6GU2SG4ENVfXaSdcy7ZJc\nzVxI/hzw08CtwIVV9bWJFjaFklwCfBn4par6uySfAn4BOL+qnppsddMvyc8Afwt8rKr+y6Tr0dpk\nYI7IwBxNkluB04CXATdV1XsmW9H0SvIx4FLgOuAzwCuq6v7JVjX9kjwf+Dvg28CW8j9qWiFektVK\nuxq4APhn5oJAi/sDIMDngesMy+GSnAJ8FjgKvMmw1EoyMLXS3gYcAc4Ezp5wLVOtqo4AH2bu/1x8\nZMLlzIoPAL/IXGf5w0kXo7XNwNSKSfIKYBvwBuA2YGeSdZOtauodBY53D05pCUmuBN4NXFlVD0+6\nHq19BqZWRJLnAJ8GbqyqLwNbmXvwx3uYGluSc4FPAduq6tZJ16OTw7MmXYDWrD8CngP8PkBVPZbk\n7cx1mbur6sGJVqeZlWQD8EXgb4DPJHnJ/DFV9dhq16W1z8BU75L8MvAO4JLB+0pVdVOSK5gLzVdV\n1dGJFalZ9hrgJ7vp4CJjsnrl6GTh10okSWrgPUxJkhoYmJIkNTAwJUlqYGBKktTAwJQkqYGBKUlS\nAwNzGZJsnXQNs8TPazR+XqPx89JqMTCXx/+BjsbPazR+XqPx89KqMDAlSWpgYC7PjkkXMGP8vEbj\n5zUaPy+tCl+NJ0lSAztMSZIaGJiSJDUwMCVJamBgSpLUwMCUJKmBgSlJUgMDU5KkBgamJEkNDExJ\nkho8a9IFLGX79u2PAadPug5JWobHr7766pdMugj1Z9o7TMNS0qzyv19rzLQHpiRJU8HAlCSpwVTf\nw5zviiuu4LTTTpt0GVPjyJEj7Nq1a9JlSNJJYaY6TMPymfw8JGn1zFRgSpI0KQamJEkNDExJkhoY\nmJIkNTAwJUlqYGBKktTAwJQkqYGBKUlSAwNTkqQGBqYkSQ0MTEmSGhiYkiQ1MDAlSWpgYEqS1MDA\nlCSpgYEpSVIDA1OSpAYGpiRJDQxMSZIaGJiSJDUwMCVJUynJDUmeSPLAItuT5GNJ9iW5L8nPD2zb\nnOShbtu2PuoxMCVJ0+pGYPMS2y8DNnXTVuCTAEnWAR/vtp8DvDHJOeMWY2BKkqZSVd0J/MMSQ7YA\nn645Xween2QjcD6wr6oeqaqngJu6sWMxMCVJs+oM4NGB5f3dusXWj+VZ4x5AkqTNmzfXoUOHmsff\nc889DwL/NLBqR1Xt6L2wHhmYkqSxHTp0iL179zaPT/JPVXXemKc9AJw1sHxmt+7Zi6wfi5dkJUm9\nqKrmqSe7gd/qnpZ9FfD9qjoI3A1sSnJ2klOBK7uxY7HDlCRNpSSfAy4ENiTZD7yPue6RqtoO7AEu\nB/YBPwLe2m07muQa4FZgHXBDVT04bj3LDswkNwIbquq14xYhSZp9PXaOJ473xiHbC3j7Itv2MBeo\nvfGSrCRJDbwkK0nqRd8d5rSxw5QkqcGKBGaSrUn2dtPWlTiHJGl6jPKE7Kx2oitySbb78ulUfwFV\nkqRReA9TktSLWe0cW3kPU5KkBnaYkqRe2GFKkqTld5hV9ZYe65AkzTg7TEmS5D1MSVI/7DAlSZKB\nKUlSCy/JSpLGNsuvvGtlYEqSerHWA9NLspIkNbDDlCT1wg5TkiTZYUqS+mGHKUmS7DAlSf2ww5Qk\naQKSbE7yUJJ9SbYtsP0/J7m3mx5IcizJC7tt30lyf7dtbx/12GFKksbW94sLkqwDPg5cCuwH7k6y\nu6q+OXDODwEf6sb/GvDOqvqHgcNcVFWH+qrJDlOSNI3OB/ZV1SNV9RRwE7BlifFvBD63kgUZmJKk\nXpzoMlsmYEOSvQPT1nmHOwN4dGB5f7fuX0nyXGAzsGuwHOD2JPcscOxl8ZKsJGkSDlXVeT0d69eA\n/zXvcuwFVXUgyYuB25J8u6ruHOckdpiSpF6M2GEOcwA4a2D5zG7dQq5k3uXYqjrQ/fsEcDNzl3jH\nYmBKknrRc2DeDWxKcnaSU5kLxd3zByX5N8CvALcMrFuf5Hkn5oFfBR4Y9+/zkqwkaepU1dEk1wC3\nAuuAG6rqwSRXd9u3d0NfD/yPqjo8sPvpwM1JYC7nPltVXxm3JgNTkjS2lfg9zKraA+yZt277vOUb\ngRvnrXsEeHmvxWBgSpJ64pt+JEmSHaYkqR9rvcM0MCVJvTAwJUlqYGBKkjTESjwlO21mKjCPHDnC\naaedNukypsaRI0cmXYIkPc3AnCK7du0aPkiSpBUwU4EpSZpedpiSJDUwMCVJarDWA9M3/UiS1MAO\nU5I0Nr9WIklSIwNTM+v666/n8OHDwweeJNavX8+111476TKkNWutB6b3MNcww/KZ/DwkjcMOU5LU\ni7XeYRqYkqRerPXA9JKsJEkN7DAlSWPzayWSJDVa64HpJVlJUi9OdJktU4skm5M8lGRfkm0LbL8w\nyfeT3NtNf9i673LYYUqSpk6SdcDHgUuB/cDdSXZX1TfnDf2fVfXaZe47EjtMSVIveu4wzwf2VdUj\nVfUUcBOwpbGUcfZdlIEpSepFz4F5BvDowPL+bt18r05yX5IvJ/nZEfcdiZdkJUmTsCHJ3oHlHVW1\nY8RjfAP4iar6f0kuB74IbOqtwnkMTEnS2JbxtZJDVXXeEtsPAGcNLJ/ZrRs85w8G5vck+USSDS37\nLoeBKUnqxfHjx/s83N3ApiRnMxd2VwL/cXBAkpcAj1dVJTmfuduMTwL/OGzf5TAwJUm96PN7mFV1\nNMk1wK3AOuCGqnowydXd9u3AG4DfTXIUOAJcWXNFLLjvuDUZmJKkXvT94oKq2gPsmbdu+8D8nwF/\n1rrvuAxMSdLYToZX4/m1EkmSGthhSpJ6sdY7TANTktQLA1OSpAYGpiRJDQxMSZKGOBmekjUwJUm9\nMDAlSWpgYEqS1GCtB6YvLpAkqYEdpiSpF2u9wzQwJUlj8ylZSZIarfXAHHoPM8kpSe5M8tfz1j83\nyUNJti+2ryTp5HGiy2yZZtHQwKyq48BbgIuSvG1g0x8z98Oc71qZ0iRJs2StB2bTJdmqeiTJu4GP\nJrkD+Gngd4ELq+rwShYoSZoNsxqErZrvYVbV9iSvB/4r8DLgT6vqaytVmCRpdsxy59hq1O9hXg1c\nAPwzcN1ig5JsTbK3m7aOU6AkaTZ4SfaZ3gYcAc4Ezga+vdCgqtoB7BivNEnSLJnVIGzV3GEmeQWw\nDXgDcBuwM8m6lSpMkjRb1nqH2RSYSZ4DfBq4saq+DGxl7sGf96xgbZKkGWJgzvkj4DnA7wNU1WPA\n24H3J/nZFapNkjQjRgnL1sBMsrn7vv++JNsW2P6mJPcluT/JXUlePrDtO936e5Ps7eNvHHoPM8kv\nA+8ALqmqH55YX1U3JbmCuUuzr6qqo30UJEmaTX12jt0tv48DlwL7gbuT7K6qbw4M+7/Ar1TV95Jc\nxtyzM68c2H5RVR3qq6ahgVlVdy42rqp+o69CJEmzredLrecD+6rqEYAkNwFbgKcDs6ruGhj/deYe\nSF0x/ryXJGkanQE8OrC8v1u3mN8GvjywXMDtSe7p6+uNvnxdktSLETvMDfPuLe7ovpI4siQXMReY\nFwysvqCqDiR5MXBbkm93V0yXzcCUJI2tqjh+/PgouxyqqvOW2H4AOGtg+cxu3TMk+TngL4DLqurJ\ngXoOdP8+keRm5i7xjhWYXpKVJPWi56dk7wY2JTk7yanAlcDuwQFJfgL4AvDmqvrfA+vXJ3neiXng\nV4EHxv377DAlSb3o86Gfqjqa5BrgVuZ+GeuGqnowydXd9u3AHwIvAj6RBOBo17WeDtzcrXsW8Nmq\n+sq4NRmYkqRe9P1CgqraA+yZt277wPzvAL+zwH6PAC+fv35cBqYkaWzLuIc5cwxMSVIvZvWVd60M\nTElSLwxMSZIaGJiSJDUwMCVJGsKHfiRJamSHKUlSAwNTkqQGBqYkSUNUFceOHZt0GSvKwJQk9cIO\nU5KkBgamJElDjPCzXTPLwJQk9cLvYUqS1MAOU5KkBgamJElDeA9TkqRG3sOUJKmBHaYkSUN4SVaS\npEZrPTBPmXQBWjnr16+fdAlTxc9DWlknusyWqUWSzUkeSrIvybYFtifJx7rt9yX5+dZ9l8MOcw27\n9tprJ12CpJNInw/9JFkHfBy4FNgP3J1kd1V9c2DYZcCmbnol8EnglY37jswOU5I0tlG6y8YO83xg\nX1U9UlVPATcBW+aN2QJ8uuZ8HXh+ko2N+47MwJQk9aLnwDwDeHRgeX+3rmVMy74j85KsJKkXIz70\nsyHJ3oHlHVW1o+eSemVgSpJ6MeI9zENVdd4S2w8AZw0sn9mtaxnz7IZ9R+YlWUnS2FbgHubdwKYk\nZyc5FbgS2D1vzG7gt7qnZV8FfL+qDjbuOzI7TElSL/r8HmZVHU1yDXArsA64oaoeTHJ1t307sAe4\nHNgH/Ah461L7jluTgSl1rr/+eg4fPjzpMqbG+vXr/WqSRtL3iwuqag9zoTi4bvvAfAFvb913XAam\n1DEsn8nPQ6Py5euSJA3hu2QlSWpkYEqS1MDAlCSpgYEpSdIQVeVDP5IktbDDlCSpgYEpSVIDA1OS\npAYGpiRJQ/jiAkmSGhmYkiQ1MDAlSWpgYEqS1MDAlCRpCN/0I0lSIztMSZIaGJiSJDUwMCVJGsIX\nF0iS1MjAlCSpwVoPzFMmXYAkaW04fvx48zSuJC9McluSh7t/X7DAmLOSfDXJN5M8mOTagW3vT3Ig\nyb3ddPmwcxqYkqSxnbiH2Tr1YBtwR1VtAu7oluc7Cryrqs4BXgW8Pck5A9s/WlXndtOeYSc0MCVJ\nvVjlwNwC7OzmdwKvW6Ceg1X1jW7+h8C3gDOWe0IDU5LUi9W8JAucXlUHu/nHgNOXGpzkZcC/A/52\nYPU7ktyX5IaFLunOZ2BKknoxYoe5IcnegWnr/OMluT3JAwtMW+adt4BF29YkPwbsAn6vqn7Qrf4k\n8FPAucBB4CPD/j6fkpUkjW0Zl1oPVdV5Q455yWLbkjyeZGNVHUyyEXhikXHPZi4s/1tVfWHg2I8P\njPlz4EvDCrbDlCT1YpXvYe4GrurmrwJumT8gSYBPAd+qqj+dt23jwOLrgQeGnXBoYCb5TPfI7anz\n1l+c5F+SvHrYMSRJa98qB+YHgUuTPAxc0i2T5KVJTjzx+kvAm4F/v8DXR/4kyf1J7gMuAt457IQt\nl2SvAe4H3ge8tyvox4EbgA9V1V3Nf54kac1azRcXVNWTwMULrP8ucHk3/zUgi+z/5lHPObTDrKp/\nBN4KvCfJ+d3qjwLfA94/6gklSWvTKneYq67poZ+quj3JJ4GdSa4D3gS8oqqeWtHqJEkzYZaDsNUo\nD/38AXOt7eeB66rq/sUGJtm61KPCkqS1xw6zU1VHknwY+BhDvq9SVTuAHWPWJkmaIbMahK1G/R7m\nUeB4VfXymgZJ0tphYEqS1MDAlCRpiFm+N9nKwJQk9WKtB+ZIr8arqhur6sdWqhhJ0uzyKVlJkhrM\nahC2MjAlSb0wMCVJGmKWL7W2MjAlSb04fnxtf0XfwJQk9cIOU5KkBgamJElDeA9TkqRGBqYkSQ0M\nTEmSGhiYkiQNUVV+rUSSpBZ2mJIkNVjNwEzyQuDzwMuA7wC/WVXfW2Dcd4AfAseAo1V13ij7Dxrp\n10okSVrMKv9ayTbgjqraBNzRLS/moqo690RYLmN/wMCUJPVklQNzC7Czm98JvG6l9zcwJUljGyUs\newrM06vqYDf/GHD6YqUBtye5J8nWZez/NO9hSpJ6MWIQbkiyd2B5R1XtGByQ5HbgJQvs+955560k\ni538gqo6kOTFwG1Jvl1Vd46w/9MMTElSL0YMzEPz7ikudLxLFtuW5PEkG6vqYJKNwBOLHONA9+8T\nSW4GzgfuBJr2H+QlWUlSL1b5kuxu4Kpu/irglvkDkqxP8rwT88CvAg+07j+fHaYkaWwTeHHBB4G/\nTPLbwN8DvwmQ5KXAX1TV5czdl7w5Cczl3Wer6itL7b8UA1OS1IvV/B5mVT0JXLzA+u8Cl3fzjwAv\nH2X/pRiYkqRe+Go8SZKG8PcwJUlqZIcpSVIDO0xJkoaoKo4dOzbpMlaUgSlJ6oUdpnSSWL9+PYcP\nH550GVNj/fr1ky5BM8Z7mNJJ4tprr510CdLM8ilZSZIaGZiSJDXwkqwkSQ3sMCVJGmICL19fdQam\nJKkXdpiSJDUwMCVpAVdccQWnnXbapMuYGkeOHGHXrl2TLmNivCQrSYswLJ/Jz8MOU5KkJnaYkiQ1\nsMOUJGkI72FKktTIDlOSpAYGpiRJQ5wMl2RPmXQBkqS14cRPfLVM40rywiS3JXm4+/cFC4z5t0nu\nHZh+kOT3um3vT3JgYNvlw85pYEqSenH8+PHmqQfbgDuqahNwR7f8DFX1UFWdW1XnAr8A/Ai4eWDI\nR09sr6o9w05oYEqSerGaHSawBdjZze8EXjdk/MXA/6mqv1/uCQ1MSdLYqopjx441Tz04vaoOdvOP\nAacPGX8l8Ll5696R5L4kNyx0SXc+A1OS1IsRO8wNSfYOTFvnHy/J7UkeWGDaMu+8BSzatiY5Ffh1\n4K8GVn8S+CngXOAg8JFhf59PyUqSejHipdZDVXXekONdsti2JI8n2VhVB5NsBJ5Y4lCXAd+oqscH\njv30fJI/B740rGA7TEnS2EbpLnu6h7kbuKqbvwq4ZYmxb2Te5dguZE94PfDAsBMamJKkXqxyYH4Q\nuDTJw8Al3TJJXprk6Sdek6wHLgW+MG//P0lyf5L7gIuAdw47oZdkJUm9WM0XF1TVk8w9+Tp//XeB\nyweWDwMvWmDcm0c9p4EpSeqFr8aTJGmIHi+1Ti0DU5LUCwNTkqQGBqYkSQ0MTEmShjgZft7LwJQk\n9cIOU5KkBgamJEkNDExJkhoYmJIkDeGLCyRJauRTspIkNVjrHebQn/dKcmGSWmL66moUKkmabqv8\n816rrqXDvAvYuMD6Xwe2A5/otSJJ0syZ5SBsNTQwq+op4LHBdUl+Bvgw8IGq+qsVqk2SNENO+sCc\nL8nzgVuAvwGu67sgSdJsOnbs2KRLWFFD72EOSnIK8FngKPCmWuT/TiTZmmRvN23toU5J0hQb5f7l\nrHaio3aYHwB+ETi/qn642KCq2gHsGKcwSdJsmdUgbNUcmEmuBN4NvKaqHl65kiRJs8jABJKcC3wK\n2FZVt65sSZKkWXTSB2aSDcAXmXvI5zNJXjJ/TFU9Nn+dJOnkstYDs+Whn9cAPwlcDhxcZJIkncRO\n/IB06zSuJL+R5MEkx5Oct8S4zUkeSrIvybaB9S9McluSh7t/XzDsnEMDs6p2VlWWmtr/REnSWrXK\nT8k+APwH4M7FBiRZB3wcuAw4B3hjknO6zduAO6pqE3BHt7ykkb5WIknSYlYzMKvqW1X10JBh5wP7\nquqR7iU8NwFbum1bgJ3d/E7gdcPO6cvXJUm9mMJ7mGcAjw4s7wde2c2fXlUnbik+Bpw+7GAGpiSp\nD7cCG0YY/5wkeweWd3Tf4X9aktuBf/WgKfDeqrplGTUuqKoqydC0NzAlSWOrqs0rcMxLxjzEAeCs\ngeUzu3UAjyfZWFUHk2wEnhh2MO9hSpLWqruBTUnOTnIqcCWwu9u2G7iqm7+KuXekL8nAlCTNnCSv\nT7Kfude1/vckt3brX5pkD0BVHQWuYe5y8beAv6yqB7tDfBC4NMnDwCXd8pK8JCtJmjlVdTNw8wLr\nv8vcewNOLO8B9iww7kng4lHOaYcpSVIDA1OSpAYGpiRJDQxMSZIaGJiSJDUwMCVJamBgSpLUwMCU\nJKmBgSlJUgMDU5KkBgamJEkNDExJkhoYmJIkNTAwJUlqYGBKktTAwJQkqYGBKUlSAwNTkqQGBqYk\nSQ0MTEmSGhiYkpblyJEjky5hqvh5rH3PmnQBkmbTrl27Jl2CtKrsMCVJamBgSpLUYNoD8/FJFyBJ\ny+R/v9aYVNWka5AkaepNe4cpSdJUMDAlSWpgYEqS1MDAlCSpgYEpSVIDA1OSpAYGpiRJDQxMSZIa\nGJiSJDUwMCVJamBgSpLUwMCUJKmBgSlJUgMDU5KkBgamJEkNDExJkhoYmJIkNTAwJUlqYGBKktTA\nwJQkqcH/Bzuoq8LBpYRcAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "qt.visualization.hinton(qt.to_super(qt.sigmaz()));" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As a couple more examples, we also consider the supermatrix for a Hadamard transform and for $\\sigma_z \\otimes H$." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcwAAAFtCAYAAACKm1rNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGKdJREFUeJzt3X+s5XV95/Hni1EiTu36YyKOQCtNJ5vSpLItorWkhQXM\ngLaji21wjUVtM0sjhlpdO4lL9S9rq9Zoqk6mlYB1FduMyNQdZYHYsC6xZTCEHyrLLGvDjANkqFUX\nb0tn5r1/3O+wh9t77/mce773nnPuPB/JN/P98fme7/ueRF6+v79OqgpJkrS8kyZdgCRJs8DAlCSp\ngYEpSVIDA1OSpAYGpiRJDQxMSZIaGJiSJDUwMEeU5LokX5p0HdMsyUlJbk/y1wvWPzvJA0l2Tqq2\naZTkM0nuTnLygvUXJvmXJK+cVG3TKMn5SWqZ6auTrlHrk4Gp3lXVMeDNwAVJ3jqw6Y+ADcA7J1HX\nFLsKeAHw3uMrkvw4cC3wwaq6Y1KFTak7gM2LTP8JKOATkytN61l8089oklwHbKqq10y6lmmX5Erm\nQ/LngJ8GbgbOr6qvTbSwKZTkIuDLwC9V1d8l+RTwC8C5VfXkZKubfkl+Bvhb4GNV9V8mXY/WJwNz\nRAbmaJLcDJwCvAS4oarePdmKpleSjwEXA9cAnwFeVlX3Traq6ZfkucDfAd8GtpX/UdMq8ZSsVtuV\nwHnAPzMfBFra7wMBPg9cY1gOl+Qk4LPAEeCNhqVWk4Gp1fZWYA44HThzwrVMtaqaAz7E/P+5+PCE\ny5kV7wd+kfnO8oeTLkbrm4GpVZPkZcAO4PXALcD1STZMtqqpdwQ41t04pWUkuRx4F3B5VT046Xq0\n/hmYWhVJngV8Griuqr4MbGf+xh+vYWpsSc4GPgXsqKqbJ12PTgzPmHQBWrf+EHgW8HsAVfVIkrcx\n32Xuqar7J1qdZlaSTcAXgb8BPpPkRQvHVNUja12X1j8DU71L8svA24GLBq8rVdUNSS5jPjRfUVVH\nJlakZtmrgZ/spkNLjMnalaMThY+VSJLUwGuYkiQ1MDAlSWpgYEqS1MDAlCSpgYEpSVIDA1OSpAYG\n5gok2T7pGmaJ39do/L5G4/eltWJgroz/Ax2N39do/L5G4/elNWFgSpLUwMBcmV2TLmDG+H2Nxu9r\nNH5fWhO+Gk+SpAZ2mJIkNTAwJUlqYGBKktTAwJQkqYGBKUlSAwNTkqQGBqYkSQ0MTEmSGhiYkiQ1\neMakC1jOzp07HwFOnXQdkrQCj1555ZUvmnQR6s+0d5iGpaRZ5X+/1plpD0xJkqaCgSlJUoOpvoa5\n0GWXXcYpp5wy6TKmxtzcHLt37550GZJ0QpipDtOwfDq/D0laOzMVmJIkTYqBKUlSAwNTkqQGBqYk\nSQ0MTEmSGhiYkiQ1MDAlSWpgYEqS1MDAlCSpgYEpSVIDA1OSpAYGpiRJDQxMSZIaGJiSJDUwMCVJ\namBgSpLUwMCUJKmBgSlJUgMDU5KkBgamJEkNDExJ0lRKcm2Sx5Lct8T2JPlYkv1J7kny8wPbtiZ5\noNu2o496DExJ0rS6Dti6zPZLgC3dtB34JECSDcDHu+1nAW9Icta4xRiYkqSpVFW3A/+wzJBtwKdr\n3teB5ybZDJwL7K+qh6rqSeCGbuxYDExJ0qw6DXh4YPlAt26p9WN5xrgfIEnS1q1b6/Dhw83j77rr\nrvuBfxpYtauqdvVeWI8MTEnS2A4fPsy+ffuaxyf5p6o6Z8zDHgTOGFg+vVv3zCXWj8VTspKkXlRV\n89STPcBvdnfLvgL4flUdAu4EtiQ5M8nJwOXd2LHYYUqSplKSzwHnA5uSHADey3z3SFXtBPYClwL7\ngR8Bb+m2HUlyFXAzsAG4tqruH7eeFQdmkuuATVX1mnGLkCTNvh47x+Of94Yh2wt42xLb9jIfqL3x\nlKwkSQ08JStJ6kXfHea0scOUJKnBqgRmku1J9nXT9tU4hiRpeoxyh+ysdqKrckq2e/h0qh9AlSRp\nFF7DlCT1YlY7x1Zew5QkqYEdpiSpF3aYkiRp5R1mVb25xzokSTPODlOSJHkNU5LUDztMSZJkYEqS\n1MJTspKksc3yK+9aGZiSpF6s98D0lKwkSQ3sMCVJvbDDlCRJdpiSpH7YYUqSJDtMSVI/7DAlSZqA\nJFuTPJBkf5Idi2z/z0nu7qb7khxN8vxu23eS3Ntt29dHPXaYkqSx9f3igiQbgI8DFwMHgDuT7Kmq\nbw4c84PAB7vxvwq8o6r+YeBjLqiqw33VZIcpSZpG5wL7q+qhqnoSuAHYtsz4NwCfW82CDExJUi+O\nd5ktE7Apyb6BafuCjzsNeHhg+UC37l9J8mxgK7B7sBzg1iR3LfLZK+IpWUnSJByuqnN6+qxfBf7n\ngtOx51XVwSQvBG5J8u2qun2cg9hhSpJ6MWKHOcxB4IyB5dO7dYu5nAWnY6vqYPfvY8CNzJ/iHYuB\nKUnqRc+BeSewJcmZSU5mPhT3LByU5N8AvwLcNLBuY5LnHJ8HXgXcN+7f5ylZSdLUqaojSa4CbgY2\nANdW1f1Jruy27+yGvg7471X1xMDupwI3JoH5nPtsVX1l3JoMTEnS2Fbj9zCrai+wd8G6nQuWrwOu\nW7DuIeClvRaDgSlJ6olv+pEkSXaYkqR+rPcO08CUJPXCwJQkqYGBKUnSEKtxl+y0manAnJub45RT\nTpl0GVNjbm5u0iVI0lMMzCmye/fu4YMkSVoFMxWYkqTpZYcpSVIDA1OSpAbrPTB9048kSQ3sMCVJ\nY/OxEkmSGhmYkrSIyy67zOeiB8zNzZ3wj76t98D0GqakFTEsn87vY/2zw5Qk9WK9d5gGpiSpF+s9\nMD0lK0lSAztMSdLYfKxEkqRG6z0wPSUrSerF8S6zZWqRZGuSB5LsT7Jjke3nJ/l+kru76Q9a910J\nO0xJ0tRJsgH4OHAxcAC4M8meqvrmgqH/o6pes8J9R2KHKUnqRc8d5rnA/qp6qKqeBG4AtjWWMs6+\nSzIwJUm96DkwTwMeHlg+0K1b6JVJ7kny5SQ/O+K+I/GUrCRpEjYl2TewvKuqdo34Gd8AfqKq/m+S\nS4EvAlt6q3ABA1OSNLYVPFZyuKrOWWb7QeCMgeXTu3WDx/zBwPzeJJ9Isqll35UwMCVJvTh27Fif\nH3cnsCXJmcyH3eXAfxwckORFwKNVVUnOZf4y4+PAPw7bdyUMTElSL/p8DrOqjiS5CrgZ2ABcW1X3\nJ7my274TeD3wO0mOAHPA5TVfxKL7jluTgSlJ6kXfLy6oqr3A3gXrdg7M/ynwp637jsvAlCSN7UR4\nNZ6PlUiS1MAOU5LUi/XeYRqYkqReGJiSJDUwMCVJamBgSpI0xIlwl6yBKUnqhYEpSVIDA1OSpAbr\nPTB9cYEkSQ3sMCVJvVjvHaaBKUkam3fJSpLUaL0H5tBrmElOSnJ7kr9esP7ZSR5IsnOpfSVJJ47j\nXWbLNIuGBmZVHQPeDFyQ5K0Dm/6I+R/mfOfqlCZJmiXrPTCbTslW1UNJ3gV8JMltwE8DvwOcX1VP\nrGaBkqTZMKtB2Kr5GmZV7UzyOuAvgJcAf1JVX1utwiRJs2OWO8dWoz6HeSVwHvDPwDVLDUqyPcm+\nbto+ToGSpNngKdmneyswB5wOnAl8e7FBVbUL2DVeaZKkWTKrQdiqucNM8jJgB/B64Bbg+iQbVqsw\nSdJsWe8dZlNgJnkW8Gnguqr6MrCd+Rt/3r2KtUmSZoiBOe8PgWcBvwdQVY8AbwPel+RnV6k2SdKM\nGCUsWwMzydbuef/9SXYssv2NSe5Jcm+SO5K8dGDbd7r1dyfZ18ffOPQaZpJfBt4OXFRVPzy+vqpu\nSHIZ86dmX1FVR/ooSJI0m/rsHLtLfh8HLgYOAHcm2VNV3xwY9n+AX6mq7yW5hPl7Z14+sP2Cqjrc\nV01DA7Oqbl9qXFX9el+FSJJmW8+nWs8F9lfVQwBJbgC2AU8FZlXdMTD+68zfkLpq/HkvSdI0Og14\neGD5QLduKb8FfHlguYBbk9zV1+ONvnxdktSLETvMTQuuLe7qHkkcWZILmA/M8wZWn1dVB5O8ELgl\nybe7M6YrZmBKksZWVRw7dmyUXQ5X1TnLbD8InDGwfHq37mmS/Bzw58AlVfX4QD0Hu38fS3Ij86d4\nxwpMT8lKknrR812ydwJbkpyZ5GTgcmDP4IAkPwF8AXhTVf2vgfUbkzzn+DzwKuC+cf8+O0xJUi/6\nvOmnqo4kuQq4mflfxrq2qu5PcmW3fSfwB8ALgE8kATjSda2nAjd2654BfLaqvjJuTQamJKkXfb+Q\noKr2AnsXrNs5MP/bwG8vst9DwEsXrh+XgSlJGtsKrmHOHANTktSLWX3lXSsDU5LUCwNTkqQGBqYk\nSQ0MTEmShvCmH0mSGtlhSpLUwMCUJKmBgSlJ0hBVxdGjRyddxqoyMCVJvbDDlCSpgYEpSdIQI/xs\n18wyMCVJvfA5TEmSGthhSpLUwMCUJGkIr2FKktTIa5iSJDWww5QkaQhPyUqS1Gi9B+ZJky5A0mya\nm5ubdAlTxe/j/3eZLVOLJFuTPJBkf5Idi2xPko912+9J8vOt+66EHaakFdm9e/ekS9CU6fOmnyQb\ngI8DFwMHgDuT7Kmqbw4MuwTY0k0vBz4JvLxx35HZYUqSxjZKd9nYYZ4L7K+qh6rqSeAGYNuCMduA\nT9e8rwPPTbK5cd+RGZiSpF70HJinAQ8PLB/o1rWMadl3ZJ6SlST1YsSbfjYl2TewvKuqdvVcUq8M\nTElSL0a8hnm4qs5ZZvtB4IyB5dO7dS1jntmw78g8JStJGtsqXMO8E9iS5MwkJwOXA3sWjNkD/GZ3\nt+wrgO9X1aHGfUdmhylJ6kWfz2FW1ZEkVwE3AxuAa6vq/iRXdtt3AnuBS4H9wI+Atyy377g1GZhS\n56Mf/ShPPPHEpMuYGhs3buTqq6+edBmaIX2/uKCq9jIfioPrdg7MF/C21n3HZWBKHcPy6fw+NCpf\nvi5J0hC+S1aSpEYGpiRJDQxMSZIaGJiSJA1RVd70I0lSCztMSZIaGJiSJDUwMCVJamBgSpI0hC8u\nkCSpkYEpSVIDA1OSpAYGpiRJDQxMSZKG8E0/kiQ1ssOUJKmBgSlJUgMDU5KkIXxxgSRJjQxMSZIa\nrPfAPGnSBUiS1odjx441T+NK8vwktyR5sPv3eYuMOSPJV5N8M8n9Sa4e2Pa+JAeT3N1Nlw47poEp\nSRrb8WuYrVMPdgC3VdUW4LZueaEjwDur6izgFcDbkpw1sP0jVXV2N+0ddkADU5LUizUOzG3A9d38\n9cBrF6nnUFV9o5v/IfAt4LSVHtDAlCT1Yi1PyQKnVtWhbv4R4NTlBid5CfDvgL8dWP32JPckuXax\nU7oLGZiSpF6M2GFuSrJvYNq+8POS3JrkvkWmbQuOW8CSbWuSHwN2A79bVT/oVn8S+CngbOAQ8OFh\nf593yUqSxraCU62Hq+qcIZ950VLbkjyaZHNVHUqyGXhsiXHPZD4s/2tVfWHgsx8dGPNnwJeGFWyH\nKUnqxRpfw9wDXNHNXwHctHBAkgCfAr5VVX+yYNvmgcXXAfcNO+DQwEzyme6W25MXrL8wyb8keeWw\nz5AkrX9rHJgfAC5O8iBwUbdMkhcnOX7H6y8BbwL+/SKPj/xxknuT3ANcALxj2AFbTsleBdwLvBd4\nT1fQjwPXAh+sqjua/zxJ0rq1li8uqKrHgQsXWf9d4NJu/mtAltj/TaMec2iHWVX/CLwFeHeSc7vV\nHwG+B7xv1ANKktanNe4w11zTTT9VdWuSTwLXJ7kGeCPwsqp6clWrkyTNhFkOwlaj3PTz+8y3tp8H\nrqmqe5camGT7crcKS5LWHzvMTlXNJfkQ8DGGPK9SVbuAXWPWJkmaIbMahK1GfQ7zCHCsqnp5TYMk\naf0wMCVJamBgSpI0xCxfm2xlYEqSerHeA3OkV+NV1XVV9WOrVYwkaXZ5l6wkSQ1mNQhbGZiSpF4Y\nmJIkDTHLp1pbGZiSpF4cO7a+H9E3MCVJvbDDlCSpgYEpSdIQXsOUJKmRgSlJUgMDU5KkBgamJElD\nVJWPlUiS1MIOU5KkBmsZmEmeD3weeAnwHeA3qup7i4z7DvBD4ChwpKrOGWX/QSP9WokkSUtZ418r\n2QHcVlVbgNu65aVcUFVnHw/LFewPGJiSpJ6scWBuA67v5q8HXrva+xuYkqSxjRKWPQXmqVV1qJt/\nBDh1qdKAW5PclWT7CvZ/itcwJUm9GDEINyXZN7C8q6p2DQ5IcivwokX2fc+C41aSpQ5+XlUdTPJC\n4JYk366q20fY/ykGpiSpFyMG5uEF1xQX+7yLltqW5NEkm6vqUJLNwGNLfMbB7t/HktwInAvcDjTt\nP8hTspKkXqzxKdk9wBXd/BXATQsHJNmY5DnH54FXAfe17r+QHaYkaWwTeHHBB4C/TPJbwN8DvwGQ\n5MXAn1fVpcxfl7wxCczn3Wer6ivL7b8cA1OS1Iu1fA6zqh4HLlxk/XeBS7v5h4CXjrL/cgxMSVIv\nfDWeJElD+HuYkiQ1ssOUJKmBHaYkSUNUFUePHp10GavKwJQk9cIOUzpBbNy4kSeeeGLSZUyNjRs3\nTroEzRivYUoniKuvvnrSJUgzy7tkJUlqZGBKktTAU7KSJDWww5QkaYgJvHx9zRmYkqRe2GFKktTA\nwNTMuuyyyzjllFMmXcbUmJubY/fu3ZMuQ1qXPCWrmWZYPp3fh7S67DAlSWpghylJUgM7TEmShvAa\npiRJjewwJUlqYGBKkjTEiXBK9qRJFyBJWh+O/8RXyzSuJM9PckuSB7t/n7fImH+b5O6B6QdJfrfb\n9r4kBwe2XTrsmAamJKkXx44da556sAO4raq2ALd1y09TVQ9U1dlVdTbwC8CPgBsHhnzk+Paq2jvs\ngAamJKkXa9lhAtuA67v564HXDhl/IfC/q+rvV3pAA1OSNLaq4ujRo81TD06tqkPd/CPAqUPGXw58\nbsG6tye5J8m1i53SXcjAlCT1YsQOc1OSfQPT9oWfl+TWJPctMm1bcNwClmxbk5wM/BrwVwOrPwn8\nFHA2cAj48LC/z7tkJUm9GPFU6+GqOmfI51201LYkjybZXFWHkmwGHlvmoy4BvlFVjw589lPzSf4M\n+NKwgu0wJUljG6W77Oka5h7gim7+CuCmZca+gQWnY7uQPe51wH3DDmhgSpJ6scaB+QHg4iQPAhd1\nyyR5cZKn7nhNshG4GPjCgv3/OMm9Se4BLgDeMeyAnpKVJPViLV9cUFWPM3/n68L13wUuHVh+AnjB\nIuPeNOoxDUxJUi98NZ4kSUP0eKp1ahmYkqReGJiSJDUwMCVJamBgSpI0xInw814GpiSpF3aYkiQ1\nMDAlSWpgYEqS1MDAlCRpCF9cIElSI++SlSSpwXrvMIf+vFeS85PUMtNX16JQSdJ0W+Of91pzLR3m\nHcDmRdb/GrAT+ESvFUmSZs4sB2GroYFZVU8CjwyuS/IzwIeA91fVX61SbZKkGXLCB+ZCSZ4L3AT8\nDXBN3wVJkmbT0aNHJ13Cqhp6DXNQkpOAzwJHgDfWEv93Isn2JPu6aXsPdUqSptgo1y9ntRMdtcN8\nP/CLwLlV9cOlBlXVLmDXOIVJkmbLrAZhq+bATHI58C7g1VX14OqVJEmaRQYmkORs4FPAjqq6eXVL\nkiTNohM+MJNsAr7I/E0+n0nyooVjquqRheskSSeW9R6YLTf9vBr4SeBS4NASkyTpBHb8B6Rbp3El\n+fUk9yc5luScZcZtTfJAkv1Jdgysf36SW5I82P37vGHHHBqYVXV9VWW5qf1PlCStV2t8l+x9wH8A\nbl9qQJINwMeBS4CzgDckOavbvAO4raq2ALd1y8sa6bESSZKWspaBWVXfqqoHhgw7F9hfVQ91L+G5\nAdjWbdsGXN/NXw+8dtgxffm6JKkXU3gN8zTg4YHlA8DLu/lTq+r4JcVHgFOHfZiBKUnqw83AphHG\nPyvJvoHlXd0z/E9Jcivwr240Bd5TVTetoMZFVVUlGZr2BqYkaWxVtXUVPvOiMT/iIHDGwPLp3TqA\nR5NsrqpDSTYDjw37MK9hSpLWqzuBLUnOTHIycDmwp9u2B7iim7+C+XekL8vAlCTNnCSvS3KA+de1\n/rckN3frX5xkL0BVHQGuYv508beAv6yq+7uP+ABwcZIHgYu65WV5SlaSNHOq6kbgxkXWf5f59wYc\nX94L7F1k3OPAhaMc0w5TkqQGBqYkSQ0MTEmSGhiYkiQ1MDAlSWpgYEqS1MDAlCSpgYEpSVIDA1OS\npAYGpiRJDQxMSZIaGJiSJDUwMCVJamBgSpLUwMCUJKmBgSlJUgMDU5KkBgamJEkNDExJkhoYmJIk\nNTAw17G5ublJlzBV/D4kjeMZky5Aq2f37t2TLkGS1g07TEmSGhiYkiQ1mPbAfHTSBUjSCvnfr3Um\nVTXpGiRJmnrT3mFKkjQVDExJkhoYmJIkNTAwJUlqYGBKktTAwJQkqYGBKUlSAwNTkqQGBqYkSQ0M\nTEmSGhiYkiQ1MDAlSWpgYEqS1MDAlCSpgYEpSVIDA1OSpAYGpiRJDQxMSZIaGJiSJDUwMCVJavD/\nAIi4rHw15E2rAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "qt.visualization.hinton(qt.to_super(qt.hadamard_transform()));" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdYAAAFtCAYAAAC6F0vsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XuYXVWZ5/HvL1yGolq5mOkQAQmt9DSIyjghKvJgeECH\nixjpEjs0asJlyig4ZQtCeugg2gyEBsyUisQCQsJNvFQjkQ7SwCOioj0Em0vijQg4JBIwNmIIhZDU\nO3/sXXo8nFNnn3NWnapz6vd5nv3U2XuvtfZbxSbvWXuvvbYiAjMzM0tjyngHYGZm1kmcWM3MzBJy\nYjUzM0vIidXMzCwhJ1YzM7OEnFjNzMwScmI1MzNLqKMTq6Tlkm7NP58vaU2Tbdwg6X5JO5TsnyLp\nO5JuK9qWpAskbZC0W9n+AyS9IOlv6mhrhqQYZXmsRjtTJN0j6Ztl23eW9DNJS/P1kPS+RupLOjD/\nvXrKyhwp6SVJb6+zvV9LOqdCLNdJelDSjgXbWV7jbzevwjGul/SApB3Lth+R/y6H5HVnVvl716p/\nXv7zLWX7T5P0nKTX1tnei+XnkzJ3l56zBdsZ7W/1jiq/7+wa9b6dl6t2ftWsX+f5VaS9mudXHW3V\nfY5ZB4iIjl2A5cCt+efzgTVNtrEbsAH4TMn+M4H/AF5dtC1gB+BHwA0l+7YH7gNurCcuYDtgjwrL\nu4GtwFkF2voL4DnglJJtnwfWAd35egDva6L+OcCvgWn5+i7AE8DietsDeoAXgANL9r833/aGOtrZ\npcrf7g7gMWBqhdh2zeP+3yXbXgn8ErgQmJH/rWZW+VuNWj9fvwL4KdCVr88AfgcsaCCeM4FNwB4l\n+z8O/AaYXkc7u1f4O70GeJjsvN2pyu+7Y5W/cS8wDJww2vlVR/1C51eR9uo4v4q0Vfc55qX9l3EP\nYEx/ucSJNV8/GngJOBg4ABgCTmwgntfndXvy9UXAemC3RuIq2zct/0flujp+zwXAs8A+wBFkSfnQ\nkv1VE2vB+lOA7wO35OvXAg8BOzbY3nXA/WRfUqYCTwFn19tOhfLnkiXjN41S5sj8HJiVr18NPJD/\nQzuDURJrrfr5ejdZ8u8HBNwNfKvBeKYA3wFW5vv+EngeeH+9cVUofyXwJLBXnf9P7U/2ReGCoudX\ngfp1nV8F2it0fhVpq5FzzEt7L+MewJj+cmOQWPNtA8BP8v/xvtpoW8AngKeBdwG/B97VTFz59h2A\n7zFKL2KUNm8H7gH+H/BPZftq/sM3Wv18/+uALcANwIvAQU3Es0u+/dPAV4HvAlMaiauk3LuBbeS9\noBqxfS4/B95HSU+GAol1tPol+w8l+xJwI/AMsGej7fHHHu9pwA8ouVJSb1wl5T6an7OH1HmO7Qr8\nHFgJqJ7za7T6jZxfNeIpfH4Via2Rc8xL+y7jHsCY/nJjl1hfkf9D9Qzwqkbb4o+9kW3A5c3GlW//\nEg30IvK6+5JdwnoE+E9l+4ok1qr1S8qcn7f1mWbiyfeP9EA3A/s2GddfkfVsq/Y0ysp3kV2u3QZ8\nsmT7DIol1or1K/w3DkouZTfaHnBKvm89sGuTcR1GlrhOq/P8mgKsAn4MvKKB86tq/QbPr1HbK3p+\n1RFbXeeYl/ZdOnrw0hh6P9k90VcCb2y0kcj+b7uA7H/Kf2w2KEkLgPlkl5fXN9DEKWSXp/ciS0ZJ\n60vqAk4kuxR5qCQ1015E3AX8kKwH9lgTce0CfIPskumiGjGNHHsIuJSs13ZZkTr11Jc0DTiW7G91\nWLPtRcQysi9cX4iI3zYR12uArwMDEXFVrbjKXAi8DZgTEZvrrFuzfgPn16jt1XF+FYmt7nPM2pcT\na50k7QMsIRsUcjmwTNKfNdHk1rKfjcZ1KNllvNMj4t4G6h8MLCS7BHgHsELSdonrX0z2hWQWMBM4\nI0E8Wxnlb1erHUlTyC63DgMn5V92itoKDEfEcB11itYfIOthHwl8QNJxCeIZ9W9Vq508cd0MrCUb\nAFWYpLnAWcDciHiknrp11K/n/CoaT82/Wa22mjzHrA05sdYh/wZ8DfDDiLiC7B/srTTQY0kc197A\nII31IpC0E9lgj+URcRvZqMbXAWenqi/pcLL7cvMjYi3ZF5PF5Y+PpIinznYuAA6h8V5UcpLmkyXU\neRHxA7KE8SVJu49rYHAV2ejgEyKi8BdBSQeRDYRaGBG313vQIvXrPL+aiqeBtibcOWZja/vxDqDN\n/E/gzcCBABHxfP6P4HckfT0i7mh1QHnyuJnsMaDFkvaoUOzXEbFtlGYuAnYiG0xFRGyUdDpZ725l\n/g/VaEatTzYI5BqgPyK+m5e5Mn/u8BpJs8t6R83GUzSu15N9OToZ2FzhbzcUEc8WPFYS+ZekfrJ/\nqEd6P58GjiN7VOikVsZTEtcnyR4fOQ7YvsLf6rmIeK5Cvalkl0DvBq6vdH5GxMZRjluzPtmApULn\nV7PxNBDbYUywc8xaYLxv8o7lQsLBS/zxMYV5FcpcQpY8Xlk0npJts8kGW9T1PFtJXO/I64+2zBil\nncPIet2zK+z7GrCa7AtYxcElBetfTTaoY6ey/XuSDQD7u3rjKdl2N9l9w0bi+naNv9vyGv8N5pMl\nlNJtMygweKlSfbLBbHcAd/HyEa8HkQ0YOr6eeMr2P06x55or/V6P1fhbnV+lrXm1zs+8XLXzq2b9\nOs+vQvHUOr/qiK2pc8xLey7KTxAzMzNLwPdYzczMEnJiNTMzS8iJ1czMLCEnVjMzs4ScWM3MzBJy\nYjUzM0to0iRWSb1uy225LbfVqrZSt5c6Nhs7kyaxkk1n57bclttyW61qK3V7TqxtYjIlVjMzszE3\nmRLrgNtyW27LbbWwrdTtpY7NxoinNDQzM0to3Hqsknolrc4X3zswM7OO4B6rmZlZQpPpHquZmdmY\nc2I1MzNLyInVzMwsISdWMzOzhJxYzczMEnJiNTMzS8iJ1czMLKHtxzuAFJYuXboRmDbecZiZNeCp\nBQsW7DHeQVg6HZFYgWk9PT10dXU11cjQ0BCDg4OJQjIzK8Sdgg7TMZeCm02qqdowM7PJrWMSq5mZ\n2UTgxGpmZpZQ8sQqabmkW/PP50tak/oYZmZmE5V7rGZmZgk5sZqZmSXkxGpmZpaQE6uZmVlC45ZY\nJfVKWp0vveMVh5mZWUrjNvNSRAwAA+N1fDMzs7HgS8FmZmYJObGamZkl5MRqZmaWUPLEGhHzI+Ld\n+efzI+LA1McwMzObqNxjNTMzS8iJ1czMLKGOSaxDQ0MTog0zM5vcxu051tQGBwfHOwQzM7POSayT\nQU9PD11dXU21MTQ05C8hZmZjqGMuBU8GzSbVVG2YmVl1TqxmZmYJObGamZkl1HBilbRc0q355xsk\n3S9ph5L9UyR9R9JtKQI1MzNrB6l6rGcAewCLSrb9HfAG4NRExzAzM5vwkiTWiHgGOA34e0kHSzoA\nuAA4PSJ+leIYZmZm5SQtk/S0pDVV9kvS5yStk/SQpDeX7DtK0s/yfQtTxZTsHmtE3AZcA1wLXAd8\nMyK+nKp9MzOzCpYDR42y/2hgv3zpBa4AkLQdcHm+/wDgxLxT2LTUz7GeCWwAtgHvSty2mZnZn4iI\neyTNGKXIHODaiAjgh5J2lTQdmAGsi4hHASTdlJf9cbMxpR4V/H6yZP1K4I2jFZTUK2l1vvQmjsPM\nzAxgT+CJkvX1+bZq25uWrMcqaR9gCVmvdX9gmaQ3RMRzlcpHxAAwkOr4ZmY28R111FGxadOmwuXv\nv//+tcALJZsG8vwxYSVJrJJEdn/1hxFxhaSdya5bXwZ8OMUxzMys/W3atInVq1cXLi/phYiY2cQh\nNwB7l6zvlW/bocr2pqW6FPw/gTcDpwBExPPAfOBUSe9MdAwzM+sAEVF4SWAl8KF8dPBbgWcj4kng\nPmA/SftK2hGYm5dtWtM9Vkl/CVwEfCQi1o9sj4jvS1oCXC3pwIj4XbPHMjMzKyXpy8BsYKqk9cCn\nyHqjRMRSYBVwDLAOeB44Od+3VdIZwO3AdsCyiFibIqaGE2tEzC9Z3blKmU8Cn2z0GGZm1nkS9URH\n2jqxxv4ATq+ybxVZ4k3KcwWbmZkl5PexmplZS6XssU5E7rG2kaGhoQnRhpmZVeceaxsZHBwc7xDM\nzJqScLTvhOXEOsb6+/vZsmVLU210d3fT19eXKCIzMxtLTqxjrNmkmqoNM7OJotN7rL7HamZmlpB7\nrGZm1lLusY5C0nJJt0q6QNIGSbuV7T9A0guS/qa5MM3MzNpDqkvBnwaeAr4wskHS9sAK4J8j4iuJ\njmNmZm2uxXMFt1ySxBoRLwEfBP5aUk+++e+B6VSZSsrMzKwTJbvHGhFrJZ0LXCFpM/APwHER8Uyq\nY5iZWftr155oUalHBS8BfgzcBlwVEf+auH0zM7MJLWlizd8icEHe7j+OVlZSr6TV+dKbMg4zM7Px\nMhaP22wt+1lRRAwAA2NwfDMzm6DaeVBSUX6O1czMWqrTE6tnXjIzM0vIPVYzM2upTu+xNpVYI2J+\nhW13A2qmXTMzs3blHquZmbVUp/dYfY/VzMwsISfWMdbd3T0h2jAzmyg6fa5gXwoeY319feMdgplZ\nR5N0FNAPbEc269/isv2fBE7KV7cH9gf+c0T8h6THgc3ANmBrRMxsNh4n1gp6enro6upqqo2hoSEG\nBwcTRWRm1hlS90QlbQdcDrwTWA/cJ2llRPy45JiXAJfk5Y8D/i4i/qOkmcMjYlOqmHwpuIJmk2qq\nNszMrKZZwLqIeDQiXgRuAuaMUv5E4MtjGZATq5mZtVSd91inlswrX2lu+T2BJ0rW1+fbXkbSzsBR\nQOnlxADulHR/qnnrfSnYzMwmsk0p7nvmjgO+X3YZ+NCI2CDpz4E7JP00Iu5p5iAN91glLZd0q6QZ\nkmKU5bFmAjQzs86SeFTwBmDvkvW98m2VzKXsMnBEbMh/Pg3cTHZpuSkpLgU/AUyvsBxHNsrq8gTH\nMDOzDpE4sd4H7CdpX0k7kiXPleWFJO0CvAO4pWRbt6RXjHwG3gWsafb3a/pScERsAzaWbpM0DbgC\n+HJEXNrsMczMzCqJiK2SzgBuJ3vcZllErJW0IN+/NC96PPCvEbGlpPo04GZJkOXDGyPiW83GlPwe\nq6QdyG4MbwT+R+r2zcysfY3FxA8RsQpYVbZtadn6cmB52bZHgTclDYaxGbz0BeC1wMER8cIYtG9m\nZm2sXWdUKirp4zZ513s+0BMR62uU7R1l+LSZmVlbStZjlXQo8DngoxFxb63yETEADKQ6vpmZtYdO\n77EmSayS9ia7rzoQEVelaNPMzDqTE2sNknYie/ZnA7BY0h4Viv06Hz1sZmaTnBNrbW8B/lv++Ykq\nZfYFHk9wLDMza2Pt/Dq4ohpOrBExv2RVzYdiZmaTQacnVk/Cb2ZmlpAn4Tczs5bq9B6rE2sFQ0ND\nSV50bmZmL+fEOgkNDg7WLmRmZg1xYrWO1N/fz5YtW2oXHEV3dzd9fX2JIjIz6wxOrJNUs0k1VRtm\nNrn4cRszM7PEnFjNzMwS6vTE2tBzrJKmSLpH0jfLtu8s6WeSlubrIel9KQI1MzNrBw0l1ogYJns9\n3OGSTinZdTHZG9zPbD40MzPrRCP3WYss7aiZKQ0flXQWsETSXcDrgI8AsyPCo1rMzKyidk2YRTV1\njzUilko6HrgOmAF8NiK+lyIwMzOzdpRi8NIC4Bf5sihBe2Zm1qHa+RJvUSkm4T8FGAL2Ins9XCGS\neiWtzpfeBHGYmVkb6PR7rE0lVkkHAwuB9wF3ACskbVekbkQMRMTMfBloJg4zM2sfqROrpKPyJ1LW\nSVpYYf9sSc9KeiBfzitatxENXwqWtBNwLbA8Im6T9O/AWuBs4KIUwZmZmY0m78xdDrwTWA/cJ2ll\nRPy4rOh3I+LdDdatSzM91ouAnYBPAETERuB04HxJr28mKDMz61yJe6yzgHUR8WhEvAjcBMwpGEoz\ndatqdIKIw4CPASdHxOaR7RFxE7CS7JKwZ3UyM7OXSZxY9wSeKFlfn28rd4ikhyTdVtL5K1q3Lg0l\nv4i4p1rdiDihZFWNtG9mZpabKml1yfpAA+NyfgS8JiKek3QM8A1gv2QRlnGv0szMWqaB0b6bImLm\nKPs3AHuXrO+Vbys95u9KPq+S9EVJU4vUbYQTq5mZtdTw8HDK5u4D9pO0L1lSnAv8bWkBSXsAT0VE\nSJpFdhv0N8Bva9VthBPrJNXd3Z3kRedmZvVK+XxqRGyVdAZwO9lc9csiYq2kBfn+pWSPhH5E0lay\neRfmRhZExbrNxuTEOkn19fWNdwhmNkmlnvghIlYBq8q2LS35/AXgC0XrNsuJ1TpWf39/kl65v4SY\npdPOMyoVlWJKQ7MJqdmkmqoNM5tc3GM1M7OW6vQeqxOrmZm1VKcn1pqXgiVNkXSPpG+Wbd85n7h4\nqaQDJb0gqaeszJGSXpL09tSBm5lZe5r0b7eJiGFgPnC4pFNKdl1MNjz5zIhYA3wKWCppGoCkXYBr\ngMsi4vupAzczs/Y06RMrQEQ8CpwFLJG0j6QjgI8A8yNiZHTHJcDPgZGppj4PPAOcV96emZlNTvUk\n1XZNrIXvsUbEUknHA9cBM4DPRsT3SvYPS5oHPCjpBuAEYFb+xgAzMzPA91jLLQAOBX4PLCrfGRHr\nyHqufwssjogHmo7QzMw6Sqf3WOtNrKeQTQe1F7Bv+U5JXcCJwPPAoZKqvt1GUq+k1fnSW2ccZmbW\nppxYc5IOBhaSzbl4B9k7V7crK3Yx2eXlWcBM4Ixq7UXEQETMzJd6XwFkZmY2IRVKrJJ2Aq4FlkfE\nbUAv8Drg7JIyhwMfJRvQtBY4E1gs6bXJozYzs7blHmvmImAn4BMAEbEROB04X9LrJb2C7NGa/oj4\nbl7mSuC7wDWSPHWimZl5VDCApMOAjwFHRsTmke0RcVM+IcQK4EGy+6rnllU/FVgD9AFLUgVtZmbt\nq10TZlE1E2tE3FOtXEScUKPuBmC3xkIzM7NONOkTq5mZWUpOrGZmZgl1emL1oCLrWN3d3ROiDTP7\nIw9eMmtjfX194x2CmVXQrgmzKCdWm1B6enro6upqqo2hoSEGBwcTRWRmqTmxmrVQs0k1VRtmNnac\nWM3MzBLq9MTqwUtmZtYyYzF4SdJRkn4maZ2khRX2nyTpIUkPS7pX0ptK9j2eb39A0uoUv2PRuYKn\nSLpH0jfLtu+c/zJLJf1a0jkV6l4n6UFJO6YI2MzM2lvKxJq/DOZy4GjgAOBESQeUFXsMeEdEvAH4\nR6D8xS+HR8RBETGz+d+uYGKNiGFgPnC4pFNKdl0MbEc24f4C4NOSDhzZKem9ZC88/4BfeG5mZpB8\nEv5ZwLqIeDTPMzcBc8qOd29EPJOv/pDs1adjpvCl4Ih4FDgLWCJpH0lHAB8he5vNlogYBL5G9jq5\nHSRNBb4EnBcRD49F8GZmNuntCTxRsr4+31bNqcBtJesB3Cnp/lTvBq9r8FJELJV0PHAdMAP4bER8\nr6TIGcDDwD8A+wM/By5NEaiZmXWGOgcvTS279znQ6Du889ebngocWrL50IjYIOnPgTsk/TSfI79h\njYwKXgD8Il8Wle6IiGclnQzcDgwBb8wvI5uZmRERDA/XlRY21bj3uQHYu2R9r3zbn5D0RuAq4OiI\n+E1JPBvyn09Lupns0nJTibWRUcGnkCXNvYB9y3dGxF1k17BviIjHqjUiqVfS6nxJ0v02M7OJL/E9\n1vuA/STtmw+SnQusLC0g6TXAPwMfjIifl2zvzt8njqRu4F1krzptSl09VkkHAwuB95DdX10h6ZCI\n2FZWdGu+VJV35RvqzpuZWftK+RxrRGyVdAbZldLtgGURsVbSgnz/UuA84FXAFyUBbM17wdOAm/Nt\n2wM3RsS3mo2pcGKVtBNwLbA8Im6T9O/AWuBs4KJmAzEzs8kh9QQREbEKWFW2bWnJ59OA0yrUexR4\nU/n2ZtXTY70I2An4RB7QRkmnk/VaV0bE2tTBmZlZZ2ngHmvbKTpBxGHAx4CTI2LzyPaIuInsWvYK\nSZ4e0czMavJr44B86HHFshFxQoVts5sLy8zMOlW7Jsyi3Ms0M7OWcmI1MzNLyInVrIWGhoaSvOjc\nzCamyTB4yYnVJpTBwcHxDsHMxph7rGY19Pf3s2XLlqba6O7upq+vL1FEZjaRObGa1dBsUk3Vhpm1\nBydWMzOzRCKCbdvKZ8HtLE6sZmbWUp3eY60585KkKZLukfTNsu07S/qZpKWSlkuKUZZ5Y/crmJlZ\nO5n0My9FxLCk+cBDkk6JiGX5rovJ3iRwZt7OwgrVrwNeB/xLmnDNzKydtXPCLKrolIaPSjoLWCLp\nLrJk+RFgdkSMjDp5trSOpHOBtwFvj4hNCWM2M7M25udYcxGxVNLxZL3QGcBnI+J7lcpKejfwGWBu\nRDyYIlAzM+sM7rH+qQXAL/JlUaUCkv4KuAG4KCK+1lx4ZmbWaTo9sRZ6bVyJU4AhYC9g3/KdknYB\nvgF8hyqJt6Rsr6TV+dJbZxxmZtaG6hm41K4JuHCPVdLBZAOU3kN2f3WFpEMiYlu+fwpwIzAMnBQ1\n/iIRMQAMNBq4mZm1p06/x1r0Rec7AdcCyyPiNqCXbADT2SXFLgAOAeaUvgzdzMyslHusmYuAnYBP\nAETERkmnk/VaVwKvJ+vNngxslrRHWf2hiHgWMzOb1No5YRZVM7FKOgz4GHBkaU80Im6S1AOsADYD\nApZXaWYFML/ZYM3MrP11emKteSk4Iu6JiO0j4u4K+06IiJkRcXhEaJRl/lgEb2Zm7Sf1pWBJR+Uz\nAa6T9LLJipT5XL7/IUlvLlq3EfWOCjYzM2vK8PBw4aUWSdsBlwNHAwcAJ0o6oKzY0cB++dILXFFH\n3bo5sZqZWcuMweM2s4B1EfFoRLwI3ATMKSszB7g2Mj8EdpU0vWDdujmxWtO6u7snRBtm1h4SJ9Y9\ngSdK1tfn24qUKVK3bn5tnDWtr69vvEMwszZS5+ClqZJWl6wP5PMgTFhOrGYF9Pf3s2XLltoFR9Hd\n3e0vIWbUPUHEpoiYOcr+DcDeJet75duKlNmhQN26+VKwWQHNJtVUbZi1uzG4x3ofsJ+kfSXtCMwF\nVpaVWQl8KB8d/Fbg2Yh4smDdurnHamZmLZXyOdaI2CrpDOB2sneEL4uItZIW5PuXAquAY4B1wPNk\nkxlVrdtsTE6sZmbWUqkniIiIVWTJs3Tb0pLPAZxetG6zGr4ULOl6SQ/k3efS7UdIeknSIZJC0mjX\nxs3MbJJJ+RzrRNTMPdYzgFcBnxrZIOmVwDLgEuBXzYVmZmadZjK8Nq7hxBoRvyW7Tn22pFn55iXA\nM8D5zYdmZmadqNMTa1P3WCPiTklXkL3lZhFwEnBwRLwoKUmAZmbWWdo1YRaV4nGbc8jebPMVYFFE\nPJygTTMz61Cd3mNtOrFGxBBwKfB74LKi9ST1SlqdL73NxmFmZhNfRHT84KVUj9tsBYYjovBfIZ+S\nakJPS2VmZum1a0+0KD/HamZmLeXEamZmlpATq5mZWUJOrAVExHJgedm2x8lGC5uZmQG09Wjfotxj\nNTOzlnJiNTMzS6jTE6vfx2pWQHd394Row6wTdPoEEe6xmhXQ19c33iGYdYx2TZhFObGaGQD9/f1s\n2bKlqTa6u7v9JcRGNTLzUidzYjUzgKaTaqo2rPO5x2pmZpaQE6uZmVlCnZ5Ya44KlnS9pAck7Vi2\n/QhJL0k6L//5lrL9p0l6TtJrUwdtZmbtqZ4Rwe2agIs8bnMG8CrgUyMbJL0SWAZcEhGfAa4ie9l5\nV75/BvBZ4KyI+EXimM3MrI1N+sQaEb8FTgbOljQr37wEeAY4P18/i+yy8mJJIpve8N6IWJo6YDMz\na2+TPrECRMSdwBVkvdL3AScBH4yIF/P9W4D5wOnADcCbgFPHImAzM2tvrXrRuaTdJd0h6ZH8524V\nyuwt6duSfixpraS+kn3nS9qQ3w59QNIxRY5bz8xL55BNqv8VYFFEPFy6MyK+B1wPnAicGREb6mjb\nzMwmgRbfY10I3BUR+wF35evltpLlrAOAtwKnSzqgZP+SiDgoX1YVOWjhxBoRQ8ClwO+By8r3S5oG\nHAs8DxxWqz1JvZJW50tv0TjMzKy9tTCxzgFW5J9XAO+tEMuTEfGj/PNm4CfAns0ctN65grcCwxFR\nqX8+ADwCHAl8QNJxozUUEQMRMTNfBuqMw8zM2lSrLgUD0yLiyfzzRmDaaIXzgbf/Ffi3ks0fk/SQ\npGWVLiVXkmQSfknzyRLqvIj4AXAx8CVJu6do38zMOkedPdapJVc3X3aFU9KdktZUWOaUHTOAql1g\nSX8GDAIfj4jf5ZuvAP4COAh4kgpXaytpeoIISXsD/cDCiHgk3/xp4Djg82QDnczMzBq5xLspImaO\n0t6R1fZJekrS9Ih4UtJ04Okq5XYgS6o3RMQ/l7T9VEmZK4FbiwTcVI81f7RmGbAa+EJJMC8CHwJO\nkHR8M8cwM7PO0sJ7rCuBefnnecAt5QXyPHY18JOI+GzZvuklq8cDa4octK4ea0QsJ3tGdWQ9gHdW\nKfsAsGOlfWZmNnm18PnUxcBXJZ0K/BJ4P4CkVwNXRcQxwNuBDwIPS3ogr/e/8hHA/yTpILJLyI8D\nHy5yUM8VbGZmLdWqxBoRvwGOqLD9V8Ax+efvkT1KWqn+Bxs5rhOrmZm1VLvOqFRUklHBZtb+uru7\nJ0Qb1tlaPEHEuHCP1cwA6Ovrq13ILIF2TZhFObGatbGenh66urqaamNoaIjBwcFEEZnV5sRqZhNW\ns0k1VRtm9XBiNTMzS8iJ1czMLJF2HpRUVKFRwZKuz99Ft2PZ9iMkvSTpRUl/U7ZPku6WdFvKgM3M\nrL11+qjgoo/bnAG8CvjUyAZJrySbzvAS4O+ByyXtUVKnD3gDcEqaUM3MrBM4sQIR8VvgZOBsSbPy\nzUuAZ4Dz889ryV4dh6S/BC4EPlLyyh4zM7OOT6yF77FGxJ2SrgBWSFpE9taag/MJ95E0D3hI0mnA\nqcDNEfHVsQjazMzaV7smzKLqHbx0DvAu4Ctkr4l7eGRHRDwu6ePAlWTvrTs6WZRmZtYR2rknWlRd\nUxpGxBDHn4N+AAANRUlEQVRwKfB7KrzwNSKWkSXVL+SXj6uS1FvtxbVmZta5hoeHCy/tqJHHbbYC\nwxFR7Tfemi+jiogB8nuyZmY2eXR6j9XPsZqZWUs5sZqZmSUyGe6xOrGamVlLObGWiYjlwPJR9s9o\nPBwzM+t0TqxmZmYJObGamZklEhFt+xhNUU6sZm1saGgoyYvOzVrJPVYzm7AGBwfHOwSzurUqsUra\nnWymwBnA48D7I+KZCuUeBzYD24CtETGznvrlnFjNWqy/v58tW7Y01UZ3dzd9fX2JIjJrrRb2WBcC\nd0XEYkkL8/VzqpQ9PCI2NVH/D+qa0tDMmtdsUk3Vhtl4aeHbbeYAK/LPK4D3tqK+E6uZmbVMPUk1\nQWKdVvLq0o3AtGphAXdKur9s7vqi9f+ELwWbmVlL1Zkwp0paXbI+kM81D4CkO4E9KtQ7t+yYIana\ngQ+NiA2S/hy4Q9JPI+KeOur/iZqJVdL1wIHArJF3r+bbjwC+RZbpdxilidkR8Z0iwZiZWeerM7Fu\nGhlMVKWtI6vtk/SUpOkR8aSk6cDTVdrYkP98WtLNwCzgHqBQ/XJFLgWfAbwK+FRJsK8ElgGXkH1T\nmF627AOsAVYD/1YkEDMzmxxaeCl4JTAv/zwPuKW8gKRuSa8Y+Uz2zvE1RetXUrPHGhG/lXQycJuk\nWyLi/wJLgGeA80t7sSWBXglMBQ6OiBeKBGJmZp2vxRNELAa+KulU4JfA+wEkvRq4KiKOIbtverMk\nyHLijRHxrdHq11LoHmtE3CnpCmCFpEXASWRJs1JS/SjwIbKhy+uLtG9mZpNHqx63iYjfAEdU2P4r\n4Jj886PAm+qpX0s9o4LPAUT2sOyiiHi4vICkw4D/A5weEffWG4yZmXW+4eHhwks7KpxYI2IIuBT4\nPXBZ+X5JrwG+TjZi66pa7UnqlbQ6X3prlTczs/bX4sdtxkW9j9tsBYYj4k++RkjqAm4G1gIfL9JQ\nPlx6oGZBMzPrKO3aEy0q1XOsVwG7A/89IrYmatPMzDpQu/ZEi2o6sUr6JHACcBywvaTyB3Wfi4jn\nmj2OmZm1v4hg27Zt4x3GmErRY/0o2QQR36qy/9PA+QmOY2ZmHcA91hIRsRxYXrZt34TxmJlZh/M9\nVjMzs0TaebRvUU6sZmbWUk6sZpZUd3d3khedm7UrXwo2s6T6+vrGOwSzceUeq5lZnXp6eujq6mqq\njaGhIQYHBxNFZBNFiyfhHxdOrGaWXLNJNVUbNjG5x2pmZpaQE6uZmVkik+FScD2vjfsDSbMlxSjL\nt/NyIel9aUM2M7N25rfbVHYvML3C9vcAS4EvNhyRmZl1tE7vsTaUWCPiRWBj6TZJ+5O9r/XCiPha\ngtjMzKwDtWtPtKgk91gl7QrcAtwNLErRppmZdZ7JcI81xWvjpgA3kr0E/aTo9K8iZmbWlE5PEw0N\nXipzIfA2YE5EbC5aSVKvpNX50psgDjMzawMevDQKSXOBs4BjI+KReupGxAAw0MzxzcysvUyGS8EN\n91glHQRcDSyMiNvThWRmZp2sVT1WSbtLukPSI/nP3SqU+S+SHihZfifp4/m+8yVtKNl3TJHjNtRj\nlTQV+AbZYKXrJe1RXiYiNpZvMzMza2GPdSFwV0QslrQwXz+ntEBE/Aw4CEDSdsAG4OaSIksi4tJ6\nDtropeBjgX3y5ckqZdRg22Zm1sFaeO90DjA7/7yCrDN4TrXCwBHALyLil80ctKFLwRGxIiI02pKX\nU0R8vZkAzcysc0QE27ZtK7w0aVpEjHT+NgLTapSfC3y5bNvHJD0kaVmlS8mVpBgVbGZmVlid91in\nljxB8rKnSCTdKWlNhWVO2TEDqNpVlrQj2eyBpRMcXQH8Bdml4ieBy4r8fp6E38zMWqrOS8GbImLm\nKG0dWW2fpKckTY+IJyVNB54e5ThHAz+KiKdK2v7DZ0lXArcWCdg9VjNLbmhoaEK0YRNPPb3VBPdi\nVwLz8s/zyGYIrOZEyi4D58l4xPHAmiIHdY/VzJIbHBwc7xBsAmvh4KXFwFclnQr8Eng/gKRXA1dF\nxDH5ejfwTuDDZfX/KX+0NIDHK+yvyInVzKwBPT09dHV1NdXG0NDQpPwS0qrHbSLiN2Qjfcu3/wo4\npmR9C/CqCuU+2MhxnVjNzBrQbFJN1UY7atepCotyYjUzs5Zp5zmAi3JiNTOzlur0xFpzVLCk2ZJi\nlOXbkg6U9IKknrK6R0p6SdLbx+5XMDOzdtLpb7cp8rjNvcD0CsuHyUZKfTEi1gCfApZKmgYgaRfg\nGuCyiPj+GMRuZmZtaNIn1oh4MSI2li7AbsClwIURMTJLxSXAz/njq+A+DzwDnDcGcZuZWRsaeW1c\n0aUd1X2PVdKuZA/Z3g0sGtkeEcOS5gEPSroBOAGYFREvJorVzMw6QLv2RIuqa+YlSVOAG4GtwElR\n9teJiHVkPde/BRZHxAOpAjUzs84w6S8Fl7kQeBswJyI2l++U1EU2LdTzwKGSqr46TlJvtUmVzcys\nc3V6Yi18KVjSXOAs4NiIeKRKsYvzNmcBPwDOILvX+jIRMcAf78eamdkk0a4Js6hCPdZ8rsSrgYUR\ncXuVMocDHwXmR8Ra4ExgsaTXpgrWzMzaW4sn4R8XNXuskqYC3yAbrHS9pD0qFNtC9mhNf0R8FyAi\nrsyfa71G0uyIaM/hXWZmllS7jvYtqsil4GOBffLlySpllpHdVz23bPupZK/Z6QOWNBijmZl1kHbt\niRZVM7FGxApgRSONR8QGsmdezczMACdWMzOzZNr53mlRTqxmZtZSTqxmZvYyQ0NDSV50Phlt27Zt\nvEMYU06sZmYNGBwcHO8Q2pIvBZuZdZD+/n62bNnSVBvd3d309fUlimhycmI1M+sQzSbVVG1Mdk6s\nZmZmCTmxmpmZJdTpibXoXMGzJcUoy7cl/VrSORXqXifpQUk7pg/fzMzaSStfdC7pBElrJQ1LmjlK\nuaMk/UzSOkkLS7bvLukOSY/kPwtNeFT0tXH3AtMrLB8GAvgisAD4tKQDS4J6L9kLzz/gF56bmRm0\n9LVxa4C/Bu6pVkDSdsDlwNHAAcCJkg7Idy8E7oqI/YC78vWaCl0KzpPixrJg9gcuBS6MiK/l294L\nrJD0VmAX4EvAeRHxcJHjmJlZ52vVpeCI+AnAKK8Gh+w1p+si4tG87E3AHODH+c/ZebkVZC+jedmV\n2XIN3WOVtCtwS36QRSW7zgAeBv4B2B/4OVnyNTMzAybcPdY9gSdK1tcDb8k/T4uIkZfPbASmFWmw\n7sQqaQpwI7AVOClK/kIR8aykk4HbgSHgjX5dnJmZlbgdmFpH+Z0krS5ZH4iIgZEVSXcClV5nem5E\n3NJgjC8TESGp0DeCRnqsFwJvA2ZFxOYKB79L0g+BNRHxWLVGJPUCvfnqn/yhzMysM0XEUYnbO7LJ\nJjYAe5es75VvA3hK0vSIeFLSdODpIg0WHbwEgKS5wFnA3Ih4ZJSiW/OlqogYiIiZ+eKkamZm4+E+\nYD9J++ZPr8wFVub7VgLz8s/zyG6B1lQ4sUo6CLgaWBgRtxcO2czMbBxIOl7SerKrrP8i6fZ8+6sl\nrQKIiK1k44NuB34CfDUi1uZNLAbeKekR4Mh8vaZCl4IlTQW+QTZY6XpJL7ueHREby7eZmZmNl4i4\nGbi5wvZfAceUrK8CVlUo9xvgiHqPW/Qe67HAPvnyZJUyo45nNjMzmwyKPse6guwZnkIiYnajAZmZ\nmbWzugYvmZmZ2eicWM3MzBJyYjWzSaO7u3tCtGGdza+NM7NJo6+vb7xDsEnAidXMJrSenh66urqa\namNoaIjBwcFEEZmNzpeCzWxCazappmrDrCgnVjMzs4ScWM3MzBKqmVglzZYUoyzflrS8Rpl5tY5j\nZmbWCYoMXroXmF5h+3uApcAXgX8FFlYocx3wOuBfGg3QzMysndRMrBHxItmb0/9A0v7ApcCFEfG1\nfPOzZWXOJXujwNsjYlOacM3MzCa2uh+3kbQr2Tvp7gYWVSnzbuAzZO9tfbCZAM3MzNpJvS86nwLc\nSPYS85MiIiqU+SvgBuCikt6smZnZpFDvqOALyS7vzomIzeU7Je1C9t7W71ClN1tStlfS6nzprTMO\nMzOzCanwpWBJc4GzgGMj4pEK+0d6s8NU6c2WiogBYKC+cM3MzCa2QolV0kHA1cDCiLi9SrELgEOA\nWZV6s2ZmZpNBzcQqaSrZ5d27gesl7VGh2GFkj9ucDGyuUGYoIp59eTUzM7POUqTHeiywT748WaXM\n3YCA5VX2rwDm1xeamZlZ+ynyHOsKssRoZmZmNXiuYDMzs4ScWM3MzBJyYjWzCW1oaGhCtGFWVN1T\nGk5QTwHTxjsIM0tvcHBwvEMYa0+NdwCWlmrM42BmZmZ18KVgMzOzhJxYzczMEnJiNTMzS8iJ1czM\nLCEnVjMzs4ScWM3MzBJyYjUzM0vIidXMzCwhJ1YzM7OEnFjNzMwScmI1MzNLyInVzMwsISdWMzOz\nhJxYzczMEnJiNTMzS8iJ1czMLCEnVjMzs4ScWM3MzBJyYjUzM0vIidXMzCyh/w9fELu1bYuwTAAA\nAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "qt.visualization.hinton(qt.to_super(qt.tensor(qt.sigmaz(), qt.hadamard_transform())));" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Reduced Channels" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As an example of tensor contraction, we now consider the map $S(\\rho) = \\Tr_2[\\cnot (\\rho \\otimes \\ket{0}\\bra{0}) \\cnot^\\dagger]$.\n", "We can think of the $\\cnot$ here as a system-environment representation of an open quantum process, in which an environment register is prepared in a state $\\rho_{\\text{anc}}$, then a unitary acts jointly on the system of interest and environment. Finally, the environment is traced out, leaving a *channel* on the system alone. In terms of [Wood diagrams](http://arxiv.org/abs/1111.6950), this can be represented as the composition of a preparation map, evolution under the system-environment unitary, and then a measurement map." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "![](files/sprep-wood-diagram.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The two tensor wires on the left indicate where we must take a tensor contraction to obtain the measurement map. Numbering the tensor wires from 0 to 3, this corresponds to a ``tensor_contract`` argument of ``(1, 3)``." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/latex": [ "Quantum object: dims = [[[2], [2]], [[2, 2], [2, 2]]], shape = (4, 16), type = other\\begin{equation*}\\left(\\begin{array}{*{11}c}1.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\cdots & 0.0 & 0.0 & 0.0 & 0.0 & 0.0\\\\0.0 & 0.0 & 1.0 & 0.0 & 0.0 & \\cdots & 0.0 & 0.0 & 0.0 & 0.0 & 0.0\\\\0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\cdots & 0.0 & 0.0 & 1.0 & 0.0 & 0.0\\\\0.0 & 0.0 & 0.0 & 0.0 & 0.0 & \\cdots & 0.0 & 0.0 & 0.0 & 0.0 & 1.0\\\\\\end{array}\\right)\\end{equation*}" ], "text/plain": [ "Quantum object: dims = [[[2], [2]], [[2, 2], [2, 2]]], shape = (4, 16), type = other\n", "Qobj data =\n", "[[ 1. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]\n", " [ 0. 0. 1. 0. 0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]\n", " [ 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1. 0. 0.]\n", " [ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1.]]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s_meas = qt.tensor_contract(qt.to_super(qt.identity([2, 2])), (1, 3))\n", "s_meas" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Meanwhile, the ``super_tensor`` function implements the swap on the right, such that we can quickly find the preparation map." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/latex": [ "Quantum object: dims = [[[2, 2], [2, 2]], [[2], [2]]], shape = (16, 4), type = other\\begin{equation*}\\left(\\begin{array}{*{11}c}1.0 & 0.0 & 0.0 & 0.0\\\\0.0 & 0.0 & 0.0 & 0.0\\\\0.0 & 1.0 & 0.0 & 0.0\\\\0.0 & 0.0 & 0.0 & 0.0\\\\0.0 & 0.0 & 0.0 & 0.0\\\\\\vdots & \\vdots & \\vdots & \\vdots\\\\0.0 & 0.0 & 0.0 & 0.0\\\\0.0 & 0.0 & 0.0 & 0.0\\\\0.0 & 0.0 & 0.0 & 0.0\\\\0.0 & 0.0 & 0.0 & 0.0\\\\0.0 & 0.0 & 0.0 & 0.0\\\\\\end{array}\\right)\\end{equation*}" ], "text/plain": [ "Quantum object: dims = [[[2, 2], [2, 2]], [[2], [2]]], shape = (16, 4), type = other\n", "Qobj data =\n", "[[ 1. 0. 0. 0.]\n", " [ 0. 0. 0. 0.]\n", " [ 0. 1. 0. 0.]\n", " [ 0. 0. 0. 0.]\n", " [ 0. 0. 0. 0.]\n", " [ 0. 0. 0. 0.]\n", " [ 0. 0. 0. 0.]\n", " [ 0. 0. 0. 0.]\n", " [ 0. 0. 1. 0.]\n", " [ 0. 0. 0. 0.]\n", " [ 0. 0. 0. 1.]\n", " [ 0. 0. 0. 0.]\n", " [ 0. 0. 0. 0.]\n", " [ 0. 0. 0. 0.]\n", " [ 0. 0. 0. 0.]\n", " [ 0. 0. 0. 0.]]" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "q = qt.tensor(qt.identity(2), qt.basis(2))\n", "s_prep = qt.sprepost(q, q.dag())\n", "s_prep" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For a $\\cnot$ system-environment model, the composition of these maps should give us a completely dephasing channel. The channel on both qubits is just the superunitary $\\cnot$ channel:" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(,\n", " )" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdYAAAFtCAYAAAC6F0vsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucXGWd5/HPN1yWkJGb2QkRkDDK7ICorBuiIi8ML9Dl\nIkamxQmDmnDZNkrcOIKQWSYYHRbCAGZRkdhASLiJlx4kMsEM8BJR0VmCwyVRkQi4JCZgGMQAhZD0\nb/84p7UoqrpOVT1d3VX9fb9e59V1znme5/y6OeRXz7k8jyICMzMzS2PcSAdgZmbWTZxYzczMEnJi\nNTMzS8iJ1czMLCEnVjMzs4ScWM3MzBJyYjUzM0uoqxOrpGWSbs0/L5S0psU2bpB0n6QdyvaPk/R9\nSbcVbUvS+ZI2SNq9Yv+Bkl6U9DcNtDVFUgyxPFannXGS7pb0nYrtO0t6WNKSfD0kfbCZ+pIOyn+v\nnooyR0l6WdK7Gmzvt5LOqRLLdZIekLRjwXaW1fnbzapyjOsl3S9px4rtR+a/y6F53ak1/t716p+X\n/3x7xf7TJT0n6Q0NtvdS5fmkzF3l52zBdob6W727xu87vU697+Xlap1fdes3eH4Vaa/u+dVAWw2f\nY9YFIqJrF2AZcGv+eSGwpsU2dgc2AJ8v238m8B/A64q2BewA/BS4oWzf9sC9wI2NxAVsB+xZZXkf\nsBU4q0BbfwE8B5xatu1LwDpgQr4ewAdbqH8O8FtgUr6+K/AEsKjR9oAe4EXgoLL9H8i3vbmBdnat\n8be7HXgMmFgltt3yuP932bZdgF8DFwBT8r/V1Bp/qyHr5+tXAL8AxufrU4DfA3OaiOdMYDOwZ9n+\nTwFPA5MbaGePKn+n1wMPkZ23O9X4fXes8TfuBQaAE4c6vxqoX+j8KtJeA+dXkbYaPse8dP4y4gEM\n6y+XOLHm68cALwOHAAcCJeCkJuJ5U163J19fAKwHdm8mrop9k/J/VK5r4PecAzwL7AscSZaUDyvb\nXzOxFqw/DvgRcEu+fi3wILBjk+1dB9xH9iVlIvAkcHaj7VQpfy5ZMn7rEGWOys+Bafn61cD9+T+0\nUxgisdarn69PIEv+lwEC7gK+22Q844DvAyvyfX8JvAB8qNG4qpS/EtgI7N3g/1MHkH1ROL/o+VWg\nfkPnV4H2Cp1fRdpq5hzz0tnLiAcwrL/cMCTWfFsf8PP8f7xvNNsW8GngKeC9wB+A97YSV759B+CH\nDNGLGKLNVcDdwP8D/qliX91/+Iaqn+9/I/A8cAPwEnBwC/Hsmm//HPAN4AfAuGbiKiv3PmAbeS+o\nTmxfzM+BD1LWk6FAYh2qftn+w8i+BNwIPAPs1Wx7/KnHezrwY8qulDQaV1m5T+Tn7KENnmO7Ab8E\nVgBq5Pwaqn4z51edeAqfX0Via+Yc89K5y4gHMKy/3PAl1tfk/1A9A7y22bb4U29kG3B5q3Hl279K\nE72IvO5+ZJewHgH+U8W+Iom1Zv2yMgvztj7fSjz5/sEe6BZgvxbj+iuynm3NnkZF+fFkl2u3AZ8p\n2z6FYom1av0q/42DskvZzbYHnJrvWw/s1mJch5MlrtMbPL/GASuBnwGvaeL8qlm/yfNryPaKnl8N\nxNbQOealc5eufnhpGH2I7J7oLsBbmm0ksv/bzif7n/IfWw1K0hxgNtnl5fVNNHEq2eXpvcmSUdL6\nksYDJ5FdijxMklppLyLuBH5C1gN7rIW4dgW+TXbJdEGdmAaPXQIuIeu1XVqkTiP1JU0CjiP7Wx3e\nansRsZTsC9eXI+J3LcT1euBbQF9EXFUvrgoXAO8EZkTElgbr1q3fxPk1ZHsNnF9FYmv4HLPO5cTa\nIEn7AovJHgq5HFgq6c9aaHJrxc9m4zqM7DLeGRFxTxP1DwHmk10CvB1YLmm7xPUvIvtCMg2YCsxN\nEM9Whvjb1WtH0jiyy60DwMn5l52itgIDETHQQJ2i9fvIethHAR+WdHyCeIb8W9VrJ09cNwNryR6A\nKkzSTOAsYGZEPNJI3QbqN3J+FY2n7t+sXlstnmPWgZxYG5B/A74G+ElEXEH2D/ZWmuixJI5rH6Cf\n5noRSNqJ7GGPZRFxG9lTjW8Ezk5VX9IRZPflZkfEWrIvJosqXx9JEU+D7ZwPHErzvajkJM0mS6iz\nIuLHZAnjq5L2GNHA4Cqyp4NPjIjCXwQlHUz2INT8iFjV6EGL1G/w/GopnibaGnXnmA2v7Uc6gA7z\nP4G3AQcBRMQL+T+C35f0rYi4vd0B5cnjZrLXgBZJ2rNKsd9GxLYhmrkQ2InsYSoiYpOkM8h6dyvy\nf6iGMmR9sodArgEui4gf5GWuzN87vEbS9IreUavxFI3rTWRfjk4BtlT525Ui4tmCx0oi/5J0Gdk/\n1IO9n88Bx5O9KnRyO+Mpi+szZK+PHA9sX+Vv9VxEPFel3kSyS6B3AddXOz8jYtMQx61bn+yBpULn\nV6vxNBHb4Yyyc8zaYKRv8g7nQsKHl/jTawqzqpS5mCx57FI0nrJt08ketmjofbayuN6d1x9qmTJE\nO4eT9bqnV9n3TWA12Rewqg+XFKx/NdlDHTtV7N+L7AGwv2s0nrJtd5HdN2wmru/V+bstq/PfYDZZ\nQinfNoUCDy9Vq0/2MNvtwJ28+onXg8keGDqhkXgq9j9Osfeaq/1ej9X5Wy2s0daseudnXq7W+VW3\nfoPnV6F46p1fDcTW0jnmpTMX5SeImZmZJeB7rGZmZgk5sZqZmSXkxGpmZpaQE6uZmVlCTqxmZmYJ\nObGamZklNGYSq6Ret+W23JbbaldbqdtLHZsNnzGTWMmGs3Nbbsttua12tZW6PSfWDjGWEquZmdmw\nG0uJtc9tuS235bba2Fbq9lLHZsPEQxqamZklNGI9Vkm9klbni+8dmJlZV3CP1czMLKGxdI/VzMxs\n2DmxmpmZJeTEamZmlpATq5mZWUJOrGZmZgk5sZqZmSXkxGpmZpbQ9iMdQApLlizZBEwa6TjMzJrw\n5Jw5c/Yc6SAsna5IrMCknp4exo8f31IjpVKJ/v7+RCGZmRXiTkGX6ZpLwa0m1VRtmJnZ2NY1idXM\nzGw0cGI1MzNLKHlilbRM0q3554WS1qQ+hpmZ2WjlHquZmVlCTqxmZmYJObGamZkl5MRqZmaW0Igl\nVkm9klbnS+9IxWFmZpbSiI28FBF9QN9IHd/MzGw4+FKwmZlZQk6sZmZmCTmxmpmZJZQ8sUbE7Ih4\nX/55YUQclPoYZmZmo5V7rGZmZgk5sZqZmSXUNYm1VCqNijbMzGxsG7H3WFPr7+8f6RDMzMy6J7Gm\n1NPTw/jx41tqo1QqOdmbmY1BXXMpOKVWk2qqNszMrPM4sZqZmSXkxGpmZpZQ04lV0jJJt+afb5B0\nn6QdyvaPk/R9SbelCNTMzKwTpOqxzgX2BBaUbfs74M3AaYmOYWZmNuolSawR8QxwOvD3kg6RdCBw\nPnBGRPwmxTHMzMwqSVoq6SlJa2rsl6QvSlon6UFJbyvbd7Skh/N981PFlOwea0TcBlwDXAtcB3wn\nIr6Wqn0zM7MqlgFHD7H/GGD/fOkFrgCQtB1web7/QOCkvFPYstTvsZ4JbAC2Ae9N3LaZmdkrRMTd\nkqYMUWQGcG1EBPATSbtJmgxMAdZFxKMAkm7Ky/6s1ZhSPxX8IbJkvQvwlqEKSuqVtDpfehPHYWZm\nBrAX8ETZ+vp8W63tLUvWY5W0L7CYrNd6ALBU0psj4rlq5SOiD+hLdXwzMxv9jj766Ni8eXPh8vfd\nd99a4MWyTX15/hi1kiRWSSK7v/qTiLhC0s5k160vBT6W4hhmZtb5Nm/ezOrVqwuXl/RiRExt4ZAb\ngH3K1vfOt+1QY3vLUl0K/p/A24BTASLiBWA2cJqk9yQ6hpmZdYGIKLwksAL4aP508DuAZyNiI3Av\nsL+k/STtCMzMy7as5R6rpL8ELgQ+HhHrB7dHxI8kLQaulnRQRPy+1WOZmZmVk/Q1YDowUdJ64LNk\nvVEiYgmwEjgWWAe8AJyS79sqaS6wCtgOWBoRa1PE1HRijYjZZas71yjzGeAzzR7DzMy6T6Ke6GBb\nJ9XZH8AZNfatJEu8SXmsYDMzs4Q8H6uZmbVVyh7raOQeaxWlUmlUtGFmZp3HPdYq+vv7RzoEM7Ou\nlPBp31HLidXMxoyenh7Gjx/fUhulUslfvm1ITqxmNma0mlRTtTHWdXuP1fdYzczMEnKP1czM2so9\n1iFIWibpVknnS9ogafeK/QdKelHS37QWppmZWWdIdSn4c8CTwJcHN0jaHlgO/HNEfD3RcczMrMO1\neazgtkuSWCPiZeAjwF9L6sk3/z0wmRpDSZmZmXWjZPdYI2KtpHOBKyRtAf4BOD4inkl1DDMz63yd\n2hMtKvVTwYuBnwG3AVdFxL8mbt/MzGxUS5pY81kEzs/b/cehykrqlbQ6X3pTxmFmZjZShuN1m60V\nP6uKiD6gbxiOb2Zmo1QnP5RUlN9jNTOztur2xOqRl8zMzBJyj9XMzNqq23usLSXWiJhdZdtdgFpp\n18zMrFO5x2pmZm3V7T1W32M1MzNLyD1WMxszSqVSkonOrTXd3mN1YjWzMaO/v3+kQ7BhIOlo4DJg\nO7JR/xZV7P8McHK+uj1wAPCfI+I/JD0ObAG2AVsjYmqr8Tixmpk1oaenJ0nvd6wl+9QDREjaDrgc\neA+wHrhX0oqI+FnZMS8GLs7LHw/8XUT8R1kzR0TE5lQx+R6rmVkTWk2qqdowpgHrIuLRiHgJuAmY\nMUT5k4CvDWdATqxmZtZWDc7HOrFsXPlqY8vvBTxRtr4+3/YqknYGjgbKLxMEcIek+1KNW+9LwWZm\nNpptTnHfM3c88KOKy8CHRcQGSX8O3C7pFxFxdysHabrHKmmZpFslTZEUQyyPtRKgmZl1lwZ7rPVs\nAPYpW98731bNTCouA0fEhvznU8DNZJeWW5LiUvATwOQqy/FkT1ldnuAYZmbWJRIn1nuB/SXtJ2lH\nsuS5orKQpF2BdwO3lG2bIOk1g5+B9wJrWv39Wr4UHBHbgE3l2yRNAq4AvhYRl7R6DDMzs2oiYquk\nucAqstdtlkbEWklz8v1L8qInAP8aEc+XVZ8E3CwJsnx4Y0R8t9WYkt9jlbQD2Y3hTcD/SN2+mZl1\nruGYjzUiVgIrK7YtqVhfBiyr2PYo8NakwTA8Dy99GXgDcEhEvDgM7ZuZWQfr9pGXkr5uk3e9ZwM9\nEbG+TtneIR6fNjMz60jJeqySDgO+CHwiIu6pVz4i+oC+VMc3M7PO0O091iSJVdI+ZPdV+yLiqhRt\nmplZd3JirUPSTmTv/mwAFknas0qx3+ZPD5uZ2RjnxFrf24H/ln9+okaZ/YDHExzLzMw62HA8FTza\nNJ1YI2J22apaD8XMzMaCbk+sHoTfzMwsIQ/Cb2ZmbdXtPVYnVjOzJpRKpSQTnY9FTqxmZvYq/f39\n9QtZVU6sZnX09PQk+ebuf6jMrBs4sVrLWk2qqdows9HPr9uYmZkl5sRqZmaWULcn1qbeY5U0TtLd\nkr5TsX1nSQ9LWpKvh6QPpgjUzMysEzSVWCNigGx6uCMknVq26yKyGdzPbD00MzPrRoP3WYssnaiV\nIQ0flXQWsFjSncAbgY8D0yPi+VQBmplZd+nUhFlUS/dYI2KJpBOA64ApwBci4ocpAjMzM+tEKR5e\nmgP8Kl8WJGjPzMy6VCdf4i0qxSD8pwIlYG+y6eEKkdQraXW+9CaIw8zMOkC332NtKbFKOgSYD3wQ\nuB1YLmm7InUjoi8ipuZLXytxmJlZ50idWCUdnb+Rsk7S/Cr7p0t6VtL9+XJe0brNaPpSsKSdgGuB\nZRFxm6R/B9YCZwMXpgjOzMxsKHln7nLgPcB64F5JKyLiZxVFfxAR72uybkNa6bFeCOwEfBogIjYB\nZwALJb2plaDMzKx7Je6xTgPWRcSjEfEScBMwo2AordStqdkBIg4HPgmcEhFbBrdHxE3ACrJLwh7V\nyczMXiVxYt0LeKJsfX2+rdKhkh6UdFtZ569o3YY0lfwi4u5adSPixLJVNdO+mZlZbqKk1WXrfU08\nl/NT4PUR8ZykY4FvA/sni7CCe5VmZtY2TTztuzkipg6xfwOwT9n63vm28mP+vuzzSklfkTSxSN1m\nOLGamVlbDQwMpGzuXmB/SfuRJcWZwN+WF5C0J/BkRISkaWS3QZ8GflevbjOcWK1lpVIpyUTnZjY2\npHw/NSK2SpoLrCIbq35pRKyVNCffv4TsldCPS9pKNu7CzMiCqFq31ZicWK1l/f39Ix2CmXWQ1AM/\nRMRKYGXFtiVln78MfLlo3VY5sY5RPT09SXqZTqpm1ohOHlGpqBRDGloHajWppmrDzKzbuMdqZmZt\n1e09VidWMzNrq25PrHUvBUsaJ+luSd+p2L5zPnDxEkkHSXpRUk9FmaMkvSzpXakDNzOzzjTmZ7eJ\niAFgNnCEpFPLdl1E9njymRGxBvgssETSJABJuwLXAJdGxI9SB25mZp1pzCdWgIh4FDgLWCxpX0lH\nAh8HZkfE83mxi4FfAoNDTX0JeAY4r7I9MzMbmxpJqp2aWAvfY42IJZJOAK4DpgBfiIgflu0fkDQL\neEDSDcCJwLR8xgAzMzPA91grzQEOA/4ALKjcGRHryHqufwssioj7W47QzMy6Srf3WBtNrKeSDQe1\nN7Bf5U5J44GTgBeAwyTVnN1GUq+k1fnS22AcZmbWoZxYc5IOAeaTjbl4O9mcq9tVFLuI7PLyNGAq\nMLdWexHRFxFT86XRKYDMzMxGpUKJVdJOwLXAsoi4DegF3gicXVbmCOATZA80rQXOBBZJekPyqM3M\nrGO5x5q5ENgJ+DRARGwCzgAWSnqTpNeQvVpzWUT8IC9zJfAD4BpJHjrRzMz8VDCApMOBTwJHRcSW\nwe0RcVM+IMRy4AGy+6rnVlQ/DVgDzAMWpwrazMw6V6cmzKLqJtaIuLtWuYg4sU7dDcDuzYVmZmbd\naMwnVjMzs5ScWM3MzBJyYrWuVCqVkkx0bmbWiE5+KKkoJ9Yxqr+/f6RDMLMxyonVzMaEnp6eJFcx\n/KXN6nFiNbMxodWkmqoN635OrGZmZgl1e2L1iEhmZtY2wzHykqSjJT0saZ2k+VX2nyzpQUkPSbpH\n0lvL9j2eb79f0uoUv2PRsYLHSbpb0ncqtu+c/zJLJP1W0jlV6l4n6QFJO6YI2MzMOlvKxJpPBnM5\ncAxwIHCSpAMrij0GvDsi3gz8I1A58csREXFwRExt/bcrmFgjYgCYDRwh6dSyXRcB25ENuD8H+Jyk\ngwZ3SvoA2YTnH/aE52ZmBskH4Z8GrIuIR/M8cxMwo+J490TEM/nqT8imPh02hS8FR8SjwFnAYkn7\nSjoS+DjZbDbPR0Q/8E2y6eR2kDQR+CpwXkQ8NBzBm5nZmLcX8ETZ+vp8Wy2nAbeVrQdwh6T7Us0N\n3tDDSxGxRNIJwHXAFOALEfHDsiJzgYeAfwAOAH4JXJIiUDMz6w4NPrw0seLeZ1+zc3jn05ueBhxW\ntvmwiNgg6c+B2yX9Ih8jv2nNPBU8B/hVviwo3xERz0o6BVgFlIC35JeRzczMiAgGBhpKC5vr3Pvc\nAOxTtr53vu0VJL0FuAo4JiKeLotnQ/7zKUk3k11abimxNvNU8KlkSXNvYL/KnRFxJ9k17Bsi4rFa\njUjqlbQ6X5J0v83MbPRLfI/1XmB/SfvlD8nOBFaUF5D0euCfgY9ExC/Ltk/I5xNH0gTgvWRTnbak\noR6rpEOA+cD7ye6vLpd0aERsqyi6NV9qyrvyTXXnzcysc6V8jzUitkqaS3aldDtgaUSslTQn378E\nOA94LfAVSQBb817wJODmfNv2wI0R8d1WYyqcWCXtBFwLLIuI2yT9O7AWOBu4sNVAzMxsbEg9QERE\nrARWVmxbUvb5dOD0KvUeBd5aub1VjfRYLwR2Aj6dB7RJ0hlkvdYVEbE2dXBmZtZdmrjH2nGKDhBx\nOPBJ4JSI2DK4PSJuIruWvVySh0c0M7O6Uo+8NNoUSob5o8dVy0bEiVW2TW8tLDMz61admjCLci/T\nzMzayonVzMwsISdWMxsTSqVSkonOzYYyFh5ecmI1MwD6+/tHOgQbI9xjNbNR67LLLuP5559vqY0J\nEyYwb968RBGZ1efEamajVqtJNVUbZo1wYjUzM0skIti2rXIU3O7ixGpmZm3V7T3WuiMvSRon6W5J\n36nYvrOkhyUtkbRMUgyxzBq+X8HMzDrJmB95KSIGJM0GHpR0akQszXddRDaTwJl5O/OrVL8OeCPw\nL2nCNTOzTtbJCbOookMaPirpLGCxpDvJkuXHgekRMfjkw7PldSSdC7wTeFdEbE4Ys5mZdTC/x5qL\niCWSTiDrhU4BvhARP6xWVtL7gM8DMyPigRSBmplZd3CP9ZXmAL/KlwXVCkj6K+AG4MKI+GZr4ZmZ\nWbfp9sRaaNq4MqcCJWBvYL/KnZJ2Bb4NfJ8aibesbK+k1fnS22AcZmbWgRp5cKlTE3DhHqukQ8ge\nUHo/2f3V5ZIOjYht+f5xwI3AAHBy1PmLREQf0Nds4GZm1pm6/R5r0YnOdwKuBZZFxG1AL9kDTGeX\nFTsfOBSYUT4ZupmZWTn3WDMXAjsBnwaIiE2SziDrta4A3kTWmz0F2CJpz4r6pYh4FjMzG9M6OWEW\nVTexSjoc+CRwVHlPNCJuktQDLAe2AAKW1WhmOTC71WDNzKzzdXtirXspOCLujojtI+KuKvtOjIip\nEXFERGiIZfZwBG9mZp0n9aVgSUfnIwGuk/SqwYqU+WK+/0FJbytatxmNPhVsZmbWkoGBgcJLPZK2\nAy4HjgEOBE6SdGBFsWOA/fOlF7iigboNc2I1M7O2GYbXbaYB6yLi0Yh4CbgJmFFRZgZwbWR+Auwm\naXLBug1zYjXrYBMmTBgVbZg1InFi3Qt4omx9fb6tSJkidRvmaePMOti8efNGOgSzhjX48NJESavL\n1vvycRBGLSdWszbr6elh/PjxLbVRKpXo7+9PFJFZezU4QMTmiJg6xP4NwD5l63vn24qU2aFA3Yb5\nUrBZm7WaVFO1YTYShuEe673A/pL2k7QjMBNYUVFmBfDR/OngdwDPRsTGgnUb5h6rmZm1Vcr3WCNi\nq6S5wCqyOcKXRsRaSXPy/UuAlcCxwDrgBbLBjGrWbTUmJ1YzM2ur1ANERMRKsuRZvm1J2ecAziha\nt1VNXwqWdL2k+/Puc/n2IyW9LOlQSSFpqGvjZmY2xqR8j3U0auUe61zgtcBnBzdI2gVYClwM/Ka1\n0MzMrNuMhWnjmk6sEfE7suvUZ0ualm9eDDwDLGw9NDMz60bdnlhbuscaEXdIuoJslpsFwMnAIRHx\nkqQkAZqZWXfp1IRZVIrXbc4hm9nm68CCiHgoQZtmZtalur3H2nJijYgScAnwB+DSovUk9UpanS+9\nrcZhZmajX0R0/cNLqV632QoMREThv0I+JNWoHpbKzMzS69SeaFF+j9XMzNrKidXMzCwhJ1YzM7OE\nnFgLiIhlwLKKbY+TPS1sZmYG0NFP+xblHquZmbWVE6uZmVlCTqxmllSpVEoy0blZp3JiNbOk+vv7\nRzoEsxHlxGpm9PT0JOllOqnaWDc48lI3c2I1K6DVpJqqDbNu4B6rmZlZQk6sZmZmCXV7Yq07u42k\n6yXdL2nHiu1HSnpZ0nn5z7dX7D9d0nOS3pA6aDMz60yNTBnXqQm4yLRxc4HXAp8d3CBpF2ApcHFE\nfB64imyy8/H5/inAF4CzIuJXiWM2M7MONuYTa0T8DjgFOFvStHzzYuAZYGG+fhbZZeVFkkQ2vOE9\nEbEkdcBmZtbZxnxiBYiIO4AryHqlHwROBj4SES/l+58HZgNnADcAbwVOG46Azcyss7VronNJe0i6\nXdIj+c/dq5TZR9L3JP1M0lpJ88r2LZS0Ib8der+kY4sct1BizZ1DNqj+14EFEfFQ+c6I+CFwPXAS\ncGZEbGigbTMzGwPafI91PnBnROwP3JmvV9pKlrMOBN4BnCHpwLL9iyPi4HxZWeSghRNrRJSAS4A/\nAJdW7pc0CTgOeAE4vF57knolrc6X3qJxmJlZZ2tjYp0BLM8/Lwc+UCWWjRHx0/zzFuDnwF6tHLSR\nHitkmX0gIqr1z/uAR4CjgA9LOn6ohiKiLyKm5ktfg3GYmVmHatelYGBSRGzMP28CJg1VOH/w9r8C\n/1a2+ZOSHpS0tNql5GoaTay1gplNllBnRcSPgYuAr0raI0X7ZmbWPRrssU4su7r5qiucku6QtKbK\nMqPimAHU7AJL+jOgH/hURPw+33wF8BfAwcBGqlytrablASIk7QNcBsyPiEfyzZ8Djge+RPagk5mZ\nWTOXeDdHxNQh2juq1j5JT0qaHBEbJU0GnqpRbgeypHpDRPxzWdtPlpW5Eri1SMAt9VjzV2uWAquB\nL5cF8xLwUeBESSe0cgwzM+subbzHugKYlX+eBdxSWSDPY1cDP4+IL1Tsm1y2egKwpshBG+qxRsQy\nsndUB9cDeE+NsvcDO1bbZ2ZmY1cb309dBHxD0mnAr4EPAUh6HXBVRBwLvAv4CPCQpPvzev8rfwL4\nnyQdTHYJ+XHgY0UO6rGCzcysrdqVWCPiaeDIKtt/Axybf/4h2auk1ep/pJnjOrGamVlbdeqISkU5\nsZoVUCqVkkx0bjbWdfJQhUU5sZoV0N/fP9IhmHUNJ1azDnXZZZfx/PPPt9TGhAkTmDdvXv2CZlaY\nE6tZh2o1qaZqw8xeyYnVzMwsISdWMzOzRMbCw0uFRl6SdH0+F92OFduPlPSypJck/U3FPkm6S9Jt\nKQM2M7PO5onOM3OB1wKfHdwgaRey4QwvBv4euFzSnmV15gFvBk5NE6qZmXUDJ1YgIn4HnAKcLWla\nvnkx8AywMP+8lmzqOCT9JXAB8PGyKXvMzMy6PrEWvscaEXdIugJYLmkB2aw1h+QD7iNpFvCgpNOB\n04CbI+IbwxG0mZl1rk5NmEU1+vDSOcB7ga+TTRP30OCOiHhc0qeAK8nmrTsmWZRmZtYVOrknWlRD\n08ZFRAm4BPgDVSZ8jYilZEn1y/nl45ok9daauNbMzLrXwMBA4aUTNfO6zVZgICJq/cZb82VIEdFH\nfk/WzMziq+rmAAAM8ElEQVTGjm7vsfo9VjMzaysnVjMzs0TGwj1WJ1YzM2srJ9YKEbEMWDbE/inN\nh2NmZt3OidXMzCwhJ1YzM7NEIqJjX6MpqqH3WM06yYQJE0ZFG2b2Sh7S0KxDzZs3b6RDMLMq2pUw\nJe1BNlLgFOBx4EMR8UyVco8DW4BtwNaImNpI/UpOrDaq9PT0MH78+JbaKJVK9Pf3J4rIzFJrY090\nPnBnRCySND9fP6dG2SMiYnML9f/Il4JtVGk1qaZqw8yGTxsvBc8AlueflwMfaEd9J1YzM2ubRpJq\ngsQ6qWzq0k3ApFphAXdIuq9i7Pqi9V/Bl4LNzKytGkyYEyWtLlvvy8eaB0DSHcCeVeqdW3HMkFTr\nwIdFxAZJfw7cLukXEXF3A/VfoW5ilXQ9cBAwbXDu1Xz7kcB3yTL9DkM0MT0ivl8kGDMz634NJtbN\ngw8T1WjrqFr7JD0paXJEbJQ0GXiqRhsb8p9PSboZmAbcDRSqX6nIpeC5wGuBz5YFuwuwFLiY7JvC\n5IplX2ANsBr4tyKBmJnZ2NDGS8ErgFn551nALZUFJE2Q9JrBz2Rzjq8pWr+auj3WiPidpFOA2yTd\nEhH/F1gMPAMsLO/FlgV6JTAROCQiXiwSiJmZdb82DxCxCPiGpNOAXwMfApD0OuCqiDiW7L7pzZIg\ny4k3RsR3h6pfT6F7rBFxh6QrgOWSFgAnkyXNakn1E8BHyR5dXl+kfTMzGzva9bpNRDwNHFll+2+A\nY/PPjwJvbaR+PY08FXwOILKXZRdExEOVBSQdDvwf4IyIuKfRYMzMrPsNDAwUXjpR4cQaESXgEuAP\nwKWV+yW9HvgW2RNbV9VrT1KvpNX50luvvJmZdb42v24zIhp93WYrMBARr/gaIWk8cDOwFvhUkYby\nx6X76hY0M7Ou0qk90aJSvcd6FbAH8N8jYmuiNs3MrAt1ak+0qJYTq6TPACcCxwPbS6p8Ufe5iHiu\n1eOYmVnniwi2bds20mEMqxQ91k+QDRDx3Rr7PwcsTHAcMzPrAu6xlomIZcCyim37JYzHzMy6nO+x\nmpmZJdLJT/sW5cRqZmZt5cRq1kalUinJROdmNnr5UrBZG/X39490CGY2zNxjNTNrUE9PT5IrD/6i\n1X3aPAj/iHBiNbPkWk2qqdqw0ck9VjMzs4ScWM3MzBIZC5eCG5k27o8kTZcUQyzfy8uFpA+mDdnM\nzDqZZ7ep7h5gcpXt7weWAF9pOiIzM+tq3d5jbSqxRsRLwKbybZIOIJuv9YKI+GaC2MzMrAt1ak+0\nqCT3WCXtBtwC3AUsSNGmmZl1n7FwjzXFtHHjgBvJJkE/Obr9q4iZmbWk29NEUw8vVbgAeCcwIyK2\nFK0kqVfS6nzpTRCHmZl1AD+8NARJM4GzgOMi4pFG6kZEH9DXyvHNzKyzjIVLwU33WCUdDFwNzI+I\nVelCMjOzbtauHqukPSTdLumR/OfuVcr8F0n3ly2/l/SpfN9CSRvK9h1b5LhN9VglTQS+Tfaw0vWS\n9qwsExGbKreZmZm1scc6H7gzIhZJmp+vn1NeICIeBg4GkLQdsAG4uazI4oi4pJGDNnsp+Dhg33zZ\nWKOMmmzbzMy6WBvvnc4Apuefl5N1Bs+pVRg4EvhVRPy6lYM2dSk4IpZHhIZa8nKKiG+1EqCZmXWP\niGDbtm2FlxZNiojBzt8mYFKd8jOBr1Vs+6SkByUtrXYpuZoUTwWbmZkV1uA91ollb5C86i0SSXdI\nWlNlmVFxzABqdpUl7Ug2emD5AEdXAH9Bdql4I3Bpkd/Pg/CbmVlbNXgpeHNETB2iraNq7ZP0pKTJ\nEbFR0mTgqSGOcwzw04h4sqztP36WdCVwa5GA3WM1s+RKpdKoaMNGn0Z6qwnuxa4AZuWfZ5GNEFjL\nSVRcBs6T8aATgDVFDuoeq5kl19/fP9Ih2CjWxoeXFgHfkHQa8GvgQwCSXgdcFRHH5usTgPcAH6uo\n/0/5q6UBPF5lf1VOrGY2qvX09DB+/PiW2iiVSk72o0i7XreJiKfJnvSt3P4b4Niy9eeB11Yp95Fm\njuvEamajWqtJNVUblk6nDlVYlBOrmZm1TSePAVyUE6uZmbVVtyfWuk8FS5ouKYZYvifpIEkvSuqp\nqHuUpJclvWv4fgUzM+sk3T67TZHXbe4BJldZPkb2pNRXImIN8FlgiaRJAJJ2Ba4BLo2IHw1D7GZm\n1oHGfGKNiJciYlP5AuwOXAJcEBGDo1RcDPySP00F9yXgGeC8YYjbzMw60OC0cUWXTtTwPVZJu5G9\nZHsXsGBwe0QMSJoFPCDpBuBEYFpEvJQoVjMz6wKd2hMtqqGRlySNA24EtgInR8VfJyLWkfVc/xZY\nFBH3pwrUzMy6w5i/FFzhAuCdwIyI2FK5U9J4smGhXgAOk1Rz6jhJvbUGVTYzs+7V7Ym18KVgSTOB\ns4DjIuKRGsUuytucBvwYmEt2r/VVIqKPP92PNTOzMaJTE2ZRhXqs+ViJVwPzI2JVjTJHAJ8AZkfE\nWuBMYJGkN6QK1szMOlubB+EfEXV7rJImAt8me1jpekl7Vin2PNmrNZdFxA8AIuLK/L3WayRNj4jO\nfLzLzMyS6tSnfYsqcin4OGDffNlYo8xSsvuq51ZsP41smp15wOImYzQzsy7SqT3Rouom1ohYDixv\npvGI2ED2zquZmRngxGpmZpZMJ987LcqJ1czM2sqJ1cxsBJVKpSQTndvosW3btpEOYVg5sZrZqNbf\n3z/SIVhCvhRsLevp6Unybdv/uJhZt3BitZa0mlRTtWFmNlo4sZqZmSXkxGpmZpZQtyfWomMFT5cU\nQyzfk/RbSedUqXudpAck7Zg+fDMz6yTtnOhc0omS1koakDR1iHJHS3pY0jpJ88u27yHpdkmP5D8L\nDXhUdNq4e4DJVZaPAQF8BZgDfE7SQWVBfYBswvMPe8JzMzODtk4btwb4a+DuWgUkbQdcDhwDHAic\nJOnAfPd84M6I2B+4M1+vq9Cl4DwpbqoI5gDgEuCCiPhmvu0DwHJJ7wB2Bb4KnBcRDxU5jpmZdb92\nXQqOiJ8DDDE1OGTTnK6LiEfzsjcBM4Cf5T+n5+WWk01G86ors5WauscqaTfglvwgC8p2zQUeAv4B\nOAD4JVnyNTMzA0bdPda9gCfK1tcDb88/T4qIwclnNgGTijTYcGKVNA64EdgKnBxlf6GIeFbSKcAq\noAS8xdPFmZlZmVXAxAbK7yRpddl6X0T0Da5IugOoNp3puRFxS5MxvkpEhKRC3wia6bFeALwTmBYR\nW6oc/E5JPwHWRMRjtRqR1Av05quv+EOZmVl3ioijE7d3VItNbAD2KVvfO98G8KSkyRGxUdJk4Kki\nDRZ9eAkASTOBs4CZEfHIEEW35ktNEdEXEVPzxUnVzMxGwr3A/pL2y99emQmsyPetAGbln2eR3QKt\nq3BilXQwcDUwPyJWFQ7ZzMxsBEg6QdJ6squs/yJpVb79dZJWAkTEVrLng1YBPwe+ERFr8yYWAe+R\n9AhwVL5eV6FLwZImAt8me1jpekmvup4dEZsqt5mZmY2UiLgZuLnK9t8Ax5atrwRWVin3NHBko8ct\neo/1OGDffNlYo8yQzzObmZmNBUXfY11O9g5PIRExvdmAzMzMOllDDy+ZmZnZ0JxYzczMEnJiHWal\nUmlUtGFmZu3haeOGWX9//0iHYGZmbeTE2kF6enoYP358S22USiUnezOzYeRLwR2k1aSaqg0zM6vN\nidXMzCwhJ1YzM7OE6iZWSdMlxRDL9yQtq1NmVr3jmJmZdYMiDy/dA0yusv39wBLgK8C/AvOrlLkO\neCPwL80GaGZm1knqJtaIeIls5vQ/knQAcAlwQUR8M9/8bEWZc8lmFHhXRGxOE66Zmdno1vDrNpJ2\nI5uT7i5gQY0y7wM+TzZv6wOtBGhmZtZJGp3ofBxwI9kk5idHRFQp81fADcCFZb1ZMzOzMaHRp4Iv\nILu8OyMitlTulLQr2byt36dGb7asbK+k1fnS22AcZmZmo1LhS8GSZgJnAcdFxCNV9g/2Zgeo0Zst\nFxF9QF9j4ZqZmY1uhRKrpIOBq4H5EbGqRrHzgUOBadV6s2ZmZmNB3cQqaSLZ5d27gOsl7Vml2OFk\nr9ucAmypUqYUEc++upqZmVl3KdJjPQ7YN1821ihzFyBgWY39y4HZjYVmZmbWeYq8x7qcLDGamZlZ\nHR4r2MzMLCEnVjMzs4ScWDtIqVQaFW2YmVltDQ9pOEo9CUwa6SCGW39//0iHYGbpPTnSAVhaqjOO\ng5mZmTXAl4LNzMwScmI1MzNLyInVzMwsISdWMzOzhJxYzczMEnJiNTMzS8iJ1czMLCEnVjMzs4Sc\nWM3MzBJyYjUzM0vIidXMzCwhJ1YzM7OEnFjNzMwScmI1MzNLyInVzMwsISdWMzOzhJxYzczMEnJi\nNTMzS8iJ1czMLCEnVjMzs4T+P+49YTr6zX5yAAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "qt.visualization.hinton(qt.to_super(qt.cnot()))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We now complete by multiplying the superunitary $\\cnot$ by the preparation channel above, then applying the partial trace channel by contracting the second and fourth index indices. As expected, this gives us a dephasing map." ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/latex": [ "Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super, isherm = True\\begin{equation*}\\left(\\begin{array}{*{11}c}1.0 & 0.0 & 0.0 & 0.0\\\\0.0 & 0.0 & 0.0 & 0.0\\\\0.0 & 0.0 & 0.0 & 0.0\\\\0.0 & 0.0 & 0.0 & 1.0\\\\\\end{array}\\right)\\end{equation*}" ], "text/plain": [ "Quantum object: dims = [[[2], [2]], [[2], [2]]], shape = (4, 4), type = super, isherm = True\n", "Qobj data =\n", "[[ 1. 0. 0. 0.]\n", " [ 0. 0. 0. 0.]\n", " [ 0. 0. 0. 0.]\n", " [ 0. 0. 0. 1.]]" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "qt.tensor_contract(qt.to_super(qt.cnot()), (1, 3)) * s_prep" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcwAAAFtCAYAAACKm1rNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGEZJREFUeJzt3X+MXXd55/H3J4aIQOnyw8KYJC2paq2aSiXbBpfSqE02\nCXICraGhlbOIBmjlTUXQlsJSS2wKf1FaoEioAcstUUxZCK1MiEsN3iSiyrIRbRwU5QeQjTdLFRsn\nkVMKLLhNbT/7xxxHl9uZud8798zcueP3Szqa8+N7znlmpPiT55xzz01VIUmSFnfGtAuQJGkWGJiS\nJDUwMCVJamBgSpLUwMCUJKmBgSlJUgMDU5KkBgbmmJLclOTz065jNUtyRpI7k/z10PpnJ3koyc5p\n1bYaJflkknuTnDm0/tIk/5rkldOqbTVKcnGSWmT60rRr1NpkYKp3VXUSeBNwSZK3DGz6I2Ad8I5p\n1LWKXQe8EHjPqRVJfhS4EfhAVd01rcJWqbuAjfNM/xko4KPTK01rWXzTz3iS3ASsr6rXTLuW1S7J\ntcyF5M8APwnsBy6uqi9PtbBVKMllwBeAX6yqv0/yceDngM1V9dR0q1v9kvwU8HfAR6rqv027Hq1N\nBuaYDMzxJNkPnAW8FLi5qt413YpWryQfAS4Hrgc+Cby8qu6fblWrX5LnAX8PfAPYWv6jpmXiJVkt\nt2uBi4B/YS4ItLDfBwJ8BrjesBwtyRnAp4DjwBsMSy0nA1PL7S3AMeAc4Lwp17KqVdUx4IPM/c/F\nh6Zczqx4H/ALzHWW35t2MVrbDEwtmyQvB3YArwduA3YnWTfdqla948DJ7sEpLSLJNuCdwLaqenja\n9WjtMzC1LJI8C/gEcFNVfQHYztyDP97D1MSSXAB8HNhRVfunXY9OD8+YdgFas/4QeBbwewBV9ViS\ntzLXZe6tqgenWp1mVpL1wOeAvwU+meTFw2Oq6rGVrktrn4Gp3iX5JeBtwGWD95Wq6uYkVzEXmq+o\nquNTK1Kz7NXAj3fTkQXGZOXK0enCj5VIktTAe5iSJDUwMCVJamBgSpLUwMCUJKmBgSlJUgMDU5Kk\nBgbmEiTZPu0aZol/r/H49xqPfy+tFANzafwPdDz+vcbj32s8/r20IgxMSZIaGJhLs2vaBcwY/17j\n8e81Hv9eWhG+Gk+SpAZ2mJIkNTAwJUlqYGBKktTAwJQkqYGBKUlSAwNTkqQGBqYkSQ0MTEmSGhiY\nkiQ1eMa0C1jMzp07HwM2TLsOSVqCx6+99toXT7sI9We1d5iGpaRZ5b9fa8xqD0xJklYFA1OSpAar\n+h7msKuuuoqzzjpr2mWsGseOHWPPnj3TLkOSTgsz1WEalj/Mv4ckrZyZCkxJkqbFwJQkqYGBKUlS\nAwNTkqQGBqYkSQ0MTEmSGhiYkiQ1MDAlSWpgYEqS1MDAlCSpgYEpSVIDA1OSpAYGpiRJDQxMSZIa\nGJiSJDUwMCVJamBgSpLUwMCUJKmBgSlJUgMDU5KkBgamJGlVSnJjkieSPLDA9iT5SJKDSe5L8rMD\n27YkeajbtqOPegxMSdJqdROwZZHtVwCbumk78DGAJOuAG7rt5wNXJzl/0mIMTEnSqlRVdwL/uMiQ\nrcAnas5XgOcl2QhsBg5W1SNV9RRwczd2IgamJGlWnQ08OrB8qFu30PqJPGPSA0iStGXLljp69Gjz\n+HvuuedB4J8HVu2qql29F9YjA1OSNLGjR49y4MCB5vFJ/rmqLpzwtIeBcweWz+nWPXOB9RPxkqwk\nqRdV1Tz1ZC/wm93Tsq8AvlNVR4C7gU1JzktyJrCtGzsRO0xJ0qqU5NPAxcD6JIeA9zDXPVJVO4F9\nwJXAQeAHwJu7bceTXAfsB9YBN1bVg5PWs+TATHITsL6qXjNpEZKk2ddj53jqeFeP2F7AWxfYto+5\nQO2Nl2QlSWrgJVlJUi/67jBXGztMSZIaLEtgJtme5EA3bV+Oc0iSVo9xnpCd1U50WS7Jdh8+XdUf\nQJUkaRzew5Qk9WJWO8dW3sOUJKmBHaYkqRd2mJIkaekdZlW9qcc6JEkzzg5TkiR5D1OS1A87TEmS\nZGBKktTCS7KSpInN8ivvWhmYkqRerPXA9JKsJEkN7DAlSb2ww5QkSXaYkqR+2GFKkiQ7TElSP+ww\nJUmagiRbkjyU5GCSHfNs/69J7u2mB5KcSPKCbts3k9zfbTvQRz12mJKkifX94oIk64AbgMuBQ8Dd\nSfZW1dcGzvkB4APd+F8B3l5V/zhwmEuq6mhfNdlhSpJWo83Awap6pKqeAm4Gti4y/mrg08tZkIEp\nSerFqS6zZQLWJzkwMG0fOtzZwKMDy4e6df9GkmcDW4A9g+UAtye5Z55jL4mXZCVJ03C0qi7s6Vi/\nAvyvocuxF1XV4SQvAm5L8o2qunOSk9hhSpJ6MWaHOcph4NyB5XO6dfPZxtDl2Ko63P18AriFuUu8\nEzEwJUm96Dkw7wY2JTkvyZnMheLe4UFJ/h3wy8CtA+uek+S5p+aBVwEPTPr7eUlWkrTqVNXxJNcB\n+4F1wI1V9WCSa7vtO7uhrwP+R1V9f2D3DcAtSWAu5z5VVV+ctCYDU5I0seX4Psyq2gfsG1q3c2j5\nJuCmoXWPAC/rtRgMTElST3zTjyRJssOUJPVjrXeYBqYkqRcGpiRJDQxMSZJGWI6nZFebmQrMY8eO\ncdZZZ027jFXj2LFj0y5Bkp5mYK4ie/bsGT1IkqRlMFOBKUlavewwJUlqYGBKktRgrQemb/qRJKmB\nHaYkaWJ+rESSpEYGpiRJDdZ6YHoPU5KkBnaYkqRerPUO08CUJPVirQeml2QlSWpghylJmpgfK5Ek\nqdFaD0wvyUqSenGqy2yZWiTZkuShJAeT7Jhn+8VJvpPk3m76g9Z9l8IOU5K06iRZB9wAXA4cAu5O\nsreqvjY09H9W1WuWuO9Y7DAlSb3oucPcDBysqkeq6ingZmBrYymT7LsgA1OS1IueA/Ns4NGB5UPd\numGvTHJfki8k+ekx9x2Ll2QlSdOwPsmBgeVdVbVrzGN8Ffixqvp/Sa4EPgds6q3CIQamJGliS/hY\nydGqunCR7YeBcweWz+nWDZ7zuwPz+5J8NMn6ln2XwsCUJPXi5MmTfR7ubmBTkvOYC7ttwH8aHJDk\nxcDjVVVJNjN3m/FJ4J9G7bsUBqYkqRd9fg6zqo4nuQ7YD6wDbqyqB5Nc223fCbwe+J0kx4FjwLaa\nK2LefSetycCUJPWi7xcXVNU+YN/Qup0D838K/GnrvpMyMCVJEzsdXo3nx0okSWpghylJ6sVa7zAN\nTElSLwxMSZIaGJiSJDUwMCVJGuF0eErWwJQk9cLAlCSpgYEpSVKDtR6YvrhAkqQGdpiSpF6s9Q7T\nwJQkTcynZCVJarTWA3PkPcwkZyS5M8lfD61/dpKHkuxcaF9J0unjVJfZMs2ikYFZVSeBNwGXJHnL\nwKY/Yu6LOd+xPKVJkmbJWg/MpkuyVfVIkncCH05yB/CTwO8AF1fV95ezQEnSbJjVIGzVfA+zqnYm\neR3wF8BLgT+pqi8vV2GSpNkxy51jq3E/h3ktcBHwL8D1Cw1Ksj3JgW7aPkmBkqTZ4CXZH/YW4Bhw\nDnAe8I35BlXVLmDXZKVJkmbJrAZhq+YOM8nLgR3A64HbgN1J1i1XYZKk2bLWO8ymwEzyLOATwE1V\n9QVgO3MP/rxrGWuTJM0QA3POHwLPAn4PoKoeA94KvDfJTy9TbZKkGTFOWLYGZpIt3ef9DybZMc/2\nNyS5L8n9Se5K8rKBbd/s1t+b5EAfv+PIe5hJfgl4G3BZVX3v1PqqujnJVcxdmn1FVR3voyBJ0mzq\ns3PsbvndAFwOHALuTrK3qr42MOz/Ar9cVd9OcgVzz878/MD2S6rqaF81jQzMqrpzoXFV9et9FSJJ\nmm09X2rdDBysqkcAktwMbAWeDsyqumtg/FeYeyB12fj1XpKk1ehs4NGB5UPduoX8FvCFgeUCbk9y\nT18fb/Tl65KkXozZYa4fure4q/tI4tiSXMJcYF40sPqiqjqc5EXAbUm+0V0xXTIDU5I0sari5MmT\n4+xytKouXGT7YeDcgeVzunU/JMnPAH8OXFFVTw7Uc7j7+USSW5i7xDtRYHpJVpLUi56fkr0b2JTk\nvCRnAtuAvYMDkvwY8FngjVX1vwfWPyfJc0/NA68CHpj097PDlCT1os+HfqrqeJLrgP3MfTPWjVX1\nYJJru+07gT8AXgh8NAnA8a5r3QDc0q17BvCpqvripDUZmJKkXvT9QoKq2gfsG1q3c2D+t4Hfnme/\nR4CXDa+flIEpSZrYEu5hzhwDU5LUi1l95V0rA1OS1AsDU5KkBgamJEkNDExJkkbwoR9JkhrZYUqS\n1MDAlCSpgYEpSdIIVcWJEyemXcayMjAlSb2ww5QkqYGBKUnSCGN8bdfMMjAlSb3wc5iSJDWww5Qk\nqYGBKUnSCN7DlCSpkfcwJUlqYIcpSdIIXpKVJKnRWg/MM6ZdgCRpbTjVZbZMLZJsSfJQkoNJdsyz\nPUk+0m2/L8nPtu67FAamJKkXJ0+ebJ5GSbIOuAG4AjgfuDrJ+UPDrgA2ddN24GNj7Ds2A1OSNLFx\nusvGDnMzcLCqHqmqp4Cbga1DY7YCn6g5XwGel2Rj475jMzAlSb3oOTDPBh4dWD7UrWsZ07Lv2Hzo\nR5LUizEf+lmf5MDA8q6q2tVzSb0yMCVJvRjzxQVHq+rCRbYfBs4dWD6nW9cy5pkN+47NS7KSpIkt\nwz3Mu4FNSc5LciawDdg7NGYv8Jvd07KvAL5TVUca9x2bHaYkqRd9fg6zqo4nuQ7YD6wDbqyqB5Nc\n223fCewDrgQOAj8A3rzYvpPWZGBKknrR94sLqmofc6E4uG7nwHwBb23dd1IGpiSpF758XZKkEXyX\nrCRJjQxMSZIaGJiSJDUwMCVJGqGqfOhHkqQWdpiSJDUwMCVJamBgSpLUwMCUJGkEX1wgSVIjA1OS\npAYGpiRJDQxMSZIaGJiSJI3gm34kSWpkhylJUgMDU5KkBgamJEkj+OICSZIaGZiSJDVY64F5xrQL\nkCStDSdPnmyeJpXkBUluS/Jw9/P584w5N8mXknwtyYNJ/svAtvcmOZzk3m66ctQ5DUxJ0sRO3cNs\nnXqwA7ijqjYBd3TLw44D76iq84FXAG9Ncv7A9g9X1QXdtG/UCQ1MSVIvVjgwtwK7u/ndwGvnqedI\nVX21m/8e8HXg7KWe0MCUJPViJS/JAhuq6kg3/xiwYbHBSV4K/Afg7wZWvy3JfUlunO+S7jADU5LU\nizE7zPVJDgxM24ePl+T2JA/MM20dOm8BC7atSX4E2AP8blV9t1v9MeAngAuAI8CHRv1+PiUrSZrY\nEi61Hq2qC0cc87KFtiV5PMnGqjqSZCPwxALjnslcWP73qvrswLEfHxjzZ8DnRxVshylJ6sUK38Pc\nC1zTzV8D3Do8IEmAjwNfr6o/Gdq2cWDxdcADo044MjCTfLJ75PbMofWXJvnXJK8cdQxJ0tq3woH5\nfuDyJA8Dl3XLJHlJklNPvP4i8EbgP87z8ZE/TnJ/kvuAS4C3jzphyyXZ64D7gfcA7+4K+lHgRuAD\nVXVX868nSVqzVvLFBVX1JHDpPOu/BVzZzX8ZyAL7v3Hcc47sMKvqn4A3A+9Ksrlb/WHg28B7xz2h\nJGltWuEOc8U1PfRTVbcn+RiwO8n1wBuAl1fVU8tanSRpJsxyELYa56Gf32eutf0McH1V3b/QwCTb\nF3tUWJK09thhdqrqWJIPAh9hxOdVqmoXsGvC2iRJM2RWg7DVuJ/DPA6crKpeXtMgSVo7DExJkhoY\nmJIkjTDL9yZbGZiSpF6s9cAc69V4VXVTVf3IchUjSZpdPiUrSVKDWQ3CVgamJKkXBqYkSSPM8qXW\nVgamJKkXJ0+u7Y/oG5iSpF7YYUqS1MDAlCRpBO9hSpLUyMCUJKmBgSlJUgMDU5KkEarKj5VIktTC\nDlOSpAYrGZhJXgB8Bngp8E3gN6rq2/OM+ybwPeAEcLyqLhxn/0FjfVuJJEkLWeFvK9kB3FFVm4A7\nuuWFXFJVF5wKyyXsDxiYkqSerHBgbgV2d/O7gdcu9/4GpiRpYuOEZU+BuaGqjnTzjwEbFioNuD3J\nPUm2L2H/p3kPU5LUizGDcH2SAwPLu6pq1+CAJLcDL55n33cPnbeSLHTyi6rqcJIXAbcl+UZV3TnG\n/k8zMCVJvRgzMI8O3VOc73iXLbQtyeNJNlbVkSQbgScWOMbh7ucTSW4BNgN3Ak37D/KSrCSpFyt8\nSXYvcE03fw1w6/CAJM9J8txT88CrgAda9x9mhylJmtgUXlzwfuAvk/wW8A/AbwAkeQnw51V1JXP3\nJW9JAnN596mq+uJi+y/GwJQk9WIlP4dZVU8Cl86z/lvAld38I8DLxtl/MQamJKkXvhpPkqQR/D5M\nSZIa2WFKktTADlOSpBGqihMnTky7jGVlYEqSemGHKUlSA+9hSpI0gk/JSpLUyMCUJKmBl2QlSWpg\nhylJ0ghTePn6ijMwJUm9sMOUJKmBgSlJ87jqqqs466yzpl3GqnHs2DH27Nkz7TKmxkuykrQAw/KH\n+feww5QkqYkdpiRJDewwJUkawXuYkiQ1ssOUJKmBgSlJ0ginwyXZM6ZdgCRpbTj1FV8t06SSvCDJ\nbUke7n4+f54x/z7JvQPTd5P8brftvUkOD2y7ctQ5DUxJUi9OnjzZPPVgB3BHVW0C7uiWf0hVPVRV\nF1TVBcDPAT8AbhkY8uFT26tq36gTGpiSpF6sZIcJbAV2d/O7gdeOGH8p8H+q6h+WekIDU5I0sari\nxIkTzVMPNlTVkW7+MWDDiPHbgE8PrXtbkvuS3DjfJd1hBqYkqRdjdpjrkxwYmLYPHy/J7UkemGfa\nOnTeAhZsW5OcCfwq8FcDqz8G/ARwAXAE+NCo38+nZCVJvRjzUuvRqrpwxPEuW2hbkseTbKyqI0k2\nAk8scqgrgK9W1eMDx356PsmfAZ8fVbAdpiRpYuN0lz3dw9wLXNPNXwPcusjYqxm6HNuF7CmvAx4Y\ndUIDU5LUixUOzPcDlyd5GLisWybJS5I8/cRrkucAlwOfHdr/j5Pcn+Q+4BLg7aNO6CVZSVIvVvLF\nBVX1JHNPvg6v/xZw5cDy94EXzjPujeOe08CUJPXCV+NJkjRCj5daVy0DU5LUCwNTkqQGBqYkSQ0M\nTEmSRjgdvt7LwJQk9cIOU5KkBgamJEkNDExJkhoYmJIkjeCLCyRJauRTspIkNVjrHebIr/dKcnGS\nWmT60koUKkla3Vb4671WXEuHeRewcZ71vwrsBD7aa0WSpJkzy0HYamRgVtVTwGOD65L8FPBB4H1V\n9VfLVJskaYac9oE5LMnzgFuBvwWu77sgSdJsOnHixLRLWFYj72EOSnIG8CngOPCGWuB/J5JsT3Kg\nm7b3UKckaRUb5/7lrHai43aY7wN+AdhcVd9baFBV7QJ2TVKYJGm2zGoQtmoOzCTbgHcCr66qh5ev\nJEnSLDIwgSQXAB8HdlTV/uUtSZI0i077wEyyHvgccw/5fDLJi4fHVNVjw+skSaeXtR6YLQ/9vBr4\nceBK4MgCkyTpNHbqC6Rbp0kl+fUkDyY5meTCRcZtSfJQkoNJdgysf0GS25I83P18/qhzjgzMqtpd\nVVlsav8VJUlr1Qo/JfsA8GvAnQsNSLIOuAG4AjgfuDrJ+d3mHcAdVbUJuKNbXtRYHyuRJGkhKxmY\nVfX1qnpoxLDNwMGqeqR7Cc/NwNZu21Zgdze/G3jtqHP68nVJUi9W4T3Ms4FHB5YPAT/fzW+oqlO3\nFB8DNow6mIEpSerDfmD9GOOfleTAwPKu7jP8T0tyO/BvHjQF3l1Vty6hxnlVVSUZmfYGpiRpYlW1\nZRmOedmEhzgMnDuwfE63DuDxJBur6kiSjcATow7mPUxJ0lp1N7ApyXlJzgS2AXu7bXuBa7r5a5h7\nR/qiDExJ0sxJ8rokh5h7XevfJNnfrX9Jkn0AVXUcuI65y8VfB/6yqh7sDvF+4PIkDwOXdcuL8pKs\nJGnmVNUtwC3zrP8Wc+8NOLW8D9g3z7gngUvHOacdpiRJDQxMSZIaGJiSJDUwMCVJamBgSpLUwMCU\nJKmBgSlJUgMDU5KkBgamJEkNDExJkhoYmJIkNTAwJUlqYGBKktTAwJQkqYGBKUlSAwNTkqQGBqYk\nSQ0MTEmSGhiYkiQ1MDAlSWpgYEpakmPHjk27hFXFv8fa94xpFyBpNu3Zs2faJUgryg5TkqQGBqYk\nSQ1We2A+Pu0CJGmJ/PdrjUlVTbsGSZJWvdXeYUqStCoYmJIkNTAwJUlqYGBKktTAwJQkqYGBKUlS\nAwNTkqQGBqYkSQ0MTEmSGhiYkiQ1MDAlSWpgYEqS1MDAlCSpgYEpSVIDA1OSpAYGpiRJDQxMSZIa\nGJiSJDUwMCVJamBgSpLU4P8Dgwag/W37gDAAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "qt.visualization.hinton(qt.tensor_contract(qt.to_super(qt.cnot()), (1, 3)) * s_prep);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Epilouge" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
SoftwareVersion
QuTiP4.3.0.dev0+6e5b1d43
Numpy1.13.1
SciPy0.19.1
matplotlib2.0.2
Cython0.25.2
Number of CPUs2
BLAS InfoINTEL MKL
IPython6.1.0
Python3.6.2 |Anaconda custom (x86_64)| (default, Jul 20 2017, 13:14:59) \n", "[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.57)]
OSposix [darwin]
Thu Jul 20 22:59:16 2017 MDT
" ], "text/plain": [ "" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "version_table()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.2" } }, "nbformat": 4, "nbformat_minor": 1 }