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Abstract

In this work we describe the process of adding the C++ programming language
support to the mbeddr project, an implementation of the C programming language
with extensions in a projectional language engineering environment, JetBrains MPS.

While implementing the C++ programming language some well-known pitfalls
of the language are taken into account in an attempt to build a better C++ language
flavor. Several analyses are implemented to improve the programming experience
of the end user. Lessons learned include generalized principles, which a language
engineer could use to improve a language while recreating it in a projectional lan-
guage engineering environment; an anlysis of support for language modularity
and extensibility by JetBrains MPS; research on the typical problems occuring while
implementing analyses in JetBrains MPS.
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1 Introduction

1.1 Context

In embedded programming the C++ programming language is widely spread, [1].
Being a general purpose programming language, C++ does not provide, however,
any special support for preogrammers of embedded systems.

By changing the language itself, together with a tool set for it, it is possible to
get a better environment for a dedicated domain, for example, specifically for em-
bedded programming. There are two known approaches to change the language
itself.

Taking a Subset of a Language The first possible approach resembles dropping
some language features, to get the language, which is simpler. As an example, a
subset of C++, called Embedded C++ can be brought, [2]. The approach taken in
Embedded C++ is omitting very many core features of C++: virtual base classes, ex-
ceptions, namespaces and templates. It allows for a higher degree of optimizations
by compiler possible and makes the language much less sophisticated in general.

Embedded C++ was intended to ensure higher software quality through better un-
derstanding of the language by programmers; higher quality of compilers, through
simplicity; better suitability for the embedded domain, through memory consump-
tion considerations [3].

The C++ community has criticized the approach taken in Embedded C++, specif-
ically for the inability of the limited language to take advantage of the C++ stands
for Standard Template Library, the standard library of the C++ language (STL), which
requires the C++ language features, absent in Embedded C++, [4]. As a response to
it IAR Systems have developed Extended Embedded C++, which includes many of
the language features, omitted by Embedded C++, and a memory-aware version of
STL, extending not only Embedded C++, but C++ in general [5].

Extending a Language The second approach to modify a language in order to
get it more suitable for a specific domain1 consists of extending the language with
constructions, specific to the domain. The authors of the mbeddr project have taken
such approach, to improve on the C programming language, [6].

Specific extensions may represent some often met idioms in the domain. For ex-
ample, in embedded development a specification for a device might be given. The
goal of the programmer could be to develop a software, which interacts with the

1Here we consider an improvement to a language to get a better suitability to any given domain,
and not necessarily just embedded development. However, we have in mind the embedded
domain as first to support, as mbeddr targets it directly.
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1 Introduction

device. The device specification may contain a state table or a state machine dia-
gram, describing the device behavior or the way to control the device. A language
developer could incorporate such originating from the domain of interest notions
into the language.

For example, the Figure 1.1 demonstrates2, how a decision table is built in into
an mbeddr C code. The decision table provides a higher abstraction level, when
compared to the existing initially C language constructs.

Figure 1.1: Example of a Decision Table, Added to C Language

Moreover, higher-level extensions could induce some higher-level semantics.
An Integrated Development Environment (IDE) under construction could check the
higher-level semantics for correctness on the programming stage. Such checks
could improve quality of the software under development. For example, a mbeddr
checks a given decision table for completeness of choices and their consistency, [7].
The Figure 1.1 demonstrates a decision table. The decision table takes mode and
speed as input parameters and returns a new mode value as determined by the
input parameters. A careful reader could see, that the exact value 30 of speed
is not taken into account, and the default value FAIL is going to be returned. A
programmer could invoke an analysis3, to find out that the table is not covering
the whole choice space.

1.1.1 mbeddr: a Language Engineering Project with JetBrains MPS

The mbeddr development team has used a special language engineering environ-
ment, JetBrains MPS, to support modular and incremental language development.
A programmer using JetBrains MPS splits a language under development into spe-
cial class-like items, called concepts. Concepts represent the Abstract Syntax Tree
(AST) node types.

As an example of a concept an expression can be taken. It is possible to describe
in JetBrains MPS different expression kinds, similar to object-oriented class hierar-
chy, allowing the objects to reference each other, and enabling polymorphism, in a
way when any descendant can be used instead of its ancestor, e.g. binary minus
expression can be used wherever an expression (any expression) is required. After
various expression types were described to the language engineering environment

2The illustration is taken from [7]
3The analysis is described in detail in [7]
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1.1 Context

as concepts, the environment provides a chance to instantiate concrete expressions
and edit them, acting as an editor for the language. The created editor serves as
a key component in the IDE under construction. This editor contains the code for
automations and analyses, if provided for the language. It works with text code
generators, a compiler, a debugger and all other tools connected to the language.
Thus we often use the term “editor” and the term “IDE” interchangeably.

Over the inheritance mechanisms, it is possible to extend languages, providing
new concepts as descendants of the existing ones. For example, the expression con-
cept can be extended to support a new sort of expressions, like decision tables.
Thus, language modularity is achieved and incremental development is made to
be possible.

Modularity is achieved as well, since one language is enabled to interact with
another one. For example, expressions, described independently as a language, can
be reused in any language, which has a need in expressions, like a language with
statements of a programming language, because statements include expressions
naturally.

Having in mind the opportunities, the language modularity in JetBrains MPS
brings, it makes sense to recreate a general purpose programming language in Jet-
Brains MPS. Building the general purpose programming language brings a basis to
develop domain specific extensions to the well-known general purpose language.
The editor for the general purpose language comes almost “for free”, as a side
product, after the language is split into concepts.

Later, from the code in the implemented general purpose language a text code
can be generated for further processing, compiling, deployment. The language
extensions, of-course, are not known to the existing tools which process the lan-
guage. But they usually can be reduced to the base general purpose programming
language statements, presenting the regular syntax of the taken general purpose
language to the further tool chains, which expect only the basic language construc-
tions, as an outcome. Thus the general purpose programming language is getting
enhanced, remaining compatible with all the existing tools to process it. The de-
veloped editor forms a key component of a new IDE, as described above.

Additionally to the language modification itself, an IDE can be improved to sup-
port the domain specific development. Various analyses4 can be built in into the
code editor in order to detect inconsistencies, or, simply, “dangerous” constructs,
and inform the programmer. Certain code formatting, or standard requirements
could be enforced as well. The IDE could be enhanced with various automations,
like support for code generation and refactorings.

As the new IDE works internally with an AST, described through the node types,
or concepts, in order to perform a code analysis, a generation, or a transformation,
there is no need to invoke parsers for the code, which is advantageous.

4analyses not only for extensions, but for the base language itself
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1 Introduction

1.2 Problem

Being a powerful extensible tool for an embedded systems developer, mbeddr does
not support the C++ programming language. Supporting C++ would be an ad-
vantageous argument for mbeddr, as C++ empowers the developer with additional
paradigms5 of programming, mainly the object-oriented programming. Thus a
problem appears, to support C++ within mbeddr. As mbeddr is built itself upon Jet-
Brains MPS and language modularity principles, these principles have to be taken
into account while extending mbeddr. This means, that the C++ programming lan-
guage has to be developed as a modular extension for the C language provided by
mbeddr.

1.3 Approach

Above we describe the two approaches used to make a language more suitable for
a particular domain. In this work we use a mixture of the two approaches in an
attempt to achieve a modular C++ language, which can later on serve as a basis
to target some domain of interest. We try to modify the C++ language for it to be,
on the one hand more, user-friendly, and, on the other hand, for it to be prepared
to become a better embedded systems development tool, being safer, clearer and,
in the future, including specific for the domain extensions. We built C++ itself as
an extension to C and as a modular base for further extending. While limiting
C++, we try to keep all the core features in it, to not to face the same problems as
Embedded C++ had.

We built C++ as a suitable base for the further language engineering, including
the specialization of C++ for embedded development, and even more general, for
any domain of choice. A special IDE is created together with a new C++ language
flavor, which supports a C++ programmer.

During the creation of the C++ programming language in the way described,
the language modularity in general is analyzed, and caveats of it are described
together with the ways to avoid them. The newly created IDE features analyses.
The question of their computational complexity is raised in general, together with
the practical outcomes of it.

The approach taken in this work goes further into exploring the language mod-
ularity on the basis of JetBrains MPS. While building the C++ programming lan-
guage itself with the goal of embedded domain specific extensions in mind, the
C++ itself is being built as an extension to the C programming language, provided
by mbeddr. The C++ flavor implemented in JetBrains MPS and discussed in this
work we call Projectional C++. Although C++ is a separate from C language, the
high degree of similarity allows to make use of the C programming language, im-
plemented by the mbeddr as a foundation. Not only reuse of the basic C is achieved,
but also the embedded extensions from the mbeddr are immediately supported by
the newly built C++.

5C++ represents a multi-paradigm programming language, as functional programming or pro-
gramming with templates can be seen as distinct paradigms. C, in comparison, is a single-
paradigm language, with the only one procedure-oriented paradigm supported.
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1.4 Contribution

The ultimate goal during the reuse of mbeddr as a base for C++ is keeping mbeddr
not modified towards the C++ programming language only, but instead, making,
when needed, mbeddr more extensible in general, so that both resulting C++ and
the base for it, mbeddr, can develop further being disjoint to a high degree. This
independence of mbeddr from the C++ extension ensures, that the mbeddr project
can develop further without looking back on C++, making the Projectional C++
support an independent task.

1.4 Contribution

In this work we describe a C++ programming language implementation6 on top of
mbeddr project. Our contributions towards it are listed below.

Pure modular extension for mbeddr. The task of a one-side-aware only extension
is a challenge for the whole language modularity concept, provided by JetBrains
MPS. This work explores further the support, provided by JetBrains MPS for the
modular language construction, c.f. [7], and reviews it from the architectural point
of view, summarizing finally the support for it, provided by JetBrains MPS.

Improved C++ programmer support. This work contributes the C++ program-
ming language with a number of automations. The automations include code gen-
eration and structuring. They are designed to compensate on some caveats of C++,
or lack of support for several aspects in the language itself, like a support for a cod-
ing style.

Improving on C++ language itself. C++ is known for a number of pitfalls, a
programmer can be caught by. This work tries to improve on this situation by
introducing analyses. The analyses are intended to increase understanding of a
constructed code by a novice programmer, or to provide information to an expe-
rienced C++ professional. Analyses together with automations are provided to
achieve an improvement in quality, security and understanding of the pure C++
code. The automations and analyses are mostly implemented as a programming
on an AST in a Java-like programming language.

Analyses run-time and complexity problem researched. As analyses and au-
tomations grow in complexity and quantity, the question of their computational
complexity arises. In the JetBrains MPS Application Programming Interface (API) it
is not explicitly defined, when analyses provided for a language take place, how
much of a computational resource they can take advantage of, and how an end
user should be informed on results and a progress. These aspects may affect the
overall IDE behavior, including performance, as the analyses complexity may be
high and the results of them could be of a high value. The question of analyses

6This implementation does not represent complete C++, and limitations are discussed along this
work.
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1 Introduction

run-time, complexity and results presentation is raised and discussed in this work
in general and in particular, suggesting improvements to JetBrains MPS API.

General language recreation principles. Several principles, useful when recre-
ating an existing language in a projectional environment, were formulated and
supported by practical examples in this work.

Language extensibility in JetBrains MPS researched Being one of the largest
extensions to a language ever constructed in JetBrains MPS, Projectional C++ repre-
sents a good basis to discover general language extensibility support limitations of
JetBrains MPS. The support for extensibility in JetBrains MPS is reviewed consider-
ing each view on a language, workarounds for current JetBrains MPS version are
offered, and improvements for future JetBrains MPS development are suggested.

Finally, it is fair to say, that the mbeddr team7 have already grounded some prac-
tical foundations for the Projectional C++, before the start of this work. Some of
them, were kept either as suitable (reference type) of for the further improvement
(templates) and just described and analyzed here, some of them were considerably
reworked (classes, inheritance, encapsulation and polymorphism).

Couching from the mbeddr team made us changing some of the implementation
aspects to be different from what we planned originally (namespaces, operator
overloading partially). And, of-course, we built some parts new, from scratch,
without any influence (at least at the moment of being) mbeddr team at all (all anal-
yses, construction and copying, some more).

The evaluation of the experience, gained by us during the practical implemen-
tation part, results into the extensibility analysis, research on complexity of checks
and the run-time for them together with suggested JetBrains MPS improvements,
and general guidelines for building projectional language implementation repre-
sent my own theoretical focus and commitment.

1.5 Structure of the Master’s Thesis

In the Chapter 2 we describe in general two approaches, IDE developers can take
when building a new IDE for a language, together with the language itself. We de-
scribe the traditional textual approach followed by the newer projectional approach
used in this work. The language modularity and the way a language is described
in a projectional environment are discussed. Finally, we shortly touch the problem
of importing an existing code base into a projectional IDE.

The Chapter 3 is dedicated to the main technologies used in this Master’s Thesis.
At first an environment, providing all the facilities for building a projectional IDE
is described, JetBrains MPS. Then, we describe the mbeddr project which serves as a
modular basis for the present work practical achievements. Last, we give a number

7especially Markus Voelter
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1.5 Structure of the Master’s Thesis

of references for the reader, who wants to get a better level of familiarity with the
C++ programming language.

In the Chapter 4 we discuss the practical questions of the Projectional C++ imple-
mentation. At first, we align, why the mbeddr C implementation can serve as a good
basis for this work, and describe primitive extensions towards C++ for it. Next, we
discuss all language features of C++ related to the object-oriented programming,
and their implementation in the Projectional C++. After that, we describe the imple-
mentation of operator overloading and templates, as advanced C++ features. And
finally advanced IDE functionality is described, including analyses and checks,
supporting the C++ development.

In the Chapter 5 at first we compare the projectional approach and the textual ap-
proach. Then we list and describe the generalized principles, which could be used,
when creating a projectional IDE for an existing language. Next, the JetBrains MPS
support for language extensibility is reviewed. Later, we discuss analyses and
their development problems, in a light of their computational complexity. Finally,
briefly the outcomes of C++ concepts approach to C++ templates is evaluated.

The Chapter 6 concludes the Master’s Thesis and suggests the potential future
work.
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2 Foundations

Before describing the technologies on which the current work is based, as well as
the work itself, it makes sense to describe more general foundations and principles,
around which the technology is built.

In the Section 2.1 we describe two approaches to create an IDE for a certain lan-
guage, and mainly the projectional approach, which originates from the area of
building new Domain Specific Languages (DSLs).

In the Section 2.2 we describe a modular approach towards language engineer-
ing and extending, intensively used with the projectional approach to construct
languages.

2.1 Building DSLs and IDEs

This section compares the traditional approach to build textual editors (or, broadly,
IDEs) for a program code with the projectional approach, bringing up a motivation
for the least.

2.1.1 Traditional Approach

Traditionally programming languages are used in a textual form in text files, form-
ing programs. However the textual nature is not typical for the structure of pro-
grams themselves, being rather a low-level code representation, especially when
talking about syntax, which is only necessary for parsers to produce correct re-
sults, and not for the program intended semantics.

Parsers are used to construct so-called ASTs from the textual program represen-
tation. ASTs are structures in memory, usually graph-alike, reminding a control
flow graph, where nodes are different statements, and edges are the ways, control
passes from one statement to a next one.

For a developer, using an editor, the degree to which the editor can support the
development process is important. For this, the editor has to recognize the pro-
gramming language constructions and provide possible assistance. Among such
assistance can be code formatting, syntax validation, source code transformations
(including refactoring support), code analyses and verification, source code gen-
eration and others. Many of these operations rely indeed on the higher-than-text
level notions related to program such as a method, a variable, a statement, etc. A
good editor has to be aware of these higher level program structures, to provide
meaningful automations for the operations, which comprise the editor support to
a user.

Nowadays, most of the editors work with a text, and, to provide assistance to
a programmer, integrate with a parser/compiler front-end for the programming
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language. Such way to extract a program structure during editing is not perfect for
several reasons:

• The program edited as a text is not syntactically correct at every moment,
having, for example, incomplete syntax constructions. Under such circum-
stances the parsing front-end can not be successfully invoked and returns
error messages which are either not related to the program intended seman-
tics, or false-positive warnings and errors.

• After a minor change of a code, usually the whole text file has to be processed
again. Such compiler calls are usually computationally expensive, they slow
down, sometimes significantly, the performance of the developer machine.
Various techniques exist to speed it up, including partial and pre- compila-
tion, but the problem is still relevant to a large extent.

• The textual nature of the code complicates certain operations additionally. As
an example, we can take a refactoring to rename a method. Every usage of
the method, being renamed, has to be found and changed. To implement the
refactoring correctly an editor must take into account various possible name
collisions, as well as presume a compilable state of the program prior to the
start of the refactoring.

• Not to mention the parsing problem itself. Parsing a program in a com-
plex language like C++ is a difficult problem, it involves the need to resolve
correctly scoping and typing, templates and related issues, work with pre-
processor directives incorporated in the code. In this regard different com-
pilers treat C++ in a different way, creating dialects, which may represent
obstacles for the code to be purely cross-platform.

Listing 2.1: Closing Several Blocks

c l a s s MyClass {
void doSomething ( ) {

while ( t rue ) {
t r y {

/ / . . .
}

catch ( Exception e ) {
}

}
}

} ;

• The textual representation of a program code, involves the need in formatting
and preserving syntax. These both tasks, indeed, have nothing to do with the
functionality of the program, and additionally load the developer, reducing
the useful productivity. As an example, here we can mention the need to
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close several blocks ending at the same point correctly, indenting the closing
brace symmetrically to opening one. The Listing 2.1 demonstrates it in the
last few lines.

2.1.2 Projectional Approach

Another approach an IDE creator can take when building an IDE is called projec-
tional approach. Projectional editors do not work with a low-level textual represen-
tation of a program, but rather with a higher level structures, ASTs. This approach
is especially useful and is used when constructing new DSLs.

Working with ASTs directly has several advantages over the conventional tex-
tual code editing:

• All syntax errors are no longer possible, as there is no syntax.

• There is no need to format the code on the level of indentation and look, since
it is only needed for textual code.

• All features, which in textual approach require parsing, can be implemented
without a parser involved, because AST is always known to the editor.

As most of the existing tools still expect a code in a textual form, code generation
is used to convert an AST into a text code for the further use with these tools.
The code generation step can be customized to provide support for a variety of
compilers, when the compilers differ in parsing the code.

Projectional editors have to display an AST to a developer, in order for him/her
to work with it. Such visualization of an AST is called “projection”, giving a name
to the editor kind.

A model of a code is stored as an AST in a projectional editor. As in the Model-
View-Controller pattern, the view for the model can be implemented separately,
[8]. Thus the code may be presented in a number of different ways to the user.
For example, an AST can be visualized as a graph, similar to the control flow
graph. This visualization, however, is not always advantageous, being sometimes
not compact and complicated to overview.

Figure 2.1: Example Projection of an AST, “Source Code” View

One of the well-spread way to visualize an AST is by visualizing its textual rep-
resentation, as if it was written as a text code in the programming language, see the
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Figure 2.1. There can be, in principle, many such textual visualizations, supporting
different ways the code looks. Normally in the traditional approach this has to be
achieved by reformatting, and thus changing, the source code. This is performed
for the code to look similar across the developed software, and standards or cod-
ing guidelines are written to enforce the way to format the text code. This work
to some extent is not needed when using a projectional editor, since the projection
sets an fixes the way, code looks. Only higher-level than code formatting guide-
lines, have to be described an followed, unless captured as well by the projectional
editor.

The textual projection of an AST looks similar to a text code. However the projec-
tional nature of it has certain outcomes, which may be unusual for a programmer,
who is used to editing the code as text.

The statements in a projectional editor are only selectable as whole. There is no
way to just select the “while” word to cut or copy it, without selecting the condition
and the block belonging to the statement. This behavior represents the position of
the condition and while-body in an AST as children of the while statement. The
statement can be selected all together only, including all of its children. Alterna-
tively, one could select just the expression in the condition part, or just the while
statement body.

Every block delimiters are just a part of the block visualization. They are orga-
nized in a proper way automatically, and there is no way to delete or confuse them,
as well as there is no need to type them initially. Each closing brace can be marked
with a parent statement name (through implementing such behavior in the AST
visualization), enhancing navigation through the displayed code.

Among the benefits of the textual projection over text code are quicker code con-
struction, after short learning, a more structured way to select code fragments,
since not individual characters or lines, but rather AST nodes or groups of nodes
are selected, plus, all the advantages, the projectional editing brings by itself, as
listed above.

We discuss additionally the projectional approach and some of its basic principles,
which we consider to be of practical value in the Section 5.2, when the approach is
used to recreate an existing language in projection.

2.2 Modular Language Engineering

2.2.1 Describing a Language in Projection

When building a projectional editor for a language, the language must be given as
a certain description of a possible AST in the language. As an AST represents a
graph, the nodes and edges types, as well as their possible relationships must be
described1.

Nodes of an AST are described through defining their types. The node type in
projectional editing is called a concept. Concepts are very similar to classes in object-

1Compare this with the textual approach, where a grammar for the language must be built, which
is generally speaking complex, and some times even not a possible task, which leads to the in-
creasing parser complexity, known problem in particular in the C++ area
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oriented programming languages. They feature inheritance, they can implement
interfaces, they can have internal data, similar to member fields, and they can fea-
ture behavior, similar to member functions. The difference with classes, however,
is that the member fields are not usually encapsulated.

Edges of an AST are not described on their own, but instead as properties of
nodes. A node can have children, or can reference other nodes. An example of a
child relationship, can be a condition expression of the if statement. An example
of a reference relationship can be a local variable usage, referencing the declaration
of the local variable. The child and the reference relationships can have different
cardinality, with minimal border from 0 or 1, to the maximal border of 1 or N,
where N stands for just “many”, or several.

The cardinality itself is not usually enough to restrict as desired node relation-
ships. Special constraints can be added and checked for each relationship, which
describe precisely, or provide a procedure to check, the validity of the relationship
being established. A projectional editor must inform a user, every time, a con-
straint has not been satisfied, so that the user has a chance to correct the code, to
match a description of a valid AST.

For a user to be able to manipulate an AST, for each concept an editor has to be
created. The editor defines, how a node of a given concept should be represented
to the user, which editing operations, and how, the user may perform on the node.

A minimal set of data was described above, which has to be defined for a lan-
guage, to enable the projectional editing for it.

Additionally, constraints may be refined, involving some usual for typed lan-
guages type restrictions and checks. Generators can be added to transform ASTs
given in a language. Text generators can be defined to generate a text code from an
AST.

Behavior can be defined for a concept, to provide some method-like function-
ality to nodes of the concept. Additionally, some user-invokable functions can be
described, to perform manipulations with an AST.

The process of defining a modular language in the JetBrains MPS environment is
described additionally with practical details in the Section 3.1.

2.2.2 Language Modularity

As concepts feature inheritance, it is possible2 to use a child concept node at a place
where a parent concept node could be used. This creates a great opportunity for
language extensibility. In order to extend a language at some point, just a passing
base concept has to be determined and inherited from by a new concept which is
meant to provide the language extension. It is possible to use the new concept
immediately in a place of the base concept. As an example, one could think of
extending statements of a language. The only a new statement is needed, a concept
has to be created, which represents the new statement. Enabling the new statement
consists of just inheriting it from the base statement concept, which exists in the
extended statements language, Figure 2.2.

2to some extent, the extensibility is described separately in one of the following chapters
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Figure 2.2: An Example of a Modular Language Reuse and Extension

Inheritance works over language borders, allowing to create a child concept in a
language L2, separate from a language L1, where the original parent concept has
been described. Thus the language L2 can be seen as a modular extension to the
language L1.

Modular DSL creation is discussed in [9] and [10]. The language modularity, in
a context of JetBrains MPS is described in [7] and [11].

The main focus of this work is the construction of the C++ programming lan-
guage on top of the mbeddr C language implementation. Thus, modularity in lan-
guage engineering plays a key role in the work.

While extending the C language of mbeddr with C++ specific concepts, all the
aspects of the language description, as described in the Section 2.2.1, have to be
extended. The newly introduced concepts for nodes of an AST, typical for C++,
must inherit from some concepts of the original mbeddr project C language. Not only
new node and edge types are introduced, but also constraints and other language
description aspects have to be made incorporating them. The practical side of the
language modularity and extensibility is discussed throughout this work.

2.2.3 Text Code Importers

When recreating an existing in a text form language in projection, it is natural to
support some usual for language users code base. An example could be a standard
library for the language. This code base is going to be present in a text form, as the
language constructed has a textual nature. Thus, for a user of the language, to be
able to use the code base, it has to be imported to the projectional editor created. The
import process consists of parsing the text code, getting an AST, and converting the
AST in an AST, as can be described by the language in projection.

The task of importing contains usually several principal challenges:

• The native text language can have more constructions, than the version, de-
scribed in the projection. This happens, due to intentions to omit some of
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them in projection3, absence of them due to the simplicity of projectional im-
plementation of the language, no need for them in projection, because the
constructions are only specific to the textual nature of the code4.

• The projectional language can contain more information about nodes, than is
present in the textual language, thus the information has to be generated or
manually added later.

• The technical work to create an importer can be considered significant, espe-
cially for complex languages, like the C++ programming language, as pars-
ing front-ends may have complex APIs, or not be present at all.

3For example, dangerous constructions, like reinterpret cast in C++.
4For example, preprocessor directives in C.
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The C++ programming language, developed through out this Master’s Thesis, is
based on two technologies, which are introduced in this chapter. The first tech-
nology is the JetBrains MPS language engineering environment, which provides
core foundations and means for incremental language construction. The second
technology is the mbeddr project. These technologies are discussed in this chapter.

3.1 Jetbains MPS

Figure 3.1: JetBrains MPS User Interface, IfStatement Concept

JetBrains MPS stands for JetBrains Meta Programming System. In this IDE-like
software it is possible to develop DSLs. The approach taken in JetBrains MPS is
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rather unique, and it is considered to be advantageous in many ways, [12].
In general, the way the language is described in JetBrains MPS corresponds to

the way, the projectional editing is described in general in the Section 2.2. Here we
will describe the process in practical details, as it is crucial for understanding the
practical part of this Master’s Thesis.

In this section we will go through a definition of one concept, describing the fa-
cilities, JetBrains MPS provides to support it. Each concept is described by several
views on it.

Among such views there are a concept declaration (or language structure) view,
an editor view, a behavior view, a constraints view, a type system view, a generator
view and few more views. As a language consists mostly of the included in it
concepts, the whole language is presented by the mentioned views as well, where
each view on the language contains all views of the kind on each language concept.
Left part of the Figure 3.1 demonstrates the views on the statements language.

The mbeddr project is a software, separate from JetBrains MPS but based on it,
representing an extensible C language implementation with extensions. We will
use concepts from the mbeddr projectthroughout this section as examples to demon-
strate JetBrains MPS. Different C language parts are going to be decomposed into
concepts, and these concepts are going to be defined using JetBrains MPS. The reader
should not confuse though the mbeddr project and JetBrains MPS itself: the former is
a software, developed in the latter. The mbeddr project and is used to demonstrate
JetBrains MPS in this section.

Interestingly enough, DSLs are used in order to define new languages. Each
view features a language used to describe a new concept. It is demonstrated in the
following sections.

3.1.1 Concept Declaration

Concepts, as it is described in the Section 2.2, represent a class-like types for nodes
of an AST. This terminology is kept in JetBrains MPS and MPS concept has the same
meaning as concept term used in the Section 2.2. We use the term “concept” both
in general, to describe an AST node type, and in particular referring to an MPS
concept.

The Figure 3.1, on the right part, demonstrates a declaration of the IfStatement
concept from the mbeddr statements language. It corresponds to the if statement of
the C language.

At first, the concept is named, and a base concept is defined. For example, the
IfStatment concept inherits from the Statement concept. This allows a node of
the IfStatement concept to be used at any place at which a node of the parent
Statement concept could be used, and inherits, like in object-oriented program-
ming, all data and behavior of the Statement.

Next, it is defined, which interfaces the concept is going to implement. For ex-
ample, by implementing ISteppableContext, the IfStatement supports the
mbeddr debugger when stepping in the body of the IfStatement.

The “instance can be root” property defines, if it is meaningful to create a concept
without a parent concept for it. In the case of IfStatment it does not make sense,
as the statement should belong to some block. The true value can be used, e.g.
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for modules, as they do not have any outer nodes, and can be seen as a document
in JetBrains MPS.

The “properties” part defines if the described concept instances should have some
primitive type data fields (string, boolean, integer). An example of a property
could be a name property of a variable declaration. The IfStatement concept
does not specify any properties, neither does it inherit any from the Statement
concept.

The “children” section describe which nodes can be children of IfStatement
on an AST. Each child is assigned with a role and cardinality. For example, a node
of the IfStatement concept should have exactly one child of the Expression
concept, it has a role “condition”.

The “references” section describes in the similar way as in the “children” section,
which nodes could be referenced by the node of a given concept. Referencing can
be used, to bind a given node, to a node, located somewhere else on an AST. As an
example, a variable usage in an expression shall reference the variable declaration,
to express precisely, which variable is used.

Finally, some attributes of a concept follow, which do not have a primary impor-
tance for the discussion here. The “alias” is used to name a concept in a short way,
to allow for quick instantiation in the editor. The “short description” is shown to
hint a programmer on the alias meaning. A concept can be made abstract in the
“concept properties” section. Abstract concepts are purely used in inheritance to
create other non-abstract concepts with a common parent.

JetBrains MPS separately allows to define so-called interface concepts. Interface
concepts are concepts which can not be instantiated, but which serve as a base for
inheritance and implementing various declared by them behavior interfaces. A
concept can have only one base concept, but can inherit from/implement many in-
terface concepts. A reference or a child relationship can be typed with an interface
concept.

3.1.2 Editor View

Figure 3.2: Editor View for the IfStatement Concept

The editor view, Figure 3.2, is designed to give a look for a node of a concept,
and a way to input it. This is where the projection of an AST node is defined. As
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editors are mostly defined to look like text, a program in the C++ programming
languageimplemented in JetBrains MPS looks almost like a regular C++ code.

In the editor view one defines an editor for a concept. JetBrains MPS introduces
here a bit confusing terminology, calling one editor for a given concept an “editor
concept”. Thus an error message “An editor concept not found for a concept X”
would mean that no editor has been defined for the concept X in the editor view for
it. In this work we call the content in the editor view for a concept X an “editor for
the concept X”. Similar terminology applies to all the following views related to a
single concept.

The editor for a concept defines a visual representation for a node of the concept,
using special syntax. For example, the Figure 3.2 defines an editor concept for
IfStatement. At first the “constant” non-changeable by a programmer text is
given, which is “if” and “(”. Then the child condition is referenced, so that
after the “if(” a user will be able to input an expression for the condition of the
if statement. The editor can be configured to show or hide some parts of a node,
depending on some condition, e.g. hiding else part of the if statement, if it is
not defined. An editor concept is also responsible for all the interaction, a user
experiences, when editing a node of the concept, to which this editor belongs.

3.1.3 Behavior View

The behavior view, can be used to define certain methods for a concept. A concept
is represented there similar to a Java class, and it is possible to define methods in a
Java-like language. Concept inheritance is taken into account like in Java.

A concept constructor can be defined there to initialize by default a newly created
node of a concept.

Figure 3.3: Behavior View for the LocalVarRef Concept

The Figure 3.3 shows the behavior of the LocalVarRef concept. This concept rep-
resents in the mbeddr project C language an expression, referencing a local variable.
The local variable declaration is stored as a reference var in the concept nodes.
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Two convenience methods are defined for the LocalVarRef concept, to get an
easy access to local variable properties.

3.1.4 Constraints View

Figure 3.4: Editor View for the IfStatement Concept

The constraints view can be used, to limit in a desirable way concept property val-
ues and relationships, a node of the concept can have to other nodes. It is possible to
take into account any sort of a context, and thus create a context-aware/sensitive
concept.

The Figure 3.4 demonstrates constraints defined for a property name. This is
a property of an interface concept called IIdentifierNamedConcept. All con-
cepts which must have a name, confirming to the identifier naming restrictions,
can implement the IIdentifierNamedConcept, to immediately get the desired
characteristic.

The name property is programmatically restricted by the use of Java-like code
snippet, Figure 3.4. In a similar way relationships to children and referents can be
restricted.

It is possible to create a pure Java class within JetBrains MPS language, and use
it in almost any concept view in JetBrains MPS. The Figure 3.4 demonstrates a use
of the CIdentifierHelper class within the constraints for the interface concept
IIdentifierNamedConcept to check a name property value on collisions with
the C language keywords.

Constraints play an important role for the editor work. A programmer is pre-
sented with a list of choices, when inputting a new node on an AST. The choice
of nodes is defined with the constraints. Such constrains are called “scoping con-
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strains” in JetBrains MPS. A scope can be defined for a child or a reference of a
concept. It is represented by a procedure, which takes a node in a context, and re-
turns a list of possible children/referents after analyzing the given context. Exactly
the resulting list is going to be presented to the programmer, as an options list for
auto-completion, when building a child or a referent for the node.

3.1.5 Type System View

JetBrains MPS has a special support for creation of typed languages. Types are
mainly used in expressions. An expressions may count on a certain sub-expression
to have a given type, or a type, compatible with it. Whenever the expectation does
not meet the reality, a warning or error can be displayed to a programmer.

Figure 3.5: Type System View for the TernaryExpression Concept

A concept, representing nodes, which can have type in mbeddr, inherits from the
ITyped interface concept. In the type system view a code in a special language has
to be put, which will define the type, or type comparison rules, for the concept.
Moreover, the type system language can be used to infer a type for a given node,
see the Figure 3.5.

The Figure 3.5, demonstrates a use of the JetBrains MPS type system language
to infer a type of the TernaryExpression Concept node. The syntax is on the
one hand self-explanatory when reading, but, on the other hand, can be rather
confusing when crafting.

When none of the existing type system rules can resolve a given typing prob-
lem, the so-called replacement rule can be invoked in JetBrains MPS. Replacement
rules are defined for a given concept. A snippet of Java-like code must be given to
explicitly analyze a node and assign a type to it.

3.1.6 Non-Type-System Checks

Additional to the type system and constraints limitations on an AST structure can
be put via implementing non-type-system rules. In this work we often call them
simply “checks”.
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For a given concept a code snippet can be given, to check all nodes of the concept.
After the check is performed, there is a chance to mark a node as an error node,
or create a warning on the node. It is possible to provide some textual hint for a
language user, to identify a reason of the error or warning, see the Figure 4.19 for
an example.

Non-type-system rules are used in this work to create preventive analyses, and are
discussed additionally in the Section 5.4.3. Extensibility for checks is evaluated as
extensibility for analyses, in the Section 5.3.9.

3.1.7 TextGen View

To make a use of a code in a projectional editor, further tools must be invoked on
it, e.g. parser, compiler, etc. Normally they work with a textual representation of
the code. In order to obtain the textual code from an AST in the projectional editor
generators are invoked.

The generators can be of two kinds. The first kind of generators is dedicated to
transform an AST in one DSL into another AST represented in a, usually, lower-
level language. The second kind of generators is dedicated to transform an AST
into text. Such generators are called “TextGens” in JetBrains MPS.

Figure 3.6: TextGen View for the BinaryExpression Concept

The Figure 3.6 demonstrates how a node of the BinaryExpression concept is
converted to a text. It is noteworthy to say, that when rendering to a text the left
and the right sub-expressions, the corresponding expression TextGens for them
are invoked, making the text generation recursive.

3.1.8 Generator View

The generator view is one of the most complex JetBrains MPS views. A language
engineer uses this view to define, how an AST composed in one language, has to
be transformed into an AST in another language in JetBrains MPS. Alternatively, it
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is used to define, how higher-level language extensions should be transformed to
the basic constructions of a language, extended by them.

In this work we mostly use TextGens to produce a textual C++ code, when pro-
gramming in the projectional editor has completed. Thus, the generator view does
not have a strong connection to the present work. We do not describe it in details
here.

3.1.9 Intentions

JetBrains MPS intentions are special procedures which can be used for automatic
manipulations on an AST with a node of a given concept.

Figure 3.7: Toggle Const Property for a Type Intention

The Figure 3.7 demonstrates an intention, used to modify the const property of
a node, belonging to the Type concept.

For an intention to be defined, one has to name it, specify a concept, to which
the intention is applicable, provide a textual description for it, and finally specify a
desired effect.

There is also a special kind of intentions, called “error intentions”. They are not
anyhow fundamentally different from the usual intentions, except their special pur-
pose to fix an error, when one occurs. Error intentions are visualized using a red
bulb icon in JetBrains MPS.
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Intentions are accessible in the projectional editor from a context menu, when
focused on a target node, see the Figure 3.8. They represent a useful mechanism to
support a programmer with various automations, including automatic code gen-
eration.

Figure 3.8: Intentions Available for the Class Concept

3.1.10 Other MPS Instruments

JetBrains MPS provides other instruments to enhance languages.
Actions are used to automate node deletions or editing. For example, deleting

an array indexing expression, could be made to provide a substitution, an array
expression itself, not indexed. Such behavior may seem more natural to a pro-
grammer, used to text editing.

JetBrains MPS provides a special support for refactorings. Special code snippets
in a Java-like language can automate routine operations. As an example, a proce-
dure of factoring out a local variable from an expression can be taken.

Additionally, it is possible to extend functionality of an editor under construc-
tion via creating special JetBrains MPS plug-ins. It can be in particular useful to
implement some complex analyses-on-demand.

3.2 mbeddr Project

The mbeddr project is a software built with the use of JetBrains MPS. Mainly, it rep-
resents an implementation of the C programming language in the JetBrains MPS
environment. Having embedded systems and software for them as the main fo-
cus, mbeddr provides certain language extensions to empower the programmer in
embedded domain [13], [12].

Being a different from C language, the C++ programming language shares a lot
of commonality with C. As JetBrains MPS allows, to some extent, see the Section
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2.2.2, an incremental language construction, the mbeddr project represents a suitable
basis for the C++ programming language implementation in JetBrains MPS .

We could not extend mbeddr with C++ pure incrementally. We had to perform
some changes to mbeddr itself. The changes were introduced however, in a way
to make mbeddr more extensible in general. Compare this to creating a separate
branch of mbeddr designed only for C++. After such forking a separate team would
have to support a newly created mbeddr version for C++. By making mbeddr more
extensible, and by building C++ as a pure extension, we keep only one mbeddr
version, and reduce the maintenance needed in the future, to keep C++ supported
by mbeddr.

No matter the mbeddr project has (one) C language with extensions as an outcome,
internally, as a JetBrains MPS software, it is represented as several JetBrains MPS
languages.

All mbeddr languages are named starting from “com.mbeddr.” string. In this doc-
ument we usually omit it, keeping the last word of the name only. For example,
instead of com.mbeddr.expressions we call the language simply expressions here.

3.2.1 mbeddr Expressions Language

The expressions language contains definitions for all expressions, possible in the
mbeddr C language. As in object-oriented programming languages, concepts of the
expressions language form inheritance hierarchies. JetBrains MPS is capable of
showing a given concept in a hierarchy.

Figure 3.9: Concept Hierarchy Example

The Figure 3.9 shows a hierarchy for the MinusExpression concept. In a sim-
ilar way all expressions of the C programming language are implemented in the
expressions language.

Whenever there is a need in the C++ programming language to extend the C
programming language with a new expression kind, like object member reference,
new expression and so on, a point of inheritance has to be found in the mbeddr
expressions language to base a new concept on it.

Figure 3.10: mbeddr Type Hierarchy Example
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Additionally, the expressions language defines C language types. All concepts
corresponding to C types are based (directly or indirectly) on the Type concept. For
example, the hierarchy of the IntType concept is demonstrated in Figure 3.10.

In order to add a type to the mbeddr C language, one should inherit from the
Type concept as well. Such inheritance automatically allows the new type to ap-
pear at all places, where a type in general can be found in the C language or its
extensions.

3.2.2 mbeddr Statements Language

The mbeddr statements language contains definitions for the C language statements.
The Statement concept serves as a base for inheritance, and represents by itself an
empty line, or no-statement.

In order to create a new statement, like delete statement in C++, the inheritance
should start from the Statement concept.

Figure 3.11: Example of Multiple Languages Used Together

The statements language actively uses the expressions language, see the Figure 3.11.
In an mbeddr code snippet the nodes, coming from statements language, are marked
green, and the nodes, coming from expressions language are marked yellow1. As
the example shows, if statement and return statement are coming from the state-
ments language, but inside they contain, as children, expressions. This is an exam-
ple of language modularity in JetBrains MPS, used by mbeddr.

3.2.3 Modules in mbeddr

In C (and in C++ as well) there is no clear notion of a module. The mbeddr project
improves on it, defining modules, [12]. A C module is a concept, from which a
header and a .c files are generated in mbeddr. Flagging an object (function, vari-
able, structure, etc.) in a module as exported causes a declaration of the object
to appear in the header file, and thus the object starts to be accessible by other
modules or an external textual C code.

An issue with the C programming language is that there is one and only global
namespace. The mbeddr project improves on it by introducing a so-called name
mangling. All names of module contents are prefixed with a module name, when
generated to a C text code. Thus two objects with a same name but from different
modules do not cause a name clash when generated to a C text code.

1Not marked with color is an instance of the Function concept, which comes from the modules lan-
guage.
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The implementation of modules in mbeddr can be found in the modules language.
Functions are described there as well. For the Function concept example, see the
Figure 3.11, the not marked with colors part.

Modules are further included into JetBrains MPS models. Models correspond to
one single JetBrains MPS file unit. After a programmer finishes a code in a pro-
jectional editor, JetBrains MPS generates a textual C code, according to the rules,
given by mbeddr. Each model is generated into a set of text C files. After the files
have been generated, mbeddr launches a compiler to get an object code.

For the purpose of the code generation and compilation, every model should
have a node of TypeSizeConfiguration and BuildConfiguration concepts.
In the former, the programmer should specify all sizes for C language types, in the
latter, the programmer should specify, how mbeddr has to invoke the compiler.

3.2.4 Pointers and Arrays in mbeddr

In the pointers language an array access and a pointer dereferencing expressions
are defined as concepts. A similar syntax to them have overloaded operators with
classes. Thus this language is also extended by Projectional C++, as some reuse is
possible there as well. This is discussed in detail in the Section 4.3.

3.3 C++ Language

This work is basically an implementation of the C++ programming language in
JetBrains MPS. No matter, the whole work is about the C++ implementation, it is
infeasible to describe in detail the language here. Thus, we only give references to
literature about the language in this chapter. Certain aspects of C++ are explained
in depth during the description of the C++ implementation in JetBrains MPS itself
in the Chapter 4.

Various literature is available, to get acquainted with the language closer. The
most complete guide to the language, covering STL as well is [14]. A more easy-to-
read and more suitable for beginners book on C++ is [15]. A newer book, oriented
towards intermediate level C++ programmers and updated to the recent C++ 11
standard (referenced as [16]) and describing STL as well is [17].

A collection of techniques to get more effective C++ programs is gathered in
[18]. Templates are explained in detail in [19]. A book dedicated to ad hoc poly-
morphism and advanced template meta programming can be also of interest as an
approach to language engineering on top of C++ in a certain sense, [20].

The C++ programming language is a mature language, with long traditions, and
high flexibility, [20] can serve as an example. It would not be possible to simplify
the language, removing features from it, which would restrict the language use,
most importantly the STL support. Thus in this work we try to research, how the
editor can be more supportive for a user of the existing complex language, how
to eliminate usual mistakes made while programming, as well as how to provide
help in a code structuring.
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In this chapter we talk about the implementation of the C++ language flavor, cre-
ated by us. We call it, as said before, Projectional C++. At first we discuss the
similarity and differences between C and C++ languages, making points, where
extensions or changes were necessary to mbeddr. Next, we describe the support
for object-oriented programming by Projectional C++. After, operator overloading
implementation is discussed. Next, templates in C++ concepts apparoach to them
are mentioned, followed by other C++ language features. Finally, we discuss the
advanced IDE for Projectional C++ features, including automations and analyses.

4.1 C and C++

Initially C++ appeared to be an extension to the C language, called “C with Classes”
[21]. Till now a high degree of commonality can be found between the two lan-
guages. Mainly, the most of a C code is going to be a valid C++ code.

Some differences exist however, I introduce them here, together with the way
they are adopted in Projectional C++.

4.1.1 Reference Type and Boolean Type

Among primitive types and operations there are two major differences relevant to
practice. They are discussed in the following subsections.

Reference Type

The reference type is basically a new construction in C++ which represent the old
notion of pointer in C with a different syntax. In fact, behind the reference type
stands a pointer to a base type, and it is dereferenced when needed.

The syntax for a variable of a type T can be used with a variable of a type refer-
ence to T, or &T as it is designated in C++. Thus the programmer benefits from a
shorter syntax in comparison to a pointer dereferencing. It comes especially handy
when passing arguments to methods by reference, which avoids creating a copy
of an object to pass by value, and still preserves the short syntax without pointer
dereferencing, when accessing the value.

Listing 4.1: Reference Type in a Copy Constructor
c l a s s MyClass {

public :
MyClass ( const MyClass& o r i g i n a l ) ;

} ;
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A value of the reference type in C++ is bigger however, than just a new syntax
for pointers. A constant reference to a class object has to be used in a constructor
to give it a special meaning of a copy constructor for the class, as the Listing 4.1
demonstrates. This changes the whole semantics of the class, making it copyable
with a given semantics. It is discussed in detail in the Section 4.2.1.

The reference type itself is implemented rather straightforward and similar to
the pointer type of mbeddr. It inherits the Type concept of mbeddr as described in
the Section 3.2.1, and has a base type as a child.

Boolean Type

The C++ programming language has a special bool type to represent the two log-
ical values. There is no such type in C.

No matter, the bool type is not present in C, for the convenience of a user the
mbeddr C implementation introduced a type bool, which is translated to int8 t,
together with true and false values, converting to 1 and 0 respectively. This
implementation can arguably be considered better than the original C++ bool type
present in the generated code, because the C++ programming language standard
does not define explicitly the size of the bool type [16]. This can be suitable for the
embedded domain better, conforming to the mbeddr spirit.

In the context of embedded systems, which mbeddr targets, it is often very impor-
tant to know precisely, with which type the user is operating, as limited resources
are important to consider. Substituting the bool type with the int8 t type en-
sures that the size of the bool variables is known. Also, it can be changed as
needed in a TypeSizeConfiguration node in each model, created with mbeddr,
separately, see the Section 3.2.3.

The C++ standard explicitly allows the bool type to participate in integer pro-
motions. This ensures further the compatibility of the custom-written text code,
which may use actual bool type, with the code generated with substitution of
bool to int8 t, as the user bool will be promoted.

Among limitations of the approach, when bool is translated to int8 t, one can
consider std::vector<bool>. Since the word “bool” itself is never generated
to a text, it is not possible to use the specialization of the template, which ensures
storage optimization, through higher processing load when extracting a value from
such a vector though.

The bool type from mbeddr is kept in Projectional C++. This decision is arguable,
and can, of-course, be changed in the future.

4.1.2 Modules and C++

The C++ programming language is an improvement over the C language by itself.
There is, however, no notion of a module, which can bring certain advantages and
disadvantages. As a disadvantage can be named a potential disorder in placing
implementations for classes and functions, as the language itself does not enforce
a clearly defined place for them. Potential name clashes are also disadvantageous.
As an advantage, conditional compilation can be used in C++ to include different
files with different implementations for one declaration, which is often used to
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create a cross-platform C++ code. Additionally, classes can be used analogously to
modules.

The name clash problem is solved in C++ by introducing namespaces. A pro-
grammer defines a namespace and then places there all the exported code. Nodes
with equal names from different namespaces do not clash.

C++, however, does not elaborate on the disadvantage of having declarations
and implementation not organized in one place, and being fully disjoint. mbeddr
compensates on it, see the Section 3.2.3.

After comparing the two approaches of mbeddr and of the C++ programming
language to improve on C, a hybrid approach has been taken. Firstly, C++ mod-
ules have been introduced. And secondly, namespaces can be defined and used in
Projectional C++.

In Projectional C++ modules are program modular elements, where a program-
mer declares and implements C++ classes, and .h and .cpp files are automatically
generated from them. This eliminates the need to create and control two files for
each logical program element, like a class, and keep them synchronized with each
other. For example, changing an interface of a class would require at first opening
a header file, and introducing the changes in a declaration, and then rewriting a
corresponding part of a .cpp file in strong correspondence with the header. The
work decrease in order to change an interface can improve productivity of a pro-
grammer.

Namespaces are introduced in Projectional C++ to avoid inter-modular name
clashes, they work similar to namespaces in C++.

The need in the using directive does not emerge the same strong as in plain text
editors, because the inputting of namespace names is made effective within the
projectional editor. Long names of namespaces are appended to the end of method
definitions for classes, to be exact about the namespace, but the declarations are
kept looking short, with only the last namespace shown, Figure 4.1.

Figure 4.1: Example of Nested Namespaces

The TextGen is responsible for correct namespace resolution, and a Projectional
C++ programmer can benefit from short and clear namespace presentations, which
are also quite handy to input.
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4.1.3 Memory Allocation

In the C programming language memory (de-)allocation on the heap is happening
via calls to dedicated library functions. C++ instead introduces separate language
constructions for memory allocation and de-allocation. The new and delete key-
words together with their array versions are simply an expression and a statement
correspondingly, which perform the required operations.

Creating them is relatively easily possible by inheriting from the Expression
and Statement concepts, and introducing a corresponding typing for the new ex-
pression, as described in the Section 3.2.1.

When a segment of memory is allocated as an array, it has to be de-allocated as
an array either. As it is stated in the C++ standard ([16]) the behavior of simple
de-allocation of an memory segment, allocated as an array, results into undefined
behavior. A simple check is introduced in order to control this, see the Section 4.6.6.

4.2 C++ Object-Oriented Programming

The C++ programming language is a multi-paradigm programming language. The
ability to support the object-oriented programming, is incorporated via classes
support.

A class represents a new type in the C++ programming language. Each class
may have data in a form of fields, and behavior in a form of methods. Two types
of methods are special for C++ - constructors and destructors, they have special
meaning and syntax.

Encapsulation is enabled via governing access permissions to fields and methods
of a class. The access control is governed with a creation of public, protected
and private class sections.

Inheritance is implemented in C++ via allowing each class to have one, or even
many base classes. Inheritance from a base class is performed under a certain ac-
cess control modifier. There is no pure notion of an interface, but rather abstract
classes are introduced.

Polymorphism is implemented via a pointer-to-class type compatibility over
inheritance-connected classes.

The implementation of these C++ features in a projectional editor environment
is discussed in the following sections.

4.2.1 Class Declaration and Copying

Visibility Sections

C++ Problematic Instead of declaring visibility a modifier for individual class
members (C#, Java), visibility sections are created in C++. The sections can be
opened with a string private:, protected: or public: within a class declara-
tion, and closed when another section is opened or when the class declaration ends.
This allows a user to open and close the same section multiple times and declare
sections without any particular order. This can be error-prone and confusing.
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Various coding guidelines ([22], [23]) exist to enforce some restrictions on the vis-
ibility sections. In particular, the sections are allowed to be opened only once. This
ensures, that a reader of the code will see an interface of a class (public section) in
one place, “contents” of the class (private section) in one place, and opportunities
to access members in an inheriting class (protected section) in one place, without a
need to search through the whole class declaration.

Another typical requirement in coding standards, is the order of the sections.
Usually the public section is required to be the first, for the class users to see im-
mediately the (public) interface, the class provides.

Figure 4.2: Sample Class Type Declaration

Implementation in Projectional C++ The Figure 4.2, shows an example class
declaration implemented in Projectional C++. The Class concept has the visibil-
ity sections as children. Each section is given a separate role (see the Section 3.1.1)
and can appear 0 or 1 time. The editor for the Class concept orders the visibility
sections so, that the public section always comes first, if present, followed by the
private and finally the protected sections, when present.

The creation of a section is made with the a of intentions. The user uses Alt+Enter
combination on a class declaration to create visibility sections. It should be more
practical and fast for the user, compared to typing a keyword, a colon and indent-
ing the result.

A question arises on how to support another way to represent a class, so that it
will reflect requirements from a different coding standard. And as a way to resolve
it a definition of another editor for the Class concept can be offered. Unfortunately,
the current version of JetBrains MPS 2.5 does not support a definition of multiple
editors for the same concept. This limitation however is addressed in the newer
JetBrains MPS 3.0 version, which was not tested completely with mbeddr by the
time this work was made.

Constructors

C++ Problematic Constructors of a class are special methods of a class, used to
construct the class instances.

Constructors have special syntax and no return type, being similar to class meth-
ods otherwise. Constructors gain an additional value, however, when participat-
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ing in type transformations. Namely, when a constructor of a class B exist from
a type T, instances of the type T can be used whenever the B class instance is re-
quired. The constructor will be implicitly called and a temporary object of class B is
going to be created as a mediator.

Thus constructors extend the type system of the C++ language, adding conver-
sion rules to it. Since this type extension can not be easily observed, as multiple
consequent implicit conversions can take place, it is highly possible to get various
run-time errors or unexpected behavior.

Listing 4.2: Example of an Implicit Constructor Error
# include<iostream>
using namespace std ;

/ *
* API d e f i n i t i o n
* /

c l a s s C i r c l e {
private :

i n t r ;
public :

C i r c l e ( i n t radius ){
r = radius ;

}

f l o a t getPer imeter ( ) {
return 2 * 3 . 1 4 * r ;

}
} ;

void pr in tPer imeter ( C i r c l e c ) {
cout << ”The perimeter i s : ” << c . getPer imeter ( ) ;

}

/ *
* Use c a s e by a u s e r o f t h e API
* /

i n t main ( ) {
/ / P o t e n i t a l l y u n e x p e c t e d b e h a v i o r :
pr in tPer imeter ( 5 ) ; / / P r i n t s : ”The p e r i m e t e r i s : 31 .4”
return 0 ;

}

The Listing 4.2 demonstrates a simplified use case where the printPerimeter()
function is invoked on int without any compiler error, and the resulting behavior
is unexpected.
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To avoid similar situations, it is possible to deprecate participation of a construc-
tor in type conversions, adding a word explicit to the constructor declaration.

Implementation in Projectional C++ The described problematic motivated the
following decision. When a new constructor is created with one argument, it is
by default declared to be explicit, a user must intentionally change it to get the
type conversion behavior. Declaring a one argument constructor explicit is a safer
IDE behavior by default. This is an example improvement to classical C++ which
makes a code understood better by novices and safer for them.

Copying

C++ Problematic In the C++ programming language a programmer controls mem-
ory allocation fully on his/her own. This affects the way of copying for class in-
stances. In C++ the programmer should define two methods for a class: a copy
constructor and an assignment operator. These two methods work when an as-
signment like a = b happens, when instances of the class are passed by value to a
function, when one object is initialized with a value of another object and so on.

C++ serves here sometimes dangerously generating default copy constructor
and assignment operator, which by default represent a bitwise cloning of an ob-
ject. This can lead to problems. For example, if a pointer value is getting copied
bitwise in a second instance and is deallocated twice in the following destructor
calls.

Listing 4.3: Need in a Custom Copy Constructor
c l a s s Resource{

i n t * r ;
public :

Resource ( ) {
r = new i n t ( 0 ) ;

}

˜ Resource ( ) {
delete r ;

}
} ;

i n t main ( ) {
Resource a ;

/ / P o i n t e r s b . r and a . r a r e e q u a l now .
Resource b = a ;
return 0 ;
/ / Here t h e two c o n s t r u c t o r c a l l s happen .
/ / The s e c o n d c a l l c r a s h e s t h e program .

}

35



4 Projectional C++ Implementation

The Listing 4.3 demonstrates a program which crashes upon execution as de-
structors of a and b are deallocating memory with the same address, after default
copy-constructor copies the address from a into b.

To avoid the described problem, a programmer has to either define a proper
copy-constructor or forbid copying of the objects for the class. The same applies
to the assignment operator. Many standards require the two functions to be im-
plemented in sync, i.e. implementing the same semantic behavior, [24]. This can
be performed in an elegant way by implementing an assignment operator first and
reusing it in a copy-constructor.

When not providing any copying behavior it comes logical to disable also the
assignment behavior. This is done by a trick of declaring the corresponding func-
tions in a private section of a class, without implementing them (as they never
get called). To visually improve on such design, specialized macros exist in various
libraries. For example the DISALLOW COPY AND ASSIGN or the Q DISABLE COPY
macros are described in [23] and [25]. An alternative to macros approach is a use
of boost::noncopyable from the boost library, [26].

The use of macros in C++ appears often in similar cases, in order to perform
some language-engineering tasks to add missing features to the language (copying
or assignment deprecation in this case). Macros bear a pure textual nature, and are
processed by the pre-processor. Some negative effects may come out:

• A need to preprocess reduces the speed of compilation and hides the result-
ing code from a programmer.

• Macros lead to error prone programming, as no type checks are possible.

• Macros make code less analyzable by automatic analyzers in general.

Figure 4.3: Hinting about Copyable and Assignable Class Properties

Implementation in Projectional C++ The projectional editor allows for another
solution, different from macros, or the use of a new library. In order to provide
some support for a programmer regarding the copying issue, Projectional C++ hints
on a class declaration its assignable and copyable properties, see the Figure 4.3,
and generates by default declarations of copy-constructor and assignment opera-
tor, when a class is created.

The copy constructor and the assignment operator are recognized by Projectional
C++. Two intentions are provided on the Class concept to forbid or allow copy-
ing. The forbidding intention imitates the macros mentioned above, but displaying
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and explaining the implementation to a user, see the Figure 4.4. The implemen-
tation of the intention consists of moving the declarations of two functions to the
private section of the class. The allowing intention moves the declarations back to
the public section, or creates them. The check for implementation, provided for all
methods, flags the two declarations appropriately to finish the correct class decla-
ration creation process, see the Section 4.6.4.

Figure 4.4: Class Made not Copyable by the Forbid Copying Intention

JetBrains MPS supports the Projectional C++ implementation by providing read-
only model accesses, special parts of the editor concept, see the Section 3.1.2, by
which the hinting is implemented. The intentions enabled manipulations on the
Class concept, which made it possible to automate the allowing or forbidding of
copying/assignment, making the implementation clear to the user, without the use
of macros or libraries.

The whole work, a programmer needs to perform to forbid copying and assign-
ment, consists of a call to an intention, one key-stroke. There is no need to include a
header file with macros, and look up the documentation for them, using them in a
right way after (the corresponding macro requires exactly one parameter - the class
name, and it has to go in the private class section). The boost library, [26], provid-
ing functionality to disable copying is often considered to be too heavy-weight to
include, when it goes about compact development tasks, like the one described in
this section.

4.2.2 Encapsulation and Inheritance

Encapsulation and inheritance are considered here together, because as considered
from the language engineering point of view, they just decide an access to class
members. In other words, the Projectional C++ implementation has to track encap-
sulation and inheritance related definitions and provide access to class members
accordingly.

Various Cases of Access Control

C++ Problematic In the C++ programming language a number of ways to govern
the access control to class members exists. Before discussing the implementation
of them in Projectional C++, we briefly review them with an example.

All members, a class has, are either declared in the class, or inherited from its
base classes. The members can be accessed in a number of different locations in a
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code, which differ by the level of access they have to the class members. Among
these locations are the class methods, friend functions of the class, and an external
to the class code. Each member can be declared with a certain visibility/access
type, and the inheritance of the base class can happen with one of the three inheri-
tance modifiers.

Figure 4.5: Declaration of Two Classes with a Friend Function

Implementation in Projectional C++ The Figure 4.5 shows a declaration of two
classes. The class A has all three public, protected and private fields. A function
compare() is declared to be a friend function of the class A.

This example demonstrates how, showing only the central information (the key-
word friend and the friend function name) and just hinting on the details (the
complete friend signature), can make the syntax more appealing. This is an exam-
ple of the “Hide Redundant Syntax” principle, described in the Section 5.2.

The visibility plays no role for the friend function declarations themselves. That
is why a decision was made to create a special section for friend declarations, called
friends. This section name is not generated anyhow in the resulting C++ text.
This allows for all the friend functions to appear in one place, and be easily ob-
servable.

The class B in the Figure 4.5 is inheriting publicly from the class A, which means,
that public members of A remain being public in B. The class B declares a copy
constructor.

Such declaration can be utilized as shown in the Figure 4.6.
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Figure 4.6: Visibility Resolution

In the copy-constructor the visibility resolution happens after this pointer and
after the original object. Arrow expression and dot expression are used for this.
The first and the second lines are making use of the public and protected fields of
the base class A. The use of the private field is however not possible, since private
fields of a class are only accessible to methods of the same class and its friend
functions.

It is even not possible to input the not-allowed member, as the projectional editor
does not bind the text to anything, and it remains red. This means, no node in an
AST is created and the code is in incomplete erroneous state.

The compare() function is declared in advance (Figure 4.5) to be a friend func-
tion of the class A. Thus, it is not a problem for this function to access even private
fields of A, for comparison purposes in this example case.

The function printOut() is not related anyhow to the classes declared. Thus,
it represents “external” for the class B code. Only the public members of the class
are accessible, but not the protected or the private members. The attempt to input
them simply fails, they are highlighted red and are not bound to anything.

In this way Projectional C++ gives for a programmer only a chance to input cor-
rect from the encapsulation point of view constructions. As members, accessible in
each place of code, are provided by Projectional C++, instead of typing the member
name, the programmer usually will have a choice from a short drop-down list of
options.

Expressions to Address Class Members

Members are usually accessed relatively to some object. The object can be des-
ignated as an expression of type class or a pointer to class, in particular, this
expression. The resulting access represents nothing else, but an expression itself.

Thanks to concept inheritance in JetBrains MPS , see the Sections 2.2.2 and 3.1.1,
creation of a new expression is reduced to inheriting from an existing one, and
this is almost all what has to be done to implement object-oriented member ac-
cess expressions. Inheriting the OoDotOrArrowExpression concept from the
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Expression concept, we get the ability to use the expression, designed for mem-
ber access, wherever an expression in general can be used.

The abstract concept OoDotOrArrowExpression serves as a parent for the two
concepts: OoDotExpression and OoArrowExpression. The commonality be-
tween the two, is that an object is accessed in the left part, and a member is selected
in the right part, as well as the way to decide the access to members. The access is
defined then, which left part is going to be possible in such expressions.

Within class methods it is also possible in C++ to address class members as lo-
cal variables. In the projectional implementation described, it is implemented as
well. The member references are highlighted blue. This is made so do differenti-
ate the members from any other local variables. This can be a subject for coding
guidelines, similar to naming conventions as described in the Section 4.6.3.

4.2.3 Polymorphism

There are several ways to achieve a polymorphic behavior in C++. Purists of the
language differentiate between the polymorphism based on virtual functions or
based on templates. More general opinion can include the notion of the poly-
morphism also functions overloading and operator overloading, also called ad hoc
polymorphism, polymorphic solution for a single concrete purpose. Occasionally,
various operations with the void * type are also classified as a polymorphic pro-
gramming.

In this section we are writing only about the class-related virtual functions poly-
morphism, and the way it is implemented in Projectional C++.

Virtual Functions Polymorphism in C++

At first, we describe the polymorphism, as it is implemented in the C++ program-
ming language, pointing out the places, where it could be improved.

Dislike many other popular object-oriented programming languages, e.g. Java,
in C++ there is no pure notion of an interface. Instead, a base class, its public part,
is used as an interface declaration for descendants. Functions, designated to be a
part of the interface, must be declared virtual and they can be overloaded in the
subclasses.

Listing 4.4: Pure Virtual Function Syntax Example

c l a s s Animal
{
public :

v i r t u a l void voice ( ) = 0 ;
} ;

The virtual functions in the base-interface class can be implemented as well, pro-
viding some “default”, common enough behavior. Otherwise they are left pure vir-
tual, meaning that no implementation is provided and the pointer to the function
in the table of pointers to virtual functions is zeroed. The syntax for pure virtual
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functions is rather not obvious1 and a bit cumbersome requiring to type one re-
served word, one punctuation sign and one digit to express a simple fact of pure
virtuality or, simply, absence of implementation, see the Listing 4.4.

The approach of classes with virtual functions as interfaces is more flexible com-
pared to languages with the notion of an interface directly introduced. In C++ it is
possible to create partially implemented base classes, what can not be done when
implementing an interface in Java or C#, where the approach is “all or none” re-
garding the implementation of interface functions. The presence of interfaces in
the language can be though considered a more clean way to program.

In order to implement a declared in a base class function, a descendant must de-
clare and implement a virtual function, matching the full (including a return type)
signature of the declared in the base class function, see the Listing 4.6. The connec-
tion to the “interface” function declaration stays subtle however. It is not immedi-
ately clear, whether the declared new function in the descendant is an override of
an existing in the base class function or an independent declaration of an entirely
new function in the descendant class. This knowledge affects the changing pro-
cess greatly, as the override should change from the interface, together with all the
implementations. The absence of a clear, explicit override syntax we call here an
“override syntax absence”.

Whenever a class and all of its ancestors do not provide an implementation of a
certain virtual function, created as a pure virtual in the declaring class, the class is
called an abstract class. It is not possible to construct instances of an abstract class.
C++ however does not have any special syntax to explicitly declare a class abstract,
see the Listing 4.4. The programmer usually has to be aware (from documentation,
implementation, or, the worst case, compilation errors) whether a given class is
abstract. We will call this phenomenon an “abstract class syntax absence”.

Overriding a function is an active action of the programmer, and it is initiated
by the programmer. I.e. the programmer wants to state, that a new function is
designed to override an existing one, and which is the overridden function. The
abstract property of a class, oppositely, is not a quality a programmer directly gives
to a class in C++. It can be rather deduced from the analysis on the base classes au-
tomatically, by editor. So in this case no actions are needed from the programmer
side. Because of this, the two similar, at the first glance, absence of syntax phenom-
ena are resolved or differently from in the Projectional C++ implementation.

In order to use an interface, declared in some class, the using code has to get
a pointer to an instance of any inheriting the interface descendant class instance.
Thus, the type system has to allow a pointer to the descendant to be treated in the
way as a pointer to the base class would be. The same should hold, normally, for
the reference types, but it is not used very often in practice, and is omitted in the
implementation.

As this typing rule represents the core of polymorphic behavior, we will start
from it below, describing further the polymorphism in the Projectional C++ imple-
mentation.

1Especially when not knowing about the zero pointer value semantics.
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Special Typing for a Pointer to a Class

The problem solved here is enabling the usage of pointers to descendants instead
of pointers to ancestors, see the Listing 4.5.

Listing 4.5: Example Usage of a Pointer to Descendant Class

c l a s s Shape {} ;

c l a s s C i r c l e : public Shape {} ;

void draw ( Shape * shape ){
/ / Some drawing i m p l e m e n t a t i o n ,
/ / d e l e g a t i n g , pe rhaps , t o t h e o b j e c t .

}

i n t main ( ) {

C i r c l e * c = new C i r c l e ( ) ;

/ / A c a l l b e l l o w happens
/ / wi th a C i r c l e * t y p e i n s t e a d o f
/ / t h e d e c l a r e d Shape * t y p e .
draw ( c ) ;

return 0 ;
}

The PointerType concept is implemented in the pointers language in mbeddr.
Following the goal of non-invasive changes to mbeddr the Projectional C++ imple-
mentation needs to add the typing rules for pointers to classes without changing the
pointers mbeddr language, where the typing system for the pointer type is defined.

In the case when a type of a pointer to a base class is expected, a pointer to a
subclass should also be accepted, like in the Listing 4.5. The type system of the
pointer language will try to check the compatibility of the two pointer types. It
will fail to do so, as the mbeddr languages are not aware of the Projectional C++
extensions2 by design.

In a case like this a replacement rule can be used, see the Section 3.1.5. Projectional
C++ provides such a replacement rule for the pointer type, which checks, whether
a class pointed to, is a passing descendant of the class required by an expression,
where the pointer was used, and performs the necessary typing.

In the Section 5.3 we discuss more on the approach taken here, and its limita-
tions.

2The ClassType concept in this case.
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4.2.4 Safer Casting for a Pointer to Class

C++ Problematic The type casting for class types in C++ has a number of disad-
vantages.

• The const cast is usually a signal of a design error, since the declared
const property of a value is taken away.

• The static cast allows for wrong conversions from a base class to a de-
rived class, which could cause a failure in the run-time, as no checks are
performed.

• The reinterpret cast allows to ignore the possibility of a completely
meaningless conversion, which can lead to run-time crashes, neither run-
time nor compile-time checks are performed.

• The dynamic cast has usually low compile-time support, and relies on the
run-time type information to perform checks at the run-time. This informa-
tion may not be available, being, for example omitted for the sake of perfor-
mance gains.

Implementation in Projectional C++ A new construction for type conversions
is introduced, which can be considered a slight improvement over the existing in
C++ casts. The as construction translates to the C++ dynamic cast. Additionally,
checks are added to improve the security of the construction.

Figure 4.7: Example of the as Construction

The Figure 4.7 demonstrates some of the introduced in Projectional C++ features
related to the class type conversions.
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The new as construction is being checked in the coding-time. For example, the
cast from parent to NPChild is signaled as an error, since these class hierarchy is
not polymorphic, and the dynamic cast in the basis of as would not work on it.

The next cast from parent to NonPoly is signaled with warning, because the
parent pointer does already have the requested type. Such casting may signal
a lack of understanding by the programmer while coding. The as construction
returns 0 at the run-time when conversion fails. Thus a good programming style
should include a check for it at the run-time.

When as is used to cast a polymorphic class, it checks, whether the cast makes
sense. For this the related classes must be in the same class hierarchy. When a
zero result is possible, the node is highlighted with warning, for the programmer
to take an action of checking. Casting between unrelated classes is presented as an
error.

Some implicit type conversions are always meaningful, thus a conversion from
a pointer to a child class to a pointer to a parent class is recognized by Projectional
C++ and is allowed, as described in the Section 4.2.3.

The casting can be further improved through introducing new analyses. At first,
a fast type of cast, like static cast or even reinterpret cast can be used
in translation, when a data-flow analysis can prove, that the conversion is always
meaningful. Secondly, unnecessary casts can be eliminated in this way.

Overriding a Virtual Function

The Listing 4.6 demonstrates, how overriding of a virtual function happens in C++.
The function getArea() is initially defined in the class Shape and is then over-
ridden in the class Circle. The Listing 4.6 demonstrates as well the override syntax
absence in C++.

Listing 4.6: Example of an Overridden Function - Text Code
c l a s s Shape {

public :
Shape ( ) ;
v i r t u a l double getArea ( ) ;

} ;

c l a s s C i r c l e : public Shape {
public :

C i r c l e ( double r ) ;
v i r t u a l double getArea ( ) ;

private :
double mRadius ;

} ;

In the Figure 4.8 the same example is demonstrated, but in Projectional C++. In
fact, the code shown in the Listing 4.6 can be generated from the demonstrated
projectional sample in the Figure 4.8, by invoking all TextGens in JetBrains MPS.
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When a method declaration is created, it can be set to be an override of a method
in a base class. Right after an empty method declaration is created, it can be set to
be an override, so that the only thing which stays, is to pick a method from a base
class to be overridden. The override is automatically named, the parameters and
the return type are set accordingly, the virtual property is immediately set. This
is yet another work saver for a programmer.

After the override has been linked to the overridden method, the projectional
editor checks, if the override full signature stays precisely the same as the one of
the overridden method. Thus if the latter changes, it is going to be indicated in the
former. The overridden method is shown next to the override declaration, see the
Figure 4.8, which compensates on the override syntax absence.

Figure 4.8: Example of an Overridden Function - Projectional C++

The additional, not belonging to C++, syntax in Projectional C++, should not con-
fuse the reader. It is only present in the projectional editor, and, when an AST is
generated into a text code, a regular C++ syntax is achieved. However in this case
an AST stores more than needed to generate and compile a C++ code.

This subsection is one of the examples, that storing more information can be
useful, it is generalized in the Section 5.2.

Pure Virtual Functions

In the example code in the Listing 4.6 one improvement to could be made. As the
getArea() for a random shape can not be determined, it makes sense to make
the getArea() function pure virtual. As said before, a pure virtual function has
no implementation in the declaring class, and serves only the overriding purpose.
Semantically in C++ it sets the pointer in vptr table to 0 and thus has reflecting
the zeroing syntax, see the similar example in the Listing 4.4. This syntax can
be seen as not obvious, as it reflects more the under-the-hood implementation of
the mechanism, rather than the original programmer intention to built a basis for
an override chain, while taking the advantage of polymorphism. Additionally, as
discussed above, declaring a pure virtual function requires a significant amount of
the syntactical overhead. These were the disadvantages of the C++ programming
language, Projectional C++ tries to improve on.
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In the Projectional C++ implementation, one intention is reserved to make a func-
tion pure virtual. The intention automatically sets the needed pure virtual and vir-
tual flags of the function declaration, and the projection changes. That is why out
of the statement “virtual double getArea() = 0;” a programmer has to
input only the name getArea, pick the type double, and toggle the “Make pure
virtual” intention for the declaration in the Shape class. The result of the intention
work can be seen in the Figure 4.9.

Figure 4.9: Example of a Pure Virtual Method - Projectional C++

The word pure is added by the projectional editor. This makes the reading of
the code easy and natural. The “ = 0” part is preserved for the C++ programmer
with habits, used to the original C++ syntax. And, as in many other cases, the
semicolon is omitted as it is nothing but syntactic help to the compiler, which does
not have to appear in the projection at all.

This example demostrates, how the lower-level syntax can be made more read-
able. The general principle on it is formulated in the Section 5.2.

Abstract Classes

If any of pure virtual functions, in an inheritance chain, leading to a class, is not
implemented by this chain, or inside the class itself, the class is called an abstract
class. It is not possible to construct an instance of an abstract class, as such classes
have not implemented methods.

A programmer has to know which classes are abstract, and are intended for in-
heritance and further implementation only. One of the reasons for this, is to not to
try instantiation of an abstract class. Another reason is to exactly identify abstract
classes, designed to serve as extension points. Above we discuss the abstract class
syntax absence in C++. It leads to the need for the programmer to determine some-
how him/herself if a given class is abstract, the source code representation of a
class does not give any information on it, unless some naming conventions require
abstract classes to be named specially. An improvement to this situation would be
a behavior, when an editor can perform an analysis and determine if a class is ab-
stract, hinting on it to the user. In the case of the projectional editor, this analysis
is especially computationally efficient3, as an AST is readily available, and a quick
analysis can be performed by a simple recursive algorithm on inheritance chains.

After an abstract class has been determined, it is possible to modify the editor
representation for it, and show that it is abstract, see the Figure 4.10. In this example
a typical class hierarchy is created to support user interface programming. A user
of this API, when searching for a button, could try using the Button class, which
is designed to be abstract, and serve as a base for the further implementations, e.g.
PushButton in the example, or check boxes, radio buttons and similar, which
could be alternatively created.

3In comparison to textual editors, with the need to parse, see the Section Section 5.1 on comparison
to the textual approach, and Section 5.4 on complexity of analyses.
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Figure 4.10: Determining Abstract Classes

The projectional editor, however, checks on the fly, if a certain class is abstract,
adding a special abstractword in front of its declaration. This makes the reading
easier, and allows for quicker understanding of a code.

This example demonstrates a general principle, see the Section 5.2, of an advised
practice to perform quick analyses and inform the user.

Additionally, the creation and usage of abstract class instances is checked, and
forbidden by type analysis. This is described separately in the Section 4.6.

4.3 Operator Overloading

Listing 4.7: String Concatenation with Overloaded Operator +

# include <s t r i n g>
# include <iostream>
using namespace std ;

i n t main ( )
{

s t r i n g s1 ( ” Blue ” ) ;
s t r i n g s2 ( ” berry ” ) ;
cout << ”The s t r i n g concatenat ion i s : ” << s1 + s2 << endl ;

}

C++ Problematic The operator overloading feature in C++ allows to redefine se-
mantics for a given operator when used with certain types. Indeed, this represents
a language engineering methods, when some language constructions (operators)
are extended to support new features (work with new types). The projectional way
to support such needs would be extending the language with new constructions.
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However, moving towards the STL support, it is good to provide the operator over-
loading usual for C++.

Most often, the operator overloading feature is used together with class types.
A very common examples are iterators with their increment, equality and derefer-
encing; standard input and output streams with stream operators << and >>; and
std::string concatenation with operator +.

In the Listing 4.7 one can find 4 overloaded operators:

• for std::string output,

• for const char* output,

• for std::endl output, and

• for std::string concatenation.

Implementation in Projectional C++ We will discuss the implementation of the
operator overloading in Projectional C++ based on the example. The Figure 4.11
shows (partially) a definition of the Coords class.

Figure 4.11: Operator Overloading: Definition

The class represents a vector in a two-dimensional space. Three operators are
overloaded for it:

• operator + performs the addition of two vectors,

• operator - subtracts one vector from another one,
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• operator [] allows to reference the x and the y coordinates of a vector in
the array fashion.

Other members of the Coords class should be self-describing, given the vector
semantics.

Inside the class the overloaded operators get declared. A reader can notice a high
degree of similarity between an operator overload declaration and a method decla-
ration, as both have a return type and arguments. Thus a common base concept was
created, AbstractImplementableAsMethod. It allows to link an implementa-
tion to it, or a method definition, in C++ terminology.

The difference between a method declaration and an overloaded operator dec-
laration, is that the overloaded operator declaration has an operator designator
instead of a name. An abstract concept OperatorDesignator has been created to
serve as a base for all possible operator designators for overloading, like +, -, []
in this example and more.

Creating a concrete operator designator, and inheriting it from the abstract con-
cept OperatorDesignator, makes it possible to define a new operator for over-
loading. Thus declaration and definition of an operator overload task is resolved
in a modular way.

Left stays the way, overloaded operators can be incorporated into the existing
hierarchy of expressions.

Figure 4.12: Operator Overloading: Usage

The Figure 4.12 demonstrates, how the defined operator overloads could be
used. The assert statements are taken from the special mbeddr language designed
to create test cases. They test the condition and if it is false the execution stops.

At first, in the example two Coords objects are created. Next, the third ob-
ject is created as their sum. The + operator used is nothing else but an instance
of the PlusBinaryExpression from mbeddr. Next, the newly created v3 ob-
ject gets tested. After that, the v4 object is created as a difference between v2
and v1. Again, the operator -, used to calculate the difference, is an instance of
MinusBinaryExpression in mbeddr. Then, v4 values get tested. And finally,
the [] operator is used with v4 to get its second coordinate. The operator used is
an instance of the reused from mbeddr ArrayAccessExpression concept.

The reuse of existing expressions from mbeddr is highly beneficial. For example,
the ArrayAccessExpression features a complex behavior. At first the indexed
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object is typed as an expression. After [ gets typed by the programmer, the in-
dexed object is transformed into an instance of the ArrayAccessExpression
concept. The ArrayAccessExpression has two children. First is the expression
which corresponds to the array. The indexed object is moved to be a child of the
new ArrayAccessExpression. The second child is an expression, which rep-
resents the index. It gets the input focus, after the replacement happens. Next, if
the indexed expression is about to be deleted, a special action4 takes place, which
replaces the ArrayAccessExpression with its child with the role5 array. Thus
the deleting of index resembles the usual behavior as in text editors, where just the
index disappears, not the whole expression together with the indexed object, as it
would happen in projection without the action provided.

The decision to not to create special expressions, which would represent the us-
age of the overloaded operators, helps to avoid code duplication, reprogramming
the behavior of the existing expressions in mbeddr.

Alternatively, the expressions in mbeddr could be inherited and changed. But
the degree of changes, possible through inheritance is limited, as described in the
Section 5.3, and creation of the second set of the same-looking expressions could
potentially confuse a programmer, when he/she is going to instantiate one of the
many + operators, for example.

The existing expressions could not be reused as they were, however. Their type
system, specified in mbeddr, is not aware of the ClassType, introduced by Projec-
tional C++. Thus the class objects would get rejected by the type system, as the type
for the resulting expression would not be figured out by mbeddr.

Changing the mbeddr type system, hard coding the necessary behavior for classes,
would introduce a dependency of mbeddr code on the Projectional C++ code. The
goal of this work, however, is to avoid such situations, as described in the Section
1.3. The solution for this problem was found to be as follows. For each of the
expression kinds in mbeddr an interface concept could be introduced, which would
participate in the type system for the expression, and, if found to be one of the
expression parts, could be delegated with the task of the type calculation. Then,
the ClassType is changed to implement the newly created interface concepts, and
the code is added to it, to compute the typing. The ClassType looks up the corre-
sponding Class for the presence of overloads, and if an overload for the operation
in question is found, the overloaded operator return type is taken as the result, oth-
erwise an error is reported.

For example, the ClassType implements a newly created in mbeddr concept,
interface concept ISelfTypingInBinaryExpression. Thus, when a type of a
binary expression is calculated, the ClassType is delegated with the task to de-
termine the possibility to be involved in the binary operation under question,
and to calculate the resulting type. In the Figure 4.12 when calculating v3, the
PlusBinaryExpression delegates to the ClassType corresponding to Coords
class, to figure out, if the operation is possible. According to the declarations in the
Figure 4.11 the Coords class has an overload for the + operator, the argument
type is Coords class, thus the operation is determined to be possible, and the re-

4See the Section 3.1.10
5See the Section 3.1.1
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turn type of the operator, namely Coords class, is taken as the result type for the
PlusBinaryExpression.

As the ISelfTypingInBinaryExpression interface concept is declared in the
mbeddr project code, the only dependency created by using it, is the existing depen-
dency of Projectional C++ on mbeddr, keeping mbeddr development separate from
Projectional C++.

The current Projectional C++ implementation has some limitations in the operator
overloading:

• Not every operator is ready for overloading, and mbeddr has to be further
extended to support it, this is, however, not an entirely new task, but rather
repetitive application of the approach described above.

• C++ features not only member operators, but also static operator overloads,
this is not supported by Projectional C++ in the current version, a very similar
to member operators approach can be taken to implement it.

4.4 Templates

C++ Problematic Templates represent a powerful tool in the C++ programming
language. In fact, templates, especially used together with a preprocessor, repre-
sent a language engineering tool, which allows for extending C++ with additional
constructions, not originally present in the language, [20]. In this regard an ap-
proach taken in the projectional editing is an alternative, as the projectional lan-
guage modularity is considered to be a basis for the language extending, see the
Section 2.2.2.

However, templates have to be supported to some extent in Projectional C++, as
STL is based on templates entirely. Without supporting templates, it would not
be possible to provide a usual for a C++ programmer standard library. Mostly
templates are used to abstract over some type in STL.

Several Disadvantages of Templates in C++ Templates bear a pure textual struc-
ture in C++. A template code is not even syntactically checked before instantiation,
i.e. template code is not even parsed before it gets explicitly used, or instantiated,
in a compiled, working, code.

When instantiating a template, assumptions, taken in the template code on a
template parameter, are checked against a concrete template parameter. These as-
sumptions are implicit in C++. The template parameter is assumed to be capable
of everything, which is possible in C++. Participation in all types of expressions
and statements is assumed, in each role.

The described features of a template code can present a source of various kinds
of errors, for instance:

• A syntactic error found on the time, the template code is used for an instan-
tiation first, and not before, when the code is created

• A template code receives precise semantic meaning, only during instantia-
tion. For a user to understand, what the template code really does, the user
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has to know the implementation of the template, namely, how exactly the
real parameters are going to be used.

• Assumptions, put on a template parameter, may conflict, when one template
parameter is to be used with several template code fragments, putting differ-
ent assumptions on the parameter.

• The assumptions are hidden from a programmer being implicit requirements
in the template code. Staying implicit, they can be not fully observed, or
understood wrongly.

The Conflict brought by the Textual Nature of Templates In the projectional
editing, constraints are required, as they define, what can be constructed in princi-
ple, see the Section 3.1.4. In other words, before using a certain object to construct
with it nodes on an AST, in the projectional editor it has to be precisely known,
what this object is capable of doing, how it can be used. This is defined through
the special “scoping constraints”, see the Section 3.1.4. For example, when an in-
stance of a class is used, it has to be known in advance, which methods the class
has, in order to call them on the instance. When using, for instance, a template
parameter type, it is not known in C++, what are its capabilities. They are being
determined later, as the mentioned above implicit assumptions, put on to the type,
when it was used by template code. This example represents the “unconstrained”
nature of template parameters in C++. It is a contradiction in nature of templates
in C++ and the projectional editing with constraints in general. A special modi-
fication to C++ language is presented below as a way to resolve the formulated
problem.

Implementation in Projectional C++ As a way to support templates in Projec-
tional C++ we introduce a term a “C++ concept”. This term is not to be confused
with concepts in projectional editing.

A C++ concept explicitly describes assumptions put on a template parameter by
a template code. A template code is required to declare, which C++ concept a tem-
plate parameter belongs to, before the parameter can be used. The C++ concept
defines for the parameter the way the parameter could be used in the template
code through a mechanism, similar to giving a type to the parameter. This gener-
alized type is described by the C++ concept itself. Thus the C++ concept describes,
how the parameter can be used. In Projectional C++ the scoping constraints code is
analyzing the C++ concept of the parameter, to determine, how it could be used.

The Figure 4.13 demonstrates how a template code can be composed with the
use of C++ concepts.

At first, the Comparable C++ concept is declared. It puts a requirement on
a type to have a function compare() in its public section. Next, a class called
NumberWrapper is declared to realize the Comparable concept. The editor
will check the class upon the requirement.
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Figure 4.13: Template Code Sample in Projectional C++

A template class OrderedList declares a template parameter T and specifies
that it satisfies the Comparable concept. This makes an object of type T usable as
if it was satisfying the requirements as declared by Comparable. This is demon-
strated in the OrderedList::compare() function.

When instantiating a template, it is checked if either the parameter given realizes
the needed C++ concept, or, more flexibly, if it satisfies the C++ concept require-
ments, without declaring the realization of the C++ concept explicitly.

The support for templates by Projectional C++ is, of-course, limited, when com-
pared to traditional C++ facilities. It is evaluated in the Section 5.5.

4.5 Other C++ Language Features

There are some C++ languages features, which are to be worked on with Projec-
tional C++. In this section we briefly mention them.

4.5.1 Exceptions

Exceptions are not yet supported by Projectional C++. The primitive support could
be easily achieved by implementing try{}catch() and throw statements.

However, it represents a special task for the future, to make a special, improved
over original C++, exceptions support. This may include:
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• An analysis for exceptions to be caught always, including a check for correct
exception typing.

• An informative analysis to tell a user, which functions could generate excep-
tions, and the types of the exceptions should be expected.

4.5.2 Standard Output Stub

Since STL is not yet supported by Projectional C++. There is no way to use the C++
standard output, which is very common for various C++ programs.

A special statement has been developed to provide a primitive support for the
standard output stream std::cout. The cout << x statement is capable of hav-
ing every JetBrains MPS concept instead of x. This reflects the high flexibility of the
std::cout shift operator overloads.

This facility is designed to be replaced later by a proper calls to STL version for
Projectional C++.

4.6 Advanced IDE Functionality

As a projectional editor works directly with an AST, it is possible to provide some
programming on an AST to improve the user experience. We call this additional
programming as an advanced editor functionality, and discuss it in this section.

4.6.1 Primitive Renaming Refactoring

Directly from the nature of the projectional editor, without any additional effort,
comes a feature to perform primitive renaming refactorings6.

If a node of an AST gets to be referenced somewhere else, it is referenced by
the use of its unique internal identifier. The name of the node is a property of the
node, which is not playing any role in referencing the node from somewhere else.
Thus renaming, dislike the way it is performed in text editors, does not involve
replacing the name all around the code. Instead, just the name property of a node
is changed.

The renaming refactoring comes out of the box, without any additional efforts,
thanks to the nature of the projectional editing.

As an example - renaming a class or a method would mean just changing its
name where it is declared first. No search for usages and multiple replacements
are going to be involved.

4.6.2 Getter and Setter Generation

In order to provide an access to encapsulated class properties, often expressed as
member fields in C++, two access functions are usually defined, known as a getter
and a setter. The getter is used to read a property, and the setter is used to set the
property to a new value, after checking the validity of the new value.

6More complex renaming, like renaming a function together with all its overrides, are not covered
by the default behavior of a projectional editor
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The job of declaring and prototyping the two functions can be automated with a
JetBrains MPS intention, see the Figure 4.14.

Figure 4.14: Calling the Generation of Getter and Setter

The result of the intention work is, as expected, two methods declared and pro-
totyped, see the Figure 4.15.

Figure 4.15: Getter and Setter Generated

The way the editor names the getter and the setter can be controlled through the
NamingConventions concept, which is discussed in the Section 4.6.3.

The getter and setter are declared in the public section of the class, which is
automatically created, if not found there already. The getter is rather simple, it just
returns the value of the member field. The setter is somewhat more complicated.
Firstly, it is designed to return a bool value by default. This is made to remind a
programmer, to include a check of the value and return false, if the check locates
a wrong value passed. Secondly, the parameter of the setter is typed appropriately.
As C++ by itself imply a performance maximization, the type of the parameter
for the setter depends on the member field type. And when the type represents
a composite structure, like a class, it is passed by a constant reference, instead of
value, see the Figure 4.16.
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Figure 4.16: Setter Works with a Constant Reference for Classes

Passing a composite parameter as a value involves usually an overhead of allo-
cating the necessary memory and then copying the contents in the newly allocated
instance. To access the parameter in both cases pointer arithmetic is still going to
follow.

4.6.3 Naming Conventions

In C++ development projects some code writing conventions are usually agreed
upon. For example, in Google coding style guide for C++, [23], it is stated that
all member fields must end up with “ ” sign. For the consistency and uniformity
purposes each project has to have some agreements on a way a code is composed.
They can include code formatting rules and naming rules.

To some extent the formatting conventions are fixed by the way the projectional
editor shows an AST, see, for example, the Section 4.2.1. The naming rules, how-
ever, should be additionally controlled. The naming rules, accepted in a project,
we call naming conventions here.

In order to perform the naming conventions control a new concept has been in-
troduced, called CppNamingConventions, see the Figure 4.17. It is instantiated
once per JetBrains MPS model.

Figure 4.17: CppNamingConventions Concept Instance

In a CppNamingConventions instance one can give a standard prefixes for
getters and setters, which are used during the code generation, see the Section 4.6.2.
The argument prefix is used in the setter generation, to name the setter argument.

The member prefix is used on member fields to check their naming. It possible
to change the prefix and the editor will control each of the member field names
to comply. Whenever a field is not named in a proper way, an error intention is
available, see the Section 3.1.9, which automatically renames the field, see the Fig-
ure 4.18.
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Figure 4.18: Intention to Rename a Field - Naming Conventions

The CppNamingConventions concept was created to demonstrate some new
possibilities, which can be added to Projectional C++. In this case naming conven-
tions can be seen as a part of project configuration, in a very common sense. This
is generalized in the Section 5.2.

Some remarks on the CppNamingConventions concept are given additionally
in the Section 5.1.1.

4.6.4 Method Implemented Check

When using the C++ programming language it is possible to declare a class in one
file, and then implement its methods in other, potentially several, files. As there is
no clear concept of a module in the language itself (more on this in the Section 4.1.2)
usually different coding standards have to improve on it, requiring, for example in
the Qt Project [27], one class has to be defined in two files, one header file with
declaration, and one implementation file. The both files have to be named with the
class name.

As the language itself does not argue about a place for methods, IDEs usually
do not check if a method is implemented. Neither do compilers. And only at the
linking stage it can appear, that a linker is not able to locate the method implemen-
tation code. The error message from the linker can be rather obscure, as the linker
operates on a much lower abstraction level, rather than a programmer, who uses
the C++ language.

After introducing the new module concept as in the Section 4.1.2, it is possible
to check each method and find out if they all are implemented on the very early
coding stage.

A check is introduced in Projectional C++, which respects inheritance chains, with
overloaded functions and pure virtual functions, and creates a warning for the pro-
grammer hinting that a certain method has not been implemented. Together with
the class declaration, generating the assignment operator declaration and a copy
constructor, the method implemented check makes the programmer to fully define
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the class together with the most important methods, affecting the memory opera-
tions behind the class instances life-cycle.

4.6.5 Abstract Class Construction Check

In this work we have already defined the notion of abstract classes in C++ and some
related to them questions were discussed in the Sections 4.2.4 and in 4.2.3. Mainly
the abstract class syntax absence and the problem of determining abstract classes were
discussed.

Figure 4.19: Abstract Class Construction Check Signaling an Error

An opened question which stayed, however, is providing some help to a pro-
grammer using such classes. Namely, any instantiation of an abstract class has to
be forbidden. The abstract class as a type, however, should stay, and the pointer
type to it should not be anyhow affected by the fact that the class is abstract.

The decision was taken to check the places, where an instance of an abstract class
can appear, and deprecate such situations, marking the corresponding nodes as er-
ror nodes. JetBrains MPS supports so-called non-type-system checks, which come
useful in this situation. Any node on the AST can be analyzed, and if the error
happens to be detected, there is a chance to associate it with the node and a textual
error message, which will clarify the programmer, what exactly went wrong, see
the Section 3.1.6.

Among the places, where a class can be instantiated are variable declarations
field declarations, method and function arguments. The return type of the function
can imply an abstract class instantiation too. For each of such places a check is
performed, and if the class type is detected, it is checked against being abstract.
Error message appears to indicate the problem, if found, see the Figure 4.19.

The procedure of determining if a class is abstract, can happen every time, when
the check is performed. These are all variable declarations, function and method
arguments and return types, and memory allocations. The amount of computa-
tional load can be significant. The question of this complexity is discussed in the
Section 5.4.

4.6.6 Array Deallocation Check

Whenever some allocated on the heap data is about to be deallocated, in C++ one
of the two operators can be involved, delete or delete[]. The first one is ded-
icated to work with the memory, allocated for a single object by the operator new,
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the second deallocates the memory, allocated for an array of object by the operator
new[].

The C++ standard does no specify any concrete behavior for wrong deallocation
of an array with an operator delete (without square brackets), describing it as
undefined, [16]. A simple check is performed, and array deallocation is marked,
when it is performed wrongly.

Of-course, a complete check for this can only be performed by a complex analy-
sis of the data-flow. This is left for the future work.

4.6.7 Analyses to Implement as a Next Step

The advanced IDE functionality can be grown incrementally. Among the necessary
checks to increase Projectional C++ quality one can find:

• Detection of virtual classes.

• Calculation of class-sizes.

• A check for virtual destructor in a virtual class.

• A check for a default constructor when an array of objects is created.

• A check that an exception thrown gets caught eventually.

And indeed many more. Such checks are left for the future work. When growing
the number of checks and/or computational complexity of individual checks, one
should mind the remarks on analyses and complexity, made in the Section 5.4.
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In this chapter we present the lessons, learned while building Projectional C++.

5.1 Comparison with Textual Approach

It is important to compare the projectional approach to build editors for languages
to the well-adopted textual approach. To the opinion of author the projectional
approach has a number of advantages, which could make it more popular in the
future, as well as, naturally, some disadvantages.

Below we present the advantageous aspects of the projectional editing. We group
them by the party, which benefits from the advantage.

Advantages for an end-user, or a programmer, who uses a projectional IDE:

• In a projectional editor the programmer can potentially type less, as the editor
is aware completely about all the possible constructions, dislike various code-
completing helpers in the textual editors, which can refuse to work at all in
some cases1. Thus the programmer may rely on the auto-completion much
more, which can make the typing itself faster.

• As an AST is readily available in a projectional editor, there is no need to pre-
parse the code in order to perform an analysis on it to detect mistakes or for
another purpose. In a textual editor before any analysis the program has to
be parsed first. Parsing is a computationally expensive operation. Repeating
it after each time a piece of code is modified puts a high load on the developer
machine and can slow it down significantly.

• Different naming conventions and coding standards can be replaced by dec-
orations and the way a projectional editor projects an AST. This can increase
the code readability, and make some of coding guidelines not necessary any-
more, reducing the amount of work, a programmer has to accomplish. For
example, a member variable, can be shown differently from a local variable
in an method.

• Nowadays, in JetBrains MPS the approach of generating a text code is taken,
before a projected AST could be further processed. For example, mbeddr is
designed to at first generate a textual C code, before it can be compiled into
an object code. However, taking into account the fact, that an AST in a pro-
jectional editor represents the same, or even more rich, information as an
AST resulting after parsing a text code, in the future it is possible, to process

1when a program is in unparsable state, or when there is no source code for a library, sometimes,
when a code base is too big to be indexed, the second problem is well known to C++ programmers
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the projected AST itself, without generating a text code at all. For example,
produce an object code from it directly. Thus, in the future, the compila-
tion/processing of a code from a projectional editor can be made much faster
and effective when compared to the textual approach, where parsing takes
place.

Advantages for an IDE developer:

• In order to support refactorings an ultimate “understanding” of a code is re-
quired by the environment. It is not always possible, however. Especially this
problem is well-known with complicated languages like the C++ program-
ming language. The parsing problem, and various checks related to it distract
the IDE creator, from focusing on the refactoring implementation itself. As
an AST is available in a projectional IDE, the implementation of refactorings
represents a more straightforward task, disjoint from parsing.

• Projectional editors have a flexibility to adopt new language constructions.
As a projectional editor allows for language modularity (see the Section 2.2.2),
it is possible to extend a language, without modifying an editor significantly,
installing extensions for it or similar.

As problematic or disadvantageous the following aspects of projectional editors
can be concerned, they usually affect both IDE user and developer:

• A special problem with the projectional approach is moving a segment of
code. As all nodes of an AST get referenced by the use of their internal iden-
tifiers, and their names do not participate in it, after a piece of code has been
moved to another location on the AST, a special processes of binding the
nodes has to be executed. For example, if there was a variable x in the code
defined before the moved snippet, and in the new location for the snippet
another variable with the same name x is defined, the new x will not get
referenced by the moved code snippet, as it references the old one (not avail-
able anymore) by its internal identifier. In JetBrains MPS the manual process
of rebinding is always required, i.e. the programmer will have to go over all
nodes, which reference the old context, and input them again, to connect to
the new context2. In textual editors, there is no such problem, but another
one exists: the moved code snippet can change its semantics in a wrong way
after being associated with a new context. Fitting, however, immediately, it
may cause a false confidence in correctness of the operation performed. For
example, a reference to a variable can start to reference another, locally de-
fined with a narrower scope.

• A very specific issue relevant to projectional editors is the format to store the
projectional code and a version control for it. In JetBrains MPS an AST gets
serialized as XML, and is stored in a file. The XML resulted, is, generally
speaking, not a human-readable code, despite the XML nature. The line-by

2Sometimes a special function to re-analyze and rebind nodes can be used in JetBrains MPS, how-
ever it does not work flawlessly and represents in any case an additional concern and work
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line merging as employed in regular text-oriented version control systems
(CVS, SVN, Git, Mercurial) does not apply, breaking the XML, or asking the
user to merge, presenting with unreadable XML code. The approach taken
in JetBrains MPS is providing a special merge driver, which handles merging
for the projectional code in a proper way. The driver is not perfect however,
still requiring the user to finish the job manually sometimes, especially when
it comes to non-trivial conflict resolutions.

• New languages are developed themselves using a special defining projec-
tional languages in JetBrains MPS. So the evolution of a language under de-
velopment, and its version control is also an issue. Each new incremental
iteration of a language in JetBrains MPS gets internally an increment in the
language version number. When a second language is referencing the mod-
ified one, the version number is taken into account. The update for the first
language then requires an update to the second, using the first, language,
as well as to all other languages, which use the updated one. If two updates
happened at the same time for a language, then two different versions with the
same version number appear, which presents a problem for the referencing
the changed language, as two different language versions get the same ver-
sion signature. All these version control issues are still up to be thoroughly
though of, and are not yet implemented well enough in JetBrains MPS.

• The question of language evolution and code in it is to be researched on.
When a language defined in a projectional editor is modified, the old code
may turn to be not matching the language description anymore. For example,
nodes may stop satisfying constraints, or have a child/reference with a role,
deleted in the new language version, or, vice versa, have a nothing in a place
where the new version language requires some child, reference or property.
This renders the code in a former language version incorrect in a newer one.
The question of the code update to a new language version appears. For
example, a script can be provided with each new language version, which
updates the code to the version in question. This is not automated however
in JetBrains MPS, so that the update process is seamless for the language user.
This is another problem to work on in the future. The problem described, of-
course, is not relevant to the text code editors, as it is, since the language
evolution there is rather untypical.

5.1.1 Some Additional Remarks on Naming Conventions

Few remarks concerning the CppNamingConventions concept are to be made
here:

• The marking of special variables or object, keywords or type names, can be
performed by changing editors for them. The special naming will not be
needed then. Such way would mean however no opportunity to introduce a
project-dependent marking, as it starts to be common for all projects, being a
part of the Projectional C++ implementation.
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• The naming checks can be generalized to use compliance to regular expres-
sions, instead of just prefixes. As an advantage comes the ability to adopt a
much broader set of different naming conventions. Disadvantageous is an
increase of a computational load in the projectional editor, this is discussed
also in the Section 5.4.

• The CppNamingConventions in Projectional C++ is just a concept in a Jet-
Brains MPS model. It is similar to the CppImplementationModule or the
BuildConfiguration concepts. Dislike many conventional editors, which
store such settings as a workspace, a project or an IDE configuration, Projec-
tional C++ makes it a part of a program code itself. It is advantageous, since
all programmers in a team have to follow the same naming conventions set
up once in a project on the start phase, and no environment (re-)configuration
is needed to work on the project by any of joining developers. The princi-
ple to store a configuration data together with a code is generalized in the
Section 5.2. The projectional approach is discussed and compared to the con-
ventional one in the Section 5.1.

• The CppNamingConventions concept can, of-course, be extended to incor-
porate class names, function names, additional naming for methods, like
“is”- prefix for the boolean return type.

5.2 Rebuilding a Language in Projection

In this chapter we formulate some of the general principles, which can be taken
into account when designing new languages in projectional editors, which are
meant to represent, especially, the existing already text languages.

5.2.1 Target Semantics

When implementing a language for a projectional editor, one should target seman-
tics of it, rather than an existing syntax. For example, extensions can be provided,
which raise the abstraction level to be closer to the application of the language. The
code in the target text language is generated then from the higher level construc-
tions.

Another place to think of when targeting semantics is, where the target language
constructions are low-level and full of compiler-helping syntax. These construc-
tions can be cleaned out, helping the programmer to focus on their semantics, in-
stead of typing and syntax. C++ brings various examples of it: pure virtual method
declaration, pointer-to-method type usage, and similar.

5.2.2 Store More Information

A language in a projectional editor can, and often should, contain more information
as it is needed to just generate a text in a target text language. This information may
be used to improve the generation results, or analysis. Example is the overridden
method link in the override in Projectional C++, see the Section 4.2.4.
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A disadvantage of this way can be a problem to extend the information, taken
from an importer of the native text language, see the Section 2.2.3.

5.2.3 Configuration as a Part of Source Code

Usually a code project consists not only of a source code, but of some configura-
tion for it, like naming conventions, generator configuration, build configuration,
another specific to the project information.

It presents advantageous to store this configuration together with code as a part
of it. This eliminates the need to separately configure an environment of each de-
veloper before the development process may start.

Usually editor preferences are not shared among users, like in Eclipse for exam-
ple, stored in a individual for each machine workspace part. This brings a need to
configure each development environment separately, and maintain the similarity
of configuration. Individually, separately from code, only the pure developer or
machine specific configuration parts should be stored.

5.2.4 Hide Redundant Syntax

Usually, text languages contain a lot of syntax, which helps parsers to process a
code. In C-like languages these are semicolons, curly braces, braces and triangular
brackets.

This syntax has nothing to do usually with the code semantics, so it could be not
projected at all, without changing the meaning of the code. Decreasing the amount
of projected symbols, the code can be made more readable.

Formatting3 can also be considered the redundant syntax, and addressed by pro-
jection.

5.2.5 Make Old Syntax Readable

Whenever a syntax of a target language happened to be not well readable by itself,
a projectional editor can change it. The amount of punctuation can be lowered and
some syntactical constructions named in a human language.

As an example we are bringing here a pure virtual method declaration, see the
Section 4.2.4.

5.2.6 Show the Core, Hint on Details

Not necessarily all information represents a core meaning of a language construc-
tion. The most important information can be shown first, and the rest can be shown
as a hint, especially when it can be figured out by the projectional editor automati-
cally.

As an example we can consider a friend function declaration in Projectional C++,
see the Section 4.2.2, where the function full signature is hidden from the main

3Formatting is important for some languages, like Python, and less relevant to C, being just a not
necessary syntax complication
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construction, and is just hinted upon, for simplicity, since usually it is clear, which
function is declared to be a friend function.

5.2.7 Perform Analyses and Inform a User

Performing various analyses on an AST in a projectional editor, it is possible to
improve an overall editing experience.

We suggest a logical division of analyses on two types: informative analysis and
preventive analysis.

An informative analysis can be performed to find out more about the edited code.
Various newly found properties can be shown as hints for a user. Abstract classes
determination is an example of an informative analysis, see the Section 4.2.4. An-
other example is a class copying and assignment analysis, see the Section 4.2.1.

A preventive analysis can be performed to prevent programming mistakes. In
general, this topic can go deep, and it is considered separately in, e.g. [7]. In this
work as an example of such an analysis for C++ the detection of abstract class
instantiation attempts can serve, see the Section 4.6.5.

When implementing an analysis, one should mind the complexity of it, and take
a decision, whether to implement it as a self-running analysis, or on as an analysis-
on-demand, see the Section 5.4.

5.3 Projectional Language Extensibility

In general extensibility and modularity are very important concepts for projec-
tional editing, see the Section 2.2.2.

In JetBrains MPS extensibility consists of creating a new language and there some
new concepts, which represent an extension. When creating concepts in JetBrains
MPS one deals with several views on them, see the Section 3.1. In this section we
consider extensibility, and the most important, how well it is supported by JetBrains
MPS, per view on a language.

5.3.1 Structure Extensibility

This view is the same as the view on concept declarations. Extensibility is imple-
mented here by inheriting from a base concept. It is rather straightforward, since
it is very similar to the object-oriented programming languages concept of inheri-
tance, with one difference, actually originating from the Java notion of an interface,
as there is one base concept, but several interface concepts which could be imple-
mented.

5.3.2 Editor Extensibility

It is hard to extend a language in terms of changing an editor concept (see the Sec-
tion 3.1.2) for an existing concept in JetBrains MPS. Namely, there are no direct ways
to perform inheritance there. So, if the way a concept is edited or displayed has to
be changed, one should take work around ways to achieve the needed behavior.
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One way is inheritance from the concept, and changing the editor concept for the
descendant. Another way, is mixing some interface calls into the editor, and over-
riding the methods in the inheriting concept. This way limits the editor to the way
it was originally programmed. These both workarounds, however, do not change
the way instances of the old concept are presented.

In the new JetBrains MPS 3.0 an ability to have several editors for one concept is
present. It is up to the future research to learn, how and if it will change the editor
extensibility.

5.3.3 Constraints Extensibility

Constraints, similar to the editor concepts, do not extend well in JetBrains MPS.
Namely, there is no way to newly define constraints for an existing concept. When
creating a new concept, there is no way to reuse constraints from an existing one, as
they are not accessible programmatically.

As an example, when extending the mbeddr C language to Projectional C++, the
naming of identifiers had to be changed, so that C++ keywords are accounted too.
The naming rules for identifiers are defined in IIdentifierNamedConcept in
mbeddr. So in its constraints concept a limiting behavior is programmed. There is,
however, no way to reuse it explicitly. Another example would be the reference
constraints concept, where a variable declaration would be forbidden to use an
abstract class as a type. It is not possible to redefine those constraints, just adding a
language, and not editing the existing one directly.

As a workaround two methods are proposed. First, the constraining behavior
can be taken out into a separate code fragment in a Java-like class, the abstract
factory pattern, [8], could be implemented and a polymorphic behavior achieved
in this way. Second, it is possible to create a check, additionally constraining and
marking as errors the places, where the new constraints have been violated.

The first workaround is work intensive to implement originally in the base lan-
guage. The second workaround does not allow for extending the constraints, mak-
ing them weaker, and lets the not allowed nodes stay in the code completion lists.
Additionally, it is noteworthy to mention, that it is possible to redefine a constraint
for a certain role, when inheriting from a concept. In the future, a research could
be made, on how JetBrains MPS could be improved to allow for easier constraints
extensibility.

5.3.4 Behavior Extensibility

Behavior concepts are very similar to Java classes. It is easy to extend behavior of a
concept in JetBrains MPS as all the object-oriented methods for polymorphism can
be involved in the very same way as for Java classes.

5.3.5 TextGens Extensibility

TextGens are very well extensible. When generating a text for a concept, the children
or the references are output with the textgen append command, without specify-
ing, how exactly it should be done for each particular child or referenced concept.
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Polymorphically the matching TextGens are invoked, and this extends the TextGen
of the previously defined concept.

For example, when generating a text for a function, each statement of the body
is generated to a text. For each statement the TextGen of the statement itself is
executed. Thus, if we add a new kind of statements, all we need is to define a
TextGen for it, and it will be polymorphically invoked from the TextGen for the
function. The text for the function will be generated correctly, without the need to
change the function TextGen implementation anyhow.

5.3.6 Generators Extensibility

Generators perform language transformations in JetBrains MPS, see the Section
3.1.8. As this work does not directly implement language transformations, it is
left for the future research, to investigate, how extensible the generators are.

5.3.7 Intentions Extensibility

There may be a need to modify an intention when extending a language. There is
no direct way to do it in JetBrains MPS. For example, there is no explicit way to
forbid an intention to work on a newly defined concept, no matter it is based on
some concept for which the intention is defined.

As a workaround an injection of an external polymorphic code from a Java-like
class can be taken, similarly to the way it is described above for constraints, with
the same practical outcome of a high programming intensity when creating the
base language to be extended.

Alternatively, an intention can delegate its function to the concept under question,
so that the whole manipulation is made by the target concept itself. This will lead,
however in a necessity to define a general behavior in the base concept, which can
be behaving wrong in one of the particular cases, or to the need to implement the
polymorphic methods called in the intention in each of the descendant concepts. This
problem is solved in general object-oriented programming, being well-known.

5.3.8 Type System Extensibility

Type System in JetBrains MPS is, generally speaking, another way of constraining.
And exactly as in the situation with constraints there is no direct way to change
the type system behavior, when extending an existing language with a new one.
For example, when a new kind of expressions is added, which has to be typed dif-
ferently, when used together with some existing expression type, and the existing
expression type system is determining the type, it is not possible to redefine this
behavior or extend it naturally with some provided by JetBrains MPS tools.

Workarounds consist of injecting a polymorphic behavior in the type system
calls, or using JetBrains MPS own workaround, like the replacement rule, as for
example in the Section 4.2.3. Using the replacement rule is acceptable, when it is
used once. Later, if used multiple times, it can make the typing system behav-
ior unobservable, as many fragments of code, spread in numerous languages, will
decide in undefined order a type for a some expressions.
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Hopefully, in future versions of JetBrains MPS this is going to be taken care of,
and some ways to extend naturally, by the means of the typing system itself will
be present.

5.3.9 Analyses Extensibility

Analyses4 are also subjects to challenge the language extensibility. If an analy-
sis is relying on some concrete concepts to work, and is not assuming that a new
language could extend those, a problem happens. For example, mbeddr data flow
analysis, can analyze a C++ code snippet. Being unaware of C++ statements and
expressions, it fails, or presents to a user false-positive warnings and errors.

Either an analysis should delegate some features to concept, or employ some ex-
ternal polymorphic calls as possible workarounds. In the first case the analysis
stops to be a separate programming from the language itself, as delegated analysis
methods are found now in the concepts themselves. In the second case the devel-
opment can get more complex initially, as the code should be written in the very
beginning polymorphic and abstract enough to allow a non-invasive modification
in the future.

Again, some specific support for analyses from JetBrains MPS itself could im-
prove the situation, by providing some special means to develop extensible analy-
ses.

5.3.10 Extensibility Overview

Here we summarize in a table the degree of extensibility support in JetBrains MPS,
provided for languages, per view on a language, and a quality of workarounds,
which are known till now.

View Extensibility Support Workarounds Quality
Structure High -
Editor No Poor
Constraints Low Good
Behavior High -
TextGen High -
Generators - -
Intentions No Medium
Type System Low Medium
Analyses No Medium

As an outcome it appears, that JetBrains MPS does not provide a high degree of
extensibility, which would allow a pure modular language engineering. The views,
which are not extensibility aware could be improved, and the task of improvement
can be not trivial5.

4Including but not limiting to non-type-system rules. For example, a complex analysis-on-demand
can be implemented in a JetBrains MPS plug-in.

5The authors imply this statement from the absence of good workarounds currently.
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5.4 Analyses and Complexity

As it is stated before (see the Section 5.2.7) when constructing a language with an
editor for it, it makes sense to provide the language with some analyses. Two types
of analyses by application are considered: an informative analysis and a preventive
analysis. Two types of analyses by the way they are initiated are defined: a self-
running analysis and an analysis-on-demand.

A work flow of an analysis can be split into three major steps: initiation, running
and reporting the result to a user. On each of the steps the environment (JetBrains
MPS in this case) can provide certain support for the analysis, making the devel-
opment of it easier. Below we discuss it step-by-step.

5.4.1 Initiating an Analysis

It can be beneficial for the overall IDE performance to implement all computation-
ally heavy analyses as analyses-on-demand. Thus a user invokes them when needed,
and the question of initiation is solved.

For the self-running analyses the question of automatic initiation is to be decided
upon. In JetBrains MPS there is no way to define, when a certain check is to be run.
Thus two problems occur: some checks run too often, and decrease unnecessarily
the system performance, or other checks do not happen often enough6, and the
user is not informed on time on some important changes in analyses results.

As a solution to this an API extension for JetBrains MPS can be proposed: for
each analysis it should be possible to define an event, on which the analysis has to
repeat, as well as which nodes of an AST have to be covered.

For example, for the informative analysis identifying abstract classes (see the Sec-
tion 4.2.4) the running event can be defined through the declaration of a new
method or a new inheritance relationship. The affected nodes of an AST can be
correspondingly described as the classes, changed by the modification.

Thus the analysis will never run when changes made do not require it, and will
always run when it has to, and only on the relevant nodes.

5.4.2 Running an Analysis

After an analysis has been initiated, the running phase comes. Some analyses can
be computationally complex, as they can require external tools running, like SMT
solvers, for example, [7], or involve themselves complex algorithms.

As an example of a computationally intensive analysis, the preventive analysis for
abstract classes instantiation can be taken (see the Section 4.6.5). At first, the amount
of nodes to analyze is high, as they include local variable declarations, function
parameters, function return types, class member variables and more. Each of the
nodes is checked like this: at first the type is extracted, then the type is checked
to be a ClassType. When an instance of the ClassType is found, the Class is
checked on being abstract. For this all of its method declarations are checked on
being pure virtual, and then all the base classes are checked on being abstract. If

6There is a way to re-run self-running analyses in JetBrains MPS manually, by pressing F5, but this is
not an automatic solution, and thus is error-prone.
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we take a reasonably big code base, like the Qt library, which contains about 1000
classes7, the amount of nodes to check and the associated computations can be
immense8.

Another example of a computationally intensive analysis could be brought, if
CppNamingConventions concept would be implemented for all named objects,
and in a complex way, including regular expressions, as described in the Section
5.1.1.

As analyses can be started automatically, the computational load on an IDE can
be increased as some analyses may start in parallel.

This all together may present a performance problem, and a certain support from
JetBrains MPS is needed to handle the task of efficient analysis development:

• As discussed in the previous subsection, it should be possible to control,
when self-running analyses start, and the scope of their work.

• A value caching is needed, to store the information figured out by the anal-
yses. For example, for each class, it could be saved, if it was found to be an
abstract class, and the cached value should be valid, until the event to re-run
the analysis is detected. It may be necessary, to retain the values after the IDE
stops.

• As an analysis may take some time to execute, there has to be a way, to inform
the user about a background process running, so that a user interface is more
clear about analyses and their run time. Currently, JetBrains MPS does not
inform the user about checks, executed in the background.

• There has to be a way to limit and prioritize analyses running at the same
time. For example, preventive analyses could be preferred over informative anal-
yses, and the total amount of analyses running in parallel could be limited to
some number.

The task of providing a better support for analyses in JetBrains MPS represents a
challenge which lies out of scope for this work. However, this work demonstrates
by example the need in such specific support in JetBrains MPS.

5.4.3 Reporting Results of an Analysis

Reporting a result after an analysis has completed is very important, since it has
to convey the information to the user in a right way, so that the user can take all
corresponding actions when needed.

For the time being three forms of reporting have been used in JetBrains MPS:

• An error or a warning markup by non-type-system checks, see the Section
3.1.6.

7There are 989 classes in Qt 5.1
8If we assume, that each class out of 1000 classes in a library has 1 parent, 3 member fields, 3

methods, each with 1 parameter, 1 return type, and 1 local variable, we get up to 100 000 nodes
to be addressed by a single check execution.
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• An informative analysis hinting in the editor, as for abstract classes for example,
see the Section 4.2.4.

• A plug-in created with a custom user interface for an analysis-on-demand, as
described in [7].

A problem with non-type-system checks is that an error could appear in a root
node A after a modification of a node B. For example, if B is a class, changed to be
abstract, and A is an implementation module, where the class B was instantiated. A
must turn to be invalid, but the error is not going to be seen to the programmer, as
he/she is working in another root node, in one, where the B class is defined.

JetBrains MPS needs to provide some support which will allow to modify the
way, root nodes look in the project explorer9, if an error is found in a node. For
example, if a modification of one module, causes an error in another one, this ca-
pability is explicitly useful and should immediately come into action, to inform the
programmer about a problem at the moment, when the problem appears.

Alternatively, some user interface element may be provided to output analysis
messages in some form to the user, like a log window with hyper references to
error nodes.

An informative analysis analysis, as for example copyability and assignability
analysis (see the Section 4.2.1), is integrated with the editor for the Class10 con-
cept. This makes the editor and the analysis being built in dependence on each
other. This, in turn, makes the code more complex. Instead, some methods to dec-
orate nodes could be provided, separately from an editor implementation. This
would allow to control the way, how informative analysis results are displayed to
the user separately.

Finally, when creating plug-in analyses, the user interface for them has to be
created in standard Java libraries for a user interface creation. Some patterns could
be figured out, and offered as a JetBrains MPS API for a language developer, which
would allow, for example, a parallel execution of the analysis code or an external
tool, presenting the results in some commonly met form (as a table, a diagram or
decorations for code), and invalidating the results of the analysis, when needed.

5.5 Templates

The support for templates, as described in the Section 4.4, presents some pro- and
contra- arguments to a potential Projectional C++ user.

Among the disadvantages are:

• Incompleteness of the support for templates, thus it will not allow every con-
struction, possible in textual C++.

• The need to prepare C++ concepts before writing the template code, there
questions of code duplication can appear, when declaring two C++ concepts
with the same content.

9See the left window panel on the Figure 3.1.
10See the Section 3.1.2 for editor concept or editor view
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• Importing of native C++ code is made more complex, as C++ concepts have
to be generated, this involves parsing the template code and extracting re-
quirements for the template parameters, and establishing existing classes to
be compatible with the extracted C++ concepts.

Advantageous are the following points:

• The requirements on a template parameter are made explicit for a program-
mer through the use of C++ concepts.

• Checks for C++ concept compliance make the template code programming
and usage more predictable.

The challenges present above as disadvantages of the C++ concepts approach
could be resolved in the future by improving on the C++ concepts through:

• Making the template support with C++ concepts more complete.

• Developing techniques to auto-generate C++ concepts from a given code,
preparing it to be generalized.

• Developing a special importer, which will figure the concept definitions out
of the existing textual C++ code.

Additionally, it could be of a practical interest to impose not only syntactical,
but semantic assumptions on a template parameter with the use of the C++ con-
cept. The way to describe the semantic constraints, and to check them later on, can
represent a challenging task.
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Here we briefly review the accomplished contributions and a future work possible.

6.1 Overview of the Work Performed

In this work we were extending the mbeddr C language with programming con-
structs from the C++ programming language, which resulted in a software, we call
here Projectional C++.

A new IDE for C++ has been created, which supports projectional editing for a
subset of the C++ programming language. The new IDE has been designed with
several goals in mind.

First, Projectional C++ should serve as a modular basis for the future extensions to
C++. The potentially possible extensions are figured out and proposed as a future
work.

Second, the experience of the Projectional C++ programming has to be more safe
and informative, when compared to the regular C++ programming. Various pit-
falls, usual for C++ programming, have been explained in this work, and tools
have been introduced within the new IDE, designed to compensate on the pitfalls.

While improving on the C++ programming experience, an application of analy-
ses has been found to be useful. Various analyses have been applied in Projectional
C++. The analyses have been classified orthogonally by the purpose to informative
analyses and preventive analyses, and by the running type to analyses-on-demand and
self-running analyses.

A method to support, to some extent, a code project guidelines, precisely, nam-
ing conventions, has been proposed in this work. The idea to store the project
related information together with the source code has been formulated, its advan-
tages have been listed.

The projectional approach to create an IDE has been compared to a traditional
textual approach. The advantages of the projectional approach have been listed.
The potential problems while developing, using and evolving a projectional IDE
and a code produced by it, have been identified.

Projectional C++ as a language has been designed, to represent, in the end, a
complete enough subset of the C++ programming language for STL to be recreated
in it in the future. The creation of a projectional STL copy was out of scope for this
work, however. The completeness of the Projectional C++ language was described
in this work, and the future work was proposed, which is going to be needed in
order to support STL.

Generalized principles of language re-engineering in a projectional IDE have
been discovered and formulated. The principles can be reused when creating an
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IDE for a language, to make the language more readable, more expressive, higher
cross-platform, and safer and more convenient to use for a programmer.

Various language modularity and extensibility problems have been considered
on practice while developing the mbeddr C++ extension. Projectional C++ has been
developed in such a way, that the mbeddr project languages do not have a depen-
dency on Projectional C++, which allows for, to a certain degree, separate develop-
ment of the projects.

In parallel, while extending mbeddr to build a new C++ IDE, the facilities for
extensibility, provided by JetBrains MPS were researched. Extensibility has been
analyzed separately for each view on a language. Whenever the degree of ex-
tensibility was not considered to be high, workarounds and future JetBrains MPS
improvements were proposed.

The question of building analyses in JetBrains MPS for a new language has been
discussed. Three phases of analysis running were identified, and for each phase
potential problems were highlighted. JetBrains MPS improvements have been pro-
posed to make the analysis creation more productive.

Finally the potential future work has been described, including the ways to get
the full C++ language support, the need to test the new IDE on practice, the prob-
lem to create an importer for the textual C++ code and its potential complications
have been described.

6.2 Future Work

Here we briefly describe the way, Projectional C++ could be developed in the future.

6.2.1 Full Language Support

One of the main target for Projectional C++ in the future has to be developing all of
the original C++ features. This is needed both for the convenience of a Projectional
C++ user, and for the ability to import an existing code base, which can use all the
constructions, possible in C++.

One of the big challenges for the language completeness is a development of full
templates support. A very important part of the C++ programming language, is
undoubtedly STL. In order to acquire all language capabilities, as it is usual for
a C++ programmer, after supporting all features of the language itself, STL has
to be implemented in Projectional C++. Alternatively , if a powerful importer is
developed first, the STL could be potentially imported.

6.2.2 Investigating the Language Use

In order to continue the Projectional C++ development a user has to be found for
the Projectional C++, who will use the language on practice. This will allow to
figure out in the fastest way, which language features left are the most desirable on
practice, which new features, similar to those described in the Section 4.6, could
first be developed.
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No matter the C++ programming language is not completely supported by Pro-
jectional C++, the ability to use the object-oriented programming paradigm while
using mbeddr represents a qualitative improvement over the existing C language
in mbeddr. This fact represents an advantage, which can attract any mbeddr user
towards Projectional C++ even before the C++ programming language is entirely
supported.

6.2.3 Extending Projectional C++

Following one of the goals to create Projectional C++, extensions for it could be
created in a modular fashion.

As examples of such extensions could be:

• Language constructions emulated by preprocessor and templates as in [20].

• Classes extensions to support messaging as in Objective-C, or signals and
slots as in the Qt project.

• Object-oriented design patterns could be researched for the ability to be sup-
ported on the language level.

• Higher-level models, which would generate to classes together with semantic
analyses for them.

Other Projectional C++ extensions can be invented, including specific extensions
for various domains.

6.2.4 Projectional C++ Importer and Other Tools

An importer for Projectional C++ could be developed, which would allow to reuse
in Projectional C++ the existing textual code base. One of the special challenges to
develop such an importer would be a conversion from regular C++ templates into
the Projectional C++ templates with C++ concepts. A debugger of mbeddr could be
extended in order to support the Projectional C++.

6.2.5 JetBrains MPS Evolution

This work suggests some improvements for JetBrains MPS itself, see the Section 5.3
and the Section 5.4 for example.

If JetBrains MPS gets updated, taking some of the mentioned potential improve-
ments into consideration, Projectional C++ could be improved benefiting from the
new JetBrains MPS features.
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Glossary

abstract is a class in C++, having at least one method declared pure virtual in
ancestors, but never implemented in the ancestors or the class itself, instances
of such class can not be created. 32, 41, 46, 47, 58, 66, 67, 70–72

abstract class syntax absence a phenomenon in C++, representing the absence
of any syntax to explicitly declare a class abstract. 41, 46, 58

action is a JetBrains MPS term, which corresponds to automations, specific to ac-
tions, occurring while editing. 25

analysis-on-demand is an analysis, which a user must invoke explicitly in the
IDE, it is usually computationally expensive, c.f. self-running analysis . 25, 66,
69, 70, 72, 75

API Application Programming Interface. 5, 6, 15, 46, 70, 72

AST Abstract Syntax Tree. 2, 3, 5, 9, 11–14, 18, 19, 21–24, 39, 45, 46, 52, 54, 56, 58,
61, 62, 66, 70, 81, 82

base concept is a JetBrains MPS concept, which serves as an inheritance base or
parent concept for a given concept, e.g. Statement concept for IfStatement
concept. 18

concept is a class-like type, describing a node type in an AST when talking about
projectional editing. 2, 3, 12–14, 17–28, 30, 32, 33, 36, 37, 39, 40, 42, 49, 50, 52,
54–57, 63, 64, 66–69, 71, 72, 82

DSL Domain Specific Language. 9, 11, 14, 17, 18, 23

Embedded C++ is a language subset of the C++ programming language, intended
to support embedded software development. 1, 4

Extended Embedded C++ is a improvement on Embedded C++, bringing back
the omitted language features, and a memory-aware STL version. 1

IDE Integrated Development Environment. 2–7, 9, 11, 17, 29, 35, 57, 59, 61, 62, 64,
70, 71, 75, 76, 81, 82

informative analysis is performed to inform a user of an IDE about some code
properties, to enhance understanding of a code. 54, 66, 70–72, 75
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intention is a special procedure in JetBrains MPS which can be used for automatic
manipulations on an AST with a node of a given concept. 24, 33, 36, 37, 46, 55,
56, 68

interface concept is a JetBrains MPS concept, which serves for inheriting a con-
cept behavior interface, can not serve as a base concept. 19, 21, 22, 50, 51,
66

JetBrains MPS is a language engineering environment allowing to construct in-
crementally defined domain specific languages. ix, 2–7, 13, 14, 17–28, 33, 37,
39, 44, 54–56, 58, 61–64, 66–72, 76, 77, 82

mbeddr same as the mbeddr project. xi, 1, 2, 4–7, 14, 18, 22, 25–31, 33, 42, 49–51,
61, 67, 69, 75–77

mbeddr project is a JetBrains MPS based language workbench, representing C
language and domain specific extensions for the embedded software devel-
opment. ix, 1, 5, 6, 14, 17, 18, 20, 25–27, 51, 76

model corresponds in JetBrains MPS to one single JetBrains MPS file unit, in the
mbeddr context it corresponds to C or C++ project, like one library or one
executable.. 28, 56, 64

override syntax absence a phenomenon in C++, consisting in absence of any
syntax to explicitly designate a method, to be an override of another method.
41, 44, 45

preventive analysis is performed to inform a user about potential mistakes in
advance, in order to prevent them. 23, 66, 70, 71, 75

projectional approach is an approach to create an editor for a language, or, speak-
ing broadly, an IDE, when the editor is aware of an AST for a code, and shows
the code to a user, projecting an AST itself, and allowing to edit the AST di-
rectly. 6, 7, 9, 11, 12, 61

Projectional C++ is a C++ flavor introduced in this work, together with an IDE for
it, based on the mbeddr C implementation in the JetBrains MPS environment.
4–7, 28–31, 33, 35–46, 48, 50–54, 57, 59, 61, 63–65, 67, 72, 75–77

pure virtual are virtual methods in a C++ class, for which intentionally no imple-
mentation is provided, they serve purely for overloading purposes, describ-
ing an interface. 40, 41, 45, 46, 57, 64, 65, 70

self-running analysis is an analysis, which determines itself the point of time,
when it is performed, or this moment is determined automatically by an IDE,
there is no need to explicitly run such analysis. 66, 70, 71, 75, 81

STL stands for Standard Template Library, the standard library of the C++ lan-
guage. 1, 28, 48, 51, 54, 75, 76, 81
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TextGen is an special kind of generator in JetBrains MPS, dedicated to produce a
textual representation of a node of a given concept. 23, 24, 44, 67, 68

83





Bibliography

[1] VDC Research. Survey on embedded programming languages,
http://blog.vdcresearch.com/embedded sw/2010/09/what-languages-
do-you-use-to-develop-software.html.

[2] Embedded C++. Official website, http://www.caravan.net/ec2plus/.

[3] Embedded C++. Objectives behind limitting C++,
http://www.caravan.net/ec2plus/objectives/ppt/ec2ppt03.html.

[4] Bjarne Stroustrup. Quote on Embedded C++,
http://www.stroustrup.com/bs faq.html#ec++.

[5] IAR Systems. Extended Embedded C++, http://www.testech-
elect.com/iar/extended embedded c++.htm.

[6] Markus Voelter, Daniel Ratiu, Bernhard Schätz, and Bernd Kolb. mbeddr: an
extensible c-based programming language and ide for embedded systems. In
SPLASH, pages 121–140, 2012.

[7] D. Ratiu, M. Voelter, Z. Molotnikov, and B. Schätz. Implementing modular
domain specific languages and analyses. In Proceedings of the 9th Workshop on
Model-Driven Engineering, Verification and Validation, 2012.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of
reusable object-oriented software. Addison-Wesley Professional, 1995.

[9] Paul Hudak. Modular Domain Specific Languages and Tools. In ICSR ’98, jun
1998.

[10] Eric Van Wyk. Modular Domain-Specific Language Extensions. In 1st ECOOP
Workshop on Domain-Specific Program Development (DSPD), 2006.

[11] Markus Voelter. Language and IDE Development, Modularization and Com-
position with MPS. In GTTSE 2011, LNCS. Springer, 2011.

[12] Markus Voelter. Embedded Software Development with Projectional Lan-
guage Workbenches. In Dorina Petriu, Nicolas Rouquette, and Oystein Hau-
gen, editors, Model Driven Engineering Languages and Systems, 13th International
Conference, MODELS 2010, Oslo, Norway, October 3-8, 2010. Proceedings, Lecture
Notes in Computer Science. Springer, 2010.

[13] M. Voelter, D. Ratiu, B. Schaetz, and B. Kolb. mbeddr: an Extensible C-based
Programming Language and IDE for Embedded Systems. In Proceedings of
SPLASH Wavefront 2012, 2012.

85



Bibliography

[14] Bjarne Stroustrup. The C++ Programming Language, Special Edition. Addison-
Wesley, 2000.

[15] Herbert Schildt. C++: A Beginner’s Guide, Second Edition. McGraw-Hill Os-
borne Media, 2003.

[16] Standard for Programming Language C++ (C++ 11), ISO/IEC.

[17] Stephen Prata. C++ Primer Plus, Sixth Edition. Addison-Wesley Professional,
2011.

[18] Scott Meyers. Effective C++: 55 Specific Ways to Improve Your Programs and
Designs (3rd Edition). Addison-Wesley Professional, 2005.

[19] David Vandevoorde Nicolai Josuttis. C++ Templates: The Complete Guide.
Addison-Wesley Professional, 2002.

[20] Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design
Patterns Applied. Addison-Wesley Professional, 2001.

[21] Bjarne Stroustrup. Classes: An abstract data type facility for the c language.
Sigplan Notices, 17:41–52, 1982.

[22] Class layout recomendations, Possibility.com.
http://www.possibility.com/cpp/cppcodingstandard.html.

[23] Google style recomendations for C++, http://google-
styleguide.googlecode.com/svn/trunk/cppguide.xml.

[24] Open Office C++ Coding Standard, http://wiki.openoffice.org/wiki/cpp coding standards.

[25] Qt Project Documentation Page, contains Q DISABLE COPY macro.
http://qt-project.org/doc/qt-5.0/qtcore/qobject.html.

[26] Boost C++ Libraries. Official Website, http://www.boost.org/.

[27] Qt Project. The Qt Project Coding Guidelines, http://qt-
project.org/wiki/category:developing qt.

86


	Acknowledgements
	Abstract
	Introduction
	Context
	mbeddr: a Language Engineering Project with JetBrains MPS

	Problem
	Approach
	Contribution
	Structure of the Master's Thesis

	Foundations
	Building DSLs and IDEs
	Traditional Approach
	Projectional Approach

	Modular Language Engineering
	Describing a Language in Projection
	Language Modularity
	Text Code Importers


	Technologies in Use
	Jetbains MPS
	Concept Declaration
	Editor View
	Behavior View
	Constraints View
	Type System View
	Non-Type-System Checks
	TextGen View
	Generator View
	Intentions
	Other MPS Instruments

	mbeddr Project
	mbeddr Expressions Language
	mbeddr Statements Language
	Modules in mbeddr
	Pointers and Arrays in mbeddr

	C++ Language

	Projectional C++ Implementation
	C and C++
	Reference Type and Boolean Type
	Modules and C++
	Memory Allocation

	C++ Object-Oriented Programming
	Class Declaration and Copying
	Encapsulation and Inheritance
	Polymorphism
	Safer Casting for a Pointer to Class

	Operator Overloading
	Templates
	Other C++ Language Features
	Exceptions
	Standard Output Stub

	Advanced IDE Functionality
	Primitive Renaming Refactoring
	Getter and Setter Generation
	Naming Conventions
	Method Implemented Check
	Abstract Class Construction Check
	Array Deallocation Check
	Analyses to Implement as a Next Step


	Lessons Learned
	Comparison with Textual Approach
	Some Additional Remarks on Naming Conventions

	Rebuilding a Language in Projection
	Target Semantics
	Store More Information
	Configuration as a Part of Source Code
	Hide Redundant Syntax
	Make Old Syntax Readable
	Show the Core, Hint on Details
	Perform Analyses and Inform a User

	Projectional Language Extensibility
	Structure Extensibility
	Editor Extensibility
	Constraints Extensibility
	Behavior Extensibility
	TextGens Extensibility
	Generators Extensibility
	Intentions Extensibility
	Type System Extensibility
	Analyses Extensibility
	Extensibility Overview

	Analyses and Complexity
	Initiating an Analysis
	Running an Analysis
	Reporting Results of an Analysis

	Templates

	Conclusion
	Overview of the Work Performed
	Future Work
	Full Language Support
	Investigating the Language Use
	Extending Projectional C++
	Projectional C++ Importer and Other Tools
	JetBrains MPS Evolution


	Appendix
	Glossary
	Bibliography


