Advanced IO capabilities

Or how some parts of r_io api work internally and how
to write r_io plugins to simulate memory mapped
hardware

whoami

condret
- author of ~70% of the r_io api

- @condret@fedi.absturztau.be

- @condret@shitposter.world

libr

libr

we are going here

The r_io stack

+ +

| RIO | io/io.c r io read at

+ +

| Cache | io/io cache.c r io cache read at

+ + +

| P | V | io/io.c r io pread at & r io vread at
| + +

| ELLS | io/io bank.c r io bank read at

I I L 144 I

| | | Submap | | io/io bank.c r io bank read from submap at
I I I $======4 I

| | | | | | io/io bank.c r io bank write to overlay at (only write exists)
I ===+ ===+

| | | Overlay | io/io map.c r io map read from overlay

I I e

| | Map | (no dedicated read or write function here)
+ + +

| fd | io/io fd.c r io fd read at

+ + +

| | P-Cache | io/p cache.c r io desc cache read

I e e e e e e e e et ==

| Desc | io/io desc.c r io desc read at

+ +

| Plugins | io/io plugin.c r io plugin read at

+ +

| Plugin Implementation |

- e

simple scenario

e io.cache = false
e io.va = false
e io.pcache = false

pX

simple scenario

- +
RIO io/io.cC r io read at
- +
P io/io0.cC r 1o pread at
- +
fd io/io fd.c r io fd read at
- +
Desc io/1o0 desc.c r io desc read at
- +
Plugins io/io plugin.c r 1o plugin read at
- +
Plugin Implementation

- -

fd, RIODesc and RIOPIlugin

- fd api "wraps" RIODesc
- intended for integration of existing things into r2

- RIODesc wraps specific plugin
- provides void * for the plugin context (e.g. offset)

RIOPlugin

typedef struct r io plugin t {
const RPluginMeta meta;
void *widget;
const char *uris;
int (*listener) (RIODesc *io);
bool (*init)(void);
bool isdbg;
char *(*system)(RIO *io, RIODesc *fd, const char *);
RIODesc* (*open)(RIO *io, const char *, int perm, int mode);
RList* (*open many)(RIO *io, const char *, int perm, int mode);
int (*read) (RIO *io, RIODesc *fd, ut8 *buf, int count);
ut64 (*seek)(RIO *io, RIODesc *fd, ut64 offset, int whence);
int (*write) (RIO *io, RIODesc *fd, const ut8 *buf, int count);
bool (*close) (RIODesc *desc);
bool (*is blockdevice) (RIODesc *desc);
bool (*is chardevice) (RIODesc *desc);
int (*getpid) (RIODesc *desc);
int (*gettid) (RIODesc *desc);
bool (*getbase)(RIODesc *desc, ut64 *base);
bool (*resize) (RIO *io, RIODesc *fd, ut64 size);
bool (*extend) (RIO *io, RIODesc *fd, uté64 size);
bool (*accept)(RIO *io, RIODesc *desc, int fd);
int (*create) (RIO *io, const char *file, int mode, int type);
bool (*check)(RIO *io, const char *, bool many);
} RIOPlugin;

RIOPIlugin (important parts)

typedef struct r io plugin t {
const RPluginMeta meta;
const char *uris;
RIODesc* (*open)(RIO *io, const char *, int perm, int mode);
int (*read) (RI0O *io, RIODesc *fd, ut8 *buf, int count);
ut64 (*seek)(RIO *io, RIODesc *fd, ut64 offset, int whence);
int (*write) (RIO *io, RIODesc *fd, const ut8 *buf, int count);
bool (*close) (RIODesc *desc);
bool (*check)(RIO *io, const char *, bool many);

} RIOPlugin;

RIOPIlugin (important parts)

ighored

typedef struct r io plugin t {
const RPluginMeta meta;
const char *uris;
RIODesc* (*open)(RIO *io, const char *, int perm, int mode);
int (*read) (RI0O *io, RIODesc *fd, ut8 *buf, int count);
ut64 (*seek)(RIO *io, RIODesc *fd, ut64 offset, int whence);
int (*write) (RIO *io, RIODesc *fd, const ut8 *buf, int count);
bool (*close) (RIODesc *desc);
bool (*check)(RIO *io, const char *, bool many);

} RIOPlugin;

SEEK

Use R_TO SEEK... instead of SEEK...

R_IO_SEEK_END should always seek to eof
- resizing works via .resize or .extend callback

Gameboy MCB2 RAM

A000-A1FF - 512x4bits RAM, built-in into the MBC2 chip (Read/Write)

The MBC2 doesn't support external RAM, instead it includes 512x4 bits of built-in RAM (in the MBC2 chip itself). It still requires an

external battery to save data during power-off though. As the data consists of 4bit values, only the lower 4 bits of the "bytes" in
this memory area are used.

Build a minimal version of this without saving capabilities

Source: https://gbdev.gg8.se

Skelleton, makefile and testing

https://qgithub.com/condret/r2con24_io/tree/master/0

openr2 --
load your plugin with 'l <path_to_so>'
open desc with ‘on mbc2ram://'

RIOMap

- provides mapping from pa to va
- references RIODesc via fd
- has it's own rwx perms

- desc->rwx >= map->rwx (intended but not enforced)
- checkout omf command

RIOMap

typedef struct r io map t {
int fd;
int perm;
ut32 id;
uted4 ts,;
RInterval itv; // vaddr range: used as closed interval!
ut64 delta; // paddr = vaddr - itv.addr + delta
RRBTree *overlay;
char *name;
ut32 tie flags;
} RIOMap;

RIOMap

you can create maps with om command

or with #lc

Gameboy MBC2

MBC2 (max 256KByte ROM and 512x4 bits RAM)

0000-3FFF - ROM Bank 00 (Read Only)
Same as for MBC1.

4000-7FFF - ROM Bank 01-0F (Read Only)
Same as for MBC1, but only a total of 16 ROM banks is supported.

AO00-A1TFF - 512x4bits RAM, built-in into the MBC2 chip (Read/Write)

The MBC2 doesn't support external RAM, instead it includes 512x4 bits of built-in RAM (in
the MBC2 chip itself). It still requires an external battery to save data during power-off
though. As the data consists of 4bit values, only the lower 4 bits of the "bytes" in this
memory area are used.

0000-1FFF - RAM Enable (Write Only)

The least significant bit of the upper address byte must be zero to enable/disable cart RAM.
For example the following addresses can be used to enable/disable cart RAM: 0000-00FF,
0200-02FF, 0400-04FF, ..., TEOO-1EFF. The suggested address range to use for MBC2 ram
enable/disable is 0000-00FF.

Gameboy MBC2

0000-1FFF - RAM Enable (Write Only)

The least significant bit of the upper address byte must be zero to enable/disable cart RAM.
For example the following addresses can be used to enable/disable cart RAM: 0000-00FF,
0200-02FF, 0400-04FF, ..., TEOO-1EFF. The suggested address range to use for MBCZ ram
enable/disable is 0000-00FF.

ram only enables if Ox0A is written
other values will disable the ram

Gameboy MBC2 strategy

Gameboy MBC2 strategy

create another plugin mbc2:// (in the same file)
- with it's own instance of RIO
- pretend to have size of 0xC000
- use existing plugin with r_io_desc_open_plugin
- map ram to OxAOO0O
- forward reads to r_io_read_at
- check writes for ram enable/disable
- modify map or desc permissions

eof

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

