
Using LEAN Theorem Prover to Teach Formal Mathematics:

Lean-Intro-Topology Library

Rafael Grenier

April 30, 2024

i

Abstract
Interactive theorem provers have become more popular in recent years within the field of
mathematics, since theorem provers provide guarantees of the validity of proofs. Even
more recently, there have been pushes to use theorem provers in the classroom to aid in
teaching formal mathematics to undergraduate students. Students and instructors alike
benefit from the certainty provided by the theorem prover, as students can develop a
precise logical foundation and receive immediate feedback, and instructors can instantly
grade their students’ proofs. In 2022, Dr. Kevin Buzzard pioneered a course at Imperial
College London in formal mathematics using the Lean theorem prover [1], and some other
universities have followed suit with similar programs. Continuing in this effort to use
theorem provers for teaching mathematics, I have developed a library of Lean code entitled
“Lean-Intro-Topology” with explanations and exercises designed to guide students through
formal reasoning and basic set theory, then practice using that newly acquired knowledge
to prove some theorems in point-set topology. This code library has already seen some
academic use as a supplemental resource for a graduate-level course in Spring 2024 on
formalizing mathematics at the University of Arizona, which my thesis mentor Dr. Sergey
Cherkis taught and I assisted. This paper describes the inspiration for creating my code
library, its contents, its development process, and the insights I gathered while working on
the library and as a teaching assistant.

https://github.com/rafaelgrenier/lean-intro-topology/

Contents

1 Introduction 1

2 Structure 3
2.1 Introduction to Lean and Logic . 3

2.1.1 Dependent Types and Qualifiers . 6
2.1.2 Are “to be” and “not to be” the only options? 6

2.2 Set Theory . 7
2.2.1 Fundamentals of Set Theory . 7
2.2.2 Relations . 8
2.2.3 Induction . 10

2.3 Topology . 11
2.3.1 Topology and Bases . 11

3 Development 12
3.1 Summer 2023 . 12
3.2 Fall 2023 . 13
3.3 Spring 2024 . 13

3.3.1 Finishing the library . 14
3.3.2 Insights as a TA . 15

3.4 Future Development . 16

ii

Chapter 1

Introduction

Many undergraduate Mathematics programs require students to take a proof-writing course,
as proofs insert formal rigor into the study of Mathematics. Still, there’s some degree of
uncertainty, since human error is involved in evaluating the proofs and determining their
consistency. For simpler proofs, the risk of human error is a lesser problem, since a discern-
ing eye can quickly catch holes in a faulty proof. Nonetheless, grading the quality of a slew
of proofs is time-consuming, especially when factoring in the time a grader might take to
provide feedback for the specific errors in a poorly-written proof. Students may also have
difficulty determining how much detail is sufficient for the proofs they write, if they even
notice the holes in their proofs. For both instructors and students, the ambiguity in what
constitutes a “formal proof” adds work outside of the mathematical and logical focus of
the course.

Theorem provers and proof assistants can help resolve this ambiguity, using the determin-
ism of computing. Theorem provers verify that the proofs encoded in the prover are sound,
namely that they follow from the axioms and rules of inference. The rigorous framework
of formal mathematics is thus supported by automation which can, for students, provide
immediate feedback, and for instructors, grade instantly and without bias.

One such theorem prover, Lean, uses dependent type theory and the Curry-Howard iso-
morphism to build a programming language capable of defining and proving theorems in
Mathematics [2]. Lean stands out when compared to other theorem provers like Coq and
Isabelle due to Lean’s extensive math library, Mathlib, and its large active community of
users. Lean also has a “tactic mode,” wherein all of the premises and goals of a proof are
displayed as they develop throughout the proof, and functions called “tactics” can be used
to advance through the proofs using automation and type inference. Lean’s large user base
and committed development team have also created a variety of supplemental resources
for new users to learn Lean and for experienced users to reference, most notable of which

1

CHAPTER 1. INTRODUCTION 2

is Mathematics In Lean [3].

Mathematics In Lean (MIL) was the primary resource I used to learn Lean, and I found the
textbook to be a smooth onramp for a student like myself with a few years of undergrad-
uate math and computer science education. However, I found the textbook significantly
harder to use once the mathematics being introduced expanded beyond what I had already
studied. For an audience without much (or any) proof-based mathematics experience, MIL
would be far too challenging for a first introduction to formal proof. As an alternative
resource, I have developed a throroughly-commented interactive code library designed to
teach undergraduate Mathematics students the basics of formal proof-writing, set theory,
and topology with the assistance of Lean [4]. The code library covers first-order logic,
introductory set theory, order and equivalence relations, induction, and some point-set
topology.

Figure 1.1: My GitHub Library

The section S1 LeanIntro of the first
chapter C1 LeanIntroduction intro-
duces propositions, logical connectives,
predicates, quantifiers, and just enough
type theory to begin working with Lean.

The second chapter C2 SetTheory starts
with the section S1 Basics which intro-
duces sets, set operations like union and
intersection, functions, and cartesian prod-
ucts. The section S2 Relations con-
siders two kinds of relations: order rela-
tions and equivalence relations. The or-
der relations discussed are preorder, par-
tial order, lexicographic order, and strict
order. The introduction to equivalence re-
lations transitions to equivalence classes,
set/type partitions, and quotients. The sec-
tion S3 Induction brings in weak and strong induction, as well as inductive types and
recursive definitions.

The third chapter C3 Topology has the final section S1 Basics on point-set topology
which introduces the definition of a topology, a topological basis, and open/closed sets.
Then the section pivots to the order, subspace, and product topologies.

This code library was my honors thesis project, and this paper will explain the structure of
the code library, the process of developing it, and the conclusions I came to as a result.

Chapter 2

Structure

A brief preface to the deluge of information about Lean which follows: all of the information
I used about how Lean works comes from the Lean resources Theorem Proving in Lean 4 [2]
and Mathematics in Lean[3], or from my synthesis of select sections of the Lean library
Mathlib, or from the experience I have gathered working with Lean for the past year.

2.1 Introduction to Lean and Logic

Conventionally, Propositional Logic is taught with a few basic ideas: A proposition is any
statement which can be binarily assigned true or false, and every proposition must be
either true or false. Next introduced are truth tables, and different means of combining
propositions into larger propositions. We define the meaning of conjunction by appealing
to a truth table, wherein P ∧ Q is true if and only if P is true and Q is true. Similar
constructions define negation, disjunction, and implication. This proof-by-truth-table per-
spective is used when first learning formal logic, but is swiftly discarded as one proceeds
further into mathematics. Already by the time students learn about the universal quanti-
fier, the truth table is obsolete. A conventional foundation for mathematics also uses sets
as the fundamental building block, constructing the natural numbers and so forth from the
axioms of Zermelo-Fraenkel set theory [5].

Lean, in contrast, builds its whole world, even its logic, from types. In Lean, every term has
some Type, and true-or-false claims have the type Prop, which is short for Propositions.
Any given term P with type Prop (denoted P : Prop) is itself a type, and a term hp
of type P (denoted hp : P) is understood to be a proof of the proposition P. Therefore
any function which produces as its output a term of type P is a means by which P can
be proven. This gives us a vehicle by which we can conceive of implication! If there is a
function f which takes as its argument some term hp of type P and returns a term of type

3

CHAPTER 2. STRUCTURE 4

Q, then f is a term with type P → Q. Provided that P and Q are terms with type Prop,
f can be throught of as a proof that P implies Q. This means of creating implication as
a function from one Proposition to another is known as the Curry-Howard Isomorphism,
and provides the basis for Lean as a proof assistant.

The above mentioned introductions to logic are very different, so I needed to make a choice
with my code library: Do I adapt truth tables to Lean and teach basic logic that way, or
do I introduce basic logic through introduction and elimination rules, as is infitting with
how Lean itself is organized? I chose to follow the path tread by the structure of Lean
itself, especially because actual mathematical proof typically abandons truth tables before
long. Therefore my code library starts with a brief explanation of propositions and proofs,
where proofs are functions from one proposition to another. I then introduce tactics and
tactic states, the other main feature of Lean. Tactics make proof-writing in Lean flow
more smoothly and resemble proof-writing in Human language more than pure functional
code. The tactic state also represents to the reader/writer of Lean code the names of
all hypotheses already known (the function arguments and local variables) at any stage
in the proof, as well as all the goals of the proofs (the type which the function should
return). Each new tactic employed updates the tactic state, so proving a theorem with
tactics amounts to writing tactics until all goals in the tactic state are resolved. I begin in
C1 LeanIntroduction\S1 LeanIntro by equipping students with knowledge of just
3 basic tactics: intro, apply, and exact.

The intro tactic functions similarly to “let” in a human language proof. In some proof
about Natural numbers, one might write “let n be a natural number.” Similarly, in Lean,
one would write intro n. If the current goal in the tactic state is in the form P → Q,
then intro hP would update the tactic state so that there’s a new hypothesis hP : P
and a simplified goal ⊢ Q. The chosen hypothesis name hP is an arbitrary name here,
whatever sequence of alphanumeric characters follows the whitespace after intro will be
the name assigned to the term introduced.

The exact tactic is used for finishing off a proof, and might be compared to the phrase
“Because , the proof is complete.” If the current goal is ⊢ P and there is some hypothesis
hp : P, then writing exact hp would complete the proof.

The apply tactic uses implications to change the goal. For example, given the goal ⊢ Q
and the hypothesis h : P → Q, writing apply h would transform the tactic state such
that the new goal is ⊢ P. Since it’s known, thanks to h, that P implies Q, then proving P
would suffice to prove Q, and the apply tactic packages that logic into a single line.

Before we can move on to talk about logic besides implication, there’s one more facet of
implication to mention: Currying. Without yet defining conjuction, we can still write types
which have more than one input; If I want to create a function with two inputs and only
one output, like addition on the Natural numbers (which are encoded by the type Nat

CHAPTER 2. STRUCTURE 5

: Type), then my function “add” will have type Nat → (Nat → Nat). This type
can be conceptualized by filling out the arguments of the multivariable function one at
a time, so add : Nat → (Nat → Nat) is a function which takes some Nat like 3
: Nat to add 3 : Nat → Nat. Here, add 3 is the function from natural numbers
to natural numbers which adds three to its input. Then add 3 6 : Nat is just the
natural number which should be returned from 3+6, which reduces to 9. This technique
is called “currying”, and is critical to understanding the next section.

The code library then works through True, False, Not, And, Or, and Iff.

True : Prop is the proposition which is always correct, so we should always be able
to produce a proof of True. In Lean, the proof of True is True.intro : True.
However, there’s not much one can do with a proof of True.

False : Prop is the opposite, the proposition which is never correct. Thus there is
not introduction rule to prove False, but there is the principle “ex falso”, the idea
that anything can follow from false premises. Lean is equipped with False.elim
: False → P, where P : Prop can be any proposition.

Not : Prop → Prop is denoted ¬, so for some P : Prop, ¬P is also a Prop. Not
P is defined as P → False.

And : Prop → Prop → Prop is denoted ∧, so for P Q : Prop, then P ∧ Q :
Prop is shorthand for And P Q : Prop. Unlike True and False which only had
one or the other, And has both introduction and elimination rules:

• And.intro : P → Q → P ∧ Q, so for proofs hp : P and hq : Q,
then And.intro hp hq : P ∧ Q.

• And.left : P ∧ Q → P

• And.right : P ∧ Q → Q

Or : Prop → Prop → Prop is denoted ∨, so for P Q : Prop, then P ∨ Q : Prop
is shorthand for Or P Q : Prop. Similar to And, Or has three total introduction
and elimination rules:

• Or.inl : P → P ∨ Q,

• Or.inr : Q → P ∨ Q, and

• Or.elim : P ∨ Q → (P → R) → (Q → R) → R. This elimination rule
follows from the principle that to prove any proposition R from a disjunction,
one needs to prove that each part of the disjunction implies R independently.

Iff : Prop → Prop → Prop is denoted ↔, so for P Q : Prop, then P ↔ Q :
Prop is shorthand for Iff P Q : Prop. The logical connective Iff represents bi-

CHAPTER 2. STRUCTURE 6

implication, so P ↔ Q can be thought of as (P → Q) ∧ (Q → P), and is codified
by the introduction and elimination rules:

• Iff.intro : (P → Q) → (Q → P) → P ↔ Q, so for proofs hp : P
and hq : Q, then Iff.intro hp hq : P ↔ Q.

• Iff.mp : P ↔ Q → P → Q

• Iff.mpr : P ↔ Q → Q → P

2.1.1 Dependent Types and Qualifiers

Lean implements “Dependent Type Theory,” which allows for the quantifiers ∀ and ∃ to be
represented in Lean. If α is some type and a predicate p has type α → Prop, then

• ∀ x : α, p x is the proposition that every term of type α satisifes p, and

• ∃ x : α, p x is the proposition that at least one term of type α satisfies p.

∀ is a dependent function, so not just the output, but the type of the output depends
on the input of the function; a term of type ∃ x : α, p x is a function from a term
x of type α to a proof of p x. In Lean, Exists has type (α → Prop) → Prop.
The introduction rule Exists.intro has dependent type, so for any x : α, then
Exists.intro x has type p x → Exists p. The elimination rule Exists.elim
has type (∃ x, p x) → (∀ a : α, p a → b) → b, essentially saying that if b
is implied by any term which satisfies p, then b is implied by the existence of a term which
satisfies p.

2.1.2 Are “to be” and “not to be” the only options?

Using the the Curry-Howard Isomorphism and defining logical connectives with intro-
duction and elimination rules creates a system of logic which is almost as expressive as
classical logic, but it has a few limitations. It’s not possible to prove P ∨¬ P for an arbi-
trary proposition P with constructive logic, the logic we have been using in Lean thus far.
Lean introduces three axioms in order to use the law of the excluded middle: propositional
extensionality, functional extensionality, and an axiom of choice. Propositional extension-
ality is the axiom that equivalent propositions are entirely equal, functional extensionality
is an axiom stating any two functions which return the same outputs for any given input
are entirely equal, and the choice axiom is a function of which produce any term of an
arbitrary type α given that α is a nonempty type. Then using Diaconescu’s theorem, it’s
possible to show that for any proposition P, either P or ¬P is true.

My code library doesn’t dwell very long on the differences between constructive and classi-
cal logic, nor does it discuss the measures taken by the Lean library to extend its expressive

CHAPTER 2. STRUCTURE 7

capabilities to cover classical logic. The library is geared towards an audience of under-
gradute mathematics majors, so most of the time is spent developing their understanding
of classical logic.

2.2 Set Theory

The structure of the Set Theory chapter of my code library is modeled after Topology by
Munkres [6] and An Introduction to Proof through Real Analysis by Madden and Aubrey [5],
along with some influence from the undergraduate course I took at the University of Arizona
in Formal Proof-Writing in Fall 2021, Math 323. The Set Theory chapter C2 SetTheory
begins with a discussion of basic set theory, then has sections for Relations and Induction.
Induction is introduced here rather than in the opening logic section of the library because
it requires more type theory to understand how induction is implemented in Lean. As
students work through C2 SetTheory, they will also be learning bits and pieces of type
theory and how type theory is used in Lean.

2.2.1 Fundamentals of Set Theory

The first section of the Set Theory chapter, S1 Basics is a speedy introduction to Set
Theory and a referral to Chapter 4 of MIL. Sets in Lean are restricted to only contain
elements of the same type, so Set Nat is the type of all sets which contain only natural
number elements. Then each individual set S : Set X is a collection of terms of type
X, which can also be represented by a predicate p : X → Prop by considering the
collection of terms which the predicate maps to True. Thus a map p : X → Prop
corresponds to the set S : Set X given by x : X | p x (the notation Lean uses for
a set over terms of type X which satisfy some property, in this case p). And given a set
S : Set X, the corresponding predicate is a map p : X → Prop := λ x : X 7→
x ∈ S. This “λ : 7→ ” notation is used for functions in Lean, where the blank
space before the colon is the input term, the blank after the colon is the type of the input
term, and the blank after the map symbol is the term outputted by the function. Thus the
previous expression, p : X → Prop := λ x : X 7→ x ∈ S, can be read “p is the
function of type X → Prop which maps a term x of type X to the proposition that x is
an element of S.” Since sets are defined in terms of types, there is also a set which contains
all terms of the given type, which Lean denotes Set.univ (This set corresponds to the
predicate which is always true). Using Set.univ, one can also think of the predicate-set
correspondence as that between indicator function and the sets they indicate.

After providing readers with enough set theory background to go read MIL chapter 4,
my code library provides several illustrative exercises for students to complete, some of
which are adapted from MIL and some of which I created. One significant benefit of using
Lean to learn mathematics is that definitions can be accessed instantly, so although MIL

CHAPTER 2. STRUCTURE 8

doesn’t define surjectivity or injectivity, students can jump to their definitions in Lean.
Two of the problems which I wrote explicitly require proving that a function is injective or
surjective, and students can decompose the terms using the tactic dsimp[Surjective]
or dsimp[Injective], which unfold the corresponding definitions.

S1 Basics also covers Cartesian products and arbitrary unions, since both will be critical
for the topology chapter to come.

2.2.2 Relations

Relations are implemented in Lean as maps r : X → X → Prop. The main relations
discussed in S2 Relations are order and equivalence relations, beginning with an intro-
duction to bundling in Lean. Many objects in mathematics are characterized not just by
the sets or functions themselves, but also by the properties they satisfy. For example, an
equivalence relation is not just any relation on a type, but a relation which is also reflexive,
symmetric, and transitive. Thus the object of an equivalence relation is really a quadruple:
the relation itself and 3 properties of that relation. Lean accomplishes this bundling of
several types into a single type with structures and typeclasses. A structure in Lean is a
type with a constructor which has all the fields as arguments, and elimination functions
which extract the individual fields.

structure <name> <parameters> <parent-structures> where
<constructor> :: <fields>

For example, consider how the Equivalence relation is expressed in Mathlib:

structure Equivalence {α : Type} (r : α → α → Prop) : Prop where
refl : ∀ x, r x x
symm : ∀ {x y}, r x y → r y x
trans : ∀ {x y z}, r x y → r y z → r x z

Thus the structure Equivalence is a bundle of 3 predicates on a given relation r: reflex-
ivity, symmetry, and transitivity.

Lean also has a more sophisticated system of typeclasses, which are structures around
which Lean has automation infrastructure. Typeclasses use almost the same syntax as
structures, aside from the keyword class in place of structure. The facet of typeclasses
explained in the relations section of the code library is typeclass inference, which is the
mechanism Lean uses to infer instances of typeclasses without the programmer explicitly
providing the instances. Lean keeps track of the most recent scoped definition of each
particular instance, so instances don’t have to be described with specific variable names to
be used.

S2 Relations investigates two main types of relations: order relations like preorders,
partial orders, well-ordering, and linear orders; and equivalence relations. Although

CHAPTER 2. STRUCTURE 9

there is plenty of mathematics to be done with other relations, the aim of the code library is
to provide students with a sufficient mathematical foundation to begin exploring topology.
The order topology and the quotient topology are essential to the study of basic topology,
so I describe only the requisite information about relations for those studies. Since the
order topology relies on intervals and rays in a linear order, the code library explores the
orders which are weaker than linear ordering, but sufficient for intervals and suprema.
Similarly, the quotient topology requires a definition of a quotient, so the code library
introduces equivalence relations and builds up to how quotients are defined in Lean.

The subsection on order relations introduces readers to the strict order, then preorders and
partial orders. Lean defines the set of upper and lower bounds of a set using only the pre-
order, but I chose to work with the confines of a partial order so that the bounded sets have a
unique supremum and infimum. Then I introduce readers to the lexicographic order, which
will be useful later in topology. The next file on order relations, P3 intervals.lean,
delves into open and closed intervals and rays. Lean defines 8 different intervals (which also
include rays) : Ioo, Ioc, Ioi, Ico, Icc, Ici, Iio, and Iic. The 3-letter names can be
thought of as acronyms where the first word is “interval”, and the second and third words
are from the set “open”, “closed”, “infinite”. The second word of the acronym describes
the lower bound of the interval (or ray) and the third word describes the upper bound. The
bound is a strict inequality, a non-strict inequality, or nonexistent for “open,” “closed,”
and “infinite” respectively. This is why there are only 8 intervals described, as the interval
which has no upper or lower bound is just the entire set. The interval file then introduces
the reader to immediate successors and predecessors defined in terms of intervals.

The final subsection is dedicated to the equivalence relation, and is split into two files:
P4 equiv.lean explaining the equivalence relation and P5 quotient.lean explaining
the quotient construction. Lean has a structure Equivalence which was shown above,
and the code library introduces the reader to that structure first, showing an example of a
relation which has all three properties:

def parity (x y : Z) : Prop := ∃ k, x - y = 2 * k

I then introduce readers to the typeclass Setoid, which allows for the use of the infix ≈
and will be needed later for quotients. (This notation allows one to write x ≈ y rather
than parity x y, for example.) The remainder of the file shows students how equivalence
classes are defined and describes how equivalence classes are type partitions. Knowing now
that equivalence classes subdivide a type, the next file smoothly introduces the Quotient
type, where the terms are equivalence classes.

Lean actually has two quotient types, Quot and Quotient, where the latter is built
atop the former. Quot is a strange kind of quotient which is built from any relation,
so the relation need not be an equivalence. The traditional quotient is built in Lean
as Quotient : Setoid α → Type, so a new Quotient type can be created by

CHAPTER 2. STRUCTURE 10

providing an instance of Setoid α for some type α. The file then explains how to use this
new type and how the quotient type relates to the equivalence relation on the base type,
specifically by leading readers through a (mostly) worked example, the integers modulo
3. I first describe a relation eqv (a b : Z) : Prop := ∃ k, a-b = 3*k, then
actually prove that eqv is an equivalence relation. From there, I construct an instance
ZSetoid : Setoid Z (which is the integers Z with a defined relation eqv) and define
the quotient type Zmod3 := Quotient ZSetoid, which consists of equivalence clasees.
Since the terms of Zmod3 are equivalence classes of integers, Lean should provide a means
of constructing a term explicitly by providing an integer, and Leans does this with the
function Quotient.mk (s : Setoid α) (a : α) : Quotient s. Lean also
supplies the following useful tools for interacting with the quotient type (and many more
not listed here) : Quotient.exists rep posits that every term of the quotient type
is equal to the equivalence class of some term in the base type, Quotient.eq states
that two terms of the base type are equivalent if and only if the equivalence classes of
those terms are equal in the quotient type, Quotient.lift creates a function from the
quotient type to any other type β when provided some function from the base type to β
which maps equivalent terms to the same output, and Quotient.lift mk asserts that
the function created from Quotient.lift maps the equivalence class to the same term
that the original function would map any representative of that equivalence class. With
these theorems and some more, I guide readers through a proof that no perfect square of
integers is two more than any multiple of three.

2.2.3 Induction

Induction is a fundamental idea to Lean, since the language makes uses of “inductive
types.” Proof by induction is also a critical idea for aspiring mathematicians to learn,
as it’s a frequently used proof technique. This section, S3 Induction, first introduces
readers to the mathematical notions of strong and weak induction, then refers readers to
Mathematics in Lean, before returning with examples of induction and recursive definitions.
Chapter 5 Section 2 of MIL was indispensible to my understanding of inductive types in
Lean, and is accessibly-written, enough for the undergraduate audience of this code library,
so I decided to send readers to that text directly rather than novicely rewriting the source
material.

The code library just builds atop the explanation in MIL, with more explicit examples
and exercises to illustrate and practice the use of induction, inductive types, and recursive
definitions. There is also a brief example which proves the one missing step from a proof
in the previous Quotient subsection.

CHAPTER 2. STRUCTURE 11

2.3 Topology

The chapter C3 Topology is modeled more explicitly after Topology by Munkres, but also
includes some influence from Topologies and Uniformities by James [7], because the Lean
library Mathlib uses Topologies and Uniformities. This final section introduces the idea
of a topology, a topological basis, and a handful of methods for constructing topologies.
Unlike the primary resource for topology in Lean, Chapter 9 of Mathematics in Lean, my
library places minimal focus on filters and metric spaces. In fact, this code library bears no
mention of metric spaces, which ought to be remedied should the code library be expanded
to cover more of topology. The framework for topology in Mathlib uses filters extensively,
which are useful for codifying limits and continuity at a point, but I decided the filter
approach to topology is less intuitive to an undergraduate student than the basis approach
for a first introduction.

2.3.1 Topology and Bases

P1 topology.lean introduces the formal definitions of a topology and a topological
basis, then scaffolds a proof that the collection of arbitrary unions of basis sets forms a
topology. Just these two definitions require knowledge of much that was introduced in the
previous set theory chapter: structures, typeclasses, the axiom of choice, and arbitrary
unions. Lean uses a typeclass TopologicalSpace to encode topologies, which can make
comparing two or more topologies difficult, since instances usually go unnamed in Mathlib.
Thus to compare a set under two different topologies requires explicitly providing variable
names for each topology into whichever theorems from Mathlib are used, otherwise Lean
will infer the most recently defined instance of a suitable topology as an argument. Despite
this mild annoyance, the typeclass framework is much more suitable in the common context
where a set has a standard topology which would be irritating to explicitly derive at each
stage. The choice to represent topologies with typeclasses also eases the use of hierarchies,
so Hausdorff spaces and Metric spaces can simply be defined atop the TopologicalSpace
typeclass.

P2 open.lean expands upon the definition of “open” and “closed” sets, demonstrates
that the finite union and arbitrary intersection of closed sets remain closed, and introduces
the definitions asnd some properties of the interior, closure, and boundary of a set.

The remaining three files, P3 product.lean, P4 order.lean, and P5 subspace.lean
respectively cover the product, order, and subspace topologies as they are implemented in
Lean.

Chapter 3

Development Process

This honors thesis project began in June 2023, stemming from an idea Dr. Sergey Cherkis
had for automating the grading process in his topology class. Over the summer, I endeav-
ored to learn Lean and become comfortable using Mathlib. In the Fall, I began building
the library, and I finished in the Spring of 2024.

3.1 Summer 2023

Lean has many resources available to newcomers, so I began by tackling the introductory
textbooks Mathematics In Lean [3] and Theorem Proving In Lean [2]. MIL is peppered
with exercises for the reader, which I dutifully completed. When I first read through MIL,
it was still written for Lean3, and I only covered the sections introducing Lean itself, set
theory, and topology. When MIL was updated for Lean 4 in August, I re-read the sections
of the text which were substantially (not just syntactically) changed from the previous
version.

The topology section of Mathematics in Lean was unlike any other introduction to topol-
ogy I had ever seen, as it took an approach to Topology centered around filters rather
than bases. The filter construction of topology works well for formalization because there
are fewer cases to consider, particularly in the realm of limits. Just looking at limits of
a composition of two functions between metric spaces, according to MIL, there are 512
different cases. This plurality of slightly different cases poses little problem for an informal
system, since one can demonstrate a particular case and hand-wave that the other cases
are similar. For formalization, either 512 cases must be encoded in Lean, or another system
is required, so Mathlib uses filters. The remainder of MIL’s topology section is dedicated
to metric spaces and topological spaces, but both are expressed entirely in the language of
filters.

12

CHAPTER 3. DEVELOPMENT 13

Having not been introduced to filters previously, I found the topology section of MIL
very difficult to learn from. The text seems to presuppose knowledge of the underlying
mathematics in its readership, and as such makes little effort to introduce the mathematical
ideas, only taking care to delicately explain how those ideas are used in Lean. I had also
just taken a semester-long course in topology, so I was particularly taken aback that the
only resource for topology in Lean was so unapproachable. This became the inspirition
for a new direction with my honors thesis project: writing a code library for formalizing
topology in Lean [4] which is more accessible, and based on a conventional approach like
that of Munkres’ Topology [6].

During the summer, I also read Theorem Proving in Lean 3, and then skimmed Theorem
Proving in Lean 4 when it was released later in the summer to catch any changes. Com-
pared to MIL, Theorem Proving in Lean (TPiL) focuses more on the basic constructions of
Lean as a programming language, particularly on the type theory used to formalize mathe-
matics. My impression upon reading both texts was that MIL expects more mathematical
background knowledge from the reader and TPiL expects more programming savviness.
I also read a bit of Functional Programming in Lean [8], but ultimately sidelined that
textbook because it was less relevant to my goals for this project.

3.2 Fall 2023

In Late August, I began to work through the Munkres textbook Topological Spaces with a
focus on identifying which parts of the textbook were more or less challenging to formalize.
Starting in September, I pivoted to working on the first section of my instructional repos-
itory, Logic in Lean. I spent the first few weeks of September deciding how to structure
the introduction to formal logic, which ultimately culminated in the current path starting
with Propositions, truth and falsity, then leading through implication, disjunction, con-
junction, negation, and the 2 quantifiers. I actually began writing code and comments in
late September, and by mid-October I had written files explaining proofs, proposition, and
implication; true, false, introduction rules, and elimination rules; negation; conjunction
and disjunction; and the existential and universal quantifiers. This was also the time when
I began backing my files up on Github. The remainder of the semester was spent continuing
to flesh out the library, adding a section on set theory and a section on Topology.

3.3 Spring 2024

Over the Winter break, it was confirmed by the University of Arizona mathematics depart-
ment that Dr. Cherkis would teach a graduate class in the coming spring, Math 529: Proof
Writing and Proof Checking with a Computer. Furthermore, I was accepted as a Teaching
Assistant for this class. This class gave me the opportunity to discern how approachable
formalization of Mathematics in Lean is in an actual classroom environment. During this

CHAPTER 3. DEVELOPMENT 14

semester, I also began writing this Honors thesis, and I finished working on the code library
which introduces students to Lean.

3.3.1 Finishing the library

My original plan for the project included a subsection in the Set Theory chapter of the
library for cardinality which would cover the explicit definitions of finiteness, countabil-
ity, and uncountability, but after several weeks of work on the code without any forward
progress, I decided to cut cardinality from the code library. The first roadblock I encoun-
tered trying to formalize Munkres’ approach to cardinality was a paralysis of possibility,
since Lean has finiteness defined for sets and types, each of which are useful in select situa-
tions. Mathlib has the type Finset, which is built atop Lean’s programming infrastructure
for lists, so all terms of type Finset are constructed explicitly by enumerating their ele-
ments. This extensional finite set construction makes proving theorems about cardinality
all but trivial, but requires some type of external means to interpret intensionally defined
sets as Finsets. Mathlib also has the type Fin : Nat → Type and the predicate
Finite : Type → Prop. For a natural number n, Fin n is a subtype of Nat con-
sisting of all natural numbers less than n. Finite is defined in terms of Fin, where a type
is Finite if there exists a bijective function from that type to some Fin n. This approach
to finiteness matches the formal approach described by Munkres, but requires introducing
extraneous concepts from the Mathlib library used for the construction of Finite, namely
Equiv and Subtype. I attempted writing some files in the code library relying on each
approach, since Finset is actually used later on in topology where finite subcovers and
finite intersections are concerned, but only Finite easily lends itself to the formal proofs
of the uniqueness of cardinality and so on. Finite is also most similar to how countability
and uncountability are defined in Mathlib, so it provides a better segue. However, I was
met with another significant hurdle when trying to prove that cardinality is unique using
Finite. Extending a function’s domain to a larger type requires using Lean’s if-then-else
logic, which is tricky to use in tactic proofs. Even if the if-condition is met by one of the
hypotheses, some elbow grease is necessary to convince Lean to simplify the if-then-else
expression. This felt like an unreasonable onus to place upon students learning Lean and
set theory for the first time, so I spent several hours searching for a workaround, but to no
avail.

Ultimately, I decided to scrap the Countability section, for the sake of producing a cohesive
code library before the end of the semester. Consequently, I also needed to drop the
Compactness section of the Topology chapter of the code library. Due to time pressure, I
pared down the Topology chapter even further, leaving only the first section to be written.
By April 2024, I had finished writing all the remaining code within this limited scope,
including solutions for all the exercises within the code library.

CHAPTER 3. DEVELOPMENT 15

3.3.2 Insights as a TA

Dr. Cherkis constructed a curriculum for the graduate level course which spent the first two
months leading students through the first 6 chapters of Mathematics in Lean, then took a
handful of weeks to guide students through my code library, before returning to finish MIL
in April. The class met twice weekly for 75 minutes, and a typical class session spent about
20 minutes on lecture, and the remaining time dedicated to individual or paired work on
students’ computers with Lean exercises. During the group and individual work time, Dr.
Cherkis and I helped students upon request, clarifying concepts or quirks of Lean.

Since most of my work as a TA revolved around working with students through the diffi-
culties they encountered while learning Lean, the following few paragraphs discuss those
difficulties.

As the students were beginning to learn Lean, they often stumbled with tactics, specifically
the apply tactic, which works like so: if you have a goal ⊢Q and a hypothesis h:P→Q,
then writing “apply h” will reduce the goal to ⊢P. Students tended to forego reducing the
goal and instead wrote “apply hP” where they had hP:P as a hypothesis. This common
mistake may represent that students aren’t viewing known implications as propostions
themselves which require proving and specifying, just like any other proposition. The
apply tactic also encourages a sort of backwards proof, where the goal is continually
reduced until the goal follows directly from the hypotheses.

Another gripe students had with Lean was the theorem naming convention, or lack thereof.
Each theorem in the extensive Mathlib library has a unique name, and while most theo-
rems use the same naming convention, that convention is not made explicit in Mathematics
in Lean. In general, a theorem which proves prop2 from hypothesis prop1 is named
prop2 of prop1, but the exceptions are likely more numerous than the rule. Mathlib
uses certain canonical abbreviations, so “less than” is always abbreviated le and “multi-
plication” is mul. Additionally, Lean uses dot notation for accessing fields of a structure
but also for namespace scope, so TopologicalSpace.isOpen could be interpreted as a
field within the structure TopologicalSpace or as a term defined within the namespace
TopologicalSpace.

Fortunately, the students in this class were not the first to notice the difficulty of locating
desired theorems and definitions, so there are several resources for searching through the
Mathlib library. The website moogle.ai, the tactics apply? and exact?, and some
other tricks can be used to ease the difficult task of finding the theorem you want. When
writing Lean code in the VSCode editor, one can easily jump to the file in the library
which defines a particular expression, and this is probably true of many other code editors
which support Lean. The tactics apply? and exact? perform a search through the
library for theorems which imply the goal or directly close the goal respectively. Lean also
has keywords #check and #print which display the type and definition respectively of

CHAPTER 3. DEVELOPMENT 16

whichever term follows the keyword. Still, it took some time for students to develop an
intuition for how theorems in Mathlib are likely to be named, so an explicit guide would
be an invaluable resource.

Of course, this trial class wasn’t all hurdles and setbacks. While the stumbling blocks for
students helped provide feedback for how to improve my code library, there were also many
aspects of the course which functioned near seamlessly.

During the semester, Dr. Cherkis was able to set up an autograder through Gradescope
where students could submit their Lean code proofs for assigned theorems, and Gradescope
would give them a score according to how many of their proofs successfully compiled in
Lean. Admittedly, this procedure is a bit redundant, since the extra work of submitting the
code is after Lean has already successfully compiled on the student’s computer. Nonethe-
less, this Gradescope submission process made it possible to submit completed homework
and receive a grade automatically, cutting down on the work necessary for the instructor.
However, there is still room for improvement, since students needed to slightly adapt their
code which compiles locally to code which Gradscope can compile, and Dr. Cherkis needed
to repeatedly rewrite sections of code and display files for each assignment he posted to
Gradescope.

By the end of the semester, the majority of the students taking the class were self-sufficient
with Lean, and could even begin to contribute to Mathlib themselves! Students also seemed
to have greater clarity about the mathematics which they hard worked to formalize, as
was my experience formalizing the mathematics in this code library. Some students also
expressed the addictive, game-like nature of formalization in Lean which comes from the
instant gratification of the compiler’s feedback when a proof is completed. During my
experience with Lean, I learned about a lot of mathematics which was new to me, including
lattice orders, filters, uniform spaces, and type theory. The graduate students taking this
course likely have more math experience and knowledge than I do, but I imagine there
are some new mathematical ideas they were exposed to during the course, aside from the
greater mastery of the mathematics they already understood and formalized.

3.4 Future Development

After the success of this graduate-level formalization course, I am hopeful for the prospects
of an undergraduate-level course which follows my code library. There are a few other
courses in other universities which have successfully done what this project aims to do:
teach undergraduate students how to reason mathematically and write proofs using Lean.
Dr. Heather Macbeth wrote an excellent online textbook, The Mechanics of Proof [9],
which accompanies her course at Fordham University. Dr. Kevin Buzzard of Imperial
College London also teaches a course on formalizing mathematics using Lean [1], which he
has taught for a couple of semesters to undergraduate math students.

CHAPTER 3. DEVELOPMENT 17

For my code library to be a sufficient resource for an undergraduate course, it still re-
quires some more work; the code library needs an accompanying textbook, human lan-
guage proofs, and a grading pipeline. Ideally, the code library would be less commented,
and the content of the comments would be moved over to a textbook, similar to how Math-
ematics in Lean has both a pdf file and a code library. Then that textbook could also
contain several proofs which are written both in Lean and in human language, so students
might also learn how to write human language proofs and not just Lean proofs. Lastly, my
code library needs to include an easy-to-use system for creating assignments and compiling
Lean proofs for those assignments. Dr. Cherkis used Gradescope to do this for our course,
but I would like a system which requires a bit less clerical work from both instructor and
student.

My code library is also missing a subsection of Set theory which discusses finite, infinite,
countable, and uncountable sets. The library could also reach much further into topology,
covering at least continuity, compactness, and connectedness. With the hindsight of TAing
this course, the introduction section of the library could also be improved by taking more
time on tactics, particularly apply and rewrite.

Once my code library has been upgraded enough to be used as a reference for an un-
dergraduate course, there are myriad possibilities for uses. Instructors at any university
could use the library for their own courses in formal mathematics, and the library could
be developed to focus less on topology and instead anywhere else in mathematics. In my
undergraduate proofs course, topology wasn’t discussed, but instead some elementary Real
Analysis and Field theory.

I have also surmised from my experience working with Lean and helping others to learn
Lean that there really ought to be a user guide for tactics which explains what all the
tactics do, and that Mathlib could use some extra document which can help with searching
through the library. The tools I have learned to find specific theorems in Mathlib were
hard-fought, but they don’t have to be.

Since I began this project in June 2023, I have developed considerably as a mathematician.
Learning Lean has changed how I think about mathematics, as I now perceive theorems
first and foremost as functions, and proofs as implementations of those functions. This
perspective clarifies how each premise of a theorem is necessary for arriving at the conclu-
sions, and makes relaxing the premises much more intuitive. All of the mathematics which
I have worked to formalize in my library has become clear to me in stark detail, since a
much clearer understanding of the underlying mathematics is necessary to formalize and
explain the formalization. I have also learned a fair amount of entirely new mathemat-
ics, particularly in the realm of filters and type theory. While I intend to improve my
library and see that it finds an audience, the work I have done so far has been intrinsically
rewarding, both bolstering my skills as a mathematician and as a programmer.

Bibliography

[1] K. Buzzard, Formalising Mathematics, 2022. [Online]. Available: https://www.ma.
imperial.ac.uk/∼buzzard/xena/formalising-mathematics-2024/index.html

[2] J. Avigad, L. de Moura, S. Kong, and S. Ullrich, Theorem Proving in Lean 4, 2023.
[Online]. Available: https://lean-lang.org/theorem proving in lean4/

[3] J. Avigad and P. Massot, Mathematics in Lean, 2023. [Online]. Available: https:
//leanprover-community.github.io/mathematics in lean/mathematics in lean.pdf

[4] R. Grenier, “Lean-intro-topology,” 2024. [Online]. Available: https://github.com/
charlespwd/project-title

[5] D. Madden and J. Aubrey, An Introduction to Proof through Real Analysis. Wiley,
2017. [Online]. Available: https://books.google.com/books?id=7kkzDwAAQBAJ

[6] J. Munkres, Topology, ser. Featured Titles for Topology. Prentice Hall, Incorporated,
2000. [Online]. Available: https://books.google.com/books?id=XjoZAQAAIAAJ

[7] I. James, Topologies and Uniformities, ser. Springer Undergraduate Mathematics
Series. Springer London, 2013. [Online]. Available: https://books.google.com/books?
id=k4nbBwAAQBAJ

[8] D. Christiansen, Functional Programming in Lean, 2023. [Online]. Available:
https://lean-lang.org/functional programming in lean/

[9] H. Macbeth, The Mechanics of Proof, 2023. [Online]. Available: https:
//hrmacbeth.github.io/math2001/index.html

18

https://www.ma.imperial.ac.uk/~buzzard/xena/formalising-mathematics-2024/index.html
https://www.ma.imperial.ac.uk/~buzzard/xena/formalising-mathematics-2024/index.html
https://lean-lang.org/theorem_proving_in_lean4/
https://leanprover-community.github.io/mathematics_in_lean/mathematics_in_lean.pdf
https://leanprover-community.github.io/mathematics_in_lean/mathematics_in_lean.pdf
https://github.com/charlespwd/project-title
https://github.com/charlespwd/project-title
https://books.google.com/books?id=7kkzDwAAQBAJ
https://books.google.com/books?id=XjoZAQAAIAAJ
https://books.google.com/books?id=k4nbBwAAQBAJ
https://books.google.com/books?id=k4nbBwAAQBAJ
https://lean-lang.org/functional_programming_in_lean/
https://hrmacbeth.github.io/math2001/index.html
https://hrmacbeth.github.io/math2001/index.html

	Introduction
	Structure
	Introduction to Lean and Logic
	Dependent Types and Qualifiers
	Are ``to be" and ``not to be" the only options?

	Set Theory
	Fundamentals of Set Theory
	Relations
	Induction

	Topology
	Topology and Bases

	Development
	Summer 2023
	Fall 2023
	Spring 2024
	Finishing the library
	Insights as a TA

	Future Development

