{ "metadata": { "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "import scipy.spatial.distance as spd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "\n", "# used to compare energy before and after a move\n", "# we assumed that epsilon and alpha are 1\n", "def local_energy(site):\n", " local_sum = 0\n", " for i in xrange(len(system)):\n", " if site != i:\n", " tempx = system[site][0] - system[i][0]\n", " tempy = system[site][1] - system[i][1]\n", " if tempx > 100./2:\n", " tempx = 100. - tempx\n", " if tempy > 100./2:\n", " tempy = 100. - tempy\n", " #r = spd.euclidean(system[i][0],system[j][0])\n", " dist = np.sqrt(tempx**2+tempy**2)\n", " #dist = spd.euclidean(system[site],system[i])\n", " local_sum += -((1/dist)**12-(1/dist)**6)\n", " return local_sum\n", "\n", "# total energy of the system\n", "def system_energy():\n", " total_sum = 0\n", " for i in xrange(len(system)):\n", " total_sum += local_energy(i)\n", " return total_sum\n", "\n", "def radial_number_density():\n", " rad_dist = []\n", " for i in xrange(len(system)):\n", " for j in xrange(len(system)):\n", " if i != j:\n", " temp = spd.euclidean(system[i],system[j])\n", " rad_dist.append(temp)\n", " return rad_dist\n", "\n", "n = 100 # number of particles\n", "# initializing the system\n", "# the atoms occupy a square of size 10X10\n", "system = np.zeros([n,2])\n", "for i in xrange(len(system)):\n", " system[i][0] = i%10 # np.sqrt(n) wont work as it will return a float\n", " system[i][1] = i/10 # we need an integer denominator for this to work!\n", "\n", "global_energy = []\n", "accepted_moves = 0\n", "\n", "plt.subplot(131)\n", "alist = radial_number_density()\n", "anarray = np.asarray(alist)\n", "plt.hist(anarray,10);\n", "\n", "initial_dist = radial_number_density()\n", "\n", "T = 1.\n", "# T = np.array([5.,5./2,1./1./2,1./10])\n", "beta = 1./T\n", "# B = 1./T\n", "#for beta in B:\n", "for time in xrange(5000):\n", " site = np.random.choice(np.arange(n)) # atom to be moved\n", " # this atom can now move in the range (-alpha,alpha) in x & y\n", " #xmove = np.random.choice(np.array([-2.,-5./3,-4./3,-1,-2./3,-1./3,0,1./3,2./3,1.,4./3,5./3,2.]))\n", " #ymove = np.random.choice(np.array([-2.,-5./3,-4./3,-1,-2./3,-1./3,0,1./3,2./3,1.,4./3,5./3,2.]))\n", " #xmove = np.random.choice(np.array([0,1./3,2./3,1.,4./3,5./3,2.]))\n", " #ymove = np.random.choice(np.array([0,1./3,2./3,1.,4./3,5./3,2.]))\n", " xmove = np.random.choice(np.array([0.,1.,2.,3.,4.]))\n", " ymove = np.random.choice(np.array([0.,1.,2.,3.,4.]))\n", " pre_move_e = local_energy(site)\n", " system[site] = system[site] + np.array([xmove,ymove])\n", " if system[site][0] > 100 :\n", " system[site][0] = system[site][0]%100\n", " #if system[site][0] < 0 :\n", " # system[site][0] = system[site][0]%100\n", " if system[site][1] > 100 :\n", " system[site][1] = system[site][1]%100\n", " #if system[site][1] < 0 :\n", " # system[site][1] = system[site][1]%100\n", " post_move_e = local_energy(site)\n", " if post_move_e - pre_move_e < 0:\n", " global_energy.append(system_energy())\n", " accepted_moves += 1\n", " else :\n", " temp = np.random.random()\n", " if temp < np.exp(-beta*(post_move_e - pre_move_e)):\n", " global_energy.append(system_energy())\n", " accepted_moves += 1\n", " else :\n", " system[site] = system[site] - np.array([xmove,ymove])\n", " global_energy.append(system_energy())\n", "# we get global_energy, accepted moves as the outputs here.\n", "plt.subplot(132)\n", "alist = radial_number_density()\n", "anarray = np.asarray(alist)\n", "plt.hist(anarray,10);\n", "plt.subplot(133)\n", "plt.plot(global_energy)\n", "print \"accepted_moves\", accepted_moves\n", "final_dist = radial_number_density()" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "accepted_moves 4438\n" ] }, { "output_type": "stream", "stream": "stderr", "text": [ "-c:21: RuntimeWarning: divide by zero encountered in double_scalars\n", "-c:21: RuntimeWarning: invalid value encountered in double_scalars\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEACAYAAACznAEdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VNXdP/DPhEwECiggTGAGDWafJISABLRQQUxYHohs\nzWOQRVBqobWAFlle/RWwDyRIreIS+9KGpbElWG1NHgshIJuyJEJAkfhIipM2G1GWIJDAkOT8/riZ\nSSaZPXeWzHzer1deM3PvPeeeO+cm39ztexRCCAEiIvJ7AZ5uABEReQcGBCIiAsCAQEREzRgQiIgI\nAAMCERE1Y0AgIiIANgLCwoULoVKpEBcXZ5xWVFSExMREJCQkYMSIEfj888+N89LT0xEeHo6oqCgU\nFBQYp586dQpxcXEIDw/H0qVLXbAZ5Ijy8nKMGzcOMTExiI2Nxeuvvw4AuHLlCpKSkhAREYHk5GTU\n1tYay7BvfVdISAiGDBmChIQEJCYmArC+L5APE1YcOXJEFBcXi9jYWOO0Rx55ROTn5wshhNi9e7cY\nO3asEEKIc+fOifj4eKHX64VOpxOhoaGiqalJCCHEiBEjRGFhoRBCiEmTJok9e/ZYWy25WHV1tTh9\n+rQQQojr16+LiIgIUVJSIlasWCE2bdokhBAiIyNDrFy5UgjBvvV1ISEh4vLlyybTLO0L5NusHiGM\nGTMGvXv3Npk2YMAAXLt2DQBQW1sLtVoNAMjNzUVaWhqUSiVCQkIQFhaGwsJCVFdX4/r168b/PObN\nm4ePPvrIFbGN7BQcHIyhQ4cCAHr06IHo6GhUVlYiLy8P8+fPBwDMnz/f2E/sW98n2jyfamlfIN8W\n6GiBjIwMjB49Gr/+9a/R1NSE48ePAwCqqqowatQo43IajQaVlZVQKpXQaDTG6Wq1GpWVlTI0neRQ\nVlaG06dPY+TIkaipqYFKpQIAqFQq1NTUAGDf+jqFQoHHHnsMXbp0wbPPPotFixZZ3BfItzkcEJ5+\n+mm8/vrrmD59Ov72t79h4cKF2LdvnyvaRi5248YNzJw5E1u2bEHPnj1N5ikUCigUCg+1jNzp6NGj\nGDBgAL7//nskJSUhKirKZD73Bf/hcEAoKirC/v37AQCzZs3CM888A0D677C8vNy4XEVFBTQaDdRq\nNSoqKkymG04ztcWdzjOmT59ufG/og6qqKvTv3x9Ax/uW/eo92p4aAqTTwADQr18/TJ8+HUVFRVCp\nVLh48SKCg4NRXV1t3BdaY796F3N96yiHbzsNCwvD4cOHAQAHDhxAREQEACAlJQU5OTnQ6/XQ6XQo\nLS1FYmIigoOD0atXLxQWFkIIgezsbEybNs1i/UIIh3/Wrl3Lcg6Ua2pqwty5c7Fs2TKT6StWrEBG\nRgYAYMeOHcZ+kqNvvWG7/b2cOXV1dbh+/ToA4ObNmygoKEBcXBxSUlKwY8eOdvuCHP0q93a5oz5v\nbpulvnWG1SOEtLQ0HD58GJcuXcKgQYPw0ksv4Z133sEvfvEL3L59G926dcM777wDANBqtUhNTYVW\nq0VgYCAyMzON/0FkZmbiqaeeQn19PSZPnoyJEyfKtgHkuKNHj+K9994z3moISLeVrlq1CqmpqQCk\nYP/+++8DYN/6spqaGuMRYkNDA5588kkkJyfjwQcfRGpqKrKyshASEmLcF8i3WQ0IO3fuNDu9sLDQ\n7PQ1a9ZgzZo17aYPHz4cZ8+edaJ55AqjR49GU1OT2Xn79++HQqEwedYAYN/6qsGDB+PMmTPtpvfp\n08d4apj8h8PXELzR2LFjWU7Gct7CW74ve86Vr1+/3uFDd3/tV0vk3i456/PmtslJIeQ8AdVBCoVC\n1vNh5By5+6Gz96sUEGy13/u3kf3qu+TqC+YyIiIiAAwIRETUjAGBiIgAMCAQEVEzBgQiIgLAgEBE\nRM184jkEe9ibd4W30RGRv/KbgCCxfS85EZG/4ikjIiICwIBARETNGBCIiAgAAwIRETVjQCAiIgAM\nCERE1MxqQFi4cCFUKhXi4uJMpr/xxhuIjo5GbGwsVq5caZyenp6O8PBwREVFmQywcurUKcTFxSE8\nPBxLly6VeROIiEgWwoojR46I4uJiERsba5x24MAB8dhjjwm9Xi+EEOK7774TQghx7tw5ER8fL/R6\nvdDpdCI0NFQ0NTUJIYQYMWKEKCwsFEIIMWnSJLFnzx6z67PRnA4BIABh48d16+9M5P4eOvv36iv7\nDvvVd8nVF1aPEMaMGYPevXubTHv77bexevVqKJVKAEC/fv0AALm5uUhLS4NSqURISAjCwsJQWFiI\n6upqXL9+HYmJiQCAefPm4aOPPpIvojVTKBRWf4iIyDqHryGUlpbiyJEjGDVqFMaOHYuTJ08CAKqq\nqqDRaIzLaTQaVFZWtpuuVqtRWVkpQ9PNEVZ+iIjIGodTVzQ0NODq1as4ceIEPv/8c6SmpuLbb7+V\nrUHr1q0zvh87dqzXjj3qSw4dOoRDhw55uhlE5GEOBwSNRoMZM2YAAEaMGIGAgABcunQJarUa5eXl\nxuUqKiqg0WigVqtRUVFhMl2tVlusv3VAIPdoG3jXr1/vucYQkcc4fMpo2rRpOHDgAADg/Pnz0Ov1\nuPfee5GSkoKcnBzo9XrodDqUlpYiMTERwcHB6NWrFwoLCyGEQHZ2NqZNmyb7hhARUcdYPUJIS0vD\n4cOHcfnyZQwaNAgvvfQSFi5ciIULFyIuLg5BQUH485//DADQarVITU2FVqtFYGAgMjMzjRdzMzMz\n8dRTT6G+vh6TJ0/GxIkTXb9lRETkEEXzLUteQaFQOD0egRR8rJW1NV9axou+Do/pSD+4oz53s71v\nAZ1h32G/+i65+oJPKhMREQAGBCIiasaAQEREABgQiIioGQMCEREBYEAgIqJmDAhERASAAYGIiJox\nIBAREQAGBCIiasaAQEREABgQiAhAY2MjEhISMHXqVADAlStXkJSUhIiICCQnJ6O2ttbDLSR3YEAg\nImzZsgVardaYoTgjIwNJSUk4f/48xo8fj4yMDA+3kNyBAYHIz1VUVGD37t145plnjBkz8/LyMH/+\nfADA/PnzLY6DzmSnvoUBwQEKhcLmD1Fns3z5cmzevBkBAS1/DmpqaqBSqQAAKpUKNTU1Zss2NLil\nieQmDg+hSbbGXCDqPD7++GP0798fCQkJFsfVtvbPztq16xAUJL3nGOju47Jx0IUVCxYsEP379xex\nsbHt5v3+978XCoVCXL582Tht48aNIiwsTERGRoq9e/cap588eVLExsaKsLAw8atf/cri+mw0xyoA\nQjqAtfRja77t9duzDl8g93Z09u9Fjn3HG5hr4+rVq4VGoxEhISEiODhYdO/eXcyZM0dERkaK6upq\nIYQQVVVVIjIy0mx9lZUubzbZQa79z+opowULFiA/P7/d9PLycuzbtw/333+/cVpJSQl27dqFkpIS\n5OfnY8mSJcbzkYsXL0ZWVhZKS0tRWlpqtk4icr+NGzeivLwcOp0OOTk5ePTRR5GdnY2UlBTs2LED\nALBjxw6L46Dfvu3O1pKrWQ0IY8aMQe/evdtNf/755/Hyyy+bTMvNzUVaWhqUSiVCQkIQFhaGwsJC\nVFdX4/r160hMTAQAzJs3z+IFKiLyLMOpoVWrVmHfvn2IiIjAgQMHsGrVKrPL37rlztaRqzl8DSE3\nNxcajQZDhgwxmV5VVYVRo0YZP2s0GlRWVkKpVEKj0Rinq9VqVFZWdqDJROQKjzzyCB555BEAQJ8+\nfbB//36bZXiE4FscCgh1dXXYuHEj9u3bZ5xmOC0kl3Xr1hnf8yKVe7jsAhX5vPp6T7eA5ORQQLhw\n4QLKysoQHx8PQLp/efjw4SgsLIRarUZ5eblx2YqKCmg0GqjValRUVJhMV6vVFtfROiCQe7QNvOvX\nr/dcY6hTYUDwLQ49hxAXF4eamhrodDrodDpoNBoUFxdDpVIhJSUFOTk50Ov10Ol0KC0tRWJiIoKD\ng9GrVy8UFhZCCIHs7GyLF6jIPRYuXAiVSoW4uDjjtHXr1kGj0SAhIQEAsGfPHuO89PR0hIeHIyoq\nCgUFBcbpp06dQlxcHMLDw7F06VL3bQB5je+/93QLSFbWbkF64oknxIABA0RQUJDQaDRi69atJvMH\nDx5sctvphg0bRGhoqIiMjBT5+fnG6YbbTkNDQ8Vzzz1ncX02mmMVeNup3Y4cOSKKi4tNbidet26d\neOWVV4QQpttx7tw5ER8fL/R6vdDpdCI0NFQ0NTUJIYQYMWKEKCwsFEIIMWnSJLFnzx6z6+ss34sl\ncuw73kDuNhq+F/I8ufrW6imjnTt3Wg0m3377rcnnNWvWYM2aNe2WGz58OM6ePWtfhCKXGzNmDMrK\nytpNF2auB1m6e+z+++83e/fYxIkTXd188iJ8ON+3MHVFG/6cluKNN94wXh8yZLesqqoyuUvMcPdY\n2+ly3D1mT2oQb+6Lztx2Zy1b5ukWkJyYuqId/0xNsXjxYvz2t78FAAQEBOCFF15AVlaWbPXbf/eY\nPXeteWs/eFfb3XH32KuvAn/4g0tXQW7EgEAAgP79+5t8LioqAgDePdaJ8e4xchRPGREAoLq62uSz\n4Q4k3j1G5D94hOCH0tLScPjwYVy6dAmDBg3C+vXrcejQIZw5c8Z4jvvVV18FAGi1WqSmpkKr1SIw\nMBCZmZnGZTIzM/HUU0+hvr4ekydP5gVlP/TEE55uAclJIczdWuIhCoXC6SefpT9Sts7/26q7o3U4\n335v0pF+6Eh9tvvQuKRbv2f72uWdbTdZswv6dcYMgQ8/lK1KcpJcfctTRkTktB9+8HQLSE4MCETk\ntFb3G5APYEAgIqcplZ5uAcmJAYGInFZX5+kWkJwYEIjIaTdveroFJCcGBCJy2p07nm4ByYkBgYic\nduWKlL6CfAOfQ3BoGT6H4Mr6+ByCa7miXwGBBx4ALlyQrVpyAp9DICKvwOsIvoOpK4jIabNnAxER\nnm4FycXqEYK5oRZXrFiB6OhoxMfHY8aMGbh27ZpxHodaJPIvoaGebgHJyWpAWLBgAfLz802mJScn\n49y5c/jiiy8QERGB9PR0AEBJSQl27dqFkpIS5OfnY8mSJcZzWosXL0ZWVhZKS0tRWlrark5f4k+D\noxAFBQF6vadbQXKxGhDGjBmD3r17m0xLSkpCQIBUbOTIkcac+JaGWqyurjY71KLvElZ+iHzLXXcB\nt297uhUklw5dVN66dSsmT54MwL1DLRKRd+ARgm9x+qLyhg0bEBQUhNmzZ8vZHgeGWiS5uGOoRfJN\nPELwLU4FhO3bt2P37t345JNPjNM41GLnxaEWyVk8QvAtDp8yys/Px+bNm5Gbm4uuXbsap3OoRSL/\nc9ddDAi+xOoRgrmhFtPT06HX65GUlAQAeOihh5CZmcmhFon8UFAQTxn5EqaucGgZ/0htwdQVbdbG\n1BUW6/vb3wReew347DPZqiUnMHUFEXlcjx5Aly6ebgXJhQGBiJzW6jIi+QAGBCJymlLJMRF8CQMC\nETlNqQQaGjzdCpILAwIROS0wkEcIvoQBgciP3bp1CyNHjsTQoUOh1WqxevVqAMCVK1eQlJSEiIgI\nJCcno7a21mx5njLyLRwPgdxi5co1nm4CmdG1a1ccPHgQ3bt3R0NDA0aPHo3PPvsMeXl5SEpKwosv\nvohNmzYhIyMDGRkZ7crzlJFvYUAgt3j55R8ADLSyxCl3NYXa6N69OwBAr9ejsbERvXv3Rl5eHg4f\nPgwAmD9/PsaOHWs2IPCUkW9hQCA3eRpAgpX52wH83T1NIRNNTU0YNmwYLly4gMWLFyMmJgY1NTVQ\nqVQAAJVKhZqaGrNlFQrg22/d2VpyJQYEIj8XEBCAM2fO4Nq1a5gwYQIOHjxoMt/a4E49ekivTU1A\nAK9IdnoMCOS3OIKdqbvvvhv/9V//hVOnTkGlUuHixYsIDg5GdXU1+vfvb7bM22+vg0IBrF0LjB/P\ndPXu4qqU9cxl5NAyzGXkbH1AMWyfMloAd+YDciR3kq/mMrp06RICAwNxzz33oL6+HhMmTMDatWux\nd+9e9O3bFytXrkRGRgZqa2vbXUMw1Ne1K1Bby6eWPUmu31keIRD5serqasyfPx9NTU1oamrC3Llz\nMX78eCQkJCA1NRVZWVkICQnB+++/b7GOwEDeaeQreITg0DI8QnC2Ph4htCznTUcIctR3993Af/4D\n3H23bFWTg5jtlIi8Ao8QfIfVgLBw4UKoVCrExcUZp1l7gjE9PR3h4eGIiopCQUGBcfqpU6cQFxeH\n8PBwLF261AWbQUSe0qULA4KvsBoQFixYgPz8fJNpGRkZSEpKwvnz5zF+/HjjhaaSkhLs2rULJSUl\nyM/Px5IlS4yHMIsXL0ZWVhZKS0tRWlrark4i6rwCA4HGRk+3guRgNSCMGTMGvXv3NpmWl5eH+fPn\nA5CeYPzoo48AALm5uUhLS4NSqURISAjCwsJQWFiI6upqXL9+HYmJiQCAefPmGcsQUedXXQ2cOePp\nVpAcHL7LyNITjFVVVRg1apRxOY1Gg8rKSiiVSmg0GuN0tVqNyspKh9ap0+lw9epVR5tKRG5y7hww\nebKnW0Ed1aHbTq09wSinX//6/2HPns+gVPYxO1+vv+TyNhCReV26ACNHeroVJAeHA4KlJxjVajXK\ny8uNy1VUVECj0UCtVqOiosJkulqttlj/unXrjO/HjpWefGxoAOrr/wf19XMslPoTgEWObgo1c9VT\nj+QfHnkE0Os93QqSg8MBISUlBTt27MDKlSuxY8cOTJs2zTh99uzZeP7551FZWYnS0lIkJiZCoVCg\nV69eKCwsRGJiIrKzs/GrX/3KYv2tAwK5hyHwGqxfv95zjaFOp2tX4NYtT7eC5GA1IKSlpeHw4cO4\ndOkSBg0ahJdeegmrVq0y+wSjVqtFamoqtFotAgMDkZmZaTydlJmZiaeeegr19fWYPHkyJk6c6Pot\nIyK36NoVuH3b060gOVgNCDt37jQ7ff/+/Wanr1mzBmvWtB8IZfjw4Th79qwTzSMib3frFnD5sqdb\nQXLgk8pE1CG7dwPPPsuBcnwBAwIRySIvz9MtoI5iQCCiDomJkV7r6jzbDuo4BgQi6pAvvpBeOWJa\n58cu9EO2khYCYNJCsluXLsCMGcBrr3m6JdRRDAh+yFbSQsNngEkLyT5ffQWcPAl0guE+yAoGBDcz\npPuw9uNqtpIWAmDSQnKI4Ull3mnUuTEguJ2w8eMZrZMWGj4DUtLC1skJDUkL2053Jmkh+Y7x46VX\nPqDWuXFMZTJL/iOVPwIY0Px+bPMPuZI7c1SNHAlkZQHffQf07OmWVZILMCAQANOkhQBkT1oI/BzW\nx1QmubkzR9WiRcDPfgb86U9AerrLVkMuxlNGBKAlaaFB66SFOTk50Ov10Ol0xqSFwcHBxqSFQghk\nZ2cby5D/2rbN0y2gjmBA8ENpaWl4+OGH8c0332DQoEHYtm0bVq1ahX379hlvO121ahUA06SFkyZN\nape08JlnnkF4eDjCwsKYtJDQfOmJOimFEN5zo5hCoYC55jz++Bzk5U0EYGs8BGuborAx355lXD1f\nWsbTXWKpHzpSH1AM66eMtgNYAPsurMvTPqld9q2v4/tOy3Ke6l9X9Gvr+gyXnbznL4r/kKtveQ2B\niGSxZo2UCps6L54yIiJZKJVAQ4OnW0EdwYBARLJgQOj8nA4I6enpiImJQVxcHGbPno3bt2+b5MNJ\nTk62Kx8OEfmGwEAGhM7OqYBQVlaGd999F8XFxTh79iwaGxuRk5Njkg9n/PjxVvPhNDU1ybohRORZ\ngYFMXdHZORUQevXqBaVSibq6OjQ0NKCurg4DBw40yYczf/58q/lwioqK5NsKIvI4vR7gwX/n5lRA\n6NOnD1544QXcd999GDhwIO655x4kJSWZ5MNRqVQ28+EQke+orQXOnfN0K6gjnAoIFy5cwGuvvYay\nsjJUVVXhxo0beO+990yWsZW50x1ZPYnIfaZNk3IaUefl1HMIJ0+exMMPP4y+ffsCAGbMmIHjx48j\nODjYmA+nurraaj4cS3lv1q1bZ3zfNhcLuYY7k6CR7+rWDaiv93QrqCOcCghRUVH43e9+h/r6enTt\n2hX79+9HYmIifvSjH2HHjh1YuXIlduzYYZIPZ/bs2Xj++edRWVlpzIdjTuuAQO7hziRo5LsYEDo/\npwJCfHw85s2bhwcffBABAQEYNmwYfvazn+H69etITU1FVlYWQkJC8P777wMwzYcTGBhokg+HiHxD\nt27Av/7l6VZQRzCXkUPLMJeRs/Uxl1HLcr6ay6i2Fujdm7mMPEGuvuWTykQkix49gIAABoTOjAGB\nyI+Vl5dj3LhxiImJQWxsLF5//XUAsJp1wJLAQCkg8OG0zosBgciPKZVKvPrqqzh37hxOnDiBt956\nC19//bXFrAO2dO0K3Lrl4kaTyzAgEPmx4OBgDB06FADQo0cPREdHo7Ky0mLWAVsYEDo3BgQiAiDl\nKDt9+jRGjhxpMeuALd26MSB0ZgwIRIQbN25g5syZ2LJlC3r27Gkyz1bWgdZ4hNC5ccQ0Ij93584d\nzJw5E3PnzjU+TKpSqcxmHWirbWaB0tKx+PxzoHlobnIRV2UXYEAg8mNCCDz99NPQarVYtmyZcXpK\nSorZrANttc0sMHo0cNddrmwxAa7LLsCAQOTHjh49ivfeew9DhgxBQoL04GB6ejpWrVplNuuALVFR\nwOXLrmwxuRIDApEfGz16tMXBqvbv3+9wfT16ADdvdrRV5Cm8qExEsunenQnuOjMGBCKSTdeuDAid\nGQMCEcnmyhVgwwZPt4KcxWsI1CnZc1+8p7PG+qPmVEjUSfEIgTopYePHexke9LL201n16SO9WrhO\nTV6OAYHI7TpvMLNlwgTp9bnnPNsOco7TAaG2thazZs1CdHQ0tFotCgsLrabMTU9PR3h4OKKiolBQ\nUCBL44nIu0RFSa+ZmZ5tBznH6YCwdOlSTJ48GV9//TW+/PJLREVFWUyZW1JSgl27dqGkpAT5+flY\nsmSJxXufiajzWrHC0y2gjnAqIFy7dg2ffvopFi5cCAAIDAzE3XffbTFlbm5uLtLS0qBUKhESEoKw\nsDAUFRXJtAlE5C1ap63Q6z3XDnKOUwFBp9OhX79+WLBgAYYNG4ZFixbh5s2bFlPmVlVVQaPRGMtr\nNBpUVlbK0Hwi8lZXr3q6BeQop247bWhoQHFxMd58802MGDECy5Ytazeikq27JSzNa5s9sXUCJ3IN\nV2VOJP/GB9Q6H6cCgkajgUajwYgRIwAAs2bNQnp6OoKDg82mzFWr1SgvLzeWr6iogFqtNlt32+yJ\n5HquypxI/unSJeDee4F//QsICfF0a8gRTp0yCg4OxqBBg3D+/HkAUhKsmJgYTJ06FTt27AAAk5S5\nKSkpyMnJgV6vh06nQ2lpKRITE2XaBCLyJn37Sq8HDni2HeQ4p59UfuONN/Dkk09Cr9cjNDQU27Zt\nQ2Njo9mUuVqtFqmpqdBqtQgMDERmZmanfviGiKybM4enjDojhfCi5/sVCoXZdAOPPz4HeXkTAcyx\nUPJPABbB+kM9Chvz7VnG1fOlZTzdJZb6oSP1AcUAEqwstR3AAtj3YJY836PULvnW5862O8MV/Wqp\nPsP/e59+Kg2aQ64lV9/ySWUicpkxYzzdAnIEAwIREQFgQCAiF3jkEU+3gJzBgEBEsmtOUgCAmU87\nEwYEIpLdPfcAq1dL72/f9mxbyH4MCETkEhs3Ar16MSB0JgwIROQyd93FgNCZMCAQkct07cqA0Jkw\nIBCRy1y7BvzmN55uBdmLAYGIXOaHH4DsbOmVvB8Dghfy5ADsIc3pKRMSEowJCDk0KnXUv//t6RaQ\nPRgQvJLnBmA3BJzTp08bR7Xj0KjUUYbhNl57jUnvvBkDAtnEoVHJWYaBEd95R3pdvhz47DPPtYes\nY0AgE4YjhAcffBDvvvsuAHBoVHLawIHSa10dkJ8vvfee/MrUltPjIZBvOnr0KAYOHIg9e/YgKSkJ\nUVFRJvOdHRoV+COAAc3vxzb/kCt5y9Co0dHAvHnAggXS565dPdsesowBgUwMGCD90e7Xrx+mT5+O\noqIiqFSqDg+NCvwc1sdDkJ+/D8LkLUOjTp4MdOkCXLwofW5o8EgzyA4dOmXU2NiIhIQETJ06FQDv\nRuns6urqcP36dQDAzZs3UVBQgLi4OKSkpHTSoVGtXZzneQt36doVKCqSnloGgFu3PNsesqxDAWHL\nli3QarXG/8R4N0rnVlNTgzHNI5qMHDkSU6ZMQXJyMlatWoV9+/YhIiICBw4cwKpVqwCYDo06adIk\nDo1KZnXrBnzwQcsTywwIXkw4qby8XIwfP14cOHBATJkyRQghRGRkpLh48aIQQojq6moRGRkphBBi\n48aNIiMjw1h2woQJ4vjx4+3qtNSclJQnBZAtpMtR5n7ebf6Xz9J8Ycd8e5Zx9Xz76nA1udchbVOx\nje3aZuf3I9f3aO8ynqnLFVzRr/b4/e9Nt2/TJlmbQUK+vnX6CGH58uXYvHkzAgJaquDdKETUVrdu\npp+F8Ew7yDanLip//PHH6N+/PxISEizexeDs3Sjr1q0zvm97UYxcw1vuRiHf1KVLy/s+fZjszps5\nFRCOHTuGvLw87N69G7du3cIPP/yAuXPnynI3SuuAQO7hLXejkPstXLgQ//znP9G/f3+cPXsWgHRz\nyH//93/j3//+N0JCQvD+++/jnnvucXod993X8v7KFWDvXuC3v+1oy8kVnDpltHHjRpSXl0On0yEn\nJwePPvoosrOzO/HdKET+acGCBcg3PDHWzNLNIc7q08f087FjHaqOXEiWJ5UNp394NwqRPGwlOJQr\n0eGYMWPQu3dvk2mWUpU4Kz5eev3885ZhNRUK07uNvv8euHmzQ6shGSiar1B7BYVCAXPNefzxOcjL\nmwhgjoWSfwKwCLB6b7nCxnx7lnH1fPvqcHWXWeqHjtQHFMP6g2nbASyA7e8HkOd7tHcZ767LkX6y\n1K9lZWWYOnWq8ZRR7969cfXqVQCAEAJ9+vQxfranPvPrBr76CujbF2h+9hGXL0tHD63jmvf8Nepc\n5Pqd5ZMW1HDmAAAUNklEQVTKRGSRrSMRe28C+f574N57TaedPw+MGiVDI/2Qq24EYUAgIhOWbg4x\nx96bQNoGAwB46CHgl790spF+zlU3gjDbKRGZsHRziCu8+abp5w8+4GkjT2JAIPJjaWlpePjhh/HN\nN99g0KBB2LZtm8WbQ+RiLdvpT38K6PWyro4cwFNGRH5s586dZqfv37/fZeu0dXPUzZstifDIvXiE\nQERulZNjff6NG+5pB7XHgEBEbpWSArz8csvnu+8GgoJaPhvSnBUWAuPGubdt/o4BgYjcbsUKYNYs\n6X2XLkBeXsu8t96SXkeNAphiy70YEIjIIwx3s165AvTs2TL9L38BOFyKZzAgEJFH9OjR8r51QACA\n1te0T51yT3uIAYGIPKR1fktDMtUf/7j9chkZ0pPOX33lnnb5MwYEIvKIRx9teW84WnjhBem19W2n\nH3wgnV6KiwNKStzXPn/EgEBEHtE6yWrPntLzCSkp0vS3326Z1zpzBgfXcS0GBCLymH79gIgIIDBQ\nupDcpYsUHHbtkuYvXw4MH96y/LVrnmmnv+CTykTkMd99135aXBzwn/9I75VKoNWw7Rg3jrmOXIlH\nCETkVf75z5b3gYEtD6oZXLzo3vb4E6cCQnl5OcaNG4eYmBjExsbi9ddfByCNxZqUlISIiAgkJyej\ntrbWWCY9PR3h4eGIiopCQUGBPK0nIp914oR0hHDmjOl0njZyHacCglKpxKuvvopz587hxIkTeOut\nt/D1119bHIu1pKQEu3btQklJCfLz87FkyRI08ckTIjLDcKfRyJFSQGir1f+ZJDOnAkJwcDCGDh0K\nAOjRoweio6NRWVlpcSzW3NxcpKWlQalUIiQkBGFhYSgqKpJpE4jIl2zeDHz4ofT+++9bpl+5AkRH\nSxear1/3TNt8XYevIZSVleH06dMYOXIkampqoFKpAEijLtXU1AAAqqqqoNFojGU0Gg0q254YJCKC\ndPvpjBnS+/ffl17j46XbUa9fB44fB1591XPt82Udusvoxo0bmDlzJrZs2YKebZ49tzUWq6V59o7R\nSvJx1fisRB1lGEznwAHpdcEC4He/A9auBX77W8vlDhwwffCN7ON0QLhz5w5mzpyJuXPnGofYszQW\nq1qtRnl5ubFsRUUF1Gq12XrtHaOV5OOq8VmJOmrpUiA7G+jTR/rcrZvlZUePBv73f6V02uPHA3V1\n1pen9pw6ZSSEwNNPPw2tVotly5YZp1saizUlJQU5OTnQ6/XQ6XQoLS1FYutEJkREZixdCpw82fLZ\n2vCbR48CZWVAaan0mdcZHOdUQDh69Cjee+89HDx4EAkJCUhISEB+fr7FsVi1Wi1SU1Oh1WoxadIk\nZGZmWj2dRERkTutnEJKTgfp66b3hpsW6upZTScuXu7dtvkAhhPc896dQKGCuOY8/Pgd5eRMBzLFQ\n8k8AFgGwtikKG/PtWcbV8+2rw9VdZqkfOlIfUAwgwcpS2wEsgO3vB5Dne7R3Ge+uy5F+ckW/uvvP\nR24u0HziAQAQHi49p3D+PJBgZvfynr9uriVXX/BJZSLqNFJSgC++aPlcWgo89ZRz4zD/9a/Ak0/K\n1jSfwIBARJ2GQiHlOmrtb38Dxowxv/ytW+anf/21FAz++lfTfEpCAD/8IE9bOyMGBCLqVOy5/Dhk\niPR67pz0R79tYKiubnlvuA4BAEVF0l1K/ooBgYg6nbVrpaeYr141P/8vf5FeP/xQOhLYu9d0ft++\nLe9DQlquNdy5I71+8UVLxlV/woBARJ3OunXAvfdKQ2/q9dK03/wGaGyUHl7TaqVp6enSq+E5BoPW\nRwWAVKagoOXU09ChwP33A2++6bJNQPfu3peXiQGhEzI8BW7ph/yHrX3BH/YHpRL485+BX/xCGjth\n61bTMRSAlttSDerqTD/v2AFMmNC+7uxs4B//sK8dFRX2txmQgtJDD0ljRnsLBoROSVj5If9ibV/w\nn/1h7lwgONh0WutrAZcumc47eFAaxzk52Xq9RUVSXqU33wSmTjW/zOHDUn2DBgFnz9rX3tOnpdf/\n+z/p9Je3YEAgIp+Un9/yftYs03n/8z/Srap790pHB7Zs3Qp8/DGQldV+3tixUqoMwPwIcG1duAAM\nG9byWa8HHnlECg6exoBARD4pJsb087hx0h1KhrNohnRqbU8vPfNM+7oM/9Eb5tXUSNlXDXUZLkp/\n842Uptscw3WLNWvazztyBPj1r6X3e/dK9UZGAseOma/LVRgQiMgn9ewJqFTS6RwAaJvQ1zASW+t0\nGJGRwLvvStccRowwX++JE9KRgrkLwr/4hXQH08yZUlZWg2+/lS4i79/fktK7LcMT2M3DyOD8eeDH\nP5baolC03DqbnQ188IHFze4QBgQi8lkXL0qndMxdWzfcepqcDEycCGzfDvzhD9I0hQL44x+B4cOB\nN96QphmSAD/0kHRtwZq//900PXdoqPS6fz+wZEnLelpbtAhoaDDN0PrEE9IpJqBl6NB584Cf/hR4\n6y1pbAjDXVZy6NB4CEREncG33wKDB5tOMwSJIUOAPXvalxk2TMq0+uc/t3w2yM1teb96dcvtrW3l\n5kqnlgyEAD75RBr5raxM+vzSS8C2bdL8tkOG5uRIF60B6ZTT8eMt8375S/Pr7AgeIRCRzwsJcf5B\nM8Ngj1OmtJ83ZEjLkUN8vPQaEwP85CfS+2nTpAvGBi+/DPz739KprPvvl9q1dSuQmtq+7i+/lF4N\nT1UPHtz+bim5MSAQkV8YNEj6j/zFFx1Ljf2Tn7QcEZw/3zI9Px8oLgYCm8+z5OVJr0OGSP/VT55s\nWo9hBLdbt1pOIRksWWL6+fDh9kc0gJTczxB4HnrI/m2wF08ZEZFf2bTJseUDA6U/xICUbjspSbq2\n0PpBttaZpzdulF5//nNg9+6W6du2SUcFQPuBfgYPlgKJ4aigRw/p5+23pTuXXnutZdkvvmif1luu\n5w/deoSQn5+PqKgohIeHY5OjvUJei/3qm9iv5hUUWL5mIIR0GgiQTjF98on0fuNG6QjFICjItNx9\n90l/6CsqpIvZhqOAn/8cePVVKUnfyy/LuhnmCTdpaGgQoaGhQqfTCb1eL+Lj40VJSYnJMpaak5Ly\npACyhfR1m/v5dfNjmZbmCwvzD9qxjLn5bcs5Wr4j7bS9DoODBw861VeO7Bb29itQbKPd28xsm7Pf\n80Env2tXr69tXR1Zn/37kyv7VU7O7q/uqM/ZuhobhVi8WIj6eunzpk1CrFnjfH1PPCFETU376XL1\nhduOEIqKihAWFoaQkBAolUo88cQTyG19qb5DvnGy3CE3l3OWY+sz5LAZN26cy3PbuLZfD7GcrOXs\n59p+Ne9Q2wcFvKg+Z+sKCAAyM1tOEb34IrBhg/P17dwJ9O/vVFG7uC0gVFZWYlCrYyaNRoPKykp3\nrd7PNP/ziLWt3ht+5MV+9U3sV//ktovKHfnPtEsXoFu3V6BU7jI7/+bNIjQ2Ol09dYC9/dqjx1IE\nBFgeeeTOnfJ2KYnJc/whSyq157aAoFarUV5ebvxcXl4OjeEG31as7Yj19WdsrMXWTmxu/non62hb\nriNtsGeZ9TbmWyrfvp1y/rLb2683bnxqZ41t2+bs9+zsMq5eX9vlnF2foZztdTrT33L8vjpj/XpL\n34fn6/PmtslF0XxBwuUaGhoQGRmJTz75BAMHDkRiYiJ27tyJ6Ohod6yeXIT96pvYr/7JbUcIgYGB\nePPNNzFhwgQ0Njbi6aef5s7lA9ivvon96p/cdoRARETezStSVzj7AEx5eTnGjRuHmJgYxMbG4vXX\nX7e7bGNjIxISEjDV0jBIFtTW1mLWrFmIjo6GVqvFiRMn7CqXnp6OmJgYxMXFYfbs2bh9+7bZ5RYu\nXAiVSoW4uDjjtCtXriApKQkRERFITk5GrZm8u+bKrVixAtHR0YiPj8eMGTNwzZAu0UY5g1deeQUB\nAQG4YinBuw329qulfrRnu4H2fWlvubZ9WVhYaFdZc31prpyjfZmeno7w8HDcfffd6N27t919aa2c\ngbm+NJSLiopCQUGB2e/IEnv61tntb9ueU6dOIS4uDiEhIdBoNA7tJ5bqPHbsGLp374677roLffr0\nwerVqzvcvvDwcDz33HN274u26lMqlbj33nuRkJCAxMREWdq3dOlS8x1qIMvTDB1gzwMwllRXV4vT\np08LIYS4fv26iIiIsLvsK6+8ImbPni2mTp3qUHvnzZsnsrKyhBBC3LlzR9TW1toso9PpxODBg8Wt\nW7eEEEKkpqaK7du3m132yJEjori4WMTGxhqnrVixQmzatEkIIURGRoZYuXKlXeUKCgpEY2OjEEKI\nlStX2l1OCCH+85//iAkTJoiQkBBx+fJlm9vYliP9aqkf7dluIdr3pb3lzPWlrbKW+tJcOUf68ty5\ncyI+Pl7o9Xqxa9cuodFo7OpLW+WEMN+XrcvpdDoRGhpqrN8We/vW2e03tKepqUkIIcSIESNEYWGh\nqK6uFj/+8Y/Fnj177NpPbNV5+PBhIYQQEyZMEJGRkeLTTz/tUPuEECIqKkqMHTvW5r5oT30hISFi\n/PjxYs+ePbJ8f0IIMWnSJJP62vJ4QDh27JiYMGGC8XN6erpIT093qq7HH39c7N+/3+Zy5eXlYvz4\n8eLAgQNiypQpdtdfW1srBg8e7HC7Ll++LCIiIsSVK1fEnTt3xJQpU8S+ffssLq/T6Ux+iSIjI8XF\nixeFENIfz8jISLvKtfb3v/9dPPnkk3aXmzVrlvjiiy+cDggd6dfHH39c7Nu3z67tNteX9pSz1Je2\nyprry4KCAovl7O3LjRs3ioyMDONyP/nJT8QDDzxg9vtp3Zf2lDPXl23LTZgwQRw/ftzs+tpypG+d\n3X5De6qqqkRUVJRx+s6dO8Wzzz4rhLC9n9hb5/bt20W/fv3EV1991aG6ysvLRWxsrJgyZYrNfdGe\n+kJCQsQ777xj3F65vz9zPH7KSK4HYMrKynD69GmMHDnS5rLLly/H5s2bEdB27DwbdDod+vXrhwUL\nFmDYsGFYtGgR6urqbJbr06cPXnjhBdx3330YOHAg7rnnHjz22GN2r7empgYqlQoAoFKpUFNT41C7\nAWDr1q2Y3Db9ogW5ubnQaDQYMmSIw+sxcLZfW/ejPdttri/tKWeuL2/evGmzrLm+TEpKsruPLC1X\nVVVlcltncHAwGhoazNbRui9tlbPUl23LOfJ715HfWXu331Bn2+lqtRqVlZV27Se26mxqasLQoUOx\nePFi9OzZEzExMR1q3/Lly7Fs2TJcvnxZlu1VKBTYvHkzcnJy8O6778r6/Vni8YAgx33MN27cwKxZ\ns7Blyxb06NHD6rIff/wx+vfvj4SEBAgHr6c3NDSguLgYS5YsQXFxMX70ox8hIyPDZrkLFy7gtdde\nQ1lZGaqqqnDjxg385S9/cWjdBs6kn9iwYQOCgoIwe/Zsm8vW1dVh48aNJvdIO/o9GdrpqBs3bmDm\nzJnYsmULevbs2a6+tnXa05eWvi97+tJcWXN9+d5779m1TnvbZo0r+9Letsj17IGzqVQaGhoc2k8s\nCQgIwJkzZ/Dhhx/iypUrOGgYa9OJugz7YkREhMP7oiVHjx5FVlYWEhMT8dZbb+HTT02f5XFFKhqP\nBwR7H4Cx5M6dO5g5cybmzJmDaYZBSa04duwY8vLyMHjwYKSlpeHAgQOYN2+eXevSaDTQaDQY0TzY\n6qxZs1BcXGyz3MmTJ/Hwww+jb9++CAwMxIwZM3DMgdGzVSoVLjYP/FpdXY3+DiQz2b59O3bv3m13\nALpw4QLKysoQHx+PwYMHo6KiAsOHD8d3331n9zoBx/vV0I9z58419qOt7TbXl3PnzrXr+7LUl8HB\nwVbLmuvL48eP2yxnYKltbb+vixcvQtlm+CxzfWmtnKW+rKmpaVeuoqICasOo8zZ05HfW3u2vqKiA\nRqOBWq1GRUWFcXpZWRm++uoru/YTe+usra1FWFgYTp065XRdhn1x5syZ+PLLL23ui/a0bcCAAaio\nqMADDzyA6dOno6ioqMPbarOfLZ5McpM7d+6IBx54QOh0OnH79m2HLio3NTWJuXPnimXLljm17kOH\nDjl0DUEIIcaMGSO++eYbIYQQa9euFS+++KLNMmfOnBExMTGirq5ONDU1iXnz5ok333zT4vJtz7uu\nWLHCeH4wPT3d4kXStuX27NkjtFqt+P777622z9q1B2evITjSr5b60d7tFsK0L+0t17YvV6xYYbOs\npb60VM7evjRcFLx9+7b49ttvxaBBg+zqS1vlWjN3UdlQ7oEHHjBehLTFkb51dvtbtycxMVGcOHFC\nNDY2ioEDB4pp06aZrMOZOhMSEsS+fftEU1OTSE5OFrGxsWL//v0dal9TU5OYNGmS2LRpk8190VZ9\nhw4dEteuXROTJk0S//jHP8TDDz8s9u7dK0v7vPqishBC7N69W0RERIjQ0FCxceNGu8t9+umnQqFQ\niPj4eDF06FAxdOhQqxvb1qFDhxy+y+jMmTPiwQcfFEOGDBHTp0+36y4jIYTYtGmT0Gq1IjY2Vsyb\nN0/o9Xqzyz3xxBNiwIABQqlUCo1GI7Zu3SouX74sxo8fL8LDw0VSUpK4evWqzXJZWVkiLCxM3Hff\nfcbvZvHixRbLBQUFGdfX2uDBg50KCELY36+W+tGe7TZo3Zf2ljPXl/aUNdeX5so52pcbNmwQoaGh\nomfPnqJPnz5292Xbcvb2paFcZGSkyM/Pt/jdmmNP3zq7/W3bc/LkSREbGysGDhwoADi0n1iqMycn\nR3Tt2lUEBQWJvn37ipdfflkIYX3fsdW+0NBQ8dxzz9m9L1qrLyIiQgQFBYl7771XxMTEGL9jOdpn\nDR9MIyIiAF5wDYGIiLwDAwIREQFgQCAiomYMCEREBIABgYiImjEgEBERAAYEIiJqxoBAREQAgP8P\nmawNLlN+6F0AAAAASUVORK5CYII=\n", "text": [ "" ] } ], "prompt_number": 2 }, { "cell_type": "code", "collapsed": false, "input": [ "#print plt.hist(final_dist)[0], plt.hist(final_dist)[1]\n", "temp_array_range_initial = plt.hist(initial_dist)[1]\n", "temp_array_number_initial = plt.hist(initial_dist)[0]\n", "for i in xrange(len(temp_array_range_initial)-1):\n", " denominator = temp_array_range_initial[i+1]**2 - temp_array_range_initial[i]**2\n", " temp_array_number_initial[i] = temp_array_number_initial[i]/denominator\n", "#######\n", "temp_array_range_final = plt.hist(final_dist)[1]\n", "temp_array_number_final = plt.hist(final_dist)[0]\n", "for i in xrange(len(temp_array_range_final)-1):\n", " denominator = temp_array_range_final[i+1]**2 - temp_array_range_final[i]**2\n", " temp_array_number_final[i] = temp_array_number_final[i]/denominator\n", "plt.cla()\n", "#plt.plot(temp_array_number_initial,'o',temp_array_number_final,'.')\n", "plt.plot(temp_array_number_final)" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "pyout", "prompt_number": 5, "text": [ "[]" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAWgAAAEACAYAAACeQuziAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHZJJREFUeJzt3Xt0VeWdxvHvCQG5CQIGAgQLgkBCIAm3WBQ5EURRQBHk\nLg6IsyqzZsRqa3W1I6u2KGpXRW1xDWoZHAfoeAUEKggHIhQRgXoFRBIT7je5hAAhyZ4/3gaI5HKS\n7Jx3n3Oez1pnERYnez8i+eXNb78Xn+M4DiIi4jkxtgOIiEjZVKBFRDxKBVpExKNUoEVEPEoFWkTE\no1SgRUQ8qtICffz4cUaNGkViYiJJSUls3LgxFLlERKJebGVveOihh7j99tt56623KCws5PTp06HI\nJSIS9XwVLVQ5ceIEaWlp7N69O5SZRESESlocWVlZxMXFMXnyZHr27MkDDzxAfn5+qLKJiES1Cgt0\nYWEhW7ZsYdq0aWzZsoVGjRrxzDPPhCqbiEhUq7AHnZCQQEJCAn369AFg1KhRlxVon89Xe+lERCJY\nZVshVTiCjo+Pp127duzcuROAVatW0a1btzJv4rXXk08+aT2DMilTNOZSpuBewah0FsdLL73EhAkT\nKCgooGPHjvzlL3+57D27dkGnTkHdT0REglRpgU5JSeHTTz+t8D2LF8PPf+5aJhERwaWVhIsXu3EV\nd/n9ftsRLqNMwVGm4HkxlzK5p8J50EFdwOejSROH3buhRQu3YomIRDafz1dpL9qVEfTNN8OyZW5c\nSURESrhSoO+8E95/340riYhICVdaHIcOOXTqBAcPQv36bkUTEYlcIWtxxMVBjx6wZo0bVxMREXBx\nP2i1OURE3OVKi8NxHHbuhIwMyM2FGB0DICJSoZC1OAA6d4YmTeCzz9y6oohIdHN1rDt8uDcXrYiI\nhCNXC7T60CIi7nG1QKenm6l2WVluXlVEJDq5WqDr1IGhQ9XmEBFxg+vzLdSHFhFxh2vT7Erk50N8\nPHz/PTRrVuN8IiIRKaTT7Eo0bAh+vzZPEhGpqVpZUnLnnWpziIjUlOstDjAzObp0Mb9ecUWN8omI\nRCQrLQ6AVq0gKQnWrq2Nq4uIRIda2zVDi1ZERGqmVlocAN98A4MHQ04O+Hw1uYOISOSx1uIA6NoV\nGjSArVtr6w4iIpGt1gq0z6dFKyIiNVGrOzerDy0iUn21WqB/+lPYs8f0oUVEpGpqtUDHxsIdd6jN\nISJSHbV+ONXw4WpziIhUR61NsyuRlwdt2pizCps2rcmdREQiRzDT7GKDuVD79u1p0qQJderUoW7d\numzatCnoEI0bw003wfLlMHZs0J8mIhL1girQPp+PQCBA8+bNq3WTkul2KtAiIsELugddk07IsGGw\nYgWcP1/tS4iIRJ2gCrTP52PQoEH07t2buXPnVvkmrVvDddfBunVV/lQRkagVVItj/fr1tG7dmsOH\nD3PLLbfQtWtX+vfvX6UblSxaGTiwWjlFRKJOUAW6devWAMTFxTFixAg2bdpUqkDPmDHjwsd+vx+/\n33/ZNYYPNwfKzp6tzZNEJPoEAgECgUCVPqfSaXb5+fkUFRVx5ZVXcvr0aQYPHsyTTz7J4MGDzQWC\nmCoC4DjQqRO88w6kpFQpo4hIxHFlmt3BgwcZMWIEAIWFhUyYMOFCca5amIuzOVSgRUQqV+sLVS4V\nCMCjj8LmzTW5o4hI+Aumdoa0QBcWmuOw/vEPSEioyV1FRMKb1Q37yxIbC7ffDkuWhPKuIiLhKaQF\nGrRHtIhIsELa4gA4dQratjX7RDdpUpM7i4iEL8+1OACuvBJuuAH+9rdQ31lEJLyEvECDzioUEQlG\nyFscYNobKSlw4ADUrVuTu4uIhCdPtjjATLHr0AHWr7dxdxGR8GClQINmc4iIVMZagS45q7BmDRYR\nkchlrUD36AHFxfDVV7YSiIh4m7UCXbJ5ktocIiJls1agwfShNd1ORKRsVqbZlTh/3mye9OWX0KZN\nTVKIiIQXz06zK1G3Ltx2GyxdajOFiIg3WS3QoOl2IiLlsdriADhxAtq1g337oHHjmiQREQkfnm9x\nADRtCtdfDx9+aDuJiIi3WC/QoM2TRETKYr3FAZCTA716wf795tQVEZFIFxYtDoBrrjEbKG3YYDuJ\niIh3eKJAgxatiIj8mGcKtDZPEhEpzTMFOi0Nzp2D7dttJxER8QbPFGhtniQiUppnCjRoup2IyKU8\nMc2uREGB2Txp+3bzq4hIpAqbaXYl6tWDwYO1eZKICHisQIM2TxIRKRFUi6OoqIjevXuTkJDAkiVL\nSl/AxRYHwA8/wE9+AgcOQMOGrl1WRMRTXGtxzJ49m6SkJHw+nyvBKtKsGfTpAytX1vqtREQ8rdIC\nvWfPHpYtW8bUqVNdHSlXRNPtRESCKNAPP/wwzz33HDExoWtXDx9uHhQWFYXsliIinlPh3nFLly6l\nZcuWpKWlEQgEyn3fjBkzLnzs9/vx+/01CtWhA8THw8aNcMMNNbqUiIgnBAKBCutoWSp8SPjEE0/w\nxhtvEBsby9mzZzl58iQjR45k/vz5Fy/g8kPCEr/5jZkXPWuW65cWEbEumNoZ9EKVtWvX8vzzz9f6\nLI4SmzfDxInam0NEIpPrC1VCMYujRM+ecOoU7NgRsluKiHiKp5Z6/9iDD8K118IvflErlxcRsSbs\nlnr/mDZPEpFo5ukR9LlzZtOkb7+FuLhauYWIiBVhP4K+4goYNAg++MB2EhGR0PN0gQZtniQi0cvT\nLQ6Ao0fNg8IDB6BBg1q7jYhISIV9iwOgRQtzXuFHH9lOIiISWp4v0KDNk0QkOnm+xQHw3XdmT459\n+yCEezaJiNSaiGhxAHTsCFdfDZs22U4iIhI6YVGgQYtWRCT6hE2B1nQ7EYk2YVOg+/SBY8dg1y7b\nSUREQiNsCnRMDAwbpjaHiESPsCnQoOl2IhJdwmKaXYkzZ8zmSVlZZgGLiEi4iphpdiUaNICBA7V5\nkohEh7Aq0GBmc6gPLSLRIKxaHACHD0OnTnDwINSvH7Lbioi4KuJaHGA27u/RA9assZ1ERKR2hV2B\nBi1aEZHoEHYtDoCdOyEjA3JztXmSiISniGxxAHTuDE2awGef2U4iIlJ7wrJAgzZPEpHIF7YFWn1o\nEYl0YVug09PNVLusLNtJRERqR9gW6Dp1YOhQtTlEJHKFbYEGbZ4kIpEtLKfZlcjPh/h4+P57aNbM\nSgQRkWpxZZrd2bNnSU9PJzU1laSkJB5//HHXAtZUw4bg98OyZbaTiIi4r9ICXb9+fdasWcO2bdv4\n/PPPWbNmDR9//HEosgVFmyeJSKQKqgfdsGFDAAoKCigqKqJ58+a1Gqoqhg6Fv/0Nzp2znURExF1B\nFeji4mJSU1Np1aoVGRkZJCUl1XauoLVqBUlJsHat7SQiIu6KDeZNMTExbNu2jRMnTnDrrbcSCATw\n+/0X/nzGjBkXPvb7/aX+LBRKFq0MHhzS24qIBC0QCBAIBKr0OVWexfHUU0/RoEEDHn30UXMBi7M4\nSnzzjSnOOTng81mNIiISFFdmcRw5coTjx48DcObMGVauXElaWpo7CV3Stas5DmvrVttJRETcU2mL\nY//+/dx3330UFxdTXFzMvffey8CBA0ORLWg+38VFKz172k4jIuKOsF6ocqnMTPiP/9AoWkTCQ8Tu\nB12Wn/4U9uwxqwpFRCJBxBTo2Fi44w5YssR2EhERd0RMgQZtniQikSVietAAeXnQpo05q7BpU9tp\nRETKF1U9aIDGjeGmm2D5cttJRERqLqIKNOisQhGJHBHV4gDYvx+6dTPHYdWtazuNiEjZoq7FAdC6\ntSnQb79tO4mISM1E3Aga4KOP4Gc/g6+/1ihaRLwpKkfQAAMHQvv28PrrtpOIiFRfRI6gAT79FO66\nC7791hyNJSLiJVE7ggbo0wf69YOXXrKdRESkeiJ2BA2wYwfceCPs3KlTv0XEW6J6BA3QpQuMGAGz\nZtlOIiJSdRE9ggazw11KCnz+ObRtazuNiIgRTO2M+AIN8MtfwsmT8MortpOIiBgq0P907Bh07gx/\n/ztcd53tNCIi6kFf0Lw5/Pzn8Jvf2E4iIhK8qBhBA5w+bUbPS5fq3EIRsU8j6Es0agS//jU88YTt\nJCIiwYmaAg0wdapZWbhmje0kIiKVi6oCXa8e/O538KtfQRh0ZUQkykVVgQYYMwbOnYP33rOdRESk\nYlHzkPBSy5fDI4+YxSuxsbbTiEg00kPCctx2G8TFwRtv2E4iIlK+qBxBA2zYAGPHmo2U6te3nUZE\noo1G0BXo1w/S0mDOHNtJRETKFrUjaIAvvzSnr3z7LTRpYjuNiEQTV0bQubm5ZGRk0K1bN5KTk3nx\nxRddC2hbcjIMGQLPP287iYjI5SodQR84cIADBw6QmppKXl4evXr14r333iMxMdFcIIxH0ADZ2dCr\nlzlgtlUr22lEJFq4MoKOj48nNTUVgMaNG5OYmMi+ffvcSegB7dvDvffC739vO4mISGlV6kFnZ2cz\nYMAAvvrqKxo3bmwuEOYjaIBDhyAxETZvhg4dbKcRkWgQTO0MeplGXl4eo0aNYvbs2ReKc4kZM2Zc\n+Njv9+P3+6sU1LaWLeHf/x2efBLmz7edRkQiUSAQIBAIVOlzghpBnz9/nqFDhzJkyBCmT59e+gIR\nMIIGc+LKddfBqlXQvbvtNCIS6Vw5UcVxHO677z5atGjBH//4x2rdJFy88AKsXg2LF9tOIiKRzpUC\n/fHHH3PTTTfRo0cPfD4fAE8//TS33XZb0DcJF2fPmpPA//d/4YYbbKcRkUimMwmr4b//G159Fdat\ng39+PxIRcZ2WelfDxInmkNlly2wnEZFopwL9I3XqwMyZ8PjjUFxsO42IRDMV6DIMH27OMFywwHYS\nEYlm6kGXY+1amDwZtm83R2WJiLhJPegaGDDAzOiYO9d2EhGJVhpBV2DrVrj9drMd6Y8WT4qI1IhG\n0DWUlgYZGTB7tu0kIhKNNIKuxK5dcP31sGMHtGhhO42IRAotVHHJtGnQsKE29hcR96hAu2T/fnP6\nyrZt0K6d7TQiEglUoF30xBNm3+hXX7WdREQigQq0i44fN9uRZmZC166204hIuNMsDhdddRX84hfw\n61/bTiIi0UIj6CrIz4fOneHdd6FPH9tpRCScaQTtsoYNzbFYjz9uO4mIRAMV6CqaPBlyc2HlSttJ\nRCTSqUBXUWws/O532o5URGqfCnQ1jBxpfn37bbs5RCSy6SFhNa1cCf/2b/DVV1C3ru00IhJu9JCw\nFg0aZFYVzptnO4mIRCqNoGtg0ya4+26zHWmDBrbTiEg40Qi6lvXta3a6e/ll20lEJBJpBF1D27fD\nTTfBzp1mtaGISDA0gg6Brl3NIbPPPms7iYhEGo2gXZCbC6mp8OWX0Lq17TQiEg60m10IPfqo2avj\nz3+2nUREwoEKdAgdPWpOAd+4ETp1sp1GRLxOPegQatECpk+H//xP20lEJFJUWqCnTJlCq1at6N69\neyjyhLXp02HNGnM0lohITVVaoCdPnsyKFStCkSXsNW5sNvR/4gnbSUQkElRaoPv370+zZs1CkSUi\nPPCAmRu9dq3tJCIS7tSDdlm9evDUU/CrX4GenYpITahA14Jx48yUu8WLbScRtxQU2E4g0SjWjYvM\nmDHjwsd+vx+/3+/GZcNWTAzMnAm//CUMHQp16thOJFV16JBpUwUC5rVjB/TrB2PGwKhR0KqV7YQS\nbgKBAIFAoEqfE9Q86OzsbIYNG8YXX3xx+QU0D7pMjmP26Jg6Fe67z3YaqcyhQ7BunZmFEwjA3r3Q\nvz/4/eaVmAirVsFf/wpLl0LPnqZY3303xMVZDi9hyZWFKuPGjWPt2rUcPXqUli1b8tvf/pbJkydX\n6SbRav16mDDBjL6uuMJ2GrnU4cOlR8h79sCNN14syKmp5nizspw5AytWwKJFsHw5pKfD6NGmWDdv\nHrr/BglvWknoAcOHw8CB8NBDtpNEt8OHzQi5pCDn5FwsyBkZFRfkiuTnwwcfmGK9ciXccIMp1nfd\npd0NpWIq0B7wxRdwyy1mU/8rr7SdJnocOVK6ZXFpQfb7IS2tegW5Inl5sGSJaYOsXm1aXGPGmG/S\nTZq4ey8JfyrQHjFpElx7LVzyLFVcdvRo6ZbF99+b0WxJQe7Z0/2CXJGTJ80snkWLzDeKm282xXro\nULOgSUQF2iOysqB3b3PAbHy87TSR4ejR0i2L7Gy7Bbkix4/De++ZkfX69TB4sGmD3HEHNGxoO53Y\nogLtIb/9LbzwAkycCA8+aGYFSPCOHStdkHfvvrwgh8Pp6kePwrvvmmK9aRPcdpsZWQ8ZAvXr204n\noaQC7TE5OfBf/wWvvWZOYnnwQfMwqV4928m859gxyMy82EPevdvMQy55qBcuBbkihw/DO++YNsjW\nrWZEPWaMGWFr1k/kU4H2qIICM4qaM8dMwZs6Ff71X6FdO9vJ7NqxAxYuNO2A7767WJD9fujVK/wL\nckUOHIC33zbF+ssvzYPFMWPMDCB9A49MKtBh4Kuv4JVX4M03zcKIadPMrI+YKFmEn5NjivLChaZI\njR5tVuqlp0d2Qa7I3r3w1lumDbJjh/kpa/Ro86DRK311qTkV6DCSlwcLFpgjs06dgp/9DCZPNgcB\nRJqDB+H//s/89+7YASNHwtixZlqalsWXlpNjivWiRabNc/fdZmQ9YID+rsKdCnQYchz45BNTqBcv\nNj/qTptmRpQ+n+101ffDD6ats2ABbN5sppuNHWt+WtCP8MHJzjaj6r/+1ax8HDkS7r03/P9tRCsV\n6DB35AjMm2d61U2amIeK48eHzzza06fNN5mFC82DvltuMUX59ts1vaymdu0yo+r5801x/pd/McW6\nbVvbySRYKtARorjYLCOeM8dMNZswwRTrpCTbyS537pzZp2LBAvNrv36mKN91l1bT1QbHMQcVz5tn\n2kZ9+5pifeed0KCB7XRSERXoCJSTA3PnwquvmlPEH3wQRoyw2yYoLDRLm0tmYPToYfbEHjkSrr7a\nXq5oc+aM+fufN8+0ke65xxRrtUC8SQU6gp0/b74Y//xnc8TW/febqXrXXBOa+xcXw4YNZqT81lvQ\nvr0ZKY8erR+zvSA3F/7nf0yxVgvEm1Sgo8TXX1+cqnfjjWZUPXiw+1P1HAe2bDEj5UWLoGlTM1Ie\nMwY6dnT3XuIOtUC8SwU6ypw+fXGq3okTF6fq1bTN8M03pigvWGBGzmPHmldysju5JTTUAvEWFego\n5Thmn4c5c8wX5LBhZqre9dcH/4WYnX1xAcmRI2aUPHas2fRJX8zhLzcX3njDFOuYGLVAbFCBFo4e\nNV+Er7wCjRqZQl3eVL39+y8uINm1y6zoGzfOtE2iZWVjtHEc+Pvfzb+Rt95SCySUVKDlguJic6be\nnDlm3+Tx402vunVrswfEwoVmw57hw81IeeDA6F1qHa3y8y+2QD77TC2Q2qYCLWXKzb04VS8vz2x5\nOW6ctryUi9QCqX0q0FKh8+fNS6v6pDw/boGkp19sgeibec2oQIuIa37cAhk92hTrvn3VAqkOFWgR\nqRWXtkDq1DGFeuJEtUCqQgVaRGpVWS2QjAzo0OHiq3lzjbDLogItIiGTnw/vv28WwWRlXXwVF5cu\n2Je+2rcPn90Z3aYCLSLW/fBD6YJ96Ss72xTo8gr4T34SufuFq0CLiKc5jjlhp7wCvncvtGxZfgFv\n0yZ8T5ZRgRaRsFZYaE6PKa+AHztmDlsur4BffbV3+98q0CIS0c6cge+/L90yubSAnztnCvU115hV\ns2W94uPhiitCn92VAr1ixQqmT59OUVERU6dO5bHHHqvyTUREbDhxwhTtnByz10xZr4MH4coryy/g\nl77cfKBZ4wJdVFREly5dWLVqFW3btqVPnz4sWLCAxMTEKt3EhkAggN/vtx2jFGUKjjIFz4u5wi1T\ncbHZVKy8An7pq06d4Ap5s2aVt1aCqZ2xFf3hpk2b6NSpE+3btwdg7NixvP/++6UKtFeF2z8SW5Qp\nOF7MBN7MFW6ZYmIgLs68evQo/xqOAydPll24//GP0r8/e9a0Tsor4G3aBJe7wgK9d+9e2rVrd+H3\nCQkJfPLJJ8FdWUQkgvh85hShpk2ha9eK35ufDwcOXF7IP/744sfBqLBA+7z6+FNExMMaNoRrrzWv\n8gRTXivsQW/cuJEZM2awYsUKAJ5++mliYmJKPShUERcRqZ4aPSQsLCykS5cufPTRR7Rp04a+ffte\n9pBQRERqR4UtjtjYWF5++WVuvfVWioqKuP/++1WcRURCpMYLVUREpHbU6CjQFStW0LVrV6677jpm\nzZrlVqYamTJlCq1ataJ79+62o1yQm5tLRkYG3bp1Izk5mRdffNF2JM6ePUt6ejqpqakkJSXx+OOP\n2450QVFREWlpaQwbNsx2FADat29Pjx49SEtLo2/fvrbjAHD8+HFGjRpFYmIiSUlJbNy40XYkduzY\nQVpa2oVX06ZNPfFv/emnn6Zbt250796d8ePHc+7cOduRmD17Nt27dyc5OZnZs2eX/0anmgoLC52O\nHTs6WVlZTkFBgZOSkuJ8/fXX1b2ca9atW+ds2bLFSU5Oth3lgv379ztbt251HMdxTp065XTu3NkT\nf1enT592HMdxzp8/76SnpzuZmZmWExl/+MMfnPHjxzvDhg2zHcVxHMdp3769c/ToUdsxSpk0aZLz\n2muvOY5j/v8dP37ccqLSioqKnPj4eCcnJ8dqjqysLKdDhw7O2bNnHcdxnNGjRzvz5s2zmumLL75w\nkpOTnTNnzjiFhYXOoEGDnF27dpX53mqPoC9dxFK3bt0Li1hs69+/P82aNbMdo5T4+HhSU1MBaNy4\nMYmJiezbt89yKmj4z8MICwoKKCoqonnz5pYTwZ49e1i2bBlTp0711ApVL2U5ceIEmZmZTJkyBTDP\nipo2bWo5VWmrVq2iY8eOpdZR2NCkSRPq1q1Lfn4+hYWF5Ofn09bysS/bt28nPT2d+vXrU6dOHQYM\nGMA777xT5nurXaDLWsSyd+/e6l4uamRnZ7N161bS09NtR6G4uJjU1FRatWpFRkYGSUlJtiPx8MMP\n89xzzxETU6Pum6t8Ph+DBg2id+/ezJ0713YcsrKyiIuLY/LkyfTs2ZMHHniA/Px827FKWbhwIePH\nj7cdg+bNm/PII49wzTXX0KZNG6666ioGDRpkNVNycjKZmZkcO3aM/Px8PvjgA/bs2VPme6v9VaD5\nz1WXl5fHqFGjmD17No09cIxETEwM27ZtY8+ePaxbt45AIGA1z9KlS2nZsiVpaWmeGrGuX7+erVu3\nsnz5cv70pz+RmZlpNU9hYSFbtmxh2rRpbNmyhUaNGvHMM89YzXSpgoIClixZwj333GM7Ct999x0v\nvPAC2dnZ7Nu3j7y8PN58802rmbp27cpjjz3G4MGDGTJkCGlpaeUOSKpdoNu2bUtubu6F3+fm5pKQ\nkFDdy0W88+fPM3LkSCZOnMhdd91lO04pTZs25Y477mDz5s1Wc2zYsIHFixfToUMHxo0bx+rVq5k0\naZLVTACtW7cGIC4ujhEjRrBp0yareRISEkhISKBPnz4AjBo1ii1btljNdKnly5fTq1cv4uLibEdh\n8+bN9OvXjxYtWhAbG8vdd9/Nhg0bbMdiypQpbN68mbVr13LVVVfRpUuXMt9X7QLdu3dvvv32W7Kz\nsykoKGDRokUMHz682oEjmeM43H///SQlJTF9+nTbcQA4cuQIx48fB+DMmTOsXLmStLQ0q5lmzpxJ\nbm4uWVlZLFy4kJtvvpn58+dbzZSfn8+pU6cAOH36NB9++KH1GULx8fG0a9eOnTt3Aqbf261bN6uZ\nLrVgwQLGjRtnOwZgRqsbN27kzJkzOI7DqlWrPNHKO3ToEAA5OTm8++675beDavI0ctmyZU7nzp2d\njh07OjNnzqzJpVwzduxYp3Xr1k69evWchIQE5/XXX7cdycnMzHR8Pp+TkpLipKamOqmpqc7y5cut\nZvr888+dtLQ0JyUlxenevbvz7LPPWs3zY4FAwBOzOHbv3u2kpKQ4KSkpTrdu3Tzz73zbtm1O7969\nnR49ejgjRozwzCyOvLw8p0WLFs7JkydtR7lg1qxZTlJSkpOcnOxMmjTJKSgosB3J6d+/v5OUlOSk\npKQ4q1evLvd9WqgiIuJR3nlULiIipahAi4h4lAq0iIhHqUCLiHiUCrSIiEepQIuIeJQKtIiIR6lA\ni4h41P8DXLNAvf1OS7UAAAAASUVORK5CYII=\n", "text": [ "" ] } ], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "x = []\n", "y = []\n", "for i in xrange(len(system)):\n", " x.append(system[i][0])\n", " y.append(system[i][1])\n", "plt.scatter(x,y);" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEACAYAAABfxaZOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9sU/e5P/C3I0CLdrvRkOJ0BG5oSBwMaWpGf2uLW3pi\nqSopDV0G6dp8oWu1cTepVUazi3S1VF/ARhS1bB2aqgGJ4HsLSBsjq6iT0M5ZUUvZBkP3kiK6YtqE\n/FBJSCko1ECe7x9JDEmc1PY59vn1fkmRkmOf83lif/z4nOd8zuc4RERARES2kKF3AERElD5M+kRE\nNsKkT0RkI0z6REQ2wqRPRGQjTPpERDYSV9JfvXo1nE4niouLo8vWrl2L+fPno6SkBBUVFfjiiy+i\nj/n9fhQUFKCoqAjNzc3aR01EREmJK+mvWrUKwWBw1LKysjKcPHkSJ06cQGFhIfx+PwCgra0Ne/fu\nRVtbG4LBINasWYPBwUHtIyciooTFlfS/973v4dZbbx21TFEUZGQMrX7vvfeio6MDAHDgwAGsXLkS\nU6dORV5eHubNm4ejR49qHDYRESVDk5r+jh078OijjwIAOjs7kZubG30sNzcX586d06IZIiJSSXXS\n37BhA6ZNm4aqqqoJn+NwONQ2Q0REGpiiZuX6+nocPHgQ77zzTnTZrFmz0N7eHv27o6MDs2bNGrcu\nvwiIiJKjaso0iVM4HJaFCxdG/3777bfF7XbL559/Pup5J0+elJKSEvnqq6/kzJkzcscdd8jg4OC4\n7SXQtCH96le/0jsEVRi/vhi/fswcu4j63BnXnv7KlSvR2tqK8+fPY/bs2Xj55Zfh9/sRiUSgKAoA\n4P7778e2bdvgdrtRWVkJt9uNKVOmYNu2bdyrJyIyiLiS/ptvvjlu2erVqyd8/rp167Bu3brkoyIi\nopTgFblJ8nq9eoegCuPXF+PXj5lj14JjuEaU/oYdDnUnI4iIbEht7uSePhGRjTDpExHZCJM+EZGN\nMOkTEdkIkz4RkY0w6RMR2QiTPhGRjTDpExHZCJM+EZGNMOkTEdkIkz4RkY0w6RMR2QiTPhGRjTDp\nExHZCJM+EZGNMOkTEdkIkz4RkY0w6RMR2QiTPhGRjTDpExHZCJM+EZGNxJX0V69eDafTieLi4uiy\nvr4+KIqCwsJClJWVob+/P/qY3+9HQUEBioqK0NzcrH3URESUlLiS/qpVqxAMBkctCwQCUBQFp0+f\nxpIlSxAIBAAAbW1t2Lt3L9ra2hAMBrFmzRoMDg5qH7kJNTU1oaxsOcrKlqOpqUnvcIgM1yeNFo8l\nSZzC4bAsXLgw+rfL5ZLu7m4REenq6hKXyyUiIhs3bpRAIBB9ns/nkw8++GDc9hJo2hKCwaBkZjoF\nqBegXjIznRIMBvUOi2zMaH3SaPEYldrcmXRNv6enB06nEwDgdDrR09MDAOjs7ERubm70ebm5uTh3\n7pyqLyYr2LLlDQwMbAJQDaAaAwObsGXLG3qHRTZmtD5ptHisaooWG3E4HHA4HJM+HktdXV30d6/X\nC6/Xq0U4RESWEQqFEAqFNNte0knf6XSiu7sbOTk56OrqwsyZMwEAs2bNQnt7e/R5HR0dmDVrVsxt\n3Jz0zaypqSm6R1JT8zx8Pt+459TUPI/Dh6sxMDD0d2ZmLWpqGtIZJtEoRuuTo+P5H2Rk1OP8+YVo\namqK+Zmyi7E7xC+//LK6DcZbBxpb01+7dm20du/3+6W2tlZERE6ePCklJSXy1VdfyZkzZ+SOO+6Q\nwcFBzetSRpFIHTIYDIqiVIiiVLBWSYZgtD4ZDAbF43lQMjJuZW1/AmpzZ1xrr1ixQm6//XaZOnWq\n5Obmyo4dO6S3t1eWLFkiBQUFoiiKXLhwIfr8DRs2SH5+vrhcrgnfLKskfUWpGO6cMvxTL4pSoXdY\nRKbFz9Tk1ObOuMo7b775Zszlhw4dirl83bp1WLduXXKHHjYXT6nICuzyf5rZyHt0/nwPgCnIzp7B\n98oKNPrySZiOTWtKy2FmdhmyZpf/08xuvEc1AmQn/V6NLR/FU05KVf8wWikrWWpzJ5O+BrTqTHY5\nrLXL/2lmN96j5N+rscl72rTbZNq06bqc/7LSjoba3KnJkE278/l8KT3kZSmEzGj0uHsgEgGA30X/\nHhj4H1RV/Qe++92Scf1a68/U2FgGBoaW2fGzxKRvILGG0JWW/hxPPFE93GGBw4ersX9/g6k7q9GG\nCtJ4N96jHwH4RXS5du9VE4AG9PW9gpYWa/Rr09DoiCNhOjZtaGMPa61aCrFKfdXKRt4jj+dB8XhK\nE36vYpV3pkz5pgD3CZA7fL5gdL9W22a8sdi5vOMY3kjaORwO6NS0qZSVLUdLSzlGDkuBBihKI5qb\n/6BnWERxuTECqBcXL36OM2c6IfLa8KO/ALAbgA9AAzyenTh16tTw0UUDgFcADB1daHEUYJUyqdrc\nyaRvcE1NTaPKO1p9AIjS5UYfngvgJ7h5B2aoxv8TZGbWoqhoHo4ffw5AIwDu6ExEbe7kTVQMzufz\nYf/+oU6vKI1M+JR28U53PNHzbpxE/c64dbKyPo/26+xspyZxJPt821BZXkqajk0TUZzirYVP9Lxg\nMChZWfnDy4MCTLytya4NWL9+fUI1eSvV8MdSmzuZ9IloQvEOJIj1PI+nNEYSr5GMjBni8ZRO+OUR\n60RuogMarDoAQoTj9InIoD79tOOmsfEKgDpkZX2O//7v/zdhiXKi8fmcV187TPpENKF4r6mI9bx/\n//d56OsbeYYPQDe++93GpM5JJXptB68FmYRGRxwJ07Fp3XGMOqVKon0r3rlw4tlmrHl2tKyrr1+/\nXrKy8uWWW+ZIfr474XisQm3uZNLXkJ6TSREl2rfS0Re1SrzBYFCmTbstGiuQJUCNLT8/TPoGEe8H\nyMonmEhfVj7Z6fGUjosVKDV0zKmiNndynL5GeFNnsoLz53sNObb90087Yiw9DeB3+Mc/TnDcfiI0\n+vJJmI5Np0S8e00s75DWbgxzLI176uKR9ZKd+jjd8vOLR43dB74lwLcNVcpKF7W5k0lfI7xXLukh\nVuL2eB5M6kSux/OgYcs9Q7F9S4Yma7tPgOkJxWqmUtbXUZs7OWRTIyPTJdyY0Gni6RISnSvcKhNF\nkfZizVmfnR3/PDU398WysuUJt69F37x5G6Wli9Daemzc9oamaLgPQHh4rUsJt0PDNPrySZiOTZuK\nlQ5LSXta7sHqMfpn9DZqhvfmx29v/BHN9FGjeVjeSWB9jeJIvGEm/bjKPFY6LCXtTTbnTTIlxJGx\n8FlZ+bJ+/fpJn6tF3xy9jcm3N/Z/SiTWWOubFZO+SXGIJ2lFq4uiEl0v3UlfTaxWwqRvUhztQ6mS\nbDJOdL10lne0+h+tQG3uVH0i1+/3Y/fu3cjIyEBxcTF27tyJy5cv44c//CE+/fRT5OXlYd++fZg+\nfbrapmwpkRPEROmkRd8cu43S0pfQ2tqY9PYoDmq+McLhsMydO1euXLkiIiKVlZVSX18va9eulU2b\nNomISCAQkNra2nHrqmza9LgHT6mSrvKOnswUq9bU5k5Va/f29kphYaH09fXJ1atX5bHHHpPm5mZx\nuVzS3d0tIiJdXV3icrnGN2zzpC9inRNLZDzJ9i0z9UkzxaoltblT9T1y33jjDdTU1CAzMxM+nw+7\ndu3CrbfeigsXLowcSSArKyv69wjeI5fMitdNkJ7U5k5VNf1PPvkEr732Gs6ePYtvf/vb+MEPfoDd\nu3ePC9DhcMRcv66uLvq71+uF1+tVEw5Ryo29Uf3hw9W8bzGlVCgUQigU0mx7qvb09+7di5aWFvz+\n978HAOzatQtHjhzBu+++i7/85S/IyclBV1cXHnroIZw6dWp0w9zTJxMqK1uOlpZyjFwBCwzdtD7e\nK2CJ1FKbO1XNsllUVIQjR45gYGAAIoJDhw7B7XZj6dKlaGgYuktNQ0MDli1bpqYZIiLSiKryTklJ\nCZ555hksXrwYGRkZWLRoEZ5//nl8+eWXqKysxPbt26NDNomsgLfhI7NTfSI36YZZ3iGT0nqSMZ4M\npkSozZ1M+kRpNvZkcGZmrWVPBvPLTXtM+kQmY5eTwXb6cksnXU/kEhFNJJ23EOWtEOPHm6gQpRlP\nBmuL104khuUdIh3YodadrvKOXcplI3S9IpeIkpPoLTPjZaQvE6PNEGuk10ZXqmbuUUHHpoksya4z\nT8bzf1vptVGbO1neIbIIu5U5bvZ1e/FWem1Y3iEi20tVucyKmPSJLIKjgibG1+YGlneILETPk5VG\nP1Fq9PjixStyiUh3vPo2fXhFLhGlVDxXu0509S2vlDUeJn2iFIs38RkxQY7swbe0lKOlpRxPPFEd\nd2znz/cmvK4RXwPLUTXgUwUdmyZKm3jHhxt1HLmiVAzHJMM/9aIoFeOeFyt+j+fBuNadbBtGeA2M\nRm3u5J4+UQoNlT1+BKARQCMGBn4Uc9KxdE5OlgojV98qSiMUpRH79zcgO9uZ0Da0fg141BAbh2wS\npdD58z0A/grgleElv8D58y4dI0pMIkMdY42V12uYJCdhm4RGRxwJ07FporTxeErHlTg8ntJxzzNy\naSMYDIqiVIiiVCQcUyLravkaxFuWMiO1uZN7+kQplJ09I65lWk1Oloqx6Gqudk1kXaNN0GZZGn35\nJEzHponSJp178EY+Wkg3K78WanMnL84iSrF0XQlqpUnFtGCVK3DH4oRrRAbHycD0wdc9NiZ9Iovg\npGIUD9Xj9Pv7+/Hkk09i/vz5cLvd+PDDD9HX1wdFUVBYWIiysjL09/drESsRTSLWWHnu6dJYqmv6\n1dXVKC0txerVq3Ht2jVcvnwZGzZsQHZ2Nl566SVs2rQJFy5cQCAQGN0wa/pERAnTdZbNL774Ah6P\nB2fOnBm1vKioCK2trXA6neju7obX68WpU6dGN8ykT0SUMF1n2QyHw7jtttuwatUqLFq0CM899xwu\nX76Mnp4eOJ1Dl2A7nU709PSoaYYoipfW64uvv/mpOpF77do1HDt2DK+//jruvvtuvPDCCzHLOA6H\nI+b6dXV10d+9Xi+8Xq+acMjieGm9vpJ5/a06bDKdQqEQQqGQdhtUM8i/q6tL8vLyon+/99578uij\nj0pRUZF0dXWJiEhnZ6e4XK5x66psmmzIypfWm0Gir7+VL5DSk9rcqaq8k5OTg9mzZ+P06dMAgEOH\nDmHBggVYunQpGhqGhoo1NDRg2bJlar+biMhkzD5zqFWpHqf/m9/8Bk899RQikQjy8/Oxc+dOXL9+\nHZWVldi+fTvy8vKwb98+LWIlm+M4dH3x9bcGTsNApsIasb4Sef1539zU4I3Riciw+CWtPSZ9IiIb\n0XWcPhERmQuTPhGRjTDpExHZCJM+EZGNMOkTEdkIkz4RkY0w6RMR2QiTPhGRjTDpExHZCJO+hfGG\nF0Q0FqdhsChOdkVkTZx7h2IqK1uOlpZyDM1lDgANUJRGNDf/Qc+wiEglzr1DRERxU30TFTIm3vCC\niGJhecfCOJc5kfWwpk9EZCOs6RMRUdyY9ImIbIRJn4jIRpj0VeAVr0RkNjyRmyRe8UpEejDEidzr\n16/D4/Fg6dKlAIC+vj4oioLCwkKUlZWhv79fi2YMZcuWN4YTfjWAoeQ/MjySiMioNEn6W7duhdvt\nhsPhAAAEAgEoioLTp09jyZIlCAQCWjRDREQqqU76HR0dOHjwIH784x9HDzkaGxtRXT0050t1dTX+\n9Kc/qW3GcGpqnkdmZi2ABgANw1e8Pq93WEREk1Kd9F988UVs3rwZGRk3NtXT0wOn0wkAcDqd6Onp\nUduM4fh8PuzfPzSJmaI0sp5PRKagau6dt956CzNnzoTH40EoFIr5HIfDES37jFVXVxf93ev1wuv1\nqgkn7Xw+HxM9EaVUKBSaML8mQ9XonXXr1mHXrl2YMmUKrly5gosXL6KiogJ/+9vfEAqFkJOTg66u\nLjz00EM4derU6IZNPnqHiEgPuo7e2bhxI9rb2xEOh7Fnzx48/PDD2LVrF8rLy9HQMDSjY0NDA5Yt\nW6amGaK04zUYZFWaTq08Usb55S9/icrKSmzfvh15eXnYt2+fls0QpdTYazAOH67mORuyDF6cRTQG\n7zpGRmaIi7NIOywrEFEq8c5ZBsKygjHwrmNkZSzvGAjLCsbBu46RUanNndzTJ4qB12CQVTHpGwjL\nCkSUaizvGAzLCkQ0Gd4YnYjIRjhkk4iI4sakT0RkI0z6REQ2wqRPRGQjTPpERDbCpE9EZCNM+pQS\nnDiOyJg4Tp80N3biuMzMWk4cR6QRXpxFhsOJ44hShxdnEZFpsOynP064RprjxHEUC+8XYQws71BK\ncOI4Gkuvsp/V+iLn07c5o3ZozkdPWkumr/PoIgbRiY5NW0YwGJTMTKcA9QLUS2amU4LBoN5hEcWk\npr8mu66iVAyvI8M/9aIoFWr/FV2pzZ3c0zexLVveGN6DGTpcHhgYWmbrvRgyLJ/Ph/37G27aW49/\nj5t9XTtM+hZk1JIPWUeyfSzdZT8OKohBzWHCZ599Jl6vV9xutyxYsEC2bt0qIiK9vb3yyCOPSEFB\ngSiKIhcuXBi3rsqmSWIf8q5fv54lH0opPcqKaktDilIhilJhic+C2typapz+1KlT8eqrr+LkyZM4\ncuQIfvvb3+Kjjz5CIBCAoig4ffo0lixZgkAgoM03FI0ycrisKI1QlEbs39+A1tZjNx0GD53AGtkj\no+RwbPloo0st6eljsfo6j2CTpNGXj4iIPP7449LS0iIul0u6u7tFRKSrq0tcLte452rcNA2z4okr\nPfFk+Xhm6mNWfP/U5k7NMm84HJY5c+bIxYsXZfr06dHlg4ODo/6ONsyknxJW7OR6MlOCSxcz9TEr\nvn9qc6cmJ3IvXbqE5cuXY+vWrbjllltGPeZwOOBwOGKuV1dXF/3d6/XC6/VqEY6tqRkhQRQP9rH0\nCoVCCIVC2m1Q7bdOJBKRsrIyefXVV6PLXC6XdHV1iYhIZ2cnyztkWmbaq6XxrPj+qc2dqqZhEBFU\nV1djxowZePXVV6PLX3rpJcyYMQO1tbUIBALo7+8fdzKX0zCQWXAIrLlZ7f3TdWrlw4cP4/vf/z7u\nvPPOaAnH7/fjnnvuQWVlJT777DPk5eVh3759mD59uqaBExHZEefTJyKyEc6nT0REcWPSJyKyESZ9\nIko5XtVsHEz6RJRSI3Pat7SUo6WlHE88Ua1J4o/3i4RfOGOoGvCpgo5NE1EapeKq2HjH33Oc/njc\n09eR1nsg3KMhu4h30jc9JoczOs6nrxOtb+PG28KRUdXUPI/W1hWIRH4HAJg27RRqavboHJV9Menr\nROs7AfHOQmRsUwH8ZPj3taq3Fu/NUXgTlfFY3qG4sHREydqy5Q1EIpsxUmKJRDbHXWKZqN/FO78+\n5+GPQaNzCwnTsWlD0PoEUypPWFnxZBilT7InctnvYlObOzkNg460mAjq5m2Uli5Ca+sxVduLpaxs\nOVpayjFSOgKG9pyam/+gyfbJ2saeb8rMrI1rj5v9Lja1uZM1fR2puUl0U1MT/vM//Thx4n8xOPh/\nABTj8OH4PkxE6ZTM/PtNTU34xz9OAChPQ4Q2o8HRRlJ0bNr0xh72Ak4Bgim7KxAPsymdbvS3GgGy\n2e/GUJs7eSI3jbQ6GTp27DGwCUDqxh7zZBglK9E+39TUhKqq/8DAwFwACoDdAH6HrKz/y36nFY2+\nfBKmY9O6ULO3HAwGRVEqRFEqor+PPTEG3Mc9ITKURPt8uo9gzUpt7mTSTxMtRzCsX79+1LKMjFvF\n43mQCZ8MJdE+z52Z+KjNnTyRq4GRETTnz/cCuIbsbKdmo2diXXTV2toYPTE21KYb2dlO1W0RGc2/\n/dunKCgoip4EVjvCzQq3S1RNoy+fhOnYtKbGH5JmC1Azbu8k2fLOZHtLPMFKRqa2vDNt2nSZNu02\nVf3bip8RtbmTSV+l2IekFTEPZcfW5uMxWadNxeyFRFpKtM/f/HyPp3RM/66RrKz8hD4/VvyMqM2d\nLO+kUTLj8pMZ40ykh1hllET7/M3PLytbfvPWATSgr+8VtLQA77yzEiUlbvj9/8XPQ6I0+vJJmI5N\nayre8k462rbCoSuZUyr64uht3pfUSV4rfkbU5k4mfQ2MHJJ6PKXi8TyY0OGnVm2ns02ieIYRa1FG\nGdl2VlZ+3GXUr4vV7NTmTs69Q2Qh6RipEmsunaKiIhw/vgqpmidnbJvAiwDcAO6DooRtNR+P6typ\nwRdPTG+//ba4XC6ZN2+eBAKBcY+nsGkiW0pXKSPWXr3H82DK2w4Gg5Kff5cA02VoioZ6Ab4l69ev\n17Qdo1ObO1MyDcP169fxs5/9DMFgEG1tbXjzzTfx0UcfpaIpIhqm560Bs7OdKZ+qw+fz4Y477gDw\nGoBXMPR//jo6syzFJyWjd44ePYp58+YhLy8PALBixQocOHAA8+fPT0VzRJRGE92NSs2ssZQ+KUn6\n586dw+zZs6N/5+bm4sMPP0xFU0Q0LF23BtRzGDFvf6heSpK+w+GI63l1dXXR371eL7xebyrCIbKF\ndCZjvfbq7XjdSigUQigU0mx7KRm9c+TIEdTV1SEYDAIA/H4/MjIyUFtbe6Nhjt4hIkqY2tyZkhO5\nixcvxscff4yzZ88iEolg7969KC/nHXCIiPSWkvLOlClT8Prrr8Pn8+H69et49tlneRKXiMgAeHEW\nEZGJGLK8Q0RExsSkT0RkI0z6REQ2wqRPRGQjTPpERDbCpE9EZCNM+kRENsKkT0RkI0z6REQ2wqRP\nRGQjTPpERDbCpE9EZCNM+kRENsKkT0RkI0z6REQ2wqRPRGQjTPpERDbCpE9EZCNM+kRENsKkT0Rk\nI0z6REQ2wqRPRGQjSSf9tWvXYv78+SgpKUFFRQW++OKL6GN+vx8FBQUoKipCc3OzJoESEZF6SSf9\nsrIynDx5EidOnEBhYSH8fj8AoK2tDXv37kVbWxuCwSDWrFmDwcFBzQI2ilAopHcIqjB+fTF+/Zg5\ndi0knfQVRUFGxtDq9957Lzo6OgAABw4cwMqVKzF16lTk5eVh3rx5OHr0qDbRGojZOw7j1xfj14+Z\nY9eCJjX9HTt24NFHHwUAdHZ2Ijc3N/pYbm4uzp07p0UzRESk0pTJHlQUBd3d3eOWb9y4EUuXLgUA\nbNiwAdOmTUNVVdWE23E4HCrDJCIiTYgKO3fulAceeEAGBgaiy/x+v/j9/ujfPp9Pjhw5Mm5dAPzh\nD3/4w58kftRwDCfghAWDQdTU1KC1tRXZ2dnR5W1tbaiqqsLRo0dx7tw5PPLII/jXv/7FvX0iIgOY\ntLwzmZ///OeIRCJQFAUAcP/992Pbtm1wu92orKyE2+3GlClTsG3bNiZ8IiKDSHpPn4iIzCftV+Ra\n4aKuYDCIoqIiFBQUYNOmTXqHM6n29nY89NBDWLBgARYuXIhf//rXAIC+vj4oioLCwkKUlZWhv79f\n50gnd/36dXg8nugAAjPF39/fjyeffBLz58+H2+3Ghx9+aKr4/X4/FixYgOLiYlRVVeGrr74ydPyr\nV6+G0+lEcXFxdNlk8Rot78SKX9O8qeqMQBKam5vl+vXrIiJSW1srtbW1IiJy8uRJKSkpkUgkIuFw\nWPLz86PPM5Jr165Jfn6+hMNhiUQiUlJSIm1tbXqHNaGuri45fvy4iIh8+eWXUlhYKG1tbbJ27VrZ\ntGmTiIgEAoHo+2BUW7ZskaqqKlm6dKmIiKnif+aZZ2T79u0iInL16lXp7+83TfzhcFjmzp0rV65c\nERGRyspKqa+vN3T8f/3rX+XYsWOycOHC6LKJ4jVi3okVv5Z5M+1J/2Z//OMf5amnnhIRkY0bN0og\nEIg+5vP55IMPPtArtAm9//774vP5on+PHa1kdI8//ri0tLSIy+WS7u5uERn6YnC5XDpHNrH29nZZ\nsmSJvPvuu/LYY4+JiJgm/v7+fpk7d+645WaJv7e3VwoLC6Wvr0+uXr0qjz32mDQ3Nxs+/nA4PCpp\nThSvUfPO2PhvpjZv6jrhmhkv6jp37hxmz54d/duoccZy9uxZHD9+HPfeey96enrgdDoBAE6nEz09\nPTpHN7EXX3wRmzdvjl4BDsA08YfDYdx2221YtWoVFi1ahOeeew6XL182TfxZWVmoqanBnDlz8J3v\nfAfTp0+HoiimiX/ERPGaJe/cTG3eTEnSVxQFxcXF437+/Oc/R59j1ou6jBhTPC5duoTly5dj69at\nuOWWW0Y95nA4DPt/vfXWW5g5cyY8Hg9kgjEHRo7/2rVrOHbsGNasWYNjx47hm9/8JgKBwKjnGDn+\nTz75BK+99hrOnj2Lzs5OXLp0Cbt37x71HCPHH8vXxWvk/0WLvJn0kM3JtLS0TPp4fX09Dh48iHfe\neSe6bNasWWhvb4/+3dHRgVmzZqUiPFXGxtne3j7qm9aIrl69iuXLl+Ppp5/GsmXLAAzt7XR3dyMn\nJwddXV2YOXOmzlHG9v7776OxsREHDx7ElStXcPHiRTz99NOmiT83Nxe5ubm4++67AQBPPvkk/H4/\ncnJyTBH/3//+dzzwwAOYMWMGAKCiogIffPCBaeIfMVF/MUveAbTLm2kv7wSDQWzevBkHDhzAN77x\njejy8vJy7NmzB5FIBOFwGB9//DHuueeedIf3tRYvXoyPP/4YZ8+eRSQSwd69e1FeXq53WBMSETz7\n7LNwu9144YUXosvLy8vR0NAAAGhoaIh+GRjNxo0b0d7ejnA4jD179uDhhx/Grl27TBN/Tk4OZs+e\njdOnTwMADh06hAULFmDp0qWmiL+oqAhHjhzBwMAARASHDh2C2+02TfwjJuovZsk7muZNjc47xG3e\nvHkyZ84cueuuu+Suu+6Sn/70p9HHNmzYIPn5+eJyuSQYDKY7tLgdPHhQCgsLJT8/XzZu3Kh3OJN6\n7733xOFwSElJSfQ1f/vtt6W3t1eWLFkiBQUFoiiKXLhwQe9Qv1YoFIqO3jFT/P/85z9l8eLFcued\nd8oTTzwh/f39pop/06ZN4na7ZeHChfLMM89IJBIxdPwrVqyQ22+/XaZOnSq5ubmyY8eOSeM1Wt4Z\nG//27dvB5SpjAAAAPElEQVQ1zZu8OIuIyEZ4u0QiIhth0icishEmfSIiG2HSJyKyESZ9IiIbYdIn\nIrIRJn0iIhth0icispH/D0F+IBNm4QViAAAAAElFTkSuQmCC\n", "text": [ "" ] } ], "prompt_number": 2 }, { "cell_type": "markdown", "metadata": {}, "source": [ "instead of calling system_energy() at every mcstep, calculating system_energy using system_energy += diff, where diff = post_move_e - pre_move_e" ] }, { "cell_type": "code", "collapsed": false, "input": [ "import scipy.spatial.distance as spd\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", "\n", "# used to compare energy before and after a move\n", "# we assumed that epsilon and alpha are 1\n", "def local_energy(site):\n", " local_sum = 0\n", " for i in xrange(len(system)):\n", " if site != i:\n", " dist = spd.euclidean(system[site],system[i])\n", " local_sum += -((1/dist)**12-(1/dist)**6)\n", " return local_sum\n", "\n", "# total energy of the system\n", "def system_energy():\n", " total_sum = 0\n", " for i in xrange(len(system)):\n", " total_sum += local_energy(i)\n", " return total_sum\n", "\n", "def radial_number_density():\n", " rad_dist = []\n", " for i in xrange(len(system)):\n", " for j in xrange(len(system)):\n", " if i != j:\n", " temp = spd.euclidean(system[i],system[j])\n", " rad_dist.append(temp)\n", " return rad_dist\n", "\n", "n = 100 # number of particles\n", "# initializing the system\n", "# the atoms occupy a square of size 10X10\n", "system = np.zeros([n,2])\n", "for i in xrange(len(system)):\n", " system[i][0] = i%10 # np.sqrt(n) wont work as it will return a float\n", " system[i][1] = i/10 # we need an integer denominator for this to work!\n", "\n", "global_energy = []\n", "global_energy.append(system_energy())\n", "energy_now = system_energy() ####\n", "accepted_moves = 0\n", "\n", "plt.subplot(131)\n", "alist = radial_number_density()\n", "anarray = np.asarray(alist)\n", "plt.hist(anarray,10);\n", "\n", "T = 1.\n", "# T = np.array([5.,5./2,1./1./2,1./10])\n", "beta = 1./T\n", "# B = 1./T\n", "#for beta in B:\n", "for time in xrange(5000):\n", " site = np.random.choice(np.arange(n)) # atom to be moved\n", " # this atom can now move in the range (-alpha,alpha) in x & y\n", " #xmove = np.random.choice(np.array([-2.,-5./3,-4./3,-1,-2./3,-1./3,0,1./3,2./3,1.,4./3,5./3,2.]))\n", " #ymove = np.random.choice(np.array([-2.,-5./3,-4./3,-1,-2./3,-1./3,0,1./3,2./3,1.,4./3,5./3,2.]))\n", " #xmove = np.random.choice(np.array([0,1./3,2./3,1.,4./3,5./3,2.]))\n", " #ymove = np.random.choice(np.array([0,1./3,2./3,1.,4./3,5./3,2.]))\n", " xmove = np.random.choice(np.array([0.,1.,2.,3.,4.]))\n", " ymove = np.random.choice(np.array([0.,1.,2.,3.,4.]))\n", " pre_move_e = local_energy(site)\n", " system[site] = system[site] + np.array([xmove,ymove])\n", " if system[site][0] > 100 :\n", " system[site][0] = system[site][0]%100\n", " #if system[site][0] < 0 :\n", " # system[site][0] = system[site][0]%100\n", " if system[site][1] > 100 :\n", " system[site][1] = system[site][1]%100\n", " #if system[site][1] < 0 :\n", " # system[site][1] = system[site][1]%100\n", " post_move_e = local_energy(site)\n", " diff = post_move_e - pre_move_e ###\n", " if post_move_e - pre_move_e < 0:\n", " energy_now += diff ####\n", " global_energy.append(energy_now) ####\n", " accepted_moves += 1\n", " else :\n", " temp = np.random.random()\n", " if temp < np.exp(-beta*(post_move_e - pre_move_e)):\n", " energy_now += diff ####\n", " global_energy.append(energy_now) ####\n", " accepted_moves += 1\n", " else :\n", " system[site] = system[site] - np.array([xmove,ymove])\n", " global_energy.append(energy_now) ####\n", "# we get global_energy, accepted moves as the outputs here.\n", "plt.subplot(132)\n", "alist = radial_number_density()\n", "anarray = np.asarray(alist)\n", "plt.hist(anarray,10);\n", "plt.subplot(133)\n", "plt.plot(global_energy)\n", "print \"accepted_moves\", accepted_moves" ], "language": "python", "metadata": {}, "outputs": [ { "output_type": "stream", "stream": "stdout", "text": [ "accepted_moves 4390\n" ] }, { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEACAYAAACznAEdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVHX+P/DXYGNlZmnpgDO6g8MAchHGBNt2belLYPpV\nvOT6FRMotW2t9eststrHd9Meq4P5bc1Kt8vq6tau2l4S6iuEZaNuKqZIF23TzfEXAwMZiOGNQeb9\n++MwAwNzOTNz5gK8n4/HPGY4cz6feZ95H3hzbp8jIyICY4yxPi8i1AEwxhgLD1wQGGOMAeCCwBhj\nrB0XBMYYYwC4IDDGGGvHBYExxhgADwVh/vz5UCgUSE5Otk87evQo0tPTodPpkJaWhk8//dT+nl6v\nh1arRXx8PMrLy+3Tjx8/juTkZGi1WixZsiQAi8G8wXllnanVaowZMwY6nQ7p6ekAgMbGRmRlZSE2\nNhbZ2dloamoKcZQsKMiNAwcOUGVlJSUlJdmn/exnP6OysjIiItqzZw9lZGQQEdHJkycpJSWFLBYL\nGY1G0mg0ZLVaiYgoLS2NKioqiIho0qRJVFpa6u5jWYBxXllnarWaGhoaHKYVFhbSunXriIioqKiI\nVq5cGYrQWJC53UKYMGECBg8e7DAtKioKFy9eBAA0NTVBqVQCAIqLi5Gbmwu5XA61Wo2YmBhUVFTA\nbDajubnZ/p9Hfn4+du/eHYjaxkTivLKuqMv1qSUlJSgoKAAAFBQUcG77iBu8bVBUVISf/vSnePLJ\nJ2G1WnH48GEAQG1tLe6++277fCqVCjU1NZDL5VCpVPbpSqUSNTU1EoTOpMR57btkMhnuv/9+9OvX\nD4899hgeffRR1NfXQ6FQAAAUCgXq6+tDHCULBq8PKi9YsAAvv/wyvv32W2zYsAHz588PRFwsyDiv\nfdcnn3yCEydOoLS0FJs2bcLBgwcd3pfJZJDJZCGKjgWT11sIR48exYcffggAmDVrFhYuXAhA+A+x\nurraPp/JZIJKpYJSqYTJZHKYbtsd0RWvdMHX+Tv/6KOP7K8HDRoEgPPa23TdNQQIuwsBYOjQoZgx\nYwaOHj0KhUKBuro6REZGwmw2Y9iwYd3acV7Di7PcesvrLYSYmBjs378fALBv3z7ExsYCAHJycrBz\n505YLBYYjUacOXMG6enpiIyMxKBBg1BRUQEiwltvvYXp06e77J+IvH4899xz3M7LdkajEUlJSfaf\ndTodDAaDfaXivPa+ds5cuXIFzc3NAIDLly+jvLwcycnJyMnJwfbt2wEA27dvd5lbX+KQermC0V84\nx+Yqt75wu4WQm5uL/fv34/vvv8eIESPw/PPP44033sATTzyBlpYW3HzzzXjjjTcAAAkJCZg9ezYS\nEhJwww03YPPmzfb/IDZv3oyHH34YV69exeTJk/HAAw9ItgDMe57yCoDz2kfU19djxowZAIDr16/j\noYceQnZ2NsaNG4fZs2djy5YtUKvVeOedd0IcKQsGtwVhx44dTqdXVFQ4nf7ss8/i2Wef7Tb9rrvu\nwhdffOFDeCwQPOVVJpNBp9PZp3Nee6/o6GhUVVV1mz5kyBD7rmHWd/SKK5UzMjK4nYTtwkVP+b56\nSrtwJ/VySdlfOMcmJRlJuQPKTzKZTNL9Ycw3UueB8xoeOK+9l1S58PosI8b6Gm/OpuE/kKwn44LA\nmChi/tDzaZisZ+sVxxAYY4z5jwsCY4wxAFwQGGOMteOCwBhjDEAfOqgs9kwRPkuEMdZX9ZmCIPD0\nx57PEmGM9V28y4gxxhgALgiMMcbacUFgjDEGgAsCY4yxdlwQGGOMAeCCwBhjrJ3bgjB//nwoFAok\nJyc7TH/llVcwevRoJCUlYeXKlfbper0eWq0W8fHxKC8vt08/fvw4kpOTodVqsWTJEokXgXnLU14B\ncF4Z64vIjQMHDlBlZSUlJSXZp+3bt4/uv/9+slgsRET03XffERHRyZMnKSUlhSwWCxmNRtJoNGS1\nWomIKC0tjSoqKoiIaNKkSVRaWur08zyE4xcABJCHR+A+P5x4yiuAHpPXYBC37oT/ckodX7gvb18i\nVS7cbiFMmDABgwcPdpj2+9//Hs888wzkcjkAYOjQoQCA4uJi5ObmQi6XQ61WIyYmBhUVFTCbzWhu\nbkZ6ejoAID8/H7t375auorWTyWRuH6xDT8orYyx4vD6GcObMGRw4cAB33303MjIycOzYMQBAbW0t\nVCqVfT6VSoWamppu05VKJWpqaiQI3Rly82DudM4rgDDLK2MsGLweuuL69eu4cOECjhw5gk8//RSz\nZ8/G2bNnJQto1apV9tcZGRlhe+/R3sRgMKC2thalpaWYNGkSKioqOK+9gMFggMFgCHUYrAfxuiCo\nVCrMnDkTAJCWloaIiAh8//33UCqVqK6uts9nMpmgUqmgVCphMpkcpiuVSpf9d/7DwYIjIyMDY8eO\nxdNPP42f/exnWL16Nee1F+haeFevXh26YFiP4PUuo+nTp2Pfvn0AgNOnT8NiseDOO+9ETk4Odu7c\nCYvFAqPRiDNnziA9PR2RkZEYNGgQKioqQER46623MH36dMkXhPmnc14BcF4Z64vcHXGeM2cORUVF\nUf/+/UmlUtHWrVvJYrHQvHnzKCkpicaOHUsff/yxff41a9aQRqOhuLg4Kisrs08/duwYJSUlkUaj\nocWLF7v8PA/huAWPZ4LwWUY2nvIKIGzyGg7ErTvhv5xSxxfuy9uXSJULWXtnYUEmk/l8PwLhTCJ3\nbT29L8wTRl9HyPiTh2D0F2ye1y37nGG9nJzX3kuqXPCVyowxxgBwQWCMMdaOCwJjjDEAXBAYYwDa\n2tqg0+kwdepUAMJpwiqVCjqdDjqdDmVlZSGOkAVDH7unMmPMmY0bNyIhIQHNzc0AhIOUy5cvx/Ll\ny922IwJ4ZJjeg7cQGOvjTCYT9uzZg4ULF9rPVCEiUWetfP11oKNjwcQFgbE+btmyZVi/fj0iIjr+\nHMhkMrzyyitISUnBggUL0NTU5LRt+1iIrJfggsBYH/b+++9j2LBh0Ol0DlsEixYtgtFoRFVVFaKi\norBixQqn7fkyhN6FjyEw1ocdOnQIJSUl2LNnD65du4YffvgB+fn5+NOf/mSfZ+HChfaDzV299NIq\n3Hmn8JoHLQyeQA1cyFcqd5knjL6OkOErWh31lSuV9+/fj//93//Fe++9B7PZjKioKADAhg0b8Omn\nn+Ivf/lLt/6++IKQlBTQsJkIUv2O8RYCYwyAcCDZdjOpp556Cp999hlkMhmio6Px+uuvO21z/Xow\nI2SBxlsIXeYJo68jZEK1heDNne2CmSdvthDECNU6Foi8fvopYdw4ybpkPuItBNZLSfeHNzQ8/9PR\nm/AWQu/CZxkxxnzW2hrqCJiUeAvBC2J2afAuJ9aX8BZC78IFwWuejlMw1ndwQehd3O4ymj9/PhQK\nBZKTk7u99+KLLyIiIgKNjY32aXq9HlqtFvHx8SgvL7dPP378OJKTk6HVarFkyRIJw2e+8JRXAJxX\nJgoXhF7G3e3UDhw4QJWVlZSUlOQw/dtvv6WJEyeSWq2mhoYGIiI6efIkpaSkkMViIaPRSBqNhqxW\nKxERpaWlUUVFBRERTZo0iUpLS51+nodw3EIQbqEp5jN6Ak95BRCSvIrLUfC/Z2/iCrfYuy6H1P2V\nlEjaJfORVLl1u4UwYcIEDB48uNv05cuX44UXXnCYVlxcjNzcXMjlcqjVasTExKCiogJmsxnNzc1I\nT08HAOTn52P37t1+lDDmL84rkwofVO5dvD7LqLi4GCqVCmPGjHGYXltbC5VKZf9ZpVKhpqam23Sl\nUomamho/QmaBwHllvuBdRr2LVweVr1y5grVr12Lv3r32aSTxWTWrVq2yv+axUYKjrKwMTzzxBPLy\n8uzfP+e15wvUeDedcUHoXbwqCN988w3OnTuHlJQUAMI46nfddRcqKiqgVCpRXV1tn9dkMkGlUkGp\nVMJkMjlMVyqVLj+j8x8OFhxKpRKtra3YuXOnfRrntefrWnhXr14t+WdwQehdvCoIycnJqK+vt/8c\nHR2N48ePY8iQIcjJycHcuXOxfPly1NTU4MyZM0hPT4dMJsOgQYNQUVGB9PR0vPXWW/jv//5vyReE\n+a5rXmUyGSorKyXN6y9+wTnvjdraQh0Bk5LbgpCbm4v9+/ejoaEBI0aMwPPPP49HHnnE/n7nC7US\nEhIwe/ZsJCQk4IYbbsDmzZvt72/evBkPP/wwrl69ismTJ+OBBx4I0OIwMTzltTOp8vrmmzcBULl8\nH6jyY4lYqPAWQu/Cg9t1mcfd54v5jDD6On0WiEHQgEoAOjdz/Q3AzxGOw0x7N7hd+A6gGIi8/v73\nhF/+UrIumY94cLsA8WbETcb6Ot5l1LtwQeiGh6ZgTKzz50MdAZMSj3bKGPNZAE5cYiHEBYExxhgA\nLgiMMT9MnRrqCJiUuCAwxnwml4c6AiYlLgiMMZ9dvRrqCJiUuCAwxnzGBaF34YLAGPMZF4TehQsC\nY8xndXWhjoBJiQsCY8xnvIXQu3BBYIz5LIL/gvQqnE7GmM+uXQt1BExKXBAYYz7jXUa9CxcExpjP\nWlqAXjDiO2vHBYEx5rMbbxSKAusd3BaE+fPnQ6FQIDk52T6tsLAQo0ePRkpKCmbOnImLFy/a39Pr\n9dBqtYiPj0d5ebl9+vHjx5GcnAytVoslS5YEYDGYNzzlFQDntY9pa2uDTqfD1PbBiRobG5GVlYXY\n2FhkZ2ejqanJabubbuLdRr0KuXHgwAGqrKykpKQk+7Ty8nJqa2sjIqKVK1fSypUriYjo5MmTlJKS\nQhaLhYxGI2k0GrJarURElJaWRhUVFURENGnSJCotLXX6eR7CcQsACRuvrh6e3peiD3h8hANPeQUg\neV6BSg/f3V9F5si/9cQX3sQVbrF3XQ5XXnzxRZo7dy5NnTqViIgKCwtp3bp1RERUVFRkXx+69nfL\nLUTnzgUmXiaeVOuV2y2ECRMmYPDgwQ7TsrKyENF+rtn48eNhMpkAAMXFxcjNzYVcLodarUZMTAwq\nKipgNpvR3NyM9PR0AEB+fj52797tTw0Lc+7qQXjwlFcAnNc+xGQyYc+ePVi4cKH9NowlJSUoKCgA\nABQUFLjM7cCBwOXLQQuVBZhfxxC2bt2KyZMnAwBqa2uhUnXcRF2lUqGmpqbbdKVSiZqaGn8+lgUB\n57XvWLZsGdavX+/wD0F9fT0UCgUAQKFQoL6+3mnbYcOA1taghMmCwOdbaK5Zswb9+/fH3LlzpYwH\nq1atsr/OyMhARkaGpP2z7gwGAwwGAwDgwIEDACB5XoHXAES1v85of7BA6pxXV95//30MGzYMOp3O\n5bwymczlvcbPn1+FTZuA4cP59zWYxOTWFz4VhG3btmHPnj346KOP7NOUSiWqq6vtP5tMJqhUKiiV\nSvvuB9t0pVLpsu/OBYEFh+0Xedu2bdi7d6/De1LlFfglAJ3EkTN3uv6BXu3kfpeHDh1CSUkJ9uzZ\ng2vXruGHH35AXl4eFAoF6urqEBkZCbPZjGHDhjn9jJEjV2H+fODuuwO1FMwZMbn1iaeDDEaj0eHg\nY2lpKSUkJND58+cd5rMdfGxpaaGzZ8/SqFGj7Acf09PT6ciRI2S1WvvAQeXwPKDYlbu8do5Tqrzy\nQeXQrwOePttgMNCUKVOISDioXFRUREREer3e5UHln/yE6MAB6WNl3pFqvXLby5w5cygqKorkcjmp\nVCrasmULxcTE0MiRIyk1NZVSU1Np0aJF9vnXrFlDGo2G4uLiqKyszD792LFjlJSURBqNhhYvXuw6\nGC4IQeEprwAkzysXhNCvA2IKgu0so4aGBsrMzCStVktZWVl04cIFp/1lZBB99FFAwmVekGq9krV3\nFhZkMhl8DUfYx+muraf3xczj//th9HW75E8eXPUHVML9LqO/Afg5POcICPb36Hndss8pYr7QrQOB\nyGtWFmHFCmDiRMm6ZT6QKrd8pTJjzGcREUCnaxhZD8cFgTHmsx9+AM6cCXUUTCpcEBhjPrt0Cfjj\nH0MdBZMKFwTWp9nOsXf3YK5pNMA334Q6CiYVny9MY6z3EHOyAXPmyJFQR8CkxFsIjDGf9esX6giY\nlLggMMZ89vLLoY6ASYkLAmPMZ9nZwrOL2yWwHoYLAmPMZwMHApGRfJOc3oILAmPMLzfdBFy7Fuoo\nmBS4IDDG/MIFoffggsAY88vNN/Nd03oLLgiMMb/U1QG/+U2oo2BS4AvTGGN+MZuFB+v5eAuBMeaX\n228PdQRMKm4Lwvz586FQKJCcnGyf1tjYiKysLMTGxiI7OxtNnU5A1uv10Gq1iI+PR3l5uX368ePH\nkZycDK1WiyVLlgRgMZg3POUVAOeViXb8OKBWhzoKJgl3d885cOAAVVZWOtxqsbCwkNatW0dEREVF\nRfZb69lutWixWMhoNJJGo7HfajEtLY0qKiqIiPgWmmHAU14BSJ7XcL1jmjTrRe+4Y5qv/dXUEEVF\nSdo185JUuXW7hTBhwgQMHjzYYVpJSQkKCgoAAAUFBdi9ezcAoLi4GLm5uZDL5VCr1YiJiUFFRQXM\nZjOam5uRnp4OAMjPz7e3YaHhKa8AOK9MND7ttPfw+qByfX09FAoFAEChUKC+vh4AUFtbi7vvvts+\nn0qlQk1NDeRyOVQqlX26UqlETU2NV59pNBpx4cIFb0NlXuicV9vPQGDzynoHLgi9h19nGQVrvPgn\nn/wflJb+E3L5EKfvWyzfBzyGvobvA8DEuvFGoSAQAbza9GxeFwSFQoG6ujpERkbCbDZj2LBhAIT/\nEKurq+3zmUwmqFQqKJVKmEwmh+lKpdJl/6tWrbK/zsjIQEZGBq5fB65e/S2uXp3notUfADzq7aKw\ndgaDAf369cOTTz6JgQMHAoDkeQVeAxDV/jqj/cECyWAwwGAwBPxz+vUD+vcHWlqErQXWg3k6yGA0\nGrsdfCwqKiIiIr1e3+3gY0tLC509e5ZGjRplP/iYnp5OR44cIavV6tNB5Zychwh4y82Bujf5oLKX\n3OUVTg4q+5tXPqgc+nVA6s/u3N/gwUQNDZJ2z7wgVW7d9jJnzhyKiooiuVxOKpWKtm7dSg0NDZSZ\nmUlarZaysrLowoUL9vnXrFlDGo2G4uLiqKyszD792LFjlJSURBqNhhYvXuw6GC4IQeEprwAkzysX\nhNCvA4EsCEolUXW1pN0zL0iVW1l7Z2FBJpPBWTjTps1DSckDADztMnK3KDIP74uZx//3w+jrdslV\nHvzpD6gEoHMz198A/ByecwRI+T0Ksfm7XngzX+jWgUDk1dZfbCzw3ntAXJxk3TMvSJVbvlKZMea3\nAQOAK1dCHQXzFxcExpjfrFZgyhSgtTXUkTB/8OB2jDG/ffGF8NzQINxBjfVMvIXAGJNMpzORWQ/E\nBYGxPuzatWsYP348UlNTkZCQgGeeeQaAcD2QSqWCTqeDTqdDWVmZqP7Onw9ktCzQeJcRY33YTTfd\nhI8//hgDBgzA9evX8dOf/hT//Oc/IZPJsHz5cixfvtyr/r76Cpg0KUDBsoDjLYQgsw334e7BWDAN\nGDAAAGCxWNDW1mYf+NCb0xj/+Efh2WqVPDwWRFwQgo48PBgLLqvVitTUVCgUCtx3331ITEwEALzy\nyitISUnBggULHO6P4czDDwMrVwK1tUEImAUM7zJirI+LiIhAVVUVLl68iIkTJ8JgMGDRokX4TfuN\nkv/nf/4HK1aswJYtW7q17Tz22Pr1GbBaM/C73wUr8r4rUONUcUFgjAEAbrvtNvznf/4njh07hoyM\nDPv0hQsXYurUqU7bdC4IbW3Ab38b4CAZgI6BP21Wr14tSb+8y4ixPuz777+37w66evUq9u7dC51O\nh7q6Ovs87777rsPtVl3JywO02oCFyoKAtxAY68PMZjMKCgpgtVphtVqRl5eHzMxM5Ofno6qqCjKZ\nDNHR0Xj99dc99tW/P2CxBCFoFjBcEBjrw5KTk1FZWdlt+p/+9Cev++KC0PPxLiPGmCS4IPR8XBAY\nY5LggtDz8S4j1iOJuYCvJ9x7ojfhgtDz+byFoNfrkZiYiOTkZMydOxctLS1obGxEVlYWYmNjkZ2d\n7XAxi16vh1arRXx8PMrLyyUJnklPr9cDQA/IK1/gF27kcuG+ylyHey6fCsK5c+fw5ptvorKyEl98\n8QXa2tqwc+dOFBUVISsrC6dPn0ZmZiaKiooAAKdOncKuXbtw6tQplJWV4fHHH4eVr3EPO7a8AuC8\nMq/16ycUherqUEfCfOVTQRg0aBDkcjmuXLmC69ev48qVKxg+fDhKSkpQUFAAACgoKMDu3bsBAMXF\nxcjNzYVcLodarUZMTAyOHj0q3VIwSdjyCoDzynwSHQ1cvRrqKJivfCoIQ4YMwYoVKzBy5EgMHz4c\nt99+O7KyslBfXw+FQgEAUCgUqK+vBwDU1tZCpVLZ26tUKtTU1EgQPpOSLa8AOK/MJ3wcoWfzqSB8\n8803eOmll3Du3DnU1tbi0qVLePvttx3m8TRyJ4/qGX5seQXAeWU+4YLQs/l0ltGxY8dwzz334I47\n7gAAzJw5E4cPH0ZkZCTq6uoQGRkJs9mMYcOGAQCUSiWqO+1YNJlMUCqVTvvuPDZK1/E6WGDYBsr6\n8ssvcdNNNwEAbrjhBknzCrwGIKr9dUb7gwVSoAZAc+fGG7kg9Gjkg6qqKkpMTKQrV66Q1Wql/Px8\nevXVV6mwsJCKioqIiEiv19PKlSuJiOjkyZOUkpJCLS0tdPbsWRo1ahRZrdZu/boKJyfnIQLeIuH8\nBWePN9tPLXH1Pol4X8w8gX7f9XcQDLa8ApA8r0Clh+X+q8jvR9rvUZr1omfkV+rPdtYfQPT885J+\nDBNBqtz63Mu6desoISGBkpKSKD8/nywWCzU0NFBmZiZptVrKysqiCxcu2Odfs2YNaTQaiouLo7Ky\nMufBcEEI6R8MIiGvACTPKxeE0Oc3WAUhxKtwnyRVbmXtnYUFmUwGZ+FMmzYPJSUPAJjnouUfADwK\nuD3/XObhfTHzBPp9YZ5Qp8RVHvzpD6gEoHMz198A/Byevx9Ayu9RiM3f9UL6uAIhEHnt2p/tEFL4\n/FXpG6TKLQ9dwRiTTGZmqCNg/uCCwBiTzHPPCc98LULPxAWBMSYZWyG4fDm0cTDfcEFgjEnmpz8V\nnrkg9ExcEBhjkhkwQHg+fz60cTDfcEFgjEkuLS3UETBfcEFgjDEGgAsCY0xiWVmhjoD5igsCY0xS\nGzYA8fGhjoL5ggsCY0xS/foB//oX0NYW6kiYt7ggMMYkdeONwvN774U2DuY9n4a/Zoz5Tuw9I0I9\nppWv1GrhudOtt1kPwVsIjAUdiXj0XLZ6p9fzIHc9DRcExlhAnD4N/PnPoY6CeYMLAmMsYPLyQh0B\n8wYXBMYYYwD8KAhNTU2YNWsWRo8ejYSEBFRUVKCxsRFZWVmIjY1FdnY2mjodVdLr9dBqtYiPj0d5\nebkkwTPp2XLGee0brl27hvHjxyM1NRUJCQl45plnAMBtzsUYNy4Q0bKA8/VWa/n5+bRlyxYiImpt\nbaWmpiYqLCykdevWERFRUVFRt3vvWiwWMhqNpNFoqK2trVufrsLhW2gGT35+vj0GKfPKt9D0vi+p\nuerz8uXLRCTke/z48XTw4EGXORfTHxHRjh18O81gkmp98amXpqYmio6O7jY9Li6O6urqiIjIbDZT\nXFwcERGtXbvWfpN2IqKJEyfS4cOHuwfjYqG4IASHLa9dY5Air1wQwrcg2Fy+fJnGjRtHX375pcuc\ni+2vpYUoP58LQrBItb74tMvIaDRi6NCheOSRRzB27Fg8+uijuHz5Murr66FQKAAACoUC9fX1AIDa\n2lqoVCp7e5VKhZqaGl8+mgWQLa8AOK99iNVqRWpqKhQKBe677z4kJia6zLlY/fsDL78ciGhZIPl0\nYdr169dRWVmJV199FWlpaVi6dCmKiooc5pHJZG4vwHH13qpVq+yvMzIykJGR4UuIzAsGgwEGgwG1\ntbU4duwYAKCyslLSvAKvAYhqf53R/mCBZMurJxEREaiqqsLFixcxceJEfPzxxw7vu8u5u9/XAQOA\nG/jS14AQm1uv+bJZYTabSa1W238+ePAgTZ48meLj48lsNhMRUW1trX0zU6/Xk16vt88/ceJEOnLk\nSLd+XYXDu4yCw5ZXWwxS5pV3GYX/LiMioueff57Wr19PcXFxTnPubX8A0WOPeR8r845U64tPu4wi\nIyMxYsQInD59GgDw4YcfIjExEVOnTsX27dsBANu3b8f06dMBADk5Odi5cycsFguMRiPOnDmD9PR0\nXz6aBZAtrzac197v+++/t59BdPXqVezduxc6nQ45OTlOc+6L118HTCZJwmWB5mslqaqqonHjxtGY\nMWNoxowZ1NTURA0NDZSZmUlarZaysrLowoUL9vnXrFlDGo2G4uLiqKyszGmfrsLhLYTgqaqqIgCS\n55W3EMJzC+Hzzz8nnU5HKSkplJycTC+88AIRkducu+uv+zzCw2DwP37mmlTri6y9s7Agk8ngLJxp\n0+ahpOQBAPNctPwDgEcBt2PAyDy8L2aeQL8vzBPqlLjKgz/9AZUAdG7m+huAn8Pz9wNI+T0Ksfm7\nXngXl9i+pF4PApFXT/3ZDj3Mnw9s2SLZR7MupMotX6nMGAu45ORQR8DE4ILAGAs4Hgq7Z+CCwBgL\nmH//W3hevTq0cTBxuCAwxgJGo+l4LZMB33wTuliYZ1wQGGMBVVbW8fqrr0IXB/OMCwLrtWxX2Lp7\nhLOeHr+NQgGkpAivLZbQxsLc4wvLWS8m9lTRcCXmFNbw179/RyHgghDeeAuBMRZQcnnHrqL584EH\nHghtPMw1LgiMsYDq37/j9dWrwAcfAPv3hy4e5hoXBMZYQA0e3H0aD2IcnvgYQhjydLAw1ENbMOaN\nQYNCHQETiwtCWPI0HhJjjEmPdxkxxgLuww+BF190nMZnHIUfLgiMsYDLzASWL3ecdulSaGJhrnFB\nYIwFnUrlWBAWLwbM5u7ztbQELybGBYExFmQDBwp3UPvRj4Tb53z7LfDqq8D//Z/jfB9/DNx0U2hi\n7Kv8Kgge67SUAAAXdElEQVRtbW3Q6XSYOnUqAKCxsRFZWVmIjY1Fdna2/dZ8AKDX66HVahEfH4/y\n8nL/omYBx3llgbB6NfDMMx0///vfwNtvC68ffdRx3v/4D+H544+FgfE2bgxOjH2ZXwVh48aNSEhI\nsJ8mWVRUhKysLJw+fRqZmZkoKioCAJw6dQq7du3CqVOnUFZWhscffxxWq9X/6FnAcF5ZIPzmN8Cz\nz3b8XFsL/PrX7tvYCsPSpcLWhEwG/PjHgYuxL/O5IJhMJuzZswcLFy60nxdfUlKCgoICAEBBQQF2\n794NACguLkZubi7kcjnUajViYmJw9OhRCcJnUjO13w2d88qCoesFam1twvPFi87n/9GPhOcjR4Dq\n6oCF1Wf5XBCWLVuG9evXIyKio4v6+nooFAoAgEKhQH19PQCgtrYWKpXKPp9KpUJNTY2vH80CaNmy\nZQDAeWUB9d57wNCh3adfvgw89ZS48Y5GjpQ+rr7OpwvT3n//fQwbNgw6nQ4Gg8HpPJ6G53X13qpV\nq+yvMzIykMHXuAecwWCAwWDA6dOnce7cOQCur4b2Na/AawCi2l9ntD9YINnyGo6mTBFunnP+vPDz\nE08AW7cCt93mfP7164HCwuDF11f5VBAOHTqEkpIS7NmzB9euXcMPP/yAvLw8KBQK1NXVITIyEmaz\nGcOGDQMAKJVKVHfavjOZTFAqlU777lwQWHDYCu+zzz6LgwcPAgByc3MlzSvwSwC6AC8J66zrP1Sr\nw+w+lkeOCM/DhwtnGW3a5Pj+6NEdo6Tm5TkvCFevAjffLLy+fBm45RbhdV0dEBUlHJDm/ym9QH4y\nGAw0ZcoUIiIqLCykoqIiIiLS6/W0cuVKIiI6efIkpaSkUEtLC509e5ZGjRpFVqu1W1+uwsnJeYiA\nt0g4Sc3Z400C4OZ9EvG+mHkC/b64PgINgOR5BSo9LNdfRX4/Un2PvaMvb/MqJX/7sy2HbZXpunz9\n+hGtXCm8bm52fG/7dqLISKJvvxXa7t4tTG9tdewrLs6vEHsMqXIryXUItt0ETz/9NPbu3YvY2Fjs\n27cPTz/9NADhjJXZs2cjISEBkyZNwubNm3vM3Z76Ms4rCwZXq0xbG1BUJPxpHzCgY3pdHZCfL+xe\nqq0Vpk2fLjzr9Y59zJ0rfby9may9uoQFmUwGZ+FMmzYPJSUPAJjnouUfADwKeBwUztOiepon0O+L\n6yPQKXOVB3/6AyrhfpfR3wD8HJ6/H0Ca77F39OVNngKRV3/6a2gA/vUv4Cc/sfXXfZ7O3ctkwmmn\nI0YIP991F7BihVAUOu9OIuro66WXgCVLfA6xx5AqtzzaKWMsJO64o6MY2DzyCPDcc4BaLYx/1FnX\nv3eDBwMPPdS9384337l2TRj+4sYbPcdz5oxwdze1Wkz0vRMPXcEYCwsmE/CHP3Rca+Bp2Ir/9/8c\nf05KEp5tB5GfeQZ4+mlxw19s2wbExgLjx3sTce/DBYExFhaUSqDT5S+4ds39/P/+t+PP774rPN96\nq3CNQueCcfiw8z7a2oC//EXYMgF4BFYuCIz1YdXV1bjvvvuQmJiIpKQkvPzyywCE079VKhV0Oh10\nOh3KysqCGteWLcDate7nuf/+jtcqFRATI7xubgZ0OseL27rei8HmhhscdztduQK88w5gtQLHjvkW\ne0/GBYGxPkwul2PDhg04efIkjhw5gk2bNuGrr76CTCbD8uXLceLECZw4cQIPiLl0WELz5wPp6e7n\n0euB2bOF1+0jrqD9Qnv86EfCGUa/+IXw89//LuwWEnPc9b/+C9izB0hLA2bO9Cn8HosLAmN9WGRk\nJFJTUwEAAwcOxOjRo+3Dj4TRCYhOjRsH7NrlOG3hQuH52WeBfv2A118HFi0Spj3yiLBLSiYDTpwQ\nLmRz5V//Ep7ffRfYu1fcrqQLF4BDh7xfjnDCBYExBgA4d+4cTpw4gbvvvhsA8MorryAlJQULFixw\nGPI83Kxe3TFiqu2AdOdxktpHcXcwdqxwXwbAcSA92xDcnU9jzc4WjksYjR3T7JcGtrt2DZgzRzhr\nylaAeiIuCIwxXLp0CbNmzcLGjRsxcOBALFq0CEajEVVVVYiKisKKFStCHaJLv/kN8NvfCq9vuUX4\nQ9354HTnYw3O3HwzcO+9wi6ixYtdz/fSS8Kz1SrMN22aYx+224G89lrHdKPR+62GL77oGOMp2Pg6\nBMb6uNbWVjz44IOYN28eprdf8msbrwoQhkKf6uzfbPSMwSjl8o7XAwd23/0jl3dcu2AbftuZl18G\n7rlH2BKwycwUDmh3dfSocAxk1Cjh5y1bhOMizrzxhnDthdksFCXbwWxne+w+/VQoet99F6CBCyUZ\nAEMirsLhsYx8H79Gyjz40x+PZRSYvvzNq9Vqpby8PFq6dKnD9NraWvvr3/3ud5Sbmyuqv3AFEO3Y\nQbRrF9EjjxDNn9/xPXb1wQfC9PT07t/5Y4+5z8n06cLzqlXd3zt/3nlss2YJ71+75jh/V198IUyP\njCS6dKnr8kmTC95CYKwP++STT/D2229jzJgx0OmEoUXWrl2LHTt2oKqqCjKZDNHR0Xj99ddDHKl/\niDpe285M+vWvnQ+XMW6c8Pz220Brq3Ba6oABwq4fV1/D8uXCuEtyuXBmk7Ob98yYAbQPJgyg+2d3\nvYCuuVk4dnHrrY5bNXV1Hcc/3n8fmDzZeUw+kaSsSMRVOLyF4Pt/hVLmwZ/+eAshMH2FOq+91bFj\njj9brURjx3Z8988955iLv/+9Y97sbNc5s4mMdD3PSy8Jz19+KXyubfqyZc7nr66WLhd8UJkxxrq4\n6y7Hn2Uy4b4NAPCrXwGrVgmnmS5ZAvz1r45nMtkOLgMdxyZsZz8BwO9/L/yX78qSJcDddwOvvOJ4\ncHzDBuFCOmfzS4V3GTHGmAg7dgi7b2w34bn99o4zjzpLTAROnhRe33uvcFHc8OHAj3/suJvoscc6\ndkGNGAH84x8du4Juu8357qmtWzsG4Pvxj4Vp//iHJIsHgAsCY4yJMnAg8Nlnjv/tO/Pll44/u7ra\n+bXXgM2bgQMHut/VLT4e+OAD4fWIEcDXXwuFoPMWwsiRwnDgUuJdRowxJtKYMa7v++zJp592jMhq\nuxI6IsL5LT47F5G//lW4zqHr7qJ33xUKVEmJb/E441NBcDUgVmNjI7KyshAbG4vs7GyHqxv1ej20\nWi3i4+NR3nknGwsbtrwC4LwyJrFx44DPPwd++AGIi3M/7+jRwrPV6npI7rFjhQLl4hIR3/hyJNps\nNtOJEyeIiKi5uZliY2Pp1KlTVFhYSOvWrSMioqKiom733rVYLGQ0Gkmj0VBbW1u3fl2Fw2cZ+X5m\niTdseQUgeV75LKPA9OUNqdedQK6LzDtS5cKnLQRXA2KVlJSgoKAAAFBQUIDdu3cDAIqLi5Gbmwu5\nXA61Wo2YmBgcPXrUl49mAcR5Zaxv8/sYgm1ArPHjx6O+vh4KhQIAoFAoUF9fDwCora2FqtP13SqV\nyj6iIgtPnFfG+h6/zjK6dOkSHnzwQWzcuBG33nqrw3symaz95urOuXqvJ4yN0tsYDN3HRZE6r8Br\nAKLaX2e0P1ggOcsrY+74XBBsA2Ll5eXZB8RSKBSoq6tDZGQkzGazfYAspVKJ6k7XcptMJiiVSqf9\ndi4ILDg6F97W1lasXr1a8rwCvwSgC+BSsK66/kO1evXq0AXDegSfdhkRERYsWICEhAQsXbrUPj0n\nJwfbt28HAGzfvt3+ByUnJwc7d+6ExWKB0WjEmTNnkO7pdkgs6Gx5BcB5Zawv8uVI9MGDB0kmk1FK\nSgqlpqZSamoqlZaWUkNDA2VmZpJWq6WsrCy6cOGCvc2aNWtIo9FQXFwclZWVOe3XVTh8lpHvZ5Z4\nw5ZXAJLnlc8yCkxf3pB63Qnkusi8I1UuZO2dhQWZTAZn4UybNg8lJQ8AmOei5R8APArA3aLIPLwv\nZp5Avy+uj0CnzFUe/OkPqIT7XUZ/A/BzeP5+AGm+x97Rlzd5CkRew+jPR58mVS74SmXGGGMAuCAw\nxhhrxwWBMcYYAC4IjDHG2nFBYIwxBoDvh9AjubtSGACf+dGHeFoXAF4fmHhcEHokT6e2sr5DzGmu\njInDu4wYY4wB4ILAGGOsHRcExhhjALggMMYYa8cFgTHGGAAuCIwxxtpxQWCMMQaACwJjjLF2QS0I\nZWVliI+Ph1arxbp164L50SyAOK89V3V1Ne677z4kJiYiKSkJL7/8MgCgsbERWVlZiI2NRXZ2Npqa\nmkIcKQuGoBWEtrY2/OpXv0JZWRlOnTqFHTt24KuvvpKo9699bGcIcjtf+fZ5wbjBemDzauB2krbr\nTi6XY8OGDTh58iSOHDmCTZs24auvvkJRURGysrJw+vRpZGZmoqioSLLPdEXq9VXK/sI5NikFrSAc\nPXoUMTExUKvVkMvlmDNnDoqLiyXqnQtCZzKZDDKZDPfdd5/9deeHlAKbVwO3k7Rdd5GRkUhNTQUA\nDBw4EKNHj0ZNTQ1KSkpQUFAAACgoKMDu3bsl+0xXwvmPbjjHJqWgFYSamhqMGDHC/rNKpUJNTU2w\nPr6Pab8lL57r9Nr2kBbntfc4d+4cTpw4gfHjx6O+vh4KhQIAoFAoUF9fH+LoWDAEbXA7f/4z7dcP\nuPnmFyGX73L6/uXLR9HW5nP3zA9i8zpw4BJERNzm8v3W1lpcvSpVVMxbly5dwoMPPoiNGzfi1ltv\ndXgvEFuWLExRkBw+fJgmTpxo/3nt2rVUVFTkMA+6/zvLjxA9OK+98+GMxWKh7Oxs2rBhg31aXFwc\nmc1mIiKqra2luLi4bu1CvSz88JxbbwVtC2HcuHE4c+YMzp07h+HDh2PXrl3YsWOHwzzE47b3OJzX\nno2IsGDBAiQkJGDp0qX26Tk5Odi+fTtWrlyJ7du3Y/r06U7bst5FRkHMamlpKZYuXYq2tjYsWLAA\nzzzzTLA+mgUQ57Xn+uc//4l7770XY8aMse8W0uv1SE9Px+zZs/Htt99CrVbjnXfewe233x7iaFmg\nBbUgMMYYC19hcaWyrxc2ubqoRoy2tjbodDpMnTrVq1ibmpowa9YsjB49GgkJCThy5Iiodnq9HomJ\niUhOTsbcuXPR0tLidL758+dDoVAgOTnZPk3MRULO2hUWFmL06NFISUnBzJkzcfHiRVHtbF588UVE\nRESgsbFR1DJ2JTav/l4c1TWXYtt1zWVFRYWots5y6aydt7nU6/XQarW47bbbMHjwYNG5dNfOxlku\nbe3i4+NRXl7u9DtyRUxufV3+rvEcP34cycnJUKvVUKlUXq0nrvo8dOgQBgwYgBtvvBFDhgyxb9X6\nE59Wq8XixYtFr4ue+pPL5bjzzjuh0+mQnp4uSXxLlixxnlAbSY5E+OH69euk0WjIaDSSxWKhlJQU\nOnXqlKi2ZrOZTpw4QUREzc3NFBsbK7rtiy++SHPnzqWpU6d6FW9+fj5t2bKFiIhaW1upqanJYxuj\n0UjR0dF07do1IiKaPXs2bdu2zem8Bw4coMrKSkpKSrJPKywspHXr1hERUVFREa1cuVJUu/Lycmpr\nayMiopUrV4puR0T07bff0sSJE0mtVlNDQ4PHZezKm7y6yqOY5Sbqnkux7Zzl0lNbV7l01s6bXJ48\neZJSUlLIYrHQrl27SKVSicqlp3ZEznPZuZ3RaCSNRmPv3xOxufV1+W3xWK1WIiJKS0ujiooKMpvN\n9JOf/IRKS0tFrSee+ty/fz8REU2cOJHi4uLo4MGDfsVHRBQfH08ZGRke10Ux/anVasrMzKTS0lJJ\nvj8iokmTJjn011XIC8KhQ4cczlLR6/Wk1+t96mvatGn04YcfepyvurqaMjMzad++fTRlyhTR/Tc1\nNVF0dLTXcTU0NFBsbCw1NjZSa2srTZkyhfbu3etyfqPR6PBLFBcXR3V1dUQk/PF0dsaHs3ad/eMf\n/6CHHnpIdLtZs2bRZ5995nNB8Cev06ZNo71794pabme5FNPOVS49tXWWy/LycpftxOay69lZ9957\nL40aNcrp99M5l2LaOctl13YTJ06kw4cPO/28rrzJra/Lb4untraW4uPj7dN37NhBjz32GBF5Xk/E\n9rlt2zYaOnQoffnll371VV1dTUlJSTRlyhSP66KY/tRqNb3xxhv25ZX6+3Mm5LuMpLqwqfNFNZ4s\nW7YM69evR0SEd4tvNBoxdOhQPPLIIxg7diweffRRXLlyxWO7IUOGYMWKFRg5ciSGDx+O22+/Hfff\nf7/oz5XiIqGtW7di8uTJouYtLi6GSqXCmDFjvP4cG1/z6u3FUc5yKaads1xevnzZY1tnuczKyhKd\nI1fz1dbWQqVS2eeLjIzE9evXnfbROZee2rnKZdd23vze+fM7K3b5bX12na5UKlFTUyNqPfHUp9Vq\nRWpqKhYtWoRbb70ViYmJfsW3bNkyLF26FA0NDZIsr0wmw/r167Fz5068+eabkn5/roS8IEhxwcul\nS5cwa9YsbNy4EQMHDnQ77/vvv49hw4ZBp9N5fdrc9evXUVlZiccffxyVlZW45ZZbRI3x8s033+Cl\nl17CuXPnUFtbi0uXLuHPf/6zV59t48tFQmvWrEH//v0xd+5cj/NeuXIFa9euxerVq+3TvP2ebHF6\ny9uLo8Tk0tX3JSaXzto6y+Xbb78t6jPFxuZOIHMpNhapLlLz9YK369evS3IRXUREBKqqqvD3v/8d\njY2N+Pjjj33uy7YuxsbGer0uuvLJJ59gy5YtSE9Px6ZNm3Dw4EG/+hMj5AVBqVSiurra/nN1dbVD\nRfOktbUVDz74IObNm+f0XOmuDh06hJKSEkRHRyM3Nxf79u1Dfn6+qM9SqVRQqVRIS0sDAMyaNQuV\nlZUe2x07dgz33HMP7rjjDtxwww2YOXMmDh06JOozAeE/gbq6OgCA2WzGsGHDRLfdtm0b9uzZI7oA\nffPNNzh37hxSUlIQHR0Nk8mEu+66C999953ozwS8z6stj3l5efY8elpuZ7nMy8sT9X25ymVkZKTb\nts5yefjwYY/tbFzF1vX7qqurg1wud2jrLJfu2rnKZX19fbd2JpMJSqXSacxd+fM7K3b5TSYTVCoV\nlEolTCaTffq5c+fw5ZdfilpPxPbZ1NSEmJgYHD9+3Oe+bOvigw8+iM8//9zjuigmtqioKJhMJowa\nNQozZszA0aNH/V5Wj3l2uTMpSFpbW2nUqFFkNBqppaXFq4PKVquV8vLyaOnSpT59tsFg8OoYAhHR\nhAkT6OuvvyYioueee46eeuopj22qqqooMTGRrly5QlarlfLz8+nVV191OX/X/a6FhYX2/YN6vd7l\nQdKu7UpLSykhIYHOnz/vNj53xx58PYbgTV5d5VHschM55lJsu665LCws9NjWVS5dtRObS9tBwZaW\nFjp79iyNGDFCVC49tevM2UFlW7tRo0bZD0J64k1ufV3+zvGkp6fTkSNHqK2tjYYPH07Tp093+Axf\n+tTpdLR3716yWq2UnZ1NSUlJ9OGHH/oVn9VqpUmTJtG6des8roue+jMYDHTx4kWaNGkSvfvuu3TP\nPffQBx98IEl8YX1QmYhoz549FBsbSxqNhtauXSu63cGDB0kmk1FKSgqlpqZSamqq24XtymAweH2W\nUVVVFY0bN47GjBlDM2bMEHWWERHRunXrKCEhgZKSkig/P58sFovT+ebMmUNRUVEkl8tJpVLR1q1b\nqaGhgTIzM0mr1VJWVhZduHDBY7stW7ZQTEwMjRw50v7dLFq0yGW7/v372z+vs+joaJ8KApH4vLrK\no5jltumcS7HtnOVSTFtnuXTWzttcrlmzhjQaDd166600ZMgQ0bns2k5sLm3t4uLiqKyszOV364yY\n3Pq6/F3jOXbsGCUlJdHw4cMJgFfrias+d+7cSTfddBP179+f7rjjDnrhhReIyP264yk+jUZDixcv\nFr0uuusvNjaW+vfvT3feeSclJibav2Mp4nOHL0xjjDEGIAyOITDGGAsPXBAYY4wB4ILAGGOsHRcE\nxhhjALggMMYYa8cFgTHGGAAuCIwxxtpxQWCMMQYA+P9R0mYF1vrs4gAAAABJRU5ErkJggg==\n", "text": [ "" ] } ], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ "x = []\n", "y = []\n", "for i in xrange(len(system)):\n", " x.append(system[i][0])\n", " y.append(system[i][1])\n", "plt.scatter(x,y);" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEACAYAAABfxaZOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9sU/e9N/C3EYkWTb2jIWBaAgpL4gQnWWpGf+5WmGUn\nflZBBqGLgAkioK2eoXZql0F6W10tuyPYEeWu9Hboqo8KZO2zQaWuJa2ok9DOWVlLWUeL7sh6YZ1R\nA/lxW4LbtQs1kM/9w4khiRNsn2Ofc3zeLylSfGyf78fJOR9/z/fXsYmIgIiILGGa3gEQEVH6MOkT\nEVkIkz4RkYUw6RMRWQiTPhGRhTDpExFZSFxJf+PGjbDb7aioqIhu27JlCxYuXIjKykrU1tbi008/\njT7n9XpRXFyM0tJSdHR0aB81ERElJa6kv2HDBvj9/jHbqqurcfLkSZw4cQIOhwNerxcA0N3djQMH\nDqC7uxt+vx+bN2/G8PCw9pETEVHC4kr6d999N2688cYx2xRFwbRpkbfffvvtOHv2LADg4MGDWLNm\nDbKyslBQUICioiIcO3ZM47CJiCgZmrTp79mzB/fccw8AoLe3F/n5+dHn8vPzce7cOS2KISIilVQn\n/ebmZmRnZ2Pt2rWTvsZms6kthoiINDBdzZv37duHQ4cO4fXXX49umzt3Lnp6eqKPz549i7lz5054\nL78IiIiSo2rJNIlTMBiU8vLy6OPXXntNnE6nfPzxx2Ned/LkSamsrJQvv/xS/va3v8nXv/51GR4e\nnrC/BIo2pJ/+9Kd6h6AK49cX49ePmWMXUZ8746rpr1mzBl1dXfjkk08wb948/OxnP4PX60U4HIai\nKACAO++8E7t374bT6URdXR2cTiemT5+O3bt3s1ZPRGQQcSX93/zmNxO2bdy4cdLXP/bYY3jssceS\nj4qIiFKCM3KT5Ha79Q5BFcavL8avHzPHrgXbSBtR+gu22dR1RhARWZDa3MmaPhGRhTDpExFZCJM+\nEZGFMOkTEVkIkz4RkYUw6RMRWQiTPhGRhTDpExFZCJM+EZGFMOkTEVkIkz4RkYUw6RMRWQiTPhGR\nhTDpExFZCJM+EZGFMOkTEVkIkz4RkYUw6RMRWQiTPhGRhTDpExFZCJM+EZGFxJX0N27cCLvdjoqK\niui2wcFBKIoCh8OB6upqhEKh6HNerxfFxcUoLS1FR0eH9lETEVFS4kr6GzZsgN/vH7PN5/NBURSc\nOnUKVVVV8Pl8AIDu7m4cOHAA3d3d8Pv92Lx5M4aHh7WPnIgyQnt7O6qrV6G6ehXa29v1DifjxZX0\n7777btx4441jtrW1taG+vh4AUF9fj5dffhkAcPDgQaxZswZZWVkoKChAUVERjh07pnHYRJQJ2tvb\nsXJlPTo7a9DZWYOVK+uZ+FMs6Tb9gYEB2O12AIDdbsfAwAAAoLe3F/n5+dHX5efn49y5cyrDpHRg\njYvUHAPJvHfnzmcwNNQCoB5APYaGWrBz5zOJB05xm67FTmw2G2w225TPx9LU1BT93e12w+12axEO\nJWG0xhU5AYEjR+rx0kut8Hg8OkdG6aLmGODxkzqBQACBQEC7HUqcgsGglJeXRx+XlJRIX1+fiIj0\n9vZKSUmJiIh4vV7xer3R13k8Hjl69OiE/SVQNKWBotQKsE8AGfnZJ4pSq3dYlEZqjoFk3+v3+yUn\nxz7y3n2Sk2MXv9+v9qNMWpai1Iqi1KasjHRQmzuTbt6pqalBa2srAKC1tRUrVqyIbt+/fz/C4TCC\nwSBOnz6N2267TYvvJ8Nj8whRYjweD156qRWK0gZFaVN9dTDZOci+g2vE882wevVquemmmyQrK0vy\n8/Nlz549cv78eamqqpLi4mJRFEUuXLgQfX1zc7MUFhZKSUnJpN+ocRZtGumssaSC2eMn9dQcA0Y4\nfqaKIZOuZNXmTt0yb6Yl/Uw4qDLl8peSp+YY0Pv4meoczITzc5Ta3KlJRy5lBo/Hw443g2pvb4+O\namloeCBl/yc1x4AWx0+qPmdDwwM4cqQeQ0ORxzk5jWhoaNVk36aj0ZdPwnQsOiWMcHlLmckqx5ba\nz3m99+t9JaIVtbnTNrKTtLPZbNCp6JRJV22MrKW6ehU6O2sQGcsOAJGOz46OF/UMS7Xx58vOnc9M\n+Jy5uT/Hr3/9y7jPpWv3uWTJInR1HY/uP1POR7W5k807GmLzCFF8Yo3rLy0tmvC6wcFZWLky/jH/\no+cg5w1MQYOrjaToWDSRqWRi806sjlWXa8mYzwnYBfBP2uk6VXNNJnXcjqc2d3JpZSKD03osu1Hl\n5c3ESy9FmnSA/wTQCiD252xvb0dNzbrouPuamnXWHXefKI2+fBKmY9FEpLOprl7iubJxuZbEvFKI\nZ/9mpzZ3siOXiHQx1cCH6w2KmDmzCIOD/4rxnb7nz/817n2YldrcyaRPZBGZlAQXLfpnvPfefwN4\nYmTLT+ByleD48SN6hpUWTPpEdF3jR7Pk5DSaum8g0qa/GuFwKQAgO/sDtLXtN+3nSQSHbBLRdY1d\ntx4YGopsM1OSHL1S+eST8wAuY968m/E//9OLrKws/PjHPzHVZ9ETkz4RGd74KxXgR4ikr38HADQ3\nN2Lx4sVM/HHgkE2D4LLMlEoNDQ8gJ6cRkWGQrSNrzzygd1gTTHYejL/DFuBEJOFPfsctnlOxsaZv\nAJw9SKlybeft448/hK6uNgBAQ4Pxji8tzwOeU1NQNeBTBR2LNpxMnj1I+jHbWPWpzoPxnwX4JwFy\nJ/1smXxOqc2drOmbSCYNuaPUy4TO21Gjs5KvduRWjDyzF3l5Mw155WJYGn35JEzHog0nnhqZ2Wpt\npL901Ha1XK5Yy2M8k88XtbmTSd8grnfyZPLlKqVGqhNfKvav9ZdIJqyfPx6TvkUw6VMyUpX4/H6/\n5OYWqjom05WUMy35M+lbRCZfrpK5XD0W70g66afreM7E84ZJ30IyrcZC5jD+uLt61ekXYFY0oWZn\nzxK/3x/XcRrvlavaYz4Tr5DV5k6O3jER3pmL0i3WePebb559zSsuIbL2feT3d999F83N/8Gx9kam\n0ZdPwnQsmojiFKumfMMN8wTIi9m8E287fzzNLlrU0tm8M5HqZRi8Xi/KyspQUVGBtWvX4ssvv8Tg\n4CAURYHD4UB1dTVCoZD6bycyHE5zTx8j/a2zsrIRGfv/cdL7uPZuYC7X/0NpaSl27nxG8882tpy9\nKC0tSkk5pqLmGyMYDMqCBQvk4sWLIiJSV1cn+/btky1btkhLS4uIiPh8PmlsbJzwXpVFG0K629iN\n1KafiTUoo0rn33r8MRar7G3bto1saxip8cd6Lr5Y1d5BK5HPlSnHq9rcqerd58+fF4fDIYODg3Lp\n0iVZtmyZdHR0SElJifT394uISF9fn5SUlEws2ORJP90HkdEO2kzsIDOqdP2tJzvGYlU2Rre5XN8S\nl2tJzOfiqZxc77NpVdHJpONVbe5U1ZGbm5uLhoYGzJ8/Hzk5OfB4PFAUBQMDA7Db7QAAu92OgYEB\n1VckRpPuKe6ZNKWepjZ+uY10mewY6+h4ccJxNtWgAi0HHHDwgvZUJf0PP/wQTz75JM6cOYOvfe1r\n+P73v4/nn39+zGtsNhtsNlvM9zc1NUV/d7vdcLvdasKhNGpoeABHjtRjaCjyOLJUb6u+QWWAWCNW\nHn/8IRw50piRf+t0HUdmPl4DgQACgYB2O1RzmbB//37ZtGlT9PGvfvUr2bx5s5SWlkpfX5+IiPT2\n9rJ5x4TlxRuTUfoYMsVkzRDp+Fsncoxdbd5ZIi7Xt1TFxZm5iVGbO1W9+/3335eysjL5xz/+IcPD\nw7J+/Xp5+umnZcuWLeLz+URExOv1siPXpOVR+sXT9pzK4yCefU9c5jhPgAZDVESsQNekLyLS0tIi\nTqdTysvLZf369RIOh+X8+fNSVVUlxcXFoiiKXLhwYWLBGZD0ibS2bds2iawVf3Xd+G3btkWfN8IV\nX6wvJqDW1J2jZqI2d6qekbt161Zs3bp1zLbc3FwcPnxY7a6JLKer6ziA+wG0jWy5H11dx/H445FH\nWnfox+o0Ttc9G3h/CH1wGQYinV2b/D75ZABADYAnRp5tBRBMWbnXdhp3da0DcAnh8JMAJl/2YHyn\nKPATAPUxO0cnS+xcYkFHGl1xJEzHookMY3xzTXb2LMnOnjFp842WzTuxm2nuiGssezwduVPFmknj\n5tNNbe5kTZ9IR+Oba8JhwOXai7y82Dcwv/a2gbGeT1eTSTzj5zm3xJiY9IkMJi9vJjo6Xpz0+ckS\nbqJNJuObabKztyDSvBNpoknlWHYzj5s3PY2uOBKmY9FEhpHq5prrNZnEWmsnXfe85RDk5KjNnbaR\nnaSdzWaDTkUTGYpWTTLV1avQ2VmD0eYUILK65FRXDanGETraU5s7mfSJMsT45p2cnEaOiMlAanOn\n6vX0iUhbya6df+3a8YrSFlfCN9I6/ZQeTPpEBjJaW+/srEFnZw1WrqxPWTJWUxa/LExMZZ9C0nQs\nmsiw1IxfT7RTONmyjLAUhJWpzZ0cskmUIdI1Lp7j782NSZ/IQNI5fp1j5a2JSZ/IIEaHN5aWFgHY\ni7y8mRNm3E4l0SQea3YvEBn6Obq/WGXzy8LkNGpmSpiORRMZjlbt5GomPCVzExVOrEo/tbmT4/SJ\nDMAIE6uMEANdH8fpExGN4FDS62ObPpEBGKGdPJ4YjLysAtfojw+bd4gMwggJdaoYjL7Mg1Wap9Tm\nTtb0iQwinjXq9YxBzfh8I3yhUQSTPhGlVLqaXYzQRGYGbN4horgk27yTzmYXK1xRsHmHiNLierdq\nNAIjNJEZHWv6RJRSRu8ANhvdx+mHQiHce++9WLhwIZxOJ9555x0MDg5CURQ4HA5UV1cjFAqpLYaI\nTCqZdf4pdVTX9Ovr67FkyRJs3LgRly9fxhdffIHm5mbk5eVh69ataGlpwYULF+Dz+cYWzJo+0XUl\n20ZthbZtq1KdO9Ws4RAKhWTBggUTtpeUlEh/f7+IiPT19UlJScmE16gsmijjJbseD9e7z2xqc6eq\n5p1gMIhZs2Zhw4YNWLRoEe6//3588cUXGBgYgN1uBwDY7XYMDAyoKYbIsFI57X/suPhIm/ho7T0V\n7yNrUDV65/Llyzh+/Diefvpp3HrrrXj44YdjNuPYbLaY729qaor+7na74Xa71YRDlFac9k/pEAgE\nEAgEtNuhmsuEvr4+KSgoiD5+88035Z577pHS0lLp6+sTEZHe3l4271BGUnNrw3iweYdiUZs7VTXv\nzJkzB/PmzcOpU6cAAIcPH0ZZWRmWL1+O1tbITLjW1lasWLFC7XcTkeUkO+qFo2VoKqpH75w4cQL3\n3XcfwuEwCgsLsXfvXly5cgV1dXX46KOPUFBQgBdeeAEzZswYWzBH75DJcfw56UFt7uTkLCIVODSS\n0o1Jn4jIQnSfkUtERObBpE9EZCFM+pQw3oeUyLzYpk8J4YgVIn2xI5fSyir3ISUyKnbkEhFR3Hjn\nLEoI70NKZG5s3qGEcUISkX7Ypk9EZCFs0ycyOA5xJSNhTZ8ohTjElbTG5h0iA+MQV9Iam3eIiChu\nHLJJlEIc4kpGw+YdohTjEFfSEtv0iYgshG36REQUNyZ9IiILYdInIrIQJn0iIgth0icishAmfSIi\nC9Ek6V+5cgUulwvLly8HAAwODkJRFDgcDlRXVyMUCmlRDBERqaRJ0t+1axecTidsNhsAwOfzQVEU\nnDp1ClVVVfD5fFoUQybClSWJjEl10j979iwOHTqE++67LzphoK2tDfX1kQWm6uvr8fLLL6sthkxk\ndGXJzs4adHbWYOXKeiZ+IoNQnfQfeeQR7NixA9OmXd3VwMAA7HY7AMBut2NgYEBtMWQiO3c+M7KU\ncD2AyLLCo8sQEJG+VC249uqrr2L27NlwuVwIBAIxX2Oz2aLNPuM1NTVFf3e73XC73WrCISLKOIFA\nYNL8mgxVa+889thjeO655zB9+nRcvHgRn332GWpra/HHP/4RgUAAc+bMQV9fH5YuXYoPPvhgbMFc\neydj8cYhRKljmAXXurq68MQTT+CVV17B1q1bMXPmTDQ2NsLn8yEUCk3ozGXSz2xcWZIoNQyV9Hfu\n3Im2tjYMDg6irq4OH330EQoKCvDCCy9gxowZYwtm0iciSphhkn7CBTPpExEljEsrExFR3Jj0iYgs\nhEmfiMhCmPTJsLiUA5H22JFLhsSx/kSxcfQOZaTq6lXo7KxBZCkHAGiForSho+NFPcMi0h1H7xAR\nUdxUrb1DlCoNDQ/gyJF6DA1FHufkNKKhoVXfoIgyAJt3TMoKyxxY4TMSJYpt+hbETk4i62LStyB2\nchJZFztyiSyG8xdIDXbkmhA7Oa1rfNPekSP1bNqjhLB5x6TM1MlppliNjk17pDZ3sqZvEIkmRo/H\nY4rkyZopkbEw6RtAJifGsTdJB4aGItsy4bPpgU17pBaTvgEwMVK8PB4PXnqp9ZqrwsyoHFD6MOlT\nSrFmqj2zNO2RMbEj1wAyfbIVO3KJtMPJWRmCiTE+/DuR1THpk2Vk+hURUTw4I9dAOFMytcZ2eEeS\n/2itn4jiw45cjWTysEsiyhyqavo9PT1YunQpysrKUF5ejqeeegoAMDg4CEVR4HA4UF1djVAopEmw\nRsZaaOo1NDyAnJxGAK0AWkdGAj2gd1hEpqIq6WdlZeEXv/gFTp48iaNHj+KXv/wl/vKXv8Dn80FR\nFJw6dQpVVVXw+XxaxUsWNjpGXVHaoChtvJIiSoKmHbkrVqzAgw8+iAcffBBdXV2w2+3o7++H2+3G\nBx98MLbgDOvIZScjEaWDYUbvnDlzBkuWLMGf//xnzJ8/HxcuXAAAiAhyc3Ojj6MFZ1jSBzickIhS\nzxALrn3++edYtWoVdu3ahRtuuGHMczabDTabLeb7mpqaor+73W643W4twtENZ0rGj1+QRPEJBAII\nBAKa7U91Tf/SpUtYtmwZvvvd7+Lhhx8GAJSWliIQCGDOnDno6+vD0qVLM755h+LHpjCi5Ok6Tl9E\nsGnTJjidzmjCB4Camhq0tkbWV2ltbcWKFSvUFEMZhiOdiPSjKun/4Q9/wPPPP4/f/e53cLlccLlc\n8Pv9ePTRR9HZ2QmHw4E33ngDjz76qFbxmpoRJm8ZIQYi0pHoRMeideH3+yUnxy7APgH2SU6OXfx+\nv+ViMFIcRGakNncy6WvA7/eLotSKotROmrwUpXYkycnIzz5RlNq0xmmEGEbF8zcjisXqx47a3Mll\nGFTi8gvJ4UgnSgbPNw1o9OWTMB2L1lS8tWe/3y/Z2bOiTRrZ2bNk27Ztaa2xsFmFzM5IV6t6UZs7\nWdNPq0sA/hMAMDz8D/zbv+1COLwDQHpqLLzVHplZe3s7/vSnEwBq9A7F3DT68kmYjkVrKt7a88Qa\nyh2Wr7EQxevqedYgQJ6lr1bV5k7W9FVSV3v+LwCrRn5fkIrwiDLC2LkdCoAm5OZ+jF//Ov7zjbPA\nI5j0NRBPp+T4G4RPn/5fuHy5G8BTI6/4EZYs2ZrSOIn0om3C9QDoxze/2ZZQwmcH8AiNrjgSpmPR\nurl2qJnLtYTNO2QJWgwgULuPTOoAVps7ebvENPJ4POjoeBEdHS8iL2+mqn1xZi0Z1fhjU4tlN+K9\nlwLPizho9OWTMB2LNgQ1NRcOvSSjinVsulzfSkste6rzIpPOGbW5k0lfR8nOLMykS1XKLLGOTZdr\niWRnzxgZsXaHZGfPSKiCE+85cr3zIlNm8qrNnezITZF4Oq44K5Ws4TKALAD/d+Txluu+o729Hf/y\nLz/HiRPdGB7+BQD1na8830Zo9OWTMB2LTrlUX0pm0qUqZZbYzTuJDVq4uo/E5rJY5bxQmztZ00+B\nsR1XwNBQZJvaWsa1Vw91df8Hr7zycwDAj3/8EGswZAix5q0k2ml79fxpU102z4uJmPRNYvw4Y+BH\nAO4HUIHm5kYsXrx4ygOcE1MoXWI1o1w7RyUnpxENDa1x7OkBjFac4n0fm3DioNEVR8J0LDrlUnGZ\nGauTCqjlZS+ZQiKdqGOP1waZNm2muFxLeMyOUJs7WdNPAaNdZqaquYmsJ9krxkRq4BPPn//PY1VD\nTPopovVl5vhlHK4277QmcLlMlLx0LmXAZprUsY1cLqS/YJV3dLeia2tZS5YsQlfXcQDXr3GNP1lz\nchqtu+4IJa26ehU6O2twtZ09MkO2o+NFPcOyHLW5kzX9NFLbmTq+9vP44/G/z0jNTURA8ucDByWo\npEG/QlJ0LFoX7Ewls9PyGE52XzyPuAyDaXDpBMoEWi1lkOz5kMj7xsfKZRgi2LxDRHEzYgfrn/50\nAu3t7WPiGt+P1dW1DsAlhMNPAuB6+inx2muvSUlJiRQVFYnP55vwfAqLNiRelhJdpVXzTuTWiQ0T\n3h97XssdGXGlrTZ3piTzXr58WQoLCyUYDEo4HJbKykrp7u4eW7DFkr5I5qzyR6SFZM8Hv98vubmF\nI0ncHzOJM+lPLiXNO8eOHUNRUREKCgoAAKtXr8bBgwexcOHCVBRnGka8NCbSS7Lng8fjwTe/WTky\nfDT2+8fPa8nO3oJI805kPouV57akJOmfO3cO8+bNiz7Oz8/HO++8k4qiiMiCxif18Ul84jDl5wCA\nw5aRoqRvs9niel1TU1P0d7fbDbfbnYpwiCjDxDP3JNaVhBkTfSAQQCAQ0Gx/KZmRe/ToUTQ1NcHv\n9wMAvF4vpk2bhsbGxqsFc0YuEVHC1ObOlNwYffHixTh9+jTOnDmDcDiMAwcOoKamJhVFERFRAlLS\nvDN9+nQ8/fTT8Hg8uHLlCjZt2mT5TlwiIiPggmtERCZiyOYdIiIyJiZ9IiILYdInIrIQJn0iIgth\n0icishAmfSIiC2HSJyKyECZ9IiILYdInIrIQJn0iIgth0icishAmfSIiC2HSJyKyECZ9IiILYdIn\nIrIQJn0iIgth0icishAmfSIiC2HSJyKyECZ9IiILYdInIrIQJn0iIgtJOulv2bIFCxcuRGVlJWpr\na/Hpp59Gn/N6vSguLkZpaSk6Ojo0CZSIiNRLOulXV1fj5MmTOHHiBBwOB7xeLwCgu7sbBw4cQHd3\nN/x+PzZv3ozh4WHNAjaKQCCgdwiqMH59MX79mDl2LSSd9BVFwbRpkbfffvvtOHv2LADg4MGDWLNm\nDbKyslBQUICioiIcO3ZMm2gNxOwHDuPXF+PXj5lj14Imbfp79uzBPffcAwDo7e1Ffn5+9Ln8/Hyc\nO3dOi2KIiEil6VM9qSgK+vv7J2zfvn07li9fDgBobm5GdnY21q5dO+l+bDabyjCJiEgTosLevXvl\nrrvukqGhoeg2r9crXq83+tjj8cjRo0cnvBcAf/jDH/7wJ4kfNWwjCThhfr8fDQ0N6OrqQl5eXnR7\nd3c31q5di2PHjuHcuXP4zne+g7/+9a+s7RMRGcCUzTtTeeihhxAOh6EoCgDgzjvvxO7du+F0OlFX\nVwen04np06dj9+7dTPhERAaRdE2fiIjMJ+0zcjNhUpff70dpaSmKi4vR0tKidzhT6unpwdKlS1FW\nVoby8nI89dRTAIDBwUEoigKHw4Hq6mqEQiGdI53alStX4HK5ogMIzBR/KBTCvffei4ULF8LpdOKd\nd94xVfxerxdlZWWoqKjA2rVr8eWXXxo6/o0bN8Jut6OioiK6bap4jZZ3YsWvad5U1SOQhI6ODrly\n5YqIiDQ2NkpjY6OIiJw8eVIqKyslHA5LMBiUwsLC6OuM5PLly1JYWCjBYFDC4bBUVlZKd3e33mFN\nqq+vT9577z0REfn73/8uDodDuru7ZcuWLdLS0iIiIj6fL/p/MKqdO3fK2rVrZfny5SIipop//fr1\n8uyzz4qIyKVLlyQUCpkm/mAwKAsWLJCLFy+KiEhdXZ3s27fP0PH//ve/l+PHj0t5eXl022TxGjHv\nxIpfy7yZ9qR/rd/+9rfygx/8QEREtm/fLj6fL/qcx+ORt99+W6/QJvXWW2+Jx+OJPh4/Wsnovve9\n70lnZ6eUlJRIf3+/iES+GEpKSnSObHI9PT1SVVUlb7zxhixbtkxExDTxh0IhWbBgwYTtZon//Pnz\n4nA4ZHBwUC5duiTLli2Tjo4Ow8cfDAbHJM3J4jVq3hkf/7XU5k1dF1wz46Suc+fOYd68edHHRo0z\nljNnzuC9997D7bffjoGBAdjtdgCA3W7HwMCAztFN7pFHHsGOHTuiM8ABmCb+YDCIWbNmYcOGDVi0\naBHuv/9+fPHFF6aJPzc3Fw0NDZg/fz5uvvlmzJgxA4qimCb+UZPFa5a8cy21eTMlSV9RFFRUVEz4\neeWVV6KvMeukLiPGFI/PP/8cq1atwq5du3DDDTeMec5msxn2c7366quYPXs2XC4XZJIxB0aO//Ll\nyzh+/Dg2b96M48eP46tf/Sp8Pt+Y1xg5/g8//BBPPvkkzpw5g97eXnz++ed4/vnnx7zGyPHHcr14\njfxZtMibSQ/ZnEpnZ+eUz+/btw+HDh3C66+/Ht02d+5c9PT0RB+fPXsWc+fOTUV4qoyPs6enZ8w3\nrRFdunQJq1atwrp167BixQoAkdpOf38/5syZg76+PsyePVvnKGN766230NbWhkOHDuHixYv47LPP\nsG7dOtPEn5+fj/z8fNx6660AgHvvvRderxdz5swxRfzvvvsu7rrrLsycORMAUFtbi7fffts08Y+a\n7HgxS94BtMubaW/e8fv92LFjBw4ePIivfOUr0e01NTXYv38/wuEwgsEgTp8+jdtuuy3d4V3X4sWL\ncfr0aZw5cwbhcBgHDhxATU2N3mFNSkSwadMmOJ1OPPzww9HtNTU1aG1tBQC0trZGvwyMZvv27ejp\n6UEwGMT+/fvx7W9/G88995xp4p8zZw7mzZuHU6dOAQAOHz6MsrIyLF++3BTxl5aW4ujRoxgaGoKI\n4PDhw3A6naaJf9Rkx4tZ8o6meVOjfoe4FRUVyfz58+WWW26RW265RX74wx9Gn2tubpbCwkIpKSkR\nv9+f7tDidujQIXE4HFJYWCjbt2/XO5wpvfnmm2Kz2aSysjL6N3/ttdfk/PnzUlVVJcXFxaIoily4\ncEHvUK9sB82fAAAAjElEQVQrEAhER++YKf73339fFi9eLN/4xjdk5cqVEgqFTBV/S0uLOJ1OKS8v\nl/Xr10s4HDZ0/KtXr5abbrpJsrKyJD8/X/bs2TNlvEbLO+Pjf/bZZzXNm5ycRURkIbxdIhGRhTDp\nExFZCJM+EZGFMOkTEVkIkz4RkYUw6RMRWQiTPhGRhTDpExFZyP8CE7pUSl9q2CgAAAAASUVORK5C\nYII=\n", "text": [ "" ] } ], "prompt_number": 6 }, { "cell_type": "code", "collapsed": false, "input": [], "language": "python", "metadata": {}, "outputs": [] }, { "cell_type": "code", "collapsed": false, "input": [ "def local_energy(site):\n", " local_sum = 0\n", " for i in xrange(len(system)):\n", " if site != i:\n", " tempx = system[site][0] - system[i][0]\n", " tempy = system[site][1] - system[i][1]\n", " if tempx > 50:\n", " if temp y > 50 :\n", " \n", " dist = spd.euclidean(system[site],system[i])\n", " local_sum += -((1/dist)**12-(1/dist)**6)\n", " return local_sum" ], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }