-- https://plfa.github.io/More/
import Plfl.Init
-- This module was extended from the original one for .
namespace More
-- https://plfa.github.io/More/#types
inductive Ty where
/-- Native natural type made of 𝟘 and ι. -/
| nat : Ty
/-- Primitive natural type, a simple wrapper around LEAN's own ℕ type. -/
| natP : Ty
/-- Product type. -/
| prod : Ty → Ty → Ty
/-- Sum type. -/
| sum : Ty → Ty → Ty
/-- Arrow type. -/
| fn : Ty → Ty → Ty
/-- Unit type. -/
| unit : Ty
/-- Void type. -/
| void : Ty
/-- List type. -/
| list : Ty → Ty
deriving BEq, DecidableEq, Repr
namespace Notation
open Ty
scoped notation "ℕt" => nat
scoped notation "ℕp" => natP
-- Operator overloadings for `prod` and `sum` types.
instance : Mul Ty where mul := prod
instance : Add Ty where add := sum
scoped infixr:70 " =⇒ " => fn
scoped notation "◯" => unit
scoped notation "∅" => void
end Notation
open Notation
namespace Ty
example : Ty := (ℕt =⇒ ℕt) =⇒ ℕt
example : Ty := ℕp * ℕt
theorem t_to_t'_ne_t (t t' : Ty) : (t =⇒ t') ≠ t := by
by_contra h; match t with
| nat => contradiction
| fn ta tb => injection h; have := t_to_t'_ne_t ta tb; contradiction
end Ty
-- https://plfa.github.io/DeBruijn/#contexts
abbrev Context : Type := List Ty
namespace Context
abbrev snoc (Γ : Context) (a : Ty) : Context := a :: Γ
abbrev lappend (Γ : Context) (Δ : Context) : Context := Δ ++ Γ
end Context
namespace Notation
open Context
-- `‚` is not a comma! See:
scoped infixl:50 "‚ " => snoc
scoped infixl:45 "‚‚ " => lappend
end Notation
-- https://plfa.github.io/DeBruijn/#variables-and-the-lookup-judgment
inductive Lookup : Context → Ty → Type where
| z : Lookup (Γ‚ t) t
| s : Lookup Γ t → Lookup (Γ‚ t') t
deriving DecidableEq, Repr
namespace Notation
open Lookup
scoped infix:40 " ∋ " => Lookup
-- https://github.com/arthurpaulino/lean4-metaprogramming-book/blob/d6a227a63c55bf13d49d443f47c54c7a500ea27b/md/main/macros.md#simplifying-macro-declaration
scoped syntax "get_elem" (ppSpace term) : term
scoped macro_rules | `(term| get_elem $n) => match n.1.toNat with
| 0 => `(term| Lookup.z)
| n+1 => `(term| Lookup.s (get_elem $(Lean.quote n)))
scoped macro "♯" n:term:90 : term => `(get_elem $n)
end Notation
namespace Lookup
example : ∅‚ ℕt =⇒ ℕt‚ ℕt ∋ ℕt := .z
example : ∅‚ ℕt =⇒ ℕt‚ ℕt ∋ ℕt := ♯0
example : ∅‚ ℕt =⇒ ℕt‚ ℕt ∋ ℕt =⇒ ℕt := .s .z
example : ∅‚ ℕt =⇒ ℕt‚ ℕt ∋ ℕt =⇒ ℕt := ♯1
end Lookup
-- https://plfa.github.io/DeBruijn/#terms-and-the-typing-judgment
/--
A term with typing judgement embedded in itself.
-/
inductive Term : Context → Ty → Type where
-- Lookup
| var : Γ ∋ a → Term Γ a
-- Lambda
| lam : Term (Γ‚ a) b → Term Γ (a =⇒ b)
| ap : Term Γ (a =⇒ b) → Term Γ a → Term Γ b
-- Native natural
| zero : Term Γ ℕt
| succ : Term Γ ℕt → Term Γ ℕt
| case : Term Γ ℕt → Term Γ a → Term (Γ‚ ℕt) a → Term Γ a
-- Fixpoint
| mu : Term (Γ‚ a) a → Term Γ a
-- Primitive natural
| prim : ℕ → Term Γ ℕp
| mulP : Term Γ ℕp → Term Γ ℕp → Term Γ ℕp
-- Let expression
| let : Term Γ a → Term (Γ‚ a) b → Term Γ b
-- Product
| prod : Term Γ a → Term Γ b → Term Γ (a * b)
| fst : Term Γ (a * b) → Term Γ a
| snd : Term Γ (a * b) → Term Γ b
-- Product (alternative formulation)
-- | caseProd : Term Γ (a * b) → Term (Γ‚ a‚ b) c → Term Γ c
-- Sum
| left : Term Γ a → Term Γ (a + b)
| right : Term Γ b → Term Γ (a + b)
| caseSum : Term Γ (a + b) → Term (Γ‚ a) c → Term (Γ‚ b) c → Term Γ c
-- Void
| caseVoid : Term Γ ∅ → Term Γ a
-- Unit
| unit : Term Γ ◯
-- List
| nil : Term Γ (.list a)
| cons : Term Γ a → Term Γ (.list a) → Term Γ (.list a)
| caseList : Term Γ (.list a) → Term Γ b → Term (Γ‚ a‚ .list a) b → Term Γ b
deriving DecidableEq, Repr
namespace Notation
open Term
scoped infix:40 " ⊢ " => Term
scoped prefix:50 "ƛ " => lam
scoped prefix:50 "μ " => mu
scoped notation "𝟘? " => case
scoped infixr:min " $ " => ap
scoped infixl:70 " □ " => ap
scoped infixl:70 " ⋄ " => mulP
scoped prefix:80 "ι " => succ
scoped prefix:90 "` " => var
scoped notation "𝟘" => zero
scoped notation "◯" => unit
-- https://plfa.github.io/DeBruijn/#abbreviating-de-bruijn-indices
scoped macro "#" n:term:90 : term => `(`♯$n)
end Notation
namespace Term
example : ∅‚ ℕt =⇒ ℕt‚ ℕt ⊢ ℕt := #0
example : ∅‚ ℕt =⇒ ℕt‚ ℕt ⊢ ℕt =⇒ ℕt := #1
example : ∅‚ ℕt =⇒ ℕt‚ ℕt ⊢ ℕt := #1 $ #0
example : ∅‚ ℕt =⇒ ℕt‚ ℕt ⊢ ℕt := #1 $ #1 $ #0
example : ∅‚ ℕt =⇒ ℕt ⊢ ℕt =⇒ ℕt := ƛ (#1 $ #1 $ #0)
def ofNat : ℕ → Γ ⊢ ℕt
| 0 => .zero
| n + 1 => .succ <| ofNat n
instance : Coe ℕ (Γ ⊢ ℕt) where coe := ofNat
instance : OfNat (Γ ⊢ ℕt) n where ofNat := ofNat n
-- https://plfa.github.io/DeBruijn/#test-examples
example : Γ ⊢ ℕt := ι ι 𝟘
example : Γ ⊢ ℕt := 2
@[simp] abbrev add : Γ ⊢ ℕt =⇒ ℕt =⇒ ℕt := μ ƛ ƛ (𝟘? (#1) (#0) (ι (#3 □ #0 □ #1)))
abbrev four : Γ ⊢ ℕt := add □ 2 □ 2
/--
The Church numeral Ty.
-/
abbrev Ch (t : Ty) : Ty := (t =⇒ t) =⇒ t =⇒ t
@[simp] abbrev succC : Γ ⊢ ℕt =⇒ ℕt := ƛ ι #0
@[simp] abbrev twoC : Γ ⊢ Ch a := ƛ ƛ (#1 $ #1 $ #0)
@[simp] abbrev addC : Γ ⊢ Ch a =⇒ Ch a =⇒ Ch a := ƛ ƛ ƛ ƛ (#3 □ #1 $ #2 □ #1 □ #0)
abbrev four' : Γ ⊢ ℕt := addC □ twoC □ twoC □ succC □ 𝟘
@[simp] abbrev mul : Γ ⊢ ℕt =⇒ ℕt =⇒ ℕt := μ ƛ ƛ (𝟘? (#1) 𝟘 (add □ #1 $ #3 □ #0 □ #1))
abbrev four'' : Γ ⊢ ℕt := mul □ 2 □ 2
-- https://plfa.github.io/DeBruijn/#exercise-mul-recommended
@[simp] abbrev mulC : Γ ⊢ Ch a =⇒ Ch a =⇒ Ch a := ƛ ƛ ƛ ƛ (#3 □ (#2 □ #1) □ #0)
-- https://plfa.github.io/More/#example
example : ∅ ⊢ ℕp =⇒ ℕp := ƛ #0 ⋄ #0 ⋄ #0
end Term
namespace Subst
-- https://plfa.github.io/DeBruijn/#renaming
/--
If one context maps to another,
the mapping holds after adding the same variable to both contexts.
-/
def ext : (∀ {a}, Γ ∋ a → Δ ∋ a) → Γ‚ b ∋ a → Δ‚ b ∋ a := by
intro ρ; intro
| .z => exact .z
| .s x => refine .s ?_; exact ρ x
/--
If one context maps to another,
then the type judgements are the same in both contexts.
-/
def rename : (∀ {a}, Γ ∋ a → Δ ∋ a) → Γ ⊢ a → Δ ⊢ a := by
intro ρ; intro
| ` x => exact ` (ρ x)
| ƛ n => exact ƛ (rename (ext ρ) n)
| l □ m => exact rename ρ l □ rename ρ m
| 𝟘 => exact 𝟘
| ι n => exact ι (rename ρ n)
| 𝟘? l m n => exact 𝟘? (rename ρ l) (rename ρ m) (rename (ext ρ) n)
| μ n => exact μ (rename (ext ρ) n)
| .prim n => exact .prim n
| m ⋄ n => exact rename ρ m ⋄ rename ρ n
| .let m n => exact .let (rename ρ m) (rename (ext ρ) n)
| .prod m n => exact .prod (rename ρ m) (rename ρ n)
| .fst n => exact .fst (rename ρ n)
| .snd n => exact .snd (rename ρ n)
| .left n => exact .left (rename ρ n)
| .right n => exact .right (rename ρ n)
| .caseSum s l r => exact .caseSum (rename ρ s) (rename (ext ρ) l) (rename (ext ρ) r)
| .caseVoid v => exact .caseVoid (rename ρ v)
| ◯ => exact ◯
| .nil => exact .nil
| .cons m n => exact .cons (rename ρ m) (rename ρ n)
| .caseList l m n => exact .caseList (rename ρ l) (rename ρ m) (rename (ext (ext ρ)) n)
abbrev shift : Γ ⊢ a → Γ‚ b ⊢ a := rename .s
example
: let m : ∅‚ ℕt =⇒ ℕt ⊢ ℕt =⇒ ℕt := ƛ (#1 $ #1 $ #0)
let m' : ∅‚ ℕt =⇒ ℕt‚ ℕt ⊢ ℕt =⇒ ℕt := ƛ (#2 $ #2 $ #0)
shift m = m'
:= rfl
-- https://plfa.github.io/DeBruijn/#simultaneous-substitution
/--
If the variables in one context maps to some terms in another,
the mapping holds after adding the same variable to both contexts.
-/
def exts : (∀ {a}, Γ ∋ a → Δ ⊢ a) → Γ‚ b ∋ a → Δ‚ b ⊢ a := by
intro σ; intro
| .z => exact `.z
| .s x => apply shift; exact σ x
/--
General substitution for multiple free variables.
If the variables in one context maps to some terms in another,
then the type judgements are the same before and after the mapping,
i.e. after replacing the free variables in the former with (expanded) terms.
-/
def subst : (∀ {a}, Γ ∋ a → Δ ⊢ a) → Γ ⊢ a → Δ ⊢ a := by
intro σ; intro
| ` i => exact σ i
| ƛ n => exact ƛ (subst (exts σ) n)
| l □ m => exact subst σ l □ subst σ m
| 𝟘 => exact 𝟘
| ι n => exact ι (subst σ n)
| 𝟘? l m n => exact 𝟘? (subst σ l) (subst σ m) (subst (exts σ) n)
| μ n => exact μ (subst (exts σ) n)
| .prim n => exact .prim n
| m ⋄ n => exact subst σ m ⋄ subst σ n
| .let m n => exact .let (subst σ m) (subst (exts σ) n)
| .prod m n => exact .prod (subst σ m) (subst σ n)
| .fst n => exact .fst (subst σ n)
| .snd n => exact .snd (subst σ n)
| .left n => exact .left (subst σ n)
| .right n => exact .right (subst σ n)
| .caseSum s l r => exact .caseSum (subst σ s) (subst (exts σ) l) (subst (exts σ) r)
| .caseVoid v => exact .caseVoid (subst σ v)
| ◯ => exact ◯
| .nil => exact .nil
| .cons m n => exact .cons (subst σ m) (subst σ n)
| .caseList l m n => exact .caseList (subst σ l) (subst σ m) (subst (exts (exts σ)) n)
abbrev subst₁σ (v : Γ ⊢ b) : ∀ {a}, Γ‚ b ∋ a → Γ ⊢ a := by
introv; intro
| .z => exact v
| .s x => exact ` x
/--
Substitution for one free variable `v` in the term `n`.
-/
abbrev subst₁ (v : Γ ⊢ b) (n : Γ‚ b ⊢ a) : Γ ⊢ a := by
refine subst ?_ n; exact subst₁σ v
/--
Substitution for two free variables `v` and `w'` in the term `n`.
-/
abbrev subst₂ (v : Γ ⊢ b) (w : Γ ⊢ c) (n : Γ‚ b‚ c ⊢ a) : Γ ⊢ a := by
refine subst ?_ n; introv; intro
| .z => exact w
| .s .z => exact v
| .s (.s x) => exact ` x
end Subst
namespace Notation
open Subst
scoped notation:90 n "⟦" m "⟧" => subst₁ m n
end Notation
open Subst
namespace Subst
example
: let m : ∅ ⊢ ℕt =⇒ ℕt := ƛ (ι #0)
let m' : ∅‚ ℕt =⇒ ℕt ⊢ ℕt =⇒ ℕt := ƛ (#1 $ #1 $ #0)
let n : ∅ ⊢ ℕt =⇒ ℕt := ƛ (ƛ ι #0) □ ((ƛ ι #0) □ #0)
m'⟦m⟧ = n
:= rfl
example
: let m : ∅‚ ℕt =⇒ ℕt ⊢ ℕt := #0 $ 𝟘
let m' : ∅‚ ℕt =⇒ ℕt‚ ℕt ⊢ (ℕt =⇒ ℕt) =⇒ ℕt := ƛ (#0 $ #1)
let n : ∅‚ ℕt =⇒ ℕt ⊢ (ℕt =⇒ ℕt) =⇒ ℕt := ƛ (#0 $ #1 $ 𝟘)
m'⟦m⟧ = n
:= rfl
end Subst
inductive Value : Γ ⊢ a → Type where
| lam : Value (ƛ (n : Γ‚ a ⊢ b))
| zero : Value 𝟘
| succ : Value n → Value (ι n)
| prim : (n : ℕ) → Value (@Term.prim Γ n)
| prod : Value (v : Γ ⊢ a) → Value (w : Γ ⊢ b) → Value (.prod v w)
| left : Value v → Value (.left v)
| right : Value v → Value (.right v)
| unit : Value ◯
| nil : Value .nil
| cons : ∀ {v : Γ ⊢ a} {vs : Γ ⊢ .list a}, Value v → Value vs → Value (.cons v vs)
deriving DecidableEq, Repr
namespace Notation
scoped notation "V𝟘" => Value.zero
end Notation
namespace Value
def ofNat : (n : ℕ) → @Value Γ ℕt (Term.ofNat n)
| 0 => V𝟘
| n + 1 => succ <| ofNat n
end Value
-- https://plfa.github.io/DeBruijn/#reduction
/--
`Reduce t t'` says that `t` reduces to `t'` via a given step.
-/
inductive Reduce : (Γ ⊢ a) → (Γ ⊢ a) → Prop where
| lamβ : Value v → Reduce ((ƛ n) □ v) (n⟦v⟧)
| apξ₁ : Reduce l l' → Reduce (l □ m) (l' □ m)
| apξ₂ : Value v → Reduce m m' → Reduce (v □ m) (v □ m')
| zeroβ : Reduce (𝟘? 𝟘 m n) m
| succβ : Value v → Reduce (𝟘? (ι v) m n) (n⟦v⟧)
| succξ : Reduce m m' → Reduce (ι m) (ι m')
| caseξ : Reduce l l' → Reduce (𝟘? l m n) (𝟘? l' m n)
| muβ : Reduce (μ n) (n⟦μ n⟧)
-- https://plfa.github.io/More/#reduction
| mulPξ₁ : Reduce l l' → Reduce (l ⋄ m) (l' ⋄ m)
| mulPξ₂ : Reduce m m' → Reduce (l ⋄ m) (l ⋄ m')
| mulPδ : Reduce ((.prim c) ⋄ (.prim d)) (.prim (c * d))
-- https://plfa.github.io/More/#reduction-1
| letξ : Reduce m m' → Reduce (.let m n) (.let m' n)
| letβ : Value v → Reduce (.let v n) (n⟦v⟧)
-- https://plfa.github.io/More/#reduction-2
| prodξ₁ : Reduce m m' → Reduce (.prod m n) (.prod m' n)
| prodξ₂ : Reduce n n' → Reduce (.prod m n) (.prod m n')
| fstξ : Reduce l l' → Reduce (.fst l) (.fst l')
| fstβ : Value v → Value w → Reduce (.fst (.prod v w)) v
| sndξ : Reduce l l' → Reduce (.snd l) (.snd l')
| sndβ : Value v → Value w → Reduce (.snd (.prod v w)) w
-- https://plfa.github.io/More/#reduction-3
-- | caseProdξ : Reduce l l' → Reduce (.caseProd l m) (.caseProd l' m)
-- | caseProdβ
-- : Value (v : Γ ⊢ a)
-- → Value (w : Γ ⊢ b)
-- → Reduce (.caseProd (.prod v w) (m : Γ‚ a‚ b ⊢ c)) (subst₂ v w m)
-- https://plfa.github.io/More/#reduction-4
| caseSumξ : Reduce s s' → Reduce (.caseSum s l r) (.caseSum s' l r)
| leftξ : Reduce m m' → Reduce (.left m) (.left m')
| leftβ : Value v → Reduce (.caseSum (.left v) l r) (l⟦v⟧)
| rightξ : Reduce m m' → Reduce (.right m) (.right m')
| rightβ : Value v → Reduce (.caseSum (.right v) l r) (r⟦v⟧)
-- https://plfa.github.io/More/#reduction-7
| caseVoidξ : Reduce l l' → Reduce (.caseVoid l) (.caseVoid l')
-- https://plfa.github.io/More/#reduction-8
| caseListξ : Reduce l l' → Reduce (.caseList l m n) (.caseList l' m n)
| nilβ : Reduce (.caseList .nil m n) m
| consξ₁ : Reduce m m' → Reduce (.cons m n) (.cons m' n)
| consξ₂ : Reduce n n' → Reduce (.cons v n) (.cons v n')
| consβ : Reduce (.caseList (.cons v w) m n) (subst₂ v w n)
-- https://plfa.github.io/DeBruijn/#reflexive-and-transitive-closure
namespace Notation
scoped infix:40 " —→ " => Reduce
end Notation
namespace Reduce
/--
A reflexive and transitive closure,
defined as a sequence of zero or more steps of the underlying relation `—→`.
-/
abbrev Clos {Γ a} := Relation.ReflTransGen (α := Γ ⊢ a) Reduce
end Reduce
namespace Notation
scoped infix:20 " —↠ " => Reduce.Clos
end Notation
namespace Reduce.Clos
abbrev refl : m —↠ m := .refl
abbrev tail : (m —↠ n) → (n —→ n') → (m —↠ n') := .tail
abbrev head : (m —→ n) → (n —↠ n') → (m —↠ n') := .head
abbrev single : (m —→ n) → (m —↠ n) := .single
instance : Coe (m —→ n) (m —↠ n) where coe r := .single r
instance : Trans (α := Γ ⊢ a) Clos Reduce Clos where trans c r := c.tail r
instance : Trans (α := Γ ⊢ a) Reduce Reduce Clos where trans r r' := .tail r r'
instance : Trans (α := Γ ⊢ a) Reduce Clos Clos where trans r c := .head r c
end Reduce.Clos
namespace Reduce
-- https://plfa.github.io/DeBruijn/#examples
open Term
example : twoC □ succC □ @zero ∅ —↠ 2 := calc
twoC □ succC □ 𝟘
_ —→ (ƛ (succC $ succC $ #0)) □ 𝟘 := by apply apξ₁; apply lamβ; exact Value.lam
_ —→ (succC $ succC $ 𝟘) := by apply lamβ; exact V𝟘
_ —→ succC □ 1 := by apply apξ₂; apply Value.lam; exact lamβ V𝟘
_ —→ 2 := by apply lamβ; exact Value.ofNat 1
end Reduce
-- https://plfa.github.io/DeBruijn/#values-do-not-reduce
def Value.not_reduce : Value m → ∀ {n}, ¬ m —→ n := by
introv v; intro r
cases v with try contradiction
| succ v => cases r; · case succξ => apply not_reduce v; trivial
| prod => cases r with
| prodξ₁ r => rename_i v _ _; apply not_reduce v; trivial
| prodξ₂ r => rename_i v _; apply not_reduce v; trivial
| left v => cases r; · case leftξ => apply not_reduce v; trivial
| right v => cases r; · case rightξ => apply not_reduce v; trivial
| cons => cases r with
| consξ₁ r => rename_i v _ _; apply not_reduce v; trivial
| consξ₂ r => rename_i v _; apply not_reduce v; trivial
def Reduce.empty_value : m —→ n → IsEmpty (Value m) := by
intro r; is_empty; intro v; exact Value.not_reduce v r
/--
If a term `m` is not ill-typed, then it either is a value or can be reduced.
-/
inductive Progress (m : ∅ ⊢ a) where
| step : (m —→ n) → Progress m
| done : Value m → Progress m
def Progress.progress : (m : ∅ ⊢ a) → Progress m := open Reduce in by
intro
| ` _ => contradiction
| ƛ _ => exact .done .lam
| l □ m => match progress l with
| .step _ => apply step; apply apξ₁; trivial
| .done l => match progress m with
| .step _ => apply step; apply apξ₂ <;> trivial
| .done _ => match l with
| .lam => apply step; apply lamβ; trivial
| 𝟘 => exact .done V𝟘
| ι n => match progress n with
| .step _ => apply step; apply succξ; trivial
| .done _ => apply done; apply Value.succ; trivial
| 𝟘? l m n => match progress l with
| .step _ => apply step; apply caseξ; trivial
| .done v => match v with
| .zero => exact .step zeroβ
| .succ _ => apply step; apply succβ; trivial
| μ _ => exact .step muβ
| .prim n => exact .done (.prim n)
| m ⋄ n => match progress m with
| .step _ => apply step; apply mulPξ₁; trivial
| .done m => match progress n with
| .step _ => apply step; apply mulPξ₂; trivial
| .done n => match m, n with
| .prim m, .prim n => exact .step mulPδ
| .let m n => match progress m with
| .step _ => apply step; apply letξ; trivial
| .done m => apply step; apply letβ; trivial
| .prod m n => match progress m with
| .step _ => apply step; apply prodξ₁; trivial
| .done m => match progress n with
| .step _ => apply step; apply prodξ₂; trivial
| .done n => exact .done (.prod m n)
| .fst n => match progress n with
| .step _ => apply step; apply fstξ; trivial
| .done n => match n with
| .prod v w => apply step; apply fstβ <;> trivial
| .snd n => match progress n with
| .step _ => apply step; apply sndξ; trivial
| .done n => match n with
| .prod v w => apply step; apply sndβ <;> trivial
| .left n => match progress n with
| .step _ => apply step; apply leftξ; trivial
| .done n => exact .done (.left n)
| .right n => match progress n with
| .step _ => apply step; apply rightξ; trivial
| .done n => exact .done (.right n)
| .caseSum s l r => match progress s with
| .step _ => apply step; apply caseSumξ; trivial
| .done s => match s with
| .left _ => apply step; apply leftβ; trivial
| .right _ => apply step; apply rightβ; trivial
| .caseVoid v => match progress v with
| .step _ => apply step; apply caseVoidξ; trivial
| .done _ => contradiction
| ◯ => exact .done .unit
| .nil => exact .done .nil
| .cons m n => match progress m with
| .step _ => apply step; apply consξ₁; trivial
| .done _ => match progress n with
| .step _ => apply step; apply consξ₂; trivial
| .done _ => refine .done (.cons ?_ ?_) <;> trivial
| .caseList l m n => match progress l with
| .step _ => apply step; apply caseListξ; trivial
| .done l => match l with
| .nil => apply step; exact nilβ
| .cons _ w => apply step; exact consβ
open Progress (progress)
inductive Result (n : Γ ⊢ a) where
| done (val : Value n)
| dnf
deriving BEq, DecidableEq, Repr
inductive Steps (l : Γ ⊢ a) where
| steps : ∀{n : Γ ⊢ a}, (l —↠ n) → Result n → Steps l
def eval (gas : ℕ) (l : ∅ ⊢ a) : Steps l :=
if gas = 0 then
⟨.refl, .dnf⟩
else
match progress l with
| .done v => .steps .refl <| .done v
| .step r =>
let ⟨rs, res⟩ := eval (gas - 1) (by trivial)
⟨Trans.trans r rs, res⟩
section examples
open Term
-- def x : ℕ := x + 1
abbrev succμ : ∅ ⊢ ℕt := μ ι #0
abbrev evalRes (l : ∅ ⊢ a) (gas := 100) := (eval gas l).3
#eval evalRes (gas := 3) succμ
#eval evalRes <| add □ 2 □ 1
#eval evalRes <| mul □ 2 □ 2
-- Prim
#eval evalRes <| .prim 2 ⋄ .prim 3
-- Let
#eval evalRes <| .let (.prim 6) (#0 ⋄ .prim 7)
#eval evalRes <| .let (.prim 3) <| .let (.prim 4) (.prod (#1) (#0))
-- Prod, Unit
#eval evalRes <| .fst <| .snd <| .prod ◯ (.prod (.prim 6) (ι ι 0))
-- Sum
#eval evalRes <| (.left (.prim 3) : ∅ ⊢ ℕp + ℕt)
#eval evalRes <| (.right 4 : ∅ ⊢ ℕp + ℕt)
#eval evalRes <| .caseSum (.right 1 : ∅ ⊢ ℕp + ℕt) 𝟘 (.succ (#0))
-- List
#eval evalRes <| .nil (a := ℕt)
#eval evalRes <| .cons (ι 𝟘) <| .cons 𝟘 .nil
#eval evalRes <| .caseList (.cons (ι 𝟘) <| .cons 𝟘 .nil) 𝟘 (#1 /- 0:cdr, 1:car -/)
end examples