-- https://plfa.github.io/More/ import Plfl.Init -- This module was extended from the original one for . namespace More -- https://plfa.github.io/More/#types inductive Ty where /-- Native natural type made of 𝟘 and ι. -/ | nat : Ty /-- Primitive natural type, a simple wrapper around LEAN's own ℕ type. -/ | natP : Ty /-- Product type. -/ | prod : Ty → Ty → Ty /-- Sum type. -/ | sum : Ty → Ty → Ty /-- Arrow type. -/ | fn : Ty → Ty → Ty /-- Unit type. -/ | unit : Ty /-- Void type. -/ | void : Ty /-- List type. -/ | list : Ty → Ty deriving BEq, DecidableEq, Repr namespace Notation open Ty scoped notation "ℕt" => nat scoped notation "ℕp" => natP -- Operator overloadings for `prod` and `sum` types. instance : Mul Ty where mul := prod instance : Add Ty where add := sum scoped infixr:70 " =⇒ " => fn scoped notation "◯" => unit scoped notation "∅" => void end Notation open Notation namespace Ty example : Ty := (ℕt =⇒ ℕt) =⇒ ℕt example : Ty := ℕp * ℕt theorem t_to_t'_ne_t (t t' : Ty) : (t =⇒ t') ≠ t := by by_contra h; match t with | nat => contradiction | fn ta tb => injection h; have := t_to_t'_ne_t ta tb; contradiction end Ty -- https://plfa.github.io/DeBruijn/#contexts abbrev Context : Type := List Ty namespace Context abbrev snoc (Γ : Context) (a : Ty) : Context := a :: Γ abbrev lappend (Γ : Context) (Δ : Context) : Context := Δ ++ Γ end Context namespace Notation open Context -- `‚` is not a comma! See: scoped infixl:50 "‚ " => snoc scoped infixl:45 "‚‚ " => lappend end Notation -- https://plfa.github.io/DeBruijn/#variables-and-the-lookup-judgment inductive Lookup : Context → Ty → Type where | z : Lookup (Γ‚ t) t | s : Lookup Γ t → Lookup (Γ‚ t') t deriving DecidableEq, Repr namespace Notation open Lookup scoped infix:40 " ∋ " => Lookup -- https://github.com/arthurpaulino/lean4-metaprogramming-book/blob/d6a227a63c55bf13d49d443f47c54c7a500ea27b/md/main/macros.md#simplifying-macro-declaration scoped syntax "get_elem" (ppSpace term) : term scoped macro_rules | `(term| get_elem $n) => match n.1.toNat with | 0 => `(term| Lookup.z) | n+1 => `(term| Lookup.s (get_elem $(Lean.quote n))) scoped macro "♯" n:term:90 : term => `(get_elem $n) end Notation namespace Lookup example : ∅‚ ℕt =⇒ ℕt‚ ℕt ∋ ℕt := .z example : ∅‚ ℕt =⇒ ℕt‚ ℕt ∋ ℕt := ♯0 example : ∅‚ ℕt =⇒ ℕt‚ ℕt ∋ ℕt =⇒ ℕt := .s .z example : ∅‚ ℕt =⇒ ℕt‚ ℕt ∋ ℕt =⇒ ℕt := ♯1 end Lookup -- https://plfa.github.io/DeBruijn/#terms-and-the-typing-judgment /-- A term with typing judgement embedded in itself. -/ inductive Term : Context → Ty → Type where -- Lookup | var : Γ ∋ a → Term Γ a -- Lambda | lam : Term (Γ‚ a) b → Term Γ (a =⇒ b) | ap : Term Γ (a =⇒ b) → Term Γ a → Term Γ b -- Native natural | zero : Term Γ ℕt | succ : Term Γ ℕt → Term Γ ℕt | case : Term Γ ℕt → Term Γ a → Term (Γ‚ ℕt) a → Term Γ a -- Fixpoint | mu : Term (Γ‚ a) a → Term Γ a -- Primitive natural | prim : ℕ → Term Γ ℕp | mulP : Term Γ ℕp → Term Γ ℕp → Term Γ ℕp -- Let expression | let : Term Γ a → Term (Γ‚ a) b → Term Γ b -- Product | prod : Term Γ a → Term Γ b → Term Γ (a * b) | fst : Term Γ (a * b) → Term Γ a | snd : Term Γ (a * b) → Term Γ b -- Product (alternative formulation) -- | caseProd : Term Γ (a * b) → Term (Γ‚ a‚ b) c → Term Γ c -- Sum | left : Term Γ a → Term Γ (a + b) | right : Term Γ b → Term Γ (a + b) | caseSum : Term Γ (a + b) → Term (Γ‚ a) c → Term (Γ‚ b) c → Term Γ c -- Void | caseVoid : Term Γ ∅ → Term Γ a -- Unit | unit : Term Γ ◯ -- List | nil : Term Γ (.list a) | cons : Term Γ a → Term Γ (.list a) → Term Γ (.list a) | caseList : Term Γ (.list a) → Term Γ b → Term (Γ‚ a‚ .list a) b → Term Γ b deriving DecidableEq, Repr namespace Notation open Term scoped infix:40 " ⊢ " => Term scoped prefix:50 "ƛ " => lam scoped prefix:50 "μ " => mu scoped notation "𝟘? " => case scoped infixr:min " $ " => ap scoped infixl:70 " □ " => ap scoped infixl:70 " ⋄ " => mulP scoped prefix:80 "ι " => succ scoped prefix:90 "` " => var scoped notation "𝟘" => zero scoped notation "◯" => unit -- https://plfa.github.io/DeBruijn/#abbreviating-de-bruijn-indices scoped macro "#" n:term:90 : term => `(`♯$n) end Notation namespace Term example : ∅‚ ℕt =⇒ ℕt‚ ℕt ⊢ ℕt := #0 example : ∅‚ ℕt =⇒ ℕt‚ ℕt ⊢ ℕt =⇒ ℕt := #1 example : ∅‚ ℕt =⇒ ℕt‚ ℕt ⊢ ℕt := #1 $ #0 example : ∅‚ ℕt =⇒ ℕt‚ ℕt ⊢ ℕt := #1 $ #1 $ #0 example : ∅‚ ℕt =⇒ ℕt ⊢ ℕt =⇒ ℕt := ƛ (#1 $ #1 $ #0) def ofNat : ℕ → Γ ⊢ ℕt | 0 => .zero | n + 1 => .succ <| ofNat n instance : Coe ℕ (Γ ⊢ ℕt) where coe := ofNat instance : OfNat (Γ ⊢ ℕt) n where ofNat := ofNat n -- https://plfa.github.io/DeBruijn/#test-examples example : Γ ⊢ ℕt := ι ι 𝟘 example : Γ ⊢ ℕt := 2 @[simp] abbrev add : Γ ⊢ ℕt =⇒ ℕt =⇒ ℕt := μ ƛ ƛ (𝟘? (#1) (#0) (ι (#3 □ #0 □ #1))) abbrev four : Γ ⊢ ℕt := add □ 2 □ 2 /-- The Church numeral Ty. -/ abbrev Ch (t : Ty) : Ty := (t =⇒ t) =⇒ t =⇒ t @[simp] abbrev succC : Γ ⊢ ℕt =⇒ ℕt := ƛ ι #0 @[simp] abbrev twoC : Γ ⊢ Ch a := ƛ ƛ (#1 $ #1 $ #0) @[simp] abbrev addC : Γ ⊢ Ch a =⇒ Ch a =⇒ Ch a := ƛ ƛ ƛ ƛ (#3 □ #1 $ #2 □ #1 □ #0) abbrev four' : Γ ⊢ ℕt := addC □ twoC □ twoC □ succC □ 𝟘 @[simp] abbrev mul : Γ ⊢ ℕt =⇒ ℕt =⇒ ℕt := μ ƛ ƛ (𝟘? (#1) 𝟘 (add □ #1 $ #3 □ #0 □ #1)) abbrev four'' : Γ ⊢ ℕt := mul □ 2 □ 2 -- https://plfa.github.io/DeBruijn/#exercise-mul-recommended @[simp] abbrev mulC : Γ ⊢ Ch a =⇒ Ch a =⇒ Ch a := ƛ ƛ ƛ ƛ (#3 □ (#2 □ #1) □ #0) -- https://plfa.github.io/More/#example example : ∅ ⊢ ℕp =⇒ ℕp := ƛ #0 ⋄ #0 ⋄ #0 end Term namespace Subst -- https://plfa.github.io/DeBruijn/#renaming /-- If one context maps to another, the mapping holds after adding the same variable to both contexts. -/ def ext : (∀ {a}, Γ ∋ a → Δ ∋ a) → Γ‚ b ∋ a → Δ‚ b ∋ a := by intro ρ; intro | .z => exact .z | .s x => refine .s ?_; exact ρ x /-- If one context maps to another, then the type judgements are the same in both contexts. -/ def rename : (∀ {a}, Γ ∋ a → Δ ∋ a) → Γ ⊢ a → Δ ⊢ a := by intro ρ; intro | ` x => exact ` (ρ x) | ƛ n => exact ƛ (rename (ext ρ) n) | l □ m => exact rename ρ l □ rename ρ m | 𝟘 => exact 𝟘 | ι n => exact ι (rename ρ n) | 𝟘? l m n => exact 𝟘? (rename ρ l) (rename ρ m) (rename (ext ρ) n) | μ n => exact μ (rename (ext ρ) n) | .prim n => exact .prim n | m ⋄ n => exact rename ρ m ⋄ rename ρ n | .let m n => exact .let (rename ρ m) (rename (ext ρ) n) | .prod m n => exact .prod (rename ρ m) (rename ρ n) | .fst n => exact .fst (rename ρ n) | .snd n => exact .snd (rename ρ n) | .left n => exact .left (rename ρ n) | .right n => exact .right (rename ρ n) | .caseSum s l r => exact .caseSum (rename ρ s) (rename (ext ρ) l) (rename (ext ρ) r) | .caseVoid v => exact .caseVoid (rename ρ v) | ◯ => exact ◯ | .nil => exact .nil | .cons m n => exact .cons (rename ρ m) (rename ρ n) | .caseList l m n => exact .caseList (rename ρ l) (rename ρ m) (rename (ext (ext ρ)) n) abbrev shift : Γ ⊢ a → Γ‚ b ⊢ a := rename .s example : let m : ∅‚ ℕt =⇒ ℕt ⊢ ℕt =⇒ ℕt := ƛ (#1 $ #1 $ #0) let m' : ∅‚ ℕt =⇒ ℕt‚ ℕt ⊢ ℕt =⇒ ℕt := ƛ (#2 $ #2 $ #0) shift m = m' := rfl -- https://plfa.github.io/DeBruijn/#simultaneous-substitution /-- If the variables in one context maps to some terms in another, the mapping holds after adding the same variable to both contexts. -/ def exts : (∀ {a}, Γ ∋ a → Δ ⊢ a) → Γ‚ b ∋ a → Δ‚ b ⊢ a := by intro σ; intro | .z => exact `.z | .s x => apply shift; exact σ x /-- General substitution for multiple free variables. If the variables in one context maps to some terms in another, then the type judgements are the same before and after the mapping, i.e. after replacing the free variables in the former with (expanded) terms. -/ def subst : (∀ {a}, Γ ∋ a → Δ ⊢ a) → Γ ⊢ a → Δ ⊢ a := by intro σ; intro | ` i => exact σ i | ƛ n => exact ƛ (subst (exts σ) n) | l □ m => exact subst σ l □ subst σ m | 𝟘 => exact 𝟘 | ι n => exact ι (subst σ n) | 𝟘? l m n => exact 𝟘? (subst σ l) (subst σ m) (subst (exts σ) n) | μ n => exact μ (subst (exts σ) n) | .prim n => exact .prim n | m ⋄ n => exact subst σ m ⋄ subst σ n | .let m n => exact .let (subst σ m) (subst (exts σ) n) | .prod m n => exact .prod (subst σ m) (subst σ n) | .fst n => exact .fst (subst σ n) | .snd n => exact .snd (subst σ n) | .left n => exact .left (subst σ n) | .right n => exact .right (subst σ n) | .caseSum s l r => exact .caseSum (subst σ s) (subst (exts σ) l) (subst (exts σ) r) | .caseVoid v => exact .caseVoid (subst σ v) | ◯ => exact ◯ | .nil => exact .nil | .cons m n => exact .cons (subst σ m) (subst σ n) | .caseList l m n => exact .caseList (subst σ l) (subst σ m) (subst (exts (exts σ)) n) abbrev subst₁σ (v : Γ ⊢ b) : ∀ {a}, Γ‚ b ∋ a → Γ ⊢ a := by introv; intro | .z => exact v | .s x => exact ` x /-- Substitution for one free variable `v` in the term `n`. -/ abbrev subst₁ (v : Γ ⊢ b) (n : Γ‚ b ⊢ a) : Γ ⊢ a := by refine subst ?_ n; exact subst₁σ v /-- Substitution for two free variables `v` and `w'` in the term `n`. -/ abbrev subst₂ (v : Γ ⊢ b) (w : Γ ⊢ c) (n : Γ‚ b‚ c ⊢ a) : Γ ⊢ a := by refine subst ?_ n; introv; intro | .z => exact w | .s .z => exact v | .s (.s x) => exact ` x end Subst namespace Notation open Subst scoped notation:90 n "⟦" m "⟧" => subst₁ m n end Notation open Subst namespace Subst example : let m : ∅ ⊢ ℕt =⇒ ℕt := ƛ (ι #0) let m' : ∅‚ ℕt =⇒ ℕt ⊢ ℕt =⇒ ℕt := ƛ (#1 $ #1 $ #0) let n : ∅ ⊢ ℕt =⇒ ℕt := ƛ (ƛ ι #0) □ ((ƛ ι #0) □ #0) m'⟦m⟧ = n := rfl example : let m : ∅‚ ℕt =⇒ ℕt ⊢ ℕt := #0 $ 𝟘 let m' : ∅‚ ℕt =⇒ ℕt‚ ℕt ⊢ (ℕt =⇒ ℕt) =⇒ ℕt := ƛ (#0 $ #1) let n : ∅‚ ℕt =⇒ ℕt ⊢ (ℕt =⇒ ℕt) =⇒ ℕt := ƛ (#0 $ #1 $ 𝟘) m'⟦m⟧ = n := rfl end Subst inductive Value : Γ ⊢ a → Type where | lam : Value (ƛ (n : Γ‚ a ⊢ b)) | zero : Value 𝟘 | succ : Value n → Value (ι n) | prim : (n : ℕ) → Value (@Term.prim Γ n) | prod : Value (v : Γ ⊢ a) → Value (w : Γ ⊢ b) → Value (.prod v w) | left : Value v → Value (.left v) | right : Value v → Value (.right v) | unit : Value ◯ | nil : Value .nil | cons : ∀ {v : Γ ⊢ a} {vs : Γ ⊢ .list a}, Value v → Value vs → Value (.cons v vs) deriving DecidableEq, Repr namespace Notation scoped notation "V𝟘" => Value.zero end Notation namespace Value def ofNat : (n : ℕ) → @Value Γ ℕt (Term.ofNat n) | 0 => V𝟘 | n + 1 => succ <| ofNat n end Value -- https://plfa.github.io/DeBruijn/#reduction /-- `Reduce t t'` says that `t` reduces to `t'` via a given step. -/ inductive Reduce : (Γ ⊢ a) → (Γ ⊢ a) → Prop where | lamβ : Value v → Reduce ((ƛ n) □ v) (n⟦v⟧) | apξ₁ : Reduce l l' → Reduce (l □ m) (l' □ m) | apξ₂ : Value v → Reduce m m' → Reduce (v □ m) (v □ m') | zeroβ : Reduce (𝟘? 𝟘 m n) m | succβ : Value v → Reduce (𝟘? (ι v) m n) (n⟦v⟧) | succξ : Reduce m m' → Reduce (ι m) (ι m') | caseξ : Reduce l l' → Reduce (𝟘? l m n) (𝟘? l' m n) | muβ : Reduce (μ n) (n⟦μ n⟧) -- https://plfa.github.io/More/#reduction | mulPξ₁ : Reduce l l' → Reduce (l ⋄ m) (l' ⋄ m) | mulPξ₂ : Reduce m m' → Reduce (l ⋄ m) (l ⋄ m') | mulPδ : Reduce ((.prim c) ⋄ (.prim d)) (.prim (c * d)) -- https://plfa.github.io/More/#reduction-1 | letξ : Reduce m m' → Reduce (.let m n) (.let m' n) | letβ : Value v → Reduce (.let v n) (n⟦v⟧) -- https://plfa.github.io/More/#reduction-2 | prodξ₁ : Reduce m m' → Reduce (.prod m n) (.prod m' n) | prodξ₂ : Reduce n n' → Reduce (.prod m n) (.prod m n') | fstξ : Reduce l l' → Reduce (.fst l) (.fst l') | fstβ : Value v → Value w → Reduce (.fst (.prod v w)) v | sndξ : Reduce l l' → Reduce (.snd l) (.snd l') | sndβ : Value v → Value w → Reduce (.snd (.prod v w)) w -- https://plfa.github.io/More/#reduction-3 -- | caseProdξ : Reduce l l' → Reduce (.caseProd l m) (.caseProd l' m) -- | caseProdβ -- : Value (v : Γ ⊢ a) -- → Value (w : Γ ⊢ b) -- → Reduce (.caseProd (.prod v w) (m : Γ‚ a‚ b ⊢ c)) (subst₂ v w m) -- https://plfa.github.io/More/#reduction-4 | caseSumξ : Reduce s s' → Reduce (.caseSum s l r) (.caseSum s' l r) | leftξ : Reduce m m' → Reduce (.left m) (.left m') | leftβ : Value v → Reduce (.caseSum (.left v) l r) (l⟦v⟧) | rightξ : Reduce m m' → Reduce (.right m) (.right m') | rightβ : Value v → Reduce (.caseSum (.right v) l r) (r⟦v⟧) -- https://plfa.github.io/More/#reduction-7 | caseVoidξ : Reduce l l' → Reduce (.caseVoid l) (.caseVoid l') -- https://plfa.github.io/More/#reduction-8 | caseListξ : Reduce l l' → Reduce (.caseList l m n) (.caseList l' m n) | nilβ : Reduce (.caseList .nil m n) m | consξ₁ : Reduce m m' → Reduce (.cons m n) (.cons m' n) | consξ₂ : Reduce n n' → Reduce (.cons v n) (.cons v n') | consβ : Reduce (.caseList (.cons v w) m n) (subst₂ v w n) -- https://plfa.github.io/DeBruijn/#reflexive-and-transitive-closure namespace Notation scoped infix:40 " —→ " => Reduce end Notation namespace Reduce /-- A reflexive and transitive closure, defined as a sequence of zero or more steps of the underlying relation `—→`. -/ abbrev Clos {Γ a} := Relation.ReflTransGen (α := Γ ⊢ a) Reduce end Reduce namespace Notation scoped infix:20 " —↠ " => Reduce.Clos end Notation namespace Reduce.Clos abbrev refl : m —↠ m := .refl abbrev tail : (m —↠ n) → (n —→ n') → (m —↠ n') := .tail abbrev head : (m —→ n) → (n —↠ n') → (m —↠ n') := .head abbrev single : (m —→ n) → (m —↠ n) := .single instance : Coe (m —→ n) (m —↠ n) where coe r := .single r instance : Trans (α := Γ ⊢ a) Clos Reduce Clos where trans c r := c.tail r instance : Trans (α := Γ ⊢ a) Reduce Reduce Clos where trans r r' := .tail r r' instance : Trans (α := Γ ⊢ a) Reduce Clos Clos where trans r c := .head r c end Reduce.Clos namespace Reduce -- https://plfa.github.io/DeBruijn/#examples open Term example : twoC □ succC □ @zero ∅ —↠ 2 := calc twoC □ succC □ 𝟘 _ —→ (ƛ (succC $ succC $ #0)) □ 𝟘 := by apply apξ₁; apply lamβ; exact Value.lam _ —→ (succC $ succC $ 𝟘) := by apply lamβ; exact V𝟘 _ —→ succC □ 1 := by apply apξ₂; apply Value.lam; exact lamβ V𝟘 _ —→ 2 := by apply lamβ; exact Value.ofNat 1 end Reduce -- https://plfa.github.io/DeBruijn/#values-do-not-reduce def Value.not_reduce : Value m → ∀ {n}, ¬ m —→ n := by introv v; intro r cases v with try contradiction | succ v => cases r; · case succξ => apply not_reduce v; trivial | prod => cases r with | prodξ₁ r => rename_i v _ _; apply not_reduce v; trivial | prodξ₂ r => rename_i v _; apply not_reduce v; trivial | left v => cases r; · case leftξ => apply not_reduce v; trivial | right v => cases r; · case rightξ => apply not_reduce v; trivial | cons => cases r with | consξ₁ r => rename_i v _ _; apply not_reduce v; trivial | consξ₂ r => rename_i v _; apply not_reduce v; trivial def Reduce.empty_value : m —→ n → IsEmpty (Value m) := by intro r; is_empty; intro v; exact Value.not_reduce v r /-- If a term `m` is not ill-typed, then it either is a value or can be reduced. -/ inductive Progress (m : ∅ ⊢ a) where | step : (m —→ n) → Progress m | done : Value m → Progress m def Progress.progress : (m : ∅ ⊢ a) → Progress m := open Reduce in by intro | ` _ => contradiction | ƛ _ => exact .done .lam | l □ m => match progress l with | .step _ => apply step; apply apξ₁; trivial | .done l => match progress m with | .step _ => apply step; apply apξ₂ <;> trivial | .done _ => match l with | .lam => apply step; apply lamβ; trivial | 𝟘 => exact .done V𝟘 | ι n => match progress n with | .step _ => apply step; apply succξ; trivial | .done _ => apply done; apply Value.succ; trivial | 𝟘? l m n => match progress l with | .step _ => apply step; apply caseξ; trivial | .done v => match v with | .zero => exact .step zeroβ | .succ _ => apply step; apply succβ; trivial | μ _ => exact .step muβ | .prim n => exact .done (.prim n) | m ⋄ n => match progress m with | .step _ => apply step; apply mulPξ₁; trivial | .done m => match progress n with | .step _ => apply step; apply mulPξ₂; trivial | .done n => match m, n with | .prim m, .prim n => exact .step mulPδ | .let m n => match progress m with | .step _ => apply step; apply letξ; trivial | .done m => apply step; apply letβ; trivial | .prod m n => match progress m with | .step _ => apply step; apply prodξ₁; trivial | .done m => match progress n with | .step _ => apply step; apply prodξ₂; trivial | .done n => exact .done (.prod m n) | .fst n => match progress n with | .step _ => apply step; apply fstξ; trivial | .done n => match n with | .prod v w => apply step; apply fstβ <;> trivial | .snd n => match progress n with | .step _ => apply step; apply sndξ; trivial | .done n => match n with | .prod v w => apply step; apply sndβ <;> trivial | .left n => match progress n with | .step _ => apply step; apply leftξ; trivial | .done n => exact .done (.left n) | .right n => match progress n with | .step _ => apply step; apply rightξ; trivial | .done n => exact .done (.right n) | .caseSum s l r => match progress s with | .step _ => apply step; apply caseSumξ; trivial | .done s => match s with | .left _ => apply step; apply leftβ; trivial | .right _ => apply step; apply rightβ; trivial | .caseVoid v => match progress v with | .step _ => apply step; apply caseVoidξ; trivial | .done _ => contradiction | ◯ => exact .done .unit | .nil => exact .done .nil | .cons m n => match progress m with | .step _ => apply step; apply consξ₁; trivial | .done _ => match progress n with | .step _ => apply step; apply consξ₂; trivial | .done _ => refine .done (.cons ?_ ?_) <;> trivial | .caseList l m n => match progress l with | .step _ => apply step; apply caseListξ; trivial | .done l => match l with | .nil => apply step; exact nilβ | .cons _ w => apply step; exact consβ open Progress (progress) inductive Result (n : Γ ⊢ a) where | done (val : Value n) | dnf deriving BEq, DecidableEq, Repr inductive Steps (l : Γ ⊢ a) where | steps : ∀{n : Γ ⊢ a}, (l —↠ n) → Result n → Steps l def eval (gas : ℕ) (l : ∅ ⊢ a) : Steps l := if gas = 0 then ⟨.refl, .dnf⟩ else match progress l with | .done v => .steps .refl <| .done v | .step r => let ⟨rs, res⟩ := eval (gas - 1) (by trivial) ⟨Trans.trans r rs, res⟩ section examples open Term -- def x : ℕ := x + 1 abbrev succμ : ∅ ⊢ ℕt := μ ι #0 abbrev evalRes (l : ∅ ⊢ a) (gas := 100) := (eval gas l).3 #eval evalRes (gas := 3) succμ #eval evalRes <| add □ 2 □ 1 #eval evalRes <| mul □ 2 □ 2 -- Prim #eval evalRes <| .prim 2 ⋄ .prim 3 -- Let #eval evalRes <| .let (.prim 6) (#0 ⋄ .prim 7) #eval evalRes <| .let (.prim 3) <| .let (.prim 4) (.prod (#1) (#0)) -- Prod, Unit #eval evalRes <| .fst <| .snd <| .prod ◯ (.prod (.prim 6) (ι ι 0)) -- Sum #eval evalRes <| (.left (.prim 3) : ∅ ⊢ ℕp + ℕt) #eval evalRes <| (.right 4 : ∅ ⊢ ℕp + ℕt) #eval evalRes <| .caseSum (.right 1 : ∅ ⊢ ℕp + ℕt) 𝟘 (.succ (#0)) -- List #eval evalRes <| .nil (a := ℕt) #eval evalRes <| .cons (ι 𝟘) <| .cons 𝟘 .nil #eval evalRes <| .caseList (.cons (ι 𝟘) <| .cons 𝟘 .nil) 𝟘 (#1 /- 0:cdr, 1:car -/) end examples