{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "ename": "ModuleNotFoundError",
     "evalue": "No module named 'numpy'",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mModuleNotFoundError\u001b[0m                       Traceback (most recent call last)",
      "\u001b[0;32m<ipython-input-7-a5b2554c064f>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[0;31m# Necessary run this if you intend to play with and run the code below\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mnumpy\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      3\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpyplot\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      4\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mion\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      5\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mmpl_toolkits\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmplot3d\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mAxes3D\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'numpy'"
     ]
    }
   ],
   "source": [
    "# Necessary run this if you intend to play with and run the code below\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "plt.ion()\n",
    "from mpl_toolkits.mplot3d import Axes3D\n",
    "import matplotlib\n",
    "matplotlib.rcParams['figure.dpi'] = 150"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "[Table of Contents](table_of_contents.ipynb)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Topic 8.  Linear Regression and Least Squares\n",
    "Author: Brady Anderson <br> &emsp;&emsp;&emsp;&ensp;b.anderson<i></i>@byu.edu\n",
    "    "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##  Introduction\n",
    "Linear Regression, or the Least Squares problem, manifests itself quite often in engineering work. First, an example:\n",
    "\n",
    "A physical (real-world) engineering process needs to be modeled. Now, having the physical system, it is possible to apply known inputs to the process \"plant,\" and measure the corresponding outputs. (Assuming some type of output measurements are possible with some sensor). Linear Regression allows plant parameters to be deduced given a collected set of inputs and outputs. These plant parameters become your model, whether for simulation or for an estimator.\n",
    "\n",
    "The idea is to find linear coefficients for a set of linearly independent vectors such that the combination of these coefficients and vectors (the estimated data) comes as close as possible to a true dataset.\n",
    "\n",
    "Linear Regression takes advantage of properties of the Projection Theorem and the induced norms on $l_{2}$ and $L_{2}$ in order to compute the aforementioned parameters (or whatever the solution may be to your use case).  The key fact to note is that the error of the estimated data is orthogonal to the true data."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Explanation of the theory\n",
    "\n",
    "Give a detailed discussion (i.e., equations galore) of the topic.  \n",
    "The emphasis here is clarity for future students learning the topic.\n",
    "\n",
    "First a review of the Projection Theorem (Thm 2.9 in Moon):\n",
    "\n",
    "Let $S$ be a Hilbert space and let $V$ be a closed subspace of $S$. For any vector $\\mathbf{x} \\in S$, $\\exists$ a *unique* vector $\\mathbf{v}_0 \\in V$ closest to $\\mathbf{x}$; that is, $\\|\\mathbf{x}-\\mathbf{v_0}\\| \\le\\|\\mathbf{x}-\\mathbf{v}\\| \\  \\forall \\  \\mathbf{v} \\  \\in V$. Furthermore, the point $\\mathbf{v}_0$ is the minimizer of $\\|\\mathbf{x}-\\mathbf{v}\\|$ if and only if $\\mathbf{x}-\\mathbf{v_0} \\in V^{\\perp}$.\n",
    "\n",
    "If you are unfamiliar or uncomfortable with this definition, please see the section on projection operators. Also, section 2.14 of the book covers the theorem well.\n",
    "\n",
    "Say you have a normed, linear vector space ($S,\\|\\cdot\\|$), and a matrix of linearly independent vectors $T=[\\mathbf{p}_1,\\mathbf{p}_2,\\dots,\\mathbf{p}_m]$ with $V=span(T) \\in S$. In linear regression, we seek the coeffients $c_i$ such that\n",
    "\n",
    "$\\mathbf{\\hat{x}}=T\\mathbf{\\hat{c}}$\n",
    "\n",
    "according to the constraint that $\\mathbf{\\hat{c}}=\\underset{c}{\\operatorname{argmin}}\\|\\mathbf{x}-T\\mathbf{c}\\|$.\n",
    "\n",
    "This will minimize the total error between the true vector $\\mathbf{x}$ and the estimate $\\mathbf{\\hat{x}}$:<br>$\\|\\mathbf{e}\\|=\\|\\mathbf{x}-\\mathbf{\\hat{x}}\\|$.\n",
    "<br>It is geometrically observable that **the error is minimized when the error is orthogonal to $V$** when the $l_{2}$ and $L_{2}$ norms are used.\n",
    "\n",
    "Now, if $\\mathbf{x} \\in V$, it is possible to have $\\|\\mathbf{e}\\|=0$. However, in general, (especially in engineering), this is not the case.\n",
    "\n",
    "When we use the induced norm for $\\|\\mathbf{e}\\|$, we can express the minimization in terms of the orthogonality condition, using the Projection Theorem: the minimum-norm error must be orthogonal to each vector $\\mathbf{p}_j$\n",
    "\n",
    "$\\langle \\mathbf{x}-\\sum_{i=1}^{m}{c_i\\mathbf{p}_i}, \\mathbf{p}_j \\rangle = 0, \\ \\ \\ \\ \\ j=1,2,\\dots,m$\n",
    "\n",
    "We can write these in what are known as the **normal equations**, with $m$ equations in $m$ unknowns:\n",
    "\n",
    "$$\n",
    "\\begin{bmatrix}\n",
    "\\langle \\mathbf{p}_1, \\mathbf{p}_1 \\rangle & \\cdots & \\langle \\mathbf{p}_m, \\mathbf{p}_1 \\rangle \\\\\n",
    "\\vdots &  \\ddots & \\vdots \\\\\n",
    "\\langle \\mathbf{p}_1, \\mathbf{p}_m \\rangle &  \\cdots & \\langle \\mathbf{p}_m, \\mathbf{p}_m \\rangle\n",
    "\\end{bmatrix}\n",
    "\\begin{bmatrix} c_1 \\\\ \\vdots \\\\ c_m \\end{bmatrix} =\n",
    "\\begin{bmatrix}\n",
    "\\langle \\mathbf{x}, \\mathbf{p}_1 \\rangle \\\\\n",
    "\\vdots \\\\\n",
    "\\langle \\mathbf{x}, \\mathbf{p}_m \\rangle\n",
    "\\end{bmatrix}\n",
    "$$\n",
    "\n",
    "The left matrix is known as the Grammian of the set T, the set of vectors composing the T matrix. It usually is denoted by the letter $R$: $R\\mathbf{c}=\\mathbf{p}_x$\n",
    "\n",
    "where $\\mathbf{p}_x$ is the *cross-correlation vector*.\n",
    "\n",
    "Due to the properties of the inner product, and that $R_{ij}=\\langle \\mathbf{p}_j,\\mathbf{p}_i \\rangle$, the Grammian matrix is Hermitian symmetric: $R^{H}=R$. (The Hermitian of a matrix means its conjugate transpose.)\n",
    "\n",
    "To solve the **normal equations**, $R$ must be invertible. Recall that positive-definite matrices are always invertible. This leads to $\\mathbf{Thm 3.1}$:\n",
    "\n",
    "A Grammian matrix $R$ is always positive-semidefinite (that is, $\\mathbf{x}^{H}R\\mathbf{x} \\ge 0 \\ \\forall \\ \\mathbf{x} \\in \\mathbb{C}^{m}$). It is positive-definite if and only if the vectors $\\mathbf{p}_1,\\dots,\\mathbf{p}_m$ are linearly independent.\n",
    "\n",
    "\n",
    "Proof:\n",
    "\n",
    "Let $\\mathbf{y}=[y_1,\\dots,y_m]^{T}$ be an arbitrary vector. Then\n",
    "\n",
    "$$\n",
    "\\mathbf{y}^{H}R\\mathbf{y}=\\sum_{i=1}^{m}{\\sum_{j=1}^{m}{\\bar{y_i}y_j \\langle \\mathbf{p}_i, \\mathbf{p}_j \\rangle}} =\n",
    "\\langle \\sum_{j=1}^{m}{y_j\\mathbf{p}_j}, \\sum_{i=1}^{m}{y_i\\mathbf{p}_i} \\rangle = \n",
    "\\left\\| \\sum_{j=1}^{m}{y_j\\mathbf{p}_j} \\right\\|^{2} \\ge 0\n",
    "$$\n",
    "\n",
    "Hence $R$ is positive-semidefinite.\n",
    "\n",
    "If $R$ is not positive-semidefinite, then there is a nonzero vector $\\mathbf{y}$ such that\n",
    "\n",
    "$\\mathbf{y}^{H}R\\mathbf{y}=0$\n",
    "\n",
    "so that\n",
    "\n",
    "$\\sum_{i=1}^{m}{y_i\\mathbf{p}_i}=0$;\n",
    "\n",
    "thus, the $\\mathbf{p}_i$ are linearly independent.\n",
    "\n",
    "Conversely, if $R$ is positive-definite, then\n",
    "\n",
    "$\\mathbf{y}^{H}R\\mathbf{y} \\gt 0$\n",
    "\n",
    "for all nonzero $\\mathbf{y}$ and by the first line equation of this proof,\n",
    "\n",
    "$\\sum_{i=1}^{m}{y_i\\mathbf{p}_i} \\not= 0$\n",
    "\n",
    "This means that the $\\mathbf{p}_i$ are linearly independent. &emsp;&emsp;&emsp; QED <br>\n",
    "\n",
    "As a result of this theorem, the Grammian is invertible if all the vectors $\\mathbf{p}_i$ are linearly independent.\n",
    "\n",
    "As an extension, if the set of vectors $\\mathbf{p}_i$ are orthogonal, then the Grammian is diagonal, significantly reducing the amount of computation required to find the coefficients. They are simply obtained by:\n",
    "\n",
    "$c_{j}=\\frac{\\langle \\mathbf{x}, \\mathbf{p}_j \\rangle}{\\langle \\mathbf{p}_j, \\mathbf{p}_j \\rangle}$\n",
    "\n",
    "<br>\n",
    "\n",
    "The **orthogonality principle** for least-squares is now formalized with **Thm 3.2**:\n",
    "\n",
    "Let $\\mathbf{p}_1,\\dots,\\mathbf{p}_m$ be data vectors in a vector space $S$. Let $\\mathbf{x}$ be any vector in $S$. In the representation\n",
    "\n",
    "$\\mathbf{x} = \\sum_{c=1}^{m}{c_{i}p_{i}} + \\mathbf{e} = \\mathbf{\\hat{x}} + \\mathbf{e}$\n",
    "\n",
    "the induced norm of the error $\\|\\mathbf{e}\\|$ is minimized when the error $\\mathbf{e}=\\mathbf{x}-\\mathbf{\\hat{x}}$ is orthogonal to each of the data vectors,\n",
    "\n",
    "$\\langle \\mathbf{x}-\\sum_{i=1}^{m}{c_{i}\\mathbf{p}_{i}}, \\mathbf{p}_j \\rangle=0, \\ \\ \\ \\ \\ j=1,2,\\dots,m$\n",
    "\n",
    "<br>\n",
    "Proof (via Cauchy-Schwarz inequality):\n",
    "\n",
    "In the case that $\\mathbf{x} \\in span(\\mathbf{p}_1, \\dots, \\mathbf{p}_m)$, the error is zero and hence is orthogonal to the data vectors. This case is therefor trivial and is excluded from what follows.\n",
    "\n",
    "If $\\mathbf{x} \\notin span(\\mathbf{p}_1, \\dots, \\mathbf{p}_m)$, let $\\mathbf{y}$ be a fixed vector that is orthogonal to all of the data vectors,\n",
    "\n",
    "$\\langle \\mathbf{y},\\mathbf{p}_i \\rangle=0 \\ \\ \\ \\ \\ i=1,\\dots,m$\n",
    "\n",
    "such that\n",
    "\n",
    "$\\mathbf{x}=\\sum_{i=1}^{m}{a_i\\mathbf{p}_i}+\\mathbf{y}$\n",
    "\n",
    "for some set of coefficients ${a_1, \\dots, a_m}$. Let $\\mathbf{e}$ be a vector satisfying\n",
    "\n",
    "$\\mathbf{x}=\\sum_{i=1}^{m}{c_i\\mathbf{p}_i}+\\mathbf{e} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ eq(1)$\n",
    "\n",
    "for some set of coefficients ${c_1, \\dots, c_m}$. Then by the Cauchy-Schwarz inequality,\n",
    "\n",
    "\\begin{eqnarray}\n",
    "\\|\\mathbf{e}\\|^2\\|\\mathbf{y}\\|^2 &\\ge& | \\langle \\mathbf{e},\\mathbf{y} \\rangle |^2 \\\\\n",
    "&=&\\left| \\langle \\mathbf{x},\\mathbf{y} \\rangle - \\langle \\sum_{c=1}^{m}{c_{i}p_{i}}, \\mathbf{y} \\rangle \\right|^2 \\\\\n",
    "&=&| \\langle \\mathbf{x},\\mathbf{y} \\rangle |^2\n",
    "\\end{eqnarray}\n",
    "\n",
    "The lower bound is independent of the coefficients ${c_i}$, and hence no set of coefficients can make the bound smaller. By the quality condition for the Cauchy-Schwarz inequality, the lower bound is achieved --implying the minimum $\\|\\mathbf{e}\\|$ -- when\n",
    "\n",
    "$\\mathbf{e}=\\alpha\\mathbf{y}$\n",
    "\n",
    "for some scalar $\\alpha$. Since $\\mathbf{e}$ must satisfy eq(1), it must be the case that:\n",
    "\n",
    "$\\alpha=1$\n",
    "\n",
    "$a_i=c_i$\n",
    "\n",
    "$\\mathbf{e}=\\mathbf{y}$\n",
    "\n",
    "hence the error is orthogonal to the data. &emsp;&emsp;&emsp; QED <br>\n",
    "\n",
    "<br>\n",
    "\n",
    "It is important to note that because $\\mathbf{\\hat{x}}$ is a linear combination of the data vectors, it is orthogonal to the error vector:\n",
    "\n",
    "$ \\langle \\mathbf{\\hat{x}}, \\mathbf{e} \\rangle = 0$\n",
    "\n",
    "Or, in other words, the residual vector (errors from each point) is orthogonal to the column space. See demonstration below."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Simple Numerical Examples\n",
    "\n",
    "Provide some simple python code and examples that emphasize the basic concepts.\n",
    "\n",
    "Note Figure 3.8(b), provided in the book.\n",
    "\n",
    "It may be confusing that the minimized error is the vertical distance betweent the regressed line and the data points. The following example will show how these vertical distances does not contradict the earlier statements of orthogonal error minimization.\n",
    "\n",
    "Let data point vector $\\mathbf{y}=[1,4,5]^T$, measured at time $\\mathbf{t}=[0,1,2]^T$ be approximated by a linear regression:\n",
    "\n",
    "$\\mathbf{y}=a_1\\mathbf{t}+a_0$\n",
    "\n",
    "This may be expressed as:\n",
    "\n",
    "$$\n",
    "\\begin{bmatrix}\n",
    "1\\\\4\\\\5\n",
    "\\end{bmatrix} =\n",
    "\\begin{bmatrix}\n",
    "0 & 1 \\\\\n",
    "1 & 1 \\\\\n",
    "2 & 1\n",
    "\\end{bmatrix}\n",
    "\\begin{bmatrix} a_1 \\\\ a_0 \\end{bmatrix}\n",
    "$$\n",
    "\n",
    "Here we have $\\mathbf{p}_1=\\mathbf{t}$ and $\\mathbf{p}_2=[1,1,1]^T$\n",
    "\n",
    "To compute the Grammian matrix, R, we need the inner product of $\\mathbf{p}_1$ and $\\mathbf{p}_2$ to themselves, and to each other.\n",
    "\n",
    "We also compute the *cross-correlation vector* $\\mathbf{p}_x$:\n",
    "$$\n",
    "\\mathbf{p}_x=[\\langle \\mathbf{y}, \\mathbf{p}_1 \\rangle, \\langle \\mathbf{y}, \\mathbf{p}_2 \\rangle]^T\n",
    "$$\n",
    "\n",
    "Finally, we verify the linear independence of $\\mathbf{p}_1, \\mathbf{p}_2$ (thus guaranteeing inertibility of R) by asserting\n",
    "\n",
    "$\\langle \\mathbf{\\hat{p}}_1, \\mathbf{\\hat{p}}_2 \\rangle \\not= 1$\n",
    "\n",
    "where $\\mathbf{\\hat{p}}_i$ is the unit vector in the direction of $\\mathbf{p}_i$\n",
    "\n",
    "Our p-vectors are in $\\mathbb{R}^3$. When we say that our error is minimized by being orthogonal to the data vectors we mean that the residual is orthogonal to the column space of the matrix created by the data. In our case, this is the matrix composed of $\\mathbf{p}_1$ and $\\mathbf{p}_2$. When this is drawn on the 2D plot of the data, it looks like vertical distances from the true data to the regressed line. But if we plot the data vectors in 3D, in our case a plane, we can see that the residual error is perpendicular to this plane, shown by\n",
    "\n",
    "$\\langle \\mathbf{p}_1, \\mathbf{e} \\rangle = 0$\n",
    "\n",
    "$\\langle \\mathbf{p}_2, \\mathbf{e} \\rangle = 0$\n",
    "\n",
    "$\\mathbf{y}$ and $\\mathbf{t}$, as well as the regressed line, are drawn below.\n",
    "\n",
    "In the 3d plot, you can see the plane spanned by ${\\mathbf{p}_1,\\mathbf{p}_2}$, and that the estimated $\\mathbf{\\hat{y}}$ lies in this plane. You can also see the error vector is orthogonal to this plane created by the data vectors. Finally, if you add the error vector to the estimated vector, you get back the original, true data\n",
    "\n",
    "$\\mathbf{\\hat{y}} + \\mathbf{e} = \\mathbf{y}$\n",
    "\n",
    "seen by the fact the yellow vector representing the true data is out of the plane.\n",
    "\n",
    "You can grab and rotate the plot with the mouse, to see these facts."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "inner product of p1 with e_vec = -6.217248937900877e-15\n",
      "inner product of p2 with e_vec = -4.440892098500626e-15\n",
      "If these equal 0, then error is orthogonal to data vectors.\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvYAAAINCAYAAABVtDv6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzs3Xd4VVXa///3JqSQQk/oRZBi6D2ISBEQDUV6VSLyHRB4xgmiwxQf9PeM44BKUBgZARUUCCBMRIUBZkA0FCmhSJGAdJUSSgiEQNr6/RFyhsM56SekfV7XlStz9lp7rfschLn3Pmuv2zLGICIiIiIiRVupgg5ARERERETyTom9iIiIiEgxoMReRERERKQYUGIvIiIiIlIMKLEXERERESkGlNiLiIiIiBQDSuxFRERERIoBJfYiIiIiIsWAEnsRERERkWJAib2IiIiISDGgxF5EREREpBhQYi8iIiIiUgwosRcRERERKQaU2IuIiIiIFAMuTewty/K3LOsdy7KiLctKsCzrqmVZey3LetuV84iIiIiIiD3LGOOagSyrDbABqAQcBg4BZYFAoKYxprRLJhIREREREQcuSbYty/IH1gNlgP7GmC/va2/vinlERERERMQ5V91FfwOoDEy6P6kHMMbsctE8IiIiIiLiRJ6X4liWVQa4SNp6fX9jTIIrAhMRERERkexzxR37toAfsNUYk2BZ1lNAT8ALOAasNMb86oJ5REREREQkA65I7APv/r5kWdYXQP/72v9qWdYLxpjw7AxmWdbhDJoaAgnAudyFKSIiIiJS6NQCbhljquZ1IFck9hXu/u4HpACTgM8Bb2AyMBVYbFnWj8aY/XmYp5Snp6df/fr1A7PuKiIiIiJS+J04cYI7d+64ZCxXJPbpe+GXBv5kjPngnrZXLMuqAwwBXgFGZTWYMaaJs+OWZR2uX79+4OHDGd3QFxEREREpWpo0acKRI0dcsiLFFQWqbt7zvz9x0p5+rIsL5hIRERERESdckdifufv7ljEmxkn76bu/A1wwl4iIiIiIOOGKxH7f3d9lLMvydNJe8e7vm07aRERERETEBfKc2BtjzgIHAAvny23Sj+1z0iYiIiIiIi7gijv2ADPv/n7Hsqxq6Qcty2oJvHz35T9cNJeIiIiIiNzHFbviYIxZZllWL2AMcMSyrO1AGeBRwBNYYIz53BVziYiIiIiII5ck9nc9D2wDxgNdAQPsBT40xix24TwiIiIiInIflyX2xhgDLLj7U6gYY0gLT0QKgmVZWJZV0GGIiIgUa668Y19oGGO4ceMGcXFx3Lp1i5SUlIIOSaTE8/DwwM/Pj0qVKuHm5lbQ4YiIiBQ7xS6xT01N5cKFC1y/fr2gQxGReyQmJnLlyhXi4+OpXbu2knsREREXK3aJ/fXr121JfcWKFfHz88PT01PLAEQKUGpqKvHx8Vy8eJHbt29z5coVAgJUs05ERMSVil1if+3aNQACAgKoVKlSAUcjIgClSpWiXLlyAPz666/cuHFDib2IiIiLuWof+0LBGMOdO3cAKFu2bAFHIyL38/HxAdKW5eiBdhEREdcqdol9Oq3fFSl8SpX67z85SuxFRERcq1gl9iIiIiIiJZUSexERERGRYkCJvYiIiIhIMaDEXkRERESkGFBiL7kWEhKCZVls2bIlz2O9/vrrWJbFokWL8jxWbnTt2hXLsjh9+nShHE9EREQkK0rs8yjmxh3mbj7Osx/tZMAH23j2o538/ZufiLlxp6BDk2Jg0aJFWJbF66+/XtChiIiISCFX7ApUPSi3k1J446vDrIr6maQU+237Io9fZvZ/jjG4TS2m9w3Ey714br351ltvMW3aNGrXrp3nsSZPnszw4cOpVq2aCyITERERKXmU2OfC7aQUxny8i52nrmbYJynFEL7rLCdjbrJ4bPtimdxXq1bNZYl45cqVqVy5skvGEhERESmJtBQnF9746nCmSf29dp66yhtfHcnniLJnx44d9O/fH39/fzw9Palbty4TJ07k119/deh77xKQY8eOMXz4cKpUqUKpUqX44osvgMzX2P/www/07duX8uXL4+fnx+OPP86///1vtmzZgmVZhISE2PXPaI39vWvVv/jiC4KCgvDx8aFixYqMGDGCn3/+2WHu8+fPM3PmTLp06UKNGjXw8PCgatWqDBw4kN27d+f687tfSkoK77zzDo0bN8bLy4tatWrx0ksvERcXl+E5a9euZezYsTzyyCOULVsWHx8fWrRowV//+ldb1eR73/vzzz8PwBtvvIFlWbaf9M/JGEN4eDjDhw+nYcOG+Pj44OfnR/v27fnggw9ITU112fsVERGRwk137HPo0o3brIpyTCYzsyrqHFN6NsTfzzOfosrakiVLCAkJISUlhU6dOlGrVi327t3LvHnz+Oc//8mWLVto3Lixw3nR0dG0a9eOSpUq0a1bN65du4a7u3umc+3YsYMePXpw69YtmjdvTmBgICdOnKB3795MmjQpV/F/8MEHzJo1i86dO/P000+zc+dOli9fTlRUFAcOHKBMmTK2vmvWrOH3v/89jRo1onnz5pQtW5bjx48TERHB119/zddff02vXr1yFce9Ro8ezfLly/H29qZXr16ULl2axYsXs23btgw/oxdeeIGEhASaNm1K8+bNuX79Ort27eJPf/oTmzZtYuPGjbaqyb179yY5OZlt27bRokULWrZsaRvn4YcfBuDOnTuMHDmSSpUqERgYSOvWrbly5Qrbt29n0qRJ7Nq1q8AeSBYREZEHS4l9Dq3cfc5hTX1WklIMK/ecY1K3h/MpqsydO3eO3/zmN0Ba0tuvXz8AUlNTefnll5k9ezbPPvus07vZy5cvZ/LkycyePduWcGYmNTWVkJAQbt26xZtvvskf//hHW9tHH33EuHHjcvUe/v73vxMZGUnHjh0BuHXrFj179mT79u2Eh4czduxYW99OnTpx6NAhmjRpYjfGhg0b6NevHxMnTuT48eNYlpWrWABWrFjB8uXLqV27Nt9++y1169YF4NKlSzzxxBNERUU5Pe/DDz+kV69edhciN27cYOTIkXz99dcsXbqU5557DoBp06ZRtWpVtm3bxjPPPOP0AdrSpUsTERFBcHCw3cVETEwMTz/9NIsXL2bs2LE8/vjjuX6vIiIiUjRoKU4OZXcJzv2+P3nFxZFk38KFC0lISGDo0KG2pB6gVKlS/O1vf6N69ers2bOHbdu2OZzr7+/PjBkzspXUA2zevJljx47RoEEDpk2bZtf2wgsv0KlTp1y9h9DQUFtSD+Dt7c2UKVMA+O677+z6NmvWzCGpB3jyyScZMmQIJ06c4NChQ7mKI90HH3wApC0hSk/qAQICAnj77bczPK9///52ST2An58fYWFhQNqFV06ULl2aZ555xuEbAn9/f956661cjSkiIiJFk+7Y59DNO8kP9DxXiIyMBGDUqFEObZ6engwZMoT33nuPyMhIh8S7R48eeHt7Z3uu9IuDQYMGUaqU43XjsGHDnF5AZMXZ0pmGDRsCaWvq73fnzh3Wr1/Prl27iImJITExEYCDBw8CcPz4cZo1a5bjOACSkpL4/vvvgbT3c7/evXtToUIFrl275vT848ePs27dOn766Sfi4+NJTU3FGGNry439+/ezceNGzpw5w61btzDGcOPGjTyNKSIiIkWLEvsc8vXM3UeW2/NcIf3h2HvvLN8r/fgvv/zi0JbTrSzTk+xatWo5bc/t1pg1a9Z0OObn5wfg8NDpwYMH6devX6bFodKT3ty4cuUKiYmJ+Pv7Z3jRU6dOHYfE3hjD1KlTCQsLsyXyeY0rMTGRkJAQwsPDM+yTl/cqIiIiRYeW4uRQh4cq5uq8oHqVXByJ62S21tzLy+sBRpIxZ3f/nTHGMHToUE6fPs2ECRPYv38/cXFxtrvif/jDH2z9HrQVK1Ywa9YsatasyapVq/jll19ITEzEGGO7OMlpXLNmzSI8PJxmzZrxr3/9i4sXL9rGjI6OztWYIiIiUjQpsc+hoe1q4e6Ws4cu3d0shrZ1fgf7QahevToAZ86ccdqefme7Ro0aeZ4rfV/7c+fOOW3P6LirHD16lKNHj9K2bVvmzZtHixYt8PPzs128nDx5Ms9zVKpUCQ8PD2JiYkhISHDa5+zZsw7HIiIiAJg3bx6DBg2ievXqtrXxuY0rfczw8HB69+5NQEBAnscUERGRokmJfQ4F+HkxuI3jspDMDG5Tq0C3uuzcuTOA0+UaiYmJfP7553b98iJ9jX5ERITTO8UrV67M8xyZSV/+4mzpzrVr1/j3v/+d5znc3d3p0KED4Pz9bNy4katXHR+yziy2jD4XDw8PAJKTnT+jkZsxRUREpHhSYp8L0/s2yfaSnA4PVWR638B8jihzL7zwAmXKlGH58uWsXbvWdjw1NZU//vGP/PLLL7Rp0ybXO9bcq3v37jRo0IDo6Ghmzpxp17Zo0SLbg7z55eGHH6ZUqVJs3rzZ7qHR27dvM2HCBKcJd268+OKLAEyfPt3u7vzly5d55ZVXnJ6T/rDv/Pnz7S56IiMjM9xJJ/3blvRlNRmN+Y9//MPu+KpVq/j000+z81ZERESkmFBinwte7m4sHtueEe1rZ7gsx93NYkT72iwe2x4v9+xtFZlfateuzYcffkhqaip9+/alc+fOjBw5ksDAQN59912qVKnCkiVLXDJXqVKlWLx4Md7e3kybNo2WLVsycuRIOnTowNixY20FqtLvRLtaQEAAL7zwAnFxcbRo0YI+ffowZMgQ6taty+bNmx0q3ubWiBEjGDJkCGfOnCEwMJD+/fszaNAgGjRoQOnSpQkKCnI457e//S0+Pj588MEHNG3alBEjRvD444/TpUsXJkyY4HSeoKAgAgICWLVqFV27dmXs2LGMGzeO7du3A/Dqq6/i5ubGtGnTaNu2LSNHjqRdu3YMGTKE0NBQl7xXERERKRqU2OeSl7sbbw1sxvZpT/DKk43o3KAyrWqXp3ODyrzyZCO2T3uCtwY2K/CkPt2zzz5LZGQkffr04ccff2TVqlUkJCTw4osvEhUV5bTqbG517NiR7du306dPH06dOsWXX36Ju7s769ats+1FX6lS/j1MPG/ePN59910eeughNm3aRGRkJD169GDPnj3UqVPHZfMsW7aMGTNmUKNGDdavX8/333/PyJEj2bx5M56ejkuvGjZsyJ49e+jbty+XL1/myy+/5ObNm3z44YcZ3rH38vJi7dq19OzZk/3797No0SI++ugjjh07BsDjjz/O1q1b6d69OydPnuTrr7/Gw8OD1atX57rKr4iIiBRNVlHZMcOyrMOBgYGBhw8fzrBPamqqbclCo0aNsr2Tijw4EyZM4MMPP2T58uVO94CX4k1/R0VEROw1adKEI0eOHDHGOFbXzCH9v6q43NWrV53uIb9ixQoWLlxI+fLl6dOnz4MPTERERKQYU4Eqcbljx47RsWNHmjdvTr169QD48ccfiY6Oxs3NjQ8//BAfH58CjlJERESkeNEde3G5evXqMWnSJJKSkvjmm2/4+uuvuX79OgMHDiQyMpKhQ4cWdIgiIiIixY7u2IvLBQQEMHfu3IIOQ0RERKRE0R17EREREZFiQIm9iIiIiEgxoMReRERERKQYUGIvIiIiIlIMKLEXERERESkGlNiLiIiIiBQDSuxFRERERIoBJfYiIiIiUrKlpsDVUwUdRZ6pQJWIiIiIlEzJiZgDy0n87h+Qmgy/+RYPXy8syyroyHJFd+xFHqCQkBAsy2LLli0uGa9r165YlsXp06ddMp6IiEiJkBgP38+D91uSuOb3LIz+CwuP/42Fr+wgMSG5oKPLNSX2IsKiRYuwLIvXX3+9oEMRERHJPwmx8N3bMLsZrJ8Gcb8UdEQupaU4IiIiIlK83bwE338AuxZC4g37NjePgokpHyixFxEREZHiKfYsbHsf9n0Gybft29y9oe1YaDkBph8vmPhcTEtxSoDTp09jWRZdu3YlLi6OKVOm8NBDD+Hu7s7vfvc7u77r168nODgYf39/PD09qVevHlOmTOHKlStOx758+TIvvvgi1atXp0yZMjRt2pS///3vGGOwLIu6deva9b93ycexY8cYPnw4VapUoVSpUnzxxRe2fsnJycybN4+OHTtStmxZypQpQ8uWLZk9ezbJyY5r32JiYpg2bRqBgYH4+vpSrlw5GjZsyHPPPceuXbvs+p45c4YXX3yRhg0b4u3tTcWKFWnSpAnjx48nOjraYexz584xefJk6tevj5eXFxUrVqRPnz5s3749w8/8448/pmXLlpQpU4aqVasSEhLChQsXMuyfmZSUFN555x0aN26Ml5cXtWrV4qWXXiIuLi7Dc9auXcvYsWN55JFHKFu2LD4+PrRo0YK//vWv3Llzx65v165def755wF44403sCzL9rNo0SIAjDGEh4czfPhwGjZsiI+PD35+frRv354PPviA1NTUXL03ERGRfBFzDCJehPdbwe4F9km9Vzno8nsIPQxPvgl+VQsuThfTHfsSJCEhgS5dunDmzBm6dOlC69atqVChgq192rRpzJgxAw8PD9q1a0e1atU4cOAAYWFhfPnll2zbto0qVarY+l++fJlHH32U48ePU716dfr168e1a9cIDQ3l+PHMr3yjo6Np164dlSpVolu3bly7dg13d3dbnMHBwXzzzTdUrFiRoKAgvLy82LlzJ6GhoXzzzTdERERQqlTademNGzfo0KEDp06dolatWvTs2ZPSpUtz9uxZli9fTr169Wjfvj2QlqS3bt2aq1ev0qBBA55++mlSUlI4c+YMCxYsoGPHjjRq1MgW544dOwgODubatWs0atSI4OBgYmJi2LBhA+vXr2fp0qUMGzbM7r2lf47u7u5069aNcuXK8a9//YtvvvmGFi1a5PjPbfTo0Sxfvhxvb2969epF6dKlWbx4Mdu2bbN9Zvd74YUXSEhIoGnTpjRv3pzr16+za9cu/vSnP7Fp0yY2btyIm5sbAL179yY5OZlt27bRokULWrZsaRvn4YcfBuDOnTuMHDmSSpUqERgYSOvWrbly5Qrbt29n0qRJ7Nq1y3YRICIiUmB+3QeRs+DHrwBj3+ZbBTpOSrtL7+lXIOHlO2NMkfgBDgcGBprMpKSkmCNHjpgjR46YlJQU551SU425da1o/aSmZvq+s3Lq1ClD2n/dpmPHjubatWsOfVauXGkA07RpU3P8+PF7Pq5U87//+78GMMOGDbM754UXXjCA6devn0lISLAdj4qKMuXKlTOAqVOnjt05n3zyiS2WyZMnm+TkZIdYJk6caJsvNjbWdjwuLs48/fTTBjDz5s2zHf/4449tcdz/537p0iVz8OBB2+v09zJ58mSHec+cOWN++ukn2+vr16+batWqGTc3N7NkyRK7vrt37zYVKlQwvr6+5tKlS7bjO3bsMJZlmXLlypm9e/fajt+4ccN0797d9t6/+eYbh/mdWb58uQFM7dq1zalTp2zHL168aJo2bWob7942Y4z54osvzK1bt+yOxcXFmT59+hjALF682K4t/c9l+vTpTuNISkoyERERJjEx0e74pUuXTNu2bQ1gvv322yzfT7b+joqIiOREaqoxp7Ya8+kAY6aXdfwJa2rMroXGJCY4Pf12fKKZO36T7ed2fKLTfvklMDDQAIeNC/LlknfH/vZ1mFGnoKPImd+fgTLlXTLU+++/T/nyjmO9+eabAISHh9vu0gK2ZTNffvklq1at4vLly1SuXJmbN2+ydOlS3NzceO+99/Dy8rKd07p1ayZPnmwb0xl/f39mzJhhu2uc7tKlSyxYsIBatWrxySefUKZMGVubn58fH330EXXq1GHevHlMmDABSFuGA9C9e3fbXfx75/H397e9Tu/bo0cPh5hq165t9/rjjz/m/PnzvPzyy4waNcqurW3btrz22mtMmTKFJUuWEBoaCsC8efMwxvDSSy/RqlUrW39fX1/mzJlD06ZN0y9Us+WDDz4A4PXXX7db1hQQEMDbb7/NU0895fS8/v37Oxzz8/MjLCyMr7/+mjVr1vDcc89lO47SpUvzzDPPOBz39/fnrbfeomfPnqxZs4bHH38822OKiIjkiTFw/N8Q+S6c+96x3b8xPDYFmg4EN+ffcBc3JS+xL8GqVatG27ZtHY5funSJAwcO0KBBA5o2berQblkWnTp1Yv/+/URFRfHkk08SFRXF7du3CQoKclhHDzBs2LBME/sePXrg7e3tcHzLli0kJSXRu3dvu6Q+XdWqVWnQoAEHDx4kISGBMmXK0KZNGwDefvttqlSpQnBwMH5+zr9iS+/7xz/+ETc3N3r06GF3UXKvjRs3AjBw4ECn7Z07dwawW8MfGRkJwPDhwx36BwYG0qJFC/bv3+90vPslJSXx/fdp/1Ddv9wH0pbQVKhQgWvXrjk9//jx46xbt46ffvqJ+Ph4UlNTbRcVWS2Vysj+/fvZuHEjZ86c4datWxhjuHHjRp7GFBERyZHUFDiyJm3JzcWDju3VW0HnqdDoaShVsh4nVWJfgtx/RzpdenGj48ePZ1lp7fLlywCcP38egFq1auVoruzGsmDBAhYsWJDpGFevXqVGjRo88cQThIaGMnv2bEaMGEHp0qVp3bo1PXv2ZOzYsdSrV892TkhICBs3bmTlypX07dsXLy8v2rVrR+/evRk7dixVq/73AZr0WDp16pRpHOmfCcCvv/4KQJ06zr8Vqlu3brYT+ytXrpCYmIi/v7/Ti6D0ee5P7I0xTJ06lbCwsAy/HUhPxrMrMTGRkJAQwsPDM+yT0zFFRERyJDkRflgOW2fD1ROO7XU7Q+eXoV5XKKKVY/Oq5CX2XuXSlrYUJV7lXDNMBnem03c0qVq1Kk8++WSmY2SUsLo6lpYtW2b5oKmnp6ftf8+aNYvx48ezZs0a/vOf/7Bt2zZ27drFzJkzCQ8PZ9CgQQC4ubmxYsUKpk2bxpo1a9i8eTM7d+4kMjKSv/3tb6xfv55HH33ULpbBgwfj4+OTYRyNGzfO/ht/AFasWMGsWbOoVasWYWFhdOzYEX9/f9zd3UlMTMTT0zNHy4Eg7fMNDw+nWbNmzJw50/bgtbu7O8eOHaNRo0Y5HlNERCRbEuNh76ewfY7zglINn4LOU6BW+wcfWyFT8hJ7y3LZevXiombNmgBUrlw52zubVKtWDUjbZcaZjI5nN5bHHnuMOXPm5OjcRo0a8eqrr/Lqq69y+/Zt5s6dyyuvvMKLL75oS+zTtWrVilatWvH6668TFxfH66+/TlhYGL/73e9sS2tq1qxJdHQ006ZNsy3hyUq1atU4ffo0Z86c4ZFHHnFoP3Mm+xeVlSpVwsPDg5iYGNuyo/udPXvW4VhERASQtt4/ODjYru3kyZPZnt/ZmOHh4TRp0sQlY4qIiGQqITZtq8rv58Gt+7bdtkpBk4HwWChUdVxGXFKVrIVH4lTNmjVp3LgxR44c4dixY9k6p02bNnh5ebFnzx6nyeXKlStzFUu3bt1wc3Pj66+/JikpKVdjQNo3AlOnTqVatWrExMRw6dKlDPuWLVuWt956C8uyOHTokO14z549gf8mtdmRvu7e2fs/evRotpfhALi7u9OhQ4cMx9u4cSNXr151OJ6+NCf9IuleGf25eHikVd1zViMgt2OKiIjkys1L8J/XIawpbP6LfVJfyh1aj4HJe2DwR0rq76PEXgB47bXXSE1NZdCgQU6TzytXrtiteff19WXUqFEkJyfz0ksv2RU9OnDgQI7vtqerUaMGY8eO5fTp04wYMYKLFy869Pnpp59YvXq17fUXX3xhe8j0XlFRUVy8eBFfX1/bTkCfffaZXfKe7l//+hfGGLtnBsaPH09AQAAzZ85k/vz5DkWYkpOT2bBhg9146Tv1zJ49mwMHDtiOx8fH8z//8z85Xq7y4osvAjB9+nS7C6jLly/zyiuvOD2nYcOGAMyfP99uvsjISN5++22n51SvXh3AaYGue8f8xz/+YXd81apVfPrpp9l5KyIiIpmLPQvrXoHZzWBrGCTe8+yWuzd0nAy/+wH6vQ+V6hdcnIWZK/bMfBA/uGof+xIofR/7Ll26ZNrvj3/8owFMqVKlTOvWrc2QIUPM4MGDTatWrYybm5spV66cXf+YmBjz8MMPG8DUqFHDDBs2zDz55JPG3d3dTJ482QCmQYMGdudktV+6McbcunXL9OzZ0wDGx8fHdOrUyYwYMcL069fPNl///v1t/V966SVbDH369DEjR440Xbt2NW5ubgYw7777rq1v//79DWDq169vnnnmGTNixAgTFBRkLMsypUqVMitXrrSLZceOHaZy5coGMLVq1TJPPfWUGTlypOnevbspX768AUxERITdOVOnTjWAcXd3N08++aQZOnSoqVKliqldu7bp27dvjvaxN8aYIUOG2D6Lfv36mYEDB5ry5cub1q1bm6CgIId97KOjo42Pj48BTGBgoBk+fLjp3LmzsSzLFtv99QUSEhJMQECA7b+T559/3rzwwgtm27Ztxhhjvv32W9vn2aZNGzNixAjb/vXpY2b135cx+jsqIiJOXIo2JuJFY96o6LgH/Vu1jNn8pjE3L+fb9MVpH/sCT9izHagS+1zLbmJvTFoCN2TIEFO9enXj7u5uKlWqZJo3b24mT57stADRpUuXzPjx403VqlWNp6eneeSRR8zs2bPN2bNnDWCCgoLs+mcnsTfGmOTkZLN48WLTvXt3U7FiRePu7m6qV69uOnbsaN544w0THR1t67tv3z7z8ssvm3bt2pmAgADj6elp6tSpY/r27Wv+85//OLy/SZMmmZYtW5pKlSoZLy8vU69ePTN8+HCze/dup7GcP3/evPrqq6ZJkybG29vbeHt7m/r165v+/fubRYsWmRs3bjics2DBAtO8eXPj6elpAgICzOjRo80vv/xixowZk+PEPikpycyYMcM0bNjQeHh4mOrVq5uJEyea2NhY06VLF6cFqn788UfTt29fExAQYLy9vU2rVq3M/PnzjTHGaWJvTFrRrZ49e5py5coZy7IMYD755BNb+44dO0z37t1NhQoVjJ+fn3n00UfN6tWrc/Tfl/6OioiIzS/7jFnxrDHTyzkm9DMfNmbrbGMSrudGwCzbAAAgAElEQVR7GMUpsbdMDpcGFBTLsg4HBgYGHj58OMM+qamptqUEjRo1cihWJA/O8uXLGTFiBBMmTGDevHkFHY4UEvo7KiIinN6WVlTqxCbHtvK1odNL0HI0uDvfQc/V7txKYuGUSNvrcbM64+n94ApaNWnShCNHjhwxxjTJunfmSt6uOOJSUVFRDjvG7N+/37b+e/To0QURloiIiBQmJosqsZUbpW1Z2XRQiakSmx+U2EuedOrUiapVq/LII49QtmxZTp06RVRUFKmpqUyePDnL4k4iIiJSjGWrSuzL0Ci4xFWJzQ8uS+wty9oCdMmky1PGmPWumk8Khz/84Q+sW7eOPXv2EBsbi6+vL48//jjjxo1j1KhRBR2eiIiIFITkRPhhRdruNhlWiZ0C9boVaJXYmBt3WLHtNPdGsDDyFEMfrYO/n2eG5xVW+XHHfjVw08lxJ6XCpKibPn0606dPL+gwREREpDBIvHW3Suz7hbpK7O2kFN746jCron6mVJLht/y3COT7m44z+7ufGNymFtP7BuLl7laAkeZMfiT2U40xp/NhXBEREREpjBJiYfdC+P6DQl8l9nZSCmM+3sXOU2lFHp3dl09KMYTvOsvJmJssHtu+yCT3WmMvIiIiIrlzMyYtmd+9EO7E2beVcoeWI9N2uSlEBaXe+OqwLanPys5TV3njqyO8NbBZPkflGkrsRURERCRnYs/C9jlpy26Sb9u3uXtDm+eh4yQoV6Ng4svApRu3WRX1c47OWRV1jik9GxaJNff5kdi/YFlWJSAVOAZ8YYw5mw/ziIiIiMiDFHMMts1OezA2Ndm+zasctB8PHSaAT6WCiS8LK3efIyklZzWcklIMK/ecY1K3h/MpKtfJj8T+z/e9fseyrP8zxvxfdk62LCujClSF5zscERERkZLk1/2wdRYc+RK4LzH2CUi7O992LHiVLZDwsiu7S3Du9/3JKyUusf8OWAhsB84DtYDBpCX6/59lWXHGmPdcOJ+IiIiI5Kcz29OKSv30H8e2crXhsZeg5ShwL+PYXgjdvJOcdScXnveguSyxN8b8732HjgF/tSxrD7ABeN2yrPnGmIQsxnFaTvfunfxAlwQrIiIiIs4Zk5bIR74LZ3c4thfhKrG+nrlLfXN73oOW71EaYzbeTe7bAh2ALfk9p4iIiIjkUGoK/PhlWkJ/wUmV2Got4fGpRbpKbIeHKhJ5/LLdsTsWvF82we71/YLqFc5nBu73oC4/jpOW2Fd7QPOJiIiISHakV4ndNhuu/OTYXkiqxLrC0Ha1eG/TcfsHaC3nyXw6dzeLoW1r5X9wLvCgEvsKd3/HP6D5RERERCQzWVaJ7Q2PTYHaHR58bPkkwM+LwW1qEr7rXLbPGdymVpHY6hIg379HsSzLH+h89+Xe/J5PireuXbtiWZbtZ/LkyU77HT58mCFDhuDv70+ZMmVo1qwZs2fPJjU11aFvbGys3ZiWZbFly5Z8ficiIiIFJCEWvnsHZjeD9b+3T+qtUmlr5ydshZErilVSn2563yZ0eKhitvp2eKgi0/sWnUc8XXLH3rKsR4EA4CtjTMo9x+sCSwAf4EtjTM4qAohkYNCgQfj6+hIUFOTQtmPHDp544gkSEhJo3749devW5bvvviM0NJTt27ezYsUKrHu+SvTw8GDMmDEAbN26lRMnTjyw9yEiIvLAFMEqsfnBy92NxWPb88ZXR1gV5Xxfe3c3i8FtajG9byBe7m4FEGXuuGopTkPgE+CCZVl7gVigDtAG8AIOA//PRXOJ8M4771C3bl2H40lJSYwaNYqEhARmzZpFaGgoADdv3qRXr158/vnnPP3004SEhNjO8fb2ZtGiRQCEhIQosRcRkeIl9tzdKrGLi1SV2Pzk5e7GWwObMaVnQ1buOcf3J69w804yvp6lCapXiaFti87ym3u5KrHfCcwjbdebdqStqY8H9gOfA/Oy2uZSxBUiIiI4deoULVq0sCX1AL6+vsydO5c2bdrw7rvv2iX2IiIixdLl47B1NvywvEhWiX0Q/P08mdTt4SJRfCo7XLLG3hjzozFmojGmjTEmwBjjbowpb4zpaIyZpaS+cDh37hyTJ0+mfv36eHl5UbFiRfr06cP27dvt+m3ZsgXLsggJCeHChQuMGzeOmjVrUrp0aWbPng2k3dlOX4u+YcMGunXrRvny5bEsi9jYWNtYR44cYdSoUVSrVg0PDw9q1KjBc889R3R0tEN82Zk3K2vXrgVg8ODBDm2tW7emXr16HDp0iNOnT2f3YxMRESlazh+AlWNgbjvYv8Q+qfcJgB5vwO8OQfc/leikvjgqGrvtS57t2LGD4OBgrl27RqNGjQgODiYmJoYNGzawfv16li5dyrBhw+zOiYmJoV27diQnJ/PYY49x+/ZtvL297fosW7aMhQsX0rZtW5566ilOnDhhW7++adMm+vbtS0JCAq1ataJr164cPXqUzz77jIiICNatW0fnzp25X3bmzciBAweAtCTemdatW3Py5El++OEHp0t5REREiqysqsR2+i20Gl1kqsRKzpW4xN4Yw42kGwUdRo74ufvZPeyZU3FxcQwaNIi4uDiWLFnCqFGjbG179uyhV69ejBs3ju7du+Pv729rW7duHQMGDGDZsmV4eXk5HXvBggUsX77c4aIgPj7ettZ97ty5TJo0ydYWFhbGlClTGDlyJMePH3cYOzvzZuTs2bMA1KxZ02l7+vEzZ87kaFwREZFCKcsqsQ3TtqxsNrjIVYmVnCtxif2NpBt0Cu9U0GHkyLYR2yjrUTbX53/88cecP3+el19+2S6pB2jbti2vvfYaU6ZMYcmSJXbr0j09PZkzZ06myXVwcLBDUg+wcuVKLl68SMeOHe2SeoDQ0FCWLl1KVFQUq1evdogpO/Nm5ObNmwAZ3uH38fEB4MaNonVxJyIiYic7VWI7vwyN+xTZKrGSc/qTLgE2btwIwMCBA522py+H2bVrl93x1q1bU6NG5k/I9+vXz+nxyMhIAIekPd3o0aPt+uV0XhERkRIpORH2LYG/t4fPQxyT+rqdYfQ/4TdbILCfkvoSpsTdsS+J0h8U7dQp828qLl++bPe6du3aWY6dUZ9ff/0VIMN17OnHf/nFsdJddubNiK+vL9euXePWrVtO2+Pj04of+/n55XoOERGRBy7xFuz7DLa9D3FOygIVwyqxknMlLrH3c/dj24htBR1Gjvi55y0JTa+2OnjwYNtSFGcaN25s9zo7S2Fys1wGyPSZgdyOCWkXBdeuXePnn3+mefPmDu0//5z2j2GdOnVyPYeIiMgDc/t6WkGpHR/ALfsbcFiloMkAeCwUqjYrmPikUClxib1lWXlar14U1axZk+joaKZNm0abNm0eyJzVq1cHMn5INf1bBFcvuWnRogUHDhxg7969PP300w7te/fuBXCa9IuIiBQaWVaJHQGdflfsq8RKzmjhVQnQs2dPIK1404OSvm4/PDzcafuSJUvs+rlKcHAwAKtWrXJo27dvHydPnqRp06ba6lJERAqn2HOw7lWY3Qy2zrJP6t29IWgivHQA+s1RUi8OlNiXAOPHjycgIICZM2cyf/5829KcdMnJyWzYsIFDhw65bM6hQ4dSpUoVtm7dyvz58+3a3n//ffbs2UONGjUYNGiQy+YEGDBgAA899BAHDhwgLCzMdjw+Pt62O8/LL7/s0jlFRETy7PJx+GISvN8Sdn0IyffU9vQsB4+/Ar87CL3fgnLaYEKcK3FLcUqi8uXLs2bNGvr27cv48eP5y1/+QtOmTalQoQIXLlxg7969xMbGEhERQdOmTV0yp4+PD0uXLrXNOX/+fBo2bMjRo0fZt28fvr6+hIeH52k9vTPu7u4sWbKEHj16MGXKFFasWEGdOnWIjIzk/PnzDB48mDFjxrh0ThERkVw7fwAiZ8GRNYCxb/MJgI4Toe0L4FWylhFL7iixLyGCgoI4ePAgYWFhrF27lm+//RaAatWq0aVLFwYMGECPHj1cOucTTzzB7t27efPNN9m8eTM//PADlStXZvTo0fz5z3+mUaNGLp0v3aOPPsru3buZPn06W7Zs4cCBA9SvX59XXnmFl156KU/FvkRERFzizI67VWL/7dimKrGSS0rsS5CqVasyY8YMZsyYkWm/rl27YozJtM+iRYtYtGhRlnM2adKEZcuWZSu+7MybXU2aNHG6zl5ERKTAGAM/bbpbJXa7Y7uqxEoeKbGXImnq1Kn4+vrSo0cPW7Gr3Lp16xYTJ04EYOvWra4IT0RE5L9SU+DHr+5Wif3BsV1VYsVFlNhLkbR69WogrSBVXhP7xMREFi9e7IqwRERE/is5EQ6uhK1hcOUnx/Y6j0HnKVC/O2iZqLiAEnspUrZs2eLyMcuXL++yJUAiIiJZVolt8GRaQl876MHHJsWaEnsRERERV8iqSmzgM2lVYqupSKLkDyX2IiIiInlxMwZ2zoNdC1QlVgqUEnsRERGR3Lj+M2yfA1GL7QtKAZQuA22fh46TVVBKHhgl9iIiIiI5cfkn2BYGB5ZDarJ9m2c56PAb6DABfCoXTHxSYimxFxEREcmOTKvE+kPHSaoSKwVKib2IiIhIZlQlVooIJfYiIiIi91OVWCmClNiLiIiIpFOVWCnClNiLiIiIpCTBD+lVYo87tqtKrBQBSuxFRESk5EqvErt9Dlw/59iuKrFShOg7JClSunbtimVZtp/JkyfbtaekpLBy5UqmTp3K448/jo+PD5ZlERISkuGYsbGxdmNalsWWLVvy942IiEjBun09bbnN7Gbwr1fvS+otaDIQxkfCqJVK6qXI0B17KZIGDRqEr68vQUH2/9jeuHGDYcOG5WgsDw8PxowZA8DWrVs5ceKEy+IUEZFCJqsqsS2Gp1WJrfxwwcQnkgdK7KVIeuedd6hbt67DcXd3d5599lnatm1Lu3btiI6O5vnnn890LG9vbxYtWgRASEiIEnsRkeJIVWKlBFBiL8WKj48Pn376qe31mTNnCjAaEREpcLYqsSsgNcm+TVVipZjRGvsS5Ny5c0yePJn69evj5eVFxYoV6dOnD9u32+/Pu2XLFtu69AsXLjBu3Dhq1qxJ6dKlmT17NpB2Zzt9LfqGDRvo1q0b5cuXx7IsYmNjbWMdOXKEUaNGUa1aNTw8PKhRowbPPfcc0dHRDvFlZ14REZFsOf8DfB4Cc9vCviX2Sb2PP/R4HUIPQfc/K6mXYkN37EuIHTt2EBwczLVr12jUqBHBwcHExMSwYcMG1q9fz9KlSx3WpsfExNCuXTuSk5N57LHHuH37Nt7e3nZ9li1bxsKFC2nbti1PPfUUJ06cwLq7DdimTZvo27cvCQkJtGrViq5du3L06FE+++wzIiIiWLduHZ07d3aINTvzioiIOHVmB2ydBcc3OraVqwWdXlKVWCm2Slxib4wh9caNgg4jR0r5+dmS5dyIi4tj0KBBxMXFsWTJEkaNGmVr27NnD7169WLcuHF0794df39/W9u6desYMGAAy5Ytw8vLy+nYCxYsYPny5Q4XBfHx8YwaNYqEhATmzp3LpEmTbG1hYWFMmTKFkSNHcvz4cYexszOviIiITVZVYis1SNuystkQVYmVYq3EJfapN25wrH2Hgg4jRxru2olb2bK5Pv/jjz/m/PnzvPzyy3ZJPUDbtm157bXXmDJlCkuWLCE0NNTW5unpyZw5czJNroODg53uQrNy5UouXrxIx44d7ZJ6gNDQUJYuXUpUVBSrV692iCk784qIiGRdJbbFPVVi3R58fCIPmNbYlwAbN6Z9HTlw4ECn7enLYXbt2mV3vHXr1tSokfnuAP369XN6PDIyEsAhaU83evRou345nVdEREqwlCTYtxT+3gE+H+OY1NfpBKNXw2++hcD+SuqlxChxd+xLotOnTwPQqVOnTPtdvnzZ7nXt2rWzHDujPr/++iuA0y0p7z3+yy+/ZHtMEREp4ZISYO9nsP19VYkVcaLEJfal/PxouGtnQYeRI6X8/PJ0fmpqKgCDBw/Gx8cnw36NGze2e52dpTC5XS6T2TMDWoIjIiJ2bl+H3R/B9x9AfMx9jRY0GQCPhUK15gUSnkhhUeISe8uy8rRevSiqWbMm0dHRTJs2jTZt2jyQOatXrw5kvI98+rcIWnIjIiIZir8M36dXib1u36YqsSIOtMa+BOjZsycAERERD2zO9HX74eHhTtuXLFli109ERMTm+s/wr2kQ1hQi37FP6kuXgQ4vwkv7of9cJfUi91BiXwKMHz+egIAAZs6cyfz5821Lc9IlJyezYcMGDh065LI5hw4dSpUqVdi6dSvz58+3a3v//ffZs2cPNWrUYNCgQS6bU0REirjLP8GaSfBeS9g5D5IT/tvmWQ46T00rKvXU36BczYKLU6SQKnFLcUqi8uXLs2bNGvr27cv48eP5y1/+QtOmTalQoQIXLlxg7969xMbGEhERQdOmTV0yp4+PD0uXLrXNOX/+fBo2bMjRo0fZt28fvr6+hIeH58t6+okTJ7J3714Arly5AsDatWsJCvrvw1Tff/+9y+cVEZFcOv9DWlGpw18Axr7NuzJ0nATtXgCvcgUSnkhRocS+hAgKCuLgwYOEhYWxdu1avv32WwCqVatGly5dGDBgAD169HDpnE888QS7d+/mzTffZPPmzfzwww9UrlyZ0aNH8+c//5lGjRq5dL50R44cYedO+wekL1++7LDrj4iIFLCz36ftQZ9RldhHf5tWJdZD1cdFskOJfQlStWpVZsyYwYwZMzLt17VrV4wxmfZZtGgRixYtynLOJk2asGzZsmzFl515s2PLli15HkNERPKJMXBiE0TOgjPbHNtVJVYk15TYS5E0depUfH196dGjh63YVW7dunWLiRMnArB161ZXhCciIvdLTYWjd6vEnj/g2K4qsSJ5psReiqTVq1cD4Ovrm+fEPjExkcWLF7siLBERuV9KEhz8HLaGweVjju11OqXdoa//BGRS40REsqbEXoqU/FhmU758eZcsARIRkXtkWSW2Fzw2Bep0fPCxiRRTSuxFRETEdbKsEvtMWkKvKrEiLqfEXkRERPIuyyqxw6BTqApKieQjJfYiIiKSe9d/hu1zIWqRfUEpSKsS2yYEHp2sglIiD4ASexEREcm5KyfSHog9sBxSk+zbPMtB+/8HQS+CT+WCiU+kBFJiLyIiItl34WDaHvRHvgCTat+mKrEiBUqJvYiIiGTt7PdpCf3xDY5tZWtCp5dUJVakgCmxFxEREeeyUyX2sdC0KrGlPR58fCJiR4m9iIiI2MuqSmzV5mlVYh/pqyqxIoWIEnsRERFJk1WV2NqPpiX0D6tKrEhhpMReRESkpEtKgH1LYNt7qhIrUoSVKugARHKia9euWJZl+5k8ebJd+5kzZ5gzZw69e/ematWquLu7U7lyZXr37s2XX37pdMzY2Fi7MS3LYsuWLQ/g3YiIFLDbcWl352c3g3VT70vqLWgyAMZ/B6M+V1IvUgTojr0USYMGDcLX15egoCC746NGjWLbtm14enoSFBRE1apVOXnyJBs2bGDDhg2EhoYya9Ysu3M8PDwYM2YMAFu3buXEiRMP7H2IiBSI+Muw8x+wc76TKrGlocVw6PQ7qNygYOITkVxRYi9F0jvvvEPdunUdjtesWZM5c+YwZswY/Pz8bMfXrl3LM888Q1hYGL1796ZXr162Nm9vbxYtWgRASEiIEnsRKb6u/wLb52RSJXYMdJwM5WsVSHgikjf5kthbllUJ+BHwB04YYx7Oj3lE7rd8+XKnx4ODgxk7dizz588nPDzcLrEXkf+KuXGHFbvPsvPUVW7eScbXszRB9SoxtG0t/P08Czo8ya1Mq8SWTasS2+FF8PUvmPhExCXya439u4BqSBcy586dY/LkydSvXx8vLy8qVqxInz592L59u12/LVu2YFkWISEhXLhwgXHjxlGzZk1Kly7N7NmzgbQ72+lr0Tds2EC3bt0oX748lmURGxtrG+vIkSOMGjWKatWq4eHhQY0aNXjuueeIjo52iC878+ZFixYtAPj111/zPJZIcXM7KYU//PMHHv3bJt7ZeIzI45fZdzaWyOOXeXtDNI/+bRN/+OdBbielFHSokhMXDsLnz8PctrDvM/uk3rsyPPG/EHoo7beSepEiz+V37C3LegIYA8wHfuPq8SV3duzYQXBwMNeuXaNRo0YEBwcTExPDhg0bWL9+PUuXLmXYsGF258TExNCuXTuSk5N57LHHuH37Nt7e9hUFly1bxsKFC2nbti1PPfUUJ06cwLq7BdqmTZvo27cvCQkJtGrViq5du3L06FE+++wzIiIiWLduHZ07d3aINTvz5sbJkycBqFq1ap7HEilObielMObjXew8dTXDPkkphvBdZzkZc5PFY9vj5a69ywu1szvT9qDPsErsb6HVs6oSK1LMuDSxtyyrDPAhcAR4ByX2hUJcXByDBg0iLi6OJUuWMGrUKFvbnj176NWrF+PGjaN79+74+//3js26desYMGAAy5Ytw8vLy+nYCxYsYPny5Q4XBfHx8YwaNYqEhATmzp3LpEmTbG1hYWFMmTKFkSNHcvz4cYexszNvTsXGxvLpp58C0L9/f5eMKVJcvPHV4UyT+nvtPHWVN746wlsDm+VzVJJjxsCJzXerxG51bK/0cNqWlaoSK1JsufqO/XSgHtAFSMqib4EwxpCYkFzQYeSIR5nStrvgufHxxx9z/vx5Xn75ZbukHqBt27a89tprTJkyhSVLlhAaGmpr8/T0ZM6cOZkm18HBwQ5JPcDKlSu5ePEiHTt2tEvqAUJDQ1m6dClRUVGsXr3aIabszJtTEyZMICYmhqCgIAYMGOCycUWKuks3brMq6uccnbMq6hxTejbUmvvCIjUVjn59t0rsfsd2VYkVKTFclthbltUceBn4xBgTaVlWXVeN7UqJCcksnBJZ0GHkyLhZnfH0ds/1+Rs3bgRg4MCBTtvTl8Ps2rXL7njr1q2pUaNGpmP369fP6fHIyLTP+P6kPd3o0aOJiooiMjLSoU925s2JGTNmsGLFCipWrMjSpUvzdJEkUtys3H2OpBRjf9AYfJJu217Gu3vZVRlNSjGs3HOOSd20L0KBSkmCg6tg6yxViRURwEWJvWVZpYCFQCzwah7HOpxBU/28jFuSnT59GoBOnTpl2u/y5ct2r2vXrp3l2Bn1SX9A1dmWlPce/+WXX7I9Zm4sWbKEP/zhD/j4+LB27Vrq1avnsrFFigNnS3B8km6zat1rtteDn/4/4j3K2PX5/uQVJfYFxVYl9n24ftax/eGe0HkK1Hn0wccmIgXKVXfs/wdoBzxvjLniojHFRVJTUwEYPHgwPj4+GfZr3Lix3evsLIXJ7XKZzO6au2oJztdff83zzz+Pu7s7//znPx2KWYkI3LyTu6WJuT1P8uB2HOz5CHb8HeJj7mu0ILB/WkJfrUWBhCciBS/Pib1lWbWBvwDfGmMW5XU8Y0yTDOY5DATmdXyPMqUZN8txJ5bCzKNM3v6YatasSXR0NNOmTaNNmzYuiipz1atXB+DMmTNO29O/RXDlkpt7ffvttwwZMgRjDMuWLdO+9SIZ8PXM3b8vuT1PciH+CuycB7vmw20nVWKbD4fHVCVWRFxzx/7vgAcwwQVj5TvLsvK0Xr0o6tmzJ5s2bSIiIuKBJfadO3fmk08+ITw8nIkTJzq0L1myxNbP1fbu3Uu/fv24c+cOH3/8MYMGDXL5HCLFRYeHKhJ5/HLWHe8TVK9SPkQjdq7/AjvmplWJTbpl36YqsSLihCsKVPUBbgH/sCxrS/oPkF4CtMY9x7WBeAEYP348AQEBzJw5k/nz59uW5qRLTk5mw4YNHDp0yGVzDh06lCpVqrB161bmz59v1/b++++zZ88eatSo4fKkOzo6mt69exMXF8d7771HSEiIS8cXKW6GtquFu1vOHqx0d7MY2lbJZL65cgK+/B94rwV8/4F9Uu9ZNu2B2N8dhKdmKKkXETuu+i61PGlbXDrjdU+b6/YvlGwrX748a9asoW/fvowfP56//OUvNG3alAoVKnDhwgX27t1LbGwsERERNG3a1CVz+vj4sHTpUtuc8+fPp2HDhhw9epR9+/bh6+tLeHi4S7e0BBg+fDgxMTH4+/sTFRXlNLFv3Lgx06ZNc+m8IkVVgJ8Xg9vUJHzXuWyfM7hNLW11mR8uHErb4eZwBBj7GzB4V4aOE6HdOPAqVzDxiUihl+fE3hjj9FbP3e0uTwEnjDHaOqGABQUFcfDgQcLCwli7di3ffvstANWqVaNLly4MGDCAHj16uHTOJ554gt27d/Pmm2+yefNmfvjhBypXrszo0aP585//TKNGjVw6H8C1a9eAtOq1ixcvdtqnS5cuSuxF7jG9bxNOxsRnq0hVh4cqMr1vnh93knupSqyIuIiefipBqlatyowZM5gxY0am/bp27YoxJtM+ixYtYtGiRVnO2aRJE5YtW5at+LIzb1bSH8oVkezzcndj8dj2vPHVEVZFOb9z7+5mMbhNLab3DcTLXUWO8ixbVWJDodlQVYkVkWxTYi9F0tSpU/H19aVHjx6MHj06T2PdunXL9oDv1q1O/g9WpATwcnfjrYHNmNKzIf/87kdY99+23z7xMAMff0TLb1xBVWJFJB8psZciafXq1QD4+vrmObFPTEzMcNmOSEnj7+fJuM71uLeO6bjO9XBTUp83tiqxYXA52rFdVWJFxAXyLbE3xpwG9K+TuNSWLVtcPmb58uXzvARIRMQpVYkVkQdId+xFRERc7XYc7Pn4bpXYS/c1qkqsiOQPJfYiIiKuEn8Fdv4Ddn2oKrEi8sApsRcREcmrrKrEtn4OHv0fFZQSkXylxF5ERCS3rpyAbbNhfzikJtm3eZaF9v8POrwIvv4FE5+IlCjFKrG37tlJICUlhVKlShVgNCJyv9TU/1bTtLTzhxRlqhIrIoVQsUvsPT09udzx2q8AACAASURBVHPnDnFxcVSqVKmgQxKRe8THxwPg4eGhxF6KpnO70vagP7besU1VYkWkgBWrxB6gQoUKXLhwgUuXLpGcnIyfnx+enp5KIkQKUGpqKvHx8Vy8eBEAPz+/Ao5IJAfSq8RuDYPTkY7tqhIrIoVEsUvsy5Urx+3bt4mNjeXq1atcvXq1oEMSkXt4eXnp2zQpGrKsEtvsbpXYfqoSKyKFQrFL7EuVKkXVqlXx8fHhxo0bxMfHk5KSUtBhiZR4Hh4e+Pn5UalSJdzclARJIZZlldiOd6vE9lCVWBEpVIpdYg9pa+3Lli1L2bJlATDGqLKoSAGyLEvL4aTwy7JKbI+0hF5VYkWkkCqWif39lFSIiEiGslMl9rFQqN6yQMITEcmuEpHYi4iIOFCVWBEpZpTYi4hIyRL3K2yfC1GfOKkS6wWtx6hKrIgUSUrsRUSkZMiqSmy7cRA0UVViRaTIUmIvIiLFW6ZVYiulJfPtxkGZ8gUTn4iIiyixFxGR4inTKrE14NHfQuvnVCVWRIoNJfYiIlJ8GAMnv4HIWRlXie30O2g+TFViRaTYUWIvIiJFX2oqRK9Nu0P/6z7HdlWJFZESQIm9iIgUXSlJcGh12h16Z1ViawXB41NVJVZESgQl9iIiUvQk3Yb9S2DbexCrKrEiIqDEXkREipIsq8T2g8emqEqsiJRISuxFRKTwy7JK7LC0h2L9GxZMfCIihYASexERKbyyrBL73N0qsbULJj4RkUJEib2IiBQ+V06krZ/fvyyTKrEvgm9AwcQnIvL/t3fv4XaVhZnA30/kJkQliooQEKigREUJJggBL71rmSo6tto6VarTWlAx4vPUmVprOzN92hkBqZdOpSqt1tZSW7XWS2/ahItCQNAAgtwEUS4GxoRLyOWbP9Y+kJzbPidZZ++z1/n9nuc865z17b3WF7Nc52Vl7fXOQ4I9APPHD7+drDk7WfcZLbEAsyTYAzB8t17aa4n94sQxLbEAMyLYAzAc/VpiFx+erHy7lliAGRLsARisfi2xT352cuKq5Khf1BILMAuCPQCDMdYSu+bs5K5rJ44vOa4plXr6T2uJBdgJgj0Ac6tfS+zhP5mcdKaWWIBdJNgDMDc2bXikJXbjHeMGx1pi35489XlDmR5A1wj2ALTr/vVNS+zX/1RLLMAACfYAtOPHtzdX5y/7WLL5vh3HtMQCzDnBHoBdM9YSe+Wnkq0P7Ti2x6Jk+RubYiktsQBzSrAHYOfcsa55Bv2ULbFvTp7/Ji2xAAMi2AMwO9O1xC56anLCWEvsPoOfG8ACJtgD0F+tyY1fbQL9lC2xZyTP+WUtsQBDItgDML3rvpxc/qHk9ssnjmmJBZg3BHsApveZNyV71B3XLVmRnHimlliAeUSwB+ARmx9MLv/LqccP/8nkxHc0LbECPcC8ItgDsGNL7Po7kxyw3WBJnnlyc8uNlliAeUuwB1jIHm6J/b/Jg/f2Vo67Ev/Gf0kOWzbwqQEwO4I9wELUryV2e098+uDmBcBOE+wBFpL1NzYtsd/8qylbYh+14s054sy9H179qEWLBjxJAHaGYA+wENyxLllzdvLtv+vbEluSeHAlwOgR7AG67NZLkzVnJd/5p4ljWmIBOkWwB+iasZbYNWclN/3HxPHFhyUr354855eSR+858OkBMDcEe4Cu2LatuTK/+n1TtMQ+q9cS+3ItsQAdJNgDjLqtW5p759ecldx17cTxJSuaUqmn/4xSKYAOE+wBRtXmB5NvfrJ5ys29t0wc1xILsKAI9gCjZtOG5vnzF38g2XjHuEEtsQALlWAPMCruX980xH79T7drie0puzUfhl15RrL/kcOZHwBDJdgDzHc//kFzdX6yltjd9mweV3n8W5L9DhnO/ACYFwR7gPmqX0vs8389Oe63kkVPHs78AJhXBHuA+Wa6lti9Fzdhfvkbk733G878AJiXBHuA+eK2y5pn0E/VEnv8W5Jlv6YlFoBJCfYAw1RrctPXmkA/VUvsCWckR/+yllgApiXYAwzDtm3JdV9sAv33104c1xILwCwJ9gCDtHVLsu4zyeqzkruumTh+0PLkpDO1xAIwa60F+1LKqiQrkzw7yZOS7JXkh0m+luR/11q/1da+AEbO5geTK/8qWXPOFC2xL+m1xJ4g0AOwU9q8Yv/fkuyT5KokYyF+aZLXJfnlUsoptdZ/bHF/APPftC2xaVpiV65KDjxm8HMDoFPaDPa/mGRtrfXB7VeWUn4ryQeTnFdKOajWuqXFfQLMT31bYl/dfCj2Sc8YzvwA6JzWgn2t9cIp1n+od5vO4UmOSnNFH6Cb+rbEvi45/q1aYgFo3aA+PLu5t3xo2lcBjKr1N/VaYj+pJRaAoZjzYF9KeV2SI5Nc3/sC6I47ru61xF6gJRaAoWo92JdS3pnmQ7P7JHlm7/vbk7ym1rp1Bu9fN8XQ4a1NEmBX3XZZ88jK73xh4piWWACGYC6u2P9skp/c7udbkvyXWuskDSwAI6RfS+x+hyYr364lFoChaD3Y11p/KklKKY9P80z7303ytVLK79Ra/+cM3r90svW9K/lHtTlXgBnp1xL7pKWPtMTupvcPgOGYs99AtdZ7k6wupbw0ycVJ/qCU8pVa66VztU+AVs2kJfbEdyRH/KxSKQCGbs4vLdVaN5dS/ibJsiQnJxHsgflNSywAI2hQ/2Z8d2+5/4D2BzB7mzYmaz+WXPSBZOMPJ45riQVgHhtUsH9hb3nDgPYHMHP3r0++8WfJJR/WEgvAyGol2JdSTkiyKMlXan3kQc6llN2T/GaS1yV5IMnftLE/gFZoiQWgQ9q6Yv/0JB9LcncpZW2SHyV5Ypqn4hyQ5MEkr6+13trS/gB23rQtsfv2WmJP0xILwEhpK9h/Lcn/SnPLzXPShPqHktyc5IIk59Zav9vSvgB2zsMtsX+XjO/L23txctybk+Vv0hILwEhqJdjXWm9K8t/b2BZA625b2zyDftKW2AN6LbGv1xILwEjTpAJ0U61NO+zq9zVtseNpiQWgYwR7oFu2bUuu+1KvJfayieNaYgHoKL/VgG4Ya4ldc3Zy59UTxw96fnLimVpiAegswR4YbVs2NU+3ufD9yT03Txw/7MVNS+zTVgr0AHSaYA+Mpn4tsc/4hSbQa4kFYIEQ7IHRMtYS+/U/TR64Z8cxLbEALGCCPTAaNvzwkZbYhzbuOKYlFgAEe2CeW39TctG5yRWf0BILANMQ7IH56c5rmifcfOuCSVpi90uO+y0tsQCwHcEemF9uW5usOSu59h8njo21xB7za8me+w5+bgAwjwn2wPDNqCX2jOTo12iJBYApCPbA8GiJBYDW+E0JDN7WLcm6v29uudESCwCtEOyBwdmyKfnmXyUXnqMlFgBaJtgDc2/TxmTtx5vn0G/4wcTxZ/xCc8vNgcsGPjUA6ArBHpg7969PvvGR5Osfnrwl9tn/uflQ7JOeOZz5AUCHCPZA+/q1xD7vV5MT3prs97ShTA8AukiwB9pzz83Jhe9PrvhksnXTjmN77Jsce2rygtOSRU8ZyvQAoMsEe2DXaYkFgKET7IGd9/21yWotsQAwHwj2wOzUmty8uimVuvGrE8f3e1qy8u1aYgFgwAR7YGa2bUuu/3IT6G+7dOL4k45qnkGvJRYAhsJvX2B6D7fEnp3cuW7i+IHHJiedmTz9Z5NHPWrw8wMAkgj2wFT6tsS+qNcSe6KWWACYBwR7YEdaYgFgJAn2QENLLACMNMEeFroNP0wu/mBy2Ue1xALACBPsYaG65+bkwnOTKz6hJRYAOkCwh4Xmzmt7LbF/O3lL7Io3Ny2xj1k8nPkBADtFsIeFYrqW2H2f0rTELnu9llgAGFGCPXTZTFpiTzgjee5rtcQCwIgT7KGLZtISu3JVsvQVWmIBoCP8Rocu2bolufofmltutMQCwIIi2EMXbNmUXPmpZM05yT03TRw/7EVaYgGg4wR7GGUzaYlduSo5SEssAHSdYA+jqG9L7KuSlW/XEgsAC4hgD6Nk2pbYPZqW2OPfmiw+dDjzAwCGRrCHUdC3JfYNyQtO1xILAAuYYA/zmZZYAGCGBHuYj7TEAgCzJNjDfFFrcvOaXkvsv08c1xILAExDsIdhqzW57ktaYgGAXSIlwLD0bYldlpx4ZnLEz2mJBQD6Euxh0Pq1xB76wqYl9tCTtMQCADMm2MOgPHRf0xJ70Z9oiQUAWifYw1x74J6mJfaSDycPrN9xbKwl9oQzkicfNZz5AQCdINjDXNlwR3LJB5NL/1xLLAAw5wR7aNt0LbG775M8/9TkuNOSxx4wlOkBAN0k2ENbpmuJ3evxyXFvTpb/Vy2xAMCcEOxhV/VtiT291xK7aOBTAwAWDsEedsZMW2KPfk2y+14Dnx4AsPAI9jAbtSbXfbnXEvuNieP7P7N5Br2WWABgwCQPmIltW5N1f9/cQ3/HtyeOa4kFAIZMsIfpjLXEXvj+ZP2NE8e1xAIA84RgD5Pp1xJ75MuSE1clBx078KkBAExGsIftTdsS+6jkWa9KVr5dSywAMO8I9pD0b4l97q8kJ7xNSywAMG8J9ixs99ySXHRucvlfaokFAEZaK8G+lPKYJD+T5OQkK5MckmRrku8m+bskZ9VaN069BRiwu77TPOHmqk9riQUAOqGtK/avTfKR3vfXJPlckscmOT7Je5O8ppTywlrrnS3tD3bO9y9P1pyVXPOPSeqOY1piAYAR1law35zkz5KcU2u9ZmxlKeWAJF9I8rwk56T5DwAYrFqTWy5sSqVu+LeJ448/JFl5RnL0a7XEAgAjq5VgX2s9P8n5k6z/QSnltCQXJTmllLJHrfWhNvYJfc2oJXZVsvQULbEAwMgbRJq5srfcM8kTkkzyUHBo0YxaYt+RHPHzWmIBgM4YRLA/rLfcnGT9dC+EXbJlU3LlXycXnjNFS+xJvZbYF2qJBQA6ZxDB/m295ZdqrZumfWWSUsq6KYYOb29KdMpD9yVrz++1xN4+cVxLLACwAMxpsC+lvDTJr6e5Wv/uudwXC9AD9yTfOC+55ENaYgGABW/Ogn0p5RlJPpGkJHlnrfXKPm9JktRal06xvXVJJDSSjXcmF4+1xG7Ycezhlti3JosPm/z9AAAdNCfBvpRyYJIvJdkvTTnV++diPywwYy2xV3wi2fLgjmO775Mc+4bkBadriQUAFqTWg30pZXGSr6Rpn/1YkjPb3gcLTL+W2BW/maz4DS2xAMCC1mqwL6Xsm+SLaW6Z+UySN9Va6/TvgilM2xL75Obq/LFv0BILAJAWg30pZc8kn02yPMmXk7ym1vGXV6EPLbEAADullWBfStktyaeSvCTJ6iSnaJhlVmpNrv9KE+hv/frEcS2xAADTaishnZ7kFb3v707yoTJ5AdCZtda7W9onXbBta3L1PySrz5q8JfapxyQnnaklFgCgj7aC/X7bff+KKV+V/F6a4M9CpyUWAKBVrQT7WuvvpQntML2+LbEvTVauSpY8f/BzAwAYYW5WZjD6tsS+stcSO2k/GQAAfQj2zK2+LbGvTU54m5ZYAIBdJNgzN+79XnLhuckVf6klFgBgAAR72nXXd5I15yTf+nSybcuOY1piAQDmjGBPO26/onlk5TWfj5ZYAIDBE+zZebUmt1yUrP4/U7TEHpyccEby3F/REgsAMMcEe2avb0vsM5pHVj7rlVpiAQAGROpi5h5uiT07ueNbE8efekxTKnXkS7XEAgAMmGBPf1seSq766+ZDsetvmDh+6EnNFfrDXqQlFgBgSAR7pvbQfcnlf9G0xP74+xPHtcQCAMwbgj0TPXBvculHkks+nNz/ox3HtMQCAMxLgj2P2HhncsmHkm+cpyUWAGDECPb0aYl9THLsqckLTkse+9ThzA8AgL4E+4XsruuSNWdP0RL7uF5L7G9qiQUAGAGC/ULUtyX2tOYqvZZYAICRIdgvFA+3xL4vueFfJ45riQUAGGmCfdfVmlz/z72W2Esmjj/cEntKstvug58fAACtEOy7atvW5OrPNrfcTNoS+7zkxDO1xAIAdIRg3zX9WmKfdmJy4ju0xAIAdIxg3xX9WmKP+PnkxFXJkuWDnxsAAHNOsB91/Vpil57StMQ+5VnDmR8AAAMh2I+q6VpiH7X7Iy2xTzh8OPMDAGCgBPtRc+/3mtttLv8LLbEAADxMsB8Vd12XXHhOctXfTN0Su/w3kn2eMJz5AQAwVIL9fHf7N5M1ZyVXfy4TWmL3eVJy/OnJsjckez12KNMDAGB+EOznq5sv7NMS+7bkub+qJRYAgCSC/fzSryX2iUc2j6x81iu1xAIAsAPBfj6YUUvsO5IjX6YlFgCASQn2w7TloebDsGvOnqYldlVy2Iu1xAIAMC3Bfhgeur/XEnuullgAAFoh2A/SA/cml57XFEtpiQUAoEWC/SBsvKsJ85eel2z68Y5jWmIBAGiBYD+X+rXELntD0xL7uAOHMz8AADpDsJ8L/Vpil/9G0xSrJRYAgJYI9m3q1xL7gtOSY0/VEgsAQOsE+zbcclFTKvXdf5k49riDk5VvS577K8nuew9+bgAALAiC/c6qtQnyq9+XfO/iieNaYgEAGCDBfra2bU2u+VwT6H84SUvsAc9NTjpTSywAAAMl2M/UWEvsheckP/ruxHEtsQAADJFg389D96euPT8bLvmTZMPtSZJFSR6O7kf8XLJyVXLwimHNEAAABPu+fnR9Nvzzu3LCIUuSxUuSJBd+7/t57DNf3muJffaQJwgAAIJ9fwccnRz64mTbdrffvOnfk6ccPbw5AQDAOD7dORPHv3XHnxcfOpx5AADAFAT7mViybNgzAACAaQn2AADQAYI9AAB0gGAPAAAdINgDAEAHCPYAANABgj0AAHSAYA8AAB0g2AMAQAcI9gAA0AGCPQAAdIBgDwAAHSDYAwBABwj2AADQAYI9AAB0wKPb2EgpZVmSn06yvPd1YJLUWksb2wcAAKbX1hX7dyf5wySvSC/Ud8VdGzblI/9x4w7rzlt9U+7asGlIMwIAgIlauWKf5OIkVyW5tPd1c5I9W9r2UDy4eWve+/l1uWDtbdlc78+iIx8ZO/dfr8+H/+37edWyJXnPyUdlr913G95EAQAgLQX7Wusfbf9zKaN9B86Dm7fm1z76jXz9pvXNikn+XWPz1ppPfeN7ufGujTn/1OXCPQAAQ+XDs5N47+fXPRLq+/j6Tevz3s9fPcczAgCA6Qn249y54cFcsPa2Wb3ngrW3uuceAIChEuzH+fSlt2bz1jqr92zeWvPpy26doxkBAEB/bX14tjWllHVTDB0+iP3P9Bac8S658Uc57cU/0fJsAABgZlyxH2fjpi0DfR8AALRh3l2xr7UunWx970r+UXO9/3333Ln/SXb2fQAA0AZpdJwVhy7O6uvv3nHltr2y4Tvv2eHn8Y477AlzPDMAAJiaW3HGefXzl2T33cY/h78k2/Z+5Cs7ju++W8mrj10ysDkCAMB4gv04T1q0V1617KBZvedVy5Zk/0UjXbQLAMCIE+wn8Z6Tl2bFoYtn9NoVhy7Oe06e81v/AQBgWq0E+1LKy0opl4x9Jdmjt/6S7b5e1sa+BmGv3XfL+acuz2uWHzzJbTmN3Xcrec3yg3P+qcuz1+67DXiGAACwo7Y+PLt/khWTrF8x7jUjY6/dd8sfnvLsrPrpI/Lpy27NJTf+KBs3bcm+ez46xx32hLz6WLffAAAwf7QS7GutH0/y8Ta2Nd/sv2jPnPbin1A+BQDAvOYeewAA6ADBHgAAOkCwBwCADhDsAQCgAwR7AADoAMEeAAA6QLAHAIAOEOwBAKADBHsAAOgAwR4AADpAsAcAgA4Q7AEAoAMEewAA6ADBHgAAOkCwBwCADhDsAQCgAwR7AADoAMEeAAA6QLAHAIAOEOwBAKADBHsAAOgAwR4AADpAsAcAgA4Q7AEAoAMEewAA6ADBHgAAOkCwBwCADhDsAQCgAwR7AADoAMEeAAA6QLAHAIAOEOwBAKADBHsAAOgAwR4AADpAsAcAgA4Q7AEAoAMEewAA6ADBHgAAOkCwBwCADhDsAQCgAwR7AADoAMEeAAA6QLAHAIAOEOwBAKADBHsAAOgAwR4AADpAsAcAgA4Q7AEAoAMEewAA6ADBHgAAOkCwBwCADhDsAQCgAwR7AADoAMEeAAA6QLAHAIAOEOwBAKADBHsAAOgAwR4AADpAsAcAgA5oLdiXUvYupfx+KeW6UsqDpZTbSykfLaUc2NY+AACAybUS7EspeyX5tyTvTrJvks8muTXJG5JcUUo5rI39AAAAk2vriv3vJDkuycVJjqi1/lKtdUWSdyTZP8lHW9oPAAAwiV0O9qWUPZKc3vvxtFrrxrGxWutZSa5K8sJSyrJd3RcAADC5Nq7Yn5DkcUluqLVeMcn4Bb3lyS3sCwAAmEQbwf7o3vLyKcbH1j+nhX0BAACTeHQL2zi4t7xtivGx9YfMZGOllHVTDD3jhhtuyNKlS2czNwAAmLduuOGGJFnSxrbaCPb79pb3TzF+X2+5aBf3s23Tpk33XX311bfu4nZ21uG95Q1D2j8Lk+OOYXHsMQyOO4ZlmMfekkydo2eljWDfqlrrvLwkP/YvCfN1fnST445hcewxDI47hqUrx14b99iPPQXnMVOM79NbbmhhXwAAwCTaCPbf6y0PmmJ8bP0tLewLAACYRBvB/sre8pgpxsfWX9XCvgAAgEm0EewvTPL/khxeSnnuJOOv6i0/38K+AACASexysK+1PpTkA70fP1hKGbunPqWUVWmeX/+1WuvaXd0XAAAwuVJr3fWNlLJXkq8mWZHkB0lWp3lu/YokdyU5rtZ64y7vCAAAmFQrwT5JSil7J3lXktemeR7n+iRfSvLuWutU5VUAAEALWgv2AADA8LTx4VkAAGDIBHsAAOgAwR4AADpAsAcAgA4Q7AEAoAMEewAA6IAFGexLKXuXUn6/lHJdKeXBUsrtpZSPllIO3Ilt7VdKeX8p5ZZSyqbe8pxSyuPnYu6MtraOvVLKzaWUOs3XM+bqz8BoKaUsK6X8dinlM6WU28aOkV3YnnMeM9Lmseecx0yVUh5TSnl5KeXPSynf6f2uva+UcmUp5XdLKfvuxDZH5ry34J5j32vJ/fckx+WRltynJVmeWbbkllKemOTiJD+R5MYklyVZ2vu6LskLaq3rW/4jMKJaPvZuTtPufP4UL3lXrfUHuzhlOqCU8g9JfnH8+lpr2YltOecxYy0fezfHOY8ZKKW8MclHej9ek+TbSR6b5Pgki5Jcm+SFtdY7Z7i9kTrvPXrYExiC30kTrC5O8jO11o1JUkpZleR9ST6a5EUz3NY5af6iP5Pkl2qtW3rbOjfJW5KcleT1Lc6d0dbmsZckqbW+vt0p0kEXJ7kqyaW9r5uT7LmT23LOYzbaPPaSOOcxI5uT/FmSc2qt14ytLKUckOQLSZ6X5lz22hlub6TOewvqin0pZY8kdyZ5XJJjaq1XjBu/Mslzkhxba13bZ1sHJLktyZYkB9da79hubM8ktyZZnOSpM/2vQrqrzWOv9/qbkxyyM1e+WNhKKQ8m2XO2x45zHrtqZ4+93ntvjnMeu6iU8oIkFyXZlOSxtdaH+rx+5M57C+0e+xPSBKsbxgerngt6y5NnsK2fS/O/3+rt/6KTpNa6Kcnnk+yW5KU7P106pM1jD4bBOQ8YdVf2lnsmecIMXj9y572FdivO0b3l5VOMj61/TkvbOnWG26L72jz2HlZKeWeSw9NcfViX5O9rrXft1Axhes55DJ1zHrvosN5yc5KZ3Bc/cue9hRbsD+4tb5tifGz9IQPeFt03V8fLH4/7+exSyltqrR+d5XagH+c85gPnPHbF23rLL/WuuPczcue9hXYrztgjju6fYvy+3nLRgLdF97V9vHwuySlpTiaPSfKsNB/g2TPJeaWUCU+igF3knMcwOeexS0opL03y62mu1r97hm8bufPeQrtiD51Qa33ruFXrkryjlHJtmqcB/FGSzw58YgBzwDmPXdHrOfhEkpLknbXWK/u8ZWQttCv2G3vLx0wxvk9vuWHA26L7BnW8/Hmap+8cWUp52i5uC7bnnMd85JzHtHoFkF9Ksl+Ss2qt75/F20fuvLfQgv33esuDphgfW3/LgLdF9w3keKm1bktyQ+/HA3ZlWzCOcx7zjnMe0ymlLE7ylTS3cH0syZmz3MTInfcWWrAf+6eXY6YYH1t/1YC3RfcN8njZr7e8b9pXwew45zFfOecxQSll3yRfTHJUmnKpN9XZlzeN3HlvIRdUPa/W+s1x4ztbULVk+2KC+VpawPC0eez12c/SJN9K8kCS/fqVb7DwtFRQ5ZzHrO1KQdU023TOY4LeOemfkrwkyZeT/KedOTZG8by3oK7Y9/5SP9D78YOllLF7o1JKWZUmWH1t+2BVSjm9lHJtKeUPx23rB0k+lWSPJB8qpWz/QeQ/TrJ/kk/Ml79ohqvNY6+U8tJSykvG76OU8pwkf5vmw0Hn+QXHznDOY1ic82hDKWW3NOeqlyRZneSUGTTMdua8txCfivM/kvxUkuOTXF9KWZ3m3qsVSe5KUzSwvScmOTKT37t3RpLjkrwyybWllMuSLE3zGK7rk6yaiz8AI6utY295kveUUm5J88+E96cp3Tgmzf+nv5rkt+fmj8CoKaW8LDs+2m2P3vpLtlv3B7XWL/S+d86jFS0ee855zMbpSV7R+/7uNIF8stedWWu9u/d9Z857Cy7Y11ofLKW8OMm7krw2ycvTtI99PMm7a61TlRBMtq27SynLk/xebzuvSHJHknOTvKfWem+7s2eUtXjsfTnJkiTPT3JCmtt7fpxkTZJPJvlYrXVru7NnhO2f5j8ex1sx7jV9OecxS20de855zMZ+233/iilf1ZzH7p5mPMnonfcW1D32AADQVQvqHnsAAOgqwR4AADpAsAcAgA4Q7AEAoAMEewAA6ADBYsLkagAAAEpJREFUHgAAOkCwBwCADhDsAQCgAwR7AADoAMEeAAA6QLAHAIAOEOwBAKADBHsAAOgAwR4AADpAsAcAgA4Q7AEAoAMEewAA6ID/D9E++IpxFqxVAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 900x600 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "# create time and measured data\n",
    "t_vec = np.array([0,1,2])\n",
    "y_vec = np.array([1,4,5])\n",
    "\n",
    "# create data vectors\n",
    "p_1 = t_vec\n",
    "p_2 = np.array([1,1,1])\n",
    "# create the 'A' matrix, or data matrix from data vectors\n",
    "data_mat = np.array([p_1,p_2]).transpose()\n",
    "\n",
    "# regression with least squares, compute the Grammian matrix, 'R'\n",
    "reg_ls_R = np.array([[np.inner(p_1,p_1),np.inner(p_2,p_1)],[np.inner(p_1,p_2),np.inner(p_2,p_2)]])\n",
    "\n",
    "# compute the cross-correlation vector\n",
    "p_x = np.array([np.inner(y_vec,p_1),np.inner(y_vec,p_2)])\n",
    "\n",
    "# compute the norms of the data vectors, to assert invertibility of R (Grammian)\n",
    "p_1_unit = p_1 / np.linalg.norm(p_1)\n",
    "p_2_unit = p_2 / np.linalg.norm(p_2)\n",
    "\n",
    "assert(np.inner(p_1_unit,p_2_unit)!=1)\n",
    "\n",
    "# compute the error-minimizing coefficients\n",
    "a_vec = np.linalg.inv(reg_ls_R) @ p_x\n",
    "\n",
    "# compute estimate data\n",
    "y_hat = data_mat @ a_vec\n",
    "\n",
    "# compute errors for each point in the data vector\n",
    "e_vec = y_vec - y_hat\n",
    "\n",
    "# show data vectors are orthogonal to error\n",
    "test_1 = np.inner(p_1,e_vec)\n",
    "test_2 = np.inner(p_2,e_vec)\n",
    "print(f'inner product of p1 with e_vec = {test_1}')\n",
    "print(f'inner product of p2 with e_vec = {test_2}')\n",
    "print('If these equal 0, then error is orthogonal to data vectors.')\n",
    "\n",
    "# fig1,(ax1,ax2) = plt.subplots(2,1)\n",
    "fig1, ax1 = plt.subplots(1,1)\n",
    "# plt.subplot(2,1,1)\n",
    "plt.plot(t_vec,y_vec, 'o', label='original data' )\n",
    "plt.plot(t_vec,y_hat, '-', label='regressed data' )\n",
    "plt.plot([0,0],[y_vec[0],y_hat[0]], label='error[0]')\n",
    "plt.plot([1,1],[y_vec[1],y_hat[1]], label='error[1]')\n",
    "plt.plot([2,2],[y_vec[2],y_hat[2]], label='error[2]')\n",
    "ax1.set_ylim(0,6)\n",
    "plt.legend()\n",
    "\n",
    "ax1.xaxis.set_major_locator(plt.MaxNLocator(5))\n",
    "ax1.yaxis.set_major_locator(plt.MaxNLocator(7))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/javascript": [
       "/* Put everything inside the global mpl namespace */\n",
       "window.mpl = {};\n",
       "\n",
       "\n",
       "mpl.get_websocket_type = function() {\n",
       "    if (typeof(WebSocket) !== 'undefined') {\n",
       "        return WebSocket;\n",
       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
       "        return MozWebSocket;\n",
       "    } else {\n",
       "        alert('Your browser does not have WebSocket support.' +\n",
       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
       "              'Firefox 4 and 5 are also supported but you ' +\n",
       "              'have to enable WebSockets in about:config.');\n",
       "    };\n",
       "}\n",
       "\n",
       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
       "    this.id = figure_id;\n",
       "\n",
       "    this.ws = websocket;\n",
       "\n",
       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
       "\n",
       "    if (!this.supports_binary) {\n",
       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
       "        if (warnings) {\n",
       "            warnings.style.display = 'block';\n",
       "            warnings.textContent = (\n",
       "                \"This browser does not support binary websocket messages. \" +\n",
       "                    \"Performance may be slow.\");\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.imageObj = new Image();\n",
       "\n",
       "    this.context = undefined;\n",
       "    this.message = undefined;\n",
       "    this.canvas = undefined;\n",
       "    this.rubberband_canvas = undefined;\n",
       "    this.rubberband_context = undefined;\n",
       "    this.format_dropdown = undefined;\n",
       "\n",
       "    this.image_mode = 'full';\n",
       "\n",
       "    this.root = $('<div/>');\n",
       "    this._root_extra_style(this.root)\n",
       "    this.root.attr('style', 'display: inline-block');\n",
       "\n",
       "    $(parent_element).append(this.root);\n",
       "\n",
       "    this._init_header(this);\n",
       "    this._init_canvas(this);\n",
       "    this._init_toolbar(this);\n",
       "\n",
       "    var fig = this;\n",
       "\n",
       "    this.waiting = false;\n",
       "\n",
       "    this.ws.onopen =  function () {\n",
       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
       "            fig.send_message(\"send_image_mode\", {});\n",
       "            if (mpl.ratio != 1) {\n",
       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
       "            }\n",
       "            fig.send_message(\"refresh\", {});\n",
       "        }\n",
       "\n",
       "    this.imageObj.onload = function() {\n",
       "            if (fig.image_mode == 'full') {\n",
       "                // Full images could contain transparency (where diff images\n",
       "                // almost always do), so we need to clear the canvas so that\n",
       "                // there is no ghosting.\n",
       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
       "            }\n",
       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
       "        };\n",
       "\n",
       "    this.imageObj.onunload = function() {\n",
       "        fig.ws.close();\n",
       "    }\n",
       "\n",
       "    this.ws.onmessage = this._make_on_message_function(this);\n",
       "\n",
       "    this.ondownload = ondownload;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_header = function() {\n",
       "    var titlebar = $(\n",
       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
       "        'ui-helper-clearfix\"/>');\n",
       "    var titletext = $(\n",
       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
       "        'text-align: center; padding: 3px;\"/>');\n",
       "    titlebar.append(titletext)\n",
       "    this.root.append(titlebar);\n",
       "    this.header = titletext[0];\n",
       "}\n",
       "\n",
       "\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
       "\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
       "\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_canvas = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var canvas_div = $('<div/>');\n",
       "\n",
       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
       "\n",
       "    function canvas_keyboard_event(event) {\n",
       "        return fig.key_event(event, event['data']);\n",
       "    }\n",
       "\n",
       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
       "    this.canvas_div = canvas_div\n",
       "    this._canvas_extra_style(canvas_div)\n",
       "    this.root.append(canvas_div);\n",
       "\n",
       "    var canvas = $('<canvas/>');\n",
       "    canvas.addClass('mpl-canvas');\n",
       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
       "\n",
       "    this.canvas = canvas[0];\n",
       "    this.context = canvas[0].getContext(\"2d\");\n",
       "\n",
       "    var backingStore = this.context.backingStorePixelRatio ||\n",
       "\tthis.context.webkitBackingStorePixelRatio ||\n",
       "\tthis.context.mozBackingStorePixelRatio ||\n",
       "\tthis.context.msBackingStorePixelRatio ||\n",
       "\tthis.context.oBackingStorePixelRatio ||\n",
       "\tthis.context.backingStorePixelRatio || 1;\n",
       "\n",
       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
       "\n",
       "    var rubberband = $('<canvas/>');\n",
       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
       "\n",
       "    var pass_mouse_events = true;\n",
       "\n",
       "    canvas_div.resizable({\n",
       "        start: function(event, ui) {\n",
       "            pass_mouse_events = false;\n",
       "        },\n",
       "        resize: function(event, ui) {\n",
       "            fig.request_resize(ui.size.width, ui.size.height);\n",
       "        },\n",
       "        stop: function(event, ui) {\n",
       "            pass_mouse_events = true;\n",
       "            fig.request_resize(ui.size.width, ui.size.height);\n",
       "        },\n",
       "    });\n",
       "\n",
       "    function mouse_event_fn(event) {\n",
       "        if (pass_mouse_events)\n",
       "            return fig.mouse_event(event, event['data']);\n",
       "    }\n",
       "\n",
       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
       "    // Throttle sequential mouse events to 1 every 20ms.\n",
       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
       "\n",
       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
       "\n",
       "    canvas_div.on(\"wheel\", function (event) {\n",
       "        event = event.originalEvent;\n",
       "        event['data'] = 'scroll'\n",
       "        if (event.deltaY < 0) {\n",
       "            event.step = 1;\n",
       "        } else {\n",
       "            event.step = -1;\n",
       "        }\n",
       "        mouse_event_fn(event);\n",
       "    });\n",
       "\n",
       "    canvas_div.append(canvas);\n",
       "    canvas_div.append(rubberband);\n",
       "\n",
       "    this.rubberband = rubberband;\n",
       "    this.rubberband_canvas = rubberband[0];\n",
       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
       "\n",
       "    this._resize_canvas = function(width, height) {\n",
       "        // Keep the size of the canvas, canvas container, and rubber band\n",
       "        // canvas in synch.\n",
       "        canvas_div.css('width', width)\n",
       "        canvas_div.css('height', height)\n",
       "\n",
       "        canvas.attr('width', width * mpl.ratio);\n",
       "        canvas.attr('height', height * mpl.ratio);\n",
       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
       "\n",
       "        rubberband.attr('width', width);\n",
       "        rubberband.attr('height', height);\n",
       "    }\n",
       "\n",
       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
       "    // upon first draw.\n",
       "    this._resize_canvas(600, 600);\n",
       "\n",
       "    // Disable right mouse context menu.\n",
       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
       "        return false;\n",
       "    });\n",
       "\n",
       "    function set_focus () {\n",
       "        canvas.focus();\n",
       "        canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    window.setTimeout(set_focus, 100);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var nav_element = $('<div/>')\n",
       "    nav_element.attr('style', 'width: 100%');\n",
       "    this.root.append(nav_element);\n",
       "\n",
       "    // Define a callback function for later on.\n",
       "    function toolbar_event(event) {\n",
       "        return fig.toolbar_button_onclick(event['data']);\n",
       "    }\n",
       "    function toolbar_mouse_event(event) {\n",
       "        return fig.toolbar_button_onmouseover(event['data']);\n",
       "    }\n",
       "\n",
       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            // put a spacer in here.\n",
       "            continue;\n",
       "        }\n",
       "        var button = $('<button/>');\n",
       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
       "                        'ui-button-icon-only');\n",
       "        button.attr('role', 'button');\n",
       "        button.attr('aria-disabled', 'false');\n",
       "        button.click(method_name, toolbar_event);\n",
       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
       "\n",
       "        var icon_img = $('<span/>');\n",
       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
       "        icon_img.addClass(image);\n",
       "        icon_img.addClass('ui-corner-all');\n",
       "\n",
       "        var tooltip_span = $('<span/>');\n",
       "        tooltip_span.addClass('ui-button-text');\n",
       "        tooltip_span.html(tooltip);\n",
       "\n",
       "        button.append(icon_img);\n",
       "        button.append(tooltip_span);\n",
       "\n",
       "        nav_element.append(button);\n",
       "    }\n",
       "\n",
       "    var fmt_picker_span = $('<span/>');\n",
       "\n",
       "    var fmt_picker = $('<select/>');\n",
       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
       "    fmt_picker_span.append(fmt_picker);\n",
       "    nav_element.append(fmt_picker_span);\n",
       "    this.format_dropdown = fmt_picker[0];\n",
       "\n",
       "    for (var ind in mpl.extensions) {\n",
       "        var fmt = mpl.extensions[ind];\n",
       "        var option = $(\n",
       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
       "        fmt_picker.append(option)\n",
       "    }\n",
       "\n",
       "    // Add hover states to the ui-buttons\n",
       "    $( \".ui-button\" ).hover(\n",
       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
       "    );\n",
       "\n",
       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
       "    nav_element.append(status_bar);\n",
       "    this.message = status_bar[0];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
       "    // which will in turn request a refresh of the image.\n",
       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.send_message = function(type, properties) {\n",
       "    properties['type'] = type;\n",
       "    properties['figure_id'] = this.id;\n",
       "    this.ws.send(JSON.stringify(properties));\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.send_draw_message = function() {\n",
       "    if (!this.waiting) {\n",
       "        this.waiting = true;\n",
       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
       "    }\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
       "    var format_dropdown = fig.format_dropdown;\n",
       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
       "    fig.ondownload(fig, format);\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
       "    var size = msg['size'];\n",
       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
       "        fig._resize_canvas(size[0], size[1]);\n",
       "        fig.send_message(\"refresh\", {});\n",
       "    };\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
       "    var x0 = msg['x0'] / mpl.ratio;\n",
       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
       "    var x1 = msg['x1'] / mpl.ratio;\n",
       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
       "    x0 = Math.floor(x0) + 0.5;\n",
       "    y0 = Math.floor(y0) + 0.5;\n",
       "    x1 = Math.floor(x1) + 0.5;\n",
       "    y1 = Math.floor(y1) + 0.5;\n",
       "    var min_x = Math.min(x0, x1);\n",
       "    var min_y = Math.min(y0, y1);\n",
       "    var width = Math.abs(x1 - x0);\n",
       "    var height = Math.abs(y1 - y0);\n",
       "\n",
       "    fig.rubberband_context.clearRect(\n",
       "        0, 0, fig.canvas.width, fig.canvas.height);\n",
       "\n",
       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
       "    // Updates the figure title.\n",
       "    fig.header.textContent = msg['label'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
       "    var cursor = msg['cursor'];\n",
       "    switch(cursor)\n",
       "    {\n",
       "    case 0:\n",
       "        cursor = 'pointer';\n",
       "        break;\n",
       "    case 1:\n",
       "        cursor = 'default';\n",
       "        break;\n",
       "    case 2:\n",
       "        cursor = 'crosshair';\n",
       "        break;\n",
       "    case 3:\n",
       "        cursor = 'move';\n",
       "        break;\n",
       "    }\n",
       "    fig.rubberband_canvas.style.cursor = cursor;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
       "    fig.message.textContent = msg['message'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
       "    // Request the server to send over a new figure.\n",
       "    fig.send_draw_message();\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
       "    fig.image_mode = msg['mode'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function() {\n",
       "    // Called whenever the canvas gets updated.\n",
       "    this.send_message(\"ack\", {});\n",
       "}\n",
       "\n",
       "// A function to construct a web socket function for onmessage handling.\n",
       "// Called in the figure constructor.\n",
       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
       "    return function socket_on_message(evt) {\n",
       "        if (evt.data instanceof Blob) {\n",
       "            /* FIXME: We get \"Resource interpreted as Image but\n",
       "             * transferred with MIME type text/plain:\" errors on\n",
       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
       "             * to be part of the websocket stream */\n",
       "            evt.data.type = \"image/png\";\n",
       "\n",
       "            /* Free the memory for the previous frames */\n",
       "            if (fig.imageObj.src) {\n",
       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
       "                    fig.imageObj.src);\n",
       "            }\n",
       "\n",
       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
       "                evt.data);\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
       "            fig.imageObj.src = evt.data;\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        var msg = JSON.parse(evt.data);\n",
       "        var msg_type = msg['type'];\n",
       "\n",
       "        // Call the  \"handle_{type}\" callback, which takes\n",
       "        // the figure and JSON message as its only arguments.\n",
       "        try {\n",
       "            var callback = fig[\"handle_\" + msg_type];\n",
       "        } catch (e) {\n",
       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        if (callback) {\n",
       "            try {\n",
       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
       "                callback(fig, msg);\n",
       "            } catch (e) {\n",
       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
       "            }\n",
       "        }\n",
       "    };\n",
       "}\n",
       "\n",
       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
       "mpl.findpos = function(e) {\n",
       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
       "    var targ;\n",
       "    if (!e)\n",
       "        e = window.event;\n",
       "    if (e.target)\n",
       "        targ = e.target;\n",
       "    else if (e.srcElement)\n",
       "        targ = e.srcElement;\n",
       "    if (targ.nodeType == 3) // defeat Safari bug\n",
       "        targ = targ.parentNode;\n",
       "\n",
       "    // jQuery normalizes the pageX and pageY\n",
       "    // pageX,Y are the mouse positions relative to the document\n",
       "    // offset() returns the position of the element relative to the document\n",
       "    var x = e.pageX - $(targ).offset().left;\n",
       "    var y = e.pageY - $(targ).offset().top;\n",
       "\n",
       "    return {\"x\": x, \"y\": y};\n",
       "};\n",
       "\n",
       "/*\n",
       " * return a copy of an object with only non-object keys\n",
       " * we need this to avoid circular references\n",
       " * http://stackoverflow.com/a/24161582/3208463\n",
       " */\n",
       "function simpleKeys (original) {\n",
       "  return Object.keys(original).reduce(function (obj, key) {\n",
       "    if (typeof original[key] !== 'object')\n",
       "        obj[key] = original[key]\n",
       "    return obj;\n",
       "  }, {});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
       "    var canvas_pos = mpl.findpos(event)\n",
       "\n",
       "    if (name === 'button_press')\n",
       "    {\n",
       "        this.canvas.focus();\n",
       "        this.canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    var x = canvas_pos.x * mpl.ratio;\n",
       "    var y = canvas_pos.y * mpl.ratio;\n",
       "\n",
       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
       "                             step: event.step,\n",
       "                             guiEvent: simpleKeys(event)});\n",
       "\n",
       "    /* This prevents the web browser from automatically changing to\n",
       "     * the text insertion cursor when the button is pressed.  We want\n",
       "     * to control all of the cursor setting manually through the\n",
       "     * 'cursor' event from matplotlib */\n",
       "    event.preventDefault();\n",
       "    return false;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
       "    // Handle any extra behaviour associated with a key event\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.key_event = function(event, name) {\n",
       "\n",
       "    // Prevent repeat events\n",
       "    if (name == 'key_press')\n",
       "    {\n",
       "        if (event.which === this._key)\n",
       "            return;\n",
       "        else\n",
       "            this._key = event.which;\n",
       "    }\n",
       "    if (name == 'key_release')\n",
       "        this._key = null;\n",
       "\n",
       "    var value = '';\n",
       "    if (event.ctrlKey && event.which != 17)\n",
       "        value += \"ctrl+\";\n",
       "    if (event.altKey && event.which != 18)\n",
       "        value += \"alt+\";\n",
       "    if (event.shiftKey && event.which != 16)\n",
       "        value += \"shift+\";\n",
       "\n",
       "    value += 'k';\n",
       "    value += event.which.toString();\n",
       "\n",
       "    this._key_event_extra(event, name);\n",
       "\n",
       "    this.send_message(name, {key: value,\n",
       "                             guiEvent: simpleKeys(event)});\n",
       "    return false;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
       "    if (name == 'download') {\n",
       "        this.handle_save(this, null);\n",
       "    } else {\n",
       "        this.send_message(\"toolbar_button\", {name: name});\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
       "    this.message.textContent = tooltip;\n",
       "};\n",
       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to  previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
       "\n",
       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
       "\n",
       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
       "    // object with the appropriate methods. Currently this is a non binary\n",
       "    // socket, so there is still some room for performance tuning.\n",
       "    var ws = {};\n",
       "\n",
       "    ws.close = function() {\n",
       "        comm.close()\n",
       "    };\n",
       "    ws.send = function(m) {\n",
       "        //console.log('sending', m);\n",
       "        comm.send(m);\n",
       "    };\n",
       "    // Register the callback with on_msg.\n",
       "    comm.on_msg(function(msg) {\n",
       "        //console.log('receiving', msg['content']['data'], msg);\n",
       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
       "        ws.onmessage(msg['content']['data'])\n",
       "    });\n",
       "    return ws;\n",
       "}\n",
       "\n",
       "mpl.mpl_figure_comm = function(comm, msg) {\n",
       "    // This is the function which gets called when the mpl process\n",
       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
       "\n",
       "    var id = msg.content.data.id;\n",
       "    // Get hold of the div created by the display call when the Comm\n",
       "    // socket was opened in Python.\n",
       "    var element = $(\"#\" + id);\n",
       "    var ws_proxy = comm_websocket_adapter(comm)\n",
       "\n",
       "    function ondownload(figure, format) {\n",
       "        window.open(figure.imageObj.src);\n",
       "    }\n",
       "\n",
       "    var fig = new mpl.figure(id, ws_proxy,\n",
       "                           ondownload,\n",
       "                           element.get(0));\n",
       "\n",
       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
       "    // web socket which is closed, not our websocket->open comm proxy.\n",
       "    ws_proxy.onopen();\n",
       "\n",
       "    fig.parent_element = element.get(0);\n",
       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
       "    if (!fig.cell_info) {\n",
       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
       "        return;\n",
       "    }\n",
       "\n",
       "    var output_index = fig.cell_info[2]\n",
       "    var cell = fig.cell_info[0];\n",
       "\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
       "    var width = fig.canvas.width/mpl.ratio\n",
       "    fig.root.unbind('remove')\n",
       "\n",
       "    // Update the output cell to use the data from the current canvas.\n",
       "    fig.push_to_output();\n",
       "    var dataURL = fig.canvas.toDataURL();\n",
       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
       "    // the notebook keyboard shortcuts fail.\n",
       "    IPython.keyboard_manager.enable()\n",
       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
       "    fig.close_ws(fig, msg);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
       "    fig.send_message('closing', msg);\n",
       "    // fig.ws.close()\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
       "    // Turn the data on the canvas into data in the output cell.\n",
       "    var width = this.canvas.width/mpl.ratio\n",
       "    var dataURL = this.canvas.toDataURL();\n",
       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function() {\n",
       "    // Tell IPython that the notebook contents must change.\n",
       "    IPython.notebook.set_dirty(true);\n",
       "    this.send_message(\"ack\", {});\n",
       "    var fig = this;\n",
       "    // Wait a second, then push the new image to the DOM so\n",
       "    // that it is saved nicely (might be nice to debounce this).\n",
       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var nav_element = $('<div/>')\n",
       "    nav_element.attr('style', 'width: 100%');\n",
       "    this.root.append(nav_element);\n",
       "\n",
       "    // Define a callback function for later on.\n",
       "    function toolbar_event(event) {\n",
       "        return fig.toolbar_button_onclick(event['data']);\n",
       "    }\n",
       "    function toolbar_mouse_event(event) {\n",
       "        return fig.toolbar_button_onmouseover(event['data']);\n",
       "    }\n",
       "\n",
       "    for(var toolbar_ind in mpl.toolbar_items){\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) { continue; };\n",
       "\n",
       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
       "        button.click(method_name, toolbar_event);\n",
       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
       "        nav_element.append(button);\n",
       "    }\n",
       "\n",
       "    // Add the status bar.\n",
       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
       "    nav_element.append(status_bar);\n",
       "    this.message = status_bar[0];\n",
       "\n",
       "    // Add the close button to the window.\n",
       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
       "    buttongrp.append(button);\n",
       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
       "    titlebar.prepend(buttongrp);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function(el){\n",
       "    var fig = this\n",
       "    el.on(\"remove\", function(){\n",
       "\tfig.close_ws(fig, {});\n",
       "    });\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
       "    // this is important to make the div 'focusable\n",
       "    el.attr('tabindex', 0)\n",
       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
       "    // off when our div gets focus\n",
       "\n",
       "    // location in version 3\n",
       "    if (IPython.notebook.keyboard_manager) {\n",
       "        IPython.notebook.keyboard_manager.register_events(el);\n",
       "    }\n",
       "    else {\n",
       "        // location in version 2\n",
       "        IPython.keyboard_manager.register_events(el);\n",
       "    }\n",
       "\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
       "    var manager = IPython.notebook.keyboard_manager;\n",
       "    if (!manager)\n",
       "        manager = IPython.keyboard_manager;\n",
       "\n",
       "    // Check for shift+enter\n",
       "    if (event.shiftKey && event.which == 13) {\n",
       "        this.canvas_div.blur();\n",
       "        event.shiftKey = false;\n",
       "        // Send a \"J\" for go to next cell\n",
       "        event.which = 74;\n",
       "        event.keyCode = 74;\n",
       "        manager.command_mode();\n",
       "        manager.handle_keydown(event);\n",
       "    }\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
       "    fig.ondownload(fig, null);\n",
       "}\n",
       "\n",
       "\n",
       "mpl.find_output_cell = function(html_output) {\n",
       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
       "    // IPython event is triggered only after the cells have been serialised, which for\n",
       "    // our purposes (turning an active figure into a static one), is too late.\n",
       "    var cells = IPython.notebook.get_cells();\n",
       "    var ncells = cells.length;\n",
       "    for (var i=0; i<ncells; i++) {\n",
       "        var cell = cells[i];\n",
       "        if (cell.cell_type === 'code'){\n",
       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
       "                var data = cell.output_area.outputs[j];\n",
       "                if (data.data) {\n",
       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
       "                    data = data.data;\n",
       "                }\n",
       "                if (data['text/html'] == html_output) {\n",
       "                    return [cell, data, j];\n",
       "                }\n",
       "            }\n",
       "        }\n",
       "    }\n",
       "}\n",
       "\n",
       "// Register the function which deals with the matplotlib target/channel.\n",
       "// The kernel may be null if the page has been refreshed.\n",
       "if (IPython.notebook.kernel != null) {\n",
       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
       "}\n"
      ],
      "text/plain": [
       "<IPython.core.display.Javascript object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<img src=\"\" width=\"960\">"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "(-1, 7)"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# create 3D plot to show data vectors and perpendicular error vector\n",
    "\n",
    "# necessary to turn on interactivity on 3d plot\n",
    "%matplotlib notebook\n",
    "\n",
    "# create necessary elements for plotting surface\n",
    "v1 = p_1_unit\n",
    "v2 = p_2_unit\n",
    "\n",
    "# the cross product is a vector normal to the plane\n",
    "cp = np.cross(v1, v2)\n",
    "a, b, c = cp\n",
    "\n",
    "xx = np.linspace(-1, 7, 5, endpoint=True)\n",
    "yy = np.linspace(-1, 7, 5, endpoint=True)\n",
    "XX, YY = np.meshgrid(xx, yy)\n",
    "\n",
    "ZZ = (-a * XX - b * YY) / c\n",
    "\n",
    "# error plus y_hat vector\n",
    "e_p_yhat = y_hat + e_vec\n",
    "\n",
    "# print to screen\n",
    "fig2 = plt.figure()\n",
    "ax2 = fig2.add_subplot(111,projection='3d')\n",
    "ax2.plot_surface(XX,YY,ZZ,alpha=0.2)\n",
    "\n",
    "# and plot the point\n",
    "ax2.plot([0,y_hat[0]] , [0,y_hat[1]] , [0,y_hat[2]],  color='green', label='y_hat')\n",
    "ax2.plot([0,p_1[0]] , [0,p_1[1]] , [0,p_1[2]],  color='red', label='p_1')\n",
    "ax2.plot([0,p_2[0]] , [0,p_2[1]] , [0,p_2[2]],  color='red', label='p_2')\n",
    "\n",
    "ax2.plot([y_hat[0],e_p_yhat[0]],[y_hat[1],e_p_yhat[1]],[y_hat[2],e_p_yhat[2]], color='blue', label='e_vec from y_hat')\n",
    "\n",
    "ax2.plot([0,y_vec[0]],[0,y_vec[1]],[0,y_vec[2]], color='yellow', label='y_vec')\n",
    "\n",
    "\n",
    "ax2.legend(loc='upper center', bbox_to_anchor=(0.5, -0.05),\n",
    "          fancybox=True, shadow=True, ncol=5)\n",
    "# plt.legend()\n",
    "\n",
    "# set aspect ratio to square, for proper viewing of orthogonality\n",
    "ax2.set_aspect('equal')\n",
    "ax2.set_xlim(-1,7)\n",
    "ax2.set_ylim(-1,7)\n",
    "ax2.set_zlim(-1,7)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Finally, we make one more observation, specific to the matrix case.\n",
    "\n",
    "Recall that the Grammian matrix, $R$, is the left hand matrix in the *normal equations*:\n",
    "\n",
    "$$\n",
    "\\begin{bmatrix}\n",
    "\\langle \\mathbf{p}_1, \\mathbf{p}_1 \\rangle & \\cdots & \\langle \\mathbf{p}_m, \\mathbf{p}_1 \\rangle \\\\\n",
    "\\vdots &  \\ddots & \\vdots \\\\\n",
    "\\langle \\mathbf{p}_1, \\mathbf{p}_m \\rangle &  \\cdots & \\langle \\mathbf{p}_m, \\mathbf{p}_m \\rangle\n",
    "\\end{bmatrix}\n",
    "\\begin{bmatrix} c_1 \\\\ \\vdots \\\\ c_m \\end{bmatrix} =\n",
    "\\begin{bmatrix}\n",
    "\\langle \\mathbf{x}, \\mathbf{p}_1 \\rangle \\\\\n",
    "\\vdots \\\\\n",
    "\\langle \\mathbf{x}, \\mathbf{p}_m \\rangle\n",
    "\\end{bmatrix}\n",
    "$$\n",
    "\n",
    "If we denote our data matrix as $A$, note that $R$ may also be represented as $A^HA$. Additionally, we may present the right hand vector, $\\mathbf{p}_x$, as $A^H\\mathbf{x}$.\n",
    "\n",
    "Also recall that if the columns in the data matrix, $A$, are linearly independent, then $R$ is invertible. Hence,\n",
    "\n",
    "$R\\mathbf{c}=\\mathbf{p}_x$\n",
    "\n",
    "$\\Rightarrow A^HA\\mathbf{c}=A^H\\mathbf{x}$\n",
    "\n",
    "$\\Rightarrow \\mathbf{c} = (A^HA)^{-1}A^H\\mathbf{x}$\n",
    "\n",
    "Below we show that the **Moore-Penrose pseudo-inverse**, $(A^HA)^{-1}A^H$, is equivalent to the process above when your data can be expressed as a matrix (i.e. not in function space)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "error between Grammian and pseudo-inverse method for coefficients: [-4.44089210e-16 -6.66133815e-16]\n"
     ]
    }
   ],
   "source": [
    "a_pseudo = np.linalg.inv(data_mat.transpose()@data_mat)@data_mat.transpose()@y_vec\n",
    "\n",
    "err_coeffs = a_pseudo - a_vec\n",
    "\n",
    "print(f'error between Grammian and pseudo-inverse method for coefficients: {err_coeffs}')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## An Engineering Application\n",
    "\n",
    "Provide a more sophisticated example showing one engineering example of the topic, complete with python code.\n",
    "\n",
    "Given a mass, spring, damper system,\n",
    "\n",
    "$m\\ddot{x} - b\\dot{x} - kx = u$\n",
    "\n",
    "with known inputs and outputs, estimate the system parameters, $m, k, b$.\n",
    "\n",
    "Note: Outputs are usually measured with instruments that introduce noise into the measurements. So we call this an estimate because if we had perfect measurements, you could retrieve the exact values. Due to the noise in the measurements, and imperfect actuator, noise will be added into the data you use to retrieve the parameters.\n",
    "\n",
    "It is easiest to take advantage of the matrix form of the Moore-Penrose Pseudo-Inverse:\n",
    "\n",
    "$A\\mathbf{c} = \\mathbf{x}$\n",
    "\n",
    "$\\mathbf{c} = (A^HA)^{-1}A^H\\mathbf{x}$\n",
    "\n",
    "where, for our problem,\n",
    "\n",
    "$$\n",
    "A=\\begin{bmatrix}\n",
    "\\mathbf{\\ddot{x}} & \\mathbf{-\\dot{x}} & -\\mathbf{x}\n",
    "\\end{bmatrix}\n",
    "$$\n",
    "\n",
    "$$\n",
    "c=\\begin{bmatrix} \\mathbf{m} \\\\ \\mathbf{b} \\\\ \\mathbf{k} \\end{bmatrix}\n",
    "$$\n",
    "\n",
    "$$\n",
    "\\mathbf{x}=\\mathbf{u}\n",
    "$$\n",
    "\n",
    "*Suggestion*: Play with the sigma (standard deviation) multiplier $sigma_{mult}$ for the noise, as well as $t_{fin}$, to see limits of this method, and how longer data sampling times can help with the estimation."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Estimated parameter reconstruction m, b, k: 1.0006, 3.9996, 4.8886\n",
      "Perfect parameter reconstruction m, b, k: 1.0000, 4.0000, 5.0000\n"
     ]
    }
   ],
   "source": [
    "# PROBLEM SETUP\n",
    "\n",
    "# create time vector\n",
    "dt = 0.01\n",
    "t_init = 0\n",
    "t_fin = 10\n",
    "t_lt = np.int32((t_fin - t_init)/dt + 1)\n",
    "tt = np.linspace(t_init,t_fin,t_lt.astype(int))\n",
    "\n",
    "# true system params\n",
    "mass = 1\n",
    "b_damp = 4\n",
    "k_sp = 5\n",
    "m_b_k_tr = np.array([mass,b_damp,k_sp])\n",
    "\n",
    "# create true data, and true output (to guarantee solvability)\n",
    "xx = 7 * np.sin(tt**2)\n",
    "xx_d = 14*tt*np.cos(tt**2)\n",
    "xx_dd = 14*np.cos(tt**2) - 28*tt**2*np.sin(tt**2)\n",
    "\n",
    "A_tr_transpose = np.array([xx_dd,-xx_d,-xx])\n",
    "A_tr = A_tr_transpose.transpose()\n",
    "\n",
    "# uu = mass*xx_dd - b_damp*xx_d - k_sp*xx\n",
    "uu = A_tr @ m_b_k_tr\n",
    "\n",
    "# add noise to true data, to simulate real world measurements\n",
    "# generate noise\n",
    "sigma_mult = 0.5\n",
    "noise_0 = sigma_mult * np.random.randn(t_lt)\n",
    "noise_1 = sigma_mult * np.random.randn(t_lt)\n",
    "noise_2 = sigma_mult * np.random.randn(t_lt)\n",
    "noise_u = sigma_mult * 0.1 * np.random.randn(t_lt)\n",
    "\n",
    "xx_noise = noise_0 + xx\n",
    "xx_d_noise = noise_1 + xx_d\n",
    "xx_dd_noise = noise_2 + xx_dd\n",
    "uu_noise = noise_u + uu\n",
    "\n",
    "# =====================================\n",
    "\n",
    "# PROBLEM COMPUTATION\n",
    "\n",
    "# assert data matrix vectors are linearly independent\n",
    "assert(np.inner(xx_dd_noise,xx_d_noise)!=1)\n",
    "assert(np.inner(xx_dd_noise,xx_noise)!=1)\n",
    "assert(np.inner(xx_d_noise,xx_noise)!=1)\n",
    "\n",
    "# Now use noisy measurements, and estimate the system parameters, m, k, b\n",
    "\n",
    "# create A matrix, or data vectors, as well as its transpose, for use of the Moore-Penrose Pseudo-Inverse\n",
    "A_mat_transpose = np.array([xx_dd_noise,-xx_d_noise,-xx_noise])\n",
    "A_mat = A_mat_transpose.transpose()\n",
    "\n",
    "# make sure your coefficient order matches your A matrix, fix signs of coefficients\n",
    "m_b_k_hat = np.linalg.inv(A_mat_transpose @ A_mat) @ A_mat_transpose @ uu_noise\n",
    "\n",
    "# demonstrate that with perfect measurements, perfect results can be obtained\n",
    "m_b_k_perfect = np.linalg.inv(A_tr_transpose @ A_tr) @ A_tr_transpose @ uu\n",
    "\n",
    "mh,bh,kh = m_b_k_hat.tolist()\n",
    "mp,bp,kp = m_b_k_perfect.tolist()\n",
    "print(f'Estimated parameter reconstruction m, b, k: {mh:.4f}, {bh:.4f}, {kh:.4f}')\n",
    "print(f'Perfect parameter reconstruction m, b, k: {mp:.4f}, {bp:.4f}, {kp:.4f}')\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Application to Estimating Simulation Results\n",
    "Author: Jonathan Barrett <br> &emsp;&emsp;&emsp;&ensp;jab128<i></i>@byu.edu\n",
    "\n",
    "Suppose you have created a model that evaluates the probability that an ADS-B message will be decoded successfully given a density of UAS/km$^2$. You have collected data for UAS densities from nearly 0 UAS/km$^2$ up to 5 UAS/km$^2$. Not only is the data noisy from randomization, but now the simulations are too resource intensive to continue running at higher densities.\n",
    "\n",
    "You realize that you need to perform a least squares linear regression on the data to fit a line to the data, and to estimate the probability of a successful decode at 10 UAS/km$^2$. Use the following csv file, and the python template below: https://drive.google.com/file/d/1vBTGxYauh1itxIlzHmcZsaQXcVefohVv/view?usp=sharing\n",
    "\n",
    "If your estimated decode probability seems wrong, then you may want to use a weighted least squares solution that follows the later trends in the data most closely. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "ename": "ModuleNotFoundError",
     "evalue": "No module named 'numpy'",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mModuleNotFoundError\u001b[0m                       Traceback (most recent call last)",
      "\u001b[0;32m<ipython-input-4-db87281967e5>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mnumpy\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      2\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpyplot\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      4\u001b[0m \u001b[0mnum_samples\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m10000\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      5\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgenfromtxt\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"adsb_data.csv\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdelimiter\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\",\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'numpy'"
     ]
    }
   ],
   "source": [
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "num_samples = 10000\n",
    "\n",
    "# Download CSV file from the link provided\n",
    "data = np.genfromtxt(\"adsb_data.csv\", delimiter=\",\")\n",
    "x = np.linspace(0, 5, num_samples)\n",
    "\n",
    "# Plot data\n",
    "plt.figure(1)\n",
    "plt.scatter(x, data)\n",
    "\n",
    "#  Insert code here  #\n",
    "\n",
    "\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "ename": "ModuleNotFoundError",
     "evalue": "No module named 'numpy'",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mModuleNotFoundError\u001b[0m                       Traceback (most recent call last)",
      "\u001b[0;32m<ipython-input-5-a3b75435c2f9>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[0;31m# SOLUTION #\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mnumpy\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      3\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmatplotlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpyplot\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      5\u001b[0m \u001b[0mnum_samples\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m10000\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'numpy'"
     ]
    }
   ],
   "source": [
    "# SOLUTION #\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "num_samples = 10000\n",
    "\n",
    "# Download CSV file from the link provided\n",
    "data = np.genfromtxt(\"adsb_data.csv\", delimiter=\",\")\n",
    "x = np.linspace(0, 5, num_samples)\n",
    "\n",
    "# Plot data\n",
    "plt.figure(1)\n",
    "plt.scatter(x, data, s=2)\n",
    "\n",
    "\n",
    "#  Insert code here  #\n",
    "\n",
    "# Create A and y\n",
    "A = np.zeros((num_samples, 2))\n",
    "y = np.zeros(num_samples)\n",
    "\n",
    "# Populate A and y\n",
    "for i in range(num_samples):\n",
    "    A[i][0] = i / num_samples\n",
    "    A[i][1] = 1.0\n",
    "    y[i] = data[i]\n",
    "\n",
    "# Solve for coefficients\n",
    "h = np.linalg.inv(A.transpose() @ A) @ A.transpose() @ y\n",
    "\n",
    "# Filter data\n",
    "filtered_data = A @ h\n",
    "\n",
    "# Plot filtered data, estimate successful decode probability at 10 UAS/km^2\n",
    "plt.figure(2)\n",
    "plt.scatter(x, filtered_data, s=2)\n",
    "print(\"Estimated successful decode probability at 10 UAS/km^2:\", h[0]*(10) + h[1])\n",
    "\n",
    "# Create and populate weighing matrix\n",
    "# Weigh the first 2000 samples much less\n",
    "W = np.zeros((num_samples, num_samples))\n",
    "for i in range(num_samples):\n",
    "    if i < 2000:\n",
    "        W[i][i] = 1\n",
    "    else:\n",
    "        W[i][i] = 100\n",
    "\n",
    "# Solve for weighted coefficients\n",
    "h_weighted = np.linalg.inv(A.transpose() @ W @ A) @ A.transpose() @ W @ y\n",
    "\n",
    "# Filter using weighted coefficients\n",
    "weighted_filtered_data = A @ h\n",
    "\n",
    "# Plot weighted filtered data, estimate successful decode probability at 10 UAS/km^2\n",
    "plt.figure(3)\n",
    "plt.scatter(x, weighted_filtered_data, s=2)\n",
    "print(\"Estimated successful decode probability at 10 UAS/km^2, weighted:\", h_weighted[0]*(10) + h_weighted[1])\n",
    "\n",
    "plt.show()\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Congratulations! You found coefficients to form a linear equation that best fits the data, but you can actually fit the data better by finding coefficients for polynomials of different orders. Re-write your program so that it can fit the data to any order polynomial that you choose. \n",
    "\n",
    "Once you have done so, set the polynomial order to 10 and run the program. Does the curve seem to fit the data better? Why is that? \n",
    "\n",
    "Check the approximations for the ADS-B successful decode probability at 10 UAS/km$^2$. Do they seem better or worse than the approximations from the linear equation? Why is that? \n",
    "\n",
    "Now set the polynomial order to 100 and run the program. Does the curve seem to fit the data well? "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# SOLUTION #\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "num_samples = 10000\n",
    "order_of_polynomial = 10\n",
    "\n",
    "# Download CSV file from the link provided\n",
    "data = np.genfromtxt(\"adsb_data.csv\", delimiter=\",\")\n",
    "x = np.linspace(0, 5, num_samples)\n",
    "\n",
    "# Plot data\n",
    "plt.figure(1)\n",
    "plt.scatter(x, data, s=2)\n",
    "\n",
    "\n",
    "#  Insert code here  #\n",
    "\n",
    "# Create A and y\n",
    "A = np.zeros((num_samples, order_of_polynomial + 1))\n",
    "y = np.zeros(num_samples)\n",
    "\n",
    "# Populate A and y\n",
    "for i in range(num_samples):\n",
    "    for j in range(order_of_polynomial + 1):\n",
    "        A[i][j] = (i / num_samples)**(order_of_polynomial - j)\n",
    "    y[i] = data[i]\n",
    "\n",
    "# Solve for coefficients\n",
    "h = np.linalg.inv(A.transpose() @ A) @ A.transpose() @ y\n",
    "\n",
    "# Filter data\n",
    "filtered_data = A @ h\n",
    "\n",
    "# Plot filtered data\n",
    "plt.figure(2)\n",
    "plt.scatter(x, filtered_data, s=2)\n",
    "\n",
    "# Estimate successful decode probability at 10 UAS/km^2\n",
    "estimated_value = 0\n",
    "for i in range(order_of_polynomial + 1):\n",
    "    estimated_value += h[i]*10**(order_of_polynomial - i)\n",
    "print(\"Estimated successful decode probability at 10 UAS/km^2:\", estimated_value)\n",
    "\n",
    "# Create and populate weighing matrix\n",
    "# Weigh the first 2000 samples much less\n",
    "W = np.zeros((num_samples, num_samples))\n",
    "for i in range(num_samples):\n",
    "    if i < 2000:\n",
    "        W[i][i] = 1\n",
    "    else:\n",
    "        W[i][i] = 100\n",
    "\n",
    "# Solve for weighted coefficients\n",
    "h_weighted = np.linalg.inv(A.transpose() @ W @ A) @ A.transpose() @ W @ y\n",
    "\n",
    "# Filter using weighted coefficients\n",
    "weighted_filtered_data = A @ h\n",
    "\n",
    "# Plot weighted filtered data\n",
    "plt.figure(3)\n",
    "plt.scatter(x, weighted_filtered_data, s=2)\n",
    "\n",
    "# Estimate successful decode probability at 10 UAS/km^2\n",
    "estimated_value_weighted = 0\n",
    "for i in range(order_of_polynomial + 1):\n",
    "    estimated_value_weighted += h_weighted[i]*10**(order_of_polynomial - i)\n",
    "print(\"Estimated successful decode probability at 10 UAS/km^2, weighted:\", estimated_value_weighted)\n",
    "\n",
    "plt.show()\n",
    "\n",
    "#  EXPLANATIONS  #\n",
    "# With the polynomial order set to 10, the curves do seem to fit the data much better,\n",
    "# especially for UAS densities below 2 UAS/km^2. This is because we are adding\n",
    "# polynomials with different coefficients until they manage to fit all the curves of\n",
    "# the data. The estimations for decode probabilities are way off now, and this is because\n",
    "# the coefficients are only trying to fit the curve to the data that we have instead of\n",
    "# trying to fit the curve to what the data probably would be at higher values of UAS density.\n",
    "# With the polynomial order set to 100, the curve doesn't seem to match the data at all anymore. \n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}