{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<center><h1>Mathematics of Signals and Systems</h1></center>\n",
    "<p>\n",
    " <p>\n",
    "\n",
    "## Table of Contents\n",
    "\n",
    "The following links have been developed by BYU graduate students enrolled in ECEn 671 **Mathematics of Signals and Systems** during Fall Semester 2018.\n",
    "\n",
    "[**Topic 1. Vector Spaces**](t1_vector_spaces.ipynb)\n",
    "\n",
    "[**Topic 2.  Vector norms: 1-norm, 2-norm, p-norm, infinity-norm**](t2_vector_norms.ipynb)\n",
    "\n",
    "[**Topic 3.  Inner product and inner product spaces**](t3_inner_products.ipynb)\n",
    "\n",
    "[**Topic 4.  Linear independence**](t4_linear_independence.ipynb)\n",
    "\n",
    "[**Topic 5.  Orthonormal bases for vector spaces**](t5_orthonormal_bases.ipynb)\n",
    "\n",
    "[**Topic 6.  Projection operators**](t6_projection_operators.ipynb)\n",
    "\n",
    "[**Topic 7.  Gram-Schmidt orthogonalization**](t7_gram_schmidt.ipynb)\n",
    "\n",
    "[**Topic 8.  Linear regression (least squares)**](t8_linear_regression.ipynb)\n",
    "\n",
    "[**Topic 9.  Dual approximation (min-norm solutions)**](t9_dual_approximation.ipynb)\n",
    "\n",
    "[**Topic 10.  Generalized Fourier series**](t10_generalized_fourier_series.ipynb)\n",
    "\n",
    "[**Topic 11. Matrix norms**](t11_matrix_norms.ipynb)\n",
    "\n",
    "[**Topic 12. Linear operators**](t12_linear_operators.ipynb)\n",
    "\n",
    "[**Topic 13. Adjoint operators**](t13_adjoint_operators.ipynb)\n",
    "\n",
    "[**Topic 14. Matrix Inverses and pseudo-inverses**](t14_matrix_inverse.ipynb)\n",
    "\n",
    "[**Topic 15. The matrix inversion lemma**](t15_matrix_inversion_lemma.ipynb)\n",
    "\n",
    "[**Topic 16. Recursive least squares**](t16_recursive_least_squares.ipynb)\n",
    "\n",
    "[**Topic 17. LU Factorization**](t17_lu_factorization.ipynb)\n",
    "     \n",
    "[**Topic 17. LU Factorization-2**](t17_lu_factorization2.ipynb)\n",
    "\n",
    "[**Topic 18. Cholesky Factorization**](t18_cholesky_factorization.ipynb)\n",
    "\n",
    "[**Topic 19. QR Factorization**](t19_qr_factorization.ipynb)\n",
    "\n",
    "[**Topic 20. Eigenvalues and eigenvectors**](t20_eigenvalues.ipynb)\n",
    "\n",
    "[**Topic 21. The matrix exponential**](t21_matrix_exponential.ipynb)\n",
    "\n",
    "[**Topic 22. Differential equations and invariant subspaces**](t22_invariant_subspaces.ipynb)\n",
    "\n",
    "[**Topic 23. Quadratic Forms**](t23_quadratic_forms.ipynb)\n",
    "\n",
    "[**Topic 24. Singular Value Decomposition**](t24_singular_value_decomposition.ipynb)\n",
    "\n",
    "[**Topic 25. The four fundamental spaces of a matrix**](t25_matrix_subspaces.ipynb)\n",
    "\n",
    "[**Topic 26. Rank reducing approximations of a matrix**](t26_rank_reduction.ipynb)\n",
    "\n",
    "[**Topic 27. Gradient Descent**](t27_gradient_descent.ipynb)\n",
    "\n",
    "[**Topic 28. Lagrange Multipliers**](t28_lagrange_multipliers.ipynb)\n",
    "\n",
    "[**Topic 29. Kuhn-Tucker Conditions**](t29_kuhn_tucker.ipynb)\n",
    "     \n",
    "[**Appendix. Mathematical Preliminaries**](appendix_math_preliminaries.ipynb)\n",
    "\n",
    "## Application\n",
    "[**Splines Basis Construction**](SplineBasisConstruction.ipynb)\n",
    "     \n",
    "[**Spline Basis Construction - Julia**](SplineBasisConstruction.jl)\n",
    "     \n",
    "[**Dynamic Mode Decomposition**](DynamicModeDecomposition.ipybn)\n",
    "     \n",
    "[**Multisource Statistically-Optimized Nearfield Acoustical Holography**](Application_M-SONAH.ipynb)\n",
    "     \n",
    "\n",
    "\n",
    "## Github repository\n",
    "https://github.com/randybeard/ece671-jupyter.git\n",
    "\n",
    "Viewer only: http://nbviewer.jupyter.org/github/randybeard/ece671-jupyter/blob/master/table_of_contents.ipynb\n",
    "\n",
    "This Jupyter book is mimicking the style of the following book:\n",
    "\n",
    "http://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python\n",
    "\n",
    "\n",
    "#format the book\n",
    "from book_format import load_style\n",
    "load_style()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.0"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}