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The Iris dataset, consisting of 150 samples and 4 features, can then be written
as a 150× 4 matrix X ∈ R150×4 :

x
(1)
1 x

(1)
2 x

(1)
3 . . . x

(1)
4

x
(2)
1 x

(2)
2 x

(2)
3 . . . x

(2)
4

...
...

...
. . .

...

x
(150)
1 x

(150)
2 x

(150)
3 . . . x

(150)
4


For the rest of this book, unless noted otherwise, we will use the superscript
(i) to refer to the ith training sample, and the subscript j to refer to the jth
dimension of the training dataset.
We use lower-case, bold-face letters to refer to vectors (x ∈ Rn×1) and upper-
case, bold-face letters to refer to matrices, respectively (X ∈ Rn×m), where n
refers to the number of rows, and m refers to the number of columns, respec-
tively. To refer to single elements in a vector or matrix, we write the letters in

italics x(n) or x
(n)
m , respectively. For example, x1501 refers to the refers to the

first dimension of the flower sample 150, the sepal length. Thus, each row in
this feature matrix represents one flower instance and can be written as four-
dimensional row vector x(i) ∈ R1×4

x(i) =

[
x
(i)
1 x

(i)
2 x

(i)
3 x

(i)
4

]
.

Each feature dimension is a 150-dimensional column vector xj ∈ R150×1, for
example

xj =


x
(1)
j

x
(2)
j
...

x
(150)
j

 .
Similarly, we store the target variables (here: class labels) as a 150-dimensional
column vector

y =


y(1)

y(2)

...
y(150)

 , (y ∈ {Setosa, Versicolor, Virginica }).
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1.7 A roadmap for building machine learning
systems
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1.7.2 Training and selecting a predictive model
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1.8 Using Python for machine learning
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1.9 Summary
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Chapter 2

Training Machine Learning
Algorithms for
Classification

2.1 Artificial neurons – a brief glimpse into the
early history of machine learning

We can then define an activation function φ(z) that takes a linear combination
of certain input values x and a corresponding weight vector w where z is the
so-called net input (z = w1x1 + · · ·+ wmxm):

w =


w1

w2

...
wm

 , x =


x1
x2
...
xm

 .
Now, if the activation of a particular sample x(i), that is, the output of φ(z),
is greater than a defined threshold θ, we predict class 1 and class -1, otherwise.
In the perceptron algorithm, the activation function φ(·) is a simple unit step
function, which is sometimes also called the Heaviside step function:

φ(z) =

{
1 if z ≥ θ
−1 otherwise .

For simplicity, we can bring the threshold θ to the left side of the equation and
define a weight-zero as w0 = −θ and x0 = 1, so that we write z in a more
compact form

z = w0x0 + w1x1 + · · ·+ wmxm = wTx

11
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and

φ(z) =

{
1 if z ≥ 0

−1 otherwise .

In the following sections, we will often make use of basic notations from linear
algebra. For example, we will abbreviate the sum of the products of the values in
x and w using a vector dot product, whereas superscript T stands for transpose,
which is an operation that transforms a column vector into a row vector and
vice versa:

z = w0x0 + w1x1 + · · ·+ wmxm = wTx =

m∑
j=0

wjxj = wTx.

For example:

[
1 2 3

]
×

4
5
6

 = 1× 4 + 2× 5 + 3× 6 = 32.

Furthermore, the transpose operation can also be applied to a matrix to reflect
it over its diagonal, for example:1 2

3 4
5 6

T =

[
1 3 5
2 4 6

]
Rosenblatt’s initial perceptron rule is fairly simple and can be summarized by
the following steps:

1. Initialize the weights to 0 or small random numbers.

2. For each training sample x(i), perform the following steps:

(a) Compute the output value ŷ.

(b) Update the weights.

Here, the output value is the class label predicted by the unit step function that
we defined earlier, and the simultaneous update of each weight wj in the weight
vector w can be more formally written as:

wj := wj + ∆wj

The value of ∆wj , which is used to update the weight wj , is calculated by the
perceptron rule:

∆wj = η

(
y(i) − ŷ(i)

)
x
(i)
j

12
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Where η is the learning rate (a constant between 0.0 and 1.0), y(i) is the true
class label of the ith training sample, and ŷ(i) is the predicted class label. It
is important to note that all weights in the weight vector are being updated
simultaneously, which means that we don’t recompute ŷ(i) before all of the
weights ∆wj were updated. Concretely, for a 2D dataset, we would write the
update as follows:

∆w0 = η

(
y(i) − ŷ(i)

)

∆w1 = η

(
y(i) − ŷ(i)

)
x
(i)
1

∆w2 = η

(
y(i) − ŷ(i)

)
x
(i)
2

Before we implement the perceptron rule in Python, let us make a simple
thought experiment to illustrate how beautifully simple this learning rule really
is. In the two scenarios where the perceptron predicts the class label correctly,
the weights remain unchanged:

∆wj = η

(
− 1−−1

)
x
(i)
j = 0

∆wj = η

(
1− 1

)
x
(i)
j = 0

However, in the case of a wrong prediction, the weights are being pushed towards
the direction of the positive or negative target class, respectively:

∆wj = η

(
1−−1

)
x
(i)
j = η(2)x

(i)
j

∆wj = η

(
− 1− 1

)
x
(i)
j = η(−2)x

(i)
j

To get a better intuition for the multiplicative factor x
(i)
j , let us go through

another simple example, where:

y(i) = +1, ŷ(i) = −1, η = 1

Let’s assume that x
(i)
j = 0.5 and we misclassify this sample as −1. In this case,

we would increase the corresponding weight by 1 so that the net input xij ×w
(i)
j

will be more positive the next time we encounter this sample and thus will be
more likely to be above the threshold of the unit step function to classify the
sample as +1:

∆wj = (1−−1)0.5 = (2)0.5 = 1

13
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The weight update is proportional to the value of x
(i)
j . For example, if we

have another sample x
(i)
j = 2 that is incorrectly classified as −1, we’d push the

decision boundary by an even larger extent to classify this sample correctly the
next time:

∆wj = (1−−1)2 = (2)2 = 4.

2.2 Implementing a perceptron learning algo-
rithm in Python

2.2.1 Training a perceptron model on the Iris dataset

2.3 Adaptive linear neurons and the convergence
of learning

The key difference between the Adaline rule (also known as the Widrow-Hoff
rule) and Rosenblatt’s perceptron is that the weights are updated based on a
linear activation function rather than a unit step function like in the perceptron.
In Adaline, this linear activation function φz is simply the identity function of
the net input so that

φ
(
wTx

)
= wTx

2.3.1 Minimizing cost functions with gradient descent

One of the key ingredients of supervised machine learning algorithms is to define
an objective function that is to be optimized during the learning process. This
objective function is often a cost function that we want to minimize. In the case
of Adaline, we can define the cost function J(·) to learn the weights as the Sum
of Squared Errors (SSE) between the calculated outcomes and the true class
labels

J(w) =
1

2

∑
i

(
y(i) − φ

(
z(i)
))2

.

Using gradient descent, we can now update the weights by taking a step away
from the gradient ∇J(w) of our cost function J(·):

w := w + ∆w.

To compute the gradient of the cost function, we need to compute the partial
derivative of the cost function with respect to each weight wj ,

∂J

∂wj
= −

∑
i

(
y(i) − φ

(
z(i)
))
x
(i)
j ,

14
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so that we can write the update of weight wj as

∆wj = −η ∂J
∂wj

= η
∑
i

(
y(i) − φ

(
z(i)
))
x
(i)
j

Since we update all weights simultaneously, our Adaline learning rule becomes

w := w + ∆w.

For those who are familiar with calculus, the partial derivative of the SSE cost
function with respect to the jth weight in can be obtained as follows:

∂J

∂wj
=

∂

∂wj

1

2

∑
i

(
y(i) − φ

(
z(i)
))2

=
1

2

∂

∂wj

∑
i

(
y(i) − φ

(
z(i)
))2

=
1

2

∑
i

2
(
y(i) − φ(z(i))

) ∂

∂wj

(
y(i) − φ(z(i))

)
=
∑
i

(
y(i) − φ(z(i))

) ∂

∂wj

(
y(i) −

∑
i

(
w

(i)
j x

(i)
j

))
=
∑
i

(
y(i) − φ

(
z(i)
))(

− x(i)j
)

= −
∑
i

(
y(i) − φ

(
z(i)
))
x
(i)
j

Performing a matrix-vector multiplication is similar to calculating a vector dot
product where each row in the matrix is treated as a single row vector. This
vectorized approach represents a more compact notation and results in a more
efficient computation using NumPy. For example:

[
1 2 3
4 5 6

]
×

7
8
9

 =

[
1× 7 + 2× 8 + 3× 9
4× 7 + 5× 8 + 6× 9

]
=

[
50
122

]

2.3.2 Implementing an Adaptive Linear Neuron in Python

Here, we will use a feature scaling method called standardization, which gives
our data the property of a standard normal distribution. The mean of each
feature is centered at value 0 and the feature column has a standard deviation
of 1. For example, to standardize the jth feature, we simply need to subtract
the sample mean µj from every training sample and divide it by its standard
deviation σj :

15
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x′j =
x− µj

σj
.

Here xj is a vector consisting of the jth feature values of all training samples n.

2.3.3 Large scale machine learning and stochastic gradient
descent

A popular alternative to the batch gradient descent algorithm is stochastic gradi-
ent descent, sometimes also called iterative or on-line gradient descent. Instead
of updating the weights based on the sum of the accumulated errors over all
samples x(i):

∆w = η
∑
i

(
y(i) − φ

(
z(i)
))

x(i).

We update the weights incrementally for each training sample:

∆w = η

(
y(i) − φ

(
z(i)
))

x(i).

2.4 Summary

16



Chapter 3

A Tour of Machine
Learning Classifiers Using
Scikit-learn

3.1 Choosing a classification algorithm

3.2 First steps with scikit-learn

3.2.1 Training a perceptron via scikit-learn

3.3 Modeling class probabilities via logistic re-
gression

3.3.1 Logistic regression intuition and conditional proba-
bilities

The odds ratio can be written as

p

(1− p)
,

where p stands for the probability of the positive (1? p) event. The term positive
event does not necessarily mean good, but refers to the event that we want to
predict, for example, the probability that a patient has a certain disease; we can
think of the positive event as class label y = 1. We can then further define the
logit function, which is simply the logarithm of the odds ratio (log-odds):

logit(p) = log
p

1− p

17
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The logit function takes input values in the range 0 to 1 and transforms them to
values over the entire real number range, which we can use to express a linear
relationship between feature values and the log-odds:

logit(p(y = 1|x)) = w0x0 + w1x1 + · · ·+ xmwm =

m∑
i=0

wixi = wTx.

Here, p(y = 1|x) s the conditional probability that a particular sample belongs to
class 1 given its features x. Now what we are actually interested in is predicting
the probability that a certain sample belongs to a particular class, which is
the inverse form of the logit function. It is also called the logistic function,
sometimes simply abbreviated as sigmoid function due to its characteristic S-
shape

φ(z) =
1

1 + e−z
.

The output of the sigmoid function is then interpreted as the probability of
particular sample belonging to class 1

φ(z) = P (y = 1|x; w)

given its features x parameterized by the weights w. For example, if we compute
φ(z) = 0.8 for a particular flower sample, it means that the chance that this
sample is an Iris-Versicolor flower is 80 percent. Similarly, the probability that
this ower is an Iris-Setosa ower can be calculated as P (y = 0|x; w) = 1−P (y =
1|x; w) = 0.2 or 20 percent. The predicted probability can then simply be
converted into a binary outcome via a quantizer (unit step function):

ŷ =

{
1 if φ(z) ≥ 0.5

0 otherwise .

If we look at the preceding sigmoid plot, this is equivalent to the following:

ŷ =

{
1 if φ(z) ≥ 0.0

0 otherwise .

3.3.2 Learning the weights of the logistic cost function

In the previous chapter, we defined the sum-squared-error cost function:

J(w) =
1

2

∑
i

(
φ
(
z(i)
)
− y(i)

)2

.

We minimized this in order to learn the weights w for our Adaline classification
model. To explain how we can derive the cost function for logistic regression,
let’s first define the likelihood L that we want to maximize when we build a

18
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logistic regression model, assuming that the individual samples in our dataset
are independent of one another. The formula is as follows:

L(w) = P (y|x; w) =

n∏
i=1

P
(
y(i)|x(i); w

)
=

n∏
i=1

(
φ
(
z(i)
))y(i)(

1− φ
(
z(i)
))1−y(i)

In practice, it is easier to maximize the (natural) log of this equation, which is
called the log-likelihood function:

l(w) = logL(w) =

n∑
i=1

[
y(i) log

(
φ
(
z(i)
))

+

(
1− y(i)

)
log

(
1− φ

(
z(i)
))]

Firstly, applying the log function reduces the potential for numerical under ow,
which can occur if the likelihoods are very small. Secondly, we can convert the
product of factors into a summation of factors, which makes it easier to obtain
the derivative of this function via the addition trick, as you may remember from
calculus.
Now we could use an optimization algorithm such as gradient ascent to maximize
this log-likelihood function. Alternatively, let’s rewrite the log-likelihood as a
cost function J(·) that can be minimized using gradient descent as in Chapter
2, Training Machine Learning Algorithms for Classification:

J(w) =

n∑
i=1

[
− y(i) log

(
φ
(
z(i)
))
−
(

1− y(i)
)

log

(
1− φ

(
z(i)
))]

To get a better grasp on this cost function, let’s take a look at the cost that we
calculate for one single-sample instance:

J
(
φ(z), y; w

)
= −y log

(
φ(z)

)
− (1− y) log

(
1− φ(z)

)
.

Looking at the preceding equation, we can see that the rst term becomes zero
if y = 0 , and the second term becomes zero if y = 1, respectively:

J
(
φ(z), y; w

)
=

{
− log

(
φ(z)

)
if y = 1

− log
(
1− φ(z)

)
if y = 0

3.3.3 Training a logistic regression model with scikit-learn

If we were to implement logistic regression ourselves, we could simply substitute
the cost function J(·) in our Adaline implementation from Chapter 2, Training
Machine Learning Algorithms for Classification, by the new cost function:

J(w) =

n∑
i=1

[
− y(i) log

(
φ
(
z(i)
))
−
(

1− y(i)
)

log

(
1− φ

(
z(i)
))]
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We can show that the weight update in logistic regression via gradient descent
is indeed equal to the equation that we used in Adaline in Chapter 2, Training
Machine Learning Algorithms for Classification. Let’s start by calculating the
partial derivative of the log-likelihood function with respect to the jth weight:

∂

∂wj
l(w) =

(
y

1

φ(z)
− (1− y)

1

1− φ(z)

)
∂

∂wj
φ(z)

Before we continue, let’s calculate the partial derivative of the sigmoid function
first:

∂

∂z
φ(z) =

∂

∂z

1

1 + e−1
1(

1 + e−z
)2 e−z =

1

1 + e−z
=

1

1 + e−z

(
1− 1

1 + e−z

)
= φ(z)(1− φ(z)).

Now we can resubstitute ∂
∂zφ(z) = φ(z)(1−φ(z)) in our first equation to obtain

the following:

(
y

1

φ(z)
− (1− y)

1

1− φ(z)

)
∂

∂wj
φ(z)

=

(
y

1

φ(z)
− (1− y)

1

1− φ(z)

)
φ(z)

(
1− φ(z)

) ∂

∂wj
z

=

(
y
(
1− φ(z)

)
− (1− y)φ(z)

)
xj

=
(
y − φ(z)

)
xj

Remember that the goal is to find the weights that maximize the log-likelihood
so that we would perform the update for each weight as follows:

wj := wj + η

n∑
i=1

(
y(i) − φ(z(i))

)
x
(i)
j

Since we update all weights simultaneously, we can write the general update
rule as follows:

w := w + ∆w

We define ∆w as follows:

∆w = η∇l(w)

Since maximizing the log-likelihood is equal to minimizing the cost function J(·)
that we defined earlier, we can write the gradient descent update rule as follows:
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∆wj = −η ∂J
∂wj

= η

n∑
i=1

(
y(i) − φ(z(i))

)
x
(i)
j

w := w + ∆w, ∆w = −η∇J(w)

This is equal to the gradient descent rule in Adaline in Chapter 2, Training
Machine Learning Algorithms for Classification.

3.3.4 Tackling overfitting via regularization

The most common form of regularization is the so-called L2 regularization
(sometimes also called L2 shrinkage or weight decay), which can be written
as follows:

λ

2
‖w‖2 =

λ

2

m∑
j=1

w2
j

Here, λ is the so-called regularization parameter.
In order to apply regularization, we just need to add the regularization term to
the cost function that we defined for logistic regression to shrink the weights:

J(w) = −
n∑
i=1

[
y(i) log

(
φ(z(i))

)
−
(
1− y(i)

)
log
(
1− φ(z(i))

)]
+
λ

2
‖w‖2

Then, we have the following regularized weight updates for weight wj :

∆wj = −η ∂J
∂wj

= η

n∑
i=1

(
y(i) − φ(z(i))

)
x
(i)
j − ηλwj ,

for j ∈ {1, 2, ...,m} (i.e., j 6= 0) since we don’t regularize the bias unit w0.

Via the regularization parameter λ, we can then control how well we fit the
training data while keeping the weights small. By increasing the value of λ, we
increase the regularization strength.
The parameter C that is implemented for the LogisticRegression class in scikit-
learn comes from a convention in support vector machines, which will be the
topic of the next section. C is directly related to the regularization parameter
λ , which is its inverse:

C =
1

λ

So, we can rewrite the regularized cost function of logistic regression as follows:

J(w) = C

[
n∑
i=1

(
− y(i) log

(
φ(z(i)

)
−
(
1− y(i)

))
log

(
1− φ(z(i))

)]
+

1

2
‖w‖2
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3.4 Maximum margin classification with support
vector machines

3.4.1 Maximum margin intuition

To get an intuition for the margin maximization, let’s take a closer look at those
positive and negative hyperplanes that are parallel to the decision boundary,
which can be expressed as follows:

w0 + wTxpos = 1 (1)

w0 + wTxneg = −1 (2)

If we subtract those two linear equations (1) and (2) from each other, we get:

⇒ wT
(
xpos − xneg

)
= 2

We can normalize this by the length of the vector w, which is defined as follows:

‖w‖ =

√√√√ m∑
j=1

w2
j

So we arrive at the following equation:

wT (xpos − xneg)

‖w‖
=

2

‖w‖
The left side of the preceding equation can then be interpreted as the distance
between the positive and negative hyperplane, which is the so-called margin
that we want to maximize.
Now the objective function of the SVM becomes the maximization of this margin
by maximizing 2

‖w‖ under the constraint that the samples are classi ed correctly,

which can be written as follows:

w0 + wTx(i) ≥ 1 if y(i) = 1

w0 + wTx(i) < −1 if y(i) = −1

These two equations basically say that all negative samples should fall on one
side of the negative hyperplane, whereas all the positive samples should fall
behind the positive hyperplane. This can also be written more compactly as
follows:

y(i)
(
w0 + wTx(i)

)
≥ 1 ∀i

In practice, though, it is easier to minimize the reciprocal term 1
2‖w‖

2, which
can be solved by quadratic programming.
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3.4.2 Dealing with the nonlinearly separable case using
slack variables

The motivation for introducing the slack variable ξ was that the linear con-
straints need to be relaxed for nonlinearly separable data to allow convergence
of the optimization in the presence of misclassifications under the appropriate
cost penalization. The positive-values slack variable is simply added to the
linear constraints:

wTx(i) ≥ 1− ξ(i) if y(i) = 1

wTx(i) < −1 + ξ(i) if y(i) = −1

So the new objective to be minimized (subject to the preceding constraints)
becomes:

1

2
‖w‖2 + C

(∑
i

ξ(i)
)

3.4.3 Alternative implementations in scikit-learn

3.5 Solving nonlinear problems using a kernel
SVM

As shown in the next figure, we can transform a two-dimensional dataset onto
a new three-dimensional feature space where the classes become separable via
the following projection:

φ(x1, x2) = (z1, z2, z3) = (x1, x2, x
2
1 + x22)

3.5.1 Using the kernel trick to find separating hyperplanes
in higher dimensional space

To solve a nonlinear problem using an SVM, we transform the training data
onto a higher dimensional feature space via a mapping function φ(·) and train
a linear SVM model to classify the data in this new feature space. Then we can
use the same mapping function φ(·) to transform new, unseen data to classify
it using the linear SVM model.
However, one problem with this mapping approach is that the construction of
the new features is computationally very expensive, especially if we are dealing
with high-dimensional data. This is where the so-called kernel trick comes into
play. Although we didn’t go into much detail about how to solve the quadratic
programming task to train an SVM, in practice all we need is to replace the dot
product

x(i) Tx(j) by φ
(
x(i)
)T
φ
(
x(j)

)
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In order to save the expensive step of calculating this dot product between two
points explicitly, we de define a so-called kernel function:

k
(
x(i),x(j)

)
= φ

(
x(i)
)T
φ
(
x(j)

)
One of the most widely used kernels is the Radial Basis Function kernel (RBF
kernel) or Gaussian kernel:

k
(
x(i),x(j)

)
= exp

(
− ‖x

(i) − x(j)‖2

2σ2

)
This is often simplified to:

k
(
x(i),x(j)

)
= exp

(
− γ ‖x(i) − x(j)‖2

)
Here, γ = 1

2σ2 is a free parameter that is to be optimized.

3.6 Decision tree learning

In order to split the nodes at the most informative features, we need to define
an objective function that we want to optimize via the tree learning algorithm.
Here, our objective function is to maximize the information gain at each split,
which we define as follows:

IG(Dp, f) = I(Dp)−
m∑
j=1

Nj
Np

I(Dj)

Here, f is the feature to perform the split, Dp and Dj are the dataset of the
parent p and jth child node; I is our impurity measure, Np is the total number
of samples at the parent node, and Nj is the number of samples at the jth child
node. As we can see, the information gain is simply the difference between the
impurity of the parent node and the sum of the child node impurities?the lower
the impurity of the child nodes, the larger the information gain. However, for
simplicity and to reduce the combinatorial search space, most libraries (includ-
ing scikit-learn) implement binary decision trees. This means that each parent
node is split into two child nodes, Dleft and Dright:

IG(Dp, f) = 1(Dp)−
Nleft
Np

I(Dleft)−
Nright
Np

I(Dright)

Now, the three impurity measures or splitting criteria that are commonly used in
binary decision trees are Gini impurity (IG), Entropy (IH) and the classification
error (IE). Let’s start with the definition of Entropy for all non-empty classes
p(i|t) 6= 0:

IH(t) = −
c∑
i=1

p(i|t) log2 p(i|t)

24



Sebastian Raschka Python Machine Learning – Equation Reference – Ch. 3

Here, p(i|t) is the proportion of the samples that belongs to class i for a par-
ticular node t. The entropy is therefore 0 if all samples at a node belong to the
same class, and the entropy is maximal if we have a uniform class distribution.
For example, in a binary class setting, the entropy is 0 if p(i = 1|t) = 1 or
p(i = 0|t) = 0. If the classes are distributed uniformly with p(i = 1|t) = 0.5
and p(i = 0|t) = 0.5, the entropy is 1. Therefore, we can say that the entropy
criterion attempts to maximize the mutual information in the tree.
Intuitively, the Gini impurity can be understood as a criterion to minimize the
probability of misclassification:

IG(t) =

c∑
i=1

p(i|t)(1− p(i|t)) = 1−
c∑
i=1

p(i|t)2

Similar to entropy, the Gini impurity is maximal if the classes are perfectly
mixed, for example, in a binary class setting (c = 2):

IG(t) = 1−
c∑
i=1

0.52 = 0.5.

...
Another impurity measure is the classification error:

IE(t) = 1−max{p(i|t)}

3.6.1 Maximizing information gain – getting the most bang
for the buck

3.6.2 Building a decision tree

3.6.3 Combining weak to strong learners via random forests

3.7 K-nearest neighbors – a lazy learning algo-
rithm

The minkowski distance that we used in the previous code example is just a
generalization of the Euclidean and Manhattan distances that can be written
as follows:

d
(
x(i),x(j)

)
= p

√∑
k

∣∣x(i)k − x(j)k ∣∣p

3.8 Summary
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Chapter 4

Building Good Training
Sets – Data Pre-Processing

4.1 Dealing with missing data

4.1.1 Eliminating samples or features with missing values

4.1.2 Imputing missing values

4.1.3 Understanding the scikit-learn estimator API

4.2 Handling categorical data

4.2.1 Mapping ordinal features

4.2.2 Encoding class labels

4.2.3 Performing one-hot encoding on nominal features

4.3 Partitioning a dataset in training and test
sets

4.4 Bringing features onto the same scale

Now, there are two common approaches to bringing different features onto the
same scale: normalization and standardization. Those terms are often used
quite loosely in different fields, and the meaning has to be derived from the
context. Most often, normalization refers to the rescaling of the features to a
range of [0, 1], which is a special case of min-max scaling. To normalize our
data, we can simply apply the min-max scaling to each feature column, where

the new value x
(i)
norm of a sample x(i):
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x(i)norm =
x(i) − xmin

xmax − xmin

Here, x(i) is a particular sample, xmin is the smallest value in a feature column,
and xmax the largest value, respectively.
[...] Furthermore, standardization maintains useful information about outliers
and makes the algorithm less sensitive to them in contrast to min-max scaling,
which scales the data to a limited range of values.
The procedure of standardization can be expressed by the following equation:

x
(i)
std =

x(i) − µx
σx

Here, µx is the sample mean of a particular feature column and σx the corre-
sponding standard deviation, respectively.

4.5 Selecting meaningful features

4.5.1 Sparse solutions with L1 regularization

We recall from Chapter 3, A Tour of Machine Learning Classfiers Using Scikit-
learn, that L2 regularization is one approach to reduce the complexity of a
model by penalizing large individual weights, where we defined the L2 norm of
our weight vector w as follows:

L2 : ‖w‖22 =

m∑
j=1

w2
j

Another approach to reduce the model complexity is the related L1 regulariza-
tion:

L1 : ‖w‖1 =

m∑
j=1

|wj |

4.5.2 Sequential feature selection algorithms

Based on the preceding definition of SBS, we can outline the algorithm in 4
simple steps:

1. Initialize the algorithm with k = d, where d is the dimensionality of the
full feature space Xd

2. Determine the feature x− that maximizes the criterion x− = arg maxJ(Xk−
x), where x ∈ Xk.

3. Remove the feature x− from the feature set: Xk−l := Xk−x−; k := k−1.

4. Terminate if k equals the number of desired features, if not, got to step 2.
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4.6 Assessing feature importance with random
forests

4.7 Summary

28



Chapter 5

Compressing Data via
Dimensionality Reduction

5.1 Unsupervised dimensionality reduction via
principal component analysis

When we use PCA for dimensionality reduction, we construct a d×k-dimensional
transformation matrix W that allows us to map a sample vector x onto a new
k-dimensional feature subspace that has fewer dimensions than the original d-
dimensional feature space:

x = [x1, x2, . . . , xj ],x ∈ R4

↓ xW, W ∈ Rd×k

z = [z1, z2, . . . , zk], z ∈ R4

As a result of transforming the original d-dimensional data onto this new k-
dimensional subspace (typically k << d ), the rst principal component will
have the largest possible variance, and all consequent principal components will
have the largest possible variance given that they are uncorrelated (orthogonal)
to the other principal components. Note that the PCA directions are highly
sensitive to data scaling, and we need to standardize the features prior to PCA
if the features were measured on different scales and we want to assign equal
importance to all features.
Before looking at the PCA algorithm for dimensionality reduction in more detail,
let’s summarize the approach in a few simple steps:

1. Standardize the d-dimensional dataset.

2. Construct the covariance matrix.

29



Sebastian Raschka Python Machine Learning – Equation Reference – Ch. 5

3. Decompose the covariance matrix into its eigenvectors and eigenvalues.

4. Select k eigenvectors that correspond to the k largest eigenvalues, where
k is the dimensionality of the new feature subspace (k ≤ d).

5. Construct a projection matrix W from the ”top” k eigenvectors.

6. Transform the d-dimensional input dataset X using the projection matrix
W to obtain the new k-dimensional feature subspace.

5.1.1 Total and explained variance

After completing the mandatory preprocessing steps by executing the preceding
code, let’s advance to the second step: constructing the covariance matrix. The
symmetric d × d -dimensional covariance matrix, where d is the number of
dimensions in the dataset, stores the pairwise covariances between the different
features. For example, the covariance between two features xj and xk on the
population level can be calculated via the following equation:

σjk =
1

n

n∑
i=1

(
x
(i)
j − µj

)(
x
(i)
k − µk

)
Here, µj and µk are the sample means of feature j and k, respectively. [...] For
example, a covariance matrix of three features can then be written as

Σ =

 σ2
1 σ12 σ13

σ21 σ2
2 σ23

σ31 σ32 σ2
3


[...] an eigenvector v satisfies the following condition:

Σv = λv

Here, λ is a scalar: the eigenvector.
...
The variance explained ratio of an eigenvalue λj is simply the fraction of an
eigenvalue λj and the total sum of the eigenvalues:

λj∑d
j=1 λj

5.1.2 Feature transformation

Using the projection matrix, we can now transform a sample x onto the PCA
subspace obtaining x′, a now two-dimensional sample vector consisting of two
new features:

x′ = xW
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5.1.3 Principal component analysis in scikit-learn

5.2 Supervised data compression via linear dis-
criminant analysis

Before we take a look into the inner workings of LDA in the following subsec-
tions, let’s summarize the key steps of the LDA approach:

1. Standardize the d-dimensional dataset (d is the number of features).

2. For each class, compute the d dimensional mean vector.

3. Construct the between-class scatter matrix SB and the within-class scatter
matrix SW .

4. Compute the eigenvectors and corresponding eigenvalues of the matrix
S−1W SB .

5. Choose the k eigenvectors that correspond to the k largest eigenvalues to
construct a d× k-dimensional transformation matrix W; the eigenvectors
are the columns of this matrix.

6. Project the samples onto the new feature subspace using the transforma-
tion matrix W.

5.2.1 Computing the scatter matrices

Each mean vector mi stores the mean feature value µm with respect to the
samples of class i:

mi =
1

ni

c∑
x∈Di

xm

This results in three mean vectors:

mi =

 µi,alcohol
µi,malic-acid

µi,proline

T , i ∈ {1, 2, 3}
Using the mean vectors, we can now compute the within-class scatter matrix
SW

SW =

c∑
i=1

Si

This is calculated by summing up the individual scatter matrices Si of each
individual class i:
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Si =

c∑
x∈Di

(x−mi)(x−mi)
T

The assumption that we are making when we are computing the scatter matrices
is that the class labels in the training set are uniformly distributed. [...] Thus,
we want to scale the individual scatter matrices Si before we sum them up as
scatter matrix SW When we divide the scatter matrices by the number of class
samples Ni, we can see that computing the scatter matrix is in fact the same as
computing the covariance matrix Sigmai The covariance matrix is a normalized
version of the scatter matrix:

Σi =
1

Ni
SW =

1

Ni

c∑
x∈Di

(x−mi)(x−mi)
T

After we have computed the scaled within-class scatter matrix (or covariance
matrix), we can move on to the next step and compute the between-class scatter
matrix SB

SB =

c∑
i=1

Ni(mi −m)(mi −m)T

Here, m is the overall mean that is computed, including samples from all classes.

5.2.2 Selecting linear discriminants for the new feature
subspace

5.2.3 Projecting samples onto the new feature space

X′ = XW

5.2.4 LDA via scikit-learn

5.3 Using kernel principal component analysis
for nonlinear mappings

5.3.1 Kernel functions and the kernel trick

To transform the samples x ∈ Rd onto this higher k-dimensional subspace, we
defined a nonlinear mapping function φ:

φ : Rd → Rk (k >> d)

We can think of φ as a function that creates nonlinear combinations of the
original features to map the original d-dimensional dataset onto a larger, k-
dimensional feature space. For example, if we had feature vector x ∈ Rd (x is a
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column vector consisting of d features) with two dimensions (d = 2), a potential
mapping onto a 3D space could be as follows:

x = [x1, x2]T

↓ φ

z =

[
x21,
√

2x1x2, x
2
2

]T
[...] We computed the covariance between two features k and j as follows:

σjk =
1

n

i=1∑
n

(
x
(i)
j − µj

)(
x
(i)
k − µk

)
Since the standardizing of features centers them at mean zero, for instance,
µj = 0 and µk = 0, we can simplify this equation as follows:

σjk =
1

n

n∑
i=1

x
(i)
j x

(i)
k

Note that the preceding equation refers to the covariance between two features;
now, let’s write the general equation to calculate the covariance matrix Σ:

Σ =
1

n

n∑
i=1

x(i)x(i) T

Bernhard Scholkopf generalized this approach (B. Scholkopf, A. Smola, and K.-
R. Muller. Kernel Principal Component Analysis. pages 583-588, 1997) so that
we can replace the dot products between samples in the original feature space
by the nonlinear feature combinations via φ:

Σ =
1

n

n∑
i=1

φ
(
x(i)
)
φ
(
x(i)
)T

To obtain the eigenvectors?the principal components?from this covariance ma-
trix, we have to solve the following equation:

Σv = λv

⇒ 1

n

n∑
i=1

φ
(
x(i)
)
φ
(
x(i)
)T

v = λv

⇒ 1

nλ

n∑
i=1

φ
(
x(i)
)(

x(i)
)T

v =
1

n

n∑
(i=1)

a(i)φ(x(i))
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Here, λ and v are the eigenvalues and eigenvectors of the covariance matrix Σ,
and a can be obtained by extracting the eigenvectors of the kernel (similarity)
matrix K as we will see in the following paragraphs.
The derivation of the kernel matrix is as follows:

5.3.2 Implementing a kernel principal component analysis
in Python

First, let’s write the covariance matrix as in matrix notation, where φ(X) is an
n× k-dimensional matrix:

Σ =
1

n

n∑
i=1

φ
(
x(i)
)(

x(i)
)T

=
1

n
φ(X)Tφ(X)

Now, we can write the eigenvector equation as follows:

mathbfv =
1

n

n∑
i=1

a(i)φ(x(i)) = λφ(X)Ta

Since Σv = λv, we get:

1

n
φ(X)Tφ(X)φ(X)Ta = λφ(X)Ta

Multiplying it by φ(X) on both sides yields the following result:

1

n
φ(X)φ(X)Tφ(X)φ(X)Ta = λφ(X)φ(X)Ta

⇒ 1

n
φ(X)φ(X)Ta = λa

⇒ 1

n
Ka = λa

Here, K is the similarity (kernel) matrix:

K = φ(X)φ(X)T

As we recall from the SVM section in Chapter 3, A Tour of Machine Learning
Classifiers Using Scikit-learn, we use the kernel trick to avoid calculating the
pairwise dot products of the samples x under φ explicitly by using a kernel
function κ(·) so that we don’t need to calculate the eigenvectors explicitly:
[...] The most commonly used kernels are the following ones:

• The polynomial kernel:

κ
(
x(i),x(j)

)
=
(
x(i) Tx(j) + θ

)p
Here, θ is the threshold and p is the power that has to be specified by the
user.
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• the hyperbolic tangent (sigmoid) kernel:

κ
(
x(i),x(j)

)
= tanh

(
ηx(i) Tx(j) + θ

)
• The Radial Basis Function (RBF) or Gaussian kernel that we will use in

the following examples in the next subsection:

κ
(
x(i),x(j)

)
= exp

(
− ‖x

(i) − x(j)‖2

2σ2

)
,

which is also often written as

κ
(
x(i),x(j)

)
= exp

(
− γ‖x(i) − x(j)‖2

)
,

where γ = 1
2σ2 .

To summarize what we have discussed so far, we can define the following three
steps to implement an RBF kernel PCA:

1. We compute the kernel (similarity) matrix K, where we need to calculate
the following:

κ
(
x(i),x(j)

)
= exp

(
− γ‖x(i) − x(j)‖2

)
We do this for each pair of samples:

K =


κ
(
x(1),x(1)

)
κ
(
x(1),x(2)

)
. . . κ

(
x(1),x(n)

)
κ
(
x(2),x(1)

)
κ
(
x(2),x(2)

)
. . . κ

(
x(2),x(n)

)
...

...
. . .

...
κ
(
x(n),x(1)

)
κ
(
x(n),x(2)

)
. . . κ

(
x(n),x(n)

)
 .

For example, if our dataset contains 100 training samples, the symmetric
kernel matrix of the pair-wise similarities would be 100×100 dimensional.

2. We center the kernel matrix K using the following equation:

K′ = K− 1nK−K−K1n + 1nK1n

Here, 1n is an n×n-dimensional matrix (the same dimensions as the kernel
matrix) where all values are equal to 1

n .

3. We collect the top k eigenvectors of the centered kernel matrix based on
their corresponding eigenvalues, which are ranked by decreasing magni-
tude. In contrast to standard PCA, the eigenvectors are not the principal
component axes but the samples projected onto those axes
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Example 1 – separating half-moon shapes

Example 2 – separating concentric circles

5.3.3 Projecting new data points

[...] Thus, if we want to project a new sample x′ onto this principal component
axis, we’d need to compute the following:

φ(x′)Tv

Fortunately, we can use the kernel trick so that we don’t have to calculate the
projection φ(x′)Tv explicitly. However, it is worth noting that kernel PCA, in
contrast to standard PCA, is a memory-based method, which means that we
have to reuse the original training set each time to project new samples. We
have to calculate the pairwise RBF kernel (similarity) between each ith sample
in the training dataset and the new sample x′:

φ(x′)Tv =
∑
i

a(i)φ(x′)Tφ(x(i))

=
∑
i

a(i)k(x′,x(i))T

Here, eigenvectors a and eigenvalues λ of the Kernel matrix K satisfy the fol-
lowing condition in the equation

Ka = λa

5.3.4 Kernel principal component analysis in scikit-learn

5.4 Summary
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Chapter 6

Learning Best Practices for
Model Evaluation and
Hyperparameter Tuning

6.1 Streamlining workflows with pipelines

6.1.1 Loading the Breast Cancer Wisconsin dataset

6.1.2 Combining transformers and estimators in a pipeline

6.2 Using k-fold cross-validation to assess model
performance

6.2.1 The holdout method

6.2.2 K-fold cross-validation

6.3 Debugging algorithms with learning and val-
idation curves

6.3.1 Diagnosing bias and variance problems with learning
curves

6.3.2 Addressing overfitting and underfitting with valida-
tion curves
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6.4 Fine-tuning machine learning models via grid
search

6.4.1 Tuning hyperparameters via grid search

6.4.2 Algorithm selection with nested cross-validation

6.5 Looking at different performance evaluation
metrics

6.5.1 Reading a confusion matrix

6.5.2 Optimizing the precision and recall of a classification
model

Both the prediction error (ERR) and accuracy (ACC) provide general informa-
tion about how many samples are misclassi ed. The error can be understood as
the sum of all false predictions divided by the number of total predictions, and
the accuracy is calculated as the sum of correct predictions divided by the total
number of predictions, respectively:

ERR =
FP + FN

FP + FN + TP + TN

(TP = true positives, FP = false positives, TN = true negatives, FN = false
negatives)
The prediction accuracy can then be calculated directly from the error:

ACC =
TP + TN

FP + FN + TP + TN
= 1− ERR

The true positive rate (TPR) and false positive rate (FPR) are performance
metrics that are especially useful for imbalanced class problems:

FPR =
FP

N
=

FP

FP + TN

TPR =
TP

P
=

TP

FN + TP

Precision (PRE) and recall (REC) are performance metrics that are related to
those true positive and true negative rates, and in fact, recall is synonymous to
the true positive rate:

PRE =
TP

TP + FP

REC = TPR =
TP

P
=

TP

FN + TP
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In practice, often a combination of precision and recall is used, the so-called
F1-score:

F1 = 2× PRE ×REC
PRE +REC

6.5.3 Plotting a receiver operating characteristic

6.5.4 The scoring metrics for multiclass classification

he micro-average is calculated from the individual true positives, true negatives,
false positives, and false negatives of the system. For example, the micro-average
of the precision score in a k-class system can be calculated as follows:

PREmicro =
TP1 + · · ·+ TPk

TP1 + · · ·+ TPk + FP1 + · · ·+ FPk

The macro-average is simply calculated as the average scores of the different
systems:

PREmacro =
PRE1 + · · ·+ PREk

k

6.6 Summary
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Chapter 7

Combining Different
Models for Ensemble
Learning

7.1 Learning with ensembles

To predict a class label via a simple majority or plurality voting, we combine
the predicted class labels of each individual classifier Cj and select the class
label ŷ that received the most votes:

ŷ = mode{C1(x), C2(x), . . . , Cm(x)}
For example, in a binary classification task where class1 = −1 and class2 = +1,
we can write the majority vote prediction as follows:

C(x) = sign

[
m∑
j

Cj(x

]
=

{
1 if

∑
j Cj(x) ≥ 0

−1 otherwise .

To illustrate why ensemble methods can work better than individual classifiers
alone, let’s apply the simple concepts of combinatorics. For the following exam-
ple, we make the assumption that all n base classifiers for a binary classification
task have an equal error rate ε. Furthermore, we assume that the classifiers are
independent and the error rates are not correlated. Under those assumptions,
we can simply express the error probability of an ensemble of base classifiers as
a probability mass function of a binomial distribution:

P (y ≥ k) =

n∑
k

(
n

k

)
εk(1− ε)n−k = εensemble

Here,
(
n
k

)
is the binomial coefficient n choose k. In other words, we compute the

probability that the prediction of the ensemble is wrong. Now let’s take a look
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at a more concrete example of 11 base classifiers (n = 11) with an error rate of
0.25 (ε = 0.25):

P (y ≥ k) =

11∑
k=6

(
11

k

)
0.25k(1− 0.25)11−k = 0.034

7.2 Implementing a simple majority vote classi-
fier

Our goal is to build a stronger meta-classifier that balances out the individual
classifiers’ weaknesses on a particular dataset. In more precise mathematical
terms, we can write the weighted majority vote as follows:

ŷ = arg max
i

m∑
j=1

wjχA
(
Cj(x) = i

)
Let’s assume that we have an ensemble of three base classifiers Cj(j ∈ 0, 1) and
want to predict the class label of a given sample instance x. Two out of three
base classi ers predict the class label 0, and one C3 predicts that the sample
belongs to class 1. If we weight the predictions of each base classifier equally,
the majority vote will predict that the sample belongs to class 0:

C1(x)→ 0, C2(x)→ 0, C3(x)→ 1

ŷ = mode0, 0, 1 = 0

Now let’s assign a weight of 0.6 to C3 and weight C1 and C2 by a coefficient of
0.2, respectively.

ŷ = arg max
i

m∑
j=1

wjχA
(
Cj(x) = i

)
= arg max

i

[
0.2× i0 + 0.2× i0 + 0.6× i1

]
= 1

More intuitively, since 3 × 0.2 = 0.6, we can say that the prediction made by
C3 has three times more weight than the predictions by C1 or C2 , respectively.
We can write this as follows:

ŷ = mode{0, 0, 1, 1, 1} = 1

[...] The modified version of the majority vote for predicting class labels from
probabilities can be written as follows:

ŷ = arg max
i

m∑
j=1

wjpij
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Here, pij is the predicted probability of the jth classifier for class label i.
To continue with our previous example, let’s assume that we have a binary clas-
sification problem with class labels i ∈ {0, 1} and an ensemble of three classifiers
Cj(j ∈ {1, 2, 3}. Let’s assume that the classifier Cj returns the following class
membership probabilities for a particular sample x:

C1(x)→ [0.9, 0.1], C2(x)→ [0.8, 0.2], C3(x)→ [0.4, 0.6]

We can then calculate the individual class probabilities as follows:

p(i0|x) = 0.2× 0.9 + 0.2× 0.8 + 0.6× 0.4 = 0.58

p(i1|x) = 0.2× 0.1 + 0.2× 0.2 + 0.6× 0.06 = 0.42

ŷ = arg max
i

[
p(i0|x), p(i1|x)

]
= 0

7.2.1 Combining different algorithms for classification with
majority vote

7.3 Evaluating and tuning the ensemble classi-
fier

7.4 Bagging – building an ensemble of classifiers
from bootstrap samples

7.5 Leveraging weak learners via adaptive boost-
ing

[...] The original boosting procedure is summarized in four key steps as follows:

1. Draw a random subset of training samples d1 without replacement from
the training set D to train a weak learner C1.

2. Draw second random training subset d2 without replacement from the
training set and add 50 percent of the samples that were previously mis-
classified to train a weak learner C2.

3. Find the training samples d3 in the training set D on which C1 and C2

disagree to train a third weak learner C3

4. Combine the weak learners C1, C2, and C3 via majority voting.
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[...] Now that have a better understanding behind the basic concept of Ad-
aBoost, let’s take a more detailed look at the algorithm using pseudo code. For
clarity, we will denote element-wise multiplication by the cross symbol (×) and
the dot product between two vectors by a dot symbol (·), respectively. The
steps are as follows:

1. Set weight vector w to uniform weights where
∑
i wi = 1.

2. For j in m boosting rounds, do the following:

(a) Train a weighted weak learner: Cj = train(X,y,w).

(b) Predict class labels: ŷ = predict(Cj ,X).

(c) Compute the weighted error rate: ε = w · (ŷ 6= y).

(d) Compute the coefficient αj : αj = 0.5 log 1−ε
ε .

(e) Update the weights: w := w × exp
(
− αj × ŷ × y

)
.

(f) Normalize weights to sum to 1: w := w/
∑
i wi.

3. Compute the final prediction: ŷ =
(∑m

j=1

(
αj × predict(Cj ,X)

)
> 0
)
.

Note that the expression (ŷ == y) in step 5 refers to a vector of 1s and 0s,
where a 1 is assigned if the prediction is incorrect and 0 is assigned otherwise.

Sample indices x y Weights ŷ(x ≤ 3.0)? Correct? Updated weights
1 1.0 1 0.1 1 Yes 0.072
2 2.0 1 0.1 1 Yes 0.072
3 3.0 1 0.1 1 Yes 0.072
4 4.0 -1 0.1 -1 Yes 0.072
5 5.0 -1 0.1 -1 Yes 0.072
6 6.0 -1 0.1 -1 Yes 0.072
7 7.0 1 0.1 -1 No 0.167
8 8.0 1 0.1 -1 No 0.167
9 9.0 1 0.1 -1 No 0.167

10 10.0 -1 0.1 -1 Yes 0.072

Since the computation of the weight updates may look a little bit complicated
at rst, we will now follow the calculation step by step. We start by computing
the weighted error rate ε as described in step 5:

ε = 0.1×0+0.1×0+0.1×0+0.1×0+0.1×0+0.1×0+0.1×1+0.1×1+0.1×1+0.1×0

=
3

10
= 0.3
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Next we compute the coefficient αj (shown in step 6), which is later used in step
7 to update the weights as well as for the weights in majority vote prediction
(step 10):

αj = 0.5 log

(
1− ε
ε

)
≈ 0.424

After we have computed the coefficient αj we can now update the weight vector
using the following equation:

w := w × exp(−αj × ŷ × y)

Here, ŷ×y is an element-wise multiplication between the vectors of the predicted
and true class labels, respectively. Thus, if a prediction ŷi is correct, ŷi× yi will
have a positive sign so that we decrease the ith weight since αj is a positive
number as well:

0.1× exp(−0.424× 1× 1) ≈ 0.065

Similarly, we will increase the ith weight if ŷi predicted the label incorrectly like
this:

0.1× exp(−0.424× 1× (−1)) ≈ 0.153

Or like this:

0.1× exp(−0.424× (−1)× 1) ≈ 0.153

After we update each weight in the weight vector, we normalize the weights so
that they sum up to 1 (step 8):

w :=
w∑
i wi

Here,
∑
i wi = 7× 0.065 + 3× 0.153 = 0.914.

Thus, each weight that corresponds to a correctly classified sample will be re-
duced from the initial value of 0.1 to 0.065/0.914 ≈ 0.071 for the next round
of boosting. Similarly, the weights of each incorrectly classified sample will
increase from 0.1 to 0.153/0.914 ≈ 0.167.

7.6 Summary
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Chapter 8

Applying Machine Learning
to Sentiment Analysis

8.1 Obtaining the IMDb movie review dataset

8.2 Introducing the bag-of-words model

8.2.1 Transforming words into feature vectors

8.2.2 Assessing word relevancy via term frequency-inverse
document frequency

The tf-idf can be defined as the product of the term frequency and the inverse
document frequency :

tf-idf(t, d) = tf(t, d)× idf(t, d)

Here the tf(t, d) is the term frequency that we introduced in the previous section,
and the inverse document frequency idf(t, d) can be calculated as:

idf(t, d) = log
nd

1 + df(d, t)
,

where nd is the total number of documents, and df(d, t) is the number of doc-
uments d that contain the term t. Note that adding the constant 1 to the
denominator is optional and serves the purpose of assigning a non-zero value
to terms that occur in all training samples; the log is used to ensure that low
document frequencies are not given too much weight.
However, if we’d manually calculated the tf-idfs of the individual terms in our
feature vectors, we’d have noticed that the TfidfTransformer calculates the tf-
idfs slightly differently compared to the standard textbook equations that we
defined earlier. The equations for the idf and tf-idf that were implemented in
scikit-learn are:
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idf(t, d) = log
1 + nd

1 + df(d, t)

The tf-idf equation that was implemented in scikit-learn is as follows:

tf-idf(t, d) = tf(t, d)× (idf(t, d) + 1).

While it is also more typical to normalize the raw term frequencies before cal-
culating the tf-idfs, the TfidfTransformer normalizes the tf-idfs directly. By de-
fault (norm=’l2’), scikit-learn’s TfidfTransformer applies the L2-normalization,
which returns a vector of length 1 by dividing an un-normalized feature vector
v by its L2-norm:

vnorm =
v

‖v‖ 2
=

v√
v21 + v22 + · · ·+ v2n

=
v(∑n

i=1 v
2
i

)1/2
8.2.3 Cleaning text data

8.2.4 Processing documents into tokens

8.3 Training a logistic regression model for doc-
ument classification

8.4 Working with bigger data - online algorithms
and out-of-core learning

8.5 Summary
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Chapter 9

Embedding a Machine
Learning Model into a Web
Application

9.1 Chapter 8 recap - Training a model for movie
review classification

9.2 Serializing fitted scikit-learn estimators

9.3 Setting up a SQLite database for data stor-
age Developing a web application with Flask

9.4 Our first Flask web application

9.4.1 Form validation and rendering

9.4.2 Turning the movie classifier into a web application

9.5 Deploying the web application to a public
server

9.5.1 Updating the movie review classifier

9.6 Summary
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Chapter 10

Predicting Continuous
Target Variables with
Regression Analysis

10.1 Introducing a simple linear regression model

The goal of simple (univariate) linear regression is to model the relationship
between a single feature (explanatory variable x) and a continuous valued re-
sponse (target variable y). The equation of a linear model with one explanatory
variable is defined as follows:

y = w0 + w1 + x

Here, the weight w0 represents the y axis intercepts and w1 is the coefficient of
the explanatory variable.
[...] The special case of one explanatory variable is also called simple linear
regression, but of course we can also generalize the linear regression model to
multiple explanatory variables. Hence, this process is called multiple linear
regression:

y = w0x0 + w1x1 + · · ·+ wmxm =

m∑
i=0

wixi = wTx

Here, w0 is the y-axis intercept with x0 =1.

10.2 Exploring the Housing Dataset

10.2.1 Visualizing the important characteristics of a dataset

The correlation matrix is a square matrix that contains the Pearson product-
moment correlation coeffcients (often abbreviated as Pearson’s r), which mea-
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sure the linear dependence between pairs of features. The correlation coefficients
are bounded to the range −1 and 1. Two features have a perfect positive correla-
tion if r = 1, no correlation if r = 0, and a perfect negative correlation if r =?1,
respectively. As mentioned previously, Pearson’s correlation coefficient can sim-
ply be calculated as the covariance between two features x and y (numerator)
divided by the product of their standard deviations (denominator):

r =

∑n
i=1

[(
x(i) − µx

)(
y(i) − µy

)]√∑n
i=1

(
x(i) − µx

)2√∑n
i=1

(
y(i) − µy

)2 =
σxy
σxσy

Here, µ denotes the sample mean of the corresponding feature, σxy is the co-
variance between the features x and y, and σx and σy are the features’ standard
deviations, respectively.
We can show that the covariance between standardized features is in fact equal
to their linear correlation coefficient. Let’s first standardize the features x and
y, to obtain their z-scores which we will denote as x′ and y′ , respectively:

x′ =
x− µx
σx

, y′ =
y − µy
σy

Remember that we calculate the (population) covariance between two features
as follows:

σxy =
1

n

n∑
i

(
x(i) − µx

)(
y(i) − µy

)
Since standardization centers a feature variable at mean 0, we can now calculate
the covariance between the scaled features as follows:

σ′xy =
1

n

n∑
i

(x′ − 0)(y′ − 0)

Through resubstitution, we get the following result:

1

n

n∑
i

(x− µx
σx

)(y − µy
σy

)

=
1

n · σxσy

n∑
i

n∑
i

(
x(i) − µx

)(
y(i) − µy

)
We can simplify it as follows:

σ′xy =
σxy
σxσy
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10.3 Implementing an ordinary least squares lin-
ear regression model

10.3.1 Solving regression for regression parameters with
gradient descent

Consider our implementation of the ADAptive LInear NEuron (Adaline) from
Chapter 2, Training Machine Learning Algorithms for Classifcation; we remem-
ber that the artificial neuron uses a linear activation function and we defined
a cost function J(·), which we minimized to learn the weights via optimization
algorithms, such as Gradient Descent (GD) and Stochastic Gradient Descent
(SGD). This cost function in Adaline is the Sum of Squared Errors (SSE). This
is identical to the OLS cost function that we defined:

J(w) =
1

2

n∑
i=1

(
y(i) − ŷ(i)

)2
Here, ŷ is the predicted value ŷ = wTx (note that the term 1/2 is just used for
convenience to derive the update rule of GD). Essentially, OLS linear regression
can be understood as Adaline without the unit step function so that we obtain
continuous target values instead of the class labels −1 and 1.
[...] As an alternative to using machine learning libraries, there is also a closed-
form solution for solving OLS involving a system of linear equations that can
be found in most introductory statistics textbooks:

w = (XTX)(−1)XTy

10.3.2 Estimating the coefficient of a regression model via
scikit-learn

10.4 Fitting a robust regression model using RANSAC

10.5 Evaluating the performance of linear re-
gression models

Another useful quantitative measure of a model’s performance is the so-called
Mean Squared Error (MSE), which is simply the average value of the SSE cost
function that we minimize to fit the linear regression model. The MSE is useful
to for comparing different regression models or for tuning their parameters via
a grid search and cross-validation:

MSE =
1

n

n∑
i=1

(
y(i) − ŷ(i)

)2
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[...] Sometimes it may be more useful to report the coef cient of determination
(R2), which can be understood as a standardized version of the MSE, for better
interpretability of the model performance. In other words, R2 is the fraction
of response variance that is captured by the model. The R2 value is defined as
follows:

R2 = 1− SSE

SST

Here, SSE is the sum of squared errors and SST is the total sum of squares

SST =
∑n
i=1

(
y(i) − µy

)2
, or in other words, it is simply the variance of the

response. Let’s quickly show that R2 is indeed just the rescaled version of the
MSE:

R2 = 1− SSE

SST

= 1−
1
n

∑n
i=1

(
y(i) − ŷ(i)

)2
1
n

∑n
i=1

(
y(i) − µy

)2
= 1− MSE

V ar(y)

For the training dataset, R2 is bounded between 0 and 1, but it can become
negative for the test set. If R2 =1, the model fits the data perfectly with a
corresponding MSE = 0.

10.6 Using regularized methods for regression

The most popular approaches to regularized linear regression are the so-called
Ridge Regression, Least Absolute Shrinkage and Selection Operator (LASSO),
and the Elastic Net method.
Ridge regression is an L2 penalized model where we simply add the squared
sum of the weights to our least-squares cost function:

J(w)ridge =

n∑
i=1

(
y(i) − ŷ(i)

)2
+ λ‖w‖22

Here:

L2 : λ‖w‖22 = λ

m∑
j=1

w2
j

By increasing the value of the hyperparameter λ , we increase the regulariza-
tion strength and shrink the weights of our model. Please note that we don’t
regularize the intercept term w0.
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An alternative approach that can lead to sparse models is the LASSO. De-
pending on the regularization strength, certain weights can become zero, which
makes the LASSO also useful as a supervised feature selection technique:

J(w)LASSO =

n∑
i=1

(
y(i) − ŷ(i)

)2
+ λ‖w‖1

Here:

L1 : λ‖w‖1 = λ

m∑
j=1

|wj |

However, a limitation of the LASSO is that it selects at most n variables if
m > n. A compromise between Ridge regression and the LASSO is the Elastic
Net, which has a L1 penalty to generate sparsity and a L2 penalty to overcome
some of the limitations of the LASSO, such as the number of selected variables.

J(w)ElasticNet =

n∑
i=1

(
y(i) − ŷ(i)

)2
+ λ1

m∑
j=1

w2
j + λ2

m∑
j=1

|wj |

10.7 Turning a linear regression model into a
curve - polynomial regression

In the previous sections, we assumed a linear relationship between explanatory
and response variables. One way to account for the violation of linearity as-
sumption is to use a polynomial regression model by adding polynomial terms:

y = w0 + w1x+ w2x
2 + · · ·+ wdx

d,

where d denotes the degree of the polynomial.

10.7.1 Modeling nonlinear relationships in the Housing
Dataset

10.7.2 Dealing with nonlinear relationships using random
forests

Decision tree regression

When we used decision trees for classi cation, we defined entropy as a measure
of impurity to determine which feature split maximizes the Information Gain
(IG), which can be defined as follows for a binary split:

IG(Dp, xi) = I(Dp)−
Nleft
Np

I(Dleft)−
Nright
Np

I(Dright)
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To use a decision tree for regression, we will replace entropy as the impurity
measure of a node t by the MSE:

I(t)−MSE(t) =
1

Nt

∑
i∈Dt

(
y(i) − ŷt

)2
Here, Nt is the number of training samples at node t, Dt is the training subset
at node t, y(i) is the true target value, and ŷ(i) is the predicted target value
(sample mean):

ŷt =
1

N

∑
i∈Dt

y(i)

In the context of decision tree regression, the MSE is often also referred to as
within-node variance, which is why the splitting criterion is also better known
as variance reduction.

Random forest regression

10.8 Summary
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Chapter 11

Working with Unlabeled
Data – Clustering Analysis

11.1 Grouping objects by similarity using k-means

Thus, our goal is to group the samples based on their feature similarities, which
we can be achieved using the k-means algorithm that can be summarized by the
following four steps:

1. Randomly pick k centroids from the sample points as initial cluster centers.

2. Assign each sample to the nearest centroid µ(j), j ∈ 1, ..., k.

3. Move the centroids to the center of the samples that were assigned to it.

4. Repeat steps 2 and 3 until the cluster assignments do not change or a
user-defined tolerance or a maximum number of iterations is reached.

Now the next question is how do we measure similarity between objects? We can
de ne similarity as the opposite of distance, and a commonly used distance for
clustering samples with continuous features is the squared Euclidean distance
between two points x and y in m-dimensional space:

d(x,y)2 =

m∑
j=1

(
xj − yj

)2
= ‖x− y‖22.

Note that, in the preceding equation, the index j refers to the jth dimension
(feature column) of the sample points x and y. In the rest of this section, we
will use the superscripts i and j to refer to the sample index and cluster index,
respectively.
Based on this Euclidean distance metric, we can describe the k-means algo-
rithm as a simple optimization problem, an iterative approach for minimizing
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the within-cluster sum of squared errors (SSE), which is sometimes also called
cluster inertia:

SSE =

n∑
i=1

k∑
j=1

w(i,j)
∥∥x(i) − µ(j)

∥∥2
2

Here, µ(j) is the representative point (centroid) for cluster j, and w(i,j) = 1 if
the sample x(i) is in cluster j; w(i,j) = 0 otherwise.

11.1.1 K-means++

[...] The initialization in k-means++ can be summarized as follows:

1. Initialize an empty set M to store the k centroids being selected.

2. Randomly choose the first centroid µ(j) from the input samples and assign
it to M

3. For each sample x(i) that is not inM , find the minimum distance d
(
x(i),M

)2
to any of the centroids in M .

4. To randomly select the next centroid µ(p), use a weighted probability

distribution equal to d(µ(p),M)2∑
i d(x

(i)M)2

5. Repeat steps 2 and 3 until k centroids are chosen.

6. Proceed with the classic k -means algorithm.

11.1.2 Hard versus soft clustering

The fuzzyc−means(FCM) procedure is very similar to k-means. However, we
replace the hard cluster assignment by probabilities for each point belonging to
each cluster. In k-means, we could express the cluster membership of a sample
x by a sparse vector of binary values:µ(1) → 0

µ(2) → 1
µ(3) → 0


Here, the index position with value 1 indicates the cluster centroid µ(j) the
sample is assigned to (assuming k = 3, j ∈ {1, 2, 3}). In contrast, a membership
vector in FCM could be represented as follows: µ(1) → 0.1

µ(2) → 0.85
µ(3) → 0.05


Here, each value falls in the range [0, 1] and represents a probability of member-
ship to the respective cluster centroid. The sum of the memberships for a given
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sample is equal to 1. Similarly to the k-means algorithm, we can summarize the
FCM algorithm in four key steps:

1. Specify the number of k centroids and randomly assign the cluster mem-
berships for each point.

2. Compute the cluster centroids µ(j), j ∈ {1, . . . , k}.

3. Update the cluster memberships for each point.

4. Repeat steps 2 and 3 until the membership coefficients do not change or
a user-defined tolerance or a maximum number of iterations is reached.

The objective function of FCM – we abbreviate it by Jm – looks very similar to
the within cluster sum-squared-error that we minimize in k-means:

Jm =

n∑
i=1

k∑
j=1

wm(i,j)
∥∥x(i) − µ(j)

∥∥2
2
m ∈ [1,∞)

However, note that the membership indicator w(i,j) is not a binary value as in
k-means

(
w(i,j) ∈ {0, 1}

)
but a real value that denotes the cluster membership

probability
(
w(i,j) ∈ [0, 1]

)
. You also may have noticed that we added an ad-

ditional exponent to w(i,j); the exponent m, any number greater or equal to
1 (typically m = 2), is the so-called fuzziness coefficient (or simply fuzzifier)
that controls the degree of fuzziness. The larger the value of m, the smaller the
cluster membership w(i,j) becomes, which leads to fuzzier clusters. The cluster
membership probability itself is calculated as follows:

w(i,j) =

[
k∑
p=1

(
‖x(i) − µ(j)‖2
‖x(i) − µ(p)‖2

) 2
m−1

]−1
For example, if we chose three cluster centers as in the previous k-means exam-
ple, we could calculate the membership of the x(i) sample belonging to its own
cluster:

w(i,j) =

[
k∑
p=1

(
‖x(i) − µ(j)‖2
‖x(i) − µ(1)‖2

) 2
m−1

+

k∑
p=1

(
‖x(i) − µ(j)‖2
‖x(i) − µ(2)‖2

) 2
m−1

+

k∑
p=1

(
‖x(i) − µ(j)‖2
‖x(i) − µ(3)‖2

) 2
m−1

]−1

The center µ(j) of a cluster itself is calculated as the mean of all samples in the
cluster weighted by the membership degree of belonging to its own cluster:

µ(j) =

∑n
i=1 w

m(i,j)x(i)∑n
i=1 w

m(i,j)
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11.1.3 Using the elbow method to find the optimal num-
ber of clusters

11.1.4 Quantifying the quality of clustering via silhouette
plots

To calculate the silhouette coefficient of a single sample in our dataset, we can
apply the following three steps:

1. Calculate the cluster cohesion a(i) as the average distance between a sam-
ple x(i) and all other points in the same cluster.

2. Calculate the cluster separation b(i) from the next closest cluster as the
average distance between the sample x(i) and all samples in the nearest
cluster.

3. Calculate the silhouette s(i) as the difference between cluster cohesion and
separation divided by the greater of the two, as shown here:

s(i) =
b(i) − a(i)

max{b(i), a(i)}
.

The silhouette coefficient is bounded in the range −1 to 1. Based on the pre-
ceding formula, we can see that the silhouette coefficient is 0 if the cluster
separation and cohesion are equal (b(i) = a(i)). Furthermore, we get close to an
ideal silhouette coefficient of 1 if b(i) >> a(i), since b(i) quantifies how dissimilar
a sample is to other clusters, and a(i) tells us how similar it is to the other
samples in its own cluster, respectively.

11.2 Organizing clusters as a hierarchical tree

11.2.1 Performing hierarchical clustering on a distance
matrix

11.2.2 Attaching dendrograms to a heat map

11.2.3 Applying agglomerative clustering via scikit-learn

11.3 Locating regions of high density via DB-
SCAN

[...] In Density-based Spatial Clustering of Applications with Noise (DBSCAN),
a special label is assigned to each sample (point) using the following criteria:

• A point is considered as core point if at least a specified number (MinPts)
of neighboring points fall within the specified radius ε.
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• A border point is a point that has fewer neighbors than MinPts within ε,
but lies within the ε radius of a core point.

• All other points that are neither core nor border points are considered as
noise points.

After labeling the points as core, border, or noise points, the DBSCAN algorithm
can be summarized in two simple steps:

1. Form a separate cluster for each core point or a connected group of core
points (core points are connected if they are no farther away than ε).

2. Assign each border point to the cluster of its corresponding core poin.

11.4 Summary
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Chapter 12

Training Artificial Neural
Networks for Image
Recognition

12.1 Modeling complex functions with artificial
neural networks

12.1.1 Single-layer neural network recap

In Chapter 2, Training Machine Learning Algorithms for Classification, we im-
plemented the Adaline algorithm to perform binary classification, and we used
a gradient descent optimization algorithm to learn the weight coefficients of the
model. In every epoch (pass over the training set), we updated the weight vector
w using the following update rule:

w := w + ∆w, where ∆w = −η∇J(w)

In other words, we computed the gradient based on the whole training set and
updated the weights of the model by taking a step into the opposite direction
of the gradient ∇J(w). In order to find the optimal weights of the model, we
optimized an objective function that we defined as the Sum of Squared Errors
(SSE) cost function J(w). Furthermore, we multiplied the gradient by a factor,
the learning rate η , which we chose carefully to balance the speed of learning
against the risk of overshooting the global minimum of the cost function.
In gradient descent optimization, we updated all weights simultaneously after
each epoch, and we defined the partial derivative for each weight wj in the
weight vector w as follows:

∂

∂wj
J(w) = −

∑
i

(
y(i) − a(i)

)
x
(i)
j
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Here y(i) is the target class label of a particular sample x(i) , and a(i) is the
activation of the neuron, which is a linear function in the special case of Adaline.
Furthermore, we defined the activation function φ(·) as follows:

φ(z) = z = a

Here, the net input z is a linear combination of the weights that are connecting
the input to the output layer:

z =
∑
j

wjxj = wTx

While we used the activation φ(z) to compute the gradient update, we imple-
mented a threshold function (Heaviside function) g(·) to squash the continuous-
valued output into binary class labels for prediction:

φ(z) =

{
1 if g(z) ≥ 0

−1 otherwise .

12.1.2 Introducing the multi-layer neural network archi-
tecture

[...] As shown in the preceding figure, we denote the ith activation unit in the lth
layer as ali , and the activation units a10 and a20 are the bias units, respectively,
which we set equal to 1. The activation of the units in the input layer is just
its input plus the bias unit:

a(i) =


a
(1)
0

a
(1)
1
...

a
(1)
m

 =


1

x
(i)
1
...

x
(i)
m


Each unit in layer l is connected to all units in layer l+1 via a weight coefficient.
For example, the connection between the kth unit in layer l to the jth unit in

layer l + 1 would be written as w
(l)
j,k . Please note that the superscript i in x

(i)
m

stands for the ith sample, not the ith layer. In the following paragraphs, we
will often omit the superscript i for clarity.
[...] To better understand how this works, remember the one-hot representation
of categorical variables that we introduced in Chapter 4, Building Good Training
Sets – Data Preprocessing. For example, we would encode the three class labels
in the familiar Iris dataset (0=Setosa, 1=Versicolor, 2=Virginica) as follows:

0 =

1
0
0

 , 1 =

0
1
0

 , 2 =

0
0
1

 .
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This one-hot vector representation allows us to tackle classification tasks with
an arbitrary number of unique class labels present in the training set.
[...] If you are new to neural network representations, the terminology around
the indices (subscripts and superscripts) may look a little bit confusing at first.

You may wonder why we wrote w
(l)
j,k and not w

(l)
k,j to refer to the weight coefficient

that connects the kth unit in layer l to the jth unit in layer l + 1. What may
seem a little bit quirky at first will make much more sense in later sections
when we vectorize the neural network representation. For example, we will
summarize the weights that connect the input and hidden layer by a matrix
W(1) ∈ Rh×[m+1] , where h is the number of hidden units and m + 1 is the
number of input units plus bias unit.

12.1.3 Activating a neural network via forward propaga-
tion

[...] Now, let’s walk through the individual steps of forward propagation to
generate an output from the patterns in the training data. Since each unit in
the hidden layer is connected to all units in the input layers, we first calculate

the activation a
(2)
1 as follows:

z
(2)
1 = a

(1)
0 w

(1)
1,0 + a

(1)
1 w

(1)
1,1 + · · ·+ a(1)m w

(1)
l,m

a
(2)
1 = φ

(
z
(2)
1

)
Here, z

(2)
1 is the net input and φ(·) is the activation function, which has to be dif-

ferentiable to learn the weights that connect the neurons using a gradient-based
approach. To be able to solve complex problems such as image classification, we
need nonlinear activation functions in our MLP model, for example, the sigmoid
(logistic) function that we discussed in previous chapters:

φ(z) =
1

1 + e−z
.

For purposes of computational efficiency and code readability, we will now write
the activation in a more compact form using the concepts of basic linear algebra,
which will allow us to vectorize our code implementation:

z(2) = W(1)a(1)

a(2) = φ
(
z(2)

)
Note: Everywhere you read h in the following paragraphs of this section, you can
think of h as h+ 1 to include the bias unit (and in order to get the dimensions
right).
Here, a(1) is our [m+ 1]× 1 dimensional feature vector a sample x(i) plus bias
unit. W(i) is an h× [m+ 1]-dimensional weight matrix where h is the number
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of hidden units in our neural network. After matrix-vector multiplication, we
obtain the h × 1-dimensional net input vector z(2) to calculate the activation
a(2) (where a(2) ∈ Rh×1). Furthermore, we can generalize this computation to
all n samples in the training set:

Z(2) = W(1)
[
A(1)

]T
Here, A(1) is now an n× [m+ 1] matrix, and the matrix-matrix multiplication
will result in an h× n-dimensional net input matrix Z(2). Finally, we apply the
activation function φ(·) to each value in the net input matrix to get the h × n
activation matrix A(2) for the next layer (here, output layer):

A(2) = φ
(
Z(2)

)
Similarly, we can rewrite the activation of the output layer in the vectorized
form:

Z(3)W(2)A(2)

Here, we multiply the t × h matrix W(2) (t is the number of output units) by
the h× n dimensional matrix A(2) to obtain the t× n dimensional matrix Z(3)

(the columns in this matrix represent the outputs for each sample). Lastly, we
apply the sigmoid activation function to obtain the continuous valued output of
our network:

A(3) = φ
(
Z(3)

)
, A(3) ∈ Rt×n.

12.2 Classifying handwritten digits

12.2.1 Obtaining the MNIST dataset

12.2.2 Implementing a multi-layer perceptron

As you may have noticed, by going over our preceding MLP implementation,
we also implemented some additional features, which are summarized here:

• l2 : the λ parameter for L2 regularization to decrease the degree of over-
fitting; equivalently, l1 is the λ parameter for L1 regularization.

• epochs: The number of passes over the training set.

• eta: The learning rate η

• alpha: A parameter for momentum learning to add a factor of the previous
gradient to the weight update for faster learning

∆wt = η∇J(wt) + α∆wt − 1,

where t is the current time step or epoch.
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• decrease const : The decrease constant d for an adaptive learning rate η
that decreases over time for better convergence η/1 + t× d.

• shuffle: Shuffling the training set prior to every epoch to prevent the
algorithm from getting stuck in cycles.

• Minibatches: Splitting of the training data into k mini-batches in each
epoch. The gradient is computed for each mini-batch separately instead
of the entire training data for faster learning.

12.3 Training an artificial neural network

12.3.1 Computing the logistic cost function

The logistic cost function that we implemented as the get cost method is actu-
ally pretty simple to follow since it is the same cost function that we described
in the logistic regression section in Chapter 3, A Tour of Machine Learning
Classifiers Using Scikit-learn.

J(w) = −
n∑
i=1

y(i) log
(
a(i)
)

+
(
1− y(i)

)
log
(
1− a(i)

)
Here, a(i) is the sigmoid activation of the ith unit in one of the layers which we
compute in the forward propagation step:

a(i) = φ
(
z(i)
)
.

Now, let’s add a regularization term, which allows us to reduce the degree of
over tting. As you will recall from earlier chapters, the L2 and L1 regularization
terms are defined as follows (remember that we don’t regularize the bias units):

L2 = λ‖w‖22 = λ

m∑
j=1

w2
j and L1 = λ‖w‖1 = λ

m∑
j=1

|wj |.

[...] By adding the L2 regularization term to our logistic cost function, we obtain
the following equation:

J(w) = −

[
n∑
i=1

y(i) log
(
a(i)
)

+
(
1− y(i)

)
log
(
1− a(i)

)]
+
λ

2
‖w‖22

Since we implemented an MLP for multi-class classification, this returns an out-
put vector of t elements, which we need to compare with the t× 1 dimensional
target vector in the one-hot encoding representation. For example, the activa-
tion of the third layer and the target class (here: class 2) for a particular sample
may look like this:
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a(3) =


0.1
0.9
...

0.3

 , y =


0
1
...
0


Thus, we need to generalize the logistic cost function to all activation units j in
our network. So our cost function (without the regularization term) becomes:

J(w) = −
n∑
i=1

t∑
j=1

= y
(i)
j log

(
1− a(1)j

)
Here, the superscript i is the index of a particular sample in our training set.
The following generalized regularization term may look a little bit complicated
at first, but here we are just calculating the sum of all weights of a layer l
(without the bias term) that we added to the first column:

J(w) = −

[
n∑
i=1

m∑
j=1

y
(i)
j log

(
φ
(
z
(i)
j

))
+
(

1−y(i)j
)

log

(
1−φ

(
z
(i)
j

))]
+
λ

2

L−1∑
l=1

ul∑
i=1

ul+1∑
j=1

(
w

(l)
j,i

)2
The following expression represents the L2-penalty term:

λ

2

L−1∑
l=1

ul∑
i=1

ul+1∑
j=1

(
w

(l)
j,i

)2
Remember that our goal is to minimize the cost function J(w). Thus, we need
to calculate the partial derivative of matrix W with respect to each weight for
every layer in the network:

∂

∂wlj,i
J(W).

12.3.2 Training neural networks via backpropagation

[...] As we recall from the beginning of this chapter, we first need to apply
forward propagation in order to obtain the activation of the output layer, which
we formulated as follows:

Z(2) = W(1)
[
A(1)

]T
(net input of the hidden layer)

A(2) = φ
(
Z(2) =

)
(activation of the hidden layer)

Z(3) = W(2)A(2) (net input of the output layer)
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A(3) = φ
(
Z(3)

)
(activation of the output layer)

[...] In backpropagation, we propagate the error from right to left. We start by
calculating the error vector of the output layer:

δ(3) = a(3) − y

Here, y is the vector of the true class labels. Next, we calculate the error term
of the hidden layer:

δ(2) =
(
W(2)

)T
δ(3) ·

∂φ
(
z(2)
)

∂z(2)
.

Here,
∂φ
(
z(2)
)

∂z(2)
is simply the derivative of the sigmoid activation function, which

we implemented as sigmoid gradient :

∂φ
(
z(2)
)

∂z(2)
=
(
a(2) ·

(
1− a(2)

))
.

Note that the asterisk symbol (·) means element-wise multiplication in this
context.
Although, it is not important to follow the next equations, you may be curious
as to how I obtained the derivative of the activation function. I summarized the
derivation step by step here:

φ′(z) =
∂

∂z

( 1

1 + e−z

)
=

e−z

(1 + e−z)2

=
1 + e−z(
1 + e−z

)2 − ( 1

1 + e−z

)2
=

1(
1 + e−z

)2 − ( 1

1 + e−z

)2
= φ(z)−

(
φ(z)

)2
= φ(z)−

(
1− φ(z)

)
= a(1− a)

To better understand how we compute the δP (3) term, let’s walk through it in
more detail. In the preceding equation, we multiplied the transpose (W(2))T of
the t × h dimensional matrix W(2); t is the number of output class labels and
h is the number of hidden units. Now, (W(2))T becomes an h × t dimensional
matrix with δ(3), which is a t × 1 dimensional vector. We then performed a

pair-wise multiplication between (W(2))T δ(3) and
(
a(2) ·

(
1 − a(2)

))
, which is

65



Sebastian Raschka Python Machine Learning – Equation Reference – Ch. 12

also a t× 1 dimensional vector. Eventually, after obtaining the ? terms, we can
now write the derivation of the cost function as follows:

∂

∂wli,j
J(W) = aljδ

(l+1)
i

Next, we need to accumulate the partial derivative of every jth node in layer l
and the ith error of the node in layer l + 1:

∆
(l)
i,j := ∆

(l)
i,j + a

(l)
j δ

(l+1)
i

Remember that we need to compute ∆
(l)
i,j for every sample in the training set.

Thus, it is easier to implement it as a vectorized version like in our preceding
MLP code implementation:

∆(l) := ∆(l)δ(l+1)
(
A(l)

)T
After we have accumulated the partial derivatives, we can add the regularization
term as follows:

∆(l) := ∆(l) + λ(l) (except for the bias term)

Lastly, after we have computed the gradients, we can now update the weights
by taking an opposite step towards the gradient:

W(l) := W(l) − η∆(l)

12.4 Developing your intuition for backpropa-
gation

12.5 Debugging neural networks with gradient
checking

In the previous sections, we defined a cost function J(W) where W is the
matrix of the weight coefficients of an artificial network. Note that J(W) is
– roughly speaking – a ”stacked” matrix consisting of the matrices W(1) and
W (2) in a multi-layer perceptron with one hidden unit. We defined W(1) as
the h× [m+ 1]-dimensional matrix that connects the input layer to the hidden
layer, where h is the number of hidden units and m is the number of features
(input units). The matrix W(2) that connects the hidden layer to the output
layer has the dimensions t× h, where t is the number of output units. We then
calculated the derivative of the cost function for a weight wli,j as follows:

∂

∂w
(i)
i,j
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Remember that we are updating the weights by taking an opposite step towards
the direction of the gradient. In gradient checking, we compare this analytical
solution to a numerically approximated gradient:

∂

∂w
(l)
i,j

J(W) ≈
J
(
w

(l)
i,j + ε

)
− J

(
w

(l)
i,j

)
ε

Here, ε is typically a very small number, for example 1e-5 (note that 1e-5 is just
a more convenient notation for 0.00001). Intuitively, we can think of this finite
difference approximation as the slope of the secant line connecting the points of
the cost function for the two weights w and w + ε (both are scalar values), as
shown in the following figure. We are omitting the superscripts and subscripts
for simplicity.
[...] An even better approach that yields a more accurate approximation of the
gradient is to compute the symmetric (or centered) difference quotient given by
the two-point formula:

J
(
w

(l)
i,j + ε

)
− J

(
w

(l)
i,j − ε

)
2ε

Typically, the approximated difference between the numerical gradient J ′n and
analytical gradient J ′a is then calculated as the L2 vector norm. For practical
a reasons, we unroll the computed gradient matrices into at vectors so that
we can calculate the error (the difference between the gradient vectors) more
conveniently:

error = ‖J ′n − J ′a‖2
One problem is that the error is not scale invariant (small errors are more
significant if the weight vector norms are small, too). Thus, it is recommended
to calculate a normalized difference:

relative error =
‖J ′n − J ′a‖2
‖J ′n‖2 + ‖J ′a‖2
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12.6 Convergence in neural networks

12.7 Other neural network architectures

12.7.1 Convolutional Neural Networks

12.7.2 Recurrent Neural Networks

12.8 A few last words about neural network im-
plementation

12.9 Summary
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Chapter 13

Parallelizing Neural
Network Training with
Theano

13.1 Building, compiling, and running expres-
sions with Theano

13.1.1 What is Theano?

13.1.2 First steps with Theano

13.1.3 Configuring Theano

13.1.4 Working with array structures

13.1.5 Wrapping things up – a linear regression example

13.2 Choosing activation functions for feedfor-
ward neural networks

13.2.1 Logistic function recap

We recall from the section on logistic regression in Chapter 3, A Tour of Machine
Learning Classifiers Using Scikit-learn that we can use the logistic function to
model the probability that sample x belongs to the positive class (class 1) in a
binary classification task:

φlogistic(z) =
1

1 + e−z

Here, the scalar variable z is defined as the net input:
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z = w0x0 + · · ·+ wmxm =

m∑
j=0

xjwj = wTx

Note that w0 is the bias unit (y-axis intercept, x0 = 1).

13.2.2 Estimating probabilities in multi-class classification
via the softmax function

The softmax function is a generalization of the logistic function that allows us
to compute meaningful class-probabilities in multi-class settings (multinomial
logistic regression). In softmax, the probability of a particular sample with net
input z belongs to the i th class can be computed with a normalization term in
the denominator that is the sum of all M linear functions:
P (y = i|z) = φsoftmax(z) =

ezi∑M
m=1 e

z
m

.

13.2.3 Broadening the output spectrum by using a hyper-
bolic tangent

Another sigmoid function that is often used in the hidden layers of artificial
neural networks is the hyperbolic tangent (tanh), which can be interpreted as a
rescaled version of the logistic function.

φtanh(z) = 2× φlogistic(2× z)− 1 =
ez − e−z

ez + e−z

φlogistic(z) =
1

1 + e−z

13.3 Training neural networks efficiently using
Keras

13.4 Summary
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