
Z3S5 Lisp Reference Manual

by Erich Rast and all Help system contributors

2024-1-2 15:04

Z3S5 Lisp Reference Manual 2024-1-2 15:04

For Z3S5 Lisp Version 2.4+891b3dc-gui.fyne2 with installed modules (gui fyne2 oop lib kvdb zimage
tasks help beep unicode db fileio decimal ling float console base).

1 Introduction

This is the reference manual for Z3S5 Lisp. This manual has been automatically generated from the
entries of the online help system. The reference manual is divided into two large sections. Section By
Topics lists functions and symbols organized by topics. Within each topic, entries are sorted alphabeti-
cally. Section Complete Reference lists all functions and symbols alphabetically. Please consult the
User Manual and the Readme document for more general information about Z3S5 Lisp, an introduction
to its use, and how to embedd it into Go programs.

Incorrect documentation strings are bugs. Please report bugs using the corresponding Github issue
tracker for Z3S5 Lisp and be as precise as possible. Superfluous and missing documentation entries
are misfeatures and may also be reported.

2 Index

% * *colors* *error-handler* *error-printer* *help* *hooks* *last-error* *reflect
* + - / /= 10th 1st 2nd 3rd 4th 5th 6th 7th 8th 9th < <= = > >= abs action action-start
action-stop activate-menu-last-submenu activate-menu-next activate-menu-
previous add-canvas-shortcut add-hook add-hook-internal add-hook-once add1
alist->dict alist? and append append-form apply apropos array array+ array->list
array->str array-append array-copy array-exists? array-forall? array-foreach
array-len array-map! array-pmap! array-ref array-reverse array-set array-slice
array-sort array-walk array? ascii85->blob assoc assoc1 assq atom? base64->blob
beep bind bitand bitclear bitor bitshl bitshr bitxor blob->ascii85 blob->base64
blob->hex blob->str blob-chksum blob-equal? blob-free blob? bool? bound? boxed?
build-array build-list caaar caadr caar cadar caddr cadr call-method call-super
can-externalize? car case ccmp cdaar cdadr cdar cddar cdddr cddr cdec! cdr center
-window-on-screen change-action-prefix change-all-action-prefixes char->str
chars chars->str cinc! class-name class-of class? close close-gui close-window
closure? collect-garbage color color->color64 color64->color cons cons? copy
-record count-partitions count-text-grid-row-columns count-text-grid-rows
cpunum create-lorem-ipsum cst! current-error-handler current-zimage cwait
darken date->epoch-ns datelist->epoch-ns datestr datestr* datestr->datelist

Version 2.4+891b3dc-gui.fyne2 2

https://github.com/rasteric/z3s5-lisp/issues
https://github.com/rasteric/z3s5-lisp/issues

Z3S5 Lisp Reference Manual 2024-1-2 15:04

day+ day-of-week db.blob db.close db.close-result db.exec db.float db.int db.
open db.open* db.query db.result-column-count db.result-columns db.row db.step
db.str deactivate-menu-child deactivate-menu-last-submenu declare-volatile
def-custom-hook default-error-handler defclass defmacro defmethod defstruct
defun delete dequeue! dict dict->alist dict->array dict->keys dict->list dict->
values dict-copy dict-empty? dict-foreach dict-map dict-map! dict-merge dict-
protect dict-protected? dict-unprotect dict? dir dir? disable-object div dolist
dotimes dump dump-bindings enable-object enq enqueue! entry-accepts-tab? epoch
-ns->datelist eq? eql? equal? error error->str error? eval even? exists? exit
expand-macros expect expect-err expect-false expect-ok expect-true expr->str
externalize externalize0 fdelete feature? file-port? filter find-missing-help
-entries find-unneeded-help-entries fl.abs fl.acos fl.asin fl.asinh fl.atan
fl.atan2 fl.atanh fl.cbrt fl.ceil fl.cos fl.cosh fl.dim fl.erf fl.erfc fl.erfcinv
fl.erfinv fl.exp fl.exp2 fl.expm1 fl.floor fl.fma fl.frexp fl.gamma fl.hypot
fl.ilogb fl.inf fl.is-nan? fl.j0 fl.j1 fl.jn fl.ldexp fl.lgamma fl.log fl.log10
fl.log1p fl.log2 fl.logb fl.max fl.min fl.mod fl.modf fl.nan fl.next-after fl.pow
fl.pow10fl.remainderfl.roundfl.round-to-evenfl.signbitfl.sinfl.sinhfl.sqrt
fl.tan fl.tanh fl.trunc fl.y0 fl.y1 fl.yn flatten float fmt focus-canvas-object
focus-next-canvas-object focus-previous-canvas-object forall? force foreach
forget forget-gui-object functional-arity functional-has-rest? functional?
gensym get get-action get-clipboard-content get-device-info get-entry-cursor
get-entry-cursor-pos get-focused-canvas-object get-label-text get-menu-item
-label get-object-min-size get-object-position get-object-size get-or-set
get-partitions get-progress-bar-value get-scroll-offset get-text-grid-cell
get-text-grid-cell-sizeget-text-grid-rowget-text-grid-row-textget-text-grid
-rune get-text-grid-tab-width get-text-grid-text get-window-canvas get-window-
content get-window-icon get-window-main-menu get-window-title getstacked glance
global-startup-time global-sym? has has-action-system? has-action? has-key?
has-method? has-prop? help help->manual-entry help-about help-entry help-strings
help-topic-infohelp-topicshex->blobhide-objecthide-windowhookhour+identity
if inchars include index init-actions init-remember insert-text-grid-row instr
int intern internalize intrinsic intrinsic? isa? iterate kvdb.begin kvdb.close
kvdb.commit kvdb.db? kvdb.forget kvdb.forget-everything kvdb.get kvdb.info
kvdb.open kvdb.rollback kvdb.search kvdb.set kvdb.when last lcons len let letrec
lighten ling.damerau-levenshtein ling.hamming ling.jaro ling.jaro-winkler ling
.levenshtein ling.match-rating-codex ling.match-rating-compare ling.metaphone
ling.nysiis ling.porter ling.soundex list list->array list->set list->str list
-exists? list-forall? list-foreach list-last list-ref list-reverse list-slice

Version 2.4+891b3dc-gui.fyne2 3

Z3S5 Lisp Reference Manual 2024-1-2 15:04

list? load load-zimage macro? make make* make-blob make-mutex make-queue make
-set make-stack make-symbol map map-pairwise mapcar max member memq memstats
menu-item-checked? menu-item-disabled? methods min minmax minute+ mod month+ move
-object mutex-lock mutex-rlock mutex-runlock mutex-unlock nconc new new-app-tabs
new-border new-button new-button-with-icon new-center-layout new-check new-
choice new-circle new-combined-string-validator new-container new-container-
without-layout new-doc-tabs new-entry new-form new-form-layout new-grid-layout
new-grid-wrap-layout new-hbox-layout new-hscroll new-hsplit new-hyperlink
new-icon new-image-from-file new-image-from-resource new-label new-line new

-list new-main-menu new-menu new-menu* new-menu-item new-menu-item-separator
new-progress-bar new-raster-with-pixels new-rectangle new-regexp-validator
new-scroll new-slider new-spacer new-stack-layout new-struct new-tabitem new-
tabitem-with-icon new-table new-text new-text-grid new-time-validator new-tree
new-validator new-vbox-layout new-vscroll new-vsplit new-window nl nonce not now
now-ms now-ns nreverse nrgba nrgba64 nth nth-partition nthdef null? num? object-
disabled? object? odd? on-feature open or out outy peek permission? permissions
poke pop! pop-error-handler pop-finalizer popstacked prin1 princ print proc?
prop props protect protect-toplevel-symbols protected? prune-task-table prune
-unneeded-help-entries push! push-error-handler push-finalizer pushstacked
queue-empty? queue-len queue? rand random-color read read-binary read-string
read-zimage readall readall-str recall recall-info recall-when recollect record
? refresh-main-menu refresh-menu* refresh-object register-action remember
remove-canvas-shortcut remove-duplicates remove-hook remove-hook-internal
remove-hooks remove-text-grid-row rename-action replace-hook reset-color resize
-object reverse rnd rndseed rplaca run-at run-hook run-hook-internal run-selftest
run-zimage save-zimage sec+ semver.build semver.canonical semver.compare semver.
is-valid? semver.major semver.major-minor semver.max semver.prerelease seq? set
set* set->list set-canvas-on-typed-key set-canvas-on-typed-rune set-clipboard
-content set-color set-complement set-difference set-element? set-empty? set-
entry-cursor-columnset-entry-cursor-rowset-entry-min-rows-visibleset-entry-
on-change-callback set-entry-on-cursor-change-callback set-entry-place-holder
set-entry-text set-entry-text-wrap set-entry-validator set-equal? set-help-
topic-info set-intersection set-label-text set-menu-item-checked set-menu-
item-disabled set-menu-item-label set-object-on-validation-change-callback
set-permissions set-progress-bar set-scroll-offset set-slider-value set-split
-offset set-subset? set-text-alignment set-text-grid-cell set-text-grid-row
set-text-grid-row-style set-text-grid-rune set-text-grid-show-line-numbers
set-text-grid-show-whitespace set-text-grid-style set-text-grid-style-range

Version 2.4+891b3dc-gui.fyne2 4

Z3S5 Lisp Reference Manual 2024-1-2 15:04

set-text-grid-tab-width set-text-grid-text set-text-size set-text-style set
-union set-volume set-window-content set-window-full-screen set-window-icon
set-window-main-menu set-window-on-close-callback set-window-padded set-
window-size set-window-title set? setcar setcdr setprop shorten show-object sleep
sleep-ns slice sort sort-symbols spaces stack-empty? stack-len stack? str+ str
->array str->blob str->char str->chars str->expr str->expr* str->list str->sym
str-count-substr str-empty? str-exists? str-forall? str-foreach str-index str
-join str-port? str-ref str-remove-number str-remove-prefix str-remove-suffix
str-replace str-replace* str-reverse str-segment str-slice str? strbuild strcase
strcenter strcnt strleft strlen strless strlimit strmap stropen strright strsplit
struct-index struct-instantiate struct-name struct-props struct-size struct?
sub1 supers sym->str sym? synout synouty sys-key? sysmsg sysmsg* take task task
-broadcast task-recv task-remove task-run task-schedule task-send task-state
task? terpri testing text-grid-show-line-numbers? text-grid-show-whitespace?
the-color the-color-names theme-color theme-icon theme-is-dark? time trigger
-menu-last truncate try type-of type-of* unfocus-canvas-objects unicode.is-
control? unicode.is-digit? unicode.is-graphic? unicode.is-letter? unicode.is-
lower? unicode.is-mark? unicode.is-number? unicode.is-print? unicode.is-punct?
unicode.is-space? unicode.is-symbol? unicode.is-title? unicode.is-upper?
unless unprotect unprotect-toplevel-symbols valid? validate-object void void?
wait-forwait-for*wait-for-empty*wait-untilwait-until*warnweek+week-of-date
when when-permission while window-fixed-size? window-full-screen? window-padded
? with-colors with-error-handler with-final with-mutex-lock with-mutex-rlock
wrap-delete-text-grid wrap-insert-text-grid write write-binary write-binary-at
write-string write-zimage year+ zimage-header zimage-loadable? zimage-runable?

3 By Topics

3.1 Actions

This section concerns the action class and related functions. Actions can be used as an asynchronous
interface to the host system, provided the functions action.start, action.progress, action.result, and
action.get-args are defined. These functions serve as callbacks into the Go part and need to be im-
plemented on the Go side by the user of the action system. The host system must find the action
initialization code and execute it; this code should call register-action to register any actions
provided, and then the host system may call get-action and action-start to execute the action

Version 2.4+891b3dc-gui.fyne2 5

Z3S5 Lisp Reference Manual 2024-1-2 15:04

within Lisp. Procedure action-start takes an action and a taskid and performs the action. To make
action-stop work, you have listen to the ’stop message using task-recv and shutdown the action
appropriately. While the action runs, periodically call action.progress. Call action.result once
the action ends or if an error occurs that does not allow the action to complete. Use action.get-
args to obtain the arguments of the action, which must be an array of valid Z3S5 Lisp objects. The
host system might e.g. prompt the user for values, or these may depend on selected objects in a GUI
interface. The host interfacing functions generally receive the action, and its name as second and
the ID symbol as third argument in addition to other arguments. The second and third argument are
provided for convenience, since processing a #name string and an #id symbol is much easier for a
dispatch function in Go than the #action itself, which is an object instance and internally represented
as a complex array.

3.1.1 action : class

Usage: (new action <info-clause> <name-clause> <proc-clause> ...)=> action

The action class describes instances of actions that serve as plugins for the system hosting Z3S5 Lisp.
Each action has a name, prefix and info string property and a unique id. Property args is an
array that specifies the type of arguments of the action. This may be used by an implementation of
action.get-args. The proc property must be a function taking the action and a task-id as argument
and processing the action sequentially until it is completed or task-recv returns the ’stop signal. An
action may store the result of computation in the result property, an error in the error property,
and an arbitrary state in the state property. After processing or if an error occurs, action.result should
be called so the host can process the result or error. The action system requires the implementation of
procedures action.start, action.progress, action.get-args, and action.result. These are usually defined
in the host system, for example in the Go implementation of an application using Z3S5 Lisp actions,
and serve as callback functions from Lisp to Go.

See also: action, action-stop, action.start, action.progress, action.get-args, action
.result. →index

3.1.2 action-start : method

Usage: (action-start action)

Start action, which runs the action’s proc in a task with the action and a task-id as argument. The
proc of theaction should periodically check for the ’stop signal usingtask-recv if the action should
be cancellable, should call action.progress to report progress, action.error in case of an error, and
action.result to report the result.

Version 2.4+891b3dc-gui.fyne2 6

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: action, action-stop, action-start, action.progress, action.get-args, action
.result. →index

3.1.3 action-stop : method

Usage: (action-stop action)

The stop method sends a ’stop signal to the action’s running proc. It is up to the proc to check for the
signal using task-recv and terminate the action gracefully.

See also: action, action-stop, action-start, action.progress, action.get-args, action
.result. →index

3.1.4 action.get-args : procedure/3

Usage: (action.get-args prefix name id arg-spec)=> array

Used to request an array of arguments for an action with prefix, name and id from the host system,
according to the specification given in arg-spec, which is usually the same as argspec.

See also: action, action-stop, action.start, action.progress, action.get-args, action
.result. →index

3.1.5 action.progress : procedure/5

Usage: (action.progress prefix name id taskid perc msg)

Used to notify the host system from within a running proc that the action with prefix, name, id, and
taskid is making progress to perc (a float between 0 and 1) with a message msg. Leave the message
string empty if it is not needed. Implemented in the host system in Go, this function may, for instance,
display a progress bar to inform an end-user.

See also: action, action-stop, action-start, action.start, action.progress, action.
get-args, action.result. →index

3.1.6 action.result : procedure/5

Usage: (action.result prefix name id taskid result error?)

Used to notify the host system of the result of an action with prefix, name, id, and taskid. The
resultmay be of any type, buterror? needs to be a bool that indicates whether an error has occured.
If error? is not nil, then the host implementation should interpret result as an error message.

Version 2.4+891b3dc-gui.fyne2 7

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: action, action-stop, action.start, action.progress, action.get-args, action
.result. →index

3.1.7 action.start : procedure/3

Usage: (action.start prefix name id taskid)

Used to notify the host system that the action with prefix, name, id, and taskid has been started.

See also: action, action-stop, action-start, action.start, action.progress, action.
get-args, action.result. →index

3.1.8 change-action-prefix : procedure/2

Usage: (change-action-prefix id new-prefix)=> bool

Change the prefix of a registered action with given id, or change the prefix of action given by id, to
new-prefix. If the operation succeeds, it returns true, otherwise it returns nil.

See also: change-all-action-prefixes, rename-action, get-action, action?, action.
→index

3.1.9 change-all-action-prefixes : procedure/2

Usage: (change-all-action-prefixes old-prefix new-prefix)

Change the prefixes of all registered actions with old-prefix to new-prefix.

See also: change-action-prefix, rename-action, get-action, register-action, action?,
action. →index

3.1.10 get-action : procedure/1

Usage: (get-action id)=> action

Return a cloned action based on id from the action registry. This action can be run using action-
start and will get its own taskid.

See also: action, has-action-system?, action-start, action-stop, register-action.
→index

Version 2.4+891b3dc-gui.fyne2 8

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.1.11 has-action-system? : procedure/0

Usage: (has-action-system?)=> bool

This predicate is true if the action system is available, false otherwise.

See also: action, init-actions, action-start, action-stop, registered-actions,
register-action. →index

3.1.12 has-action? : procedure/1

Usage: (has-action? prefix name)=> bool

Return true if an action with the givenprefix andname is registered, nil otherwise. Actions are indexed
by id, so this is much slower than using get-action to retrieve a registered action by the value of the
’id property.

See also: get-action, action, has-action-system?, register-action. →index

3.1.13 init-actions : procedure/0

Usage: (init-actions)

Initialize the action system, signals an error if the action system is not available.

See also: action, has-action-system?, action-start, action-stop. →index

3.1.14 register-action : procedure/1

Usage: (register-action action)

Register the action which makes it available for processing by the host system. Use get-action to
obtain an action clone that can be started.

See also: action, has-action-system?, action-start, action-stop. →index

3.1.15 rename-action : procedure/2

Usage: (rename-action id new-name)=> bool

Rename a registered action with given id, or rename the action given as id, to new-name. If the
operation succeeds, it returns true, otherwise it returns nil.

Version 2.4+891b3dc-gui.fyne2 9

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: change-action-prefix, change-all-action-prefixes, get-action, has-action
?, action. →index

3.2 Arrays

This section concerns functions related to arrays, which are dynamic indexed sequences of values.

3.2.1 array : procedure/0 or more

Usage: (array [arg1] ...)=> array

Create an array containing the arguments given to it.

See also: array?, build-array, array+. →index

3.2.2 array+ : procedure/1 or more

Usage: (array+ array1 ...)=> array

Create a new array that results from concatenating the given arrays in order. This function does not
mutate array1.

See also: array-ref, array-len, build-array, array-slice, array, array-copy. →index

3.2.3 array-append : procedure/2

Usage: (array-append arr elem)=> array

Append elem to the array arr. This function is destructive and mutates the array. Use array-copy if
you need a copy.

See also: array-ref, array-len, build-array, array-slice, array, array-copy, array+.
→index

3.2.4 array-copy : procedure/1

Usage: (array-copy arr)=> array

Return a copy of arr.

See also: array, array?, array-map!, array-pmap!. →index

Version 2.4+891b3dc-gui.fyne2 10

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.2.5 array-exists? : procedure/2

Usage: (array-exists? arr pred)=> bool

Return true if pred returns true for at least one element in array arr, nil otherwise.

See also: exists?, forall?, list-exists?, str-exists?, seq?. →index

3.2.6 array-forall? : procedure/2

Usage: (array-forall? arr pred)=> bool

Return true if predicate pred returns true for all elements of array arr, nil otherwise.

See also: foreach, map, forall?, str-forall?, list-forall?, exists?. →index

3.2.7 array-foreach : procedure/2

Usage: (array-foreach arr proc)

Apply proc to each element of array arr in order, for the side effects.

See also: foreach, list-foreach, map. →index

3.2.8 array-len : procedure/1

Usage: (array-len arr)=> int

Return the length of array arr.

See also: len. →index

3.2.9 array-map! : procedure/2

Usage: (array-map! arr proc)

Traverse array arr in unspecified order and apply proc to each element. This mutates the array.

See also: array-walk, array-pmap!, array?, map, seq?. →index

Version 2.4+891b3dc-gui.fyne2 11

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.2.10 array-pmap! : procedure/2

Usage: (array-pmap! arr proc)

Applyproc in unspecified order in parallel to arrayarr, mutating the array to contain the value returned
by proc each time. Because of the calling overhead for parallel execution, for many workloads array-
map! might be faster if proc is very fast. If proc is slow, then array-pmap! may be much faster for large
arrays on machines with many cores.

See also: array-map!, array-walk, array?, map, seq?. →index

3.2.11 array-ref : procedure/1

Usage: (array-ref arr n)=> any

Return the element of arr at index n. Arrays are 0-indexed.

See also: array?, array, nth, seq?. →index

3.2.12 array-reverse : procedure/1

Usage: (array-reverse arr)=> array

Create a copy of arr that reverses the order of all of its elements.

See also: reverse, list-reverse, str-reverse. →index

3.2.13 array-set : procedure/3

Usage: (array-set arr idx value)

Set the value at index idx in arr to value. Arrays are 0-indexed. This mutates the array.

See also: array?, array. →index

3.2.14 array-slice : procedure/3

Usage: (array-slice arr low high)=> array

Slice the array arr starting from low (inclusive) and ending at high (exclusive) and return the slice.
This function is destrcutive and mutates the slice. Use array-copy if you need a copy.

See also: array-ref, array-len, array-append, build-array, array, array-copy, array+.
→index

Version 2.4+891b3dc-gui.fyne2 12

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.2.15 array-sort : procedure/2

Usage: (array-sort arr proc)=> arr

Destructively sorts array arr by using comparison proc proc, which takes two arguments and returns
true if the first argument is smaller than the second argument, nil otherwise. The array is returned but
it is not copied and modified in place by this procedure. The sorting algorithm is not guaranteed to be
stable.

See also: sort. →index

3.2.16 array-walk : procedure/2

Usage: (array-walk arr proc)

Traverse the array arr from first to last element and apply proc to each element for side-effects.
Function proc takes the index and the array element at that index as argument. If proc returns nil,
then the traversal stops and the index is returned. If proc returns non-nil, traversal continues. If proc
never returns nil, then the index returned is -1. This function does not mutate the array.

See also: array-map!, array-pmap!, array?, map, seq?. →index

3.2.17 array? : procedure/1

Usage: (array? obj)=> bool

Return true of obj is an array, nil otherwise.

See also: seq?, array. →index

3.2.18 build-array : procedure/2

Usage: (build-array n init)=> array

Create an array containing n elements with initial value init.

See also: array, array?, array-slice, array-append, array-copy, array+. →index

3.3 Binary Manipulation

This section lists functions for manipulating binary data in memory and on disk.

Version 2.4+891b3dc-gui.fyne2 13

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.3.1 bitand : procedure/2

Usage: (bitand n m)=> int

Return the bitwise and of integers n and m.

See also: bitxor, bitor, bitclear, bitshl, bitshr. →index

3.3.2 bitclear : procedure/2

Usage: (bitclear n m)=> int

Return the bitwise and-not of integers n and m.

See also: bitxor, bitand, bitor, bitshl, bitshr. →index

3.3.3 bitor : procedure/2

Usage: (bitor n m)=> int

Return the bitwise or of integers n and m.

See also: bitxor, bitand, bitclear, bitshl, bitshr. →index

3.3.4 bitshl : procedure/2

Usage: (bitshl n m)=> int

Return the bitwise left shift of n by m.

See also: bitxor, bitor, bitand, bitclear, bitshr. →index

3.3.5 bitshr : procedure/2

Usage: (bitshr n m)=> int

Return the bitwise right shift of n by m.

See also: bitxor, bitor, bitand, bitclear, bitshl. →index

Version 2.4+891b3dc-gui.fyne2 14

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.3.6 bitxor : procedure/2

Usage: (bitxor n m)=> int

Return the bitwise exclusive or value of integers n and m.

See also: bitand, bitor, bitclear, bitshl, bitshr. →index

3.3.7 blob-chksum : procedure/1 or more

Usage: (blob-chksum b [start] [end])=> blob

Return the checksum of the contents of blobbas new blob. The checksum is cryptographically secure. If
the optional start and end are provided, then only the bytes from start (inclusive) to end (exclusive)
are checksummed.

See also: fchksum, blob-free. →index

3.3.8 blob-equal? : procedure/2

Usage: (blob-equal? b1 b2)=> bool

Return true if b1 and b2 are equal, nil otherwise. Two blobs are equal if they are either both invalid,
both contain no valid data, or their contents contain exactly the same binary data.

See also: str->blob, blob->str, blob-free. →index

3.3.9 blob-free : procedure/1

Usage: (blob-free b)

Frees the binary data stored in blob b and makes the blob invalid.

See also: make-blob, valid?, str->blob, blob->str, blob-equal?. →index

3.3.10 blob? : procedure/1

Usage: (blob? obj)=> bool

Return true if obj is a binary blob, nil otherwise.

See also: blob->ascii85, blob->base64, blob->hex, blob->str, blob-free, blob-chksum,
blob-equal?, valid?. →index

Version 2.4+891b3dc-gui.fyne2 15

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.3.11 make-blob : procedure/1

Usage: (make-blob n)=> blob

Make a binary blob of size n initialized to zeroes.

See also: blob-free, valid?, blob-equal?. →index

3.3.12 peek : procedure/4

Usage: (peek b pos end sel)=> num

Read a numeric value determined by selector sel from binary blob b at position pos with endianness
end. Possible values for endianness are ‘little and ’big, and possible values forselmust be one of’(bool
int8 uint8 int16 uint16 int32 uint32 int64 uint64 float32 float64).

See also: poke, read-binary. →index

3.3.13 poke : procedure/5

Usage: (poke b pos end sel n)

Write numeric value n as type selwith endianness end into the binary blob b at position pos. Possible
values for endianness are ‘little and ’big, and possible values for sel must be one of’(bool int8 uint8
int16 uint16 int32 uint32 int64 uint64 float32 float64).

See also: peek, write-binary. →index

3.4 Boxed Data Structures

Boxed values are used for dealing with foreign data structures in Lisp.

3.4.1 valid? : procedure/1

Usage: (valid? obj)=> bool

Return true if obj is a valid object, nil otherwise. What exactly object validity means is undefined,
but certain kind of objects such as graphics objects may be marked invalid when they can no longer
be used because they have been disposed off by a subsystem and cannot be automatically garbage
collected. Generally, invalid objects ought no longer be used and need to be discarded.

See also: blob?. →index

Version 2.4+891b3dc-gui.fyne2 16

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.5 Concurrency and Parallel Programming

There are several mechanisms for doing parallel and concurrent programming in Z3S5 Lisp. Synchro-
nization primitives are also listed in this section. Generally, users are advised to remain vigilant about
potential race conditions.

3.5.1 ccmp : macro/2

Usage: (ccmp sym value)=> int

Compare the integer value of sym with the integer value, return 0 if sym = value, -1 if sym < value,
and 1 if sym > value. This operation is synchronized between tasks and futures.

See also: cinc!, cdec!, cwait, cst!. →index

3.5.2 cdec! : macro/1

Usage: (cdec! sym)=> int

Decrease the integer value stored in top-level symbol sym by 1 and return the new value. This operation
is synchronized between tasks and futures.

See also: cinc!, cwait, ccmp, cst!. →index

3.5.3 cinc! : macro/1

Usage: (cinc! sym)=> int

Increase the integer value stored in top-level symbol sym by 1 and return the new value. This operation
is synchronized between tasks and futures.

See also: cdec!, cwait, ccmp, cst!. →index

3.5.4 cpunum : procedure/0

Usage: (cpunum)

Return the number of cpu cores of this machine.

See also: sys. →index

Warning: This function also counts virtual cores on the emulator. The original Z3S5 machine did
not have virtual cpu cores.

Version 2.4+891b3dc-gui.fyne2 17

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.5.5 cst! : procedure/2

Usage: (cst! sym value)

Set the value of sym to integer value. This operation is synchronized between tasks and futures.

See also: cinc!, cdec!, ccmp, cwait. →index

3.5.6 cwait : procedure/3

Usage: (cwait sym value timeout)

Wait until integer counter sym has value or timeout milliseconds have passed. If imeout is 0, then
this routine might wait indefinitely. This operation is synchronized between tasks and futures.

See also: cinc!, cdec!, ccmp, cst!. →index

3.5.7 enq : procedure/1

Usage: (enq proc)

Put proc on a special internal queue for sequential execution and execute it when able. proc must
be a prodedure that takes no arguments. The queue can be used to synchronizing i/o commands but
special care must be taken that proc terminates, or else the system might be damaged.

See also: task, future, synout, synouty. →index

Warning: Calls to enq can never be nested, neither explicitly or implicitly by calling enq anywhere
else in the call chain!

3.5.8 force : procedure/1

Usage: (force fut)=> any

Obtain the value of the computation encapsulated by future fut, halting the current task until it has
been obtained. If the future never ends computation, e.g. in an infinite loop, the program may halt
indefinitely.

See also: future, task, make-mutex. →index

Version 2.4+891b3dc-gui.fyne2 18

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.5.9 future : special form

Usage: (future ...)=> future

Turn the body of this form into a promise for a future value. The body is executed in parallel and the
final value can be retrieved by using (force f) on the future returned by this macro.

See also: force, task. →index

3.5.10 make-mutex : procedure/1

Usage: (make-mutex)=> mutex

Create a new mutex.

See also: mutex-lock, mutex-unlock, mutex-rlock, mutex-runlock. →index

3.5.11 mutex-lock : procedure/1

Usage: (mutex-lock m)

Lock the mutex m for writing. This may halt the current task until the mutex has been unlocked by
another task.

See also: mutex-unlock, make-mutex, mutex-rlock, mutex-runlock. →index

3.5.12 mutex-rlock : procedure/1

Usage: (mutex-rlock m)

Lock the mutex m for reading. This will allow other tasks to read from it, too, but may block if another
task is currently locking it for writing.

See also: mutex-runlock, mutex-lock, mutex-unlock, make-mutex. →index

3.5.13 mutex-runlock : procedure/1

Usage: (mutex-runlock m)

Unlock the mutex m from reading.

See also: mutex-lock, mutex-unlock, mutex-rlock, make-mutex. →index

Version 2.4+891b3dc-gui.fyne2 19

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.5.14 mutex-unlock : procedure/1

Usage: (mutex-unlock m)

Unlock the mutex m for writing. This releases ownership of the mutex and allows other tasks to lock it
for writing.

See also: mutex-lock, make-mutex, mutex-rlock, mutex-runlock. →index

3.5.15 prune-task-table : procedure/0

Usage: (prune-task-table)

Remove tasks that are finished from the task table. This includes tasks for which an error has oc-
curred.

See also: task-remove, task, task?, task-run. →index

3.5.16 run-at : procedure/2

Usage: (run-at date repeater proc)=> int

Run procedure proc with no arguments as task periodically according to the specification in spec and
return the task ID for the periodic task. Herbey, date is either a datetime specification or one of ‘(now
skip next-minute next-quarter next-halfhour next-hour in-2-hours in-3-hours tomorrow next-week next-
month next-year), andrepeater is nil or a procedure that takes a task ID and unix-epoch-nanoseconds
and yields a new unix-epoch-nanoseconds value for the next time the procedure shall be run. While the
other names are self-explanatory, the ’skip specification means that the task is not run immediately
but rather that it is first run at (repeater -1 (now)). Timing resolution for the scheduler is about 1 minute.
Consider using interrupts for periodic events with smaller time resolutions. The scheduler uses relative
intervals and has ’drift’.

See also: task, task-send. →index

Warning: Tasks scheduled by run-at are not persistent! They are only run until the system is
shutdown.

3.5.17 systask : special form

Usage: (systask body ...)

Evaluate the expressions of body in parallel in a system task, which is similar to a future but cannot be
forced.

Version 2.4+891b3dc-gui.fyne2 20

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: future, task. →index

3.5.18 task : procedure/1

Usage: (task sel proc)=> int

Create a new task for concurrently running proc, a procedure that takes its own ID as argument. The
sel argument must be a symbol in ’(auto manual remove). If sel is ’remove, then the task is always
removed from the task table after it has finished, even if an error has occurred. If sel is ’auto, then the
task is removed from the task table if it ends without producing an error. If sel is ’manual then the
task is not removed from the task table, its state is either ’canceled, ’finished, or ’error, and it and must
be removed manually with task-remove or prune-task-table. Broadcast messages are never
removed. Tasks are more heavy-weight than futures and allow for message-passing.

See also: task?, task-run, task-state, task-broadcast, task-send, task-recv, task-
remove, prune-task-table. →index

3.5.19 task-broadcast : procedure/2

Usage: (task-broadcast id msg)

Send a message from task id to the blackboard. Tasks automatically send the message ’finished to
the blackboard when they are finished.

See also: task, task?, task-run, task-state, task-send, task-recv. →index

3.5.20 task-recv : procedure/1

Usage: (task-recv id)=> any

Receive a message for task id, or nil if there is no message. This is typically used by the task with id
itself to periodically check for new messages while doing other work. By convention, if a task receives
the message ’end it ought to terminate at the next convenient occasion, whereas upon receiving ’cancel
it ought to terminate in an expedited manner.

See also: task-send, task, task?, task-run, task-state, task-broadcast. →index

Warning: Busy polling for new messages in a tight loop is inefficient and ought to be avoided.

Version 2.4+891b3dc-gui.fyne2 21

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.5.21 task-remove : procedure/1

Usage: (task-remove id)

Remove task id from the task table. The task can no longer be interacted with.

See also: task, task?, task-state. →index

3.5.22 task-run : procedure/1

Usage: (task-run id)

Run task id, which must have been previously created with task. Attempting to run a task that is
already running results in an error unless silent? is true. If silent? is true, the function does never
produce an error.

See also: task, task?, task-state, task-send, task-recv, task-broadcast-. →index

3.5.23 task-schedule : procedure/1

Usage: (task-schedule sel id)

Schedule task id for running, starting it as soon as other tasks have finished. The scheduler attempts
to avoid running more than (cpunum) tasks at once.

See also: task, task-run. →index

3.5.24 task-send : procedure/2

Usage: (task-send id msg)

Send a message msg to task id. The task needs to cooperatively use task-recv to reply to the message.
It is up to the receiving task what to do with the message once it has been received, or how often to
check for new messages.

See also: task-broadcast, task-recv, task, task?, task-run, task-state. →index

3.5.25 task-state : procedure/1

Usage: (task-state id)=> sym

Return the state of the task, which is a symbol in ’(finished error stopped new waiting running).

See also: task, task?, task-run, task-broadcast, task-recv, task-send. →index

Version 2.4+891b3dc-gui.fyne2 22

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.5.26 task? : procedure/1

Usage: (task? id)=> bool

Check whether the given id is for a valid task, return true if it is valid, nil otherwise.

See also: task, task-run, task-state, task-broadcast, task-send, task-recv. →index

3.5.27 wait-for : procedure/2

Usage: (wait-for dict key)

Block execution until the value for key in dict is not-nil. This function may wait indefinitely if no other
thread sets the value for key to not-nil.

See also: wait-for*, future, force, wait-until, wait-until*. →index

Warning: This cannot be used for synchronization of multiple tasks due to potential race-
conditions.

3.5.28 wait-for* : procedure/3

Usage: (wait-for* dict key timeout)

Blocks execution until the value for key in dict is not-nil or timeout nanoseconds have passed, and
returns that value or nil if waiting timed out. If timeout is negative, then the function waits potentially
indefinitely without any timeout. If a non-nil key is not found, the function sleeps at least sync-wait-
lower-bound nanoseconds and up to sync-wait-upper-bound nanoseconds until it looks for the key
again.

See also: future, force, wait-for, wait-until, wait-until*. →index

Warning: This cannot be used for synchronization of multiple tasks due to potential race-
conditions.

3.5.29 wait-for-empty* : procedure/3

Usage: (wait-for-empty* dict key timeout)

Blocks execution until the key is no longer present in dict or timeout nanoseconds have passed. If
timeout is negative, then the function waits potentially indefinitely without any timeout.

See also: future, force, wait-for, wait-until, wait-until*. →index

Version 2.4+891b3dc-gui.fyne2 23

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Warning: This cannot be used for synchronization of multiple tasks due to potential race-
conditions.

3.5.30 wait-until : procedure/2

Usage: (wait-until dict key pred)

Blocks execution until the unary predicate pred returns true for the value at key in dict. This function
may wait indefinitely if no other thread sets the value in such a way thatpred returns true when applied
to it.

See also: wait-for, future, force, wait-until*. →index

Warning: This cannot be used for synchronization of multiple tasks due to potential race-
conditions.

3.5.31 wait-until* : procedure/4

Usage: (wait-until* dict key pred timeout)

Blocks execution until the unary predicate pred returns true for the value at key in dict, or timeout
nanoseconds have passed, and returns the value or nil if waiting timed out. If timeout is negative,
then the function waits potentially indefinitely without any timeout. If a non-nil key is not found,
the function sleeps at least sync-wait-lower-bound nanoseconds and up to sync-wait-upper-bound
nanoseconds until it looks for the key again.

See also: future, force, wait-for, wait-until*, wait-until. →index

Warning: This cannot be used for synchronization of multiple tasks due to potential race-
conditions.

3.5.32 with-mutex-rlock : macro/1 or more

Usage: (with-mutex-rlock m ...)=> any

Execute the body with mutex m locked for reading and unlock the mutex afterwards.

See also: with-mutex-lock, make-mutex, mutex-lock, mutex-rlock, mutex-unlock, mutex-
runlock. →index

3.6 Console Input & Output

These functions access the operating system console (terminal) mostly for string output.

Version 2.4+891b3dc-gui.fyne2 24

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.6.1 nl : procedure/0

Usage: (nl)

Display a newline, advancing the cursor to the next line.

See also: out, outy, output-at. →index

3.6.2 prin1 : procedure/1

Usage: (prin1 s)

Print s to the host OS terminal, where strings are quoted.

See also: princ, terpri, out, outy. →index

3.6.3 princ : procedure/1

Usage: (princ s)

Print s to the host OS terminal without quoting strings.

See also: prin1, terpri, out, outy. →index

3.6.4 print : procedure/1

Usage: (print x)

Output x on the host OS console and end it with a newline.

See also: prin1, princ. →index

3.6.5 terpri : procedure/0

Usage: (terpri)

Advance the host OS terminal to the next line.

See also: princ, out, outy. →index

3.7 Data Type Conversion

This section lists various ways in which one data type can be converted to another.

Version 2.4+891b3dc-gui.fyne2 25

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.7.1 alist->dict : procedure/1

Usage: (alist->dict li)=> dict

Convert an association list li into a dictionary. Note that the value will be the cdr of each list element,
not the second element, so you need to use an alist with proper pairs ’(a . b) if you want b to be a single
value.

See also: dict->alist, dict, dict->list, list->dict. →index

3.7.2 array->list : procedure/1

Usage: (array->list arr)=> li

Convert array arr into a list.

See also: list->array, array. →index

3.7.3 array->str : procedure/1

Usage: (array-str arr)=> s

Convert an array of unicode glyphs as integer values into a string. If the given sequence is not a valid
UTF-8 sequence, an error is thrown.

See also: str->array. →index

3.7.4 ascii85->blob : procedure/1

Usage: (ascii85->blob str)=> blob

Convert the ascii85 encoded string str to a binary blob. This will raise an error if str is not a valid
ascii85 encoded string.

See also: blob->ascii85, base64->blob, str->blob, hex->blob. →index

3.7.5 base64->blob : procedure/1

Usage: (base64->blob str)=> blob

Convert the base64 encoded string str to a binary blob. This will raise an error if str is not a valid
base64 encoded string.

See also: blob->base64, hex->blob, ascii85->blob, str->blob. →index

Version 2.4+891b3dc-gui.fyne2 26

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.7.6 blob->ascii85 : procedure/1 or more

Usage: (blob->ascii85 b [start] [end])=> str

Convert the blob b to an ascii85 encoded string. If the optional start and end are provided, then only
bytes from start (inclusive) to end (exclusive) are converted.

See also: blob->hex, blob->str, blob->base64, valid?, blob?. →index

3.7.7 blob->base64 : procedure/1 or more

Usage: (blob->base64 b [start] [end])=> str

Convert the blob b to a base64 encoded string. If the optional start and end are provided, then only
bytes from start (inclusive) to end (exclusive) are converted.

See also: base64->blob, valid?, blob?, blob->str, blob->hex, blob->ascii85. →index

3.7.8 blob->hex : procedure/1 or more

Usage: (blob->hex b [start] [end])=> str

Convert the blob b to a hexadecimal string of byte values. If the optional start and end are provided,
then only bytes from start (inclusive) to end (exclusive) are converted.

See also: hex->blob, str->blob, valid?, blob?, blob->base64, blob->ascii85. →index

3.7.9 blob->str : procedure/1 or more

Usage: (blob->str b [start] [end])=> str

Convert blob b into a string. Notice that the string may contain binary data that is not suitable for
displaying and does not represent valid UTF-8 glyphs. If the optional start and end are provided,
then only bytes from start (inclusive) to end (exclusive) are converted.

See also: str->blob, valid?, blob?. →index

3.7.10 char->str : procedure/1

Usage: (char->str n)=> str

Return a string containing the unicode char based on integer n.

See also: str->char. →index

Version 2.4+891b3dc-gui.fyne2 27

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.7.11 chars->str : procedure/1

Usage: (chars->str a)=> str

Convert an array of UTF-8 rune integers a into a UTF-8 encoded string.

See also: str->runes, str->char, char->str. →index

3.7.12 dict->alist : procedure/1

Usage: (dict->alist d)=> li

Convert a dictionary into an association list. Note that the resulting alist will be a set of proper pairs of
the form ’(a . b) if the values in the dictionary are not lists.

See also: dict, dict-map, dict->list. →index

3.7.13 dict->array : procedure/1

Usage: (dict-array d)=> array

Return an array that contains all key, value pairs ofd. A key comes directly before its value, but otherwise
the order is unspecified.

See also: dict->list, dict. →index

3.7.14 dict->keys : procedure/1

Usage: (dict->keys d)=> li

Return the keys of dictionary d in arbitrary order.

See also: dict, dict->values, dict->alist, dict->list. →index

3.7.15 dict->list : procedure/1

Usage: (dict->list d)=> li

Return a list of the form ’(key1 value1 key2 value2 . . .), where the order of key, value pairs is unspeci-
fied.

See also: dict->array, dict. →index

Version 2.4+891b3dc-gui.fyne2 28

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.7.16 dict->values : procedure/1

Usage: (dict->values d)=> li

Return the values of dictionary d in arbitrary order.

See also: dict, dict->keys, dict->alist, dict->list. →index

3.7.17 expr->str : procedure/1

Usage: (expr->str expr)=> str

Convert a Lisp expression expr into a string. Does not use a stream port.

See also: str->expr, str->expr*, openstr, internalize, externalize. →index

3.7.18 hex->blob : procedure/1

Usage: (hex->blob str)=> blob

Convert hex string str to a blob. This will raise an error if str is not a valid hex string.

See also: blob->hex, base64->blob, ascii85->blob, str->blob. →index

3.7.19 list->array : procedure/1

Usage: (list->array li)=> array

Convert the list li to an array.

See also: list, array, string, nth, seq?. →index

3.7.20 list->set : procedure/1

Usage: (list->set li)=> dict

Create a dict containing true for each element of list li.

See also: make-set, set-element?, set-union, set-intersection, set-complement, set-
difference, set?, set-empty. →index

Version 2.4+891b3dc-gui.fyne2 29

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.7.21 list->str : procedure/1

Usage: (list->str li)=> string

Return the string that is composed out of the chars in list li.

See also: array->str, str->list, chars. →index

3.7.22 set->list : procedure/1

Usage: (set->list s)=> li

Convert set s to a list of set elements.

See also: list->set, make-set, set-element?, set-union, set-intersection, set-
complement, set-difference, set?, set-empty. →index

3.7.23 str->array : procedure/1

Usage: (str->array s)=> array

Return the string s as an array of unicode glyph integer values.

See also: array->str. →index

3.7.24 str->blob : procedure/1

Usage: (str->blob s)=> blob

Convert string s into a blob.

See also: blob->str. →index

3.7.25 str->char : procedure/1

Usage: (str->char s)

Return the first character of s as unicode integer.

See also: char->str. →index

Version 2.4+891b3dc-gui.fyne2 30

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.7.26 str->chars : procedure/1

Usage: (str->chars s)=> array

Convert the UTF-8 string s into an array of UTF-8 rune integers. An error may occur if the string is not a
valid UTF-8 string.

See also: runes->str, str->char, char->str. →index

3.7.27 str->expr : procedure/0 or more

Usage: (str->expr s [default])=> any

Convert a string s into a Lisp expression. If default is provided, it is returned if an error occurs,
otherwise an error is raised.

See also: expr->str, str->expr*, openstr, externalize, internalize. →index

3.7.28 str->expr* : procedure/0 or more

Usage: (str->expr* s [default])=> li

Convert a string s into a list consisting of the Lisp expressions in s. If default is provided, then this
value is put in the result list whenever an error occurs. Otherwise an error is raised. Notice that it might
not always be obvious what expression in s triggers an error, since this hinges on the way the internal
expession parser works.

See also: str->expr, expr->str, openstr, internalize, externalize. →index

3.7.29 str->list : procedure/1

Usage: (str->list s)=> list

Return the sequence of numeric chars that make up string s.

See also: str->array, list->str, array->str, chars. →index

3.7.30 str->sym : procedure/1

Usage: (str->sym s)=> sym

Convert a string into a symbol.

See also: sym->str, intern, make-symbol. →index

Version 2.4+891b3dc-gui.fyne2 31

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.7.31 sym->str : procedure/1

Usage: (sym->str sym)=> str

Convert a symbol into a string.

See also: str->sym, intern, make-symbol. →index

3.8 Special Data Structures

This section lists some more specialized data structures and helper functions for them.

3.8.1 chars : procedure/1

Usage: (chars str)=> dict

Return a charset based on str, i.e., dict with the chars of str as keys and true as value.

See also: dict, get, set, contains. →index

3.8.2 dequeue! : macro/1 or more

Usage: (dequeue! sym [def])=> any

Get the next element from queue sym, which must be the unquoted name of a variable, and return it. If
a default def is given, then this is returned if the queue is empty, otherwise nil is returned.

See also: make-queue, queue?, enqueue!, glance, queue-empty?, queue-len. →index

3.8.3 enqueue! : macro/2

Usage: (enqueue! sym elem)

Put elem in queue sym, where sym is the unquoted name of a variable.

See also: make-queue, queue?, dequeue!, glance, queue-empty?, queue-len. →index

3.8.4 glance : procedure/1

Usage: (glance s [def])=> any

Peek the next element in a stack or queue without changing the data structure. If default def is
provided, this is returned in case the stack or queue is empty; otherwise nil is returned.

Version 2.4+891b3dc-gui.fyne2 32

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: make-queue, make-stack, queue?, enqueue?, dequeue?, queue-len, stack-len, pop
!, push!. →index

3.8.5 inchars : procedure/2

Usage: (inchars char chars)=> bool

Return true if char is in the charset chars, nil otherwise.

See also: chars, dict, get, set, has. →index

3.8.6 make-queue : procedure/0

Usage: (make-queue)=> array

Make a synchronized queue.

See also: queue?, enqueue!, dequeue!, glance, queue-empty?, queue-len. →index

Warning: Never change the array of a synchronized data structure directly, or your warranty is
void!

3.8.7 make-set : procedure/0 or more

Usage: (make-set [arg1] ... [argn])=> dict

Create a dictionary out of arguments arg1 to argn that stores true for very argument.

See also: list->set, set->list, set-element?, set-union, set-intersection, set-
complement, set-difference, set?, set-empty?. →index

3.8.8 make-stack : procedure/0

Usage: (make-stack)=> array

Make a synchronized stack.

See also: stack?, push!, pop!, stack-empty?, stack-len, glance. →index

Warning: Never change the array of a synchronized data structure directly, or your warranty is
void!

Version 2.4+891b3dc-gui.fyne2 33

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.8.9 pop! : macro/1 or more

Usage: (pop! sym [def])=> any

Get the next element from stack sym, which must be the unquoted name of a variable, and return it. If
a default def is given, then this is returned if the queue is empty, otherwise nil is returned.

See also: make-stack, stack?, push!, stack-len, stack-empty?, glance. →index

3.8.10 push! : macro/2

Usage: (push! sym elem)

Put elem in stack sym, where sym is the unquoted name of a variable.

See also: make-stack, stack?, pop!, stack-len, stack-empty?, glance. →index

3.8.11 queue-empty? : procedure/1

Usage: (queue-empty? q)=> bool

Return true if the queue q is empty, nil otherwise.

See also: make-queue, queue?, enqueue!, dequeue!, glance, queue-len. →index

3.8.12 queue-len : procedure/1

Usage: (queue-len q)=> int

Return the length of the queue q.

See also: make-queue, queue?, enqueue!, dequeue!, glance, queue-len. →index

Warning: Be advised that this is of limited use in some concurrent contexts, since the length of
the queue might have changed already once you’ve obtained it!

3.8.13 queue? : procedure/1

Usage: (queue? q)=> bool

Return true if q is a queue, nil otherwise.

See also: make-queue, enqueue!, dequeue, glance, queue-empty?, queue-len. →index

Version 2.4+891b3dc-gui.fyne2 34

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.8.14 set-complement : procedure/2

Usage: (set-complement a domain)=> set

Return all elements in domain that are not elements of a.

See also: list->set, set->list, make-set, set-element?, set-union, set-difference, set
-intersection, set?, set-empty?, set-subset?, set-equal?. →index

3.8.15 set-difference : procedure/2

Usage: (set-difference a b)=> set

Return the set-theoretic difference of set a minus set b, i.e., all elements in a that are not in b.

See also: list->set, set->list, make-set, set-element?, set-union, set-intersection,
set-complement, set?, set-empty?, set-subset?, set-equal?. →index

3.8.16 set-element? : procedure/2

Usage: (set-element? s elem)=> bool

Return true if set s has element elem, nil otherwise.

See also: make-set,list->set,set->list,set-union,set-intersection,set-complement,
set-difference, set?, set-empty?. →index

3.8.17 set-empty? : procedure/1

Usage: (set-empty? s)=> bool

Return true if set s is empty, nil otherwise.

See also: make-set,list->set,set->list,set-union,set-intersection,set-complement,
set-difference, set?. →index

3.8.18 set-equal? : procedure/2

Usage: (set-equal? a b)=> bool

Return true if a and b contain the same elements.

See also: set-subset?, list->set, set-element?, set->list, set-union, set-difference,
set-intersection, set-complement, set?, set-empty?. →index

Version 2.4+891b3dc-gui.fyne2 35

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.8.19 set-intersection : procedure/2

Usage: (set-intersection a b)=> set

Return the intersection of sets a and b, i.e., the set of elements that are both in a and in b.

See also: list->set, set->list, make-set, set-element?, set-union, set-complement, set
-difference, set?, set-empty?, set-subset?, set-equal?. →index

3.8.20 set-subset? : procedure/2

Usage: (set-subset? a b)=> bool

Return true if a is a subset of b, nil otherwise.

See also: set-equal?, list->set, set->list, make-set, set-element?, set-union, set-
difference, set-intersection, set-complement, set?, set-empty?. →index

3.8.21 set-union : procedure/2

Usage: (set-union a b)=> set

Return the union of sets a and b containing all elements that are in a or in b (or both).

See also: list->set, set->list, make-set, set-element?, set-intersection, set-
complement, set-difference, set?, set-empty?. →index

3.8.22 set? : procedure/1

Usage: (set? x)=> bool

Return true if x can be used as a set, nil otherwise.

See also: list->set, make-set, set->list, set-element?, set-union, set-intersection,
set-complement, set-difference, set-empty?. →index

3.8.23 stack-empty? : procedure/1

Usage: (queue-empty? s)=> bool

Return true if the stack s is empty, nil otherwise.

See also: make-stack, stack?, push!, pop!, stack-len, glance. →index

Version 2.4+891b3dc-gui.fyne2 36

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.8.24 stack-len : procedure/1

Usage: (stack-len s)=> int

Return the length of the stack s.

See also: make-queue, queue?, enqueue!, dequeue!, glance, queue-len. →index

Warning: Be advised that this is of limited use in some concurrent contexts, since the length of
the queue might have changed already once you’ve obtained it!

3.8.25 stack? : procedure/1

Usage: (stack? q)=> bool

Return true if q is a stack, nil otherwise.

See also: make-stack, push!, pop!, stack-empty?, stack-len, glance. →index

3.9 Databases

These functions allow for Sqlite3 database access. The module needs to be enabled with the “db” build
tag. It also provides access to key-value databases with prefix ’kvdb and the automated remember-
recall system, both of which are implemented in Z3S5 Lisp on top of the ’db module. To use the
remember system, it needs to be initialized first by calling (init-remember).

3.9.1 db.blob : procedure/2

Usage: (db.blob db-result n)=> fl

Get the content of column n in db-result as blob. A blob is a boxed memory area holding binary
data.

See also: db.str. →index

3.9.2 db.close : procedure/1

Usage: (db.close db)

Close the database db.

See also: db.open, db.open*, db.exec, db.query. →index

Version 2.4+891b3dc-gui.fyne2 37

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.9.3 db.close-result : procedure/1

Usage: (db.close-result db-result)

Close the db-result. It is invalid afterwards. This should be done to avoid memory leaks after the
result has been used.

See also: db.reset, db.step, db.close. →index

3.9.4 db.exec : procedure/2 or more

Usage: (db.exec db stmt [args] ...)

Execute the SQL statement stmt in database db, binding any optional args to the open variable slots
in it. This function does not return anything, use db.query to execute a query that returns rows as
result.

See also: db.query, db.open, db.close, db.open*. →index

3.9.5 db.float : procedure/2

Usage: (db.float db-result n)=> fl

Get the content of column n in db-result as float.

See also: db.int, db.str. →index

3.9.6 db.int : procedure/2

Usage: (db.int db-result n)=> int

Get the content of column n in db-result as integer.

See also: db.float, db.str, db.blob. →index

3.9.7 db.open : procedure/1

Usage: (db.open fi)=> db

Opens an sqlite3 DB or creates a new, empty database at file path fi.

See also: db.close, db.exec, db.query. →index

Version 2.4+891b3dc-gui.fyne2 38

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.9.8 db.open* : procedure/1

Usage: (db.open* sel)=> db

Open a temporary database if sel is ’temp or an in-memory database if sel is ’mem.

See also: db.open, db.close, db.exec, db.query. →index

3.9.9 db.query : procedure/2 or more

Usage: (db.query db stmt [args] ...)=> db-result

Query db with SQL statement stmt, binding any optional args to the open variable slots in it. This
function returns a db-result that can be used to loop through rows with db.step and obtain columns
in them using the various accessor methods.

See also: db.exec,db.step,db.int,db.cname,db.float,db.str,db.expr,db.blob. →index

3.9.10 db.result-column-count : procedure/1

Usage: (db.result-column-count db-result)=> int

Get the number of columns in the rows of db-result.

See also: db.result-columns. →index

3.9.11 db.result-columns : procedure/1

Usage: (db.result-columns db-result)=> li

Get a list of column specifications for db-result, each consisting of a list with the column name and
the column type as string, as these were provided to the query. Since queries support automatic type
conversions, this need not reflect the column types in the database schema.

See also: db.result-column-count. →index

3.9.12 db.row : procedure/1

Usage: (db.row db-result)=> li

Return all columns of the current row in db-result as list. They have the respective base types INT,
FLOAT, BLOB, and TEXT.

See also: db.rows. →index

Version 2.4+891b3dc-gui.fyne2 39

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.9.13 db.step : procedure/1

Usage: (db.step db-result)=> bool

Obtain the next result row in db-result and return true, or return nil of there is no more row in the
result.

See also: db.query, db.row, db.rows. →index

3.9.14 db.str : procedure/2

Usage: (db.str db-result n)=> str

Get the content of column n in db-result as string.

See also: db.blob, db.int, db.float. →index

3.9.15 forget : procedure/1

Usage: (forget key)

Forget the value associated with key. This permanently deletes the value from the persistent record.

See also: remember, recall, recollect, recall-when, recall-info. →index

3.9.16 init-remember : procedure/0

Usage: (init-remember)

Initialize the remember database. This requires the modules ’kvdb and ’db enabled. The database is
located at (str+ (sysdir ’z3s5-data) “/remembered.z3kv”).

See also: remember, recall-when, recall, forget. →index

3.9.17 kvdb.begin : procedure/1

Usage: (kvdb.begin db)

Begin a key-value database transaction. This can be committed by using kvdb.commit and rolled back
by kvdb.rollback.

See also: kvdb.comit, kvdb.rollback. →index

Warning: Transactions in key-value databases cannot be nested! You have to ensure that there is
only one begin.. .commit pair.

Version 2.4+891b3dc-gui.fyne2 40

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.9.18 kvdb.close : procedure/1

Usage: (kvdb.close db)

Close a key-value db.

See also: kvdb.open. →index

3.9.19 kvdb.commit : procedure/1

Usage: (kvdb.commit db)

Commit the current transaction, making any changes made since the transaction started permanent.

See also: kvdb.rollback, kvdb.begin. →index

3.9.20 kvdb.db? : procedure/1

Usage: (kvdb.db? datum)=> bool

Return true if the given datum is a key-value database, nil otherwise.

See also: kvdb.open. →index

3.9.21 kvdb.forget : procedure/1

Usage: (kvdb.forget key)

Forget the value for key if there is one.

See also: kvdb.set, kvdb.get. →index

3.9.22 kvdb.forget-everything : procedure/1

Usage: (kvdb.forget-everything db)

Erases all data from the given key-value database db, irrecoverably loosing ALL data in it.

See also: kvdb.forget. →index

Warning: This operation cannot be undone! Data for all types of keys is deleted. Permanent data
loss is imminent!

Version 2.4+891b3dc-gui.fyne2 41

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.9.23 kvdb.get : procedure/2 or more

Usage: (kvdb.get db key [other])=> any

Get the value stored at key in the key-value database db. If the value is found, it is returned. If the
value is not found and other is specified, then other is returned. If the value is not found and other
is not specified, then nil is returned.

See also: kvdb.set, kvdb.when, kvdb.info, kvdb.open, kvdb.forget, kvdb.close, kvdb.
search, remember, recall, forget. →index

3.9.24 kvdb.info : procedure/2 or more

Usage: (db key [other])=> (str str)

Return a list containing the info string and its fuzzy variant stored for key in db, other when the value
for key is not found. The default for other is nil.

See also: kvdb.get, kvdb.when. →index

3.9.25 kvdb.open : procedure/1 or more

Usage: (kvdb.open path)=> kvdb-array

Create or open a key-value database at path.

See also: kvdb.close. →index

3.9.26 kvdb.rollback : procedure/1

Usage: (kvdb.rollback db)

Rollback the changes made since the last transaction has been started and return the key-value
database to its previous state.

See also: kvdb.commit, kvdb.begin. →index

3.9.27 kvdb.search : procedure/2 or more

Usage: (kvdb.search db s [keytype] [limit] [fuzzer])=> li

Search the key-value database db for search expression string s for optional keytype and return a list
of matching keys. The optionalkeytypemay be one of ’(all str sym int expr), where the default is ’all for

Version 2.4+891b3dc-gui.fyne2 42

Z3S5 Lisp Reference Manual 2024-1-2 15:04

any kind of key. If the optional limit is provided, then only limit entries are returned. Default limit
is kvdb.default-search-limit. If fuzzer is a function provided, then a fuzzy string search is performed
based on applying fuzzer to the search term; default is nil.

See also: kvdb.get. →index

3.9.28 kvdb.set : procedure/3 or more

Usage: (kvdb.set db key value [info] [fuzzer])

Set the value for key in key-value database db. The optional info string contains searchable infor-
mation about the value that may be retrieved with the search function. The optional fuzzer must be
a function that takes a string and yields a fuzzy variant of the string that can be used for fuzzy search. If
no fuzzer is specified, then the default metaphone algorithm is used. Keys for the database must be
externalizable but notice that integer keys may provide faster performance.

See also: kvdb.get, kvdb.forget, kvdb.open, kvdb.close, kvdb.search. →index

3.9.29 kvdb.when : procedure/2 or more

Usage: (kvdb.when db key [other])=> str

Get the date in db when the entry for key was last modified as a date string. If there is no entry for key,
then other is returned. If other is not specified and there is no key, then nil is returned.

See also: datestr->datelist, kvdb.get, kvdb.info. →index

3.9.30 recall : procedure/1 or more

Usage: (recall key [notfound])=> any

Obtain the value remembered for key, notfound if it doesn’t exist. If notfound is not provided, then
nil is returned in case the value for key doesn’t exist.

See also: recall-when, recall-info, recollect, remember, forget. →index

3.9.31 recall-info : procedure/1 or more

Usage: (recall-info key [notfound])=> (str str)

Return a list containing the info string and its fuzzy version for a remembered value with the given key,
notfound if no value for key was found. The default for notfound is nil.

See also: recall-when, recall, recall-when, recollect, remember, forget. →index

Version 2.4+891b3dc-gui.fyne2 43

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.9.32 recall-when : procedure/1 or more

Usage: (recall-when key [notfound])=> datestr

Obtain the date string when the value for key was last modified by remember (set), notfound if it
doesn’t exist. If notfound is not provided, then nil is returned in case there is no value for key.

See also: recall, datestr->datelist, recall-info, remember, forget. →index

3.9.33 recollect : procedure/1 or more

Usage: (recollect s [keytype] [limit] [fuzzer])=> li

Search for remembered items based on search query s and return a list of matching keys. The optional
keytype parameter must be one of ‘(all str sym int expr), where the default is ’all for all kinds of keys.
Up to limit results are returned, default is kvdb.default-search-limit. The optional fuzzer procedure
takes a word string and yields a ’fuzzy’ version of it. If fuzzer is specified and a procedure, then a fuzzy
search is performed.

See also: kvdb.search, recall, recall-info, recall-when, remember. →index

3.9.34 remember : procedure/2

Usage: (remember key value [info] [fuzzer])

Persistently remember value by given key. See kvdb.set for the optional info and fuzzer argu-
ments.

See also: recall, forget, kvdb.set, recall-when, recall-info, recollect. →index

3.10 Dictionaries

Dictionaries are thread-safe key-value repositories held in memory. They are internally based on hash
tables and have fast access.

3.10.1 delete : procedure/2

Usage: (delete d key)

Remove the value for key in dict d. This also removes the key.

See also: dict?, get, set. →index

Version 2.4+891b3dc-gui.fyne2 44

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.10.2 dict : procedure/0 or more

Usage: (dict [li])=> dict

Create a dictionary. The option li must be a list of the form ’(key1 value1 key2 value2 . . .). Dictionaries
are unordered, hence also not sequences. Dictionaries are safe for concurrent access.

See also: array, list. →index

3.10.3 dict-copy : procedure/1

Usage: (dict-copy d)=> dict

Return a copy of dict d.

See also: dict, dict?. →index

3.10.4 dict-empty? : procedure/1

Usage: (dict-empty? d)=> bool

Return true if dict d is empty, nil otherwise. As crazy as this may sound, this can have O(n) complexity
if the dict is not empty, but it is still going to be more efficient than any other method.

See also: dict. →index

3.10.5 dict-foreach : procedure/2

Usage: (dict-foreach d proc)

Call proc for side-effects with the key and value for each key, value pair in dict d.

See also: dict-map!, dict?, dict. →index

3.10.6 dict-map : procedure/2

Usage: (dict-map dict proc)=> dict

Returns a copy of dict with proc applies to each key value pair as aruments. Keys are immutable, so
proc must take two arguments and return the new value.

See also: dict-map!, map. →index

Version 2.4+891b3dc-gui.fyne2 45

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.10.7 dict-map! : procedure/2

Usage: (dict-map! d proc)

Apply procedure proc which takes the key and value as arguments to each key, value pair in dict d and
set the respective value in d to the result of proc. Keys are not changed.

See also: dict, dict?, dict-foreach. →index

3.10.8 dict-merge : procedure/2

Usage: (dict-merge a b)=> dict

Create a new dict that contains all key-value pairs from dicts a and b. Note that this function is not
symmetric. If a key is in both a and b, then the key value pair in a is retained for this key.

See also: dict, dict-map, dict-map!, dict-foreach. →index

3.10.9 dict? : procedure/1

Usage: (dict? obj)=> bool

Return true if obj is a dict, nil otherwise.

See also: dict. →index

3.10.10 get : procedure/2 or more

Usage: (get dict key [default])=> any

Get the value for key in dict, return default if there is no value for key. If default is omitted, then
nil is returned. Provide your own default if you want to store nil.

See also: dict, dict?, set. →index

3.10.11 get-or-set : procedure/3

Usage: (get-or-set d key value)

Get the value for key in dict d if it already exists, otherwise set it to value.

See also: dict?, get, set. →index

Version 2.4+891b3dc-gui.fyne2 46

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.10.12 getstacked : procedure/3

Usage: (getstacked dict key default)

Get the topmost element from the stack stored at key in dict. If the stack is empty or no stack is
stored at key, then default is returned.

See also: pushstacked, popstacked. →index

3.10.13 has : procedure/2

Usage: (has dict key)=> bool

Return true if the dict dict contains an entry for key, nil otherwise.

See also: dict, get, set. →index

3.10.14 has-key? : procedure/2

Usage: (has-key? d key)=> bool

Return true if d has key key, nil otherwise.

See also: dict?, get, set, delete. →index

3.10.15 popstacked : procedure/3

Usage: (popstacked dict key default)

Get the topmost element from the stack stored at key in dict and remove it from the stack. If the
stack is empty or no stack is stored at key, then default is returned.

See also: pushstacked, getstacked. →index

3.10.16 pushstacked : procedure/3

Usage: (pushstacked dict key datum)

Push datum onto the stack maintained under key in the dict.

See also: getstacked, popstacked. →index

Version 2.4+891b3dc-gui.fyne2 47

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.10.17 set : procedure/3

Usage: (set d key value)

Set value for key in dict d.

See also: dict, get, get-or-set. →index

3.10.18 set* : procedure/2

Usage: (set* d li)

Set in dict d the keys and values in list li. The list li must be of the form (key-1 value-1 key-2 value-2
. . . key-n value-n). This function may be slightly faster than using individual set operations.

See also: dict, set. →index

3.11 File Input & Output

These functions allow direct access for reading and writing to files. This module requires the fileio
build tag.

3.11.1 close : procedure/1

Usage: (close p)

Close the port p. Calling close twice on the same port should be avoided.

See also: open, stropen. →index

3.11.2 dir : procedure/1

Usage: (dir [path])=> li

Obtain a directory list for path. If path is not specified, the current working directory is listed.

See also: dir?, open, close, read, write. →index

Version 2.4+891b3dc-gui.fyne2 48

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.11.3 dir? : procedure/1

Usage: (dir? path)=> bool

Check if the file at path is a directory and return true, nil if the file does not exist or is not a directory.

See also: file-exists?, dir, open, close, read, write. →index

3.11.4 fdelete : procedure/1

Usage: (fdelete path)

Removes the file or directory at path.

See also: file-exists?, dir?, dir. →index

Warning: This function also deletes directories containing files and all of their subdirectories!

3.11.5 file-port? : procedure/1

Usage: (file-port? p)=> bool

Return true if p is a file port, nil otherwise.

See also: port?, str-port?, open, stropen. →index

3.11.6 open : procedure/1 or more

Usage: (open file-path [modes] [permissions])=> int

Open the file at file-path for reading and writing, and return the stream ID. The optional modes
argument must be a list containing one of ‘(read write read-write) for read, write, or read-write access
respectively, and may contain any of the following symbols: ’append to append to an existing file,
’create for creating the file if it doesn’t exist, ’exclusive for exclusive file access, ’truncate for truncating
the file if it exists, and ’sync for attempting to sync file access. The optional permissions argument
must be a numeric value specifying the Unix file permissions of the file. If these are omitted, then
default values’(read-write append create) and 0640 are used.

See also: stropen, close, read, write. →index

Version 2.4+891b3dc-gui.fyne2 49

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.11.7 read : procedure/1

Usage: (read p)=> any

Read an expression from input port p.

See also: input, write. →index

3.11.8 read-binary : procedure/3

Usage: (read-binary p buff n)=> int

Read n or less bytes from input port p into binary blob buff. If buff is smaller than n, then an error is
raised. If less than n bytes are available before the end of file is reached, then the amount k of bytes
is read into buff and k is returned. If the end of file is reached and no byte has been read, then 0 is
returned. So to loop through this, read into the buffer and do something with it while the amount of
bytes returned is larger than 0.

See also: write-binary, read, close, open. →index

3.11.9 read-string : procedure/2

Usage: (read-string p delstr)=> str

Reads a string from port p until the single-byte delimiter character in delstr is encountered, and
returns the string including the delimiter. If the input ends before the delimiter is encountered, it
returns the string up until EOF. Notice that if the empty string is returned then the end of file must have
been encountered, since otherwise the string would contain the delimiter.

See also: read, read-binary, write-string, write, read, close, open. →index

3.11.10 str-port? : procedure/1

Usage: (str-port? p)=> bool

Return true if p is a string port, nil otherwise.

See also: port?, file-port?, stropen, open. →index

3.11.11 write : procedure/2

Usage: (write p datum)=> int

Version 2.4+891b3dc-gui.fyne2 50

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Write datum to output port p and return the number of bytes written.

See also: write-binary, write-binary-at, read, close, open. →index

3.11.12 write-binary : procedure/4

Usage: (write-binary p buff n offset)=> int

Write n bytes starting at offset in binary blob buff to the stream port p. This function returns the
number of bytes actually written.

See also: write-binary-at, read-binary, write, close, open. →index

3.11.13 write-binary-at : procedure/5

Usage: (write-binary-at p buff n offset fpos)=> int

Write n bytes starting at offset in binary blob buff to the seekable stream port p at the stream
position fpos. If there is not enough data in p to overwrite at position fpos, then an error is caused
and only part of the data might be written. The function returns the number of bytes actually written.

See also: read-binary, write-binary, write, close, open. →index

3.11.14 write-string : procedure/2

Usage: (write-string p s)=> int

Write string s to output port p and return the number of bytes written. LF are not automatically
converted to CR LF sequences on windows.

See also: write, write-binary, write-binary-at, read, close, open. →index

3.12 Floating Point Arithmetics Package

The package fl provides floating point arithmetics functions. They require the given number not to
exceed a value that can be held by a 64 bit float in the range 2.2E-308 to 1.7E+308.

3.12.1 fl.abs : procedure/1

Usage: (fl.abs x)=> fl

Return the absolute value of x.

Version 2.4+891b3dc-gui.fyne2 51

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: float, *. →index

3.12.2 fl.acos : procedure/1

Usage: (fl.acos x)=> fl

Return the arc cosine of x.

See also: fl.cos. →index

3.12.3 fl.asin : procedure/1

Usage: (fl.asin x)=> fl

Return the arc sine of x.

See also: fl.acos. →index

3.12.4 fl.asinh : procedure/1

Usage: (fl.asinh x)=> fl

Return the inverse hyperbolic sine of x.

See also: fl.cosh. →index

3.12.5 fl.atan : procedure/1

Usage: (fl.atan x)=> fl

Return the arctangent of x in radians.

See also: fl.atanh, fl.tan. →index

3.12.6 fl.atan2 : procedure/2

Usage: (fl.atan2 x y)=> fl

Atan2 returns the arc tangent of y / x, using the signs of the two to determine the quadrant of the return
value.

See also: fl.atan. →index

Version 2.4+891b3dc-gui.fyne2 52

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.12.7 fl.atanh : procedure/1

Usage: (fl.atanh x)=> fl

Return the inverse hyperbolic tangent of x.

See also: fl.atan. →index

3.12.8 fl.cbrt : procedure/1

Usage: (fl.cbrt x)=> fl

Return the cube root of x.

See also: fl.sqrt. →index

3.12.9 fl.ceil : procedure/1

Usage: (fl.ceil x)=> fl

Round x up to the nearest integer, return it as a floating point number.

See also: fl.floor, truncate, int, fl.round, fl.trunc. →index

3.12.10 fl.cos : procedure/1

Usage: (fl.cos x)=> fl

Return the cosine of x.

See also: fl.sin. →index

3.12.11 fl.cosh : procedure/1

Usage: (fl.cosh x)=> fl

Return the hyperbolic cosine of x.

See also: fl.cos. →index

Version 2.4+891b3dc-gui.fyne2 53

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.12.12 fl.dim : procedure/2

Usage: (fl.dim x y)=> fl

Return the maximum of x, y or 0.

See also: max. →index

3.12.13 fl.erf : procedure/1

Usage: (fl.erf x)=> fl

Return the result of the error function of x.

See also: fl.erfc, fl.dim. →index

3.12.14 fl.erfc : procedure/1

Usage: (fl.erfc x)=> fl

Return the result of the complementary error function of x.

See also: fl.erfcinv, fl.erf. →index

3.12.15 fl.erfcinv : procedure/1

Usage: (fl.erfcinv x)=> fl

Return the inverse of (fl.erfc x).

See also: fl.erfc. →index

3.12.16 fl.erfinv : procedure/1

Usage: (fl.erfinv x)=> fl

Return the inverse of (fl.erf x).

See also: fl.erf. →index

Version 2.4+891b3dc-gui.fyne2 54

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.12.17 fl.exp : procedure/1

Usage: (fl.exp x)=> fl

Return eˆx, the base-e exponential of x.

See also: fl.exp. →index

3.12.18 fl.exp2 : procedure/2

Usage: (fl.exp2 x)=> fl

Return 2ˆx, the base-2 exponential of x.

See also: fl.exp. →index

3.12.19 fl.expm1 : procedure/1

Usage: (fl.expm1 x)=> fl

Return eˆx-1, the base-e exponential of (sub1 x). This is more accurate than (sub1 (fl.exp x)) when x is
very small.

See also: fl.exp. →index

3.12.20 fl.floor : procedure/1

Usage: (fl.floor x)=> fl

Return x rounded to the nearest integer below as floating point number.

See also: fl.ceil, truncate, int. →index

3.12.21 fl.fma : procedure/3

Usage: (fl.fma x y z)=> fl

Return the fused multiply-add of x, y, z, which is x * y + z.

See also: *, +. →index

Version 2.4+891b3dc-gui.fyne2 55

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.12.22 fl.frexp : procedure/1

Usage: (fl.frexp x)=> li

Break x into a normalized fraction and an integral power of two. It returns a list of (frac exp) containing
a float and an integer satisfying x == frac × 2ˆexp where the absolute value of frac is in the interval
[0.5, 1).

See also: fl.exp. →index

3.12.23 fl.gamma : procedure/1

Usage: (fl.gamma x)=> fl

Compute the Gamma function of x.

See also: fl.lgamma. →index

3.12.24 fl.hypot : procedure/2

Usage: (fl.hypot x y)=> fl

Compute the square root of xˆ2 and yˆ2.

See also: fl.sqrt. →index

3.12.25 fl.ilogb : procedure/1

Usage: (fl.ilogb x)=> fl

Return the binary exponent of x as a floating point number.

See also: fl.exp2. →index

3.12.26 fl.inf : procedure/1

Usage: (fl.inf x)=> fl

Return positive 64 bit floating point infinity +INF if x >= 0 and negative 64 bit floating point finfinity
-INF if x < 0.

See also: fl.is-nan?. →index

Version 2.4+891b3dc-gui.fyne2 56

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.12.27 fl.is-nan? : procedure/1

Usage: (fl.is-nan? x)=> bool

Return true if x is not a number according to IEEE 754 floating point arithmetics, nil otherwise.

See also: fl.inf. →index

3.12.28 fl.j0 : procedure/1

Usage: (fl.j0 x)=> fl

Apply the order-zero Bessel function of the first kind to x.

See also: fl.j1, fl.jn, fl.y0, fl.y1, fl.yn. →index

3.12.29 fl.j1 : procedure/1

Usage: (fl.j1 x)=> fl

Apply the the order-one Bessel function of the first kind x.

See also: fl.j0, fl.jn, fl.y0, fl.y1, fl.yn. →index

3.12.30 fl.jn : procedure/1

Usage: (fl.jn n x)=> fl

Apply the Bessel function of order n to x. The number n must be an integer.

See also: fl.j1, fl.j0, fl.y0, fl.y1, fl.yn. →index

3.12.31 fl.ldexp : procedure/2

Usage: (fl.ldexp x n)=> fl

Return the inverse of fl.frexp, x * 2ˆn.

See also: fl.frexp. →index

Version 2.4+891b3dc-gui.fyne2 57

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.12.32 fl.lgamma : procedure/1

Usage: (fl.lgamma x)=> li

Return a list containing the natural logarithm and sign (-1 or +1) of the Gamma function applied to
x.

See also: fl.gamma. →index

3.12.33 fl.log : procedure/1

Usage: (fl.log x)=> fl

Return the natural logarithm of x.

See also: fl.log10, fl.log2, fl.logb, fl.log1p. →index

3.12.34 fl.log10 : procedure/1

Usage: (fl.log10 x)=> fl

Return the decimal logarithm of x.

See also: fl.log, fl.log2, fl.logb, fl.log1p. →index

3.12.35 fl.log1p : procedure/1

Usage: (fl.log1p x)=> fl

Return the natural logarithm of x + 1. This function is more accurate than (fl.log (add1 x)) if x is close to
0.

See also: fl.log, fl.log2, fl.logb, fl.log10. →index

3.12.36 fl.log2 : procedure/1

Usage: (fl.log2 x)=> fl

Return the binary logarithm of x. This is important for calculating entropy, for example.

See also: fl.log, fl.log10, fl.log1p, fl.logb. →index

Version 2.4+891b3dc-gui.fyne2 58

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.12.37 fl.logb : procedure/1

Usage: (fl.logb x)=> fl

Return the binary exponent of x.

See also: fl.log, fl.log10, fl.log1p, fl.logb, fl.log2. →index

3.12.38 fl.max : procedure/2

Usage: (fl.max x y)=> fl

Return the larger value of two floating point arguments x and y.

See also: fl.min, max, min. →index

3.12.39 fl.min : procedure/2

Usage: (fl.min x y)=> fl

Return the smaller value of two floating point arguments x and y.

See also: fl.min, max, min. →index

3.12.40 fl.mod : procedure/2

Usage: (fl.mod x y)=> fl

Return the floating point remainder of x / y.

See also: fl.remainder. →index

3.12.41 fl.modf : procedure/1

Usage: (fl.modf x)=> li

Return integer and fractional floating-point numbers that sum to x. Both values have the same sign as
x.

See also: fl.mod. →index

Version 2.4+891b3dc-gui.fyne2 59

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.12.42 fl.nan : procedure/1

Usage: (fl.nan)=> fl

Return the IEEE 754 not-a-number value.

See also: fl.is-nan?, fl.inf. →index

3.12.43 fl.next-after : procedure/1

Usage: (fl.next-after x)=> fl

Return the next representable floating point number after x.

See also: fl.is-nan?, fl.nan, fl.inf. →index

3.12.44 fl.pow : procedure/2

Usage: (fl.pow x y)=> fl

Return x to the power of y according to 64 bit floating point arithmetics.

See also: fl.pow10. →index

3.12.45 fl.pow10 : procedure/1

Usage: (fl.pow10 n)=> fl

Return 10 to the power of integer n as a 64 bit floating point number.

See also: fl.pow. →index

3.12.46 fl.remainder : procedure/2

Usage: (fl.remainder x y)=> fl

Return the IEEE 754 floating-point remainder of x / y.

See also: fl.mod. →index

Version 2.4+891b3dc-gui.fyne2 60

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.12.47 fl.round : procedure/1

Usage: (fl.round x)=> fl

Round x to the nearest integer floating point number according to floating point arithmetics.

See also: fl.round-to-even, fl.truncate, int, float. →index

3.12.48 fl.round-to-even : procedure/1

Usage: (fl.round-to-even x)=> fl

Round x to the nearest even integer floating point number according to floating point arithmetics.

See also: fl.round, fl.truncate, int, float. →index

3.12.49 fl.signbit : procedure/1

Usage: (fl.signbit x)=> bool

Return true if x is negative, nil otherwise.

See also: fl.abs. →index

3.12.50 fl.sin : procedure/1

Usage: (fl.sin x)=> fl

Return the sine of x.

See also: fl.cos. →index

3.12.51 fl.sinh : procedure/1

Usage: (fl.sinh x)=> fl

Return the hyperbolic sine of x.

See also: fl.sin. →index

Version 2.4+891b3dc-gui.fyne2 61

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.12.52 fl.sqrt : procedure/1

Usage: (fl.sqrt x)=> fl

Return the square root of x.

See also: fl.pow. →index

3.12.53 fl.tan : procedure/1

Usage: (fl.tan x)=> fl

Return the tangent of x in radian.

See also: fl.tanh, fl.sin, fl.cos. →index

3.12.54 fl.tanh : procedure/1

Usage: (fl.tanh x)=> fl

Return the hyperbolic tangent of x.

See also: fl.tan, flsinh, fl.cosh. →index

3.12.55 fl.trunc : procedure/1

Usage: (fl.trunc x)=> fl

Return the integer value of x as floating point number.

See also: truncate, int, fl.floor. →index

3.12.56 fl.y0 : procedure/1

Usage: (fl.y0 x)=> fl

Return the order-zero Bessel function of the second kind applied to x.

See also: fl.y1, fl.yn, fl.j0, fl.j1, fl.jn. →index

Version 2.4+891b3dc-gui.fyne2 62

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.12.57 fl.y1 : procedure/1

Usage: (fl.y1 x)=> fl

Return the order-one Bessel function of the second kind applied to x.

See also: fl.y0, fl.yn, fl.j0, fl.j1, fl.jn. →index

3.12.58 fl.yn : procedure/1

Usage: (fl.yn n x)=> fl

Return the Bessel function of the second kind of order n applied to x. Argument n must be an integer
value.

See also: fl.y0, fl.y1, fl.j0, fl.j1, fl.jn. →index

3.13 Graphical User Interface

This section describes the GUI-related functions. These functions are only available when Z3S5 Lisp has
been compiled with the embedded GUI package. See the z3g executable defined in cmd/z3g/z3g.go
for an example of how to include the GUI and start it up. The key is that the interpreter must run in its
own goroutine because the GUI is blocking once it has been called. GUI functions are threadsafe, or
at least as threadsafe as the underlying GUI framework. Functions defined in Lisp are derived from
corresponding functions of the Fyne framework and listed under the ’gui label in this help system. The
naming conventions for translation between Go and Lisp functions are as follows:

1. Camelcase is translated to lowercase with hyphens.
2. A function object.VerbQualifier becomes verb-object-qualifier.
3. Getters are written in the formget-object-qualifier and setters set-object-qualifier.
4. As an exception of the previous rules, when the result of a function is a bool, the form is object

-predicate?.

Fyne objects are represented by integer numbers. The system internally translates between these
numbers and objects. Occasionally, Fyne objects are created on the fly for performance reasons.
For example, sometimes color lists of the form (r g b a) with integers r, g,b, a are used instead
of creating and storing color objects using (nrgba r g b a). There are also sometimes shortcut
accessors using selector symbols and other convenience wrappers for Fyne functions. When in doubt,
refer to the Lisp help for details.

Version 2.4+891b3dc-gui.fyne2 63

Z3S5 Lisp Reference Manual 2024-1-2 15:04

When importing the GUI with DefGUI, a Config structure is provided that allows for restricted security.
This makes it possible to use the GUI functions in a restricted environment that e.g. does not allow the
creation of new windows.

3.13.1 activate-menu-last-submenu : procedure/1

Usage: (activate-menu-last-submenu menu)=> bool

Find the last active menu item traversing through open submenus, and activate its submenu if one is
found. Return true if a submenu was activated, nil otherwise.

See also: deactivate-menu-last-submenu, new-menu, activate-menu-next, activate-
menu-previous. →index

3.13.2 activate-menu-next : procedure/1

Usage: (activate-menu-next menu)

Activate the menu item following the currently active menu item, if there is any.

See also: activate-menu-previous, new-menu, activate-menu-last-submenu. →index

3.13.3 activate-menu-previous : procedure/1

Usage: (activate-menu-previous menu)

Activate the menu item before the currently active menu item, if there is any.

See also: activate-menu-next, new-menu, activate-menu-last-submenu. →index

3.13.4 add-canvas-shortcut : procedure/3

Usage: (add-canvas-shortcut canvas shortcut proc)

Add the given shortcut to the given canvas, calling the handler procwhen it is triggered. shortcut
must be a list consisting of valid keyboard modifier symbols and a valid key symbol. proc must be
a function that takes a shortcut as argument. If multiple non-modifier keys are present, only the
last one is taken. However, multiple modifier keys are possible. Possible modifiers are symbols or
corresponding strings in ‘(shift control alt suprt). Possible keys are in’(escape return tab backspace
insert delete right left down up page-up page-down home end f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 enter 0
1 2 3 4 5 6 7 8 9 key0 key1 key2 key3 key4 key5 key6 key7 key8 key9 a b c d e f g h i j k l m n o p q r s t u

Version 2.4+891b3dc-gui.fyne2 64

Z3S5 Lisp Reference Manual 2024-1-2 15:04

v w x y z space tick comma minus period slash backslash left-bracket right-bracket semicolon equal
asterisk plus back-tick) and their string variants.

See also: get-window-canvas, remove-canvas-shortcut. →index

3.13.5 append-form : procedure/0

Usage: (append-form form str canvas-object)

Append a new row to the bottom form consisting of a label str aligned with a canvas-object, which
may be an entry, button, etc.

See also: new-form. →index

3.13.6 center-window-on-screen : procedure/1

Usage: (center-window-on-screen window)

As the name implies, this function centers the window on the screen.

See also: set-window-full-screen, window-full-screen?. →index

3.13.7 close-gui : procedure/0

Usage: (close-gui)

Close the GUI, freeing all resources associated with it. After this function has been called, no further
GUI functions can be used.

See also: forget-gui-object, close-window. →index

3.13.8 close-window : procedure/1

Usage: (close-window window)

Closes window and delete it from internal storage. This frees window resources. It cannot be re-used
after this operation. Use window-hide if you want to close/hide a window only temporarily. Notice that
unlike in Fyne, there is no mechanism to close an application automatically after its main window has
been closed.

See also: hide-window. →index

Version 2.4+891b3dc-gui.fyne2 65

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.13.9 color->color64 : procedure/1

Usage: (color->color64 li)=> li

Convert a 32-bit NRGBA color list with values from 0 to 255 (inclusive) as it is used by Z3S5 Lisp’s color
dict to a 64-bit NRGBA64 color list with values from 0 to 65635 (inclusive) as they are used by the GUI.

See also: theme-color, the-color, *colors*. →index

3.13.10 color64->color : procedure/1

Usage: (color64->color li)=> li

Convert a 64-bit NRGBA64 color list with values from 0 to 65365 (inclusive) to a 32-bit color list with
values from 0 to 255 (inclusive) as they are used by Z3S5 Lisp’s colors dict.

See also: theme-color, the-color, *colors*. →index

3.13.11 count-text-grid-row-columns : procedure/2

Usage: (count-text-grid-row-columns grid row)=> int

Return the number of columns in row of grid, 0 if there are none.

See also: count-text-grid-rows, get-text-grid-cell, get-text-grid-row. →index

3.13.12 count-text-grid-rows : procedure/1

Usage: (count-text-grid-rows grid)=> int

Return the number of the last row in grid, 0 if there are none.

See also: count-text-grid-row-columns, get-text-grid-cell, get-text-grid-row.
→index

3.13.13 create-lorem-ipsum : procedure/3

Usage: (create-lorem-ipsum selector min max)=> str

Create random Lorem Ipsum fill text based on selector. If selector is ’word, then a word with at
least min letters and at most max letters is created. If selector is ’sentence, then a sentence with at
least min words and at most max words is created. If selector is ’paragraph, then a paragraph with
at least min sentences and at most max sentences is created.

Version 2.4+891b3dc-gui.fyne2 66

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: new-text-grid, new-entry. →index

3.13.14 deactivate-menu-child : procedure/1

Usage: (deactivate-menu-child menu)

Deactivate the currently active menu item and close its submenu if there is one.

See also: activate-menu-last-submenu, activate-menu-next, activate-menu-previous,
new-menu. →index

3.13.15 deactivate-menu-last-submenu : procedure/1

Usage: (deactivate-menu-last-submenu menu)

Traverse the menu and deactivate the last open submenu found.

See also: activate-menu-last-submenu, activate-menu-next, activate-menu-previous,
new-menu. →index

3.13.16 disable-object : procedure/1

Usage: (disable-object obj)

Disable the canvas object obj.

See also: enable-object, hide-object, show-object, object-disabled?, move-object,
resize-object, get-object-size, get-object-min-size, get-object-position, object
-visible?, refresh-object, new-entry, new-label. →index

3.13.17 enable-object : procedure/1

Usage: (enable-object obj)

Enable the canvas object obj.

See also: disable-object, hide-object, show-object, object-disabled?, move-object,
resize-object, get-object-size, get-object-min-size, get-object-position, object
-visible?, refresh-object, new-entry, new-label. →index

Version 2.4+891b3dc-gui.fyne2 67

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.13.18 entry-accepts-tab? : procedure/1

Usage: (entry-accepts-tab? entry)=> bool

Return nil when the entry does not accept tabs, t otherwise.

See also: new-entry. →index

3.13.19 focus-canvas-object : procedure/2

Usage: (focus-canvas-object canvas object)

Set the focus within canvas to object. The object must be a focusable canvas object such as an entry
or button.

See also: get-window-canvas, get-focused-canvas-object, focus-next-canvas-object,
focus-previous-canvas-object, unfocus-canvas-objects. →index

3.13.20 focus-next-canvas-object : procedure/1

Usage: (focus-next-canvas-object canvas)

Focus the next focusable user interface element in canvas.

See also: get-window-canvas, focus-canvas-object, focus-previous-canvas-object,
unfocus-canvas-objects, get-focused-canvas-object. →index

3.13.21 focus-previous-canvas-object : procedure/1

Usage: (focus-previous-canvas-object canvas)

Focus the previous focusable user interface element in canvas.

See also: get-window-canvas, focus-canvas-object, focus-next-canvas-object,
unfocus-canvas-objects, get-focused-canvas-object. →index

3.13.22 forget-gui-object : procedure/1

Usage: (forget-gui-object int)

Forget the GUI object int. This removes any association with the object but does not free internal
resources if the object still exists. Internal use only.

See also: close-window, close-gui. →index

Version 2.4+891b3dc-gui.fyne2 68

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.13.23 get-clipboard-content : procedure/0

Usage: (get-clipboard-content)=> str

Return the current content of the operating system clipboard as string. This function might raise an
error if clipboard access is prohibited by host security settings.

See also: set-clipboard-content. →index

3.13.24 get-device-info : procedure/0

Usage: (get-device-info)=> li

Return a list with information about the current host device. This returns an association list where ‘ori-
entation might be one of’(vertical vertical-upside-down left right unknown), self-explanatory boolean
keys ’is-mobile?, ’is-browser, ’has-keyboard?, and ’system-scale with the current scaling factor for
graphics as float. The system scale is used to dynamically scale user interface elements to remain
legible on hi res displays.

See also: close-gui. →index

3.13.25 get-entry-cursor : procedure/1

Usage: (get-entry-cursor entry)=> sym

Return a symbol that represents the current cursor of entry. Possible values are in ’(default text
crosshair pointer hresize vresize). Curiously, there is no way to set the cursor yet.

See also: new-entry. →index

3.13.26 get-entry-cursor-pos : procedure/1

Usage: (get-entry-cursor-pos entry)=> li

Return a list consisting of row number and column number of the current cursor position of the cursor
in entry.

See also: set-entry-cursor-row, set-entry-cursor-column. →index

3.13.27 get-focused-canvas-object : procedure/1

Usage: (get-focused-canvas-object canvas)=> int

Version 2.4+891b3dc-gui.fyne2 69

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Obtain the canvas object that is currently focused in canvas, or nil if there is none.

See also: get-window-canvas, focus-canvas-object, focus-next-canvas-object, focus-
previous-canvas-object. →index

3.13.28 get-label-text : procedure/1

Usage: (get-label-text label)=> str

Gets the text of label

See also: set-label-text, new-label. →index

3.13.29 get-menu-item-label : procedure/1

Usage: (get-menu-item-label item)=> str

Return the current label of the given menu item.

See also: set-menu-item-label, set-menu-item-disabled, menu-item-disabled, set
-menu-item-checked, menu-item-checked?, new-menu*, new-menu, new-menu-item,
new-menu-item-separator. →index

3.13.30 get-object-min-size : procedure/1

Usage: (get-object-min-size obj)=> li

Return the minimum size of canvas object obj as a list containing the width and height as floats. The
minimum size is computed based on various internal criteria and can only be changed for some special
widgets.

See also: disable-object, enable-object, show-object, hide-object, object-disabled?,
move-object, resize-object, get-object-size, get-object-position, object-visible
?, refresh-object, new-entry, new-label. →index

3.13.31 get-object-position : procedure/1

Usage: (get-object-position obj)=> li

Return the position of canvas object obj as a list containing the x and y coordinates as floats.

See also: disable-object, enable-object, show-object, hide-object, object-disabled?,
move-object, resize-object, get-object-size, get-object-min-size, object-visible
?, refresh-object, new-entry, new-label. →index

Version 2.4+891b3dc-gui.fyne2 70

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.13.32 get-object-size : procedure/1

Usage: (get-object-size obj)=> li

Return the size of canvas object obj as a list containing the width and height as floats.

See also: disable-object, enable-object, show-object, hide-object, object-disabled?,
move-object, resize-object, get-object-min-size, get-object-position, object-
visible?, refresh-object, new-entry, new-label. →index

3.13.33 get-progress-bar-value : procedure/1

Usage: (get-progress-bar-value bar)=> num

Return the current value of progress-bar bar.

See also: set-progress-bar, new-progress-bar, new-infinite-progress-bar. →index

3.13.34 get-scroll-offset : procedure/1

Usage: (get-scroll-offset scroll)=> li

Get the offset of scroll, which may be a hscroll, vscroll, or scroll, as a position list of (x y) where x and
y are floats.

See also: set-scroll-offset, new-scroll, new-hscroll, new-vscroll. →index

3.13.35 get-text-grid-cell : procedure/3

Usage: (get-text-grid-cell grid row column)=> li

Return the cell of grid at row and column. The result is a list consisting of a string containing one
unicode rune and a grid style list. The style might be nil. If it is not nil, then the list contains a foreground
and a background color list.

See also: get-text-grid-rune, set-text-grid-cell, get-text-grid-row, set-text-grid
-rune, set-text-grid-style-range, get-text-grid-style. →index

3.13.36 get-text-grid-cell-size : procedure/1

Usage: (get-text-grid-cell-size grid)=> li

Return the size of one text grid cell as a list of floats (w h) where w is the width and h is the height.

Version 2.4+891b3dc-gui.fyne2 71

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: new-text-grid. →index

3.13.37 get-text-grid-row : procedure/2

Usage: (get-text-grid-row grid row)=> li

Obtain a row of a text grid, where row is a 0-based index. This function returns a list of the form ’(row
style), where style is a grid style list and row is an array of lists consisting each of a unicode string
containing one rune and a grid style list. Each entry of the row array represents an individual unicode
glyph with a style, whereas the style list in the return argument represents an optional style of the
whole row.

See also: set-text-grid-row, get-text-grid-row-text, get-text-grid-cell, new-
text-grid, text-grid-show-line-numbers?, text-grid-show-whitespace?, get-text
-grid-tab-width, set-text-grid-tab-width, set-text-grid-show-line-numbers,
set-text-grid-show-whitespace, set-text-grid-cell, set-text-grid-row-style,
set-text-grid-rune, set-text-grid-style, set-text-grid-style-range, set-text
-grid-text, get-text-grid-text, remove-text-grid-row, insert-text-grid-row.
→index

3.13.38 get-text-grid-row-text : procedure/2

Usage: (get-text-grid-row-text grid row)=> str

Return the text of row in grid as a string without any style information.

See also: set-text-grid-rune, get-text-grid-row, get-text-grid-cell, set-text-grid
-row, new-text-grid, text-grid-show-line-numbers?, text-grid-show-whitespace?,
get-text-grid-tab-width, set-text-grid-tab-width, set-text-grid-show-line-
numbers, set-text-grid-show-whitespace, set-text-grid-cell, set-text-grid-row
-style, set-text-grid-rune, set-text-grid-style, set-text-grid-style-range,
set-text-grid-text, get-text-grid-text. →index

3.13.39 get-text-grid-rune : procedure/3

Usage: (get-text-grid-rune grid row column)=> str

Return the string containing a single rune at the cell in row and column of grid.

See also: get-text-grid-cell, get-text-grid-style, get-text-grid-row. →index

Version 2.4+891b3dc-gui.fyne2 72

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.13.40 get-text-grid-tab-width : procedure/1

Usage: (get-text-grid-tab-width grid)=> int

Return the current tabulator width of grid in space characters.

See also: new-text-grid, text-grid-show-line-numbers?, text-grid-show-whitespace?,
set-text-grid-tab-width, set-text-grid-show-line-numbers, set-text-grid-show
-whitespace, get-text-grid-row, get-text-grid-row-text, set-text-grid-cell,
get-text-grid-cell, set-text-grid-row, set-text-grid-row-style, set-text-grid
-rune, set-text-grid-style, set-text-grid-style-range, set-text-grid-text,
get-text-grid-text. →index

3.13.41 get-text-grid-text : procedure/1

Usage: (get-text-grid-text grid)=> str

Return the text of grid as a string without style information.

See also: set-text-grid-text, new-text-grid, get-text-grid-row, get-text-grid-rune,
get-text-grid-cell. →index

3.13.42 get-window-canvas : procedure/1

Usage: (get-window-canvas window)=> int

Get the canvas object of window, which is the area on which window elements are drawn. This is not
the same as the window-content, which is a widget or other user interface element. The canvas is used
for raw-drawing commands, for example for drawing circles and boxes. With a suitable layout that
doesn’t re-arrange objects, it can e.g. be used to draw overlays.

See also: get-window-content, set-window-content, focus-canvas-object. →index

3.13.43 get-window-content : procedure/2

Usage: (get-window-content window)=> int

Get the canvas object ID that represents the main content of the window. This is usually a widget or a
container with layout.

See also: set-window-content, get-window-canvas. →index

Version 2.4+891b3dc-gui.fyne2 73

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.13.44 get-window-icon : procedure/1

Usage: (get-window-icon window)=> int

Obtain the icon ID of the icon of window. The resource obtained is not guaranteed to be a visible icon
or might be a dummy, as not all windows have icons on all platforms.

See also: set-window-icon, new-icon, theme-icon. →index

3.13.45 get-window-main-menu : procedure/2

Usage: (get-window-main-menu window)=> int

Get the main menu ID of window.

See also: set-window-main-menu, new-main-menu. →index

3.13.46 get-window-title : procedure/1

Usage: (get-window-title window)=> str

Return the title of window as string.

See also: set-window-title. →index

3.13.47 hide-object : procedure/1

Usage: (hide-object obj)

Hide the canvas object obj.

See also: disable-object, enable-object, show-object, object-disabled?, move-object,
resize-object, get-object-size, get-object-min-size, get-object-position, object
-visible?, refresh-object, new-entry, new-label. →index

3.13.48 hide-window : procedure/1

Usage: (hide-window window)

Hides window. It can be shown again using show-window.

See also: show-window, close-window. →index

Version 2.4+891b3dc-gui.fyne2 74

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.13.49 insert-text-grid-row : procedure/2

Usage: (insert-text-grid-row grid row)

Insert a new text grid row before row in the given text grid. If row is the number of rows, a new row is
appended to the end of the text grid.

See also: remove-text-grid-row, count-text-grid-rows, new-text-grid, get-text-grid
-row. →index

3.13.50 menu-item-checked? : procedure/1

Usage: (menu-item-checked? item)=> bool

Return true if item is currently checked, nil otherwise.

See also: set-menu-item-checked, set-menu-item-disabled, menu-item-disabled?, get-
menu-item-label, set-menu-item-label, new-menu*, new-menu, new-menu-item, new-menu
-item-separator. →index

3.13.51 menu-item-disabled? : procedure/1

Usage: (menu-item-disabled? item)=> bool

Return true if item is currently disabled, nil otherwise.

See also: set-menu-item-disabled, set-menu-item-checked, menu-item-checked?, get-
menu-item-label, set-menu-item-label, new-menu*, new-menu, new-menu-item, new-menu
-item-separator. →index

3.13.52 move-object : procedure/2

Usage: (move-object obj position)

Move the canvas object obj to the given position list, containing its x and y coordinates as floats.

See also: disable-object, enable-object, show-object, hide-object, object-disabled?,
resize-object, get-object-size, get-object-min-size, get-object-position, object
-visible?, refresh-object, new-entry, new-label. →index

Version 2.4+891b3dc-gui.fyne2 75

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.13.53 new-app-tabs : procedure/0 or more

Usage: (new-app-tabs tab-item ...)=> int

Create a new application tabs, which allow users to choose different items within an application.

See also: new-doc-tabs, new-tabitem, new-tabitem-with-icon. →index

3.13.54 new-border : procedure/4 or more

Usage: (new-border top bottom left right [obj ...])=> int

Create a new border layout, which is one of the most useful layouts. Any of top, bottom, left, and
right is put in the respective place (with minimum size) and might also be nil for no widget. The
remaining canvas objects obj are arranged in the center and take maximum size. This allows you
e.g. to put a list on the left side of a window, a panel of buttons on the top, and the main content in
another container in the center.

See also: new-container, new-container-without-layout, new-vscroll, new-hscroll.
→index

3.13.55 new-button : procedure/2

Usage: (new-button label proc)=> int

Return a new button with the given label and without an icon. The callback proc is called without
arguments when the button is pressed or tapped.

See also: new-button-with-icon, new-hyperlink, new-label. →index

3.13.56 new-button-with-icon : procedure/3

Usage: (new-button-with-icon label icon proc)=> int

Return a new button the given label and icon. The callback proc is called without arguments when
the button is pressed.

See also: new-button, new-icon, theme-icon. →index

3.13.57 new-center-layout : procedure/0

Usage: (new-center-layout)=> int

Version 2.4+891b3dc-gui.fyne2 76

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Create a new center layout, which centers container elements (possibly overlapping). This may be
used for drawing centered on the window, for example.

See also: new-form, append-form, new-spacer, new-hbox-layout, new-vbox-layout,
new-grid-layout, new-grid-wrap-layout, new-form-layout, new-stack-layout, new-
container. →index

3.13.58 new-check : procedure/2

Usage: (new-check title proc)=> int

Create and return a new check box with the given title string and a callback procedure proc. The
callback proc is called with the new state of the check box as bool when it has changed.

See also: new-choice. →index

3.13.59 new-choice : procedure/3

Usage: (new-choice selector string-list proc)=> int

Create and return a new choice representing choices in string-list. If selector is ’radio-group, a
group of radio buttons is created with options instring-list. Ifselector is ’select, a more compact
selection menu is created with the options in string-list. The callback proc takes a string that
represents the choice that has been selected.

See also: new-check. →index

3.13.60 new-circle : procedure/1 or more

Usage: (new-circle fill-color [pos1] [pos2] [stroke-color] [stroke-width])=>
int

Draw and return a circle with the given NRGBA fill-color. If the optional pos1 and pos2 position
lists of x and y coordinates in floats are given , then the circle is drawn inside the rectangle defined by
these positions. The optional stroke-color and stroke-width arguments determine the outline
of the circle. Notice that circle’s size and position may be set by the layout of the container, so to set
these manually using pos1 and pos2 you need to make sure the underlying container has no such
layout.

See also: new-rectangle, new-line-new-text. →index

Version 2.4+891b3dc-gui.fyne2 77

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.13.61 new-combined-string-validator : procedure/1 or more

Usage: (new-combined-string-validator validator-1 [...validator-n])=> int

Combine validators validator-1 to validator-n into a combined string validator and return it.

See also: set-entry-validator, new-validator, new-regexp-validator, new-time-
validator, set-object-on-validation-change-callback, validate-object. →index

3.13.62 new-container : procedure/1 or more

Usage: (new-container layout obj ...)=> int

Create a new container with the givenlayout and various canvas objectsobj arranged by the layout.

See also: new-container-without-layout, new-border, new-vscroll, new-hscroll.
→index

3.13.63 new-container-without-layout : procedure/0 or more

Usage: (new-container-without-layout obj ...)=> int

Create a new container without a layout (overlapping objects) with the given canvas objects obj.

See also: new-container, new-border. →index

3.13.64 new-doc-tabs : procedure/0 or more

Usage: (new-doc-tabs tab-item ...)=> int

Create new document tabs, which allow users to choose different items in a window (not the application
as a whole like app-tabs).

See also: new-app-tabs, new-tabitem, new-tabitem-with-icon. →index

3.13.65 new-entry : procedure/1

Usage: (new-entry [selector])=> int

Create a new text entry field based on the optional selector symbol. selector can be a symbol in
’(single-line multi-line password). The default is ’single-line.

Version 2.4+891b3dc-gui.fyne2 78

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: set-entry-on-change-callback, set-entry-validator, entry-accepts-tab
?, get-entry-cursor-pos, set-entry-cursor-row, set-entry-cursor-column, set-
entry-on-cursor-change-callback, get-entry-cursor, get-entry-selected-text,
set-entry-min-rows-visible, set-entry-place-holder, set-entry-text. →index

3.13.66 new-form : procedure/0

Usage: (new-form)

Return a new form container, which orders widgets in rows, where each row has a label and a widget
whose columns are aligned with the other rows. Use append-form to add label and widgets.

See also: append-form. →index

3.13.67 new-form-layout : procedure/0

Usage: (new-form-layout)=> int

Create a form layout, which arranges elements in two columns per row, where the columns are
aligned.

See also: new-form, append-form, new-spacer, new-hbox-layout, new-vbox-layout,
new-grid-layout, new-grid-wrap-layout, new-center-layout, new-stack-layout,
new-container. →index

3.13.68 new-grid-layout : procedure/1

Usage: (new-grid-layout n)=> int

Create a new grid layout, which arranges elements in n columns.

See also: new-spacer, new-hbox-layout, new-vbox-layout, new-grid-wrap-layout, new-
form-layout, new-center-layout, new-stack-layout, new-container. →index

3.13.69 new-grid-wrap-layout : procedure/2

Usage: (new-grid-wrap-layout width height)=> int

Create a new grid wrap layout, which arranges elements such that each element has the given width
and height, and wraps lines based on the size of the parent container.

See also: new-spacer, new-hbox-layout, new-vbox-layout, new-grid-layout, new-form-
layout, new-center-layout, new-stack-layout, new-container. →index

Version 2.4+891b3dc-gui.fyne2 79

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.13.70 new-hbox-layout : procedure/0

Usage: (new-hbox-layout)=> int

Create a new horizontal box layout, which lays out container elements horizontally.

See also: new-spacer, new-vbox-layout, new-grid-layout, new-grid-wrap-layout, new-
form-layout, new-center-layout, new-stack-layout, new-container. →index

3.13.71 new-hscroll : procedure/1

Usage: (new-hscroll obj)=> int

Embed canvas object obj into a new horizontal scroll container, which allows the user to scroll hori-
zontally if obj does not fit into the hscroll container horizontally.

See also: new-scroll, new-vscroll, new-container, new-hbox-layout. →index

3.13.72 new-hsplit : procedure/2

Usage: (new-hsplit obj1 obj2)=> int

Return a new horizontal divider between canvas objectobj1 andobj2. The user can adjust the division
by drag & drop.

See also: set-split-offset, new-vsplit. →index

3.13.73 new-hyperlink : procedure/2

Usage: (new-hyperlink label url)=> int

Create a new hyperlink with given label string and an url string as embedded link. A hyperlink
looks like a label with link style; when it is clicked, the url is called by the default operating system
mechanism for opening urls. Using hyperlinks might be disallowed by the host system configuration
HyperlinksAllowed and may be re-written by the host system using the CheckHyperlinks function. If
HyperlinksAllowed is false in the active GUI config of the host, this function raises an error. It also
parses the given url and will raise an error if it does not represent a valid URL.

See also: new-button, new-label. →index

Warning: Allowing the host to open hyperlinks usually launches a web browser and the details
depend on the operating system. There is an added security risk!

Version 2.4+891b3dc-gui.fyne2 80

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.13.74 new-icon : procedure/1

Usage: (new-icon resource)=> int

Create a new icon from resource, which must be suitable to create an image.

See also: theme-icon. →index

3.13.75 new-image-from-file : procedure/1

Usage: (new-image-from-file path)=> int

Create and return a new image from the image file at path, which must be a PNG file.

See also: new-image-from-resource. →index

3.13.76 new-image-from-resource : procedure/1

Usage: (new-image-from-resource resource)=> int

Create and return a new image from the given resource.

See also: new-image-from-file, theme-icon. →index

3.13.77 new-label : procedure/1

Usage: (new-label str)=> int

Creates a new text label with string str.

See also: set-label-text. →index

3.13.78 new-line : procedure/1 or more

Usage: (new-line fill-color [pos1] [pos2] [stroke-color] [stroke-width])=>
int

Draw and return a line with the given NRGBA fill-color from optional position pos1 to position
pos2, where these are lists of x and y coordinates as floats. The optional stroke-color and stroke
-width determines the outer edges of the line.

See also: new-cirlce, new-rectangle, new-text. →index

Version 2.4+891b3dc-gui.fyne2 81

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.13.79 new-list : procedure/3

Usage: (new-list len-proc prep-proc update-proc)=> int

Create a new list display. A list consists of rows of simple items like labels. The len-proc must be a
procedure without arguments returning the length of the list as integer. The prep-proc must be a
procedure without arguments that returns a canvas object (i.e. a label or other widgets) representing a
template for a single list item. The update-proc must be a procedure that receives the ID of a canvas
object (given by the template) and the 0-based list index as arguments. This procedure then should
modify the canvas object with ID to display the given list item at the index. See the GUI examples on
how to use this function.

See also: new-table, new-tree. →index

3.13.80 new-main-menu : procedure/1 or more

Usage: (new-main-menu menu ...)=> int

Return a new main menu with the given menus. A main menu displays a menubar for a window on
some desktop platforms but it may also be displayed in other ways.

See also: new-menu, new-menu*. →index

3.13.81 new-menu : procedure/1

Usage: (new-menu menu*)=> int

Create a new visible menu widget from the abstract menu* created by new-menu*.

See also: new-menu*, new-main-menu. →index

3.13.82 new-menu* : procedure/1 or more

Usage: (new-menu* label [item...])=> int

Make a new abstract menu with given label and arbitary menu items item . . . following. The starred
function is used to define a menu but is not bound to any particular way of displaying it (popup-menu,
normal menu, main menu). Use new-menu and new-main-menu to create visible menus and menu
bars based on such abstract menus.

See also: refresh-menu*, new-menu, new-main-menu. →index

Version 2.4+891b3dc-gui.fyne2 82

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.13.83 new-menu-item : procedure/2 or more

Usage: (new-menu-item str proc [selector...])=> int

Create a new menu item with given label str and callback proc, which takes no arguments. The
optional selector symbol may be one of: ’is-quit - the item is the application Quit menu item (this is
dealt with differently by operating system requirements), ’is-separator - the item is a menu item sepa-
rator and the label string is ignored (redundent, use new-menu-item-separator instead), ’disabled
- the menu item is disabled, or ’checked - the menu item is checked.

See also: set-menu-item-checked, menu-item-checked?, set-menu-item-disabled, menu-
item-disabled?, get-menu-item-label, set-menu-item-label, new-menu*, new-menu, new
-menu-item-separator. →index

3.13.84 new-menu-item-separator : procedure/0

Usage: (new-menu-item-separator)=> int

Return a new menu item separator, which is a menu item without callback and label that displays a
separator between menu items in menus.

See also: new-menu-item. →index

3.13.85 new-progress-bar : procedure/0

Usage: (new-progress-bar)=> int

Create a new progress bar whose default minimum is 0.0 and maximum is 1.0.

See also: set-progress-bar, new-infinite-progress-bar, get-progress-bar-value.
→index

3.13.86 new-raster-with-pixels : procedure/1

Usage: (new-raster-with-pixels pixel-proc)=> int

Create a new raster image generated dynamically by the given pixel-proc. The pixel-proc takes
x and y pixel coordinates and the width and height of the image in pixels, and returns the color of
the pixel x, y as a color list of the form ’(red green blue [alpha]) where alpha is optional. Notice that
specifying the color of each pixel can be very CPU-intensive for larger images, so optimizations might
be necessary.

See also: new-image-from-file. →index

Version 2.4+891b3dc-gui.fyne2 83

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.13.87 new-rectangle : procedure/1 or more

Usage: (new-rectangle fill-color [width height] [position] [stroke-color] [
stroke-width] [corner-radius])=> int

Draw and return a rectangle with the given NRGBA fill-color. The optional int width and height
arguments set the width and height of the rectangle explicitly (otherwise they are 1). The optional
position argument must be a list of x and y coordinates as floats. The optional stroke-color and
stroke-width arguments determine the color and width of the outline of the rectangle, and the
optional corner-radious defines how rounded the rectangle is. Notice that the rectangle’s size and
position can be set by the layout of the container, so to set it manually you need to make sure the
underlying container has no layout that positions or resizes the rectangle.

See also: new-circle, new-line, new-text. →index

3.13.88 new-regexp-validator : procedure/2

Usage: (new-regexp-validator regexp reason)=> int

Create a new string validator from the regexp string, which must be a valid regular expression in Go’s
regexp syntax. The reason string is displayed to the user by widgets like entry when the validation
fails.

See also: set-entry-validator, new-validator, new-combined-string-validator, new
-time-validator, set-object-on-validation-change-callback, validate-object.
→index

3.13.89 new-scroll : procedure/1

Usage: (new-scroll obj)=> int

Embed canvas object obj into a new scroll container, which allows the user to scroll both horizontally
and vertically if obj does not fit into the scroll container.

See also: new-vscroll, new-hscroll, new-container, new-hbox-layout. →index

3.13.90 new-slider : procedure/3

Usage: (new-slider min max proc)=> int

Version 2.4+891b3dc-gui.fyne2 84

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Create a new slider that allows users to adjust numerical values. The min and max arguments must
be floats. The procedure proc takes the current slider float value as argument and is called when the
slider changes.

See also: set-slider-value. →index

3.13.91 new-spacer : procedure/0

Usage: (new-spacer)=> int

Create a new spacer, which adjusts size dynamically by taking up space and displaying nothing. Use
this to fill containers e.g. to right align a widget.

See also: new-hbox-layout, new-vbox-layout, new-grid-layout, new-grid-wrap-layout,
new-form-layout, new-center-layout, new-stack-layout, new-container. →index

3.13.92 new-stack-layout : procedure/0

Usage: (new-stack-layout)=> int

Create a new stack layout that stacks container elements on top of each other, overlapping. This may
be used for drawing, for example.

See also: new-form, append-form, new-spacer, new-hbox-layout, new-vbox-layout,
new-grid-layout, new-grid-wrap-layout, new-form-layout, new-center-layout, new-
container. →index

3.13.93 new-tabitem : procedure/2

Usage: (new-tabitem title obj)=> int

Create a new tab item for use in app-tabs and doc-tabs with a title and an embedded canvas object
obj shown when the tab item is selected in the tabs.

See also: new-tabitem-with-icon, new-app-tabs, new-doc-tabs. →index

3.13.94 new-tabitem-with-icon : procedure/3

Usage: (new-tabitem-with-icon title icon obj)=> int

Create a new tab item for use in app-tabs and doc-tabs with given title string, icon resource, and
embedded canvas object obj that shwon when the tab item is selected in the tabs.

See also: new-tabitem, new-app-tabs, new-doc-tabs. →index

Version 2.4+891b3dc-gui.fyne2 85

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.13.95 new-table : procedure/3

Usage: (new-table len-proc prep-proc update-proc)=> int

Create a new table display. A table consists of a number of rows, each of which has a fixed number
of columns such as labels. The len-proc must be a procedure without arguments returning the
length of the table as integer. The prep-proc must be a procedure without arguments that returns a
canvas object that represents the table row with updatable columns. The update-proc takes the row,
column, and ID of a canvas object and updates a table template with the right display for the table cell
at row and column.

See also: new-list, new-tree. →index

3.13.96 new-text : procedure/2

Usage: (new-text str color)=> int

Draw and return text with the given string str and foreground NRGBA color.

See also: set-text-alignment, set-text-size, set-text-style, new-line, new-cirle, new
-rectangle. →index

3.13.97 new-text-grid : procedure/0 or more

Usage: (new-text-grid [<string>] [show-line-numbers|show-whitespace|tab-width
<int>])=> int

Create a new text grid widget, which displays multiline text with custom background and foreground
colors. The optional string argument is the initial text of the grid without formatting. The following
symbols might be'show-line-numbers to turn the line number display on and'show-whitespace
to display white space characters by special unicode symbols. If the selector 'tab-width occurs,
then it must be immediately followed by an integer for the tabulator width of the text grid in space
characters.

See also: text-grid-show-line-numbers?, text-grid-show-whitespace?, get-text
-grid-tab-width, set-text-grid-tab-width, set-text-grid-show-line-numbers,
set-text-grid-show-whitespace, get-text-grid-row, get-text-grid-row-text, set-
text-grid-cell, get-text-grid-cell, set-text-grid-row, set-text-grid-row-style,
set-text-grid-rune, set-text-grid-style, set-text-grid-style-range, set-text
-grid-text, get-text-grid-text, remove-text-grid-row, insert-text-grid-row.
→index

Version 2.4+891b3dc-gui.fyne2 86

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.13.98 new-time-validator : procedure/1

Usage: (new-time-validator format-str)=> int

Create a new string validator for time and date based on the given templateformat-str. This validator
uses Go’s data parsing function and therefore is quite restrictive. Only datetimes entered in exactly
the format given (including timezones) validate successfully. To obtain a more relaxed date and time
validator, usenew-validator to create a custom validator with your own parsing or try anew-regexp
-validator.

See also: set-entry-validator, new-validator, new-combined-string-validator, new-
time-validator, new-regexp-validator, set-object-on-validation-change-callback,
validate-object. →index

3.13.99 new-tree : procedure/4

Usage: (new-tree child-uid-proc is-branch-proc create-node-proc update-node-
proc)=> int

Create a new tree display. A tree displays nested branches and leaf nodes. The child-uid-proc is a
procedure that takes an id string as argument. If the string is empty, it should return a list of top-level
branch uid strings. If the string is not empty, it represents an uid; the procedure should then return a
list of all child id strings of that branch. This defines the tree’s structure. All id strings must be unique
to the tree. The is-branch-proc takes an id string as argument and should return non-nil if the id
represents a branch, nil if it has no children. The create-node-proc takes a bool b as argument
and should return a branch template if b is non-nil and a leaf template object if b is nil. Finally, the
update-node-proc is a procedure that takes a node id string, a boolean that is true if the node is a
branch, and a node template canvas-object as it is returned by create-node-proc. The procedure
should fill the template with the display values for the respective node id.

See also: new-list, new-table. →index

3.13.100 new-validator : procedure/1

Usage: (new-validator proc)=> int

Create a new string validator based on validation procedure proc. The procedure proc takes a string
as argument and returns a string. If the string returned is not the empty string "", then validation fails
and the returned string is given as a reason for validation failure. If the empty string is returned, then
validation succeeds. If an error occurs in proc, then validation fails with the error’s error message as
reason. Notice that validators are fairly limited and can only be attached to a few validatable objects

Version 2.4+891b3dc-gui.fyne2 87

Z3S5 Lisp Reference Manual 2024-1-2 15:04

such as text entry fields. For a more general approach, it might make sense to implement your own
validation system based on key press, focus change, and change callbacks of various GUI objects.

See also: set-entry-validator, new-combined-string-validator, new-regexp-
validator, new-time-validator, set-object-on-validation-change-callback,
validate-object. →index

3.13.101 new-vbox-layout : procedure/0

Usage: (new-vbox-layout)=> int

Create a new vertical box layout, which lays out container elements vertically.

See also: new-spacer, new-hbox-layout, new-grid-layout, new-grid-wrap-layout, new-
form-layout, new-center-layout, new-stack-layout, new-container. →index

3.13.102 new-vscroll : procedure/1

Usage: (new-vscroll obj)=> int

Embed canvas object obj into a new vertical scroll container, which allows the user to scroll vertically
if obj does not fit into the vscroll container vertically.

See also: new-scroll, new-hscroll, new-container, new-vbox-layout. →index

3.13.103 new-vsplit : procedure/2

Usage: (new-vsplit obj1 obj2)=> int

Return a new vertical divider between canvas object obj1 and obj2. The user can adjust the division
by drag & drop.

See also: set-split-offset, new-hplit. →index

3.13.104 new-window : procedure/1

Usage: (new-window title)=> int

Create a new window with title string and return the window ID. This function raises an error if the
host configuration WindowsAllowed is not true. In certain embedded uses, creating new windows is
not allowed and you should check the documentation how to find a pre-configured window and add
user interface elements to it.

See also: set-window-content, close-window, show-window. →index

Version 2.4+891b3dc-gui.fyne2 88

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.13.105 nrgba : procedure/4

Usage: (nrgba red green blue alpha)=> int

Create an RGBA color where red, green, blue, and alpha are 8-bit uint integers, i.e., values between
0 and 255 (inclusive). Notice that some GUI functions require NRGBA color returned by this function,
whereas others require a color list of int values ’(red green blue alpha). This is for performance reasons,
since it sometimes faster to convert a list to a color on-the-fly and sometimes more convenient to store
pre-defined colors for later re-use.

See also: nrgba64, theme-color, new-rectangle, new-circle, new-line, new-text. →index

3.13.106 nrgba64 : procedure/4

Usage: (nrgba64 red green blue alpha)=> int

Create a 64-bit RGBA color where red, green, blue, and alpha are 16-bit uint integers, i.e., values
between 0 and 65365 (inclusive). Notice that some GUI functions require NRGBA64 color returned
by this function, whereas others require a color list of int values ’(red green blue alpha). This is for
performance reasons, since it sometimes faster to convert a list to a color on-the-fly and sometimes
more convenient to store pre-defined colors for later re-use.

See also: nrgba, theme-color, new-rectangle, new-circle, new-line, new-text. →index

3.13.107 object-disabled? : procedure/1

Usage: (object-disabled? obj)=> bool

Return true if the canvas object obj is disabled, nil otherwise.

See also: disable-object, enable-object, show-object, hide-object, move-object,
resize-object, get-object-size, get-object-min-size, get-object-position, object
-visible?, refresh-object, new-entry, new-label. →index

3.13.108 refresh-main-menu : procedure/1

Usage: (refresh-main-menu main-menu)

Refresh the given main-menu display. This should be called after some submenus or menu items in
the main menu have changed.

See also: new-main-menu, refresh-menu*. →index

Version 2.4+891b3dc-gui.fyne2 89

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.13.109 refresh-menu* : procedure/1

Usage: (refresh-menu* menu)

Refresh the given menu after a change was made that has a visual impact. This will refresh the menu
widget in which this abstract menu occurs.

See also: refresh-main-menu, new-menu*. →index

3.13.110 refresh-object : procedure/1

Usage: (refresh-object obj)

Refresh the canvas object obj, causing the graphical display to be re-drawn as soon as possible. This
may be needed if the object’s state has changed.

See also: disable-object, enable-object, show-object, hide-object, object-disabled?,
move-object, resize-object, get-object-size, get-object-min-size, object-visible
?, get-object-position, new-entry, new-label. →index

3.13.111 remove-canvas-shortcut : procedure/2

Usage: (remove-canvas-shortcut canvas shortcut)

Remove the shortcut from canvas, where shortcut is a list consisting of valid keyboard modifier
symbols and a valid key symbol.

See also: add-canvas-shortcut, get-window-canvas. →index

3.13.112 remove-text-grid-row : procedure/2

Usage: (remove-text-grid-row grid row)

Remove the row from the given text grid. An incorrect row index will result in an error.

See also: insert-text-grid-row, new-text-grid, get-text-grid-row. →index

3.13.113 resize-object : procedure/2

Usage: (resize-object obj width height)

Resize canvas object obj to the given width and height as floats.

Version 2.4+891b3dc-gui.fyne2 90

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: disable-object, enable-object, show-object, hide-object, object-disabled?
, move-object, get-object-size, get-object-min-size, get-object-position, object-
visible?, refresh-object, new-entry, new-label. →index

3.13.114 set-canvas-on-typed-key : procedure/2

Usage: (set-canvas-on-typed-key canvas proc)

Set the procedure proc called when a key is typed in canvas. proc takes two arguments, the first one
is a platform-independent key symbol and the second one is a platform- and keyboard-dependent
hardware scancode.

See also: set-canvas-on-typed-rune, add-canvas-shortcut, get-window-canvas.
→index

3.13.115 set-canvas-on-typed-rune : procedure/2

Usage: (set-canvas-on-typed-rune canvas proc)

Set the procedure proc called when a rune is typed in canvas. proc takes one argument, a string
containing a single Unicode rune.

See also: add-canvas-shortcut, get-window-canvas, set-canvas-on-typed-key. →index

3.13.116 set-clipboard-content : procedure/1

Usage: (set-clipboard-content str)

Set the operating system clipboard content to string str. This function might raise an error if clipboard
access is prohibited by host security settings.

See also: get-clipboard-content. →index

3.13.117 set-entry-cursor-column : procedure/2

Usage: (set-entry-cursor-column entry column)

Set the column position of the cursor in entry to integer column.

See also: get-entry-cursor-pos, set-entry-cursor-row. →index

Version 2.4+891b3dc-gui.fyne2 91

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.13.118 set-entry-cursor-row : procedure/2

Usage: (set-entry-cursor-row entry row)

Set the row position of the cursor in entry to integer row.

See also: get-entry-cursor-pos, set-entry-cursor-column. →index

3.13.119 set-entry-min-rows-visible : procedure/2

Usage: (set-entry-min-rows-visible entry rows)

Set the minimum number of rows of entry that are visible. This ensures that rows text rows are visible
and is a way of setting the entry’s minimum size. Curiously, there is no corresponding set-entry-min-
columns-visible function yet.

See also: new-entry. →index

3.13.120 set-entry-on-change-callback : procedure/2

Usage: (set-entry-on-change-callback entry proc)

Set the callback of entry that is triggered when the entry text changes. proc must be a procedure
that takes the entry text as string.

See also: new-entry, set-entry-cursor-change-callback. →index

3.13.121 set-entry-on-cursor-change-callback : procedure/2

Usage: (set-entry-cursor-change-callback entry proc)

Set the cursor change callback of entry to proc, which is a procedure that takes the entry ID as
argument.

See also: new-entry, set-entry-on-change-callback. →index

3.13.122 set-entry-place-holder : procedure/2

Usage: (set-entry-place-holder entry str)

Set the place holder string of entry to str. This is displayed as a prompt when no text is entered.

See also: new-entry, set-entry-text. →index

Version 2.4+891b3dc-gui.fyne2 92

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.13.123 set-entry-text : procedure/2

Usage: (set-entry-text entry str)

Set the text of entry to string str.

See also: new-entry, set-entry-place-holder. →index

3.13.124 set-entry-text-wrap : procedure/2

Usage: (set-entry-text-wrap entry selector)

Set or remove the text wrapping of entry, which is only relevant for multiline entries. selector must
be one of ’(none break wrap), where ’none indicates no text wrapping, ’break indicates that words are
broken without special wrapping algorithm, and ’word means word wrapping.

See also: new-entry. →index

3.13.125 set-entry-validator : procedure/2

Usage: (set-entry-validator entry validator)

Set the validator of entry. A validator must be created first from a special procedure or a regular
expression.

See also: new-entry, new-validator, new-combined-string-validator, new-time-
validator, new-regexp-validator, validate-object. →index

3.13.126 set-label-text : procedure/2

Usage: (set-label-text label str)

Sets the text of label to string str. This might resize the label depending on the layout in which the
label is put.

See also: get-label-text, new-label. →index

3.13.127 set-menu-item-checked : procedure/2

Usage: (set-menu-item-checked item checked?)

Set the menu item check mark display if checked? is non-nil, remove it otherwise.

Version 2.4+891b3dc-gui.fyne2 93

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: menu-item-checked?, set-menu-item-disabled, menu-item-disabled?, get-
menu-item-label, set-menu-item-label, new-menu*, new-menu, new-menu-item, new-menu
-item-separator. →index

3.13.128 set-menu-item-disabled : procedure/2

Usage: (set-menu-item-disabled item disabled?)

Disable the menu item if disabled? is non-nil, enable it otherwise.

See also: menu-item-disabled?, set-menu-item-checked, menu-item-checked?, get-menu
-item-label, set-menu-item-label, new-menu*, new-menu, new-menu-item, new-menu-
item-separator. →index

3.13.129 set-menu-item-label : procedure/2

Usage: (set-menu-item-label item str)

Set the label of menu item to str.

See also: get-menu-item-label, set-menu-item-disabled, menu-item-disabled, set
-menu-item-checked, menu-item-checked?, new-menu*, new-menu, new-menu-item,
new-menu-item-separator. →index

3.13.130 set-object-on-validation-change-callback : procedure/2

Usage: (set-object-on-validation-change-callback obj proc)

Set a validatable object’s obj validation change callback, which is called when the object’s validation
changes. The callback proc takes a string or nil as argument. When it is nil, the validation was
successful. When it is a string, then the validation failed with the string as reason. This can be used to
track validation changes of any validatable object (such as a text entry) to e.g. display custom messages
or icons when the validation fails or succeeds.

See also: validate-object, new-validator, set-entry-validator. →index

3.13.131 set-progress-bar : procedure/1 or more

Usage: (set-progress-bar bar value [selector value])

Set the value of progress-barbar as follows. If a single number is provided, then the current value of the
progress-bar is set to this number. If a selector symbol is provided, then if it is ’value, the progress-bar

Version 2.4+891b3dc-gui.fyne2 94

Z3S5 Lisp Reference Manual 2024-1-2 15:04

value is set to the following number, if it is ’max or ’min, then the progress-bar maximum or minimum
values are set to the respective following number. If it is ’formatter, then the following value must be a
procedure that takes the progress-bar ID as argument and returns a string that represents the display
of the progress-bar at the given time.

See also: get-progress-bar-value, new-progress-bar, new-infinite-progress-bar.
→index

3.13.132 set-scroll-offset : procedure/2

Usage: (set-scroll-offset scroll li)

Set the scroll offset to li, which is a position of the form (x y) where x and y are floats. If you don’t
want to change x or y respectively, you need to use get-scroll-offset first to get the value that
you don’t want to change, and construct the position from that.

See also: get-scroll-offset, new-scroll, new-hscroll, new-vscroll. →index

3.13.133 set-slider-value : procedure/2

Usage: (set-slider-value slider fl)

Set the value of slider to float fl.

See also: new-slider. →index

3.13.134 set-split-offset : procedure/2

Usage: (set-split-offset split offset)

Set the offset of split to float offset between 0.0 and 1.0. offset indicates the percentage between
the objects shown in the split. If offset is 0.0, then only the second object is shown, if it is 1.0 then
only the first object is shown.

See also: new-vsplit, new-hsplit. →index

3.13.135 set-text-alignment : procedure/2

Usage: (set-text-alignment text sym)

Set the alignment of text to sym, which must be one of ’(leading center trailing).

See also: new-text, set-text-size, set-text-style. →index

Version 2.4+891b3dc-gui.fyne2 95

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.13.136 set-text-grid-cell : procedure/4

Usage: (set-text-grid-cell grid row column li)

Set the text grid cell at row and column (both 0-indexed) to the list li, where li must consist of a
unicode string containing one rune and a valid grid style list.

See also: get-text-grid-cell, set-text-grid-rune, get-text-grid-row, set-text-grid
-row. →index

3.13.137 set-text-grid-row : procedure/3

Usage: (set-text-grid-row grid row row-spec)

Set the row of grid to the given row-spec, which is a list containing an array of grid cells like in the
return value of get-text-grid-row and a grid style for the row as a whole.

See also: get-text-grid-row, set-text-grid-row-style, set-text-grid-cell, set-text
-grid-rune, set-text-grid-style-range. →index

3.13.138 set-text-grid-row-style : procedure/3

Usage: (set-text-grid-row-style grid row style)

Set the style of text grid at row to the given grid style.

See also: set-text-grid-row, set-text-grid-cell, get-text-grid-row, set-text-grid-
rune, set-text-grid-style-range. →index

3.13.139 set-text-grid-rune : procedure/4

Usage: (set-text-grid-rune grid row column str)

Set the rune of grid at row and column to the unicode glyph in string str.

See also: set-text-grid-style, set-text-grid-cell, get-text-grid-cell. →index

3.13.140 set-text-grid-show-line-numbers : procedure/2

Usage: (set-text-grid-show-line-numbers grid show?)

Set whether grid shows line numbers. If show? is not nil, then line numbers are shown, otherwise
they are not shown.

Version 2.4+891b3dc-gui.fyne2 96

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: new-text-grid, text-grid-show-line-numbers?, text-grid-show-whitespace
?, get-text-grid-tab-width, set-text-grid-tab-width, set-text-grid-show-
whitespace, get-text-grid-row, get-text-grid-row-text, set-text-grid-cell,
get-text-grid-cell, set-text-grid-row, set-text-grid-row-style, set-text-grid
-rune, set-text-grid-style, set-text-grid-style-range, set-text-grid-text,
get-text-grid-text. →index

3.13.141 set-text-grid-show-whitespace : procedure/2

Usage: (set-text-grid-show-whitespace grid show?)

Set whether grid shows whitespace characters. If show? is not nil, then whitespace characters are
shown, otherwise they are not shown.

See also: new-text-grid, text-grid-show-line-numbers?, text-grid-show-whitespace?,
get-text-grid-tab-width, set-text-grid-tab-width, set-text-grid-show-line-
numbers, get-text-grid-row, get-text-grid-row-text, set-text-grid-cell, get-
text-grid-cell, set-text-grid-row, set-text-grid-row-style, set-text-grid-rune,
set-text-grid-style, set-text-grid-style-range, set-text-grid-text, get-text-
grid-text. →index

3.13.142 set-text-grid-style : procedure/4

Usage: (set-text-grid-style grid row column style)

Set the grid style of grid at row and column to the list style.

See also: set-text-grid-cell, set-text-grid-rune, set-text-grid-style-range.
→index

3.13.143 set-text-grid-style-range : procedure/6

Usage: (set-text-grid-style-range grid start-row start-column end-row end-
column style)

Set the grid style of grid starting at start-row and start-column and ending at end-row and
end-column (all inclusive) to the grid style.

See also: set-text-grid-style, set-text-grid-cell, set-text-grid-row-style.
→index

Version 2.4+891b3dc-gui.fyne2 97

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.13.144 set-text-grid-tab-width : procedure/2

Usage: (set-text-grid-tab-width grid width)

Set the tabulator width of grid to integer width space characters.

See also: new-text-grid, text-grid-show-line-numbers?, text-grid-show-whitespace?,
get-text-grid-tab-width, set-text-grid-show-line-numbers, set-text-grid-show
-whitespace, get-text-grid-row, get-text-grid-row-text, set-text-grid-cell,
get-text-grid-cell, set-text-grid-row, set-text-grid-row-style, set-text-grid
-rune, set-text-grid-style, set-text-grid-style-range, set-text-grid-text,
get-text-grid-text. →index

3.13.145 set-text-grid-text : procedure/2

Usage: (set-text-grid-text grid str)

Set the text of the text grid to the given str.

See also: get-text-grid-text, new-text-grid, set-text-grid-rune, set-text-grid-row.
→index

3.13.146 set-text-size : procedure/2

Usage: (set-text-size text size)

Set the size of text to float size.

See also: new-text, set-text-alignment, set-text-style. →index

3.13.147 set-text-style : procedure/2

Usage: (set-text-style text li

Set the style of text to the specification in list li, which must contain symbols in ’(bold italic
monospace symbol tab-width). If a symbol in the list is tab-width, it must be followed by an integer.
bold sets boldface, italic makes the style italic, monospace selects the monospace/typewriter font,
and symbol selects the symbol font. tab-width followed by an integer sets the width of tabulator in
terms of the number of space characters.

See also: new-text, set-text-alignment, set-text-size. →index

Version 2.4+891b3dc-gui.fyne2 98

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.13.148 set-window-content : procedure/2

Usage: (set-window-content window canvas-object)

Set the main content of the window, which must be an existing canvas object such as a widget or
container with layout.

See also: get-window-content, get-window-canvas, new-window. →index

3.13.149 set-window-fixed-size : procedure/2

Usage: (set-window-fixed-size window fixed-size?)

If fixed-size? is not nil, then window is set to fixed size, i.e., it has no resize button and cannot be
resized by the user; otherwise, the window is set to being resizable.

See also: window-fixed-size?. →index

3.13.150 set-window-full-screen : procedure/2

Usage: (set-window-full-screen window full-screen?)

If full-screen? is not nil, then window is set to full screen mode, otherwise the window is set to
normal mode. In full screen mode the window is centered and fills the whole screen of the main
monitor (multiple monitors are currently not supported).

See also: window-full-screen?, center-window-on-screen. →index

3.13.151 set-window-icon : procedure/1

Usage: (set-window-icon window resource)

Set the icon of window to the given icon resource. Setting the icon does not guarantee that it is
displayed, since this is platform-dependent.

See also: get-window-icon, new-icon, theme-icon. →index

3.13.152 set-window-main-menu : procedure/2

Usage: (set-window-main-menu window main-menu)

Set the main menu of window to main-menu.

See also: new-main-menu, new-menu, new-menu*. →index

Version 2.4+891b3dc-gui.fyne2 99

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.13.153 set-window-on-close-callback : procedure/2

Usage: (set-window-on-close-callback window proc)

Sets the close callback of window. proc must be a function that takes no arguments and is evaluated
when the window is closed.

See also: show-window, close-window, hide-window. →index

3.13.154 set-window-padded : procedure/2

Usage: (set-window-padded window padded?)

Ifpadded? is not nil, thenwindow is set to being padded. This is the default of new window. Ifpadded?
is nil, then the window’s padding is removed, which means that the whole content area of the window
can be filled with user interface elements and draw commands. This would be used for a game display,
for instance.

See also: window-padded?, set-window-full-screen, window-full-screen?, center-
window-on-screen. →index

3.13.155 set-window-size : procedure/2

Usage: (set-window-size window width height)

Set the size of window to width and height as floats. Sizes and positions are generally given as floats
whose accuracy is only guaranteed to 32 bit.

See also: new-window, show-window, hide-window. →index

3.13.156 set-window-title : procedure/2

Usage: (set-window-title window title)

Set the title of window to string title.

See also: get-window-title. →index

3.13.157 show-object : procedure/1

Usage: (show-object obj)

Show the canvas object obj.

Version 2.4+891b3dc-gui.fyne2 100

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: disable-object, enable-object, hide-object, object-disabled?, move-object,
resize-object, get-object-size, get-object-min-size, get-object-position, object
-visible?, refresh-object, new-entry, new-label. →index

3.13.158 text-grid-show-line-numbers? : procedure/1

Usage: (text-grid-show-line-numbers? grid)=> bool

Return true if the text grid shows line numbers, nil otherwise.

See also: new-text-grid, text-grid-show-whitespace?, get-text-grid-tab-width,
set-text-grid-tab-width, set-text-grid-show-line-numbers, set-text-grid-show
-whitespace, get-text-grid-row, get-text-grid-row-text, set-text-grid-cell,
get-text-grid-cell, set-text-grid-row, set-text-grid-row-style, set-text-grid
-rune, set-text-grid-style, set-text-grid-style-range, set-text-grid-text,
get-text-grid-text. →index

3.13.159 text-grid-show-whitespace? : procedure/1

Usage: (text-grid-show-whitespace? grid)=> bool

Return true if the text grid shows whitespace glyphs, nil otherwise.

See also: new-text-grid, text-grid-show-line-numbers?, get-text-grid-tab-width,
set-text-grid-tab-width, set-text-grid-show-line-numbers, set-text-grid-show
-whitespace, get-text-grid-row, get-text-grid-row-text, set-text-grid-cell,
get-text-grid-cell, set-text-grid-row, set-text-grid-row-style, set-text-grid
-rune, set-text-grid-style, set-text-grid-style-range, set-text-grid-text,
get-text-grid-text. →index

3.13.160 theme-color : procedure/1

Usage: (theme-color selector)=> li

Obtain a theme color as color list. selectormust be one of ’(foreground background button disabled-
button disabled disabled-text error focus hover input-background input-border menu-background
overlay-background place-holder pressed primary scroll-bar selection separator shadow success
warning).

See also: theme-icon, nrgba64, nrgba, color->color-64, color-64->color, *colors*.
→index

Version 2.4+891b3dc-gui.fyne2 101

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.13.161 theme-icon : procedure/1

Usage: (theme-icon selector)=> int

Obtain a pre-defined icon from the application’s theme based on the symbol selector, which may be
one of ’(cancel check-button check-button-checked color-achromatic color-chromatic color-palette
computer confirm content-add content-clear content-copy content-cut content-paste content-redo
content-remove content-undo delete document-create document-print document download error
file-application file-audio file-image file-text file-video file folder-new folder-open folder grid help his-
tory home info list login logout mail-attachment mail-compose mail-forward mail-reply-all mail-reply
mail-send media-fast-forward media-fast-rewind media-music media-pause media-photo media-play
media-record media-replay media-skip-next media-skip-previous media-stop media-video media-
expand menu more-horizontal more-vertical move-down move-up navigate-back navigate-next ques-
tion radio-button radio-button-checked search-replace search settings storage upload view-full-screen
view-refresh view-restore visibility-off visibility volume-down volume-mute volume-up warning).

See also: new-icon, new-image-from-, new-image-from-resource. →index

3.13.162 theme-is-dark? : procedure/1

Usage: (theme-is-dark?)=> bool

Return true if the current GUI theme is dark, nil otherwise.

See also: theme-color, *colors*. →index

3.13.163 trigger-menu-last : procedure/1

Usage: (trigger-menu-last menu)

Find the last active menu or submenu item and trigger it.

See also: activate-menu-last-submenu, activate-menu-next, activate-menu-previous,
new-menu. →index

3.13.164 unfocus-canvas-objects : procedure/1

Usage: (unfocus-canvas-objects canvas)

Remove the focus on any user interface element in canvas.

See also: get-window-canvas, focus-canvas-object, focus-next-canvas-object, focus-
previous-canvas-object, get-focused-canvas-object. →index

Version 2.4+891b3dc-gui.fyne2 102

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.13.165 validate-object : procedure/2

Usage: (validate-object obj)=> str

Validate the validatable object obj programmatically and return the validation failure as string, or the
empty string if validation succeeded. It sometimes makes sense to call this explicitly in order to force
the object to display its validation state.

See also: set-object-on-validation-change-callback, new-validator, set-entry-
validator. →index

3.13.166 window-fixed-size? : procedure/1

Usage: (window-fixed-size? window)=> bool

Return nil if window is fixed size, true otherwise.

See also: set-window-fixed-size. →index

3.13.167 window-full-screen? : procedure/1

Usage: (window-full-screen? window)=> bool

Return nil if window is full screen, true otherwise.

See also: set-window-full-screen, center-window-on-screen. →index

3.13.168 window-padded? : procedure/1

Usage: (window-padded? window)=> bool

Return nil if window is padded, true otherwise.

See also: set-window-padded, set-window-full-screen, center-window-on-screen.
→index

3.13.169 wrap-delete-text-grid : procedure/8

Usage: (wrap-delete-text-grid grid range-list wrapcol soft-wrap? hard-lf-rune
soft-lf-rune cursor-row cursor-column)=> li

This helper implements deletion with word wrapping in grid. The range-list must contain integers
of the form (start-row start-colum end-row end-column), which must be within the grid’s maximum

Version 2.4+891b3dc-gui.fyne2 103

Z3S5 Lisp Reference Manual 2024-1-2 15:04

row and column ranges. wrapcol is an integer indicating the number of chars per line; any more chars
are wrapped. If soft-wrap? is not nil, then the paragraphs in which deletion takes place are soft-
wrapped. hard-lf-rune is a string containing the rune for a hard line feed, whereas soft-lf-rune
is a string containing the rune for soft line feeds. The current cursor-row and cursor-column must
be provided as well; when the function wraps the deleted paragraphs, their values are updated and
returned in the list li, which is of the form (new-cursor-row new-cursor-column).

See also: wrap-insert-text-grid, new-text-grid. →index

3.13.170 wrap-insert-text-grid : procedure/8

Usage: (wrap-insert-text-grid grid cells row col wrapcol soft-wrap? hard-lf-
rune soft-lf-rune)=> li

This helper implements inserting styled text with word wrapping in grid. cells must be a list of text
grid cells, each of which consists of a rune string, and a list containing a foreground and background
color, or nil. row and col are the line and column in grid before which the text is inserted. The number
of characters per line is indicated with wrapcol. If soft-wrap? is true, then the paragraph into which
it is inserted is soft-word-wrapped, using soft-lf-rune as a line ending. Otherwise, hard-lf-rune
is used for line-endings, which is also used for the last line of a paragraph. The returned list of the
form (new-cursor-row new-cursor-column) reflects the updated cursor position if row and col are the
current cursor position.

See also: wrap-delete-text-grid, new-text-grid. →index

3.14 Help System

This section lists functions related to the built-in help system.

3.14.1 help : dict

Usage: *help*

Dict containing all help information for symbols.

See also: help, defhelp, apropos. →index

3.14.2 apropos : procedure/1

Usage: (apropos sym)=> #li

Version 2.4+891b3dc-gui.fyne2 104

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Get a list of procedures and symbols related to sym from the help system.

See also: defhelp, help-entry, help, *help*. →index

3.14.3 help : macro/1

Usage: (help sym)

Display help information about sym (unquoted).

See also: defhelp, help-topics, help-about, help-topic-info, set-help-topic-info,
help-entry, *help*, apropos. →index

3.14.4 help->manual-entry : nil

Usage: (help->manual-entry key [level] [link?])=> str

Looks up help for key and converts it to a manual section as markdown string. If there is no entry for
key, then nil is returned. The optional level integer indicates the heading nesting. If link? is true an
anchor is created for the key.

See also: help. →index

3.14.5 help-about : procedure/1 or more

Usage: (help-about topic [sel])=> li

Obtain a list of symbols for which help about topic is available. If optional sel argument is left out
or any, then any symbols with which the topic is associated are listed. If the optional sel argument
is first, then a symbol is only listed if it has topic as first topic entry. This restricts the number of
entries returned to a more essential selection.

See also: help-topics, help, apropos. →index

3.14.6 help-entry : procedure/1

Usage: (help-entry sym)=> list

Get usage and help information for sym.

See also: defhelp, help, apropos, *help*, help-topics, help-about, set-help-topic-info,
help-topic-info. →index

Version 2.4+891b3dc-gui.fyne2 105

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.14.7 help-strings : procedure/2

Usage: (help-strings sym del)=> li

Obtain a string of help strings for a given symbol sym. The fields in the string are separated by string
del.

See also: help, help-entry, *help*. →index

3.14.8 help-topic-info : procedure/1

Usage: (help-topic-info topic)=> li

Return a list containing a heading and an info string for help topic, or nil if no info is available.

See also: set-help-topic-info, defhelp, help. →index

3.14.9 help-topics : procedure/0

Usage: (help-topics)=> li

Obtain a list of help topics for commands.

See also: help, help-topic, apropos. →index

3.14.10 prune-unneeded-help-entries : procedure/0

Usage: (prune-unneeded-help-entries)

Remove help entries for which no toplevel symbol is defined. This function may need to be called
when a module is not being used (e.g. because of a missing build tag) and it is desirable that only help
for existing symbols is available.

See also: find-unneeded-help-entries, find-missing-help-entries, help, *help*.
→index

3.14.11 set-help-topic-info : procedure/3

Usage: (set-help-topic-info topic header info)

Set a human-readable information entry for help topic with human-readable header and info
strings.

See also: defhelp, help-topic-info. →index

Version 2.4+891b3dc-gui.fyne2 106

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.15 Library System

This miscellaneous mini-library system allows importing programs with a prefix by source-transforming
them.

3.15.1 global-sym? : procedure/1

Usage: (global-sym? sym)=> bool

Returns true if sym is a global symbol, nil otherwise. By convention, a symbol counts as global if it
starts with a "*" character. This is used by library functions to determine whether a top-level symbol
ought to be treated as local or global to the library.

See also: load, include, sym?. →index

3.15.2 load : procedure/1 or more

Usage: (load prefix [fi])

Loads the Lisp file at fi as a library or program with the given prefix. If only a prefix is specified,
load attempts to find a corresponding file at path (str+ (sysdir ’z3s5-data) “/prg/prefix/prefix.lisp”).
Loading binds all non-global toplevel symbols of the definitions in file fi to the form prefix.symbol
and replaces calls to them in the definitions appropriately. Symbols starting with "" such as cancel*
are not modified. To give an example, if fi contains a definition (defun bar . . .) and the prefix is ’foo,
then the result of the import is equivalent to (defun foo.bar . . .), and so on for any other definitions.
The importer preorder-traverses the source and looks for setq and lambdas after macro expansion has
taken place. By convention, the entry point of executable programs is a function (run) so the loaded
program can be executed with the command (prefix.run).

See also: include, global-sym?. →index

3.16 Soundex, Metaphone, etc.

The package ling provides various phonemic transcription functions like Soundex and Metaphone
that are commonly used for fuzzy search and similarity comparisons between strings.

3.16.1 ling.damerau-levenshtein : procedure/2

Usage: (ling.damerau-levenshtein s1 s2)=> num

Version 2.4+891b3dc-gui.fyne2 107

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Compute the Damerau-Levenshtein distance between s1 and s2.

See also: ling.match-rating-compare, ling.levenshtein, ling.jaro-winkler, ling
.jaro, ling.hamming, ling.match-rating-codex, ling.porter, ling.nysiis, ling.
metaphone, ling.soundex. →index

3.16.2 ling.hamming : procedure/2

Usage: (ling-hamming s1 s2)=> num

Compute the Hamming distance between s1 and s2.

See also: ling.match-rating-compare, ling.levenshtein, ling.jaro-winkler, ling
.jaro, ling.damerau-levenshtein, ling.match-rating-codex, ling.porter, ling.
nysiis, ling.metaphone, ling.soundex. →index

3.16.3 ling.jaro : procedure/2

Usage: (ling.jaro s1 s2)=> num

Compute the Jaro distance between s1 and s2.

See also: ling.match-rating-compare, ling.levenshtein, ling.jaro-winkler, ling.
hamming, ling.damerau-levenshtein, ling.match-rating-codex, ling.porter, ling.
nysiis, ling.metaphone, ling.soundex. →index

3.16.4 ling.jaro-winkler : procedure/2

Usage: (ling.jaro-winkler s1 s2)=> num

Compute the Jaro-Winkler distance between s1 and s2.

See also: ling.match-rating-compare, ling.levenshtein, ling.jaro, ling.hamming,
ling.damerau-levenshtein, ling.match-rating-codex, ling.porter, ling.nysiis,
ling.metaphone, ling.soundex. →index

3.16.5 ling.levenshtein : procedure/2

Usage: (ling.levenshtein s1 s2)=> num

Compute the Levenshtein distance between s1 and s2.

Version 2.4+891b3dc-gui.fyne2 108

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: ling.match-rating-compare, ling.jaro-winkler, ling.jaro, ling.hamming,
ling.damerau-levenshtein, ling.match-rating-codex, ling.porter, ling.nysiis,
ling.metaphone, ling.soundex. →index

3.16.6 ling.match-rating-codex : procedure/1

Usage: (ling.match-rating-codex s)=> str

Compute the Match-Rating-Codex of string s.

See also: ling.match-rating-compare, ling.levenshtein, ling.jaro-winkler, ling
.jaro, ling.hamming, ling.damerau-levenshtein, ling.porter, ling.nysiis, ling.
metaphone, ling.soundex. →index

3.16.7 ling.match-rating-compare : procedure/2

Usage: (ling.match-rating-compare s1 s2)=> bool

Returns true if s1 and s2 are equal according to the Match-rating Comparison algorithm, nil other-
wise.

See also: ling.match-rating-compare, ling.levenshtein, ling.jaro-winkler, ling
.jaro, ling.hamming, ling.damerau-levenshtein, ling.match-rating-codex, ling.
porter, ling.nysiis, ling.metaphone, ling.soundex. →index

3.16.8 ling.metaphone : procedure/1

Usage: (ling.metaphone s)=> str

Compute the Metaphone representation of string s.

See also: ling.match-rating-compare, ling.levenshtein, ling.jaro-winkler, ling
.jaro, ling.hamming, ling.damerau-levenshtein, ling.match-rating-codex, ling.
porter, ling.nysiis, ling.soundex. →index

3.16.9 ling.nysiis : procedure/1

Usage: (ling.nysiis s)=> str

Compute the Nysiis representation of string s.

Version 2.4+891b3dc-gui.fyne2 109

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: ling.match-rating-compare, ling.levenshtein, ling.jaro-winkler, ling
.jaro, ling.hamming, ling.damerau-levenshtein, ling.match-rating-codex, ling.
porter, ling.metaphone, ling.soundex. →index

3.16.10 ling.porter : procedure/1

Usage: (ling.porter s)=> str

Compute the stem of word string s using the Porter stemming algorithm.

See also: ling.match-rating-compare, ling.levenshtein, ling.jaro-winkler, ling
.jaro, ling.hamming, ling.damerau-levenshtein, ling.match-rating-codex, ling.
nysiis, ling.metaphone, ling.soundex. →index

3.16.11 ling.soundex : procedure/1

Usage: (ling.soundex s)=> str

Compute the Soundex representation of string s.

See also: ling.match-rating-compare, ling.levenshtein, ling.jaro-winkler, ling
.jaro, ling.hamming, ling.damerau-levenshtein, ling.match-rating-codex, ling.
porter, ling.nysiis, ling.metaphone, ling.soundex. →index

3.17 Lisp - Traditional Lisp Functions

This section comprises a large number of list processing functions as well the standard control flow
macros and functions you’d expect in a Lisp system.

3.17.1 alist? : procedure/1

Usage: (alist? li)=> bool

Return true if li is an association list, nil otherwise. This also works for a-lists where each element is a
pair rather than a full list.

See also: assoc. →index

Version 2.4+891b3dc-gui.fyne2 110

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.17.2 and : macro/0 or more

Usage: (and expr1 expr2 ...)=> any

Evaluate expr1 and if it is not nil, then evaluate expr2 and if it is not nil, evaluate the next expression,
until all expressions have been evaluated. This is a shortcut logical and.

See also: or. →index

3.17.3 append : procedure/1 or more

Usage: (append li1 li2 ...)=> li

Concatenate the lists given as arguments.

See also: cons. →index

3.17.4 apply : procedure/2

Usage: (apply proc arg)=> any

Apply function proc to argument list arg.

See also: functional?. →index

3.17.5 assoc : procedure/2

Usage: (assoc key alist)=> li

Return the sublist of alist that starts with key if there is any, nil otherwise. Testing is done with
equal?. An association list may be of the form ((key1 value1)(key2 value2). . .) or ((key1 . value1) (key2 .
value2) . . .)

See also: assoc, assoc1, alist?, eq?, equal?. →index

3.17.6 assoc1 : procedure/2

Usage: (assoc1 sym li)=> any

Get the second element in the first sublist in li that starts with sym. This is equivalent to (cadr (assoc
sym li)).

See also: assoc, alist?. →index

Version 2.4+891b3dc-gui.fyne2 111

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.17.7 assq : procedure/2

Usage: (assq key alist)=> li

Return the sublist of alist that starts with key if there is any, nil otherwise. Testing is done with eq?.
An association list may be of the form ((key1 value1)(key2 value2). . .) or ((key1 . value1) (key2 . value2)
. . .)

See also: assoc, assoc1, eq?, alist?, equal?. →index

3.17.8 atom? : procedure/1

Usage: (atom? x)=> bool

Return true if x is an atomic value, nil otherwise. Atomic values are numbers and symbols.

See also: sym?. →index

3.17.9 bool? : procedure/1

Usage: (bool? datum)=> bool

Return true if datum is either true or nil. Note: This predicate only exists for type-completeness and
you should never use it as part of testing whether something is true or false - per convention, a value
is true if it is non-nil and not when it is true, which is the special boolean value this predicate tests in
addition to nil.

See also: null?, not. →index

3.17.10 build-list : procedure/2

Usage: (build-list n proc)=> list

Build a list with n elements by applying proc to the counter n each time.

See also: list, list?, map, foreach. →index

3.17.11 caaar : procedure/1

Usage: (caaar x)=> any

Equivalent to (car (car (car x))).

Version 2.4+891b3dc-gui.fyne2 112

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: car, cdr, caar, cadr, cdar, cddr, caadr, cadar, caddr, cdaar, cdadr, cddar, cdddr,
nth, 1st, 2nd, 3rd. →index

3.17.12 caadr : procedure/1

Usage: (caadr x)=> any

Equivalent to (car (car (cdr x))).

See also: car, cdr, caar, cadr, cdar, cddr, caaar, cadar, caddr, cdaar, cdadr, cddar, cdddr,
nth, 1st, 2nd, 3rd. →index

3.17.13 caar : procedure/1

Usage: (caar x)=> any

Equivalent to (car (car x)).

See also: car, cdr, cadr, cdar, cddr, caaar, caadr, cadar, caddr, cdaar, cdadr, cddar, cdddr,
nth, 1st, 2nd, 3rd. →index

3.17.14 cadar : procedure/1

Usage: (cadar x)=> any

Equivalent to (car (cdr (car x))).

See also: car, cdr, caar, cadr, cdar, cddr, caaar, caadr, caddr, cdaar, cdadr, cddar, cdddr,
nth, 1st, 2nd, 3rd. →index

3.17.15 caddr : procedure/1

Usage: (caddr x)=> any

Equivalent to (car (cdr (cdr x))).

See also: car, cdr, caar, cadr, cdar, cddr, caaar, caadr, cadar, cdaar, cdadr, cddar, cdddr,
nth, 1st, 2nd, 3rd. →index

Version 2.4+891b3dc-gui.fyne2 113

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.17.16 cadr : procedure/1

Usage: (cadr x)=> any

Equivalent to (car (cdr x)).

See also: car, cdr, caar, cdar, cddr, caaar, caadr, cadar, caddr, cdaar, cdadr, cddar, cdddr,
nth, 1st, 2nd, 3rd. →index

3.17.17 car : procedure/1

Usage: (car li)=> any

Get the first element of a list or pair li, an error if there is not first element.

See also: list, list?, pair?. →index

3.17.18 case : macro/2 or more

Usage: (case expr (clause1 ... clausen))=> any

Standard case macro, where you should use t for the remaining alternative. Example: (case (get dict
’key) ((a b) (out “a or b”))(t (out “something else!”))).

See also: cond. →index

3.17.19 cdaar : procedure/1

Usage: (cdaar x)=> any

Equivalent to (cdr (car (car x))).

See also: car, cdr, caar, cadr, cdar, cddr, caaar, caadr, cadar, caddr, cdadr, cddar, cdddr,
nth, 1st, 2nd, 3rd. →index

3.17.20 cdadr : procedure/1

Usage: (cdadr x)=> any

Equivalent to (cdr (car (cdr x))).

See also: car, cdr, caar, cadr, cdar, cddr, caaar, caadr, cadar, caddr, cdaar, cddar, cdddr,
nth, 1st, 2nd, 3rd. →index

Version 2.4+891b3dc-gui.fyne2 114

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.17.21 cdar : procedure/1

Usage: (cdar x)=> any

Equivalent to (cdr (car x)).

See also: car, cdr, caar, cadr, cddr, caaar, caadr, cadar, caddr, cdaar, cdadr, cddar, cdddr,
nth, 1st, 2nd, 3rd. →index

3.17.22 cddar : procedure/1

Usage: (cddar x)=> any

Equivalent to (cdr (cdr (car x))).

See also: car, cdr, caar, cadr, cdar, cddr, caaar, caadr, cadar, caddr, cdaar, cdadr, cdddr,
nth, 1st, 2nd, 3rd. →index

3.17.23 cdddr : procedure/1

Usage: (cdddr x)=> any

Equivalent to (cdr (cdr (cdr x))).

See also: car, cdr, caar, cadr, cdar, cddr, caaar, caadr, cadar, caddr, cdaar, cdadr, cddar,
nth, 1st, 2nd, 3rd. →index

3.17.24 cddr : procedure/1

Usage: (cddr x)=> any

Equivalent to (cdr (cdr x)).

See also: car, cdr, caar, cadr, cdar, caaar, caadr, cadar, caddr, cdaar, cdadr, cddar, cdddr,
nth, 1st, 2nd, 3rd. →index

3.17.25 cdr : procedure/1

Usage: (cdr li)=> any

Get the rest of a list li. If the list is proper, the cdr is a list. If it is a pair, then it may be an element. If
the list is empty, nil is returned.

See also: car, list, list?, pair?. →index

Version 2.4+891b3dc-gui.fyne2 115

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.17.26 cond : special form

Usage: (cond ((test1 expr1 ...)(test2 expr2 ...)...)=> any

Evaluate the tests sequentially and execute the expressions after the test when a test is true. To express
the else case, use (t exprn . . .) at the end of the cond-clauses to execute exprn. . .

See also: if, when, unless. →index

3.17.27 cons : procedure/2

Usage: (cons a b)=> pair

Cons two values into a pair. If b is a list, the result is a list. Otherwise the result is a pair.

See also: cdr, car, list?, pair?. →index

3.17.28 cons? : procedure/1

Usage: (cons? x)=> bool

return true if x is not an atom, nil otherwise.

See also: atom?. →index

3.17.29 count-partitions : procedure/2

Usage: (count-partitions m k)=> int

Return the number of partitions for divding m items into parts of size k or less, where the size of the last
partition may be less than k but the remaining ones have size k.

See also: nth-partition, get-partitions. →index

3.17.30 defmacro : macro/2 or more

Usage: (defmacro name args body ...)

Define a macro name with argument list args and body. Macros are expanded at compile-time.

See also: macro. →index

Version 2.4+891b3dc-gui.fyne2 116

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.17.31 defun : macro/1 or more

Usage: (defun ident (params ...)body ...)

Define a function with name ident, a possibly empty list of params, and the remaining body expres-
sions. This is a macro for (setq ident (lambda (params . . .) body . . .)) and binds the lambda-form
to the given symbol. Like lambdas, the params of defun allow for a &rest keyword before the last
parameter name. This binds all remaining arguments of a variadic function call to this parameter as a
list.

See also: setq, defmacro. →index

3.17.32 dolist : macro/1 or more

Usage: (dolist (name list [result])body ...)=> li

Traverse the list list in order, binding name to each element subsequently and evaluate the body ex-
pressions with this binding. The optional result is the result of the traversal, nil if it is not provided.

See also: letrec, foreach, map. →index

3.17.33 dotimes : macro/1 or more

Usage: (dotimes (name count [result])body ...)=> any

Iterate count times, binding name to the counter starting from 0 until the counter has reached count-1,
and evaluate the body expressions each time with this binding. The optional result is the result of
the iteration, nil if it is not provided.

See also: letrec, dolist, while. →index

3.17.34 eq? : procedure/2

Usage: (eq? x y)=> bool

Return true if x and y are equal, nil otherwise. In contrast to other LISPs, eq? checks for deep equality
of arrays and dicts. However, lists are compared by checking whether they are the same cell in memory.
Use equal? to check for deep equality of lists and other objects.

See also: equal?. →index

Version 2.4+891b3dc-gui.fyne2 117

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.17.35 eql? : procedure/2

Usage: (eql? x y)=> bool

Returns true if x is equal to y, nil otherwise. This is currently the same as equal? but the behavior
might change.

See also: equal?. →index

Warning: Deprecated.

3.17.36 equal? : procedure/2

Usage: (equal? x y)=> bool

Return true if x and y are equal, nil otherwise. The equality is tested recursively for containers like lists
and arrays.

See also: eq?, eql?. →index

3.17.37 filter : procedure/2

Usage: (filter li pred)=> li

Return the list based on li with each element removed for which pred returns nil.

See also: list. →index

3.17.38 flatten : procedure/1

Usage: (flatten lst)=> list

Flatten lst, making all elements of sublists elements of the flattened list.

See also: car, cdr, remove-duplicates. →index

3.17.39 get-partitions : procedure/2

Usage: (get-partitions x n)=> proc/1*

Return an iterator procedure that returns lists of the form (start-offset end-offset bytes) with 0-index
offsets for a given index k, or nil if there is no corresponding part, such that the sizes of the partitions
returned in bytes summed up are x and and each partition is n or lower in size. The last partition will

Version 2.4+891b3dc-gui.fyne2 118

Z3S5 Lisp Reference Manual 2024-1-2 15:04

be the smallest partition with a bytes value smaller than n if x is not dividable without rest by n. If no
argument is provided for the returned iterator, then it returns the number of partitions.

See also: nth-partition, count-partitions, get-file-partitions, iterate. →index

3.17.40 identity : procedure/1

Usage: (identity x)

Return x.

See also: apply, equal?. →index

3.17.41 if : macro/3

Usage: (if cond expr1 expr2)=> any

Evaluate expr1 if cond is true, otherwise evaluate expr2.

See also: cond, when, unless. →index

3.17.42 iterate : procedure/2

Usage: (iterate it proc)

Apply proc to each argument returned by iterator it in sequence, similar to the way foreach works.
An iterator is a procedure that takes one integer as argument or no argument at all. If no argument is
provided, the iterator returns the number of iterations. If an integer is provided, the iterator returns a
non-nil value for the given index.

See also: foreach, get-partitions. →index

3.17.43 lambda : special form

Usage: (lambda args body ...)=> closure

Form a function closure (lambda term) with argument list in args and body expressions body.

See also: defun, functional?, macro?, closure?. →index

Version 2.4+891b3dc-gui.fyne2 119

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.17.44 lcons : procedure/2

Usage: (lcons datum li)=> list

Insert datum at the end of the list li. There may be a more efficient implementation of this in the
future. Or, maybe not. Who knows?

See also: cons, list, append, nreverse. →index

3.17.45 let : macro/1 or more

Usage: (let args body ...)=> any

Bind each pair of symbol and expression in args and evaluate the expressions in bodywith these local
bindings. Return the value of the last expression in body.

See also: letrec. →index

3.17.46 letrec : macro/1 or more

Usage: (letrec args body ...)=> any

Recursive let binds the symbol, expression pairs in args in a way that makes prior bindings available
to later bindings and allows for recursive definitions in args, then evaluates the body expressions
with these bindings.

See also: let. →index

3.17.47 list : procedure/0 or more

Usage: (list [args] ...)=> li

Create a list from all args. The arguments must be quoted.

See also: cons. →index

3.17.48 list-exists? : procedure/2

Usage: (list-exists? li pred)=> bool

Return true if pred returns true for at least one element in list li, nil otherwise.

See also: exists?, forall?, array-exists?, str-exists?, seq?. →index

Version 2.4+891b3dc-gui.fyne2 120

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.17.49 list-forall? : procedure/2

Usage: (list-all? li pred)=> bool

Return true if predicate pred returns true for all elements of list li, nil otherwise.

See also: foreach, map, forall?, array-forall?, str-forall?, exists?. →index

3.17.50 list-foreach : procedure/2

Usage: (list-foreach li proc)

Apply proc to each element of list li in order, for the side effects.

See also: mapcar, map, foreach. →index

3.17.51 list-last : procedure/1

Usage: (list-last li)=> any

Return the last element of li.

See also: reverse, nreverse, car, 1st, last. →index

3.17.52 list-ref : procedure/2

Usage: (list-ref li n)=> any

Return the element with index n of list li. Lists are 0-indexed.

See also: array-ref, nth. →index

3.17.53 list-reverse : procedure/1

Usage: (list-reverse li)=> li

Create a reversed copy of li.

See also: reverse, array-reverse, str-reverse. →index

Version 2.4+891b3dc-gui.fyne2 121

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.17.54 list-slice : procedure/3

Usage: (list-slice li low high)=> li

Return the slice of the list li starting at index low (inclusive) and ending at index high (exclusive).

See also: slice, array-slice. →index

3.17.55 list? : procedure/1

Usage: (list? obj)=> bool

Return true if obj is a list, nil otherwise.

See also: cons?, atom?, null?. →index

3.17.56 macro : special form

Usage: (macro args body ...)=> macro

Like a lambda term but the body expressions are macro-expanded at compile time instead of run-
time.

See also: defun, lambda, funcional?, macro?, closure?. →index

3.17.57 mapcar : procedure/2

Usage: (mapcar li proc)=> li

Return the list obtained from applying proc to each elements in li.

See also: map, foreach. →index

3.17.58 member : procedure/2

Usage: (member key li)=> li

Return the cdr of li starting with key if li contains an element equal? to key, nil otherwise.

See also: assoc, equal?. →index

Version 2.4+891b3dc-gui.fyne2 122

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.17.59 memq : procedure/2

Usage: (memq key li)

Return the cdr of li starting with key if li contains an element eq? to key, nil otherwise.

See also: member, eq?. →index

3.17.60 nconc : procedure/0 or more

Usage: (nconc li1 li2 ...)=> li

Concatenate li1, li2, and so forth, like with append, but destructively modifies li1.

See also: append. →index

3.17.61 not : procedure/1

Usage: (not x)=> bool

Return true if x is nil, nil otherwise.

See also: and, or. →index

3.17.62 nreverse : procedure/1

Usage: (nreverse li)=> li

Destructively reverse li.

See also: reverse. →index

3.17.63 nth-partition : procedure/3

Usage: (nth-partition m k idx)=> li

Return a list of the form (start-offset end-offset bytes) for the partition with index idx of m into parts of
size k. The index idx as well as the start- and end-offsets are 0-based.

See also: count-partitions, get-partitions. →index

Version 2.4+891b3dc-gui.fyne2 123

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.17.64 null? : procedure/1

Usage: (null? li)=> bool

Return true if li is nil, nil otherwise.

See also: not, list?, cons?. →index

3.17.65 num? : procedure/1

Usage: (num? n)=> bool

Return true if n is a number (exact or inexact), nil otherwise.

See also: str?, atom?, sym?, closure?, intrinsic?, macro?. →index

3.17.66 or : macro/0 or more

Usage: (or expr1 expr2 ...)=> any

Evaluate the expressions until one of them is not nil. This is a logical shortcut or.

See also: and. →index

3.17.67 progn : special form

Usage: (progn expr1 expr2 ...)=> any

Sequentially execute the expressions expr1, expr2, and so forth, and return the value of the last
expression.

See also: defun, lambda, cond. →index

3.17.68 quasiquote : special form

Usage: (quasiquote li)

Quote li, except that values in limay be unquoted (~evaluated) when prefixed with “,” and embedded
lists can be unquote-spliced by prefixing them with unquote-splice “,@”. An unquoted expression’s value
is inserted directly, whereas unquote-splice inserts the values of a list in-sequence into the embedding
list. Quasiquote is used in combination with gensym to define non-hygienic macros. In Z3S5 Lisp, “,”
and “,@” are syntactic markers and there are no corresponding unquote and unquote-splice functions.
The shortcut for quasiquote is “‘”.

Version 2.4+891b3dc-gui.fyne2 124

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: quote, gensym, macro, defmacro. →index

3.17.69 quote : special form

Usage: (quote x)

Quote symbol x, so it evaluates to x instead of the value bound to it. Syntactic shortcut is ’.

See also: quasiquote. →index

3.17.70 replacd : procedure/2

Usage: (rplacd li1 li2)=> li

Destructively replace the cdr of li1 with li2 and return the result afterwards.

See also: rplaca. →index

3.17.71 rplaca : procedure/2

Usage: (rplaca li a)=> li

Destructively mutate li such that its car is a, return the list afterwards.

See also: rplacd. →index

3.17.72 setcar : procedure/1

Usage: (setcar li elem)=> li

Mutate li such that its car is elem. Same as rplaca.

See also: rplaca, rplacd, setcdr. →index

3.17.73 setcdr : procedure/1

Usage: (setcdr li1 li2)=> li

Mutate li1 such that its cdr is li2. Same as rplacd.

See also: rplacd, rplaca, setcar. →index

Version 2.4+891b3dc-gui.fyne2 125

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.17.74 setq : special form

Usage: (setq sym1 value1 ...)

Set sym1 (without need for quoting it) to value, and so forth for any further symbol, value pairs.

See also: bind, unbind. →index

3.17.75 sort : procedure/2

Usage: (sort li proc)=> li

Sort the list li by the given less-than procedure proc, which takes two arguments and returns true if
the first one is less than the second, nil otheriwse.

See also: array-sort. →index

3.17.76 sort-symbols : nil

Usage: (sort-symbols li)=> list

Sort the list of symbols li alphabetically.

See also: out, dp, du, dump. →index

3.17.77 sym? : procedure/1

Usage: (sym? sym)=> bool

Return true if sym is a symbol, nil otherwise.

See also: str?, atom?. →index

3.17.78 type-of : macro/1

Usage: (type-of datum)=> sym

Returns the type of datum as symbol like type-of* but without having to quote the argument. If datum
is an unbound symbol, then this macro returns ’unbound. Otherwise the type of a given symbol’s value
or the type of a given literal is returned.

See also: type-of*. →index

Version 2.4+891b3dc-gui.fyne2 126

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.17.79 type-of* : procedure/1

Usage: (type-of* datum)=> sym

Return the type of datum as a symbol. This uses existing predicates and therefore is not faster than
testing with predicates directly.

See also: num?, str?, sym?, list?, array?, bool?, eof?, boxed?, intrinsic?, closure?, macro
?, blob?. →index

3.17.80 unless : macro/1 or more

Usage: (unless cond expr ...)=> any

Evaluate expressions expr if cond is not true, returns void otherwise.

See also: if, when, cond. →index

3.17.81 void : procedure/0 or more

Usage: (void [any] ...)

Always returns void, no matter what values are given to it. Void is a special value that is not printed in
the console.

See also: void?. →index

3.17.82 void? : procedure/1

Usage: (void? datum)

Return true if datum is the special symbol void, nil otherwise.

See also: void. →index

3.17.83 when : macro/1 or more

Usage: (when cond expr ...)=> any

Evaluate the expressions expr if cond is true, returns void otherwise.

See also: if, cond, unless. →index

Version 2.4+891b3dc-gui.fyne2 127

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.17.84 while : macro/1 or more

Usage: (while test body ...)=> any

Evaluate the expressions in body while test is not nil.

See also: letrec, dotimes, dolist. →index

3.18 Numeric Functions

This section describes functions that provide standard arithmetics for non-floating point numbers
such as integers. Notice that Z3S5 Lisp uses automatic bignum support but only for select standard
operations like multiplication, addition, and subtraction.

3.18.1 % : procedure/2

Usage: (% x y)=> num

Compute the remainder of dividing number x by y.

See also: mod, /. →index

3.18.2 * : procedure/0 or more

Usage: (* [args] ...)=> num

Multiply all args. Special cases: () is 1 and (x) is x.

See also: +, -, /. →index

3.18.3 + : procedure/0 or more

Usage: (+ [args] ...)=> num

Sum up all args. Special cases: (+) is 0 and (+ x) is x.

See also: -, *, /. →index

Version 2.4+891b3dc-gui.fyne2 128

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.18.4 - : procedure/1 or more

Usage: (- x [y1] [y2] ...)=> num

Subtract y1, y2, . . . , from x. Special case: (- x) is -x.

See also: +, *, /. →index

3.18.5 / : procedure/1 or more

Usage: (/ x y1 [y2] ...)=> float

Divide x by y1, then by y2, and so forth. The result is a float.

See also: +, *, -. →index

3.18.6 /= : procedure/2

Usage: (/= x y)=> bool

Return true if number x is not equal to y, nil otherwise.

See also: >, >=, <, <=. →index

3.18.7 < : procedure/2

Usage: (< x y)=> bool

Return true if x is smaller than y.

See also: <=, >=, >. →index

3.18.8 <= : procedure/2

Usage: (<= x y)=> bool

Return true if x is smaller than or equal to y, nil otherwise.

See also: >, <, >=, /=. →index

Version 2.4+891b3dc-gui.fyne2 129

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.18.9 = : procedure/2

Usage: (= x y)=> bool

Return true if number x equals number y, nil otherwise.

See also: eql?, equal?. →index

3.18.10 > : procedure/2

Usage: (> x y)=> bool

Return true if x is larger than y, nil otherwise.

See also: <, >=, <=, /=. →index

3.18.11 >= : procedure/2

Usage: (>= x y)=> bool

Return true if x is larger than or equal to y, nil otherwise.

See also: >, <, <=, /=. →index

3.18.12 abs : procedure/1

Usage: (abs x)=> num

Returns the absolute value of number x.

See also: *, -, +, /. →index

3.18.13 add1 : procedure/1

Usage: (add1 n)=> num

Add 1 to number n.

See also: sub1, +, -. →index

Version 2.4+891b3dc-gui.fyne2 130

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.18.14 div : procedure/2

Usage: (div n k)=> int

Integer division of n by k.

See also: truncate, /, int. →index

3.18.15 even? : procedure/1

Usage: (even? n)=> bool

Returns true if the integer n is even, nil if it is not even.

See also: odd?. →index

3.18.16 float : procedure/1

Usage: (float n)=> float

Convert n to a floating point value.

See also: int. →index

3.18.17 int : procedure/1

Usage: (int n)=> int

Return n as an integer, rounding down to the nearest integer if necessary.

See also: float. →index

Warning: If the number is very large this may result in returning the maximum supported integer
number rather than the number as integer.

3.18.18 max : procedure/1 or more

Usage: (max x1 x2 ...)=> num

Return the maximum of the given numbers.

See also: min, minmax. →index

Version 2.4+891b3dc-gui.fyne2 131

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.18.19 min : procedure/1 or more

Usage: (min x1 x2 ...)=> num

Return the minimum of the given numbers.

See also: max, minmax. →index

3.18.20 minmax : procedure/3

Usage: (minmax pred li acc)=> any

Go through li and test whether for each elem the comparison (pred elem acc) is true. If so, elem
becomes acc. Once all elements of the list have been compared, acc is returned. This procedure can
be used to implement generalized minimum or maximum procedures.

See also: min, max. →index

3.18.21 mod : procedure/2

Usage: (mod x y)=> num

Compute x modulo y.

See also: %, /. →index

3.18.22 odd? : procedure/1

Usage: (odd? n)=> bool

Returns true if the integer n is odd, nil otherwise.

See also: even?. →index

3.18.23 rand : procedure/2

Usage: (rand prng lower upper)=> int

Return a random integer in the interval [lower`` upper], both inclusive, from pseudo-random num-
ber generator prng. The prng argument must be an integer from 0 to 9 (inclusive).

See also: rnd, rndseed. →index

Version 2.4+891b3dc-gui.fyne2 132

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.18.24 rnd : procedure/0

Usage: (rnd prng)=> num

Return a random value in the interval [0, 1] from pseudo-random number generator prng. The prng
argument must be an integer from 0 to 9 (inclusive).

See also: rand, rndseed. →index

3.18.25 rndseed : procedure/1

Usage: (rndseed prng n)

Seed the pseudo-random number generator prng (0 to 9) with 64 bit integer value n. Larger values will
be truncated. Seeding affects both the rnd and the rand function for the given prng.

See also: rnd, rand. →index

3.18.26 sub1 : procedure/1

Usage: (sub1 n)=> num

Subtract 1 from n.

See also: add1, +, -. →index

3.18.27 truncate : procedure/1 or more

Usage: (truncate x [y])=> int

Round down to nearest integer of x. If y is present, divide x by y and round down to the nearest
integer.

See also: div, /, int. →index

3.19 Object-oriented Programming

The OOP system uses arrays to store objects and also offers a more lightweight array-based structure
system. It is not built for performance but may be useful to prevent writing object-oriented wrapper
data structures again and again. This is also the reason why it was decided to embed the OOP system
with a fixed API rather than providing it as an include file, allowing for interoperable object-oriented
programming without having to worry about whether the extension is loaded. It’s very simple and
lightweight.

Version 2.4+891b3dc-gui.fyne2 133

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.19.1 call-method : procedure/3

Usage: (call-method obj mname args)=> any

Execute method mname of object obj with additional arguments in list args. The first argument in the
method call is always obj itself.

See also: defmethod, defclass, new, isa?, class-of. →index

3.19.2 call-super : procedure/3

Usage: (call-super obj mname args)=> any

Execute method mname of the first superclass of obj that has a method with that name.

See also: call-method, supers. →index

3.19.3 class-name : procedure/1

Usage: (class-name c)=> sym

Return the name of a class c. An error occurs if c is not a valid class.

See also: class?, isa?. →index

3.19.4 class-of : procedure/1

Usage: (class-of obj)=> class or nil

Return the class of object obj, nil if obj is not a valid object array.

See also: new, isa?. →index

3.19.5 class? : procedure/1

Usage: (class? c)=> bool

Return true if c is a class array (not a name for a class!), nil otherwise.

See also: object?, isa?. →index

Version 2.4+891b3dc-gui.fyne2 134

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.19.6 copy-record : procedure/1

Usage: (copy-record r)=> record

Creates a non-recursive, shallow copy of record r.

See also: record?. →index

3.19.7 defclass : macro/2 or more

Usage: (defclass name supers [props] ...)

Defines symbolnameas class with superclassessupersand property clausesprops listed as remaining
arguments. A props clause is either a symbol for a property or a list of the form (sym default) for the
property sym with default value. The class is bound to name and a class predicate name? is created.
Argument supers may be a class name or a list of class names.

See also: defmethod, new. →index

3.19.8 defmethod : macro/2 or more

Usage: (defmethod class-name args [body] ...)

Define a method class-name for class class and method name name with a syntax parallel to defun,
where args are the arguments of the methods and body is the rest of the method. The given class-
name must decompose into a valid class name class of a previously created class and method name
name and is bound to the symbol class-name. The remaining arguments are like for defun. So for
example (defmethod employee-name (this) (prop this ’last-name)) defines a method name for an
existing class employee which retrieves the property last-name. Note that defmethod is dynamic:
If you define a class B with class A as superclass, then B only inherits methods from A that have already
been defined for A at the time of defining B!

See also: defclass, new, call-method. →index

3.19.9 defstruct : macro/1 or more

Usage: (defstruct name props ...)=> struct

Binds symbol name to a struct with name name and with properties props. Each clause of propsmust
be either a symbol for the property name or a list of the form (prop default-value) where prop is the
symbol for the property name and default-value is the value it has by default. For each property p,
accessors name-p and setters name-p! are created, as well as a function name-p* that takes a record

Version 2.4+891b3dc-gui.fyne2 135

Z3S5 Lisp Reference Manual 2024-1-2 15:04

r, a value v, and a procedure proc that takes no arguments. When name-p* is called on record r, it
temporarily sets property p of r to the provided value v and calls the procedure proc. Afterwards, the
original value of p is restored. Since this function mutates the record during the execution of proc
and does not protect this operation against race conditions, it is not thread-safe. (But you can include
a mutex as property and make it thread-safe by wrapping it into with-mutex-lock.) The defstruct
macro returns the struct that is bound to name.

See also: new-struct, make, with-mutex-lock. →index

3.19.10 has-method? : procedure/2

Usage: (has-method? obj name)=> bool

Return true if obj has a method with name name, nil otherwise.

See also: defmethod, has-prop?, new, props, methods, prop, setprop. →index

3.19.11 has-prop? : procedure/2

Usage: (has-prop? obj slot)=> bool

Return true if obj has a property named slot, nil otherwise.

See also: has-method?, new, props, methods, prop, setprop. →index

3.19.12 isa? : procedure/2

Usage: (isa? obj class)=> bool

Return true if obj is an instance of class, nil otherwise.

See also: supers. →index

3.19.13 make : macro/2

Usage: (make name props)

Create a new record (struct instance) of struct name (unquoted) with properties props. Each clause in
props must be a list of property name and initial value.

See also: make*, defstruct. →index

Version 2.4+891b3dc-gui.fyne2 136

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.19.14 make* : macro/1 or more

Usage: (make* name prop1 ...)

Create a new record (struct instance) of struct name (unquoted) with property clauses prop-1 . . .
prop-n, where each clause is a list of property name and initial value like in make.

See also: make, defstruct. →index

3.19.15 methods : procedure/1

Usage: (methods obj)=> li

Return the list of methods of obj, which must be a class, object, or class name.

See also: has-method?, new, props, prop, setprop, has-prop?. →index

3.19.16 new : macro/1 or more

Usage: (new class [props] ...)

Create a new object of class class with initial property bindings props clauses as remaining argu-
ments. Each props clause must be a list of the form (sym value), where sym is a symbol and value is
evaluated first before it is assigned to sym.

See also: defclass. →index

3.19.17 new-struct : procedure/2

Usage: (new-struct name li)

Defines a new structure name with the properties in the a-list li. Structs are more leightweight than
classes and do not allow for inheritance. Instances of structs (“records”) are arrays.

See also: defstruct. →index

3.19.18 object? : procedure/1

Usage: (object? obj)=> bool

Return true of obj is an object array, nil otherwise.

See also: class?, isa?. →index

Version 2.4+891b3dc-gui.fyne2 137

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.19.19 prop : procedure/2

Usage: (prop obj slot)=> any

Return the value in obj for property slot, or an error if the object does not have a property with that
name.

See also: new, isa?, setslot, object?, class-name, supers, props, methods, has-slot?.
→index

3.19.20 props : procedure/1

Usage: (props obj)=> li

Return the list of properties of obj. An error occurs if obj is not a valid object.

See also: methods, has-prop?, new, prop, setprop. →index

3.19.21 record? : procedure/1

Usage: (record? s)=> bool

Returns true if s is a struct record, i.e., an instance of a struct; nil otherwise. Notice that records are not
really types distinct from arrays, they simply contain a marker ’%record as first element. With normal
use no confusion should arise. Since the internal representation might change, you ought not use
ordinary array procedures for records.

See also: struct?, defstruct. →index

3.19.22 setprop : procedure/3

Usage: (setprop obj slot value)

Set property slot in obj to value. An error occurs if the object does not have a property with that
name.

See also: new, isa?, prop, object?, class-name, supers, props, methods, has-prop?. →index

3.19.23 struct-index : procedure/1

Usage: (struct-index s)=> dict

Version 2.4+891b3dc-gui.fyne2 138

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Returns the index of struct s as a dict. This dict is an internal representation of the struct’s instance
data.

See also: defstruct. →index

3.19.24 struct-instantiate : procedure/2

Usage: (struct-instantiate s li)=> record

Instantiates the struct s with property a-list li as values for its properties and return the record. If a
property is not in li, its value is set to nil.

See also: make, defstruct, struct?, record?. →index

3.19.25 struct-name : procedure/1

Usage: (struct-name s)=> sym

Returns the name of a struct s. This is rarely needed since the struct is bound to a symbol with the
same name.

See also: defstruct. →index

3.19.26 struct-props : procedure/1

Usage: (struct-props s)=> dict

Returns the properties of structure s as dict.

See also: defstruct. →index

3.19.27 struct-size : procedure/1

Usage: (strict-size s)=> int

Returns the number of properties of struct s.

See also: defstruct. →index

Version 2.4+891b3dc-gui.fyne2 139

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.19.28 struct? : procedure/1

Usage: (struct? datum)=> boo

Returns true if datum is a struct, nil otherwise.

See also: defstruct. →index

3.19.29 supers : procedure/1

Usage: (supers c)=> li

Return the list of superclasses of class c. An error occurs if c is not a valid class.

See also: class?, isa?, class-name. →index

3.20 Semver Semantic Versioning

The semver package provides functions to deal with the validation and parsing of semantic versioning
strings.

3.20.1 semver.build : procedure/1

Usage: (semver.build s)=> str

Return the build part of a semantic versioning string.

See also: semver.canonical, semver.major, semver.major-minor. →index

3.20.2 semver.canonical : procedure/1

Usage: (semver.canonical s)=> str

Return a canonical semver string based on a valid, yet possibly not canonical version string s.

See also: semver.major. →index

3.20.3 semver.compare : procedure/2

Usage: (semver.compare s1 s2)=> int

Compare two semantic version strings s1 and s2. The result is 0 if s1 and s2 are the same version, -1
if s1 < s2 and 1 if s1 > s2.

Version 2.4+891b3dc-gui.fyne2 140

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: semver.major, semver.major-minor. →index

3.20.4 semver.is-valid? : procedure/1

Usage: (semver.is-valid? s)=> bool

Return true if s is a valid semantic versioning string, nil otherwise.

See also: semver.major, semver.major-minor, semver.compare. →index

3.20.5 semver.major : procedure/1

Usage: (semver.major s)=> str

Return the major part of the semantic versioning string.

See also: semver.major-minor, semver.build. →index

3.20.6 semver.major-minor : procedure/1

Usage: (semver.major-minor s)=> str

Return the major.minor prefix of a semantic versioning string. For example, (semver.major-minor
“v2.1.4”) returns “v2.1”.

See also: semver.major, semver.build. →index

3.20.7 semver.max : procedure/2

Usage: (semver.max s1 s2)=> str

Canonicalize s1 and s2 and return the larger version of them.

See also: semver.compare. →index

3.20.8 semver.prerelease : procedure/1

Usage: (semver.prerelease s)=> str

Return the prerelease part of a version string, or the empty string if there is none. For example,
(semver.prerelease “v2.1.0-pre+build”) returns “-pre”.

See also: semver.build, semver.major, semver.major-minor. →index

Version 2.4+891b3dc-gui.fyne2 141

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.21 Sequence Functions

Sequences are either strings, lists, or arrays. Sequences functions are generally abstractions for more
specific functions of these data types, and therefore may be a bit slower than their native counterparts.
It is still recommended to use them liberally, since they make programs more readable.

3.21.1 10th : procedure/1 or more

Usage: (10th seq [default])=> any

Get the tenth element of a sequence or the optional default. If there is no such element and no
default is provided, then an error is raised.

See also: nth, nthdef, car, list-ref, array-ref, string-ref, 1st, 2nd, 3rd, 4th, 5th, 6th,
7th, 8th, 9th. →index

3.21.2 1st : procedure/1 or more

Usage: (1st seq [default])=> any

Get the first element of a sequence or the optional default. If there is no such element and no default
is provided, then an error is raised.

See also: nth, nthdef, car, list-ref, array-ref, string-ref, 2nd, 3rd, 4th, 5th, 6th, 7th,
8th, 9th, 10th. →index

3.21.3 2nd : procedure/1 or more

Usage: (2nd seq [default])=> any

Get the second element of a sequence or the optional default. If there is no such element and no
default is provided, then an error is raised.

See also: nth, nthdef, car, list-ref, array-ref, string-ref, 1st, 3rd, 4th, 5th, 6th, 7th,
8th, 9th, 10th. →index

3.21.4 3rd : procedure/1 or more

Usage: (3rd seq [default])=> any

Get the third element of a sequence or the optionaldefault. If there is no such element and no default
is provided, then an error is raised.

Version 2.4+891b3dc-gui.fyne2 142

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: nth, nthdef, car, list-ref, array-ref, string-ref, 1st, 2nd, 4th, 5th, 6th, 7th,
8th, 9th, 10th. →index

3.21.5 4th : procedure/1 or more

Usage: (4th seq [default])=> any

Get the fourth element of a sequence or the optional default. If there is no such element and no
default is provided, then an error is raised.

See also: nth, nthdef, car, list-ref, array-ref, string-ref, 1st, 2nd, 3rd, 5th, 6th, 7th,
8th, 9th, 10th. →index

3.21.6 5th : procedure/1 or more

Usage: (5th seq [default])=> any

Get the fifth element of a sequence or the optional default. If there is no such element and no default
is provided, then an error is raised.

See also: nth, nthdef, car, list-ref, array-ref, string-ref, 1st, 2nd, 3rd, 4th, 6th, 7th,
8th, 9th, 10th. →index

3.21.7 6th : procedure/1 or more

Usage: (6th seq [default])=> any

Get the sixth element of a sequence or the optional default. If there is no such element and no default
is provided, then an error is raised.

See also: nth, nthdef, car, list-ref, array-ref, string-ref, 1st, 2nd, 3rd, 4th, 5th, 7th,
8th, 9th, 10th. →index

3.21.8 7th : procedure/1 or more

Usage: (7th seq [default])=> any

Get the seventh element of a sequence or the optional default. If there is no such element and no
default is provided, then an error is raised.

See also: nth, nthdef, car, list-ref, array-ref, string-ref, 1st, 2nd, 3rd, 4th, 5th, 6th,
8th, 9th, 10th. →index

Version 2.4+891b3dc-gui.fyne2 143

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.21.9 8th : procedure/1 or more

Usage: (8th seq [default])=> any

Get the eighth element of a sequence or the optional default. If there is no such element and no
default is provided, then an error is raised.

See also: nth, nthdef, car, list-ref, array-ref, string-ref, 1st, 2nd, 3rd, 4th, 5th, 6th,
7th, 9th, 10th. →index

3.21.10 9th : procedure/1 or more

Usage: (9th seq [default])=> any

Get the nineth element of a sequence or the optional default. If there is no such element and no
default is provided, then an error is raised.

See also: nth, nthdef, car, list-ref, array-ref, string-ref, 1st, 2nd, 3rd, 4th, 5th, 6th,
7th, 8th, 10th. →index

3.21.11 exists? : procedure/2

Usage: (exists? seq pred)=> bool

Return true if pred returns true for at least one element in sequence seq, nil otherwise.

See also: forall?, list-exists?, array-exists?, str-exists?, seq?. →index

3.21.12 forall? : procedure/2

Usage: (forall? seq pred)=> bool

Return true if predicate pred returns true for all elements of sequence seq, nil otherwise.

See also: foreach, map, list-forall?, array-forall?, str-forall?, exists?, str-exists?,
array-exists?, list-exists?. →index

3.21.13 foreach : procedure/2

Usage: (foreach seq proc)

Apply proc to each element of sequence seq in order, for the side effects.

See also: seq?, map. →index

Version 2.4+891b3dc-gui.fyne2 144

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.21.14 index : procedure/2 or more

Usage: (index seq elem [pred])=> int

Return the first index of elem in seq going from left to right, using equality predicate pred for compar-
isons (default is eq?). If elem is not in seq, -1 is returned.

See also: nth, seq?. →index

3.21.15 last : procedure/1 or more

Usage: (last seq [default])=> any

Get the last element of sequence seq or return default if the sequence is empty. If default is not
given and the sequence is empty, an error is raised.

See also: nth, nthdef, car, list-ref, array-ref, string, ref, 1st, 2nd, 3rd, 4th, 5th, 6th, 7th,
8th, 9th, 10th. →index

3.21.16 len : procedure/1

Usage: (len seq)=> int

Return the length of seq. Works for lists, strings, arrays, and dicts.

See also: seq?. →index

3.21.17 map : procedure/2

Usage: (map seq proc)=> seq

Return the copy of seq that is the result of applying proc to each element of seq.

See also: seq?, mapcar, strmap. →index

3.21.18 map-pairwise : procedure/2

Usage: (map-pairwise seq proc)=> seq

Appliesproc in order to subsequent pairs inseq, assembling the sequence that results from the results
of proc. Function proc takes two arguments and must return a proper list containing two elements. If
the number of elements in seq is odd, an error is raised.

See also: map. →index

Version 2.4+891b3dc-gui.fyne2 145

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.21.19 nth : procedure/2

Usage: (nth seq n)=> any

Get the n-th element of sequence seq. Sequences are 0-indexed.

See also: nthdef, list, array, string, 1st, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th, 10th.
→index

3.21.20 nthdef : procedure/3

Usage: (nthdef seq n default)=> any

Return the n-th element of sequence seq (0-indexed) if seq is a sequence and has at least n+1
elements, default otherwise.

See also: nth, seq?, 1st, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th, 10th. →index

3.21.21 remove-duplicates : procedure/1

Usage: (remove-duplicates seq)=> seq

Remove all duplicates in sequence seq, return a new sequence with the duplicates removed.

See also: seq?, map, foreach, nth. →index

3.21.22 reverse : procedure/1

Usage: (reverse seq)=> sequence

Reverse a sequence non-destructively, i.e., return a copy of the reversed sequence.

See also: nth, seq?, 1st, 2nd, 3rd, 4th, 6th, 7th, 8th, 9th, 10th, last. →index

3.21.23 seq? : procedure/1

Usage: (seq? seq)=> bool

Return true if seq is a sequence, nil otherwise.

See also: list, array, string, slice, nth. →index

Version 2.4+891b3dc-gui.fyne2 146

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.21.24 slice : procedure/3

Usage: (slice seq low high)=> seq

Return the subsequence of seq starting from low inclusive and ending at high exclusive. Sequences
are 0-indexed.

See also: list, array, string, nth, seq?. →index

3.21.25 take : procedure/3

Usage: (take seq n)=> seq

Return the sequence consisting of the n first elements of seq.

See also: list, array, string, nth, seq?. →index

3.22 Sound Support

Only a few functions are provided for sound support.

3.22.1 beep : procedure/1

Usage: (beep sel)

Play a built-in system sound. The argument sel may be one of ’(error start ready click okay confirm
info).

See also: set-volume. →index

3.22.2 set-volume : procedure/1

Usage: (set-volume fl)

Set the master volume for all sound to fl, a value between 0.0 and 1.0.

See also: beep. →index

3.23 String Manipulation

These functions all manipulate strings in one way or another.

Version 2.4+891b3dc-gui.fyne2 147

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.23.1 fmt : procedure/1 or more

Usage: (fmt s [args] ...)=> str

Format string s that contains format directives with arbitrary many args as arguments. The number of
format directives must match the number of arguments. The format directives are the same as those
for the esoteric and arcane programming language “Go”, which was used on Earth for some time.

See also: out. →index

3.23.2 instr : procedure/2

Usage: (instr s1 s2)=> int

Return the index of the first occurrence of s2 in s1 (from left), or -1 if s1 does not contain s2.

See also: str?, index. →index

3.23.3 shorten : procedure/2

Usage: (shorten s n)=> str

Shorten string s to length n in a smart way if possible, leave it untouched if the length of s is smaller
than n.

See also: substr. →index

3.23.4 spaces : procedure/1

Usage: (spaces n)=> str

Create a string consisting of n spaces.

See also: strbuild, strleft, strright. →index

3.23.5 str+ : procedure/0 or more

Usage: (str+ [s] ...)=> str

Append all strings given to the function.

See also: str?. →index

Version 2.4+891b3dc-gui.fyne2 148

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.23.6 str-count-substr : procedure/2

Usage: (str-count-substr s1 s2)=> int

Count the number of non-overlapping occurrences of substring s2 in string s1.

See also: str-replace, str-replace*, instr. →index

3.23.7 str-empty? : procedure/1

Usage: (str-empty? s)=> bool

Return true if the string s is empty, nil otherwise.

See also: strlen. →index

3.23.8 str-exists? : procedure/2

Usage: (str-exists? s pred)=> bool

Return true if pred returns true for at least one character in string s, nil otherwise.

See also: exists?, forall?, list-exists?, array-exists?, seq?. →index

3.23.9 str-forall? : procedure/2

Usage: (str-forall? s pred)=> bool

Return true if predicate pred returns true for all characters in string s, nil otherwise.

See also: foreach, map, forall?, array-forall?, list-forall, exists?. →index

3.23.10 str-foreach : procedure/2

Usage: (str-foreach s proc)

Apply proc to each element of string s in order, for the side effects.

See also: foreach, list-foreach, array-foreach, map. →index

Version 2.4+891b3dc-gui.fyne2 149

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.23.11 str-index : procedure/2 or more

Usage: (str-index s chars [pos])=> int

Find the first char in s that is in the charset chars, starting from the optional pos in s, and return its
index in the string. If no macthing char is found, nil is returned.

See also: strsplit, chars, inchars. →index

3.23.12 str-join : procedure/2

Usage: (str-join li del)=> str

Join a list of strings li where each of the strings is separated by string del, and return the result
string.

See also: strlen, strsplit, str-slice. →index

3.23.13 str-ref : procedure/2

Usage: (str-ref s n)=> n

Return the unicode char as integer at position n in s. Strings are 0-indexed.

See also: nth. →index

3.23.14 str-remove-number : procedure/1

Usage: (str-remove-number s [del])=> str

Remove the suffix number in s, provided there is one and it is separated from the rest of the string
by del, where the default is a space character. For instance, “Test 29” will be converted to “Test”,
“User-Name1-23-99” with delimiter “-” will be converted to “User-Name1-23”. This function will remove
intermediate delimiters in the middle of the string, since it disassembles and reassembles the string,
so be aware that this is not preserving inputs in that respect.

See also: strsplit. →index

3.23.15 str-remove-prefix : procedure/1

Usage: (str-remove-prefix s prefix)=> str

Version 2.4+891b3dc-gui.fyne2 150

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Remove the prefix prefix from string s, return the string without the prefix. If the prefix does not
match, s is returned. If prefix is longer than s and matches, the empty string is returned.

See also: str-remove-suffix. →index

3.23.16 str-remove-suffix : procedure/1

Usage: (str-remove-suffix s suffix)=> str

remove the suffix suffix from string s, return the string without the suffix. If the suffix does not match,
s is returned. If suffix is longer than s and matches, the empty string is returned.

See also: str-remove-prefix. →index

3.23.17 str-replace : procedure/4

Usage: (str-replace s t1 t2 n)=> str

Replace the first n instances of substring t1 in s by t2.

See also: str-replace*, str-count-substr. →index

3.23.18 str-replace* : procedure/3

Usage: (str-replace* s t1 t2)=> str

Replace all non-overlapping substrings t1 in s by t2.

See also: str-replace, str-count-substr. →index

3.23.19 str-reverse : procedure/1

Usage: (str-reverse s)=> str

Reverse string s.

See also: reverse, array-reverse, list-reverse. →index

3.23.20 str-segment : procedure/3

Usage: (str-segment str start end)=> list

Version 2.4+891b3dc-gui.fyne2 151

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Parse a string str into words that start with one of the characters in string start and end in one of
the characters in string end and return a list consisting of lists of the form (bool s) where bool is true if
the string starts with a character in start, nil otherwise, and s is the extracted string including start
and end characters.

See also: str+, strsplit, fmt, strbuild. →index

3.23.21 str-slice : procedure/3

Usage: (str-slice s low high)=> s

Return a slice of string s starting at character with index low (inclusive) and ending at character with
index high (exclusive).

See also: slice. →index

3.23.22 strbuild : procedure/2

Usage: (strbuild s n)=> str

Build a string by repeating string s`` n times.

See also: str+. →index

3.23.23 strcase : procedure/2

Usage: (strcase s sel)=> str

Change the case of the string s according to selector sel and return a copy. Valid values for sel
are ’lower for conversion to lower-case, ’upper for uppercase, ’title for title case and ’utf-8 for utf-8
normalization (which replaces unprintable characters with “?”).

See also: strmap. →index

3.23.24 strcenter : procedure/2

Usage: (strcenter s n)=> str

Center string s by wrapping space characters around it, such that the total length the result string is
n.

See also: strleft, strright, strlimit. →index

Version 2.4+891b3dc-gui.fyne2 152

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.23.25 strcnt : procedure/2

Usage: (strcnt s del)=> int

Returnt the number of non-overlapping substrings del in s.

See also: strsplit, str-index. →index

3.23.26 strleft : procedure/2

Usage: (strleft s n)=> str

Align string s left by adding space characters to the right of it, such that the total length the result string
is n.

See also: strcenter, strright, strlimit. →index

3.23.27 strlen : procedure/1

Usage: (strlen s)=> int

Return the length of s.

See also: len, seq?, str?. →index

3.23.28 strless : procedure/2

Usage: (strless s1 s2)=> bool

Return true if string s1 < s2 in lexicographic comparison, nil otherwise.

See also: sort, array-sort, strcase. →index

3.23.29 strlimit : procedure/2

Usage: (strlimit s n)=> str

Return a string based on s cropped to a maximal length of n (or less if s is shorter).

See also: strcenter, strleft, strright. →index

Version 2.4+891b3dc-gui.fyne2 153

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.23.30 strmap : procedure/2

Usage: (strmap s proc)=> str

Map function proc, which takes a number and returns a number, over all unicode characters in s and
return the result as new string.

See also: map. →index

3.23.31 stropen : procedure/1

Usage: (stropen s)=> streamport

Open the string s as input stream.

See also: open, close. →index

3.23.32 strright : procedure/2

Usage: (strright s n)=> str

Align string s right by adding space characters in front of it, such that the total length the result string
is n.

See also: strcenter, strleft, strlimit. →index

3.23.33 strsplit : procedure/2

Usage: (strsplit s del)=> array

Return an array of strings obtained from s by splitting s at each occurrence of string del.

See also: str?. →index

3.24 System Functions

These functions concern the inner workings of the Lisp interpreter. Your warranty might be void if you
abuse them!

Version 2.4+891b3dc-gui.fyne2 154

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.24.1 error-handler : dict

Usage: (*error-handler* err)

The global error handler dict that contains procedures which take an error and handle it. If an entry is
nil, the default handler is used, which outputs the error using error-printer. The dict contains handlers
based on concurrent thread IDs and ought not be manipulated directly.

See also: *error-printer*. →index

3.24.2 *error-printer* : procedure/1

Usage: (*error-printer* err)

The global printer procedure which takes an error and prints it.

See also: error. →index

3.24.3 last-error : sym

Usage: *last-error* => str

Contains the last error that has occurred.

See also: *error-printer*, *error-handler*. →index

Warning: This may only be used for debugging! Do not use this for error handling, it will surely
fail!

3.24.4 reflect : symbol

Usage: *reflect* => li

The list of feature identifiers as symbols that this Lisp implementation supports.

See also: feature?, on-feature. →index

3.24.5 add-hook : procedure/2

Usage: (add-hook hook proc)=> id

Add hook procedure proc which takes a list of arguments as argument under symbolic or numeric
hook and return an integer hook id for this hook. If hook is not known, nil is returned.

See also: remove-hook, remove-hooks, replace-hook. →index

Version 2.4+891b3dc-gui.fyne2 155

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.24.6 add-hook-internal : procedure/2

Usage: (add-hook-internal hook proc)=> int

Add a procedure proc to hook with numeric ID hook and return this procedures hook ID. The function
does not check whether the hook exists.

See also: add-hook. →index

Warning: Internal use only.

3.24.7 add-hook-once : procedure/2

Usage: (add-hook-once hook proc)=> id

Add a hook procedure proc which takes a list of arguments under symbolic or numeric hook and
return an integer hook id. If hook is not known, nil is returned.

See also: add-hook, remove-hook, replace-hook. →index

3.24.8 bind : procedure/2

Usage: (bind sym value)

Bind value to the global symbol sym. In contrast to setq both values need quoting.

See also: setq. →index

3.24.9 bound? : macro/1

Usage: (bound? sym)=> bool

Return true if a value is bound to the symbol sym, nil otherwise.

See also: bind, setq. →index

3.24.10 boxed? : procedure/1

Usage: (boxed? x)=> bool

Return true if x is a boxed value, nil otherwise. Boxed values are special objects that are special in the
system and sometimes cannot be garbage collected.

See also: type-of, num?, str?, sym?, list?, array?, macro?, closure?, intrinsic?, eof?.
→index

Version 2.4+891b3dc-gui.fyne2 156

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.24.11 can-externalize? : procedure/1

Usage: (can-externalize? datum)=> bool

Recursively determines if datum can be externalized and returns true in this case, nil otherwise.

See also: externalize, externalize0. →index

3.24.12 closure? : procedure/1

Usage: (closure? x)=> bool

Return true if x is a closure, nil otherwise. Use function? for texting whether x can be executed.

See also: functional?, macro?, intrinsic?, functional-arity, functional-has-rest?.
→index

3.24.13 collect-garbage : procedure/0 or more

Usage: (collect-garbage [sort])

Force a garbage-collection of the system’s memory. If sort is ’normal, then only a normal incremental
garbage colllection is performed. If sort is ’total, then the garbage collection is more thorough and
the system attempts to return unused memory to the host OS. Default is ’normal.

See also: memstats. →index

Warning: There should rarely be a use for this. Try to use less memory-consuming data structures
instead.

3.24.14 current-error-handler : procedure/0

Usage: (current-error-handler)=> proc

Return the current error handler, a default if there is none.

See also: default-error-handler, push-error-handler, pop-error-handler, *current-
error-handler*, *current-error-continuation*. →index

3.24.15 def-custom-hook : procedure/2

Usage: (def-custom-hook sym proc)

Version 2.4+891b3dc-gui.fyne2 157

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Define a custom hook point, to be called manually from Lisp. These have IDs starting from 65636.

See also: add-hook. →index

3.24.16 default-error-handler : procedure/0

Usage: (default-error-handler)=> proc

Return the default error handler, irrespectively of the current-error-handler.

See also: current-error-handler, push-error-handler, pop-error-handler, *current-
error-handler*, *current-error-continuation*. →index

3.24.17 dict-protect : procedure/1

Usage: (dict-protect d)

Protect dict d against changes. Attempting to set values in a protected dict will cause an error, but all
values can be read and the dict can be copied. This function requires permission ’allow-protect.

See also: dict-unprotect,dict-protected?,protect,unprotect,protected?,permissions
, permission?. →index

Warning: Protected dicts are full readable and can be copied, so you may need to use protect to
also prevent changes to the toplevel symbol storing the dict!

3.24.18 dict-protected? : procedure/1

Usage: (dict-protected? d)

Return true if the dict d is protected against mutation, nil otherwise.

See also: dict-protect, dict-unprotect, protect, unprotect, protected?, permissions,
permission?. →index

3.24.19 dict-unprotect : procedure/1

Usage: (dict-unprotect d)

Unprotect the dict d so it can be mutated again. This function requires permission ’allow-unprotect.

See also: dict-protect, dict-protected?, protect, unprotect, protected?, permissions,
permission?. →index

Version 2.4+891b3dc-gui.fyne2 158

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.24.20 dump : procedure/0 or more

Usage: (dump [sym] [all?])=> li

Return a list of symbols starting with the characters of sym or starting with any characters if sym is
omitted, sorted alphabetically. When all? is true, then all symbols are listed, otherwise only symbols
that do not contain "_" are listed. By convention, the underscore is used for auxiliary functions.

See also: dump-bindings, save-zimage, load-zimage. →index

3.24.21 dump-bindings : procedure/0

Usage: (dump-bindings)=> li

Return a list of all top-level symbols with bound values, including those intended for internal use.

See also: dump. →index

3.24.22 error : procedure/0 or more

Usage: (error [msgstr] [expr] ...)

Raise an error, where msgstr and the optional expressions expr. . . work as in a call to fmt.

See also: fmt, with-final. →index

3.24.23 error->str : procedure/1

Usage: (error->str datum)=> str

Convert a special error value to a string.

See also: *last-error*, error, error?. →index

3.24.24 error? : procedure/1

Usage: (error? datum)=> bool

Return true if datum is a special error value, nil otherwise.

See also: *last-error*, error->str, error, eof?, valid?. →index

Version 2.4+891b3dc-gui.fyne2 159

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.24.25 eval : procedure/1

Usage: (eval expr)=> any

Evaluate the expressionexpr in the Z3S5 Machine Lisp interpreter and return the result. The evaluation
environment is the system’s environment at the time of the call.

See also: break, apply. →index

3.24.26 exit : procedure/0 or more

Usage: (exit [n])

Immediately shut down the system and return OS host error code n. The shutdown is performed
gracefully and exit hooks are executed.

See also: . →index

3.24.27 expand-macros : procedure/1

Usage: (expand-macros expr)=> expr

Expands the macros in expr. This is an ordinary function and will not work on already compiled
expressions such as a function bound to a symbol. However, it can be used to expand macros in
expressions obtained by read.

See also: internalize, externalize, load-library. →index

3.24.28 expect : macro/2

Usage: (expect value given)

Registers a test under the current test name that checks that value is returned by given. The test is
only executed when (run-selftest) is executed.

See also: expect-err, expect-ok, run-selftest, testing. →index

3.24.29 expect-err : macro/1 or more

Usage: (expect-err expr ...)

Registers a test under the current test name that checks that expr produces an error.

See also: expect, expect-ok, run-selftest, testing. →index

Version 2.4+891b3dc-gui.fyne2 160

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.24.30 expect-false : macro/1 or more

Usage: (expect-false expr ...)

Registers a test under the current test name that checks that expr is nil.

See also: expect, expect-ok, run-selftest, testing. →index

3.24.31 expect-ok : macro/1 or more

Usage: (expect-ok expr ...)

Registers a test under the current test name that checks that expr does not produce an error.

See also: expect, expect-ok, run-selftest, testing. →index

3.24.32 expect-true : macro/1 or more

Usage: (expect-true expr ...)

Registers a test under the current test name that checks that expr is true (not nil).

See also: expect, expect-ok, run-selftest, testing. →index

3.24.33 externalize : procedure/1

Usage: (externalize sym [nonce])=> sexpr

Obtain an external representation of top-level symbol sym. The optional noncemust be a value unique
in each system zimage, in order to distinguish data from procedures.

See also: can-externalize?, externalize0, current-zimage, save-zimage, load-zimage.
→index

3.24.34 externalize0 : procedure/1

Usage: (externalize0 arg)=> any

Attempts to externalize arg but falls back to the internal expression if arg cannot be externalized. This
procedure never fails but can-externalize? may be false for the result. This function is only used in
miscellaneous printing. Use externalize to externalize expressions for writing to disk.

See also: externalize, can-externalize?. →index

Version 2.4+891b3dc-gui.fyne2 161

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.24.35 feature? : procedure/1

Usage: (feature? sym)=> bool

Return true if the Lisp feature identified by symbol sym is available, nil otherwise.

See also: *reflect*, on-feature. →index

3.24.36 find-missing-help-entries : procedure/0

Usage: (find-missing-help-entries)=> li

Return a list of global symbols for which help entries are missing.

See also: dump, dump-bindings, find-unneeded-help-entries. →index

3.24.37 find-unneeded-help-entries : procedure/0

Usage: (find-unneeded-help-entries)=> li

Return a list of help entries for which no symbols are defined.

See also: dump, dump-bindings, find-missing-help-entries. →index

Warning: This function returns false positives! Special forms like setq and macro are listed even
though they clearly are useful and should have a help entry.

3.24.38 functional-arity : procedure/1

Usage: (functional-arity proc)=> int

Return the arity of a functional proc.

See also: functional?, functional-has-rest?. →index

3.24.39 functional-has-rest? : procedure/1

Usage: (functional-has-rest? proc)=> bool

Return true if the functional proc has a &rest argument, nil otherwise.

See also: functional?, functional-arity. →index

Version 2.4+891b3dc-gui.fyne2 162

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.24.40 functional? : macro/1

Usage: (functional? arg)=> bool

Return true if arg is either a builtin function, a closure, or a macro, nil otherwise. This is the right
predicate for testing whether the argument is applicable and has an arity.

See also: closure?, proc?, functional-arity, functional-has-rest?. →index

3.24.41 gensym : procedure/0

Usage: (gensym)=> sym

Return a new symbol guaranteed to be unique during runtime.

See also: nonce. →index

3.24.42 global-startup-time : procedure/0

Usage: (global-startup-time)=> num

Return the global startup time in milliseconds. This is the time that the initial embedded init.lisp
system required for booting, rounded to two decimal places unless it is 1 or less.

See also: now-ns, time, now. →index

3.24.43 hook : procedure/1

Usage: (hook symbol)

Lookup the internal hook number from a symbolic name.

See also: *hooks*, add-hook, remove-hook, remove-hooks. →index

3.24.44 include : procedure/1

Usage: (include fi)=> any

Evaluate the lisp file fi one expression after the other in the current environment.

See also: read, write, open, close. →index

Version 2.4+891b3dc-gui.fyne2 163

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.24.45 intern : procedure/1

Usage: (intern s)=> sym

Create a new interned symbol based on string s.

See also: gensym, str->sym, make-symbol. →index

3.24.46 internalize : procedure/2

Usage: (internalize arg nonce)

Internalize an external representation of arg, using nonce for distinguishing between data and code
that needs to be evaluated.

See also: externalize. →index

3.24.47 intrinsic : procedure/1

Usage: (intrinsic sym)=> any

Attempt to obtain the value that is intrinsically bound to sym. Use this function to express the intention
to use the pre-defined builtin value of a symbol in the base language.

See also: bind, unbind. →index

Warning: This function currently only returns the binding but this behavior might change in
future.

3.24.48 intrinsic? : procedure/1

Usage: (intrinsic? x)=> bool

Return true if x is an intrinsic built-in function, nil otherwise. Notice that this function tests the value
and not that a symbol has been bound to the intrinsic.

See also: functional?, macro?, closure?. →index

Warning: What counts as an intrinsic or not may change from version to version. This is for
internal use only.

Version 2.4+891b3dc-gui.fyne2 164

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.24.49 macro? : procedure/1

Usage: (macro? x)=> bool

Return true if x is a macro, nil otherwise.

See also: functional?, intrinsic?, closure?, functional-arity, functional-has-rest?.
→index

3.24.50 make-symbol : procedure/1

Usage: (make-symbol s)=> sym

Create a new symbol based on string s.

See also: str->sym. →index

3.24.51 memstats : procedure/0

Usage: (memstats)=> dict

Return a dict with detailed memory statistics for the system.

See also: collect-garbage. →index

3.24.52 nonce : procedure/0

Usage: (nonce)=> str

Return a unique random string. This is not cryptographically secure but the string satisfies reasonable
GUID requirements.

See also: externalize, internalize. →index

3.24.53 on-feature : macro/1 or more

Usage: (on-feature sym body ...)=> any

Evaluate the expressions of body if the Lisp feature sym is supported by this implementation, do
nothing otherwise.

See also: feature?, *reflect*. →index

Version 2.4+891b3dc-gui.fyne2 165

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.24.54 permission? : procedure/1

Usage: (permission? sym [default])=> bool

Return true if the permission for sym is set, nil otherwise. If the permission flag is unknown, then
default is returned. The default for default is nil.

See also: permissions, set-permissions, when-permission, sys. →index

3.24.55 permissions : procedure/0

Usage: (permissions)

Return a list of all active permissions of the current interpreter. Permissions are: load-prelude
- load the init file on start; load-user-init - load the local user init on startup, file if present;
allow-unprotect - allow the user to unprotect protected symbols (for redefining them); allow-
protect - allow the user to protect symbols from redefinition or unbinding; interactive - make the
session interactive, this is particularly used during startup to determine whether hooks are installed
and feedback is given. Permissions have to generally be set or removed in careful combination with
revoke-permissions, which redefines symbols and functions.

See also: set-permissions, permission?, when-permission, sys. →index

3.24.56 pop-error-handler : procedure/0

Usage: (pop-error-handler)=> proc

Remove the topmost error handler from the error handler stack and return it. For internal use only.

See also: with-error-handler. →index

3.24.57 pop-finalizer : procedure/0

Usage: (pop-finalizer)=> proc

Remove a finalizer from the finalizer stack and return it. For internal use only.

See also: push-finalizer, with-final. →index

3.24.58 proc? : macro/1

Usage: (proc? arg)=> bool

Version 2.4+891b3dc-gui.fyne2 166

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Return true if arg is a procedure, nil otherwise.

See also: functional?, closure?, functional-arity, functional-has-rest?. →index

3.24.59 protect : procedure/0 or more

Usage: (protect [sym] ...)

Protect symbols sym . . . against changes or rebinding. The symbols need to be quoted. This operation
requires the permission ’allow-protect to be set.

See also: protected?, unprotect, dict-protect, dict-unprotect, dict-protected?,
permissions, permission?, setq, bind, interpret. →index

3.24.60 protect-toplevel-symbols : procedure/0

Usage: (protect-toplevel-symbols)

Protect all toplevel symbols that are not yet protected and aren’t in the mutable-toplevel-symbols
dict.

See also: protected?, protect, unprotect, declare-unprotected, declare-volatile, when
-permission?, dict-protect, dict-protected?, dict-unprotect. →index

3.24.61 protected? : procedure/1

Usage: (protected? sym)

Return true if sym is protected, nil otherwise.

See also: protect, unprotect, dict-unprotect, dict-protected?, permission, permission
?, setq, bind, interpret. →index

3.24.62 push-error-handler : procedure/1

Usage: (push-error-handler proc)

Push an error handler proc on the error handler stack. For internal use only.

See also: with-error-handler. →index

Version 2.4+891b3dc-gui.fyne2 167

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.24.63 push-finalizer : procedure/1

Usage: (push-finalizer proc)

Push a finalizer procedure proc on the finalizer stack. For internal use only.

See also: with-final, pop-finalizer. →index

3.24.64 read-eval-reply : procedure/0

Usage: (read-eval-reply)

Start a new read-eval-reply loop.

See also: end-input, sys. →index

Warning: Internal use only. This function might not do what you expect it to do.

3.24.65 remove-hook : procedure/2

Usage: (remove-hook hook id)=> bool

Remove the symbolic or numberic hook with id and return true if the hook was removed, nil other-
wise.

See also: add-hook, remove-hooks, replace-hook. →index

3.24.66 remove-hook-internal : procedure/2

Usage: (remove-hook-internal hook id)

Remove the hook with ID id from numeric hook.

See also: remove-hook. →index

Warning: Internal use only.

3.24.67 remove-hooks : procedure/1

Usage: (remove-hooks hook)=> bool

Remove all hooks for symbolic or numeric hook, return true if the hook exists and the associated
procedures were removed, nil otherwise.

See also: add-hook, remove-hook, replace-hook. →index

Version 2.4+891b3dc-gui.fyne2 168

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.24.68 replace-hook : procedure/2

Usage: (replace-hook hook proc)

Remove all hooks for symbolic or numeric hook and install the given proc as the only hook proce-
dure.

See also: add-hook, remove-hook, remove-hooks. →index

3.24.69 run-hook : procedure/1

Usage: (run-hook hook)

Manually run the hook, executing all procedures for the hook.

See also: add-hook, remove-hook. →index

3.24.70 run-hook-internal : procedure/1 or more

Usage: (run-hook-internal hook [args] ...)

Run all hooks for numeric hook ID hook with args. . . as arguments.

See also: run-hook. →index

Warning: Internal use only.

3.24.71 run-selftest : procedure/0

Usage: (run-selftest)

Run a self test of the Z3S5 Lisp system and report errors to standard output.

See also: help, testing. →index

3.24.72 set-permissions : nil

Usage: (set-permissions li)

Set the permissions for the current interpreter. This will trigger an error when the permission cannot be
set due to a security violation. Generally, permissions can only be downgraded (made more stringent)
and never relaxed. See the information for permissions for an overview of symbolic flags.

See also: permissions, permission?, when-permission, sys. →index

Version 2.4+891b3dc-gui.fyne2 169

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.24.73 sleep : procedure/1

Usage: (sleep ms)

Halt the current task execution for ms milliseconds.

See also: sleep-ns, time, now, now-ns. →index

3.24.74 sleep-ns : procedure/1

Usage: (sleep-ns n

Halt the current task execution for n nanoseconds.

See also: sleep, time, now, now-ns. →index

3.24.75 sys-key? : procedure/1

Usage: (sys-key? key)=> bool

Return true if the given sys key key exists, nil otherwise.

See also: sys, setsys. →index

3.24.76 sysmsg : procedure/1

Usage: (sysmsg msg)

Asynchronously display a system message stringmsg if in console or page mode, otherwise the message
is logged.

See also: sysmsg*, synout, synouty, out, outy. →index

3.24.77 sysmsg* : procedure/1

Usage: (sysmsg* msg)

Display a system message string msg if in console or page mode, otherwise the message is logged.

See also: sysmsg, synout, synouty, out, outy. →index

Version 2.4+891b3dc-gui.fyne2 170

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.24.78 testing : macro/1

Usage: (testing name)

Registers the string name as the name of the tests that are next registered with expect.

See also: expect, expect-err, expect-ok, run-selftest. →index

3.24.79 try : macro/2 or more

Usage: (try (finals ...)body ...)

Evaluate the forms of the body and afterwards the forms in finals. If during the execution of body an
error occurs, first all finals are executed and then the error is printed by the default error printer.

See also: with-final, with-error-handler. →index

3.24.80 unprotect : procedure/0 or more

Usage: (unprotect [sym] ...)

Unprotect symbols sym . . . , allowing mutation or rebinding them. The symbols need to be quoted.
This operation requires the permission ’allow-unprotect to be set, or else an error is caused.

See also: protect, protected?, dict-unprotect, dict-protected?, permissions,
permission?, setq, bind, interpret. →index

3.24.81 unprotect-toplevel-symbols : procedure/0

Usage: (unprotect-toplevel-symbols)

Attempts to unprotect all toplevel symbols.

See also: protect-toplevel-symbols,protect,unprotect,declare-unprotected. →index

3.24.82 warn : procedure/1 or more

Usage: (warn msg [args...])

Output the warning message msg in error colors. The optional args are applied to the message as in
fmt. The message should not end with a newline.

See also: error. →index

Version 2.4+891b3dc-gui.fyne2 171

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.24.83 when-permission : macro/1 or more

Usage: (when-permission perm body ...)=> any

Execute the expressions in body if and only if the symbolic permission perm is available.

See also: permission?. →index

3.24.84 with-colors : procedure/3

Usage: (with-colors textcolor backcolor proc)

Execute proc for display side effects, where the default colors are set to textcolor and backcolor.
These are color specifications like in the-color. After proc has finished or if an error occurs, the default
colors are restored to their original state.

See also: the-color, color, set-color, with-final. →index

3.24.85 with-error-handler : macro/2 or more

Usage: (with-error-handler handler body ...)

Evaluate the forms of the body with error handler handler in place. The handler is a procedure that
takes the error as argument and handles it. If an error occurs in handler, a default error handler is
used. Handlers are only active within the same thread.

See also: with-final. →index

3.24.86 with-final : macro/2 or more

Usage: (with-final finalizer body ...)

Evaluate the forms of the body with the given finalizer as error handler. If an error occurs, then
finalizer is called with that error and nil. If no error occurs, finalizer is called with nil as first
argument and the result of evaluating all forms of body as second argument.

See also: with-error-handler. →index

3.25 Time & Date

This section lists functions that are time and date-related. Most of them use (now) and turn it into
more human-readable form.

Version 2.4+891b3dc-gui.fyne2 172

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.25.1 date->epoch-ns : procedure/7

Usage: (date->epoch-ns Y M D h m s ns)=> int

Return the Unix epoch nanoseconds based on the given year Y, month M, day D, hour h, minute m,
seconds s, and nanosecond fraction of a second ns, as it is e.g. returned in a (now) datelist.

See also: epoch-ns->datelist, datestr->datelist, datestr, datestr*, day-of-week, week
-of-date, now. →index

3.25.2 datelist->epoch-ns : procedure/1

Usage: (datelist->epoch-ns dateli)=> int

Convert a datelist to Unix epoch nanoseconds. This function uses the Unix nanoseconds from the
5th value of the second list in the datelist, as it is provided by functions like (now). However, if the
Unix nanoseconds value is not specified in the list, it uses date->epoch-ns to convert to Unix epoch
nanoseconds. Datelists can be incomplete. If the month is not specified, January is assumed. If the
day is not specified, the 1st is assumed. If the hour is not specified, 12 is assumed, and corresponding
defaults for minutes, seconds, and nanoseconds are 0.

See also: date->epoch-ns, datestr, datestr*, datestr->datelist, epoch-ns->datelist,
now. →index

3.25.3 datestr : procedure/1

Usage: (datestr datelist)=> str

Return datelist, as it is e.g. returned by (now), as a string in format YYYY-MM-DD HH:mm.

See also: now, datestr*, datestr->datelist. →index

3.25.4 datestr* : procedure/1

Usage: (datestr* datelist)=> str

Return the datelist, as it is e.g. returned by (now), as a string in format YYYY-MM-DD HH:mm:ss.nanoseconds.

See also: now, datestr, datestr->datelist. →index

Version 2.4+891b3dc-gui.fyne2 173

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.25.5 datestr->datelist : procedure/1

Usage: (datestr->datelist s)=> li

Convert a date string in the format of datestr and datestr* into a date list as it is e.g. returned by (now).

See also: datestr*, datestr, now. →index

3.25.6 day+ : procedure/2

Usage: (day+ dateli n)=> dateli

Adds n days to the given date dateli in datelist format and returns the new datelist.

See also: sec+, minute+, hour+, week+, month+, year+, now. →index

3.25.7 day-of-week : procedure/3

Usage: (day-of-week Y M D)=> int

Return the day of week based on the date with year Y, month M, and day D. The first day number 0 is
Sunday, the last day is Saturday with number 6.

See also: week-of-date, datestr->datelist, date->epoch-ns, epoch-ns->datelist,
datestr, datestr*, now. →index

3.25.8 epoch-ns->datelist : procedure/1

Usage: (epoch-ns->datelist ns)=> li

Return the date list in UTC time corresponding to the Unix epoch nanoseconds ns.

See also: date->epoch-ns, datestr->datelist, datestr, datestr*, day-of-week, week-of
-date, now. →index

3.25.9 hour+ : procedure/2

Usage: (hour+ dateli n)=> dateli

Adds n hours to the given date dateli in datelist format and returns the new datelist.

See also: sec+, minute+, day+, week+, month+, year+, now. →index

Version 2.4+891b3dc-gui.fyne2 174

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.25.10 minute+ : procedure/2

Usage: (minute+ dateli n)=> dateli

Adds n minutes to the given date dateli in datelist format and returns the new datelist.

See also: sec+, hour+, day+, week+, month+, year+, now. →index

3.25.11 month+ : procedure/2

Usage: (month+ dateli n)=> dateli

Adds n months to the given date dateli in datelist format and returns the new datelist.

See also: sec+, minute+, hour+, day+, week+, year+, now. →index

3.25.12 now : procedure/0

Usage: (now)=> li

Return the current datetime in UTC format as a list of values in the form ’((year month day weekday
iso-week) (hour minute second nanosecond unix-nano-second)).

See also: now-ns, datestr, time, date->epoch-ns, epoch-ns->datelist. →index

3.25.13 now-ms : procedure/0

Usage: (now-ms)=> num

Return the relative system time as a call to (now-ns) but in milliseconds.

See also: now-ns, now. →index

3.25.14 now-ns : procedure/0

Usage: (now-ns)=> int

Return the current time in Unix nanoseconds.

See also: now, time. →index

Version 2.4+891b3dc-gui.fyne2 175

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.25.15 sec+ : procedure/2

Usage: (sec+ dateli n)=> dateli

Adds n seconds to the given date dateli in datelist format and returns the new datelist.

See also: minute+, hour+, day+, week+, month+, year+, now. →index

3.25.16 time : procedure/1

Usage: (time proc)=> int

Return the time in nanoseconds that it takes to execute the procedure with no arguments proc.

See also: now-ns, now. →index

3.25.17 week+ : procedure/2

Usage: (week+ dateli n)=> dateli

Adds n weeks to the given date dateli in datelist format and returns the new datelist.

See also: sec+, minute+, hour+, day+, month+, year+, now. →index

3.25.18 week-of-date : procedure/3

Usage: (week-of-date Y M D)=> int

Return the week of the date in the year given by year Y, month M, and day D.

See also: day-of-week, datestr->datelist, date->epoch-ns, epoch-ns->datelist,
datestr, datestr*, now. →index

3.25.19 year+ : procedure/2

Usage: (month+ dateli n)=> dateli

Adds n years to the given date dateli in datelist format and returns the new datelist.

See also: sec+, minute+, hour+, day+, week+, month+, now. →index

3.26 User Interface

This section lists miscellaneous user interface commands such as color for terminals.

Version 2.4+891b3dc-gui.fyne2 176

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.26.1 colors : dict

Usage: *colors*

A global dict that maps default color names to color lists (r g b), (r g b a) or selectors for (color selector).
This can be used with procedure the-color to translate symbolic names to colors.

See also: the-color. →index

3.26.2 color : procedure/1

Usage: (color sel)=> (r g b a)

Return the color based on sel, which may be ’text for the text color, ’back for the background color,
’textarea for the color of the text area, ’gfx for the current graphics foreground color, and ’frame for the
frame color. In standard Z3S5 Lisp only ’text and ’back are available as selectors and implementations
are free to ignore these.

See also: set-color, reset-color, the-color, with-colors. →index

3.26.3 darken : procedure/1

Usage: (darken color [amount])=> (r g b a)

Return a darker version of color. The optional positive amount specifies the amount of darkening
(0-255).

See also: the-color, *colors*, lighten. →index

3.26.4 lighten : procedure/1

Usage: (lighten color [amount])=> (r g b a)

Return a lighter version of color. The optional positive amount specifies the amount of lightening
(0-255).

See also: the-color, *colors*, darken. →index

3.26.5 out : procedure/1

Usage: (out expr)

Output expr on the console with current default background and foreground color.

Version 2.4+891b3dc-gui.fyne2 177

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: outy, synout, synouty, output-at. →index

3.26.6 outy : procedure/1

Usage: (outy spec)

Output styled text specified in spec. A specification is a list of lists starting with ’fg for foreground, ’bg
for background, or ’text for unstyled text. If the list starts with ’fg or ’bg then the next element must be
a color suitable for (the-color spec). Following may be a string to print or another color specification. If
a list starts with ’text then one or more strings may follow.

See also: *colors*, the-color, set-color, color, gfx.color, output-at, out. →index

3.26.7 random-color : procedure/0 or more

Usage: (random-color [alpha])

Return a random color with optional alpha value. If alpha is not specified, it is 255.

See also: the-color, *colors*, darken, lighten. →index

3.26.8 reset-color : procedure/0

Usage: (reset-color)

Reset the ’text and ’back colors of the display to default values. These values are not specified in the
color database and depend on the runtime implementation. Other colors like ’gfx or ’frame are not
affected.

See also: set-color, color, the-color, with-colors. →index

3.26.9 set-color : procedure/1

Usage: (set-color sel colorlist)

Set the color according to sel to the color colorlist of the form ’(r g b a). See color for information
about sel.

See also: color, reset-color, the-color, with-colors. →index

Version 2.4+891b3dc-gui.fyne2 178

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.26.10 synout : procedure/1

Usage: (synout arg)

Like out, but enforcing a new input line afterwards. This needs to be used when outputing concurrently
in a future or task.

See also: out, outy, synouty. →index

Warning: Concurrent display output can lead to unexpected visual results and ought to be
avoided.

3.26.11 the-color : procedure/1

Usage: (the-color colors-spec)=> (r g b a)

Return the color list (r g b a) based on a color specification, which may be a color list (r g b), a color
selector for (color selector) or a color name such as ’dark-blue.

See also: *colors*, color, set-color, outy. →index

3.26.12 the-color-names : procedure/0

Usage: (the-color-names)=> li

Return the list of color names in colors.

See also: *colors*, the-color. →index

3.27 Unicode Standard

This section lists helper function to deal with the unicode standard. Strings in Z3S5 Lisp can hold
arbitrary data but for I/O purposes are supposed to be in UTF-8 format. Unicode helper functions can
take a unicode rune as a string, in case of which only the first rune of the string is considered and the
empty yields an error, or as a number.

3.27.1 unicode.is-control? : procedure/1

Usage: (unicode.is-control? s)=> bool

Return true if number s or the first unicode glyph of string s represents a control character, nil other-
wise.

Version 2.4+891b3dc-gui.fyne2 179

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: char->str, str->chars, unicode.is-space?, unicode.is-punct?, unicode.is
-symbol?, unicode.is-title?, unicode.is-upper?, unicode.is-digit?, unicode.is-
graphic?, unicode.is-letter?, unicode.is-lower?, unicode.is-mark?, unicode.is-
number?, unicode.is-print?. →index

3.27.2 unicode.is-digit? : procedure/1

Usage: (unicode.is-digit? s)=> bool

Return true if number s or the first unicode glyph of string s represents a numerical digit, nil other-
wise.

See also: char->str, str->chars, unicode.is-space?, unicode.is-punct?, unicode.is
-symbol?, unicode.is-title?, unicode.is-upper?, unicode.is-control?, unicode.is
-graphic?, unicode.is-letter?, unicode.is-lower?, unicode.is-mark?, unicode.is-
number?, unicode.is-print?. →index

3.27.3 unicode.is-graphic? : procedure/1

Usage: (unicode.is-graphic? s)=> bool

Return true if number s or the first unicode glyph of string s is graphically visible, nil otherwise.

See also: char->str, str->chars, unicode.is-space?, unicode.is-punct?, unicode.is
-symbol?, unicode.is-title?, unicode.is-upper?, unicode.is-control?, unicode.
is-digit?, unicode.is-letter?, unicode.is-lower?, unicode.is-mark?, unicode.is-
number?, unicode.is-print?. →index

3.27.4 unicode.is-letter? : procedure/1

Usage: (unicode.is-letter? s)=> bool

Return true if number s or the first unicode glyph of string s represents a letter, nil otherwise.

See also: char->str, str->chars, unicode.is-space?, unicode.is-punct?, unicode.is
-symbol?, unicode.is-title?, unicode.is-upper?, unicode.is-control?, unicode.is
-graphic?, unicode.is-digit?, unicode.is-lower?, unicode.is-mark?, unicode.is-
number?, unicode.is-print?. →index

Version 2.4+891b3dc-gui.fyne2 180

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.27.5 unicode.is-lower? : procedure/1

Usage: (unicode.is-lower? s)=> bool

Return true if number s or the first unicode glyph of string s is a lowercase character, nil otherwise.

See also: char->str, str->chars, unicode.is-space?, unicode.is-punct?, unicode.is
-symbol?, unicode.is-title?, unicode.is-upper?, unicode.is-control?, unicode.is
-digit?, unicode.is-letter?, unicode.is-graphic?, unicode.is-mark?, unicode.is-
number?, unicode.is-print?. →index

3.27.6 unicode.is-mark? : procedure/1

Usage: (unicode.is-mark? s)=> bool

Return true if number s or the first unicode glyph of string s represents a mark (unicode category M),
nil otherwise.

See also: char->str, str->chars, unicode.is-space?, unicode.is-punct?, unicode.is-
symbol?, unicode.is-title?, unicode.is-upper?, unicode.is-control?, unicode.is-
digit?, unicode.is-letter?, unicode.is-graphic?, unicode.is-lower?, unicode.is-
number?, unicode.is-print?. →index

3.27.7 unicode.is-number? : procedure/1

Usage: (unicode.is-number? s)=> bool

Return true if number s or the first unicode glyph of string s represents a letter that may occur in a
number, nil otherwise. This is for testing the unicode number category, which contains number and
digit glyphs in other writing system. Note that it does not test whether a character belongs to a valid
Z3S5 Lisp number.

See also: char->str, str->chars, unicode.is-space?, unicode.is-punct?, unicode.is-
symbol?, unicode.is-title?, unicode.is-upper?, unicode.is-control?, unicode.is-
digit?, unicode.is-letter?, unicode.is-graphic?, unicode.is-lower?, unicode.is-
mark?, unicode.is-print?. →index

3.27.8 unicode.is-print? : procedure/1

Usage: (unicode.is-print? s)=> bool

Return true if number s or the first unicode glyph of string s represents a printable character.

Version 2.4+891b3dc-gui.fyne2 181

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: char->str, str->chars, unicode.is-space?, unicode.is-punct?, unicode.is-
symbol?, unicode.is-title?, unicode.is-upper?, unicode.is-control?, unicode.is-
digit?, unicode.is-letter?, unicode.is-graphic?, unicode.is-lower?, unicode.is-
mark?, unicode.is-number?. →index

3.27.9 unicode.is-punct? : procedure/1

Usage: (unicode.is-punct? s)=> bool

Return true if number s or the first unicode glyph of string s represents a punctuation character, nil
otherwise.

See also: char->str, str->chars, unicode.is-space?, unicode.is-symbol?, unicode.is
-title?, unicode.is-upper?, unicode.is-control?, unicode.is-digit?, unicode.is-
graphic?, unicode.is-letter?, unicode.is-lower?, unicode.is-mark?, unicode.is-
number?, unicode.is-print?. →index

3.27.10 unicode.is-space? : procedure/1

Usage: (unicode.is-space? s)=> bool

Return true if number s or the first unicode glyph of string s represents a white space character, nil
otherwise.

See also: char->str, str->chars, unicode.is-punct?, unicode.is-symbol?, unicode.is
-title?, unicode.is-upper?, unicode.is-control?, unicode.is-digit?, unicode.is-
graphic?, unicode.is-letter?, unicode.is-lower?, unicode.is-mark?, unicode.is-
number?, unicode.is-print?. →index

3.27.11 unicode.is-symbol? : procedure/1

Usage: (unicode.is-symbol? s)=> bool

Return true if number s or the first unicode glyph of string s represents a symbol, nil otherwise.

See also: char->str, str->chars, unicode.is-space?, unicode.is-punct?, unicode.is
-title?, unicode.is-upper?, unicode.is-control?, unicode.is-digit?, unicode.is-
graphic?, unicode.is-letter?, unicode.is-lower?, unicode.is-mark?, unicode.is-
number?, unicode.is-print?. →index

Version 2.4+891b3dc-gui.fyne2 182

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.27.12 unicode.is-title? : procedure/1

Usage: (unicode.is-title? s)=> bool

Return true if number s or the first unicode glyph of string s represents a titlecase character, nil
otherwise.

See also: char->str, str->chars, unicode.is-space?, unicode.is-punct?, unicode.is
-symbol?, unicode.is-upper?, unicode.is-control?, unicode.is-digit?, unicode.is
-graphic?, unicode.is-letter?, unicode.is-lower?, unicode.is-mark?, unicode.is-
number?, unicode.is-print?. →index

3.27.13 unicode.is-upper? : procedure/1

Usage: (unicode.is-upper? s)=> bool

Return true if number s or the first unicode glyph of string s represents an uppercase character, nil
otherwise.

See also: char->str, str->chars, unicode.is-space?, unicode.is-punct?, unicode.is
-symbol?, unicode.is-title?, unicode.is-control?, unicode.is-digit?, unicode.is
-graphic?, unicode.is-letter?, unicode.is-lower?, unicode.is-mark?, unicode.is-
number?, unicode.is-print?. →index

3.28 Runtime System Images

The following functions provide functionality for saving, loading, and running of runtime system images
to and from disk.

3.28.1 current-zimage : procedure/0

Usage: (current-zimage [nonce])=> dict

Obtain a dict of all toplevel bindings. If the nonce is provided, procedures are externalized as (nonce
proc) to distinguish them from data. This function may use a lot of memory. Consider saving or loading
zimages directly from disk instead. Notice that the dict is not the same format as the one used by
load-zimage and save-zimage.

See also: load-zimage, save-zimage, externalize. →index

Version 2.4+891b3dc-gui.fyne2 183

Z3S5 Lisp Reference Manual 2024-1-2 15:04

3.28.2 declare-volatile : procedure/1

Usage: (declare-volatile sym)

Declares sym, which has to be quoted, as a volatile toplevel symbol. Volatile toplevel symbols are
neither saved to nor loaded from zimages.

See also: save-zimage, load-zimage, declare-unprotected. →index

3.28.3 load-zimage : procedure/1 or more

Usage: (load-zimage fi)=> li

Load the zimage file fi, if possible, and return a list containing information about the zimage after it
has been loaded. If the zimage fails the semantic version check, then an error is raised.

See also: save-zimage, run-zimage, zimage-loadable?. →index

3.28.4 read-zimage : procedure/2

Usage: (read-zimage in fi)

Reads and evaluates the zimage in stream in from file fi. The file fi argument is used in error
messages. This procedure raises errors when the zimage is malformed or the version check fails.

See also: load-zimage, run-zimage, zimage-header. →index

3.28.5 run-zimage : procedure/1 or more

Usage: (run-zimage fi)

Load the zimage file fi and start it at the designated entry point. Raises an error if the zimage version
is not compatible or the zimage cannot be run.

See also: load-zimage, save-zimage, zimage-runable?, zimage-loadable?. →index

3.28.6 save-zimage : procedure/1 or more

Usage: (save-zimage min-version info entry-point fi)=> int

Write the current state of the system as a zimage to file fi. If the file already exists, it is overwritten.
The min-version argument designates the minimum system version required to load the zimage.
The info argument should be a list whose first argument is a human-readable string explaining the

Version 2.4+891b3dc-gui.fyne2 184

Z3S5 Lisp Reference Manual 2024-1-2 15:04

purpose of the zimage and remainder is user data. The entry-point is either nil or an expression
that can be evaluated to start the zimage after it has been loaded with run-zimage.

See also: load-zimage, current-zimage, dump, run-zimage, zimage-loadable?, zimage-
runable?, externalize. →index

3.28.7 write-zimage : procedure/4

Usage: (write-zimage out min-version info entry-point)=> list

Write the current state of the system as an zimage to stream out. The min-version argument desig-
nates the minimum system version required to load the zimage. The info argument should be a list
whose first argument is a human-readable string explaining the purpose of the zimage and remainder
is user data. The entry-point is either nil or an expression that can be evaluated to start the zimage
after it has been loaded with run-zimage. The procedure returns a header with information of the
zimage.

See also: save-zimage, read-zimage, load-zimage, current-zimage, externalize. →index

3.28.8 zimage-header : procedure/1

Usage: (zimage-header fi)=> li

Return the zimage header from file fi.

See also: load-zimage, run-zimage. →index

3.28.9 zimage-loadable? : procedure/1 or more

Usage: (zimage-loadable? fi)

Checks whether the file fi is loadable. This does not check whether the file actually is an zimage file,
so you can only use this on readable lisp files.

See also: zimage-runable?, load-zimage, save-zimage, current-zimage. →index

3.28.10 zimage-runable? : procedure/1 or more

Usage: (zimage-runable? [sel] fi

Returns the non-nil entry-point of the zimage if the the zimage in file fi can be run, nil otherwise.

See also: load-zimage, zimage-loadable?, save-zimage, current-zimage. →index

Version 2.4+891b3dc-gui.fyne2 185

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4 Complete Reference

4.1 % : procedure/2

Usage: (% x y)=> num

Compute the remainder of dividing number x by y.

See also: mod, /. →index →topic

4.2 * : procedure/0 or more

Usage: (* [args] ...)=> num

Multiply all args. Special cases: () is 1 and (x) is x.

See also: +, -, /. →index →topic

4.3 colors : dict

Usage: *colors*

A global dict that maps default color names to color lists (r g b), (r g b a) or selectors for (color selector).
This can be used with procedure the-color to translate symbolic names to colors.

See also: the-color. →index →topic

4.4 error-handler : dict

Usage: (*error-handler* err)

The global error handler dict that contains procedures which take an error and handle it. If an entry is
nil, the default handler is used, which outputs the error using error-printer. The dict contains handlers
based on concurrent thread IDs and ought not be manipulated directly.

See also: *error-printer*. →index →topic

4.5 *error-printer* : procedure/1

Usage: (*error-printer* err)

The global printer procedure which takes an error and prints it.

See also: error. →index →topic

Version 2.4+891b3dc-gui.fyne2 186

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.6 help : dict

Usage: *help*

Dict containing all help information for symbols.

See also: help, defhelp, apropos. →index →topic

4.7 hooks : dict

Usage: *hooks*

A dict containing translations from symbolic names to the internal numeric representations of hooks.

See also: hook, add-hook, remove-hook, remove-hooks. →index

4.8 last-error : sym

Usage: *last-error* => str

Contains the last error that has occurred.

See also: *error-printer*, *error-handler*. →index

Warning: This may only be used for debugging! Do not use this for error handling, it will surely
fail! →topic

4.9 reflect : symbol

Usage: *reflect* => li

The list of feature identifiers as symbols that this Lisp implementation supports.

See also: feature?, on-feature. →index →topic

4.10 + : procedure/0 or more

Usage: (+ [args] ...)=> num

Sum up all args. Special cases: (+) is 0 and (+ x) is x.

See also: -, *, /. →index →topic

Version 2.4+891b3dc-gui.fyne2 187

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.11 - : procedure/1 or more

Usage: (- x [y1] [y2] ...)=> num

Subtract y1, y2, . . . , from x. Special case: (- x) is -x.

See also: +, *, /. →index →topic

4.12 / : procedure/1 or more

Usage: (/ x y1 [y2] ...)=> float

Divide x by y1, then by y2, and so forth. The result is a float.

See also: +, *, -. →index →topic

4.13 /= : procedure/2

Usage: (/= x y)=> bool

Return true if number x is not equal to y, nil otherwise.

See also: >, >=, <, <=. →index →topic

4.14 10th : procedure/1 or more

Usage: (10th seq [default])=> any

Get the tenth element of a sequence or the optional default. If there is no such element and no
default is provided, then an error is raised.

See also: nth, nthdef, car, list-ref, array-ref, string-ref, 1st, 2nd, 3rd, 4th, 5th, 6th,
7th, 8th, 9th. →index →topic

4.15 1st : procedure/1 or more

Usage: (1st seq [default])=> any

Get the first element of a sequence or the optional default. If there is no such element and no default
is provided, then an error is raised.

See also: nth, nthdef, car, list-ref, array-ref, string-ref, 2nd, 3rd, 4th, 5th, 6th, 7th,
8th, 9th, 10th. →index →topic

Version 2.4+891b3dc-gui.fyne2 188

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.16 2nd : procedure/1 or more

Usage: (2nd seq [default])=> any

Get the second element of a sequence or the optional default. If there is no such element and no
default is provided, then an error is raised.

See also: nth, nthdef, car, list-ref, array-ref, string-ref, 1st, 3rd, 4th, 5th, 6th, 7th,
8th, 9th, 10th. →index →topic

4.17 3rd : procedure/1 or more

Usage: (3rd seq [default])=> any

Get the third element of a sequence or the optionaldefault. If there is no such element and no default
is provided, then an error is raised.

See also: nth, nthdef, car, list-ref, array-ref, string-ref, 1st, 2nd, 4th, 5th, 6th, 7th,
8th, 9th, 10th. →index →topic

4.18 4th : procedure/1 or more

Usage: (4th seq [default])=> any

Get the fourth element of a sequence or the optional default. If there is no such element and no
default is provided, then an error is raised.

See also: nth, nthdef, car, list-ref, array-ref, string-ref, 1st, 2nd, 3rd, 5th, 6th, 7th,
8th, 9th, 10th. →index →topic

4.19 5th : procedure/1 or more

Usage: (5th seq [default])=> any

Get the fifth element of a sequence or the optional default. If there is no such element and no default
is provided, then an error is raised.

See also: nth, nthdef, car, list-ref, array-ref, string-ref, 1st, 2nd, 3rd, 4th, 6th, 7th,
8th, 9th, 10th. →index →topic

Version 2.4+891b3dc-gui.fyne2 189

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.20 6th : procedure/1 or more

Usage: (6th seq [default])=> any

Get the sixth element of a sequence or the optional default. If there is no such element and no default
is provided, then an error is raised.

See also: nth, nthdef, car, list-ref, array-ref, string-ref, 1st, 2nd, 3rd, 4th, 5th, 7th,
8th, 9th, 10th. →index →topic

4.21 7th : procedure/1 or more

Usage: (7th seq [default])=> any

Get the seventh element of a sequence or the optional default. If there is no such element and no
default is provided, then an error is raised.

See also: nth, nthdef, car, list-ref, array-ref, string-ref, 1st, 2nd, 3rd, 4th, 5th, 6th,
8th, 9th, 10th. →index →topic

4.22 8th : procedure/1 or more

Usage: (8th seq [default])=> any

Get the eighth element of a sequence or the optional default. If there is no such element and no
default is provided, then an error is raised.

See also: nth, nthdef, car, list-ref, array-ref, string-ref, 1st, 2nd, 3rd, 4th, 5th, 6th,
7th, 9th, 10th. →index →topic

4.23 9th : procedure/1 or more

Usage: (9th seq [default])=> any

Get the nineth element of a sequence or the optional default. If there is no such element and no
default is provided, then an error is raised.

See also: nth, nthdef, car, list-ref, array-ref, string-ref, 1st, 2nd, 3rd, 4th, 5th, 6th,
7th, 8th, 10th. →index →topic

Version 2.4+891b3dc-gui.fyne2 190

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.24 < : procedure/2

Usage: (< x y)=> bool

Return true if x is smaller than y.

See also: <=, >=, >. →index →topic

4.25 <= : procedure/2

Usage: (<= x y)=> bool

Return true if x is smaller than or equal to y, nil otherwise.

See also: >, <, >=, /=. →index →topic

4.26 = : procedure/2

Usage: (= x y)=> bool

Return true if number x equals number y, nil otherwise.

See also: eql?, equal?. →index →topic

4.27 > : procedure/2

Usage: (> x y)=> bool

Return true if x is larger than y, nil otherwise.

See also: <, >=, <=, /=. →index →topic

4.28 >= : procedure/2

Usage: (>= x y)=> bool

Return true if x is larger than or equal to y, nil otherwise.

See also: >, <, <=, /=. →index →topic

Version 2.4+891b3dc-gui.fyne2 191

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.29 abs : procedure/1

Usage: (abs x)=> num

Returns the absolute value of number x.

See also: *, -, +, /. →index →topic

4.30 action : class

Usage: (new action <info-clause> <name-clause> <proc-clause> ...)=> action

The action class describes instances of actions that serve as plugins for the system hosting Z3S5 Lisp.
Each action has a name, prefix and info string property and a unique id. Property args is an
array that specifies the type of arguments of the action. This may be used by an implementation of
action.get-args. The proc property must be a function taking the action and a task-id as argument
and processing the action sequentially until it is completed or task-recv returns the ’stop signal. An
action may store the result of computation in the result property, an error in the error property,
and an arbitrary state in the state property. After processing or if an error occurs, action.result should
be called so the host can process the result or error. The action system requires the implementation of
procedures action.start, action.progress, action.get-args, and action.result. These are usually defined
in the host system, for example in the Go implementation of an application using Z3S5 Lisp actions,
and serve as callback functions from Lisp to Go.

See also: action, action-stop, action.start, action.progress, action.get-args, action
.result. →index →topic

4.31 action-start : method

Usage: (action-start action)

Start action, which runs the action’s proc in a task with the action and a task-id as argument. The
proc of theaction should periodically check for the ’stop signal usingtask-recv if the action should
be cancellable, should call action.progress to report progress, action.error in case of an error, and
action.result to report the result.

See also: action, action-stop, action-start, action.progress, action.get-args, action
.result. →index →topic

4.32 action-stop : method

Usage: (action-stop action)

Version 2.4+891b3dc-gui.fyne2 192

Z3S5 Lisp Reference Manual 2024-1-2 15:04

The stop method sends a ’stop signal to the action’s running proc. It is up to the proc to check for the
signal using task-recv and terminate the action gracefully.

See also: action, action-stop, action-start, action.progress, action.get-args, action
.result. →index →topic

4.33 activate-menu-last-submenu : procedure/1

Usage: (activate-menu-last-submenu menu)=> bool

Find the last active menu item traversing through open submenus, and activate its submenu if one is
found. Return true if a submenu was activated, nil otherwise.

See also: deactivate-menu-last-submenu, new-menu, activate-menu-next, activate-
menu-previous. →index →topic

4.34 activate-menu-next : procedure/1

Usage: (activate-menu-next menu)

Activate the menu item following the currently active menu item, if there is any.

See also: activate-menu-previous, new-menu, activate-menu-last-submenu. →index
→topic

4.35 activate-menu-previous : procedure/1

Usage: (activate-menu-previous menu)

Activate the menu item before the currently active menu item, if there is any.

See also: activate-menu-next, new-menu, activate-menu-last-submenu. →index →topic

4.36 add-canvas-shortcut : procedure/3

Usage: (add-canvas-shortcut canvas shortcut proc)

Add the given shortcut to the given canvas, calling the handler procwhen it is triggered. shortcut
must be a list consisting of valid keyboard modifier symbols and a valid key symbol. proc must be
a function that takes a shortcut as argument. If multiple non-modifier keys are present, only the
last one is taken. However, multiple modifier keys are possible. Possible modifiers are symbols or
corresponding strings in ‘(shift control alt suprt). Possible keys are in’(escape return tab backspace

Version 2.4+891b3dc-gui.fyne2 193

Z3S5 Lisp Reference Manual 2024-1-2 15:04

insert delete right left down up page-up page-down home end f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 enter 0
1 2 3 4 5 6 7 8 9 key0 key1 key2 key3 key4 key5 key6 key7 key8 key9 a b c d e f g h i j k l m n o p q r s t u
v w x y z space tick comma minus period slash backslash left-bracket right-bracket semicolon equal
asterisk plus back-tick) and their string variants.

See also: get-window-canvas, remove-canvas-shortcut. →index →topic

4.37 add-hook : procedure/2

Usage: (add-hook hook proc)=> id

Add hook procedure proc which takes a list of arguments as argument under symbolic or numeric
hook and return an integer hook id for this hook. If hook is not known, nil is returned.

See also: remove-hook, remove-hooks, replace-hook. →index →topic

4.38 add-hook-internal : procedure/2

Usage: (add-hook-internal hook proc)=> int

Add a procedure proc to hook with numeric ID hook and return this procedures hook ID. The function
does not check whether the hook exists.

See also: add-hook. →index

Warning: Internal use only. →topic

4.39 add-hook-once : procedure/2

Usage: (add-hook-once hook proc)=> id

Add a hook procedure proc which takes a list of arguments under symbolic or numeric hook and
return an integer hook id. If hook is not known, nil is returned.

See also: add-hook, remove-hook, replace-hook. →index →topic

4.40 add1 : procedure/1

Usage: (add1 n)=> num

Add 1 to number n.

See also: sub1, +, -. →index →topic

Version 2.4+891b3dc-gui.fyne2 194

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.41 alist->dict : procedure/1

Usage: (alist->dict li)=> dict

Convert an association list li into a dictionary. Note that the value will be the cdr of each list element,
not the second element, so you need to use an alist with proper pairs ’(a . b) if you want b to be a single
value.

See also: dict->alist, dict, dict->list, list->dict. →index →topic

4.42 alist? : procedure/1

Usage: (alist? li)=> bool

Return true if li is an association list, nil otherwise. This also works for a-lists where each element is a
pair rather than a full list.

See also: assoc. →index →topic

4.43 and : macro/0 or more

Usage: (and expr1 expr2 ...)=> any

Evaluate expr1 and if it is not nil, then evaluate expr2 and if it is not nil, evaluate the next expression,
until all expressions have been evaluated. This is a shortcut logical and.

See also: or. →index →topic

4.44 append : procedure/1 or more

Usage: (append li1 li2 ...)=> li

Concatenate the lists given as arguments.

See also: cons. →index →topic

4.45 append-form : procedure/0

Usage: (append-form form str canvas-object)

Append a new row to the bottom form consisting of a label str aligned with a canvas-object, which
may be an entry, button, etc.

See also: new-form. →index →topic

Version 2.4+891b3dc-gui.fyne2 195

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.46 apply : procedure/2

Usage: (apply proc arg)=> any

Apply function proc to argument list arg.

See also: functional?. →index →topic

4.47 apropos : procedure/1

Usage: (apropos sym)=> #li

Get a list of procedures and symbols related to sym from the help system.

See also: defhelp, help-entry, help, *help*. →index →topic

4.48 array : procedure/0 or more

Usage: (array [arg1] ...)=> array

Create an array containing the arguments given to it.

See also: array?, build-array, array+. →index →topic

4.49 array+ : procedure/1 or more

Usage: (array+ array1 ...)=> array

Create a new array that results from concatenating the given arrays in order. This function does not
mutate array1.

See also: array-ref, array-len, build-array, array-slice, array, array-copy. →index
→topic

4.50 array->list : procedure/1

Usage: (array->list arr)=> li

Convert array arr into a list.

See also: list->array, array. →index →topic

Version 2.4+891b3dc-gui.fyne2 196

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.51 array->str : procedure/1

Usage: (array-str arr)=> s

Convert an array of unicode glyphs as integer values into a string. If the given sequence is not a valid
UTF-8 sequence, an error is thrown.

See also: str->array. →index →topic

4.52 array-append : procedure/2

Usage: (array-append arr elem)=> array

Append elem to the array arr. This function is destructive and mutates the array. Use array-copy if
you need a copy.

See also: array-ref, array-len, build-array, array-slice, array, array-copy, array+.
→index →topic

4.53 array-copy : procedure/1

Usage: (array-copy arr)=> array

Return a copy of arr.

See also: array, array?, array-map!, array-pmap!. →index →topic

4.54 array-exists? : procedure/2

Usage: (array-exists? arr pred)=> bool

Return true if pred returns true for at least one element in array arr, nil otherwise.

See also: exists?, forall?, list-exists?, str-exists?, seq?. →index →topic

4.55 array-forall? : procedure/2

Usage: (array-forall? arr pred)=> bool

Return true if predicate pred returns true for all elements of array arr, nil otherwise.

See also: foreach, map, forall?, str-forall?, list-forall?, exists?. →index →topic

Version 2.4+891b3dc-gui.fyne2 197

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.56 array-foreach : procedure/2

Usage: (array-foreach arr proc)

Apply proc to each element of array arr in order, for the side effects.

See also: foreach, list-foreach, map. →index →topic

4.57 array-len : procedure/1

Usage: (array-len arr)=> int

Return the length of array arr.

See also: len. →index →topic

4.58 array-map! : procedure/2

Usage: (array-map! arr proc)

Traverse array arr in unspecified order and apply proc to each element. This mutates the array.

See also: array-walk, array-pmap!, array?, map, seq?. →index →topic

4.59 array-pmap! : procedure/2

Usage: (array-pmap! arr proc)

Applyproc in unspecified order in parallel to arrayarr, mutating the array to contain the value returned
by proc each time. Because of the calling overhead for parallel execution, for many workloads array-
map! might be faster if proc is very fast. If proc is slow, then array-pmap! may be much faster for large
arrays on machines with many cores.

See also: array-map!, array-walk, array?, map, seq?. →index →topic

4.60 array-ref : procedure/1

Usage: (array-ref arr n)=> any

Return the element of arr at index n. Arrays are 0-indexed.

See also: array?, array, nth, seq?. →index →topic

Version 2.4+891b3dc-gui.fyne2 198

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.61 array-reverse : procedure/1

Usage: (array-reverse arr)=> array

Create a copy of arr that reverses the order of all of its elements.

See also: reverse, list-reverse, str-reverse. →index →topic

4.62 array-set : procedure/3

Usage: (array-set arr idx value)

Set the value at index idx in arr to value. Arrays are 0-indexed. This mutates the array.

See also: array?, array. →index →topic

4.63 array-slice : procedure/3

Usage: (array-slice arr low high)=> array

Slice the array arr starting from low (inclusive) and ending at high (exclusive) and return the slice.
This function is destrcutive and mutates the slice. Use array-copy if you need a copy.

See also: array-ref, array-len, array-append, build-array, array, array-copy, array+.
→index →topic

4.64 array-sort : procedure/2

Usage: (array-sort arr proc)=> arr

Destructively sorts array arr by using comparison proc proc, which takes two arguments and returns
true if the first argument is smaller than the second argument, nil otherwise. The array is returned but
it is not copied and modified in place by this procedure. The sorting algorithm is not guaranteed to be
stable.

See also: sort. →index →topic

4.65 array-walk : procedure/2

Usage: (array-walk arr proc)

Traverse the array arr from first to last element and apply proc to each element for side-effects.
Function proc takes the index and the array element at that index as argument. If proc returns nil,

Version 2.4+891b3dc-gui.fyne2 199

Z3S5 Lisp Reference Manual 2024-1-2 15:04

then the traversal stops and the index is returned. If proc returns non-nil, traversal continues. If proc
never returns nil, then the index returned is -1. This function does not mutate the array.

See also: array-map!, array-pmap!, array?, map, seq?. →index →topic

4.66 array? : procedure/1

Usage: (array? obj)=> bool

Return true of obj is an array, nil otherwise.

See also: seq?, array. →index →topic

4.67 ascii85->blob : procedure/1

Usage: (ascii85->blob str)=> blob

Convert the ascii85 encoded string str to a binary blob. This will raise an error if str is not a valid
ascii85 encoded string.

See also: blob->ascii85, base64->blob, str->blob, hex->blob. →index →topic

4.68 assoc : procedure/2

Usage: (assoc key alist)=> li

Return the sublist of alist that starts with key if there is any, nil otherwise. Testing is done with
equal?. An association list may be of the form ((key1 value1)(key2 value2). . .) or ((key1 . value1) (key2 .
value2) . . .)

See also: assoc, assoc1, alist?, eq?, equal?. →index →topic

4.69 assoc1 : procedure/2

Usage: (assoc1 sym li)=> any

Get the second element in the first sublist in li that starts with sym. This is equivalent to (cadr (assoc
sym li)).

See also: assoc, alist?. →index →topic

Version 2.4+891b3dc-gui.fyne2 200

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.70 assq : procedure/2

Usage: (assq key alist)=> li

Return the sublist of alist that starts with key if there is any, nil otherwise. Testing is done with eq?.
An association list may be of the form ((key1 value1)(key2 value2). . .) or ((key1 . value1) (key2 . value2)
. . .)

See also: assoc, assoc1, eq?, alist?, equal?. →index →topic

4.71 atom? : procedure/1

Usage: (atom? x)=> bool

Return true if x is an atomic value, nil otherwise. Atomic values are numbers and symbols.

See also: sym?. →index →topic

4.72 base64->blob : procedure/1

Usage: (base64->blob str)=> blob

Convert the base64 encoded string str to a binary blob. This will raise an error if str is not a valid
base64 encoded string.

See also: blob->base64, hex->blob, ascii85->blob, str->blob. →index →topic

4.73 beep : procedure/1

Usage: (beep sel)

Play a built-in system sound. The argument sel may be one of ’(error start ready click okay confirm
info).

See also: set-volume. →index →topic

4.74 bind : procedure/2

Usage: (bind sym value)

Bind value to the global symbol sym. In contrast to setq both values need quoting.

See also: setq. →index →topic

Version 2.4+891b3dc-gui.fyne2 201

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.75 bitand : procedure/2

Usage: (bitand n m)=> int

Return the bitwise and of integers n and m.

See also: bitxor, bitor, bitclear, bitshl, bitshr. →index →topic

4.76 bitclear : procedure/2

Usage: (bitclear n m)=> int

Return the bitwise and-not of integers n and m.

See also: bitxor, bitand, bitor, bitshl, bitshr. →index →topic

4.77 bitor : procedure/2

Usage: (bitor n m)=> int

Return the bitwise or of integers n and m.

See also: bitxor, bitand, bitclear, bitshl, bitshr. →index →topic

4.78 bitshl : procedure/2

Usage: (bitshl n m)=> int

Return the bitwise left shift of n by m.

See also: bitxor, bitor, bitand, bitclear, bitshr. →index →topic

4.79 bitshr : procedure/2

Usage: (bitshr n m)=> int

Return the bitwise right shift of n by m.

See also: bitxor, bitor, bitand, bitclear, bitshl. →index →topic

Version 2.4+891b3dc-gui.fyne2 202

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.80 bitxor : procedure/2

Usage: (bitxor n m)=> int

Return the bitwise exclusive or value of integers n and m.

See also: bitand, bitor, bitclear, bitshl, bitshr. →index →topic

4.81 blob->ascii85 : procedure/1 or more

Usage: (blob->ascii85 b [start] [end])=> str

Convert the blob b to an ascii85 encoded string. If the optional start and end are provided, then only
bytes from start (inclusive) to end (exclusive) are converted.

See also: blob->hex, blob->str, blob->base64, valid?, blob?. →index →topic

4.82 blob->base64 : procedure/1 or more

Usage: (blob->base64 b [start] [end])=> str

Convert the blob b to a base64 encoded string. If the optional start and end are provided, then only
bytes from start (inclusive) to end (exclusive) are converted.

See also: base64->blob, valid?, blob?, blob->str, blob->hex, blob->ascii85. →index
→topic

4.83 blob->hex : procedure/1 or more

Usage: (blob->hex b [start] [end])=> str

Convert the blob b to a hexadecimal string of byte values. If the optional start and end are provided,
then only bytes from start (inclusive) to end (exclusive) are converted.

See also: hex->blob, str->blob, valid?, blob?, blob->base64, blob->ascii85. →index
→topic

4.84 blob->str : procedure/1 or more

Usage: (blob->str b [start] [end])=> str

Version 2.4+891b3dc-gui.fyne2 203

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Convert blob b into a string. Notice that the string may contain binary data that is not suitable for
displaying and does not represent valid UTF-8 glyphs. If the optional start and end are provided,
then only bytes from start (inclusive) to end (exclusive) are converted.

See also: str->blob, valid?, blob?. →index →topic

4.85 blob-chksum : procedure/1 or more

Usage: (blob-chksum b [start] [end])=> blob

Return the checksum of the contents of blobbas new blob. The checksum is cryptographically secure. If
the optional start and end are provided, then only the bytes from start (inclusive) to end (exclusive)
are checksummed.

See also: fchksum, blob-free. →index →topic

4.86 blob-equal? : procedure/2

Usage: (blob-equal? b1 b2)=> bool

Return true if b1 and b2 are equal, nil otherwise. Two blobs are equal if they are either both invalid,
both contain no valid data, or their contents contain exactly the same binary data.

See also: str->blob, blob->str, blob-free. →index →topic

4.87 blob-free : procedure/1

Usage: (blob-free b)

Frees the binary data stored in blob b and makes the blob invalid.

See also: make-blob, valid?, str->blob, blob->str, blob-equal?. →index →topic

4.88 blob? : procedure/1

Usage: (blob? obj)=> bool

Return true if obj is a binary blob, nil otherwise.

See also: blob->ascii85, blob->base64, blob->hex, blob->str, blob-free, blob-chksum,
blob-equal?, valid?. →index →topic

Version 2.4+891b3dc-gui.fyne2 204

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.89 bool? : procedure/1

Usage: (bool? datum)=> bool

Return true if datum is either true or nil. Note: This predicate only exists for type-completeness and
you should never use it as part of testing whether something is true or false - per convention, a value
is true if it is non-nil and not when it is true, which is the special boolean value this predicate tests in
addition to nil.

See also: null?, not. →index →topic

4.90 bound? : macro/1

Usage: (bound? sym)=> bool

Return true if a value is bound to the symbol sym, nil otherwise.

See also: bind, setq. →index →topic

4.91 boxed? : procedure/1

Usage: (boxed? x)=> bool

Return true if x is a boxed value, nil otherwise. Boxed values are special objects that are special in the
system and sometimes cannot be garbage collected.

See also: type-of, num?, str?, sym?, list?, array?, macro?, closure?, intrinsic?, eof?.
→index →topic

4.92 build-array : procedure/2

Usage: (build-array n init)=> array

Create an array containing n elements with initial value init.

See also: array, array?, array-slice, array-append, array-copy, array+. →index →topic

4.93 build-list : procedure/2

Usage: (build-list n proc)=> list

Build a list with n elements by applying proc to the counter n each time.

See also: list, list?, map, foreach. →index →topic

Version 2.4+891b3dc-gui.fyne2 205

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.94 caaar : procedure/1

Usage: (caaar x)=> any

Equivalent to (car (car (car x))).

See also: car, cdr, caar, cadr, cdar, cddr, caadr, cadar, caddr, cdaar, cdadr, cddar, cdddr,
nth, 1st, 2nd, 3rd. →index →topic

4.95 caadr : procedure/1

Usage: (caadr x)=> any

Equivalent to (car (car (cdr x))).

See also: car, cdr, caar, cadr, cdar, cddr, caaar, cadar, caddr, cdaar, cdadr, cddar, cdddr,
nth, 1st, 2nd, 3rd. →index →topic

4.96 caar : procedure/1

Usage: (caar x)=> any

Equivalent to (car (car x)).

See also: car, cdr, cadr, cdar, cddr, caaar, caadr, cadar, caddr, cdaar, cdadr, cddar, cdddr,
nth, 1st, 2nd, 3rd. →index →topic

4.97 cadar : procedure/1

Usage: (cadar x)=> any

Equivalent to (car (cdr (car x))).

See also: car, cdr, caar, cadr, cdar, cddr, caaar, caadr, caddr, cdaar, cdadr, cddar, cdddr,
nth, 1st, 2nd, 3rd. →index →topic

4.98 caddr : procedure/1

Usage: (caddr x)=> any

Equivalent to (car (cdr (cdr x))).

See also: car, cdr, caar, cadr, cdar, cddr, caaar, caadr, cadar, cdaar, cdadr, cddar, cdddr,
nth, 1st, 2nd, 3rd. →index →topic

Version 2.4+891b3dc-gui.fyne2 206

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.99 cadr : procedure/1

Usage: (cadr x)=> any

Equivalent to (car (cdr x)).

See also: car, cdr, caar, cdar, cddr, caaar, caadr, cadar, caddr, cdaar, cdadr, cddar, cdddr,
nth, 1st, 2nd, 3rd. →index →topic

4.100 call-method : procedure/3

Usage: (call-method obj mname args)=> any

Execute method mname of object obj with additional arguments in list args. The first argument in the
method call is always obj itself.

See also: defmethod, defclass, new, isa?, class-of. →index →topic

4.101 call-super : procedure/3

Usage: (call-super obj mname args)=> any

Execute method mname of the first superclass of obj that has a method with that name.

See also: call-method, supers. →index →topic

4.102 can-externalize? : procedure/1

Usage: (can-externalize? datum)=> bool

Recursively determines if datum can be externalized and returns true in this case, nil otherwise.

See also: externalize, externalize0. →index →topic

4.103 car : procedure/1

Usage: (car li)=> any

Get the first element of a list or pair li, an error if there is not first element.

See also: list, list?, pair?. →index →topic

Version 2.4+891b3dc-gui.fyne2 207

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.104 case : macro/2 or more

Usage: (case expr (clause1 ... clausen))=> any

Standard case macro, where you should use t for the remaining alternative. Example: (case (get dict
’key) ((a b) (out “a or b”))(t (out “something else!”))).

See also: cond. →index →topic

4.105 ccmp : macro/2

Usage: (ccmp sym value)=> int

Compare the integer value of sym with the integer value, return 0 if sym = value, -1 if sym < value,
and 1 if sym > value. This operation is synchronized between tasks and futures.

See also: cinc!, cdec!, cwait, cst!. →index →topic

4.106 cdaar : procedure/1

Usage: (cdaar x)=> any

Equivalent to (cdr (car (car x))).

See also: car, cdr, caar, cadr, cdar, cddr, caaar, caadr, cadar, caddr, cdadr, cddar, cdddr,
nth, 1st, 2nd, 3rd. →index →topic

4.107 cdadr : procedure/1

Usage: (cdadr x)=> any

Equivalent to (cdr (car (cdr x))).

See also: car, cdr, caar, cadr, cdar, cddr, caaar, caadr, cadar, caddr, cdaar, cddar, cdddr,
nth, 1st, 2nd, 3rd. →index →topic

4.108 cdar : procedure/1

Usage: (cdar x)=> any

Equivalent to (cdr (car x)).

See also: car, cdr, caar, cadr, cddr, caaar, caadr, cadar, caddr, cdaar, cdadr, cddar, cdddr,
nth, 1st, 2nd, 3rd. →index →topic

Version 2.4+891b3dc-gui.fyne2 208

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.109 cddar : procedure/1

Usage: (cddar x)=> any

Equivalent to (cdr (cdr (car x))).

See also: car, cdr, caar, cadr, cdar, cddr, caaar, caadr, cadar, caddr, cdaar, cdadr, cdddr,
nth, 1st, 2nd, 3rd. →index →topic

4.110 cdddr : procedure/1

Usage: (cdddr x)=> any

Equivalent to (cdr (cdr (cdr x))).

See also: car, cdr, caar, cadr, cdar, cddr, caaar, caadr, cadar, caddr, cdaar, cdadr, cddar,
nth, 1st, 2nd, 3rd. →index →topic

4.111 cddr : procedure/1

Usage: (cddr x)=> any

Equivalent to (cdr (cdr x)).

See also: car, cdr, caar, cadr, cdar, caaar, caadr, cadar, caddr, cdaar, cdadr, cddar, cdddr,
nth, 1st, 2nd, 3rd. →index →topic

4.112 cdec! : macro/1

Usage: (cdec! sym)=> int

Decrease the integer value stored in top-level symbol sym by 1 and return the new value. This operation
is synchronized between tasks and futures.

See also: cinc!, cwait, ccmp, cst!. →index →topic

4.113 cdr : procedure/1

Usage: (cdr li)=> any

Get the rest of a list li. If the list is proper, the cdr is a list. If it is a pair, then it may be an element. If
the list is empty, nil is returned.

See also: car, list, list?, pair?. →index →topic

Version 2.4+891b3dc-gui.fyne2 209

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.114 center-window-on-screen : procedure/1

Usage: (center-window-on-screen window)

As the name implies, this function centers the window on the screen.

See also: set-window-full-screen, window-full-screen?. →index →topic

4.115 change-action-prefix : procedure/2

Usage: (change-action-prefix id new-prefix)=> bool

Change the prefix of a registered action with given id, or change the prefix of action given by id, to
new-prefix. If the operation succeeds, it returns true, otherwise it returns nil.

See also: change-all-action-prefixes, rename-action, get-action, action?, action.
→index →topic

4.116 change-all-action-prefixes : procedure/2

Usage: (change-all-action-prefixes old-prefix new-prefix)

Change the prefixes of all registered actions with old-prefix to new-prefix.

See also: change-action-prefix, rename-action, get-action, register-action, action?,
action. →index →topic

4.117 char->str : procedure/1

Usage: (char->str n)=> str

Return a string containing the unicode char based on integer n.

See also: str->char. →index →topic

4.118 chars : procedure/1

Usage: (chars str)=> dict

Return a charset based on str, i.e., dict with the chars of str as keys and true as value.

See also: dict, get, set, contains. →index →topic

Version 2.4+891b3dc-gui.fyne2 210

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.119 chars->str : procedure/1

Usage: (chars->str a)=> str

Convert an array of UTF-8 rune integers a into a UTF-8 encoded string.

See also: str->runes, str->char, char->str. →index →topic

4.120 cinc! : macro/1

Usage: (cinc! sym)=> int

Increase the integer value stored in top-level symbol sym by 1 and return the new value. This operation
is synchronized between tasks and futures.

See also: cdec!, cwait, ccmp, cst!. →index →topic

4.121 class-name : procedure/1

Usage: (class-name c)=> sym

Return the name of a class c. An error occurs if c is not a valid class.

See also: class?, isa?. →index →topic

4.122 class-of : procedure/1

Usage: (class-of obj)=> class or nil

Return the class of object obj, nil if obj is not a valid object array.

See also: new, isa?. →index →topic

4.123 class? : procedure/1

Usage: (class? c)=> bool

Return true if c is a class array (not a name for a class!), nil otherwise.

See also: object?, isa?. →index →topic

Version 2.4+891b3dc-gui.fyne2 211

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.124 close : procedure/1

Usage: (close p)

Close the port p. Calling close twice on the same port should be avoided.

See also: open, stropen. →index →topic

4.125 close-gui : procedure/0

Usage: (close-gui)

Close the GUI, freeing all resources associated with it. After this function has been called, no further
GUI functions can be used.

See also: forget-gui-object, close-window. →index →topic

4.126 close-window : procedure/1

Usage: (close-window window)

Closes window and delete it from internal storage. This frees window resources. It cannot be re-used
after this operation. Use window-hide if you want to close/hide a window only temporarily. Notice that
unlike in Fyne, there is no mechanism to close an application automatically after its main window has
been closed.

See also: hide-window. →index →topic

4.127 closure? : procedure/1

Usage: (closure? x)=> bool

Return true if x is a closure, nil otherwise. Use function? for texting whether x can be executed.

See also: functional?, macro?, intrinsic?, functional-arity, functional-has-rest?.
→index →topic

4.128 collect-garbage : procedure/0 or more

Usage: (collect-garbage [sort])

Version 2.4+891b3dc-gui.fyne2 212

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Force a garbage-collection of the system’s memory. If sort is ’normal, then only a normal incremental
garbage colllection is performed. If sort is ’total, then the garbage collection is more thorough and
the system attempts to return unused memory to the host OS. Default is ’normal.

See also: memstats. →index

Warning: There should rarely be a use for this. Try to use less memory-consuming data structures
instead. →topic

4.129 color : procedure/1

Usage: (color sel)=> (r g b a)

Return the color based on sel, which may be ’text for the text color, ’back for the background color,
’textarea for the color of the text area, ’gfx for the current graphics foreground color, and ’frame for the
frame color. In standard Z3S5 Lisp only ’text and ’back are available as selectors and implementations
are free to ignore these.

See also: set-color, reset-color, the-color, with-colors. →index →topic

4.130 color->color64 : procedure/1

Usage: (color->color64 li)=> li

Convert a 32-bit NRGBA color list with values from 0 to 255 (inclusive) as it is used by Z3S5 Lisp’s color
dict to a 64-bit NRGBA64 color list with values from 0 to 65635 (inclusive) as they are used by the GUI.

See also: theme-color, the-color, *colors*. →index →topic

4.131 color64->color : procedure/1

Usage: (color64->color li)=> li

Convert a 64-bit NRGBA64 color list with values from 0 to 65365 (inclusive) to a 32-bit color list with
values from 0 to 255 (inclusive) as they are used by Z3S5 Lisp’s colors dict.

See also: theme-color, the-color, *colors*. →index →topic

4.132 cons : procedure/2

Usage: (cons a b)=> pair

Version 2.4+891b3dc-gui.fyne2 213

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Cons two values into a pair. If b is a list, the result is a list. Otherwise the result is a pair.

See also: cdr, car, list?, pair?. →index →topic

4.133 cons? : procedure/1

Usage: (cons? x)=> bool

return true if x is not an atom, nil otherwise.

See also: atom?. →index →topic

4.134 copy-record : procedure/1

Usage: (copy-record r)=> record

Creates a non-recursive, shallow copy of record r.

See also: record?. →index →topic

4.135 count-partitions : procedure/2

Usage: (count-partitions m k)=> int

Return the number of partitions for divding m items into parts of size k or less, where the size of the last
partition may be less than k but the remaining ones have size k.

See also: nth-partition, get-partitions. →index →topic

4.136 count-text-grid-row-columns : procedure/2

Usage: (count-text-grid-row-columns grid row)=> int

Return the number of columns in row of grid, 0 if there are none.

See also: count-text-grid-rows, get-text-grid-cell, get-text-grid-row. →index
→topic

4.137 count-text-grid-rows : procedure/1

Usage: (count-text-grid-rows grid)=> int

Return the number of the last row in grid, 0 if there are none.

Version 2.4+891b3dc-gui.fyne2 214

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: count-text-grid-row-columns, get-text-grid-cell, get-text-grid-row.
→index →topic

4.138 cpunum : procedure/0

Usage: (cpunum)

Return the number of cpu cores of this machine.

See also: sys. →index

Warning: This function also counts virtual cores on the emulator. The original Z3S5 machine did
not have virtual cpu cores. →topic

4.139 create-lorem-ipsum : procedure/3

Usage: (create-lorem-ipsum selector min max)=> str

Create random Lorem Ipsum fill text based on selector. If selector is ’word, then a word with at
least min letters and at most max letters is created. If selector is ’sentence, then a sentence with at
least min words and at most max words is created. If selector is ’paragraph, then a paragraph with
at least min sentences and at most max sentences is created.

See also: new-text-grid, new-entry. →index →topic

4.140 cst! : procedure/2

Usage: (cst! sym value)

Set the value of sym to integer value. This operation is synchronized between tasks and futures.

See also: cinc!, cdec!, ccmp, cwait. →index →topic

4.141 current-error-handler : procedure/0

Usage: (current-error-handler)=> proc

Return the current error handler, a default if there is none.

See also: default-error-handler, push-error-handler, pop-error-handler, *current-
error-handler*, *current-error-continuation*. →index →topic

Version 2.4+891b3dc-gui.fyne2 215

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.142 current-zimage : procedure/0

Usage: (current-zimage [nonce])=> dict

Obtain a dict of all toplevel bindings. If the nonce is provided, procedures are externalized as (nonce
proc) to distinguish them from data. This function may use a lot of memory. Consider saving or loading
zimages directly from disk instead. Notice that the dict is not the same format as the one used by
load-zimage and save-zimage.

See also: load-zimage, save-zimage, externalize. →index →topic

4.143 cwait : procedure/3

Usage: (cwait sym value timeout)

Wait until integer counter sym has value or timeout milliseconds have passed. If imeout is 0, then
this routine might wait indefinitely. This operation is synchronized between tasks and futures.

See also: cinc!, cdec!, ccmp, cst!. →index →topic

4.144 darken : procedure/1

Usage: (darken color [amount])=> (r g b a)

Return a darker version of color. The optional positive amount specifies the amount of darkening
(0-255).

See also: the-color, *colors*, lighten. →index →topic

4.145 date->epoch-ns : procedure/7

Usage: (date->epoch-ns Y M D h m s ns)=> int

Return the Unix epoch nanoseconds based on the given year Y, month M, day D, hour h, minute m,
seconds s, and nanosecond fraction of a second ns, as it is e.g. returned in a (now) datelist.

See also: epoch-ns->datelist, datestr->datelist, datestr, datestr*, day-of-week, week
-of-date, now. →index →topic

Version 2.4+891b3dc-gui.fyne2 216

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.146 datelist->epoch-ns : procedure/1

Usage: (datelist->epoch-ns dateli)=> int

Convert a datelist to Unix epoch nanoseconds. This function uses the Unix nanoseconds from the
5th value of the second list in the datelist, as it is provided by functions like (now). However, if the
Unix nanoseconds value is not specified in the list, it uses date->epoch-ns to convert to Unix epoch
nanoseconds. Datelists can be incomplete. If the month is not specified, January is assumed. If the
day is not specified, the 1st is assumed. If the hour is not specified, 12 is assumed, and corresponding
defaults for minutes, seconds, and nanoseconds are 0.

See also: date->epoch-ns, datestr, datestr*, datestr->datelist, epoch-ns->datelist,
now. →index →topic

4.147 datestr : procedure/1

Usage: (datestr datelist)=> str

Return datelist, as it is e.g. returned by (now), as a string in format YYYY-MM-DD HH:mm.

See also: now, datestr*, datestr->datelist. →index →topic

4.148 datestr* : procedure/1

Usage: (datestr* datelist)=> str

Return the datelist, as it is e.g. returned by (now), as a string in format YYYY-MM-DD HH:mm:ss.nanoseconds.

See also: now, datestr, datestr->datelist. →index →topic

4.149 datestr->datelist : procedure/1

Usage: (datestr->datelist s)=> li

Convert a date string in the format of datestr and datestr* into a date list as it is e.g. returned by (now).

See also: datestr*, datestr, now. →index →topic

4.150 day+ : procedure/2

Usage: (day+ dateli n)=> dateli

Adds n days to the given date dateli in datelist format and returns the new datelist.

Version 2.4+891b3dc-gui.fyne2 217

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: sec+, minute+, hour+, week+, month+, year+, now. →index →topic

4.151 day-of-week : procedure/3

Usage: (day-of-week Y M D)=> int

Return the day of week based on the date with year Y, month M, and day D. The first day number 0 is
Sunday, the last day is Saturday with number 6.

See also: week-of-date, datestr->datelist, date->epoch-ns, epoch-ns->datelist,
datestr, datestr*, now. →index →topic

4.152 db.blob : procedure/2

Usage: (db.blob db-result n)=> fl

Get the content of column n in db-result as blob. A blob is a boxed memory area holding binary
data.

See also: db.str. →index →topic

4.153 db.close : procedure/1

Usage: (db.close db)

Close the database db.

See also: db.open, db.open*, db.exec, db.query. →index →topic

4.154 db.close-result : procedure/1

Usage: (db.close-result db-result)

Close the db-result. It is invalid afterwards. This should be done to avoid memory leaks after the
result has been used.

See also: db.reset, db.step, db.close. →index →topic

Version 2.4+891b3dc-gui.fyne2 218

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.155 db.exec : procedure/2 or more

Usage: (db.exec db stmt [args] ...)

Execute the SQL statement stmt in database db, binding any optional args to the open variable slots
in it. This function does not return anything, use db.query to execute a query that returns rows as
result.

See also: db.query, db.open, db.close, db.open*. →index →topic

4.156 db.float : procedure/2

Usage: (db.float db-result n)=> fl

Get the content of column n in db-result as float.

See also: db.int, db.str. →index →topic

4.157 db.int : procedure/2

Usage: (db.int db-result n)=> int

Get the content of column n in db-result as integer.

See also: db.float, db.str, db.blob. →index →topic

4.158 db.open : procedure/1

Usage: (db.open fi)=> db

Opens an sqlite3 DB or creates a new, empty database at file path fi.

See also: db.close, db.exec, db.query. →index →topic

4.159 db.open* : procedure/1

Usage: (db.open* sel)=> db

Open a temporary database if sel is ’temp or an in-memory database if sel is ’mem.

See also: db.open, db.close, db.exec, db.query. →index →topic

Version 2.4+891b3dc-gui.fyne2 219

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.160 db.query : procedure/2 or more

Usage: (db.query db stmt [args] ...)=> db-result

Query db with SQL statement stmt, binding any optional args to the open variable slots in it. This
function returns a db-result that can be used to loop through rows with db.step and obtain columns
in them using the various accessor methods.

See also: db.exec, db.step, db.int, db.cname, db.float, db.str, db.expr, db.blob. →index
→topic

4.161 db.result-column-count : procedure/1

Usage: (db.result-column-count db-result)=> int

Get the number of columns in the rows of db-result.

See also: db.result-columns. →index →topic

4.162 db.result-columns : procedure/1

Usage: (db.result-columns db-result)=> li

Get a list of column specifications for db-result, each consisting of a list with the column name and
the column type as string, as these were provided to the query. Since queries support automatic type
conversions, this need not reflect the column types in the database schema.

See also: db.result-column-count. →index →topic

4.163 db.row : procedure/1

Usage: (db.row db-result)=> li

Return all columns of the current row in db-result as list. They have the respective base types INT,
FLOAT, BLOB, and TEXT.

See also: db.rows. →index →topic

4.164 db.step : procedure/1

Usage: (db.step db-result)=> bool

Version 2.4+891b3dc-gui.fyne2 220

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Obtain the next result row in db-result and return true, or return nil of there is no more row in the
result.

See also: db.query, db.row, db.rows. →index →topic

4.165 db.str : procedure/2

Usage: (db.str db-result n)=> str

Get the content of column n in db-result as string.

See also: db.blob, db.int, db.float. →index →topic

4.166 deactivate-menu-child : procedure/1

Usage: (deactivate-menu-child menu)

Deactivate the currently active menu item and close its submenu if there is one.

See also: activate-menu-last-submenu, activate-menu-next, activate-menu-previous,
new-menu. →index →topic

4.167 deactivate-menu-last-submenu : procedure/1

Usage: (deactivate-menu-last-submenu menu)

Traverse the menu and deactivate the last open submenu found.

See also: activate-menu-last-submenu, activate-menu-next, activate-menu-previous,
new-menu. →index →topic

4.168 declare-volatile : procedure/1

Usage: (declare-volatile sym)

Declares sym, which has to be quoted, as a volatile toplevel symbol. Volatile toplevel symbols are
neither saved to nor loaded from zimages.

See also: save-zimage, load-zimage, declare-unprotected. →index →topic

Version 2.4+891b3dc-gui.fyne2 221

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.169 def-custom-hook : procedure/2

Usage: (def-custom-hook sym proc)

Define a custom hook point, to be called manually from Lisp. These have IDs starting from 65636.

See also: add-hook. →index →topic

4.170 default-error-handler : procedure/0

Usage: (default-error-handler)=> proc

Return the default error handler, irrespectively of the current-error-handler.

See also: current-error-handler, push-error-handler, pop-error-handler, *current-
error-handler*, *current-error-continuation*. →index →topic

4.171 defclass : macro/2 or more

Usage: (defclass name supers [props] ...)

Defines symbolnameas class with superclassessupersand property clausesprops listed as remaining
arguments. A props clause is either a symbol for a property or a list of the form (sym default) for the
property sym with default value. The class is bound to name and a class predicate name? is created.
Argument supers may be a class name or a list of class names.

See also: defmethod, new. →index →topic

4.172 defmacro : macro/2 or more

Usage: (defmacro name args body ...)

Define a macro name with argument list args and body. Macros are expanded at compile-time.

See also: macro. →index →topic

4.173 defmethod : macro/2 or more

Usage: (defmethod class-name args [body] ...)

Define a method class-name for class class and method name name with a syntax parallel to defun,
where args are the arguments of the methods and body is the rest of the method. The given class-
name must decompose into a valid class name class of a previously created class and method name

Version 2.4+891b3dc-gui.fyne2 222

Z3S5 Lisp Reference Manual 2024-1-2 15:04

name and is bound to the symbol class-name. The remaining arguments are like for defun. So for
example (defmethod employee-name (this) (prop this ’last-name)) defines a method name for an
existing class employee which retrieves the property last-name. Note that defmethod is dynamic:
If you define a class B with class A as superclass, then B only inherits methods from A that have already
been defined for A at the time of defining B!

See also: defclass, new, call-method. →index →topic

4.174 defstruct : macro/1 or more

Usage: (defstruct name props ...)=> struct

Binds symbol name to a struct with name name and with properties props. Each clause of propsmust
be either a symbol for the property name or a list of the form (prop default-value) where prop is the
symbol for the property name and default-value is the value it has by default. For each property p,
accessors name-p and setters name-p! are created, as well as a function name-p* that takes a record
r, a value v, and a procedure proc that takes no arguments. When name-p* is called on record r, it
temporarily sets property p of r to the provided value v and calls the procedure proc. Afterwards, the
original value of p is restored. Since this function mutates the record during the execution of proc
and does not protect this operation against race conditions, it is not thread-safe. (But you can include
a mutex as property and make it thread-safe by wrapping it into with-mutex-lock.) The defstruct
macro returns the struct that is bound to name.

See also: new-struct, make, with-mutex-lock. →index →topic

4.175 defun : macro/1 or more

Usage: (defun ident (params ...)body ...)

Define a function with name ident, a possibly empty list of params, and the remaining body expres-
sions. This is a macro for (setq ident (lambda (params . . .) body . . .)) and binds the lambda-form
to the given symbol. Like lambdas, the params of defun allow for a &rest keyword before the last
parameter name. This binds all remaining arguments of a variadic function call to this parameter as a
list.

See also: setq, defmacro. →index →topic

4.176 delete : procedure/2

Usage: (delete d key)

Version 2.4+891b3dc-gui.fyne2 223

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Remove the value for key in dict d. This also removes the key.

See also: dict?, get, set. →index →topic

4.177 dequeue! : macro/1 or more

Usage: (dequeue! sym [def])=> any

Get the next element from queue sym, which must be the unquoted name of a variable, and return it. If
a default def is given, then this is returned if the queue is empty, otherwise nil is returned.

See also: make-queue, queue?, enqueue!, glance, queue-empty?, queue-len. →index →topic

4.178 dict : procedure/0 or more

Usage: (dict [li])=> dict

Create a dictionary. The option li must be a list of the form ’(key1 value1 key2 value2 . . .). Dictionaries
are unordered, hence also not sequences. Dictionaries are safe for concurrent access.

See also: array, list. →index →topic

4.179 dict->alist : procedure/1

Usage: (dict->alist d)=> li

Convert a dictionary into an association list. Note that the resulting alist will be a set of proper pairs of
the form ’(a . b) if the values in the dictionary are not lists.

See also: dict, dict-map, dict->list. →index →topic

4.180 dict->array : procedure/1

Usage: (dict-array d)=> array

Return an array that contains all key, value pairs ofd. A key comes directly before its value, but otherwise
the order is unspecified.

See also: dict->list, dict. →index →topic

Version 2.4+891b3dc-gui.fyne2 224

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.181 dict->keys : procedure/1

Usage: (dict->keys d)=> li

Return the keys of dictionary d in arbitrary order.

See also: dict, dict->values, dict->alist, dict->list. →index →topic

4.182 dict->list : procedure/1

Usage: (dict->list d)=> li

Return a list of the form ’(key1 value1 key2 value2 . . .), where the order of key, value pairs is unspeci-
fied.

See also: dict->array, dict. →index →topic

4.183 dict->values : procedure/1

Usage: (dict->values d)=> li

Return the values of dictionary d in arbitrary order.

See also: dict, dict->keys, dict->alist, dict->list. →index →topic

4.184 dict-copy : procedure/1

Usage: (dict-copy d)=> dict

Return a copy of dict d.

See also: dict, dict?. →index →topic

4.185 dict-empty? : procedure/1

Usage: (dict-empty? d)=> bool

Return true if dict d is empty, nil otherwise. As crazy as this may sound, this can have O(n) complexity
if the dict is not empty, but it is still going to be more efficient than any other method.

See also: dict. →index →topic

Version 2.4+891b3dc-gui.fyne2 225

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.186 dict-foreach : procedure/2

Usage: (dict-foreach d proc)

Call proc for side-effects with the key and value for each key, value pair in dict d.

See also: dict-map!, dict?, dict. →index →topic

4.187 dict-map : procedure/2

Usage: (dict-map dict proc)=> dict

Returns a copy of dict with proc applies to each key value pair as aruments. Keys are immutable, so
proc must take two arguments and return the new value.

See also: dict-map!, map. →index →topic

4.188 dict-map! : procedure/2

Usage: (dict-map! d proc)

Apply procedure proc which takes the key and value as arguments to each key, value pair in dict d and
set the respective value in d to the result of proc. Keys are not changed.

See also: dict, dict?, dict-foreach. →index →topic

4.189 dict-merge : procedure/2

Usage: (dict-merge a b)=> dict

Create a new dict that contains all key-value pairs from dicts a and b. Note that this function is not
symmetric. If a key is in both a and b, then the key value pair in a is retained for this key.

See also: dict, dict-map, dict-map!, dict-foreach. →index →topic

4.190 dict-protect : procedure/1

Usage: (dict-protect d)

Protect dict d against changes. Attempting to set values in a protected dict will cause an error, but all
values can be read and the dict can be copied. This function requires permission ’allow-protect.

See also: dict-unprotect,dict-protected?,protect,unprotect,protected?,permissions
, permission?. →index

Version 2.4+891b3dc-gui.fyne2 226

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Warning: Protected dicts are full readable and can be copied, so you may need to use protect to
also prevent changes to the toplevel symbol storing the dict! →topic

4.191 dict-protected? : procedure/1

Usage: (dict-protected? d)

Return true if the dict d is protected against mutation, nil otherwise.

See also: dict-protect, dict-unprotect, protect, unprotect, protected?, permissions,
permission?. →index →topic

4.192 dict-unprotect : procedure/1

Usage: (dict-unprotect d)

Unprotect the dict d so it can be mutated again. This function requires permission ’allow-unprotect.

See also: dict-protect, dict-protected?, protect, unprotect, protected?, permissions,
permission?. →index →topic

4.193 dict? : procedure/1

Usage: (dict? obj)=> bool

Return true if obj is a dict, nil otherwise.

See also: dict. →index →topic

4.194 dir : procedure/1

Usage: (dir [path])=> li

Obtain a directory list for path. If path is not specified, the current working directory is listed.

See also: dir?, open, close, read, write. →index →topic

4.195 dir? : procedure/1

Usage: (dir? path)=> bool

Check if the file at path is a directory and return true, nil if the file does not exist or is not a directory.

See also: file-exists?, dir, open, close, read, write. →index →topic

Version 2.4+891b3dc-gui.fyne2 227

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.196 disable-object : procedure/1

Usage: (disable-object obj)

Disable the canvas object obj.

See also: enable-object, hide-object, show-object, object-disabled?, move-object,
resize-object, get-object-size, get-object-min-size, get-object-position, object
-visible?, refresh-object, new-entry, new-label. →index →topic

4.197 div : procedure/2

Usage: (div n k)=> int

Integer division of n by k.

See also: truncate, /, int. →index →topic

4.198 dolist : macro/1 or more

Usage: (dolist (name list [result])body ...)=> li

Traverse the list list in order, binding name to each element subsequently and evaluate the body ex-
pressions with this binding. The optional result is the result of the traversal, nil if it is not provided.

See also: letrec, foreach, map. →index →topic

4.199 dotimes : macro/1 or more

Usage: (dotimes (name count [result])body ...)=> any

Iterate count times, binding name to the counter starting from 0 until the counter has reached count-1,
and evaluate the body expressions each time with this binding. The optional result is the result of
the iteration, nil if it is not provided.

See also: letrec, dolist, while. →index →topic

4.200 dump : procedure/0 or more

Usage: (dump [sym] [all?])=> li

Version 2.4+891b3dc-gui.fyne2 228

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Return a list of symbols starting with the characters of sym or starting with any characters if sym is
omitted, sorted alphabetically. When all? is true, then all symbols are listed, otherwise only symbols
that do not contain "_" are listed. By convention, the underscore is used for auxiliary functions.

See also: dump-bindings, save-zimage, load-zimage. →index →topic

4.201 dump-bindings : procedure/0

Usage: (dump-bindings)=> li

Return a list of all top-level symbols with bound values, including those intended for internal use.

See also: dump. →index →topic

4.202 enable-object : procedure/1

Usage: (enable-object obj)

Enable the canvas object obj.

See also: disable-object, hide-object, show-object, object-disabled?, move-object,
resize-object, get-object-size, get-object-min-size, get-object-position, object
-visible?, refresh-object, new-entry, new-label. →index →topic

4.203 enq : procedure/1

Usage: (enq proc)

Put proc on a special internal queue for sequential execution and execute it when able. proc must
be a prodedure that takes no arguments. The queue can be used to synchronizing i/o commands but
special care must be taken that proc terminates, or else the system might be damaged.

See also: task, future, synout, synouty. →index

Warning: Calls to enq can never be nested, neither explicitly or implicitly by calling enq anywhere
else in the call chain! →topic

4.204 enqueue! : macro/2

Usage: (enqueue! sym elem)

Put elem in queue sym, where sym is the unquoted name of a variable.

See also: make-queue, queue?, dequeue!, glance, queue-empty?, queue-len. →index →topic

Version 2.4+891b3dc-gui.fyne2 229

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.205 entry-accepts-tab? : procedure/1

Usage: (entry-accepts-tab? entry)=> bool

Return nil when the entry does not accept tabs, t otherwise.

See also: new-entry. →index →topic

4.206 epoch-ns->datelist : procedure/1

Usage: (epoch-ns->datelist ns)=> li

Return the date list in UTC time corresponding to the Unix epoch nanoseconds ns.

See also: date->epoch-ns, datestr->datelist, datestr, datestr*, day-of-week, week-of
-date, now. →index →topic

4.207 eq? : procedure/2

Usage: (eq? x y)=> bool

Return true if x and y are equal, nil otherwise. In contrast to other LISPs, eq? checks for deep equality
of arrays and dicts. However, lists are compared by checking whether they are the same cell in memory.
Use equal? to check for deep equality of lists and other objects.

See also: equal?. →index →topic

4.208 eql? : procedure/2

Usage: (eql? x y)=> bool

Returns true if x is equal to y, nil otherwise. This is currently the same as equal? but the behavior
might change.

See also: equal?. →index

Warning: Deprecated. →topic

4.209 equal? : procedure/2

Usage: (equal? x y)=> bool

Return true if x and y are equal, nil otherwise. The equality is tested recursively for containers like lists
and arrays.

Version 2.4+891b3dc-gui.fyne2 230

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: eq?, eql?. →index →topic

4.210 error : procedure/0 or more

Usage: (error [msgstr] [expr] ...)

Raise an error, where msgstr and the optional expressions expr. . . work as in a call to fmt.

See also: fmt, with-final. →index →topic

4.211 error->str : procedure/1

Usage: (error->str datum)=> str

Convert a special error value to a string.

See also: *last-error*, error, error?. →index →topic

4.212 error? : procedure/1

Usage: (error? datum)=> bool

Return true if datum is a special error value, nil otherwise.

See also: *last-error*, error->str, error, eof?, valid?. →index →topic

4.213 eval : procedure/1

Usage: (eval expr)=> any

Evaluate the expressionexpr in the Z3S5 Machine Lisp interpreter and return the result. The evaluation
environment is the system’s environment at the time of the call.

See also: break, apply. →index →topic

4.214 even? : procedure/1

Usage: (even? n)=> bool

Returns true if the integer n is even, nil if it is not even.

See also: odd?. →index →topic

Version 2.4+891b3dc-gui.fyne2 231

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.215 exists? : procedure/2

Usage: (exists? seq pred)=> bool

Return true if pred returns true for at least one element in sequence seq, nil otherwise.

See also: forall?, list-exists?, array-exists?, str-exists?, seq?. →index →topic

4.216 exit : procedure/0 or more

Usage: (exit [n])

Immediately shut down the system and return OS host error code n. The shutdown is performed
gracefully and exit hooks are executed.

See also: . →index →topic

4.217 expand-macros : procedure/1

Usage: (expand-macros expr)=> expr

Expands the macros in expr. This is an ordinary function and will not work on already compiled
expressions such as a function bound to a symbol. However, it can be used to expand macros in
expressions obtained by read.

See also: internalize, externalize, load-library. →index →topic

4.218 expect : macro/2

Usage: (expect value given)

Registers a test under the current test name that checks that value is returned by given. The test is
only executed when (run-selftest) is executed.

See also: expect-err, expect-ok, run-selftest, testing. →index →topic

4.219 expect-err : macro/1 or more

Usage: (expect-err expr ...)

Registers a test under the current test name that checks that expr produces an error.

See also: expect, expect-ok, run-selftest, testing. →index →topic

Version 2.4+891b3dc-gui.fyne2 232

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.220 expect-false : macro/1 or more

Usage: (expect-false expr ...)

Registers a test under the current test name that checks that expr is nil.

See also: expect, expect-ok, run-selftest, testing. →index →topic

4.221 expect-ok : macro/1 or more

Usage: (expect-ok expr ...)

Registers a test under the current test name that checks that expr does not produce an error.

See also: expect, expect-ok, run-selftest, testing. →index →topic

4.222 expect-true : macro/1 or more

Usage: (expect-true expr ...)

Registers a test under the current test name that checks that expr is true (not nil).

See also: expect, expect-ok, run-selftest, testing. →index →topic

4.223 expr->str : procedure/1

Usage: (expr->str expr)=> str

Convert a Lisp expression expr into a string. Does not use a stream port.

See also: str->expr, str->expr*, openstr, internalize, externalize. →index →topic

4.224 externalize : procedure/1

Usage: (externalize sym [nonce])=> sexpr

Obtain an external representation of top-level symbol sym. The optional noncemust be a value unique
in each system zimage, in order to distinguish data from procedures.

See also: can-externalize?, externalize0, current-zimage, save-zimage, load-zimage.
→index →topic

Version 2.4+891b3dc-gui.fyne2 233

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.225 externalize0 : procedure/1

Usage: (externalize0 arg)=> any

Attempts to externalize arg but falls back to the internal expression if arg cannot be externalized. This
procedure never fails but can-externalize? may be false for the result. This function is only used in
miscellaneous printing. Use externalize to externalize expressions for writing to disk.

See also: externalize, can-externalize?. →index →topic

4.226 fdelete : procedure/1

Usage: (fdelete path)

Removes the file or directory at path.

See also: file-exists?, dir?, dir. →index

Warning: This function also deletes directories containing files and all of their subdirectories!
→topic

4.227 feature? : procedure/1

Usage: (feature? sym)=> bool

Return true if the Lisp feature identified by symbol sym is available, nil otherwise.

See also: *reflect*, on-feature. →index →topic

4.228 file-port? : procedure/1

Usage: (file-port? p)=> bool

Return true if p is a file port, nil otherwise.

See also: port?, str-port?, open, stropen. →index →topic

4.229 filter : procedure/2

Usage: (filter li pred)=> li

Return the list based on li with each element removed for which pred returns nil.

See also: list. →index →topic

Version 2.4+891b3dc-gui.fyne2 234

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.230 find-missing-help-entries : procedure/0

Usage: (find-missing-help-entries)=> li

Return a list of global symbols for which help entries are missing.

See also: dump, dump-bindings, find-unneeded-help-entries. →index →topic

4.231 find-unneeded-help-entries : procedure/0

Usage: (find-unneeded-help-entries)=> li

Return a list of help entries for which no symbols are defined.

See also: dump, dump-bindings, find-missing-help-entries. →index

Warning: This function returns false positives! Special forms like setq and macro are listed even
though they clearly are useful and should have a help entry. →topic

4.232 fl.abs : procedure/1

Usage: (fl.abs x)=> fl

Return the absolute value of x.

See also: float, *. →index →topic

4.233 fl.acos : procedure/1

Usage: (fl.acos x)=> fl

Return the arc cosine of x.

See also: fl.cos. →index →topic

4.234 fl.asin : procedure/1

Usage: (fl.asin x)=> fl

Return the arc sine of x.

See also: fl.acos. →index →topic

Version 2.4+891b3dc-gui.fyne2 235

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.235 fl.asinh : procedure/1

Usage: (fl.asinh x)=> fl

Return the inverse hyperbolic sine of x.

See also: fl.cosh. →index →topic

4.236 fl.atan : procedure/1

Usage: (fl.atan x)=> fl

Return the arctangent of x in radians.

See also: fl.atanh, fl.tan. →index →topic

4.237 fl.atan2 : procedure/2

Usage: (fl.atan2 x y)=> fl

Atan2 returns the arc tangent of y / x, using the signs of the two to determine the quadrant of the return
value.

See also: fl.atan. →index →topic

4.238 fl.atanh : procedure/1

Usage: (fl.atanh x)=> fl

Return the inverse hyperbolic tangent of x.

See also: fl.atan. →index →topic

4.239 fl.cbrt : procedure/1

Usage: (fl.cbrt x)=> fl

Return the cube root of x.

See also: fl.sqrt. →index →topic

Version 2.4+891b3dc-gui.fyne2 236

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.240 fl.ceil : procedure/1

Usage: (fl.ceil x)=> fl

Round x up to the nearest integer, return it as a floating point number.

See also: fl.floor, truncate, int, fl.round, fl.trunc. →index →topic

4.241 fl.cos : procedure/1

Usage: (fl.cos x)=> fl

Return the cosine of x.

See also: fl.sin. →index →topic

4.242 fl.cosh : procedure/1

Usage: (fl.cosh x)=> fl

Return the hyperbolic cosine of x.

See also: fl.cos. →index →topic

4.243 fl.dim : procedure/2

Usage: (fl.dim x y)=> fl

Return the maximum of x, y or 0.

See also: max. →index →topic

4.244 fl.erf : procedure/1

Usage: (fl.erf x)=> fl

Return the result of the error function of x.

See also: fl.erfc, fl.dim. →index →topic

Version 2.4+891b3dc-gui.fyne2 237

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.245 fl.erfc : procedure/1

Usage: (fl.erfc x)=> fl

Return the result of the complementary error function of x.

See also: fl.erfcinv, fl.erf. →index →topic

4.246 fl.erfcinv : procedure/1

Usage: (fl.erfcinv x)=> fl

Return the inverse of (fl.erfc x).

See also: fl.erfc. →index →topic

4.247 fl.erfinv : procedure/1

Usage: (fl.erfinv x)=> fl

Return the inverse of (fl.erf x).

See also: fl.erf. →index →topic

4.248 fl.exp : procedure/1

Usage: (fl.exp x)=> fl

Return eˆx, the base-e exponential of x.

See also: fl.exp. →index →topic

4.249 fl.exp2 : procedure/2

Usage: (fl.exp2 x)=> fl

Return 2ˆx, the base-2 exponential of x.

See also: fl.exp. →index →topic

Version 2.4+891b3dc-gui.fyne2 238

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.250 fl.expm1 : procedure/1

Usage: (fl.expm1 x)=> fl

Return eˆx-1, the base-e exponential of (sub1 x). This is more accurate than (sub1 (fl.exp x)) when x is
very small.

See also: fl.exp. →index →topic

4.251 fl.floor : procedure/1

Usage: (fl.floor x)=> fl

Return x rounded to the nearest integer below as floating point number.

See also: fl.ceil, truncate, int. →index →topic

4.252 fl.fma : procedure/3

Usage: (fl.fma x y z)=> fl

Return the fused multiply-add of x, y, z, which is x * y + z.

See also: *, +. →index →topic

4.253 fl.frexp : procedure/1

Usage: (fl.frexp x)=> li

Break x into a normalized fraction and an integral power of two. It returns a list of (frac exp) containing
a float and an integer satisfying x == frac × 2ˆexp where the absolute value of frac is in the interval
[0.5, 1).

See also: fl.exp. →index →topic

4.254 fl.gamma : procedure/1

Usage: (fl.gamma x)=> fl

Compute the Gamma function of x.

See also: fl.lgamma. →index →topic

Version 2.4+891b3dc-gui.fyne2 239

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.255 fl.hypot : procedure/2

Usage: (fl.hypot x y)=> fl

Compute the square root of xˆ2 and yˆ2.

See also: fl.sqrt. →index →topic

4.256 fl.ilogb : procedure/1

Usage: (fl.ilogb x)=> fl

Return the binary exponent of x as a floating point number.

See also: fl.exp2. →index →topic

4.257 fl.inf : procedure/1

Usage: (fl.inf x)=> fl

Return positive 64 bit floating point infinity +INF if x >= 0 and negative 64 bit floating point finfinity
-INF if x < 0.

See also: fl.is-nan?. →index →topic

4.258 fl.is-nan? : procedure/1

Usage: (fl.is-nan? x)=> bool

Return true if x is not a number according to IEEE 754 floating point arithmetics, nil otherwise.

See also: fl.inf. →index →topic

4.259 fl.j0 : procedure/1

Usage: (fl.j0 x)=> fl

Apply the order-zero Bessel function of the first kind to x.

See also: fl.j1, fl.jn, fl.y0, fl.y1, fl.yn. →index →topic

Version 2.4+891b3dc-gui.fyne2 240

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.260 fl.j1 : procedure/1

Usage: (fl.j1 x)=> fl

Apply the the order-one Bessel function of the first kind x.

See also: fl.j0, fl.jn, fl.y0, fl.y1, fl.yn. →index →topic

4.261 fl.jn : procedure/1

Usage: (fl.jn n x)=> fl

Apply the Bessel function of order n to x. The number n must be an integer.

See also: fl.j1, fl.j0, fl.y0, fl.y1, fl.yn. →index →topic

4.262 fl.ldexp : procedure/2

Usage: (fl.ldexp x n)=> fl

Return the inverse of fl.frexp, x * 2ˆn.

See also: fl.frexp. →index →topic

4.263 fl.lgamma : procedure/1

Usage: (fl.lgamma x)=> li

Return a list containing the natural logarithm and sign (-1 or +1) of the Gamma function applied to
x.

See also: fl.gamma. →index →topic

4.264 fl.log : procedure/1

Usage: (fl.log x)=> fl

Return the natural logarithm of x.

See also: fl.log10, fl.log2, fl.logb, fl.log1p. →index →topic

Version 2.4+891b3dc-gui.fyne2 241

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.265 fl.log10 : procedure/1

Usage: (fl.log10 x)=> fl

Return the decimal logarithm of x.

See also: fl.log, fl.log2, fl.logb, fl.log1p. →index →topic

4.266 fl.log1p : procedure/1

Usage: (fl.log1p x)=> fl

Return the natural logarithm of x + 1. This function is more accurate than (fl.log (add1 x)) if x is close to
0.

See also: fl.log, fl.log2, fl.logb, fl.log10. →index →topic

4.267 fl.log2 : procedure/1

Usage: (fl.log2 x)=> fl

Return the binary logarithm of x. This is important for calculating entropy, for example.

See also: fl.log, fl.log10, fl.log1p, fl.logb. →index →topic

4.268 fl.logb : procedure/1

Usage: (fl.logb x)=> fl

Return the binary exponent of x.

See also: fl.log, fl.log10, fl.log1p, fl.logb, fl.log2. →index →topic

4.269 fl.max : procedure/2

Usage: (fl.max x y)=> fl

Return the larger value of two floating point arguments x and y.

See also: fl.min, max, min. →index →topic

Version 2.4+891b3dc-gui.fyne2 242

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.270 fl.min : procedure/2

Usage: (fl.min x y)=> fl

Return the smaller value of two floating point arguments x and y.

See also: fl.min, max, min. →index →topic

4.271 fl.mod : procedure/2

Usage: (fl.mod x y)=> fl

Return the floating point remainder of x / y.

See also: fl.remainder. →index →topic

4.272 fl.modf : procedure/1

Usage: (fl.modf x)=> li

Return integer and fractional floating-point numbers that sum to x. Both values have the same sign as
x.

See also: fl.mod. →index →topic

4.273 fl.nan : procedure/1

Usage: (fl.nan)=> fl

Return the IEEE 754 not-a-number value.

See also: fl.is-nan?, fl.inf. →index →topic

4.274 fl.next-after : procedure/1

Usage: (fl.next-after x)=> fl

Return the next representable floating point number after x.

See also: fl.is-nan?, fl.nan, fl.inf. →index →topic

Version 2.4+891b3dc-gui.fyne2 243

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.275 fl.pow : procedure/2

Usage: (fl.pow x y)=> fl

Return x to the power of y according to 64 bit floating point arithmetics.

See also: fl.pow10. →index →topic

4.276 fl.pow10 : procedure/1

Usage: (fl.pow10 n)=> fl

Return 10 to the power of integer n as a 64 bit floating point number.

See also: fl.pow. →index →topic

4.277 fl.remainder : procedure/2

Usage: (fl.remainder x y)=> fl

Return the IEEE 754 floating-point remainder of x / y.

See also: fl.mod. →index →topic

4.278 fl.round : procedure/1

Usage: (fl.round x)=> fl

Round x to the nearest integer floating point number according to floating point arithmetics.

See also: fl.round-to-even, fl.truncate, int, float. →index →topic

4.279 fl.round-to-even : procedure/1

Usage: (fl.round-to-even x)=> fl

Round x to the nearest even integer floating point number according to floating point arithmetics.

See also: fl.round, fl.truncate, int, float. →index →topic

Version 2.4+891b3dc-gui.fyne2 244

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.280 fl.signbit : procedure/1

Usage: (fl.signbit x)=> bool

Return true if x is negative, nil otherwise.

See also: fl.abs. →index →topic

4.281 fl.sin : procedure/1

Usage: (fl.sin x)=> fl

Return the sine of x.

See also: fl.cos. →index →topic

4.282 fl.sinh : procedure/1

Usage: (fl.sinh x)=> fl

Return the hyperbolic sine of x.

See also: fl.sin. →index →topic

4.283 fl.sqrt : procedure/1

Usage: (fl.sqrt x)=> fl

Return the square root of x.

See also: fl.pow. →index →topic

4.284 fl.tan : procedure/1

Usage: (fl.tan x)=> fl

Return the tangent of x in radian.

See also: fl.tanh, fl.sin, fl.cos. →index →topic

Version 2.4+891b3dc-gui.fyne2 245

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.285 fl.tanh : procedure/1

Usage: (fl.tanh x)=> fl

Return the hyperbolic tangent of x.

See also: fl.tan, flsinh, fl.cosh. →index →topic

4.286 fl.trunc : procedure/1

Usage: (fl.trunc x)=> fl

Return the integer value of x as floating point number.

See also: truncate, int, fl.floor. →index →topic

4.287 fl.y0 : procedure/1

Usage: (fl.y0 x)=> fl

Return the order-zero Bessel function of the second kind applied to x.

See also: fl.y1, fl.yn, fl.j0, fl.j1, fl.jn. →index →topic

4.288 fl.y1 : procedure/1

Usage: (fl.y1 x)=> fl

Return the order-one Bessel function of the second kind applied to x.

See also: fl.y0, fl.yn, fl.j0, fl.j1, fl.jn. →index →topic

4.289 fl.yn : procedure/1

Usage: (fl.yn n x)=> fl

Return the Bessel function of the second kind of order n applied to x. Argument n must be an integer
value.

See also: fl.y0, fl.y1, fl.j0, fl.j1, fl.jn. →index →topic

Version 2.4+891b3dc-gui.fyne2 246

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.290 flatten : procedure/1

Usage: (flatten lst)=> list

Flatten lst, making all elements of sublists elements of the flattened list.

See also: car, cdr, remove-duplicates. →index →topic

4.291 float : procedure/1

Usage: (float n)=> float

Convert n to a floating point value.

See also: int. →index →topic

4.292 fmt : procedure/1 or more

Usage: (fmt s [args] ...)=> str

Format string s that contains format directives with arbitrary many args as arguments. The number of
format directives must match the number of arguments. The format directives are the same as those
for the esoteric and arcane programming language “Go”, which was used on Earth for some time.

See also: out. →index →topic

4.293 focus-canvas-object : procedure/2

Usage: (focus-canvas-object canvas object)

Set the focus within canvas to object. The object must be a focusable canvas object such as an entry
or button.

See also: get-window-canvas, get-focused-canvas-object, focus-next-canvas-object,
focus-previous-canvas-object, unfocus-canvas-objects. →index →topic

4.294 focus-next-canvas-object : procedure/1

Usage: (focus-next-canvas-object canvas)

Focus the next focusable user interface element in canvas.

See also: get-window-canvas, focus-canvas-object, focus-previous-canvas-object,
unfocus-canvas-objects, get-focused-canvas-object. →index →topic

Version 2.4+891b3dc-gui.fyne2 247

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.295 focus-previous-canvas-object : procedure/1

Usage: (focus-previous-canvas-object canvas)

Focus the previous focusable user interface element in canvas.

See also: get-window-canvas, focus-canvas-object, focus-next-canvas-object,
unfocus-canvas-objects, get-focused-canvas-object. →index →topic

4.296 forall? : procedure/2

Usage: (forall? seq pred)=> bool

Return true if predicate pred returns true for all elements of sequence seq, nil otherwise.

See also: foreach, map, list-forall?, array-forall?, str-forall?, exists?, str-exists?,
array-exists?, list-exists?. →index →topic

4.297 force : procedure/1

Usage: (force fut)=> any

Obtain the value of the computation encapsulated by future fut, halting the current task until it has
been obtained. If the future never ends computation, e.g. in an infinite loop, the program may halt
indefinitely.

See also: future, task, make-mutex. →index →topic

4.298 foreach : procedure/2

Usage: (foreach seq proc)

Apply proc to each element of sequence seq in order, for the side effects.

See also: seq?, map. →index →topic

4.299 forget : procedure/1

Usage: (forget key)

Forget the value associated with key. This permanently deletes the value from the persistent record.

See also: remember, recall, recollect, recall-when, recall-info. →index →topic

Version 2.4+891b3dc-gui.fyne2 248

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.300 forget-gui-object : procedure/1

Usage: (forget-gui-object int)

Forget the GUI object int. This removes any association with the object but does not free internal
resources if the object still exists. Internal use only.

See also: close-window, close-gui. →index →topic

4.301 functional-arity : procedure/1

Usage: (functional-arity proc)=> int

Return the arity of a functional proc.

See also: functional?, functional-has-rest?. →index →topic

4.302 functional-has-rest? : procedure/1

Usage: (functional-has-rest? proc)=> bool

Return true if the functional proc has a &rest argument, nil otherwise.

See also: functional?, functional-arity. →index →topic

4.303 functional? : macro/1

Usage: (functional? arg)=> bool

Return true if arg is either a builtin function, a closure, or a macro, nil otherwise. This is the right
predicate for testing whether the argument is applicable and has an arity.

See also: closure?, proc?, functional-arity, functional-has-rest?. →index →topic

4.304 gensym : procedure/0

Usage: (gensym)=> sym

Return a new symbol guaranteed to be unique during runtime.

See also: nonce. →index →topic

Version 2.4+891b3dc-gui.fyne2 249

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.305 get : procedure/2 or more

Usage: (get dict key [default])=> any

Get the value for key in dict, return default if there is no value for key. If default is omitted, then
nil is returned. Provide your own default if you want to store nil.

See also: dict, dict?, set. →index →topic

4.306 get-action : procedure/1

Usage: (get-action id)=> action

Return a cloned action based on id from the action registry. This action can be run using action-
start and will get its own taskid.

See also: action, has-action-system?, action-start, action-stop, register-action.
→index →topic

4.307 get-clipboard-content : procedure/0

Usage: (get-clipboard-content)=> str

Return the current content of the operating system clipboard as string. This function might raise an
error if clipboard access is prohibited by host security settings.

See also: set-clipboard-content. →index →topic

4.308 get-device-info : procedure/0

Usage: (get-device-info)=> li

Return a list with information about the current host device. This returns an association list where ‘ori-
entation might be one of’(vertical vertical-upside-down left right unknown), self-explanatory boolean
keys ’is-mobile?, ’is-browser, ’has-keyboard?, and ’system-scale with the current scaling factor for
graphics as float. The system scale is used to dynamically scale user interface elements to remain
legible on hi res displays.

See also: close-gui. →index →topic

Version 2.4+891b3dc-gui.fyne2 250

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.309 get-entry-cursor : procedure/1

Usage: (get-entry-cursor entry)=> sym

Return a symbol that represents the current cursor of entry. Possible values are in ’(default text
crosshair pointer hresize vresize). Curiously, there is no way to set the cursor yet.

See also: new-entry. →index →topic

4.310 get-entry-cursor-pos : procedure/1

Usage: (get-entry-cursor-pos entry)=> li

Return a list consisting of row number and column number of the current cursor position of the cursor
in entry.

See also: set-entry-cursor-row, set-entry-cursor-column. →index →topic

4.311 get-focused-canvas-object : procedure/1

Usage: (get-focused-canvas-object canvas)=> int

Obtain the canvas object that is currently focused in canvas, or nil if there is none.

See also: get-window-canvas, focus-canvas-object, focus-next-canvas-object, focus-
previous-canvas-object. →index →topic

4.312 get-label-text : procedure/1

Usage: (get-label-text label)=> str

Gets the text of label

See also: set-label-text, new-label. →index →topic

4.313 get-menu-item-label : procedure/1

Usage: (get-menu-item-label item)=> str

Return the current label of the given menu item.

See also: set-menu-item-label, set-menu-item-disabled, menu-item-disabled, set
-menu-item-checked, menu-item-checked?, new-menu*, new-menu, new-menu-item,
new-menu-item-separator. →index →topic

Version 2.4+891b3dc-gui.fyne2 251

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.314 get-object-min-size : procedure/1

Usage: (get-object-min-size obj)=> li

Return the minimum size of canvas object obj as a list containing the width and height as floats. The
minimum size is computed based on various internal criteria and can only be changed for some special
widgets.

See also: disable-object, enable-object, show-object, hide-object, object-disabled?,
move-object, resize-object, get-object-size, get-object-position, object-visible
?, refresh-object, new-entry, new-label. →index →topic

4.315 get-object-position : procedure/1

Usage: (get-object-position obj)=> li

Return the position of canvas object obj as a list containing the x and y coordinates as floats.

See also: disable-object, enable-object, show-object, hide-object, object-disabled?,
move-object, resize-object, get-object-size, get-object-min-size, object-visible
?, refresh-object, new-entry, new-label. →index →topic

4.316 get-object-size : procedure/1

Usage: (get-object-size obj)=> li

Return the size of canvas object obj as a list containing the width and height as floats.

See also: disable-object, enable-object, show-object, hide-object, object-disabled?,
move-object, resize-object, get-object-min-size, get-object-position, object-
visible?, refresh-object, new-entry, new-label. →index →topic

4.317 get-or-set : procedure/3

Usage: (get-or-set d key value)

Get the value for key in dict d if it already exists, otherwise set it to value.

See also: dict?, get, set. →index →topic

Version 2.4+891b3dc-gui.fyne2 252

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.318 get-partitions : procedure/2

Usage: (get-partitions x n)=> proc/1*

Return an iterator procedure that returns lists of the form (start-offset end-offset bytes) with 0-index
offsets for a given index k, or nil if there is no corresponding part, such that the sizes of the partitions
returned in bytes summed up are x and and each partition is n or lower in size. The last partition will
be the smallest partition with a bytes value smaller than n if x is not dividable without rest by n. If no
argument is provided for the returned iterator, then it returns the number of partitions.

See also: nth-partition, count-partitions, get-file-partitions, iterate. →index
→topic

4.319 get-progress-bar-value : procedure/1

Usage: (get-progress-bar-value bar)=> num

Return the current value of progress-bar bar.

See also: set-progress-bar, new-progress-bar, new-infinite-progress-bar. →index
→topic

4.320 get-scroll-offset : procedure/1

Usage: (get-scroll-offset scroll)=> li

Get the offset of scroll, which may be a hscroll, vscroll, or scroll, as a position list of (x y) where x and
y are floats.

See also: set-scroll-offset, new-scroll, new-hscroll, new-vscroll. →index →topic

4.321 get-text-grid-cell : procedure/3

Usage: (get-text-grid-cell grid row column)=> li

Return the cell of grid at row and column. The result is a list consisting of a string containing one
unicode rune and a grid style list. The style might be nil. If it is not nil, then the list contains a foreground
and a background color list.

See also: get-text-grid-rune, set-text-grid-cell, get-text-grid-row, set-text-grid
-rune, set-text-grid-style-range, get-text-grid-style. →index →topic

Version 2.4+891b3dc-gui.fyne2 253

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.322 get-text-grid-cell-size : procedure/1

Usage: (get-text-grid-cell-size grid)=> li

Return the size of one text grid cell as a list of floats (w h) where w is the width and h is the height.

See also: new-text-grid. →index →topic

4.323 get-text-grid-row : procedure/2

Usage: (get-text-grid-row grid row)=> li

Obtain a row of a text grid, where row is a 0-based index. This function returns a list of the form ’(row
style), where style is a grid style list and row is an array of lists consisting each of a unicode string
containing one rune and a grid style list. Each entry of the row array represents an individual unicode
glyph with a style, whereas the style list in the return argument represents an optional style of the
whole row.

See also: set-text-grid-row, get-text-grid-row-text, get-text-grid-cell, new-
text-grid, text-grid-show-line-numbers?, text-grid-show-whitespace?, get-text
-grid-tab-width, set-text-grid-tab-width, set-text-grid-show-line-numbers,
set-text-grid-show-whitespace, set-text-grid-cell, set-text-grid-row-style,
set-text-grid-rune, set-text-grid-style, set-text-grid-style-range, set-text-
grid-text, get-text-grid-text, remove-text-grid-row, insert-text-grid-row. →index
→topic

4.324 get-text-grid-row-text : procedure/2

Usage: (get-text-grid-row-text grid row)=> str

Return the text of row in grid as a string without any style information.

See also: set-text-grid-rune, get-text-grid-row, get-text-grid-cell, set-text-grid
-row, new-text-grid, text-grid-show-line-numbers?, text-grid-show-whitespace?,
get-text-grid-tab-width, set-text-grid-tab-width, set-text-grid-show-line-
numbers, set-text-grid-show-whitespace, set-text-grid-cell, set-text-grid-row
-style, set-text-grid-rune, set-text-grid-style, set-text-grid-style-range,
set-text-grid-text, get-text-grid-text. →index →topic

4.325 get-text-grid-rune : procedure/3

Usage: (get-text-grid-rune grid row column)=> str

Version 2.4+891b3dc-gui.fyne2 254

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Return the string containing a single rune at the cell in row and column of grid.

See also: get-text-grid-cell, get-text-grid-style, get-text-grid-row. →index →topic

4.326 get-text-grid-tab-width : procedure/1

Usage: (get-text-grid-tab-width grid)=> int

Return the current tabulator width of grid in space characters.

See also: new-text-grid, text-grid-show-line-numbers?, text-grid-show-whitespace?,
set-text-grid-tab-width, set-text-grid-show-line-numbers, set-text-grid-show
-whitespace, get-text-grid-row, get-text-grid-row-text, set-text-grid-cell,
get-text-grid-cell, set-text-grid-row, set-text-grid-row-style, set-text-grid
-rune, set-text-grid-style, set-text-grid-style-range, set-text-grid-text,
get-text-grid-text. →index →topic

4.327 get-text-grid-text : procedure/1

Usage: (get-text-grid-text grid)=> str

Return the text of grid as a string without style information.

See also: set-text-grid-text, new-text-grid, get-text-grid-row, get-text-grid-rune,
get-text-grid-cell. →index →topic

4.328 get-window-canvas : procedure/1

Usage: (get-window-canvas window)=> int

Get the canvas object of window, which is the area on which window elements are drawn. This is not
the same as the window-content, which is a widget or other user interface element. The canvas is used
for raw-drawing commands, for example for drawing circles and boxes. With a suitable layout that
doesn’t re-arrange objects, it can e.g. be used to draw overlays.

See also: get-window-content, set-window-content, focus-canvas-object. →index
→topic

4.329 get-window-content : procedure/2

Usage: (get-window-content window)=> int

Version 2.4+891b3dc-gui.fyne2 255

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Get the canvas object ID that represents the main content of the window. This is usually a widget or a
container with layout.

See also: set-window-content, get-window-canvas. →index →topic

4.330 get-window-icon : procedure/1

Usage: (get-window-icon window)=> int

Obtain the icon ID of the icon of window. The resource obtained is not guaranteed to be a visible icon
or might be a dummy, as not all windows have icons on all platforms.

See also: set-window-icon, new-icon, theme-icon. →index →topic

4.331 get-window-main-menu : procedure/2

Usage: (get-window-main-menu window)=> int

Get the main menu ID of window.

See also: set-window-main-menu, new-main-menu. →index →topic

4.332 get-window-title : procedure/1

Usage: (get-window-title window)=> str

Return the title of window as string.

See also: set-window-title. →index →topic

4.333 getstacked : procedure/3

Usage: (getstacked dict key default)

Get the topmost element from the stack stored at key in dict. If the stack is empty or no stack is
stored at key, then default is returned.

See also: pushstacked, popstacked. →index →topic

Version 2.4+891b3dc-gui.fyne2 256

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.334 glance : procedure/1

Usage: (glance s [def])=> any

Peek the next element in a stack or queue without changing the data structure. If default def is
provided, this is returned in case the stack or queue is empty; otherwise nil is returned.

See also: make-queue, make-stack, queue?, enqueue?, dequeue?, queue-len, stack-len, pop
!, push!. →index →topic

4.335 global-startup-time : procedure/0

Usage: (global-startup-time)=> num

Return the global startup time in milliseconds. This is the time that the initial embedded init.lisp
system required for booting, rounded to two decimal places unless it is 1 or less.

See also: now-ns, time, now. →index →topic

4.336 global-sym? : procedure/1

Usage: (global-sym? sym)=> bool

Returns true if sym is a global symbol, nil otherwise. By convention, a symbol counts as global if it
starts with a "*" character. This is used by library functions to determine whether a top-level symbol
ought to be treated as local or global to the library.

See also: load, include, sym?. →index →topic

4.337 has : procedure/2

Usage: (has dict key)=> bool

Return true if the dict dict contains an entry for key, nil otherwise.

See also: dict, get, set. →index →topic

4.338 has-action-system? : procedure/0

Usage: (has-action-system?)=> bool

This predicate is true if the action system is available, false otherwise.

Version 2.4+891b3dc-gui.fyne2 257

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: action, init-actions, action-start, action-stop, registered-actions,
register-action. →index →topic

4.339 has-action? : procedure/1

Usage: (has-action? prefix name)=> bool

Return true if an action with the givenprefix andname is registered, nil otherwise. Actions are indexed
by id, so this is much slower than using get-action to retrieve a registered action by the value of the
’id property.

See also: get-action, action, has-action-system?, register-action. →index →topic

4.340 has-key? : procedure/2

Usage: (has-key? d key)=> bool

Return true if d has key key, nil otherwise.

See also: dict?, get, set, delete. →index →topic

4.341 has-method? : procedure/2

Usage: (has-method? obj name)=> bool

Return true if obj has a method with name name, nil otherwise.

See also: defmethod, has-prop?, new, props, methods, prop, setprop. →index →topic

4.342 has-prop? : procedure/2

Usage: (has-prop? obj slot)=> bool

Return true if obj has a property named slot, nil otherwise.

See also: has-method?, new, props, methods, prop, setprop. →index →topic

4.343 help : macro/1

Usage: (help sym)

Display help information about sym (unquoted).

Version 2.4+891b3dc-gui.fyne2 258

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: defhelp, help-topics, help-about, help-topic-info, set-help-topic-info,
help-entry, *help*, apropos. →index →topic

4.344 help->manual-entry : nil

Usage: (help->manual-entry key [level] [link?])=> str

Looks up help for key and converts it to a manual section as markdown string. If there is no entry for
key, then nil is returned. The optional level integer indicates the heading nesting. If link? is true an
anchor is created for the key.

See also: help. →index →topic

4.345 help-about : procedure/1 or more

Usage: (help-about topic [sel])=> li

Obtain a list of symbols for which help about topic is available. If optional sel argument is left out
or any, then any symbols with which the topic is associated are listed. If the optional sel argument
is first, then a symbol is only listed if it has topic as first topic entry. This restricts the number of
entries returned to a more essential selection.

See also: help-topics, help, apropos. →index →topic

4.346 help-entry : procedure/1

Usage: (help-entry sym)=> list

Get usage and help information for sym.

See also: defhelp, help, apropos, *help*, help-topics, help-about, set-help-topic-info,
help-topic-info. →index →topic

4.347 help-strings : procedure/2

Usage: (help-strings sym del)=> li

Obtain a string of help strings for a given symbol sym. The fields in the string are separated by string
del.

See also: help, help-entry, *help*. →index →topic

Version 2.4+891b3dc-gui.fyne2 259

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.348 help-topic-info : procedure/1

Usage: (help-topic-info topic)=> li

Return a list containing a heading and an info string for help topic, or nil if no info is available.

See also: set-help-topic-info, defhelp, help. →index →topic

4.349 help-topics : procedure/0

Usage: (help-topics)=> li

Obtain a list of help topics for commands.

See also: help, help-topic, apropos. →index →topic

4.350 hex->blob : procedure/1

Usage: (hex->blob str)=> blob

Convert hex string str to a blob. This will raise an error if str is not a valid hex string.

See also: blob->hex, base64->blob, ascii85->blob, str->blob. →index →topic

4.351 hide-object : procedure/1

Usage: (hide-object obj)

Hide the canvas object obj.

See also: disable-object, enable-object, show-object, object-disabled?, move-object,
resize-object, get-object-size, get-object-min-size, get-object-position, object
-visible?, refresh-object, new-entry, new-label. →index →topic

4.352 hide-window : procedure/1

Usage: (hide-window window)

Hides window. It can be shown again using show-window.

See also: show-window, close-window. →index →topic

Version 2.4+891b3dc-gui.fyne2 260

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.353 hook : procedure/1

Usage: (hook symbol)

Lookup the internal hook number from a symbolic name.

See also: *hooks*, add-hook, remove-hook, remove-hooks. →index →topic

4.354 hour+ : procedure/2

Usage: (hour+ dateli n)=> dateli

Adds n hours to the given date dateli in datelist format and returns the new datelist.

See also: sec+, minute+, day+, week+, month+, year+, now. →index →topic

4.355 identity : procedure/1

Usage: (identity x)

Return x.

See also: apply, equal?. →index →topic

4.356 if : macro/3

Usage: (if cond expr1 expr2)=> any

Evaluate expr1 if cond is true, otherwise evaluate expr2.

See also: cond, when, unless. →index →topic

4.357 inchars : procedure/2

Usage: (inchars char chars)=> bool

Return true if char is in the charset chars, nil otherwise.

See also: chars, dict, get, set, has. →index →topic

Version 2.4+891b3dc-gui.fyne2 261

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.358 include : procedure/1

Usage: (include fi)=> any

Evaluate the lisp file fi one expression after the other in the current environment.

See also: read, write, open, close. →index →topic

4.359 index : procedure/2 or more

Usage: (index seq elem [pred])=> int

Return the first index of elem in seq going from left to right, using equality predicate pred for compar-
isons (default is eq?). If elem is not in seq, -1 is returned.

See also: nth, seq?. →index →topic

4.360 init-actions : procedure/0

Usage: (init-actions)

Initialize the action system, signals an error if the action system is not available.

See also: action, has-action-system?, action-start, action-stop. →index →topic

4.361 init-remember : procedure/0

Usage: (init-remember)

Initialize the remember database. This requires the modules ’kvdb and ’db enabled. The database is
located at (str+ (sysdir ’z3s5-data) “/remembered.z3kv”).

See also: remember, recall-when, recall, forget. →index →topic

4.362 insert-text-grid-row : procedure/2

Usage: (insert-text-grid-row grid row)

Insert a new text grid row before row in the given text grid. If row is the number of rows, a new row is
appended to the end of the text grid.

See also: remove-text-grid-row, count-text-grid-rows, new-text-grid, get-text-grid
-row. →index →topic

Version 2.4+891b3dc-gui.fyne2 262

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.363 instr : procedure/2

Usage: (instr s1 s2)=> int

Return the index of the first occurrence of s2 in s1 (from left), or -1 if s1 does not contain s2.

See also: str?, index. →index →topic

4.364 int : procedure/1

Usage: (int n)=> int

Return n as an integer, rounding down to the nearest integer if necessary.

See also: float. →index

Warning: If the number is very large this may result in returning the maximum supported integer
number rather than the number as integer. →topic

4.365 intern : procedure/1

Usage: (intern s)=> sym

Create a new interned symbol based on string s.

See also: gensym, str->sym, make-symbol. →index →topic

4.366 internalize : procedure/2

Usage: (internalize arg nonce)

Internalize an external representation of arg, using nonce for distinguishing between data and code
that needs to be evaluated.

See also: externalize. →index →topic

4.367 intrinsic : procedure/1

Usage: (intrinsic sym)=> any

Attempt to obtain the value that is intrinsically bound to sym. Use this function to express the intention
to use the pre-defined builtin value of a symbol in the base language.

See also: bind, unbind. →index

Version 2.4+891b3dc-gui.fyne2 263

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Warning: This function currently only returns the binding but this behavior might change in
future. →topic

4.368 intrinsic? : procedure/1

Usage: (intrinsic? x)=> bool

Return true if x is an intrinsic built-in function, nil otherwise. Notice that this function tests the value
and not that a symbol has been bound to the intrinsic.

See also: functional?, macro?, closure?. →index

Warning: What counts as an intrinsic or not may change from version to version. This is for
internal use only. →topic

4.369 isa? : procedure/2

Usage: (isa? obj class)=> bool

Return true if obj is an instance of class, nil otherwise.

See also: supers. →index →topic

4.370 iterate : procedure/2

Usage: (iterate it proc)

Apply proc to each argument returned by iterator it in sequence, similar to the way foreach works.
An iterator is a procedure that takes one integer as argument or no argument at all. If no argument is
provided, the iterator returns the number of iterations. If an integer is provided, the iterator returns a
non-nil value for the given index.

See also: foreach, get-partitions. →index →topic

4.371 kvdb.begin : procedure/1

Usage: (kvdb.begin db)

Begin a key-value database transaction. This can be committed by using kvdb.commit and rolled back
by kvdb.rollback.

See also: kvdb.comit, kvdb.rollback. →index

Version 2.4+891b3dc-gui.fyne2 264

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Warning: Transactions in key-value databases cannot be nested! You have to ensure that there is
only one begin.. .commit pair. →topic

4.372 kvdb.close : procedure/1

Usage: (kvdb.close db)

Close a key-value db.

See also: kvdb.open. →index →topic

4.373 kvdb.commit : procedure/1

Usage: (kvdb.commit db)

Commit the current transaction, making any changes made since the transaction started permanent.

See also: kvdb.rollback, kvdb.begin. →index →topic

4.374 kvdb.db? : procedure/1

Usage: (kvdb.db? datum)=> bool

Return true if the given datum is a key-value database, nil otherwise.

See also: kvdb.open. →index →topic

4.375 kvdb.forget : procedure/1

Usage: (kvdb.forget key)

Forget the value for key if there is one.

See also: kvdb.set, kvdb.get. →index →topic

4.376 kvdb.forget-everything : procedure/1

Usage: (kvdb.forget-everything db)

Erases all data from the given key-value database db, irrecoverably loosing ALL data in it.

See also: kvdb.forget. →index

Warning: This operation cannot be undone! Data for all types of keys is deleted. Permanent data
loss is imminent! →topic

Version 2.4+891b3dc-gui.fyne2 265

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.377 kvdb.get : procedure/2 or more

Usage: (kvdb.get db key [other])=> any

Get the value stored at key in the key-value database db. If the value is found, it is returned. If the
value is not found and other is specified, then other is returned. If the value is not found and other
is not specified, then nil is returned.

See also: kvdb.set, kvdb.when, kvdb.info, kvdb.open, kvdb.forget, kvdb.close, kvdb.
search, remember, recall, forget. →index →topic

4.378 kvdb.info : procedure/2 or more

Usage: (db key [other])=> (str str)

Return a list containing the info string and its fuzzy variant stored for key in db, other when the value
for key is not found. The default for other is nil.

See also: kvdb.get, kvdb.when. →index →topic

4.379 kvdb.open : procedure/1 or more

Usage: (kvdb.open path)=> kvdb-array

Create or open a key-value database at path.

See also: kvdb.close. →index →topic

4.380 kvdb.rollback : procedure/1

Usage: (kvdb.rollback db)

Rollback the changes made since the last transaction has been started and return the key-value
database to its previous state.

See also: kvdb.commit, kvdb.begin. →index →topic

4.381 kvdb.search : procedure/2 or more

Usage: (kvdb.search db s [keytype] [limit] [fuzzer])=> li

Search the key-value database db for search expression string s for optional keytype and return a list
of matching keys. The optionalkeytypemay be one of ’(all str sym int expr), where the default is ’all for

Version 2.4+891b3dc-gui.fyne2 266

Z3S5 Lisp Reference Manual 2024-1-2 15:04

any kind of key. If the optional limit is provided, then only limit entries are returned. Default limit
is kvdb.default-search-limit. If fuzzer is a function provided, then a fuzzy string search is performed
based on applying fuzzer to the search term; default is nil.

See also: kvdb.get. →index →topic

4.382 kvdb.set : procedure/3 or more

Usage: (kvdb.set db key value [info] [fuzzer])

Set the value for key in key-value database db. The optional info string contains searchable infor-
mation about the value that may be retrieved with the search function. The optional fuzzer must be
a function that takes a string and yields a fuzzy variant of the string that can be used for fuzzy search. If
no fuzzer is specified, then the default metaphone algorithm is used. Keys for the database must be
externalizable but notice that integer keys may provide faster performance.

See also: kvdb.get, kvdb.forget, kvdb.open, kvdb.close, kvdb.search. →index →topic

4.383 kvdb.when : procedure/2 or more

Usage: (kvdb.when db key [other])=> str

Get the date in db when the entry for key was last modified as a date string. If there is no entry for key,
then other is returned. If other is not specified and there is no key, then nil is returned.

See also: datestr->datelist, kvdb.get, kvdb.info. →index →topic

4.384 last : procedure/1 or more

Usage: (last seq [default])=> any

Get the last element of sequence seq or return default if the sequence is empty. If default is not
given and the sequence is empty, an error is raised.

See also: nth, nthdef, car, list-ref, array-ref, string, ref, 1st, 2nd, 3rd, 4th, 5th, 6th, 7th,
8th, 9th, 10th. →index →topic

4.385 lcons : procedure/2

Usage: (lcons datum li)=> list

Version 2.4+891b3dc-gui.fyne2 267

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Insert datum at the end of the list li. There may be a more efficient implementation of this in the
future. Or, maybe not. Who knows?

See also: cons, list, append, nreverse. →index →topic

4.386 len : procedure/1

Usage: (len seq)=> int

Return the length of seq. Works for lists, strings, arrays, and dicts.

See also: seq?. →index →topic

4.387 let : macro/1 or more

Usage: (let args body ...)=> any

Bind each pair of symbol and expression in args and evaluate the expressions in bodywith these local
bindings. Return the value of the last expression in body.

See also: letrec. →index →topic

4.388 letrec : macro/1 or more

Usage: (letrec args body ...)=> any

Recursive let binds the symbol, expression pairs in args in a way that makes prior bindings available
to later bindings and allows for recursive definitions in args, then evaluates the body expressions
with these bindings.

See also: let. →index →topic

4.389 lighten : procedure/1

Usage: (lighten color [amount])=> (r g b a)

Return a lighter version of color. The optional positive amount specifies the amount of lightening
(0-255).

See also: the-color, *colors*, darken. →index →topic

Version 2.4+891b3dc-gui.fyne2 268

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.390 ling.damerau-levenshtein : procedure/2

Usage: (ling.damerau-levenshtein s1 s2)=> num

Compute the Damerau-Levenshtein distance between s1 and s2.

See also: ling.match-rating-compare, ling.levenshtein, ling.jaro-winkler, ling
.jaro, ling.hamming, ling.match-rating-codex, ling.porter, ling.nysiis, ling.
metaphone, ling.soundex. →index →topic

4.391 ling.hamming : procedure/2

Usage: (ling-hamming s1 s2)=> num

Compute the Hamming distance between s1 and s2.

See also: ling.match-rating-compare, ling.levenshtein, ling.jaro-winkler, ling
.jaro, ling.damerau-levenshtein, ling.match-rating-codex, ling.porter, ling.
nysiis, ling.metaphone, ling.soundex. →index →topic

4.392 ling.jaro : procedure/2

Usage: (ling.jaro s1 s2)=> num

Compute the Jaro distance between s1 and s2.

See also: ling.match-rating-compare, ling.levenshtein, ling.jaro-winkler, ling.
hamming, ling.damerau-levenshtein, ling.match-rating-codex, ling.porter, ling.
nysiis, ling.metaphone, ling.soundex. →index →topic

4.393 ling.jaro-winkler : procedure/2

Usage: (ling.jaro-winkler s1 s2)=> num

Compute the Jaro-Winkler distance between s1 and s2.

See also: ling.match-rating-compare, ling.levenshtein, ling.jaro, ling.hamming,
ling.damerau-levenshtein, ling.match-rating-codex, ling.porter, ling.nysiis,
ling.metaphone, ling.soundex. →index →topic

Version 2.4+891b3dc-gui.fyne2 269

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.394 ling.levenshtein : procedure/2

Usage: (ling.levenshtein s1 s2)=> num

Compute the Levenshtein distance between s1 and s2.

See also: ling.match-rating-compare, ling.jaro-winkler, ling.jaro, ling.hamming,
ling.damerau-levenshtein, ling.match-rating-codex, ling.porter, ling.nysiis,
ling.metaphone, ling.soundex. →index →topic

4.395 ling.match-rating-codex : procedure/1

Usage: (ling.match-rating-codex s)=> str

Compute the Match-Rating-Codex of string s.

See also: ling.match-rating-compare, ling.levenshtein, ling.jaro-winkler, ling
.jaro, ling.hamming, ling.damerau-levenshtein, ling.porter, ling.nysiis, ling.
metaphone, ling.soundex. →index →topic

4.396 ling.match-rating-compare : procedure/2

Usage: (ling.match-rating-compare s1 s2)=> bool

Returns true if s1 and s2 are equal according to the Match-rating Comparison algorithm, nil other-
wise.

See also: ling.match-rating-compare, ling.levenshtein, ling.jaro-winkler, ling
.jaro, ling.hamming, ling.damerau-levenshtein, ling.match-rating-codex, ling.
porter, ling.nysiis, ling.metaphone, ling.soundex. →index →topic

4.397 ling.metaphone : procedure/1

Usage: (ling.metaphone s)=> str

Compute the Metaphone representation of string s.

See also: ling.match-rating-compare, ling.levenshtein, ling.jaro-winkler, ling
.jaro, ling.hamming, ling.damerau-levenshtein, ling.match-rating-codex, ling.
porter, ling.nysiis, ling.soundex. →index →topic

Version 2.4+891b3dc-gui.fyne2 270

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.398 ling.nysiis : procedure/1

Usage: (ling.nysiis s)=> str

Compute the Nysiis representation of string s.

See also: ling.match-rating-compare, ling.levenshtein, ling.jaro-winkler, ling
.jaro, ling.hamming, ling.damerau-levenshtein, ling.match-rating-codex, ling.
porter, ling.metaphone, ling.soundex. →index →topic

4.399 ling.porter : procedure/1

Usage: (ling.porter s)=> str

Compute the stem of word string s using the Porter stemming algorithm.

See also: ling.match-rating-compare, ling.levenshtein, ling.jaro-winkler, ling
.jaro, ling.hamming, ling.damerau-levenshtein, ling.match-rating-codex, ling.
nysiis, ling.metaphone, ling.soundex. →index →topic

4.400 ling.soundex : procedure/1

Usage: (ling.soundex s)=> str

Compute the Soundex representation of string s.

See also: ling.match-rating-compare, ling.levenshtein, ling.jaro-winkler, ling
.jaro, ling.hamming, ling.damerau-levenshtein, ling.match-rating-codex, ling.
porter, ling.nysiis, ling.metaphone, ling.soundex. →index →topic

4.401 list : procedure/0 or more

Usage: (list [args] ...)=> li

Create a list from all args. The arguments must be quoted.

See also: cons. →index →topic

4.402 list->array : procedure/1

Usage: (list->array li)=> array

Convert the list li to an array.

Version 2.4+891b3dc-gui.fyne2 271

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: list, array, string, nth, seq?. →index →topic

4.403 list->set : procedure/1

Usage: (list->set li)=> dict

Create a dict containing true for each element of list li.

See also: make-set, set-element?, set-union, set-intersection, set-complement, set-
difference, set?, set-empty. →index →topic

4.404 list->str : procedure/1

Usage: (list->str li)=> string

Return the string that is composed out of the chars in list li.

See also: array->str, str->list, chars. →index →topic

4.405 list-exists? : procedure/2

Usage: (list-exists? li pred)=> bool

Return true if pred returns true for at least one element in list li, nil otherwise.

See also: exists?, forall?, array-exists?, str-exists?, seq?. →index →topic

4.406 list-forall? : procedure/2

Usage: (list-all? li pred)=> bool

Return true if predicate pred returns true for all elements of list li, nil otherwise.

See also: foreach, map, forall?, array-forall?, str-forall?, exists?. →index →topic

4.407 list-foreach : procedure/2

Usage: (list-foreach li proc)

Apply proc to each element of list li in order, for the side effects.

See also: mapcar, map, foreach. →index →topic

Version 2.4+891b3dc-gui.fyne2 272

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.408 list-last : procedure/1

Usage: (list-last li)=> any

Return the last element of li.

See also: reverse, nreverse, car, 1st, last. →index →topic

4.409 list-ref : procedure/2

Usage: (list-ref li n)=> any

Return the element with index n of list li. Lists are 0-indexed.

See also: array-ref, nth. →index →topic

4.410 list-reverse : procedure/1

Usage: (list-reverse li)=> li

Create a reversed copy of li.

See also: reverse, array-reverse, str-reverse. →index →topic

4.411 list-slice : procedure/3

Usage: (list-slice li low high)=> li

Return the slice of the list li starting at index low (inclusive) and ending at index high (exclusive).

See also: slice, array-slice. →index →topic

4.412 list? : procedure/1

Usage: (list? obj)=> bool

Return true if obj is a list, nil otherwise.

See also: cons?, atom?, null?. →index →topic

Version 2.4+891b3dc-gui.fyne2 273

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.413 load : procedure/1 or more

Usage: (load prefix [fi])

Loads the Lisp file at fi as a library or program with the given prefix. If only a prefix is specified,
load attempts to find a corresponding file at path (str+ (sysdir ’z3s5-data) “/prg/prefix/prefix.lisp”).
Loading binds all non-global toplevel symbols of the definitions in file fi to the form prefix.symbol
and replaces calls to them in the definitions appropriately. Symbols starting with "" such as cancel*
are not modified. To give an example, if fi contains a definition (defun bar . . .) and the prefix is ’foo,
then the result of the import is equivalent to (defun foo.bar . . .), and so on for any other definitions.
The importer preorder-traverses the source and looks for setq and lambdas after macro expansion has
taken place. By convention, the entry point of executable programs is a function (run) so the loaded
program can be executed with the command (prefix.run).

See also: include, global-sym?. →index →topic

4.414 load-zimage : procedure/1 or more

Usage: (load-zimage fi)=> li

Load the zimage file fi, if possible, and return a list containing information about the zimage after it
has been loaded. If the zimage fails the semantic version check, then an error is raised.

See also: save-zimage, run-zimage, zimage-loadable?. →index →topic

4.415 macro? : procedure/1

Usage: (macro? x)=> bool

Return true if x is a macro, nil otherwise.

See also: functional?, intrinsic?, closure?, functional-arity, functional-has-rest?.
→index →topic

4.416 make : macro/2

Usage: (make name props)

Create a new record (struct instance) of struct name (unquoted) with properties props. Each clause in
props must be a list of property name and initial value.

See also: make*, defstruct. →index →topic

Version 2.4+891b3dc-gui.fyne2 274

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.417 make* : macro/1 or more

Usage: (make* name prop1 ...)

Create a new record (struct instance) of struct name (unquoted) with property clauses prop-1 . . .
prop-n, where each clause is a list of property name and initial value like in make.

See also: make, defstruct. →index →topic

4.418 make-blob : procedure/1

Usage: (make-blob n)=> blob

Make a binary blob of size n initialized to zeroes.

See also: blob-free, valid?, blob-equal?. →index →topic

4.419 make-mutex : procedure/1

Usage: (make-mutex)=> mutex

Create a new mutex.

See also: mutex-lock, mutex-unlock, mutex-rlock, mutex-runlock. →index →topic

4.420 make-queue : procedure/0

Usage: (make-queue)=> array

Make a synchronized queue.

See also: queue?, enqueue!, dequeue!, glance, queue-empty?, queue-len. →index

Warning: Never change the array of a synchronized data structure directly, or your warranty is
void! →topic

4.421 make-set : procedure/0 or more

Usage: (make-set [arg1] ... [argn])=> dict

Create a dictionary out of arguments arg1 to argn that stores true for very argument.

See also: list->set, set->list, set-element?, set-union, set-intersection, set-
complement, set-difference, set?, set-empty?. →index →topic

Version 2.4+891b3dc-gui.fyne2 275

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.422 make-stack : procedure/0

Usage: (make-stack)=> array

Make a synchronized stack.

See also: stack?, push!, pop!, stack-empty?, stack-len, glance. →index

Warning: Never change the array of a synchronized data structure directly, or your warranty is
void! →topic

4.423 make-symbol : procedure/1

Usage: (make-symbol s)=> sym

Create a new symbol based on string s.

See also: str->sym. →index →topic

4.424 map : procedure/2

Usage: (map seq proc)=> seq

Return the copy of seq that is the result of applying proc to each element of seq.

See also: seq?, mapcar, strmap. →index →topic

4.425 map-pairwise : procedure/2

Usage: (map-pairwise seq proc)=> seq

Appliesproc in order to subsequent pairs inseq, assembling the sequence that results from the results
of proc. Function proc takes two arguments and must return a proper list containing two elements. If
the number of elements in seq is odd, an error is raised.

See also: map. →index →topic

4.426 mapcar : procedure/2

Usage: (mapcar li proc)=> li

Return the list obtained from applying proc to each elements in li.

See also: map, foreach. →index →topic

Version 2.4+891b3dc-gui.fyne2 276

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.427 max : procedure/1 or more

Usage: (max x1 x2 ...)=> num

Return the maximum of the given numbers.

See also: min, minmax. →index →topic

4.428 member : procedure/2

Usage: (member key li)=> li

Return the cdr of li starting with key if li contains an element equal? to key, nil otherwise.

See also: assoc, equal?. →index →topic

4.429 memq : procedure/2

Usage: (memq key li)

Return the cdr of li starting with key if li contains an element eq? to key, nil otherwise.

See also: member, eq?. →index →topic

4.430 memstats : procedure/0

Usage: (memstats)=> dict

Return a dict with detailed memory statistics for the system.

See also: collect-garbage. →index →topic

4.431 menu-item-checked? : procedure/1

Usage: (menu-item-checked? item)=> bool

Return true if item is currently checked, nil otherwise.

See also: set-menu-item-checked, set-menu-item-disabled, menu-item-disabled?, get-
menu-item-label, set-menu-item-label, new-menu*, new-menu, new-menu-item, new-menu
-item-separator. →index →topic

Version 2.4+891b3dc-gui.fyne2 277

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.432 menu-item-disabled? : procedure/1

Usage: (menu-item-disabled? item)=> bool

Return true if item is currently disabled, nil otherwise.

See also: set-menu-item-disabled, set-menu-item-checked, menu-item-checked?, get-
menu-item-label, set-menu-item-label, new-menu*, new-menu, new-menu-item, new-menu
-item-separator. →index →topic

4.433 methods : procedure/1

Usage: (methods obj)=> li

Return the list of methods of obj, which must be a class, object, or class name.

See also: has-method?, new, props, prop, setprop, has-prop?. →index →topic

4.434 min : procedure/1 or more

Usage: (min x1 x2 ...)=> num

Return the minimum of the given numbers.

See also: max, minmax. →index →topic

4.435 minmax : procedure/3

Usage: (minmax pred li acc)=> any

Go through li and test whether for each elem the comparison (pred elem acc) is true. If so, elem
becomes acc. Once all elements of the list have been compared, acc is returned. This procedure can
be used to implement generalized minimum or maximum procedures.

See also: min, max. →index →topic

4.436 minute+ : procedure/2

Usage: (minute+ dateli n)=> dateli

Adds n minutes to the given date dateli in datelist format and returns the new datelist.

See also: sec+, hour+, day+, week+, month+, year+, now. →index →topic

Version 2.4+891b3dc-gui.fyne2 278

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.437 mod : procedure/2

Usage: (mod x y)=> num

Compute x modulo y.

See also: %, /. →index →topic

4.438 month+ : procedure/2

Usage: (month+ dateli n)=> dateli

Adds n months to the given date dateli in datelist format and returns the new datelist.

See also: sec+, minute+, hour+, day+, week+, year+, now. →index →topic

4.439 move-object : procedure/2

Usage: (move-object obj position)

Move the canvas object obj to the given position list, containing its x and y coordinates as floats.

See also: disable-object, enable-object, show-object, hide-object, object-disabled?,
resize-object, get-object-size, get-object-min-size, get-object-position, object
-visible?, refresh-object, new-entry, new-label. →index →topic

4.440 mutex-lock : procedure/1

Usage: (mutex-lock m)

Lock the mutex m for writing. This may halt the current task until the mutex has been unlocked by
another task.

See also: mutex-unlock, make-mutex, mutex-rlock, mutex-runlock. →index →topic

4.441 mutex-rlock : procedure/1

Usage: (mutex-rlock m)

Lock the mutex m for reading. This will allow other tasks to read from it, too, but may block if another
task is currently locking it for writing.

See also: mutex-runlock, mutex-lock, mutex-unlock, make-mutex. →index →topic

Version 2.4+891b3dc-gui.fyne2 279

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.442 mutex-runlock : procedure/1

Usage: (mutex-runlock m)

Unlock the mutex m from reading.

See also: mutex-lock, mutex-unlock, mutex-rlock, make-mutex. →index →topic

4.443 mutex-unlock : procedure/1

Usage: (mutex-unlock m)

Unlock the mutex m for writing. This releases ownership of the mutex and allows other tasks to lock it
for writing.

See also: mutex-lock, make-mutex, mutex-rlock, mutex-runlock. →index →topic

4.444 nconc : procedure/0 or more

Usage: (nconc li1 li2 ...)=> li

Concatenate li1, li2, and so forth, like with append, but destructively modifies li1.

See also: append. →index →topic

4.445 new : macro/1 or more

Usage: (new class [props] ...)

Create a new object of class class with initial property bindings props clauses as remaining argu-
ments. Each props clause must be a list of the form (sym value), where sym is a symbol and value is
evaluated first before it is assigned to sym.

See also: defclass. →index →topic

4.446 new-app-tabs : procedure/0 or more

Usage: (new-app-tabs tab-item ...)=> int

Create a new application tabs, which allow users to choose different items within an application.

See also: new-doc-tabs, new-tabitem, new-tabitem-with-icon. →index →topic

Version 2.4+891b3dc-gui.fyne2 280

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.447 new-border : procedure/4 or more

Usage: (new-border top bottom left right [obj ...])=> int

Create a new border layout, which is one of the most useful layouts. Any of top, bottom, left, and
right is put in the respective place (with minimum size) and might also be nil for no widget. The
remaining canvas objects obj are arranged in the center and take maximum size. This allows you
e.g. to put a list on the left side of a window, a panel of buttons on the top, and the main content in
another container in the center.

See also: new-container, new-container-without-layout, new-vscroll, new-hscroll.
→index →topic

4.448 new-button : procedure/2

Usage: (new-button label proc)=> int

Return a new button with the given label and without an icon. The callback proc is called without
arguments when the button is pressed or tapped.

See also: new-button-with-icon, new-hyperlink, new-label. →index →topic

4.449 new-button-with-icon : procedure/3

Usage: (new-button-with-icon label icon proc)=> int

Return a new button the given label and icon. The callback proc is called without arguments when
the button is pressed.

See also: new-button, new-icon, theme-icon. →index →topic

4.450 new-center-layout : procedure/0

Usage: (new-center-layout)=> int

Create a new center layout, which centers container elements (possibly overlapping). This may be
used for drawing centered on the window, for example.

See also: new-form, append-form, new-spacer, new-hbox-layout, new-vbox-layout,
new-grid-layout, new-grid-wrap-layout, new-form-layout, new-stack-layout, new-
container. →index →topic

Version 2.4+891b3dc-gui.fyne2 281

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.451 new-check : procedure/2

Usage: (new-check title proc)=> int

Create and return a new check box with the given title string and a callback procedure proc. The
callback proc is called with the new state of the check box as bool when it has changed.

See also: new-choice. →index →topic

4.452 new-choice : procedure/3

Usage: (new-choice selector string-list proc)=> int

Create and return a new choice representing choices in string-list. If selector is ’radio-group, a
group of radio buttons is created with options instring-list. Ifselector is ’select, a more compact
selection menu is created with the options in string-list. The callback proc takes a string that
represents the choice that has been selected.

See also: new-check. →index →topic

4.453 new-circle : procedure/1 or more

Usage: (new-circle fill-color [pos1] [pos2] [stroke-color] [stroke-width])=>
int

Draw and return a circle with the given NRGBA fill-color. If the optional pos1 and pos2 position
lists of x and y coordinates in floats are given , then the circle is drawn inside the rectangle defined by
these positions. The optional stroke-color and stroke-width arguments determine the outline
of the circle. Notice that circle’s size and position may be set by the layout of the container, so to set
these manually using pos1 and pos2 you need to make sure the underlying container has no such
layout.

See also: new-rectangle, new-line-new-text. →index →topic

4.454 new-combined-string-validator : procedure/1 or more

Usage: (new-combined-string-validator validator-1 [...validator-n])=> int

Combine validators validator-1 to validator-n into a combined string validator and return it.

See also: set-entry-validator, new-validator, new-regexp-validator, new-time-
validator, set-object-on-validation-change-callback, validate-object. →index
→topic

Version 2.4+891b3dc-gui.fyne2 282

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.455 new-container : procedure/1 or more

Usage: (new-container layout obj ...)=> int

Create a new container with the givenlayout and various canvas objectsobj arranged by the layout.

See also: new-container-without-layout, new-border, new-vscroll, new-hscroll. →index
→topic

4.456 new-container-without-layout : procedure/0 or more

Usage: (new-container-without-layout obj ...)=> int

Create a new container without a layout (overlapping objects) with the given canvas objects obj.

See also: new-container, new-border. →index →topic

4.457 new-doc-tabs : procedure/0 or more

Usage: (new-doc-tabs tab-item ...)=> int

Create new document tabs, which allow users to choose different items in a window (not the application
as a whole like app-tabs).

See also: new-app-tabs, new-tabitem, new-tabitem-with-icon. →index →topic

4.458 new-entry : procedure/1

Usage: (new-entry [selector])=> int

Create a new text entry field based on the optional selector symbol. selector can be a symbol in
’(single-line multi-line password). The default is ’single-line.

See also: set-entry-on-change-callback, set-entry-validator, entry-accepts-tab?,
get-entry-cursor-pos, set-entry-cursor-row, set-entry-cursor-column, set-entry-
on-cursor-change-callback, get-entry-cursor, get-entry-selected-text, set-entry
-min-rows-visible, set-entry-place-holder, set-entry-text. →index →topic

4.459 new-form : procedure/0

Usage: (new-form)

Version 2.4+891b3dc-gui.fyne2 283

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Return a new form container, which orders widgets in rows, where each row has a label and a widget
whose columns are aligned with the other rows. Use append-form to add label and widgets.

See also: append-form. →index →topic

4.460 new-form-layout : procedure/0

Usage: (new-form-layout)=> int

Create a form layout, which arranges elements in two columns per row, where the columns are
aligned.

See also: new-form, append-form, new-spacer, new-hbox-layout, new-vbox-layout,
new-grid-layout, new-grid-wrap-layout, new-center-layout, new-stack-layout,
new-container. →index →topic

4.461 new-grid-layout : procedure/1

Usage: (new-grid-layout n)=> int

Create a new grid layout, which arranges elements in n columns.

See also: new-spacer, new-hbox-layout, new-vbox-layout, new-grid-wrap-layout, new-
form-layout, new-center-layout, new-stack-layout, new-container. →index →topic

4.462 new-grid-wrap-layout : procedure/2

Usage: (new-grid-wrap-layout width height)=> int

Create a new grid wrap layout, which arranges elements such that each element has the given width
and height, and wraps lines based on the size of the parent container.

See also: new-spacer, new-hbox-layout, new-vbox-layout, new-grid-layout, new-form-
layout, new-center-layout, new-stack-layout, new-container. →index →topic

4.463 new-hbox-layout : procedure/0

Usage: (new-hbox-layout)=> int

Create a new horizontal box layout, which lays out container elements horizontally.

See also: new-spacer, new-vbox-layout, new-grid-layout, new-grid-wrap-layout, new-
form-layout, new-center-layout, new-stack-layout, new-container. →index →topic

Version 2.4+891b3dc-gui.fyne2 284

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.464 new-hscroll : procedure/1

Usage: (new-hscroll obj)=> int

Embed canvas object obj into a new horizontal scroll container, which allows the user to scroll hori-
zontally if obj does not fit into the hscroll container horizontally.

See also: new-scroll, new-vscroll, new-container, new-hbox-layout. →index →topic

4.465 new-hsplit : procedure/2

Usage: (new-hsplit obj1 obj2)=> int

Return a new horizontal divider between canvas objectobj1 andobj2. The user can adjust the division
by drag & drop.

See also: set-split-offset, new-vsplit. →index →topic

4.466 new-hyperlink : procedure/2

Usage: (new-hyperlink label url)=> int

Create a new hyperlink with given label string and an url string as embedded link. A hyperlink
looks like a label with link style; when it is clicked, the url is called by the default operating system
mechanism for opening urls. Using hyperlinks might be disallowed by the host system configuration
HyperlinksAllowed and may be re-written by the host system using the CheckHyperlinks function. If
HyperlinksAllowed is false in the active GUI config of the host, this function raises an error. It also
parses the given url and will raise an error if it does not represent a valid URL.

See also: new-button, new-label. →index

Warning: Allowing the host to open hyperlinks usually launches a web browser and the details
depend on the operating system. There is an added security risk! →topic

4.467 new-icon : procedure/1

Usage: (new-icon resource)=> int

Create a new icon from resource, which must be suitable to create an image.

See also: theme-icon. →index →topic

Version 2.4+891b3dc-gui.fyne2 285

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.468 new-image-from-file : procedure/1

Usage: (new-image-from-file path)=> int

Create and return a new image from the image file at path, which must be a PNG file.

See also: new-image-from-resource. →index →topic

4.469 new-image-from-resource : procedure/1

Usage: (new-image-from-resource resource)=> int

Create and return a new image from the given resource.

See also: new-image-from-file, theme-icon. →index →topic

4.470 new-label : procedure/1

Usage: (new-label str)=> int

Creates a new text label with string str.

See also: set-label-text. →index →topic

4.471 new-line : procedure/1 or more

Usage: (new-line fill-color [pos1] [pos2] [stroke-color] [stroke-width])=>
int

Draw and return a line with the given NRGBA fill-color from optional position pos1 to position
pos2, where these are lists of x and y coordinates as floats. The optional stroke-color and stroke
-width determines the outer edges of the line.

See also: new-cirlce, new-rectangle, new-text. →index →topic

4.472 new-list : procedure/3

Usage: (new-list len-proc prep-proc update-proc)=> int

Create a new list display. A list consists of rows of simple items like labels. The len-proc must be a
procedure without arguments returning the length of the list as integer. The prep-proc must be a
procedure without arguments that returns a canvas object (i.e. a label or other widgets) representing a
template for a single list item. The update-proc must be a procedure that receives the ID of a canvas

Version 2.4+891b3dc-gui.fyne2 286

Z3S5 Lisp Reference Manual 2024-1-2 15:04

object (given by the template) and the 0-based list index as arguments. This procedure then should
modify the canvas object with ID to display the given list item at the index. See the GUI examples on
how to use this function.

See also: new-table, new-tree. →index →topic

4.473 new-main-menu : procedure/1 or more

Usage: (new-main-menu menu ...)=> int

Return a new main menu with the given menus. A main menu displays a menubar for a window on
some desktop platforms but it may also be displayed in other ways.

See also: new-menu, new-menu*. →index →topic

4.474 new-menu : procedure/1

Usage: (new-menu menu*)=> int

Create a new visible menu widget from the abstract menu* created by new-menu*.

See also: new-menu*, new-main-menu. →index →topic

4.475 new-menu* : procedure/1 or more

Usage: (new-menu* label [item...])=> int

Make a new abstract menu with given label and arbitary menu items item . . . following. The starred
function is used to define a menu but is not bound to any particular way of displaying it (popup-menu,
normal menu, main menu). Use new-menu and new-main-menu to create visible menus and menu
bars based on such abstract menus.

See also: refresh-menu*, new-menu, new-main-menu. →index →topic

4.476 new-menu-item : procedure/2 or more

Usage: (new-menu-item str proc [selector...])=> int

Create a new menu item with given label str and callback proc, which takes no arguments. The
optional selector symbol may be one of: ’is-quit - the item is the application Quit menu item (this is

Version 2.4+891b3dc-gui.fyne2 287

Z3S5 Lisp Reference Manual 2024-1-2 15:04

dealt with differently by operating system requirements), ’is-separator - the item is a menu item sepa-
rator and the label string is ignored (redundent, use new-menu-item-separator instead), ’disabled
- the menu item is disabled, or ’checked - the menu item is checked.

See also: set-menu-item-checked, menu-item-checked?, set-menu-item-disabled, menu-
item-disabled?, get-menu-item-label, set-menu-item-label, new-menu*, new-menu, new
-menu-item-separator. →index →topic

4.477 new-menu-item-separator : procedure/0

Usage: (new-menu-item-separator)=> int

Return a new menu item separator, which is a menu item without callback and label that displays a
separator between menu items in menus.

See also: new-menu-item. →index →topic

4.478 new-progress-bar : procedure/0

Usage: (new-progress-bar)=> int

Create a new progress bar whose default minimum is 0.0 and maximum is 1.0.

See also: set-progress-bar, new-infinite-progress-bar, get-progress-bar-value.
→index →topic

4.479 new-raster-with-pixels : procedure/1

Usage: (new-raster-with-pixels pixel-proc)=> int

Create a new raster image generated dynamically by the given pixel-proc. The pixel-proc takes
x and y pixel coordinates and the width and height of the image in pixels, and returns the color of
the pixel x, y as a color list of the form ’(red green blue [alpha]) where alpha is optional. Notice that
specifying the color of each pixel can be very CPU-intensive for larger images, so optimizations might
be necessary.

See also: new-image-from-file. →index →topic

4.480 new-rectangle : procedure/1 or more

Usage: (new-rectangle fill-color [width height] [position] [stroke-color] [
stroke-width] [corner-radius])=> int

Version 2.4+891b3dc-gui.fyne2 288

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Draw and return a rectangle with the given NRGBA fill-color. The optional int width and height
arguments set the width and height of the rectangle explicitly (otherwise they are 1). The optional
position argument must be a list of x and y coordinates as floats. The optional stroke-color and
stroke-width arguments determine the color and width of the outline of the rectangle, and the
optional corner-radious defines how rounded the rectangle is. Notice that the rectangle’s size and
position can be set by the layout of the container, so to set it manually you need to make sure the
underlying container has no layout that positions or resizes the rectangle.

See also: new-circle, new-line, new-text. →index →topic

4.481 new-regexp-validator : procedure/2

Usage: (new-regexp-validator regexp reason)=> int

Create a new string validator from the regexp string, which must be a valid regular expression in Go’s
regexp syntax. The reason string is displayed to the user by widgets like entry when the validation
fails.

See also: set-entry-validator, new-validator, new-combined-string-validator, new
-time-validator, set-object-on-validation-change-callback, validate-object.
→index →topic

4.482 new-scroll : procedure/1

Usage: (new-scroll obj)=> int

Embed canvas object obj into a new scroll container, which allows the user to scroll both horizontally
and vertically if obj does not fit into the scroll container.

See also: new-vscroll, new-hscroll, new-container, new-hbox-layout. →index →topic

4.483 new-slider : procedure/3

Usage: (new-slider min max proc)=> int

Create a new slider that allows users to adjust numerical values. The min and max arguments must
be floats. The procedure proc takes the current slider float value as argument and is called when the
slider changes.

See also: set-slider-value. →index →topic

Version 2.4+891b3dc-gui.fyne2 289

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.484 new-spacer : procedure/0

Usage: (new-spacer)=> int

Create a new spacer, which adjusts size dynamically by taking up space and displaying nothing. Use
this to fill containers e.g. to right align a widget.

See also: new-hbox-layout, new-vbox-layout, new-grid-layout, new-grid-wrap-layout
, new-form-layout, new-center-layout, new-stack-layout, new-container. →index
→topic

4.485 new-stack-layout : procedure/0

Usage: (new-stack-layout)=> int

Create a new stack layout that stacks container elements on top of each other, overlapping. This may
be used for drawing, for example.

See also: new-form, append-form, new-spacer, new-hbox-layout, new-vbox-layout,
new-grid-layout, new-grid-wrap-layout, new-form-layout, new-center-layout, new-
container. →index →topic

4.486 new-struct : procedure/2

Usage: (new-struct name li)

Defines a new structure name with the properties in the a-list li. Structs are more leightweight than
classes and do not allow for inheritance. Instances of structs (“records”) are arrays.

See also: defstruct. →index →topic

4.487 new-tabitem : procedure/2

Usage: (new-tabitem title obj)=> int

Create a new tab item for use in app-tabs and doc-tabs with a title and an embedded canvas object
obj shown when the tab item is selected in the tabs.

See also: new-tabitem-with-icon, new-app-tabs, new-doc-tabs. →index →topic

Version 2.4+891b3dc-gui.fyne2 290

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.488 new-tabitem-with-icon : procedure/3

Usage: (new-tabitem-with-icon title icon obj)=> int

Create a new tab item for use in app-tabs and doc-tabs with given title string, icon resource, and
embedded canvas object obj that shwon when the tab item is selected in the tabs.

See also: new-tabitem, new-app-tabs, new-doc-tabs. →index →topic

4.489 new-table : procedure/3

Usage: (new-table len-proc prep-proc update-proc)=> int

Create a new table display. A table consists of a number of rows, each of which has a fixed number
of columns such as labels. The len-proc must be a procedure without arguments returning the
length of the table as integer. The prep-proc must be a procedure without arguments that returns a
canvas object that represents the table row with updatable columns. The update-proc takes the row,
column, and ID of a canvas object and updates a table template with the right display for the table cell
at row and column.

See also: new-list, new-tree. →index →topic

4.490 new-text : procedure/2

Usage: (new-text str color)=> int

Draw and return text with the given string str and foreground NRGBA color.

See also: set-text-alignment, set-text-size, set-text-style, new-line, new-cirle, new
-rectangle. →index →topic

4.491 new-text-grid : procedure/0 or more

Usage: (new-text-grid [<string>] [show-line-numbers|show-whitespace|tab-width
<int>])=> int

Create a new text grid widget, which displays multiline text with custom background and foreground
colors. The optional string argument is the initial text of the grid without formatting. The following
symbols might be'show-line-numbers to turn the line number display on and'show-whitespace
to display white space characters by special unicode symbols. If the selector 'tab-width occurs,
then it must be immediately followed by an integer for the tabulator width of the text grid in space
characters.

Version 2.4+891b3dc-gui.fyne2 291

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: text-grid-show-line-numbers?, text-grid-show-whitespace?, get-text
-grid-tab-width, set-text-grid-tab-width, set-text-grid-show-line-numbers,
set-text-grid-show-whitespace, get-text-grid-row, get-text-grid-row-text, set-
text-grid-cell, get-text-grid-cell, set-text-grid-row, set-text-grid-row-style,
set-text-grid-rune, set-text-grid-style, set-text-grid-style-range, set-text-
grid-text, get-text-grid-text, remove-text-grid-row, insert-text-grid-row. →index
→topic

4.492 new-time-validator : procedure/1

Usage: (new-time-validator format-str)=> int

Create a new string validator for time and date based on the given templateformat-str. This validator
uses Go’s data parsing function and therefore is quite restrictive. Only datetimes entered in exactly
the format given (including timezones) validate successfully. To obtain a more relaxed date and time
validator, usenew-validator to create a custom validator with your own parsing or try anew-regexp
-validator.

See also: set-entry-validator, new-validator, new-combined-string-validator, new-
time-validator, new-regexp-validator, set-object-on-validation-change-callback,
validate-object. →index →topic

4.493 new-tree : procedure/4

Usage: (new-tree child-uid-proc is-branch-proc create-node-proc update-node-
proc)=> int

Create a new tree display. A tree displays nested branches and leaf nodes. The child-uid-proc is a
procedure that takes an id string as argument. If the string is empty, it should return a list of top-level
branch uid strings. If the string is not empty, it represents an uid; the procedure should then return a
list of all child id strings of that branch. This defines the tree’s structure. All id strings must be unique
to the tree. The is-branch-proc takes an id string as argument and should return non-nil if the id
represents a branch, nil if it has no children. The create-node-proc takes a bool b as argument
and should return a branch template if b is non-nil and a leaf template object if b is nil. Finally, the
update-node-proc is a procedure that takes a node id string, a boolean that is true if the node is a
branch, and a node template canvas-object as it is returned by create-node-proc. The procedure
should fill the template with the display values for the respective node id.

See also: new-list, new-table. →index →topic

Version 2.4+891b3dc-gui.fyne2 292

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.494 new-validator : procedure/1

Usage: (new-validator proc)=> int

Create a new string validator based on validation procedure proc. The procedure proc takes a string
as argument and returns a string. If the string returned is not the empty string "", then validation fails
and the returned string is given as a reason for validation failure. If the empty string is returned, then
validation succeeds. If an error occurs in proc, then validation fails with the error’s error message as
reason. Notice that validators are fairly limited and can only be attached to a few validatable objects
such as text entry fields. For a more general approach, it might make sense to implement your own
validation system based on key press, focus change, and change callbacks of various GUI objects.

See also: set-entry-validator, new-combined-string-validator, new-regexp-
validator, new-time-validator, set-object-on-validation-change-callback,
validate-object. →index →topic

4.495 new-vbox-layout : procedure/0

Usage: (new-vbox-layout)=> int

Create a new vertical box layout, which lays out container elements vertically.

See also: new-spacer, new-hbox-layout, new-grid-layout, new-grid-wrap-layout, new-
form-layout, new-center-layout, new-stack-layout, new-container. →index →topic

4.496 new-vscroll : procedure/1

Usage: (new-vscroll obj)=> int

Embed canvas object obj into a new vertical scroll container, which allows the user to scroll vertically
if obj does not fit into the vscroll container vertically.

See also: new-scroll, new-hscroll, new-container, new-vbox-layout. →index →topic

4.497 new-vsplit : procedure/2

Usage: (new-vsplit obj1 obj2)=> int

Return a new vertical divider between canvas object obj1 and obj2. The user can adjust the division
by drag & drop.

See also: set-split-offset, new-hplit. →index →topic

Version 2.4+891b3dc-gui.fyne2 293

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.498 new-window : procedure/1

Usage: (new-window title)=> int

Create a new window with title string and return the window ID. This function raises an error if the
host configuration WindowsAllowed is not true. In certain embedded uses, creating new windows is
not allowed and you should check the documentation how to find a pre-configured window and add
user interface elements to it.

See also: set-window-content, close-window, show-window. →index →topic

4.499 nl : procedure/0

Usage: (nl)

Display a newline, advancing the cursor to the next line.

See also: out, outy, output-at. →index →topic

4.500 nonce : procedure/0

Usage: (nonce)=> str

Return a unique random string. This is not cryptographically secure but the string satisfies reasonable
GUID requirements.

See also: externalize, internalize. →index →topic

4.501 not : procedure/1

Usage: (not x)=> bool

Return true if x is nil, nil otherwise.

See also: and, or. →index →topic

4.502 now : procedure/0

Usage: (now)=> li

Return the current datetime in UTC format as a list of values in the form ’((year month day weekday
iso-week) (hour minute second nanosecond unix-nano-second)).

See also: now-ns, datestr, time, date->epoch-ns, epoch-ns->datelist. →index →topic

Version 2.4+891b3dc-gui.fyne2 294

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.503 now-ms : procedure/0

Usage: (now-ms)=> num

Return the relative system time as a call to (now-ns) but in milliseconds.

See also: now-ns, now. →index →topic

4.504 now-ns : procedure/0

Usage: (now-ns)=> int

Return the current time in Unix nanoseconds.

See also: now, time. →index →topic

4.505 nreverse : procedure/1

Usage: (nreverse li)=> li

Destructively reverse li.

See also: reverse. →index →topic

4.506 nrgba : procedure/4

Usage: (nrgba red green blue alpha)=> int

Create an RGBA color where red, green, blue, and alpha are 8-bit uint integers, i.e., values between
0 and 255 (inclusive). Notice that some GUI functions require NRGBA color returned by this function,
whereas others require a color list of int values ’(red green blue alpha). This is for performance reasons,
since it sometimes faster to convert a list to a color on-the-fly and sometimes more convenient to store
pre-defined colors for later re-use.

See also: nrgba64, theme-color, new-rectangle, new-circle, new-line, new-text. →index
→topic

4.507 nrgba64 : procedure/4

Usage: (nrgba64 red green blue alpha)=> int

Create a 64-bit RGBA color where red, green, blue, and alpha are 16-bit uint integers, i.e., values
between 0 and 65365 (inclusive). Notice that some GUI functions require NRGBA64 color returned

Version 2.4+891b3dc-gui.fyne2 295

Z3S5 Lisp Reference Manual 2024-1-2 15:04

by this function, whereas others require a color list of int values ’(red green blue alpha). This is for
performance reasons, since it sometimes faster to convert a list to a color on-the-fly and sometimes
more convenient to store pre-defined colors for later re-use.

See also: nrgba, theme-color, new-rectangle, new-circle, new-line, new-text. →index
→topic

4.508 nth : procedure/2

Usage: (nth seq n)=> any

Get the n-th element of sequence seq. Sequences are 0-indexed.

See also: nthdef, list, array, string, 1st, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th, 10th. →index
→topic

4.509 nth-partition : procedure/3

Usage: (nth-partition m k idx)=> li

Return a list of the form (start-offset end-offset bytes) for the partition with index idx of m into parts of
size k. The index idx as well as the start- and end-offsets are 0-based.

See also: count-partitions, get-partitions. →index →topic

4.510 nthdef : procedure/3

Usage: (nthdef seq n default)=> any

Return the n-th element of sequence seq (0-indexed) if seq is a sequence and has at least n+1
elements, default otherwise.

See also: nth, seq?, 1st, 2nd, 3rd, 4th, 5th, 6th, 7th, 8th, 9th, 10th. →index →topic

4.511 null? : procedure/1

Usage: (null? li)=> bool

Return true if li is nil, nil otherwise.

See also: not, list?, cons?. →index →topic

Version 2.4+891b3dc-gui.fyne2 296

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.512 num? : procedure/1

Usage: (num? n)=> bool

Return true if n is a number (exact or inexact), nil otherwise.

See also: str?, atom?, sym?, closure?, intrinsic?, macro?. →index →topic

4.513 object-disabled? : procedure/1

Usage: (object-disabled? obj)=> bool

Return true if the canvas object obj is disabled, nil otherwise.

See also: disable-object, enable-object, show-object, hide-object, move-object,
resize-object, get-object-size, get-object-min-size, get-object-position, object
-visible?, refresh-object, new-entry, new-label. →index →topic

4.514 object? : procedure/1

Usage: (object? obj)=> bool

Return true of obj is an object array, nil otherwise.

See also: class?, isa?. →index →topic

4.515 odd? : procedure/1

Usage: (odd? n)=> bool

Returns true if the integer n is odd, nil otherwise.

See also: even?. →index →topic

4.516 on-feature : macro/1 or more

Usage: (on-feature sym body ...)=> any

Evaluate the expressions of body if the Lisp feature sym is supported by this implementation, do
nothing otherwise.

See also: feature?, *reflect*. →index →topic

Version 2.4+891b3dc-gui.fyne2 297

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.517 open : procedure/1 or more

Usage: (open file-path [modes] [permissions])=> int

Open the file at file-path for reading and writing, and return the stream ID. The optional modes
argument must be a list containing one of ‘(read write read-write) for read, write, or read-write access
respectively, and may contain any of the following symbols: ’append to append to an existing file,
’create for creating the file if it doesn’t exist, ’exclusive for exclusive file access, ’truncate for truncating
the file if it exists, and ’sync for attempting to sync file access. The optional permissions argument
must be a numeric value specifying the Unix file permissions of the file. If these are omitted, then
default values’(read-write append create) and 0640 are used.

See also: stropen, close, read, write. →index →topic

4.518 or : macro/0 or more

Usage: (or expr1 expr2 ...)=> any

Evaluate the expressions until one of them is not nil. This is a logical shortcut or.

See also: and. →index →topic

4.519 out : procedure/1

Usage: (out expr)

Output expr on the console with current default background and foreground color.

See also: outy, synout, synouty, output-at. →index →topic

4.520 outy : procedure/1

Usage: (outy spec)

Output styled text specified in spec. A specification is a list of lists starting with ’fg for foreground, ’bg
for background, or ’text for unstyled text. If the list starts with ’fg or ’bg then the next element must be
a color suitable for (the-color spec). Following may be a string to print or another color specification. If
a list starts with ’text then one or more strings may follow.

See also: *colors*, the-color, set-color, color, gfx.color, output-at, out. →index
→topic

Version 2.4+891b3dc-gui.fyne2 298

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.521 peek : procedure/4

Usage: (peek b pos end sel)=> num

Read a numeric value determined by selector sel from binary blob b at position pos with endianness
end. Possible values for endianness are ‘little and ’big, and possible values forselmust be one of’(bool
int8 uint8 int16 uint16 int32 uint32 int64 uint64 float32 float64).

See also: poke, read-binary. →index →topic

4.522 permission? : procedure/1

Usage: (permission? sym [default])=> bool

Return true if the permission for sym is set, nil otherwise. If the permission flag is unknown, then
default is returned. The default for default is nil.

See also: permissions, set-permissions, when-permission, sys. →index →topic

4.523 permissions : procedure/0

Usage: (permissions)

Return a list of all active permissions of the current interpreter. Permissions are: load-prelude
- load the init file on start; load-user-init - load the local user init on startup, file if present;
allow-unprotect - allow the user to unprotect protected symbols (for redefining them); allow-
protect - allow the user to protect symbols from redefinition or unbinding; interactive - make the
session interactive, this is particularly used during startup to determine whether hooks are installed
and feedback is given. Permissions have to generally be set or removed in careful combination with
revoke-permissions, which redefines symbols and functions.

See also: set-permissions, permission?, when-permission, sys. →index →topic

4.524 poke : procedure/5

Usage: (poke b pos end sel n)

Write numeric value n as type selwith endianness end into the binary blob b at position pos. Possible
values for endianness are ‘little and ’big, and possible values for sel must be one of’(bool int8 uint8
int16 uint16 int32 uint32 int64 uint64 float32 float64).

See also: peek, write-binary. →index →topic

Version 2.4+891b3dc-gui.fyne2 299

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.525 pop! : macro/1 or more

Usage: (pop! sym [def])=> any

Get the next element from stack sym, which must be the unquoted name of a variable, and return it. If
a default def is given, then this is returned if the queue is empty, otherwise nil is returned.

See also: make-stack, stack?, push!, stack-len, stack-empty?, glance. →index →topic

4.526 pop-error-handler : procedure/0

Usage: (pop-error-handler)=> proc

Remove the topmost error handler from the error handler stack and return it. For internal use only.

See also: with-error-handler. →index →topic

4.527 pop-finalizer : procedure/0

Usage: (pop-finalizer)=> proc

Remove a finalizer from the finalizer stack and return it. For internal use only.

See also: push-finalizer, with-final. →index →topic

4.528 popstacked : procedure/3

Usage: (popstacked dict key default)

Get the topmost element from the stack stored at key in dict and remove it from the stack. If the
stack is empty or no stack is stored at key, then default is returned.

See also: pushstacked, getstacked. →index →topic

4.529 prin1 : procedure/1

Usage: (prin1 s)

Print s to the host OS terminal, where strings are quoted.

See also: princ, terpri, out, outy. →index →topic

Version 2.4+891b3dc-gui.fyne2 300

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.530 princ : procedure/1

Usage: (princ s)

Print s to the host OS terminal without quoting strings.

See also: prin1, terpri, out, outy. →index →topic

4.531 print : procedure/1

Usage: (print x)

Output x on the host OS console and end it with a newline.

See also: prin1, princ. →index →topic

4.532 proc? : macro/1

Usage: (proc? arg)=> bool

Return true if arg is a procedure, nil otherwise.

See also: functional?, closure?, functional-arity, functional-has-rest?. →index
→topic

4.533 prop : procedure/2

Usage: (prop obj slot)=> any

Return the value in obj for property slot, or an error if the object does not have a property with that
name.

See also: new, isa?, setslot, object?, class-name, supers, props, methods, has-slot?.
→index →topic

4.534 props : procedure/1

Usage: (props obj)=> li

Return the list of properties of obj. An error occurs if obj is not a valid object.

See also: methods, has-prop?, new, prop, setprop. →index →topic

Version 2.4+891b3dc-gui.fyne2 301

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.535 protect : procedure/0 or more

Usage: (protect [sym] ...)

Protect symbols sym . . . against changes or rebinding. The symbols need to be quoted. This operation
requires the permission ’allow-protect to be set.

See also: protected?, unprotect, dict-protect, dict-unprotect, dict-protected?,
permissions, permission?, setq, bind, interpret. →index →topic

4.536 protect-toplevel-symbols : procedure/0

Usage: (protect-toplevel-symbols)

Protect all toplevel symbols that are not yet protected and aren’t in the mutable-toplevel-symbols
dict.

See also: protected?, protect, unprotect, declare-unprotected, declare-volatile, when
-permission?, dict-protect, dict-protected?, dict-unprotect. →index →topic

4.537 protected? : procedure/1

Usage: (protected? sym)

Return true if sym is protected, nil otherwise.

See also: protect, unprotect, dict-unprotect, dict-protected?, permission, permission
?, setq, bind, interpret. →index →topic

4.538 prune-task-table : procedure/0

Usage: (prune-task-table)

Remove tasks that are finished from the task table. This includes tasks for which an error has oc-
curred.

See also: task-remove, task, task?, task-run. →index →topic

4.539 prune-unneeded-help-entries : procedure/0

Usage: (prune-unneeded-help-entries)

Version 2.4+891b3dc-gui.fyne2 302

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Remove help entries for which no toplevel symbol is defined. This function may need to be called
when a module is not being used (e.g. because of a missing build tag) and it is desirable that only help
for existing symbols is available.

See also: find-unneeded-help-entries, find-missing-help-entries, help, *help*.
→index →topic

4.540 push! : macro/2

Usage: (push! sym elem)

Put elem in stack sym, where sym is the unquoted name of a variable.

See also: make-stack, stack?, pop!, stack-len, stack-empty?, glance. →index →topic

4.541 push-error-handler : procedure/1

Usage: (push-error-handler proc)

Push an error handler proc on the error handler stack. For internal use only.

See also: with-error-handler. →index →topic

4.542 push-finalizer : procedure/1

Usage: (push-finalizer proc)

Push a finalizer procedure proc on the finalizer stack. For internal use only.

See also: with-final, pop-finalizer. →index →topic

4.543 pushstacked : procedure/3

Usage: (pushstacked dict key datum)

Push datum onto the stack maintained under key in the dict.

See also: getstacked, popstacked. →index →topic

Version 2.4+891b3dc-gui.fyne2 303

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.544 queue-empty? : procedure/1

Usage: (queue-empty? q)=> bool

Return true if the queue q is empty, nil otherwise.

See also: make-queue, queue?, enqueue!, dequeue!, glance, queue-len. →index →topic

4.545 queue-len : procedure/1

Usage: (queue-len q)=> int

Return the length of the queue q.

See also: make-queue, queue?, enqueue!, dequeue!, glance, queue-len. →index

Warning: Be advised that this is of limited use in some concurrent contexts, since the length of
the queue might have changed already once you’ve obtained it! →topic

4.546 queue? : procedure/1

Usage: (queue? q)=> bool

Return true if q is a queue, nil otherwise.

See also: make-queue, enqueue!, dequeue, glance, queue-empty?, queue-len. →index→topic

4.547 rand : procedure/2

Usage: (rand prng lower upper)=> int

Return a random integer in the interval [lower`` upper], both inclusive, from pseudo-random num-
ber generator prng. The prng argument must be an integer from 0 to 9 (inclusive).

See also: rnd, rndseed. →index →topic

4.548 random-color : procedure/0 or more

Usage: (random-color [alpha])

Return a random color with optional alpha value. If alpha is not specified, it is 255.

See also: the-color, *colors*, darken, lighten. →index →topic

Version 2.4+891b3dc-gui.fyne2 304

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.549 read : procedure/1

Usage: (read p)=> any

Read an expression from input port p.

See also: input, write. →index →topic

4.550 read-binary : procedure/3

Usage: (read-binary p buff n)=> int

Read n or less bytes from input port p into binary blob buff. If buff is smaller than n, then an error is
raised. If less than n bytes are available before the end of file is reached, then the amount k of bytes
is read into buff and k is returned. If the end of file is reached and no byte has been read, then 0 is
returned. So to loop through this, read into the buffer and do something with it while the amount of
bytes returned is larger than 0.

See also: write-binary, read, close, open. →index →topic

4.551 read-string : procedure/2

Usage: (read-string p delstr)=> str

Reads a string from port p until the single-byte delimiter character in delstr is encountered, and
returns the string including the delimiter. If the input ends before the delimiter is encountered, it
returns the string up until EOF. Notice that if the empty string is returned then the end of file must have
been encountered, since otherwise the string would contain the delimiter.

See also: read, read-binary, write-string, write, read, close, open. →index →topic

4.552 read-zimage : procedure/2

Usage: (read-zimage in fi)

Reads and evaluates the zimage in stream in from file fi. The file fi argument is used in error
messages. This procedure raises errors when the zimage is malformed or the version check fails.

See also: load-zimage, run-zimage, zimage-header. →index →topic

Version 2.4+891b3dc-gui.fyne2 305

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.553 readall : procedure/1

Usage: (readall stream)=> sexpr

Read all data from stream and return it as an sexpr.

See also: read, write, open, close. →index

4.554 readall-str : procedure/1 or more

Usage: (readall-str p [buffsize])=> str

Read all content from port p as string. This method may trigger an error if the content in the stream is
not a valid UTF-8 string. The optional buffzie argument determines the size of the internal buffer.

See also: readall, read-binary, read. →index

4.555 recall : procedure/1 or more

Usage: (recall key [notfound])=> any

Obtain the value remembered for key, notfound if it doesn’t exist. If notfound is not provided, then
nil is returned in case the value for key doesn’t exist.

See also: recall-when, recall-info, recollect, remember, forget. →index →topic

4.556 recall-info : procedure/1 or more

Usage: (recall-info key [notfound])=> (str str)

Return a list containing the info string and its fuzzy version for a remembered value with the given key,
notfound if no value for key was found. The default for notfound is nil.

See also: recall-when, recall, recall-when, recollect, remember, forget. →index →topic

4.557 recall-when : procedure/1 or more

Usage: (recall-when key [notfound])=> datestr

Obtain the date string when the value for key was last modified by remember (set), notfound if it
doesn’t exist. If notfound is not provided, then nil is returned in case there is no value for key.

See also: recall, datestr->datelist, recall-info, remember, forget. →index →topic

Version 2.4+891b3dc-gui.fyne2 306

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.558 recollect : procedure/1 or more

Usage: (recollect s [keytype] [limit] [fuzzer])=> li

Search for remembered items based on search query s and return a list of matching keys. The optional
keytype parameter must be one of ‘(all str sym int expr), where the default is ’all for all kinds of keys.
Up to limit results are returned, default is kvdb.default-search-limit. The optional fuzzer procedure
takes a word string and yields a ’fuzzy’ version of it. If fuzzer is specified and a procedure, then a fuzzy
search is performed.

See also: kvdb.search, recall, recall-info, recall-when, remember. →index →topic

4.559 record? : procedure/1

Usage: (record? s)=> bool

Returns true if s is a struct record, i.e., an instance of a struct; nil otherwise. Notice that records are not
really types distinct from arrays, they simply contain a marker ’%record as first element. With normal
use no confusion should arise. Since the internal representation might change, you ought not use
ordinary array procedures for records.

See also: struct?, defstruct. →index →topic

4.560 refresh-main-menu : procedure/1

Usage: (refresh-main-menu main-menu)

Refresh the given main-menu display. This should be called after some submenus or menu items in
the main menu have changed.

See also: new-main-menu, refresh-menu*. →index →topic

4.561 refresh-menu* : procedure/1

Usage: (refresh-menu* menu)

Refresh the given menu after a change was made that has a visual impact. This will refresh the menu
widget in which this abstract menu occurs.

See also: refresh-main-menu, new-menu*. →index →topic

Version 2.4+891b3dc-gui.fyne2 307

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.562 refresh-object : procedure/1

Usage: (refresh-object obj)

Refresh the canvas object obj, causing the graphical display to be re-drawn as soon as possible. This
may be needed if the object’s state has changed.

See also: disable-object, enable-object, show-object, hide-object, object-disabled?,
move-object, resize-object, get-object-size, get-object-min-size, object-visible
?, get-object-position, new-entry, new-label. →index →topic

4.563 register-action : procedure/1

Usage: (register-action action)

Register the action which makes it available for processing by the host system. Use get-action to
obtain an action clone that can be started.

See also: action, has-action-system?, action-start, action-stop. →index →topic

4.564 remember : procedure/2

Usage: (remember key value [info] [fuzzer])

Persistently remember value by given key. See kvdb.set for the optional info and fuzzer argu-
ments.

See also: recall, forget, kvdb.set, recall-when, recall-info, recollect. →index →topic

4.565 remove-canvas-shortcut : procedure/2

Usage: (remove-canvas-shortcut canvas shortcut)

Remove the shortcut from canvas, where shortcut is a list consisting of valid keyboard modifier
symbols and a valid key symbol.

See also: add-canvas-shortcut, get-window-canvas. →index →topic

4.566 remove-duplicates : procedure/1

Usage: (remove-duplicates seq)=> seq

Remove all duplicates in sequence seq, return a new sequence with the duplicates removed.

Version 2.4+891b3dc-gui.fyne2 308

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: seq?, map, foreach, nth. →index →topic

4.567 remove-hook : procedure/2

Usage: (remove-hook hook id)=> bool

Remove the symbolic or numberic hook with id and return true if the hook was removed, nil other-
wise.

See also: add-hook, remove-hooks, replace-hook. →index →topic

4.568 remove-hook-internal : procedure/2

Usage: (remove-hook-internal hook id)

Remove the hook with ID id from numeric hook.

See also: remove-hook. →index

Warning: Internal use only. →topic

4.569 remove-hooks : procedure/1

Usage: (remove-hooks hook)=> bool

Remove all hooks for symbolic or numeric hook, return true if the hook exists and the associated
procedures were removed, nil otherwise.

See also: add-hook, remove-hook, replace-hook. →index →topic

4.570 remove-text-grid-row : procedure/2

Usage: (remove-text-grid-row grid row)

Remove the row from the given text grid. An incorrect row index will result in an error.

See also: insert-text-grid-row, new-text-grid, get-text-grid-row. →index →topic

4.571 rename-action : procedure/2

Usage: (rename-action id new-name)=> bool

Version 2.4+891b3dc-gui.fyne2 309

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Rename a registered action with given id, or rename the action given as id, to new-name. If the
operation succeeds, it returns true, otherwise it returns nil.

See also: change-action-prefix, change-all-action-prefixes, get-action, has-action
?, action. →index →topic

4.572 replace-hook : procedure/2

Usage: (replace-hook hook proc)

Remove all hooks for symbolic or numeric hook and install the given proc as the only hook proce-
dure.

See also: add-hook, remove-hook, remove-hooks. →index →topic

4.573 reset-color : procedure/0

Usage: (reset-color)

Reset the ’text and ’back colors of the display to default values. These values are not specified in the
color database and depend on the runtime implementation. Other colors like ’gfx or ’frame are not
affected.

See also: set-color, color, the-color, with-colors. →index →topic

4.574 resize-object : procedure/2

Usage: (resize-object obj width height)

Resize canvas object obj to the given width and height as floats.

See also: disable-object, enable-object, show-object, hide-object, object-disabled?
, move-object, get-object-size, get-object-min-size, get-object-position, object-
visible?, refresh-object, new-entry, new-label. →index →topic

4.575 reverse : procedure/1

Usage: (reverse seq)=> sequence

Reverse a sequence non-destructively, i.e., return a copy of the reversed sequence.

See also: nth, seq?, 1st, 2nd, 3rd, 4th, 6th, 7th, 8th, 9th, 10th, last. →index →topic

Version 2.4+891b3dc-gui.fyne2 310

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.576 rnd : procedure/0

Usage: (rnd prng)=> num

Return a random value in the interval [0, 1] from pseudo-random number generator prng. The prng
argument must be an integer from 0 to 9 (inclusive).

See also: rand, rndseed. →index →topic

4.577 rndseed : procedure/1

Usage: (rndseed prng n)

Seed the pseudo-random number generator prng (0 to 9) with 64 bit integer value n. Larger values will
be truncated. Seeding affects both the rnd and the rand function for the given prng.

See also: rnd, rand. →index →topic

4.578 rplaca : procedure/2

Usage: (rplaca li a)=> li

Destructively mutate li such that its car is a, return the list afterwards.

See also: rplacd. →index →topic

4.579 run-at : procedure/2

Usage: (run-at date repeater proc)=> int

Run procedure proc with no arguments as task periodically according to the specification in spec and
return the task ID for the periodic task. Herbey, date is either a datetime specification or one of ‘(now
skip next-minute next-quarter next-halfhour next-hour in-2-hours in-3-hours tomorrow next-week next-
month next-year), andrepeater is nil or a procedure that takes a task ID and unix-epoch-nanoseconds
and yields a new unix-epoch-nanoseconds value for the next time the procedure shall be run. While the
other names are self-explanatory, the ’skip specification means that the task is not run immediately
but rather that it is first run at (repeater -1 (now)). Timing resolution for the scheduler is about 1 minute.
Consider using interrupts for periodic events with smaller time resolutions. The scheduler uses relative
intervals and has ’drift’.

See also: task, task-send. →index

Warning: Tasks scheduled by run-at are not persistent! They are only run until the system is
shutdown. →topic

Version 2.4+891b3dc-gui.fyne2 311

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.580 run-hook : procedure/1

Usage: (run-hook hook)

Manually run the hook, executing all procedures for the hook.

See also: add-hook, remove-hook. →index →topic

4.581 run-hook-internal : procedure/1 or more

Usage: (run-hook-internal hook [args] ...)

Run all hooks for numeric hook ID hook with args. . . as arguments.

See also: run-hook. →index

Warning: Internal use only. →topic

4.582 run-selftest : procedure/0

Usage: (run-selftest)

Run a self test of the Z3S5 Lisp system and report errors to standard output.

See also: help, testing. →index →topic

4.583 run-zimage : procedure/1 or more

Usage: (run-zimage fi)

Load the zimage file fi and start it at the designated entry point. Raises an error if the zimage version
is not compatible or the zimage cannot be run.

See also: load-zimage, save-zimage, zimage-runable?, zimage-loadable?. →index →topic

4.584 save-zimage : procedure/1 or more

Usage: (save-zimage min-version info entry-point fi)=> int

Write the current state of the system as a zimage to file fi. If the file already exists, it is overwritten.
The min-version argument designates the minimum system version required to load the zimage.
The info argument should be a list whose first argument is a human-readable string explaining the

Version 2.4+891b3dc-gui.fyne2 312

Z3S5 Lisp Reference Manual 2024-1-2 15:04

purpose of the zimage and remainder is user data. The entry-point is either nil or an expression
that can be evaluated to start the zimage after it has been loaded with run-zimage.

See also: load-zimage, current-zimage, dump, run-zimage, zimage-loadable?, zimage-
runable?, externalize. →index →topic

4.585 sec+ : procedure/2

Usage: (sec+ dateli n)=> dateli

Adds n seconds to the given date dateli in datelist format and returns the new datelist.

See also: minute+, hour+, day+, week+, month+, year+, now. →index →topic

4.586 semver.build : procedure/1

Usage: (semver.build s)=> str

Return the build part of a semantic versioning string.

See also: semver.canonical, semver.major, semver.major-minor. →index →topic

4.587 semver.canonical : procedure/1

Usage: (semver.canonical s)=> str

Return a canonical semver string based on a valid, yet possibly not canonical version string s.

See also: semver.major. →index →topic

4.588 semver.compare : procedure/2

Usage: (semver.compare s1 s2)=> int

Compare two semantic version strings s1 and s2. The result is 0 if s1 and s2 are the same version, -1
if s1 < s2 and 1 if s1 > s2.

See also: semver.major, semver.major-minor. →index →topic

Version 2.4+891b3dc-gui.fyne2 313

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.589 semver.is-valid? : procedure/1

Usage: (semver.is-valid? s)=> bool

Return true if s is a valid semantic versioning string, nil otherwise.

See also: semver.major, semver.major-minor, semver.compare. →index →topic

4.590 semver.major : procedure/1

Usage: (semver.major s)=> str

Return the major part of the semantic versioning string.

See also: semver.major-minor, semver.build. →index →topic

4.591 semver.major-minor : procedure/1

Usage: (semver.major-minor s)=> str

Return the major.minor prefix of a semantic versioning string. For example, (semver.major-minor
“v2.1.4”) returns “v2.1”.

See also: semver.major, semver.build. →index →topic

4.592 semver.max : procedure/2

Usage: (semver.max s1 s2)=> str

Canonicalize s1 and s2 and return the larger version of them.

See also: semver.compare. →index →topic

4.593 semver.prerelease : procedure/1

Usage: (semver.prerelease s)=> str

Return the prerelease part of a version string, or the empty string if there is none. For example,
(semver.prerelease “v2.1.0-pre+build”) returns “-pre”.

See also: semver.build, semver.major, semver.major-minor. →index →topic

Version 2.4+891b3dc-gui.fyne2 314

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.594 seq? : procedure/1

Usage: (seq? seq)=> bool

Return true if seq is a sequence, nil otherwise.

See also: list, array, string, slice, nth. →index →topic

4.595 set : procedure/3

Usage: (set d key value)

Set value for key in dict d.

See also: dict, get, get-or-set. →index →topic

4.596 set* : procedure/2

Usage: (set* d li)

Set in dict d the keys and values in list li. The list li must be of the form (key-1 value-1 key-2 value-2
. . . key-n value-n). This function may be slightly faster than using individual set operations.

See also: dict, set. →index →topic

4.597 set->list : procedure/1

Usage: (set->list s)=> li

Convert set s to a list of set elements.

See also: list->set, make-set, set-element?, set-union, set-intersection, set-
complement, set-difference, set?, set-empty. →index →topic

4.598 set-canvas-on-typed-key : procedure/2

Usage: (set-canvas-on-typed-key canvas proc)

Set the procedure proc called when a key is typed in canvas. proc takes two arguments, the first one
is a platform-independent key symbol and the second one is a platform- and keyboard-dependent
hardware scancode.

See also: set-canvas-on-typed-rune, add-canvas-shortcut, get-window-canvas. →index
→topic

Version 2.4+891b3dc-gui.fyne2 315

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.599 set-canvas-on-typed-rune : procedure/2

Usage: (set-canvas-on-typed-rune canvas proc)

Set the procedure proc called when a rune is typed in canvas. proc takes one argument, a string
containing a single Unicode rune.

See also: add-canvas-shortcut, get-window-canvas, set-canvas-on-typed-key. →index
→topic

4.600 set-clipboard-content : procedure/1

Usage: (set-clipboard-content str)

Set the operating system clipboard content to string str. This function might raise an error if clipboard
access is prohibited by host security settings.

See also: get-clipboard-content. →index →topic

4.601 set-color : procedure/1

Usage: (set-color sel colorlist)

Set the color according to sel to the color colorlist of the form ’(r g b a). See color for information
about sel.

See also: color, reset-color, the-color, with-colors. →index →topic

4.602 set-complement : procedure/2

Usage: (set-complement a domain)=> set

Return all elements in domain that are not elements of a.

See also: list->set, set->list, make-set, set-element?, set-union, set-difference, set
-intersection, set?, set-empty?, set-subset?, set-equal?. →index →topic

4.603 set-difference : procedure/2

Usage: (set-difference a b)=> set

Return the set-theoretic difference of set a minus set b, i.e., all elements in a that are not in b.

Version 2.4+891b3dc-gui.fyne2 316

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: list->set, set->list, make-set, set-element?, set-union, set-intersection,
set-complement, set?, set-empty?, set-subset?, set-equal?. →index →topic

4.604 set-element? : procedure/2

Usage: (set-element? s elem)=> bool

Return true if set s has element elem, nil otherwise.

See also: make-set,list->set,set->list,set-union,set-intersection,set-complement,
set-difference, set?, set-empty?. →index →topic

4.605 set-empty? : procedure/1

Usage: (set-empty? s)=> bool

Return true if set s is empty, nil otherwise.

See also: make-set,list->set,set->list,set-union,set-intersection,set-complement,
set-difference, set?. →index →topic

4.606 set-entry-cursor-column : procedure/2

Usage: (set-entry-cursor-column entry column)

Set the column position of the cursor in entry to integer column.

See also: get-entry-cursor-pos, set-entry-cursor-row. →index →topic

4.607 set-entry-cursor-row : procedure/2

Usage: (set-entry-cursor-row entry row)

Set the row position of the cursor in entry to integer row.

See also: get-entry-cursor-pos, set-entry-cursor-column. →index →topic

4.608 set-entry-min-rows-visible : procedure/2

Usage: (set-entry-min-rows-visible entry rows)

Version 2.4+891b3dc-gui.fyne2 317

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Set the minimum number of rows of entry that are visible. This ensures that rows text rows are visible
and is a way of setting the entry’s minimum size. Curiously, there is no corresponding set-entry-min-
columns-visible function yet.

See also: new-entry. →index →topic

4.609 set-entry-on-change-callback : procedure/2

Usage: (set-entry-on-change-callback entry proc)

Set the callback of entry that is triggered when the entry text changes. proc must be a procedure
that takes the entry text as string.

See also: new-entry, set-entry-cursor-change-callback. →index →topic

4.610 set-entry-on-cursor-change-callback : procedure/2

Usage: (set-entry-cursor-change-callback entry proc)

Set the cursor change callback of entry to proc, which is a procedure that takes the entry ID as
argument.

See also: new-entry, set-entry-on-change-callback. →index →topic

4.611 set-entry-place-holder : procedure/2

Usage: (set-entry-place-holder entry str)

Set the place holder string of entry to str. This is displayed as a prompt when no text is entered.

See also: new-entry, set-entry-text. →index →topic

4.612 set-entry-text : procedure/2

Usage: (set-entry-text entry str)

Set the text of entry to string str.

See also: new-entry, set-entry-place-holder. →index →topic

Version 2.4+891b3dc-gui.fyne2 318

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.613 set-entry-text-wrap : procedure/2

Usage: (set-entry-text-wrap entry selector)

Set or remove the text wrapping of entry, which is only relevant for multiline entries. selector must
be one of ’(none break wrap), where ’none indicates no text wrapping, ’break indicates that words are
broken without special wrapping algorithm, and ’word means word wrapping.

See also: new-entry. →index →topic

4.614 set-entry-validator : procedure/2

Usage: (set-entry-validator entry validator)

Set the validator of entry. A validator must be created first from a special procedure or a regular
expression.

See also: new-entry, new-validator, new-combined-string-validator, new-time-
validator, new-regexp-validator, validate-object. →index →topic

4.615 set-equal? : procedure/2

Usage: (set-equal? a b)=> bool

Return true if a and b contain the same elements.

See also: set-subset?, list->set, set-element?, set->list, set-union, set-difference,
set-intersection, set-complement, set?, set-empty?. →index →topic

4.616 set-help-topic-info : procedure/3

Usage: (set-help-topic-info topic header info)

Set a human-readable information entry for help topic with human-readable header and info
strings.

See also: defhelp, help-topic-info. →index →topic

4.617 set-intersection : procedure/2

Usage: (set-intersection a b)=> set

Return the intersection of sets a and b, i.e., the set of elements that are both in a and in b.

Version 2.4+891b3dc-gui.fyne2 319

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: list->set, set->list, make-set, set-element?, set-union, set-complement, set
-difference, set?, set-empty?, set-subset?, set-equal?. →index →topic

4.618 set-label-text : procedure/2

Usage: (set-label-text label str)

Sets the text of label to string str. This might resize the label depending on the layout in which the
label is put.

See also: get-label-text, new-label. →index →topic

4.619 set-menu-item-checked : procedure/2

Usage: (set-menu-item-checked item checked?)

Set the menu item check mark display if checked? is non-nil, remove it otherwise.

See also: menu-item-checked?, set-menu-item-disabled, menu-item-disabled?, get-
menu-item-label, set-menu-item-label, new-menu*, new-menu, new-menu-item, new-menu
-item-separator. →index →topic

4.620 set-menu-item-disabled : procedure/2

Usage: (set-menu-item-disabled item disabled?)

Disable the menu item if disabled? is non-nil, enable it otherwise.

See also: menu-item-disabled?, set-menu-item-checked, menu-item-checked?, get-menu
-item-label, set-menu-item-label, new-menu*, new-menu, new-menu-item, new-menu-
item-separator. →index →topic

4.621 set-menu-item-label : procedure/2

Usage: (set-menu-item-label item str)

Set the label of menu item to str.

See also: get-menu-item-label, set-menu-item-disabled, menu-item-disabled, set
-menu-item-checked, menu-item-checked?, new-menu*, new-menu, new-menu-item,
new-menu-item-separator. →index →topic

Version 2.4+891b3dc-gui.fyne2 320

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.622 set-object-on-validation-change-callback : procedure/2

Usage: (set-object-on-validation-change-callback obj proc)

Set a validatable object’s obj validation change callback, which is called when the object’s validation
changes. The callback proc takes a string or nil as argument. When it is nil, the validation was
successful. When it is a string, then the validation failed with the string as reason. This can be used to
track validation changes of any validatable object (such as a text entry) to e.g. display custom messages
or icons when the validation fails or succeeds.

See also: validate-object, new-validator, set-entry-validator. →index →topic

4.623 set-permissions : nil

Usage: (set-permissions li)

Set the permissions for the current interpreter. This will trigger an error when the permission cannot be
set due to a security violation. Generally, permissions can only be downgraded (made more stringent)
and never relaxed. See the information for permissions for an overview of symbolic flags.

See also: permissions, permission?, when-permission, sys. →index →topic

4.624 set-progress-bar : procedure/1 or more

Usage: (set-progress-bar bar value [selector value])

Set the value of progress-barbar as follows. If a single number is provided, then the current value of the
progress-bar is set to this number. If a selector symbol is provided, then if it is ’value, the progress-bar
value is set to the following number, if it is ’max or ’min, then the progress-bar maximum or minimum
values are set to the respective following number. If it is ’formatter, then the following value must be a
procedure that takes the progress-bar ID as argument and returns a string that represents the display
of the progress-bar at the given time.

See also: get-progress-bar-value, new-progress-bar, new-infinite-progress-bar.
→index →topic

4.625 set-scroll-offset : procedure/2

Usage: (set-scroll-offset scroll li)

Version 2.4+891b3dc-gui.fyne2 321

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Set the scroll offset to li, which is a position of the form (x y) where x and y are floats. If you don’t
want to change x or y respectively, you need to use get-scroll-offset first to get the value that
you don’t want to change, and construct the position from that.

See also: get-scroll-offset, new-scroll, new-hscroll, new-vscroll. →index →topic

4.626 set-slider-value : procedure/2

Usage: (set-slider-value slider fl)

Set the value of slider to float fl.

See also: new-slider. →index →topic

4.627 set-split-offset : procedure/2

Usage: (set-split-offset split offset)

Set the offset of split to float offset between 0.0 and 1.0. offset indicates the percentage between
the objects shown in the split. If offset is 0.0, then only the second object is shown, if it is 1.0 then
only the first object is shown.

See also: new-vsplit, new-hsplit. →index →topic

4.628 set-subset? : procedure/2

Usage: (set-subset? a b)=> bool

Return true if a is a subset of b, nil otherwise.

See also: set-equal?, list->set, set->list, make-set, set-element?, set-union, set-
difference, set-intersection, set-complement, set?, set-empty?. →index →topic

4.629 set-text-alignment : procedure/2

Usage: (set-text-alignment text sym)

Set the alignment of text to sym, which must be one of ’(leading center trailing).

See also: new-text, set-text-size, set-text-style. →index →topic

Version 2.4+891b3dc-gui.fyne2 322

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.630 set-text-grid-cell : procedure/4

Usage: (set-text-grid-cell grid row column li)

Set the text grid cell at row and column (both 0-indexed) to the list li, where li must consist of a
unicode string containing one rune and a valid grid style list.

See also: get-text-grid-cell, set-text-grid-rune, get-text-grid-row, set-text-grid
-row. →index →topic

4.631 set-text-grid-row : procedure/3

Usage: (set-text-grid-row grid row row-spec)

Set the row of grid to the given row-spec, which is a list containing an array of grid cells like in the
return value of get-text-grid-row and a grid style for the row as a whole.

See also: get-text-grid-row, set-text-grid-row-style, set-text-grid-cell, set-text
-grid-rune, set-text-grid-style-range. →index →topic

4.632 set-text-grid-row-style : procedure/3

Usage: (set-text-grid-row-style grid row style)

Set the style of text grid at row to the given grid style.

See also: set-text-grid-row, set-text-grid-cell, get-text-grid-row, set-text-grid-
rune, set-text-grid-style-range. →index →topic

4.633 set-text-grid-rune : procedure/4

Usage: (set-text-grid-rune grid row column str)

Set the rune of grid at row and column to the unicode glyph in string str.

See also: set-text-grid-style, set-text-grid-cell, get-text-grid-cell. →index
→topic

4.634 set-text-grid-show-line-numbers : procedure/2

Usage: (set-text-grid-show-line-numbers grid show?)

Version 2.4+891b3dc-gui.fyne2 323

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Set whether grid shows line numbers. If show? is not nil, then line numbers are shown, otherwise
they are not shown.

See also: new-text-grid, text-grid-show-line-numbers?, text-grid-show-whitespace
?, get-text-grid-tab-width, set-text-grid-tab-width, set-text-grid-show-
whitespace, get-text-grid-row, get-text-grid-row-text, set-text-grid-cell,
get-text-grid-cell, set-text-grid-row, set-text-grid-row-style, set-text-grid
-rune, set-text-grid-style, set-text-grid-style-range, set-text-grid-text,
get-text-grid-text. →index →topic

4.635 set-text-grid-show-whitespace : procedure/2

Usage: (set-text-grid-show-whitespace grid show?)

Set whether grid shows whitespace characters. If show? is not nil, then whitespace characters are
shown, otherwise they are not shown.

See also: new-text-grid, text-grid-show-line-numbers?, text-grid-show-whitespace?,
get-text-grid-tab-width, set-text-grid-tab-width, set-text-grid-show-line-
numbers, get-text-grid-row, get-text-grid-row-text, set-text-grid-cell, get-
text-grid-cell, set-text-grid-row, set-text-grid-row-style, set-text-grid-rune,
set-text-grid-style, set-text-grid-style-range, set-text-grid-text, get-text-
grid-text. →index →topic

4.636 set-text-grid-style : procedure/4

Usage: (set-text-grid-style grid row column style)

Set the grid style of grid at row and column to the list style.

See also: set-text-grid-cell, set-text-grid-rune, set-text-grid-style-range. →index
→topic

4.637 set-text-grid-style-range : procedure/6

Usage: (set-text-grid-style-range grid start-row start-column end-row end-
column style)

Set the grid style of grid starting at start-row and start-column and ending at end-row and
end-column (all inclusive) to the grid style.

Version 2.4+891b3dc-gui.fyne2 324

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: set-text-grid-style, set-text-grid-cell, set-text-grid-row-style. →index
→topic

4.638 set-text-grid-tab-width : procedure/2

Usage: (set-text-grid-tab-width grid width)

Set the tabulator width of grid to integer width space characters.

See also: new-text-grid, text-grid-show-line-numbers?, text-grid-show-whitespace?,
get-text-grid-tab-width, set-text-grid-show-line-numbers, set-text-grid-show
-whitespace, get-text-grid-row, get-text-grid-row-text, set-text-grid-cell,
get-text-grid-cell, set-text-grid-row, set-text-grid-row-style, set-text-grid
-rune, set-text-grid-style, set-text-grid-style-range, set-text-grid-text,
get-text-grid-text. →index →topic

4.639 set-text-grid-text : procedure/2

Usage: (set-text-grid-text grid str)

Set the text of the text grid to the given str.

See also: get-text-grid-text, new-text-grid, set-text-grid-rune, set-text-grid-row.
→index →topic

4.640 set-text-size : procedure/2

Usage: (set-text-size text size)

Set the size of text to float size.

See also: new-text, set-text-alignment, set-text-style. →index →topic

4.641 set-text-style : procedure/2

Usage: (set-text-style text li

Set the style of text to the specification in list li, which must contain symbols in ’(bold italic
monospace symbol tab-width). If a symbol in the list is tab-width, it must be followed by an integer.
bold sets boldface, italic makes the style italic, monospace selects the monospace/typewriter font,

Version 2.4+891b3dc-gui.fyne2 325

Z3S5 Lisp Reference Manual 2024-1-2 15:04

and symbol selects the symbol font. tab-width followed by an integer sets the width of tabulator in
terms of the number of space characters.

See also: new-text, set-text-alignment, set-text-size. →index →topic

4.642 set-union : procedure/2

Usage: (set-union a b)=> set

Return the union of sets a and b containing all elements that are in a or in b (or both).

See also: list->set, set->list, make-set, set-element?, set-intersection, set-
complement, set-difference, set?, set-empty?. →index →topic

4.643 set-volume : procedure/1

Usage: (set-volume fl)

Set the master volume for all sound to fl, a value between 0.0 and 1.0.

See also: beep. →index →topic

4.644 set-window-content : procedure/2

Usage: (set-window-content window canvas-object)

Set the main content of the window, which must be an existing canvas object such as a widget or
container with layout.

See also: get-window-content, get-window-canvas, new-window. →index →topic

4.645 set-window-full-screen : procedure/2

Usage: (set-window-full-screen window full-screen?)

If full-screen? is not nil, then window is set to full screen mode, otherwise the window is set to
normal mode. In full screen mode the window is centered and fills the whole screen of the main
monitor (multiple monitors are currently not supported).

See also: window-full-screen?, center-window-on-screen. →index →topic

Version 2.4+891b3dc-gui.fyne2 326

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.646 set-window-icon : procedure/1

Usage: (set-window-icon window resource)

Set the icon of window to the given icon resource. Setting the icon does not guarantee that it is
displayed, since this is platform-dependent.

See also: get-window-icon, new-icon, theme-icon. →index →topic

4.647 set-window-main-menu : procedure/2

Usage: (set-window-main-menu window main-menu)

Set the main menu of window to main-menu.

See also: new-main-menu, new-menu, new-menu*. →index →topic

4.648 set-window-on-close-callback : procedure/2

Usage: (set-window-on-close-callback window proc)

Sets the close callback of window. proc must be a function that takes no arguments and is evaluated
when the window is closed.

See also: show-window, close-window, hide-window. →index →topic

4.649 set-window-padded : procedure/2

Usage: (set-window-padded window padded?)

Ifpadded? is not nil, thenwindow is set to being padded. This is the default of new window. Ifpadded?
is nil, then the window’s padding is removed, which means that the whole content area of the window
can be filled with user interface elements and draw commands. This would be used for a game display,
for instance.

See also: window-padded?, set-window-full-screen, window-full-screen?, center-
window-on-screen. →index →topic

4.650 set-window-size : procedure/2

Usage: (set-window-size window width height)

Version 2.4+891b3dc-gui.fyne2 327

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Set the size of window to width and height as floats. Sizes and positions are generally given as floats
whose accuracy is only guaranteed to 32 bit.

See also: new-window, show-window, hide-window. →index →topic

4.651 set-window-title : procedure/2

Usage: (set-window-title window title)

Set the title of window to string title.

See also: get-window-title. →index →topic

4.652 set? : procedure/1

Usage: (set? x)=> bool

Return true if x can be used as a set, nil otherwise.

See also: list->set, make-set, set->list, set-element?, set-union, set-intersection,
set-complement, set-difference, set-empty?. →index →topic

4.653 setcar : procedure/1

Usage: (setcar li elem)=> li

Mutate li such that its car is elem. Same as rplaca.

See also: rplaca, rplacd, setcdr. →index →topic

4.654 setcdr : procedure/1

Usage: (setcdr li1 li2)=> li

Mutate li1 such that its cdr is li2. Same as rplacd.

See also: rplacd, rplaca, setcar. →index →topic

4.655 setprop : procedure/3

Usage: (setprop obj slot value)

Version 2.4+891b3dc-gui.fyne2 328

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Set property slot in obj to value. An error occurs if the object does not have a property with that
name.

See also: new, isa?, prop, object?, class-name, supers, props, methods, has-prop?. →index
→topic

4.656 shorten : procedure/2

Usage: (shorten s n)=> str

Shorten string s to length n in a smart way if possible, leave it untouched if the length of s is smaller
than n.

See also: substr. →index →topic

4.657 show-object : procedure/1

Usage: (show-object obj)

Show the canvas object obj.

See also: disable-object, enable-object, hide-object, object-disabled?, move-object,
resize-object, get-object-size, get-object-min-size, get-object-position, object
-visible?, refresh-object, new-entry, new-label. →index →topic

4.658 sleep : procedure/1

Usage: (sleep ms)

Halt the current task execution for ms milliseconds.

See also: sleep-ns, time, now, now-ns. →index →topic

4.659 sleep-ns : procedure/1

Usage: (sleep-ns n

Halt the current task execution for n nanoseconds.

See also: sleep, time, now, now-ns. →index →topic

Version 2.4+891b3dc-gui.fyne2 329

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.660 slice : procedure/3

Usage: (slice seq low high)=> seq

Return the subsequence of seq starting from low inclusive and ending at high exclusive. Sequences
are 0-indexed.

See also: list, array, string, nth, seq?. →index →topic

4.661 sort : procedure/2

Usage: (sort li proc)=> li

Sort the list li by the given less-than procedure proc, which takes two arguments and returns true if
the first one is less than the second, nil otheriwse.

See also: array-sort. →index →topic

4.662 sort-symbols : nil

Usage: (sort-symbols li)=> list

Sort the list of symbols li alphabetically.

See also: out, dp, du, dump. →index →topic

4.663 spaces : procedure/1

Usage: (spaces n)=> str

Create a string consisting of n spaces.

See also: strbuild, strleft, strright. →index →topic

4.664 stack-empty? : procedure/1

Usage: (queue-empty? s)=> bool

Return true if the stack s is empty, nil otherwise.

See also: make-stack, stack?, push!, pop!, stack-len, glance. →index →topic

Version 2.4+891b3dc-gui.fyne2 330

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.665 stack-len : procedure/1

Usage: (stack-len s)=> int

Return the length of the stack s.

See also: make-queue, queue?, enqueue!, dequeue!, glance, queue-len. →index

Warning: Be advised that this is of limited use in some concurrent contexts, since the length of
the queue might have changed already once you’ve obtained it! →topic

4.666 stack? : procedure/1

Usage: (stack? q)=> bool

Return true if q is a stack, nil otherwise.

See also: make-stack, push!, pop!, stack-empty?, stack-len, glance. →index →topic

4.667 str+ : procedure/0 or more

Usage: (str+ [s] ...)=> str

Append all strings given to the function.

See also: str?. →index →topic

4.668 str->array : procedure/1

Usage: (str->array s)=> array

Return the string s as an array of unicode glyph integer values.

See also: array->str. →index →topic

4.669 str->blob : procedure/1

Usage: (str->blob s)=> blob

Convert string s into a blob.

See also: blob->str. →index →topic

Version 2.4+891b3dc-gui.fyne2 331

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.670 str->char : procedure/1

Usage: (str->char s)

Return the first character of s as unicode integer.

See also: char->str. →index →topic

4.671 str->chars : procedure/1

Usage: (str->chars s)=> array

Convert the UTF-8 string s into an array of UTF-8 rune integers. An error may occur if the string is not a
valid UTF-8 string.

See also: runes->str, str->char, char->str. →index →topic

4.672 str->expr : procedure/0 or more

Usage: (str->expr s [default])=> any

Convert a string s into a Lisp expression. If default is provided, it is returned if an error occurs,
otherwise an error is raised.

See also: expr->str, str->expr*, openstr, externalize, internalize. →index →topic

4.673 str->expr* : procedure/0 or more

Usage: (str->expr* s [default])=> li

Convert a string s into a list consisting of the Lisp expressions in s. If default is provided, then this
value is put in the result list whenever an error occurs. Otherwise an error is raised. Notice that it might
not always be obvious what expression in s triggers an error, since this hinges on the way the internal
expession parser works.

See also: str->expr, expr->str, openstr, internalize, externalize. →index →topic

4.674 str->list : procedure/1

Usage: (str->list s)=> list

Return the sequence of numeric chars that make up string s.

See also: str->array, list->str, array->str, chars. →index →topic

Version 2.4+891b3dc-gui.fyne2 332

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.675 str->sym : procedure/1

Usage: (str->sym s)=> sym

Convert a string into a symbol.

See also: sym->str, intern, make-symbol. →index →topic

4.676 str-count-substr : procedure/2

Usage: (str-count-substr s1 s2)=> int

Count the number of non-overlapping occurrences of substring s2 in string s1.

See also: str-replace, str-replace*, instr. →index →topic

4.677 str-empty? : procedure/1

Usage: (str-empty? s)=> bool

Return true if the string s is empty, nil otherwise.

See also: strlen. →index →topic

4.678 str-exists? : procedure/2

Usage: (str-exists? s pred)=> bool

Return true if pred returns true for at least one character in string s, nil otherwise.

See also: exists?, forall?, list-exists?, array-exists?, seq?. →index →topic

4.679 str-forall? : procedure/2

Usage: (str-forall? s pred)=> bool

Return true if predicate pred returns true for all characters in string s, nil otherwise.

See also: foreach, map, forall?, array-forall?, list-forall, exists?. →index →topic

Version 2.4+891b3dc-gui.fyne2 333

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.680 str-foreach : procedure/2

Usage: (str-foreach s proc)

Apply proc to each element of string s in order, for the side effects.

See also: foreach, list-foreach, array-foreach, map. →index →topic

4.681 str-index : procedure/2 or more

Usage: (str-index s chars [pos])=> int

Find the first char in s that is in the charset chars, starting from the optional pos in s, and return its
index in the string. If no macthing char is found, nil is returned.

See also: strsplit, chars, inchars. →index →topic

4.682 str-join : procedure/2

Usage: (str-join li del)=> str

Join a list of strings li where each of the strings is separated by string del, and return the result
string.

See also: strlen, strsplit, str-slice. →index →topic

4.683 str-port? : procedure/1

Usage: (str-port? p)=> bool

Return true if p is a string port, nil otherwise.

See also: port?, file-port?, stropen, open. →index →topic

4.684 str-ref : procedure/2

Usage: (str-ref s n)=> n

Return the unicode char as integer at position n in s. Strings are 0-indexed.

See also: nth. →index →topic

Version 2.4+891b3dc-gui.fyne2 334

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.685 str-remove-number : procedure/1

Usage: (str-remove-number s [del])=> str

Remove the suffix number in s, provided there is one and it is separated from the rest of the string
by del, where the default is a space character. For instance, “Test 29” will be converted to “Test”,
“User-Name1-23-99” with delimiter “-” will be converted to “User-Name1-23”. This function will remove
intermediate delimiters in the middle of the string, since it disassembles and reassembles the string,
so be aware that this is not preserving inputs in that respect.

See also: strsplit. →index →topic

4.686 str-remove-prefix : procedure/1

Usage: (str-remove-prefix s prefix)=> str

Remove the prefix prefix from string s, return the string without the prefix. If the prefix does not
match, s is returned. If prefix is longer than s and matches, the empty string is returned.

See also: str-remove-suffix. →index →topic

4.687 str-remove-suffix : procedure/1

Usage: (str-remove-suffix s suffix)=> str

remove the suffix suffix from string s, return the string without the suffix. If the suffix does not match,
s is returned. If suffix is longer than s and matches, the empty string is returned.

See also: str-remove-prefix. →index →topic

4.688 str-replace : procedure/4

Usage: (str-replace s t1 t2 n)=> str

Replace the first n instances of substring t1 in s by t2.

See also: str-replace*, str-count-substr. →index →topic

4.689 str-replace* : procedure/3

Usage: (str-replace* s t1 t2)=> str

Replace all non-overlapping substrings t1 in s by t2.

Version 2.4+891b3dc-gui.fyne2 335

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: str-replace, str-count-substr. →index →topic

4.690 str-reverse : procedure/1

Usage: (str-reverse s)=> str

Reverse string s.

See also: reverse, array-reverse, list-reverse. →index →topic

4.691 str-segment : procedure/3

Usage: (str-segment str start end)=> list

Parse a string str into words that start with one of the characters in string start and end in one of
the characters in string end and return a list consisting of lists of the form (bool s) where bool is true if
the string starts with a character in start, nil otherwise, and s is the extracted string including start
and end characters.

See also: str+, strsplit, fmt, strbuild. →index →topic

4.692 str-slice : procedure/3

Usage: (str-slice s low high)=> s

Return a slice of string s starting at character with index low (inclusive) and ending at character with
index high (exclusive).

See also: slice. →index →topic

4.693 str? : procedure/1

Usage: (str? s)=> bool

Return true if s is a string, nil otherwise.

See also: num?, atom?, sym?, closure?, intrinsic?, macro?. →index

Version 2.4+891b3dc-gui.fyne2 336

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.694 strbuild : procedure/2

Usage: (strbuild s n)=> str

Build a string by repeating string s`` n times.

See also: str+. →index →topic

4.695 strcase : procedure/2

Usage: (strcase s sel)=> str

Change the case of the string s according to selector sel and return a copy. Valid values for sel
are ’lower for conversion to lower-case, ’upper for uppercase, ’title for title case and ’utf-8 for utf-8
normalization (which replaces unprintable characters with “?”).

See also: strmap. →index →topic

4.696 strcenter : procedure/2

Usage: (strcenter s n)=> str

Center string s by wrapping space characters around it, such that the total length the result string is
n.

See also: strleft, strright, strlimit. →index →topic

4.697 strcnt : procedure/2

Usage: (strcnt s del)=> int

Returnt the number of non-overlapping substrings del in s.

See also: strsplit, str-index. →index →topic

4.698 strleft : procedure/2

Usage: (strleft s n)=> str

Align string s left by adding space characters to the right of it, such that the total length the result string
is n.

See also: strcenter, strright, strlimit. →index →topic

Version 2.4+891b3dc-gui.fyne2 337

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.699 strlen : procedure/1

Usage: (strlen s)=> int

Return the length of s.

See also: len, seq?, str?. →index →topic

4.700 strless : procedure/2

Usage: (strless s1 s2)=> bool

Return true if string s1 < s2 in lexicographic comparison, nil otherwise.

See also: sort, array-sort, strcase. →index →topic

4.701 strlimit : procedure/2

Usage: (strlimit s n)=> str

Return a string based on s cropped to a maximal length of n (or less if s is shorter).

See also: strcenter, strleft, strright. →index →topic

4.702 strmap : procedure/2

Usage: (strmap s proc)=> str

Map function proc, which takes a number and returns a number, over all unicode characters in s and
return the result as new string.

See also: map. →index →topic

4.703 stropen : procedure/1

Usage: (stropen s)=> streamport

Open the string s as input stream.

See also: open, close. →index →topic

Version 2.4+891b3dc-gui.fyne2 338

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.704 strright : procedure/2

Usage: (strright s n)=> str

Align string s right by adding space characters in front of it, such that the total length the result string
is n.

See also: strcenter, strleft, strlimit. →index →topic

4.705 strsplit : procedure/2

Usage: (strsplit s del)=> array

Return an array of strings obtained from s by splitting s at each occurrence of string del.

See also: str?. →index →topic

4.706 struct-index : procedure/1

Usage: (struct-index s)=> dict

Returns the index of struct s as a dict. This dict is an internal representation of the struct’s instance
data.

See also: defstruct. →index →topic

4.707 struct-instantiate : procedure/2

Usage: (struct-instantiate s li)=> record

Instantiates the struct s with property a-list li as values for its properties and return the record. If a
property is not in li, its value is set to nil.

See also: make, defstruct, struct?, record?. →index →topic

4.708 struct-name : procedure/1

Usage: (struct-name s)=> sym

Returns the name of a struct s. This is rarely needed since the struct is bound to a symbol with the
same name.

See also: defstruct. →index →topic

Version 2.4+891b3dc-gui.fyne2 339

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.709 struct-props : procedure/1

Usage: (struct-props s)=> dict

Returns the properties of structure s as dict.

See also: defstruct. →index →topic

4.710 struct-size : procedure/1

Usage: (strict-size s)=> int

Returns the number of properties of struct s.

See also: defstruct. →index →topic

4.711 struct? : procedure/1

Usage: (struct? datum)=> boo

Returns true if datum is a struct, nil otherwise.

See also: defstruct. →index →topic

4.712 sub1 : procedure/1

Usage: (sub1 n)=> num

Subtract 1 from n.

See also: add1, +, -. →index →topic

4.713 supers : procedure/1

Usage: (supers c)=> li

Return the list of superclasses of class c. An error occurs if c is not a valid class.

See also: class?, isa?, class-name. →index →topic

Version 2.4+891b3dc-gui.fyne2 340

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.714 sym->str : procedure/1

Usage: (sym->str sym)=> str

Convert a symbol into a string.

See also: str->sym, intern, make-symbol. →index →topic

4.715 sym? : procedure/1

Usage: (sym? sym)=> bool

Return true if sym is a symbol, nil otherwise.

See also: str?, atom?. →index →topic

4.716 synout : procedure/1

Usage: (synout arg)

Like out, but enforcing a new input line afterwards. This needs to be used when outputing concurrently
in a future or task.

See also: out, outy, synouty. →index

Warning: Concurrent display output can lead to unexpected visual results and ought to be
avoided. →topic

4.717 synouty : procedure/1

Usage: (synouty li)

Like outy, but enforcing a new input line afterwards. This needs to be used when outputing concurrently
in a future or task.

See also: synout, out, outy. →index

Warning: Concurrent display output can lead to unexpected visual results and ought to be
avoided.

Version 2.4+891b3dc-gui.fyne2 341

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.718 sys-key? : procedure/1

Usage: (sys-key? key)=> bool

Return true if the given sys key key exists, nil otherwise.

See also: sys, setsys. →index →topic

4.719 sysmsg : procedure/1

Usage: (sysmsg msg)

Asynchronously display a system message stringmsg if in console or page mode, otherwise the message
is logged.

See also: sysmsg*, synout, synouty, out, outy. →index →topic

4.720 sysmsg* : procedure/1

Usage: (sysmsg* msg)

Display a system message string msg if in console or page mode, otherwise the message is logged.

See also: sysmsg, synout, synouty, out, outy. →index →topic

4.721 take : procedure/3

Usage: (take seq n)=> seq

Return the sequence consisting of the n first elements of seq.

See also: list, array, string, nth, seq?. →index →topic

4.722 task : procedure/1

Usage: (task sel proc)=> int

Create a new task for concurrently running proc, a procedure that takes its own ID as argument. The
sel argument must be a symbol in ’(auto manual remove). If sel is ’remove, then the task is always
removed from the task table after it has finished, even if an error has occurred. If sel is ’auto, then the
task is removed from the task table if it ends without producing an error. If sel is ’manual then the
task is not removed from the task table, its state is either ’canceled, ’finished, or ’error, and it and must

Version 2.4+891b3dc-gui.fyne2 342

Z3S5 Lisp Reference Manual 2024-1-2 15:04

be removed manually with task-remove or prune-task-table. Broadcast messages are never
removed. Tasks are more heavy-weight than futures and allow for message-passing.

See also: task?, task-run, task-state, task-broadcast, task-send, task-recv, task-
remove, prune-task-table. →index →topic

4.723 task-broadcast : procedure/2

Usage: (task-broadcast id msg)

Send a message from task id to the blackboard. Tasks automatically send the message ’finished to
the blackboard when they are finished.

See also: task, task?, task-run, task-state, task-send, task-recv. →index →topic

4.724 task-recv : procedure/1

Usage: (task-recv id)=> any

Receive a message for task id, or nil if there is no message. This is typically used by the task with id
itself to periodically check for new messages while doing other work. By convention, if a task receives
the message ’end it ought to terminate at the next convenient occasion, whereas upon receiving ’cancel
it ought to terminate in an expedited manner.

See also: task-send, task, task?, task-run, task-state, task-broadcast. →index

Warning: Busy polling for new messages in a tight loop is inefficient and ought to be avoided.
→topic

4.725 task-remove : procedure/1

Usage: (task-remove id)

Remove task id from the task table. The task can no longer be interacted with.

See also: task, task?, task-state. →index →topic

4.726 task-run : procedure/1

Usage: (task-run id)

Version 2.4+891b3dc-gui.fyne2 343

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Run task id, which must have been previously created with task. Attempting to run a task that is
already running results in an error unless silent? is true. If silent? is true, the function does never
produce an error.

See also: task, task?, task-state, task-send, task-recv, task-broadcast-. →index→topic

4.727 task-schedule : procedure/1

Usage: (task-schedule sel id)

Schedule task id for running, starting it as soon as other tasks have finished. The scheduler attempts
to avoid running more than (cpunum) tasks at once.

See also: task, task-run. →index →topic

4.728 task-send : procedure/2

Usage: (task-send id msg)

Send a message msg to task id. The task needs to cooperatively use task-recv to reply to the message.
It is up to the receiving task what to do with the message once it has been received, or how often to
check for new messages.

See also: task-broadcast, task-recv, task, task?, task-run, task-state. →index →topic

4.729 task-state : procedure/1

Usage: (task-state id)=> sym

Return the state of the task, which is a symbol in ’(finished error stopped new waiting running).

See also: task, task?, task-run, task-broadcast, task-recv, task-send. →index →topic

4.730 task? : procedure/1

Usage: (task? id)=> bool

Check whether the given id is for a valid task, return true if it is valid, nil otherwise.

See also: task, task-run, task-state, task-broadcast, task-send, task-recv. →index
→topic

Version 2.4+891b3dc-gui.fyne2 344

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.731 terpri : procedure/0

Usage: (terpri)

Advance the host OS terminal to the next line.

See also: princ, out, outy. →index →topic

4.732 testing : macro/1

Usage: (testing name)

Registers the string name as the name of the tests that are next registered with expect.

See also: expect, expect-err, expect-ok, run-selftest. →index →topic

4.733 text-grid-show-line-numbers? : procedure/1

Usage: (text-grid-show-line-numbers? grid)=> bool

Return true if the text grid shows line numbers, nil otherwise.

See also: new-text-grid, text-grid-show-whitespace?, get-text-grid-tab-width,
set-text-grid-tab-width, set-text-grid-show-line-numbers, set-text-grid-show
-whitespace, get-text-grid-row, get-text-grid-row-text, set-text-grid-cell,
get-text-grid-cell, set-text-grid-row, set-text-grid-row-style, set-text-grid
-rune, set-text-grid-style, set-text-grid-style-range, set-text-grid-text,
get-text-grid-text. →index →topic

4.734 text-grid-show-whitespace? : procedure/1

Usage: (text-grid-show-whitespace? grid)=> bool

Return true if the text grid shows whitespace glyphs, nil otherwise.

See also: new-text-grid, text-grid-show-line-numbers?, get-text-grid-tab-width,
set-text-grid-tab-width, set-text-grid-show-line-numbers, set-text-grid-show
-whitespace, get-text-grid-row, get-text-grid-row-text, set-text-grid-cell,
get-text-grid-cell, set-text-grid-row, set-text-grid-row-style, set-text-grid
-rune, set-text-grid-style, set-text-grid-style-range, set-text-grid-text,
get-text-grid-text. →index →topic

Version 2.4+891b3dc-gui.fyne2 345

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.735 the-color : procedure/1

Usage: (the-color colors-spec)=> (r g b a)

Return the color list (r g b a) based on a color specification, which may be a color list (r g b), a color
selector for (color selector) or a color name such as ’dark-blue.

See also: *colors*, color, set-color, outy. →index →topic

4.736 the-color-names : procedure/0

Usage: (the-color-names)=> li

Return the list of color names in colors.

See also: *colors*, the-color. →index →topic

4.737 theme-color : procedure/1

Usage: (theme-color selector)=> li

Obtain a theme color as color list. selectormust be one of ’(foreground background button disabled-
button disabled disabled-text error focus hover input-background input-border menu-background
overlay-background place-holder pressed primary scroll-bar selection separator shadow success
warning).

See also: theme-icon, nrgba64, nrgba, color->color-64, color-64->color, *colors*.
→index →topic

4.738 theme-icon : procedure/1

Usage: (theme-icon selector)=> int

Obtain a pre-defined icon from the application’s theme based on the symbol selector, which may be
one of ’(cancel check-button check-button-checked color-achromatic color-chromatic color-palette
computer confirm content-add content-clear content-copy content-cut content-paste content-redo
content-remove content-undo delete document-create document-print document download error
file-application file-audio file-image file-text file-video file folder-new folder-open folder grid help his-
tory home info list login logout mail-attachment mail-compose mail-forward mail-reply-all mail-reply
mail-send media-fast-forward media-fast-rewind media-music media-pause media-photo media-play

Version 2.4+891b3dc-gui.fyne2 346

Z3S5 Lisp Reference Manual 2024-1-2 15:04

media-record media-replay media-skip-next media-skip-previous media-stop media-video media-
expand menu more-horizontal more-vertical move-down move-up navigate-back navigate-next ques-
tion radio-button radio-button-checked search-replace search settings storage upload view-full-screen
view-refresh view-restore visibility-off visibility volume-down volume-mute volume-up warning).

See also: new-icon, new-image-from-, new-image-from-resource. →index →topic

4.739 theme-is-dark? : procedure/1

Usage: (theme-is-dark?)=> bool

Return true if the current GUI theme is dark, nil otherwise.

See also: theme-color, *colors*. →index →topic

4.740 time : procedure/1

Usage: (time proc)=> int

Return the time in nanoseconds that it takes to execute the procedure with no arguments proc.

See also: now-ns, now. →index →topic

4.741 trigger-menu-last : procedure/1

Usage: (trigger-menu-last menu)

Find the last active menu or submenu item and trigger it.

See also: activate-menu-last-submenu, activate-menu-next, activate-menu-previous,
new-menu. →index →topic

4.742 truncate : procedure/1 or more

Usage: (truncate x [y])=> int

Round down to nearest integer of x. If y is present, divide x by y and round down to the nearest
integer.

See also: div, /, int. →index →topic

Version 2.4+891b3dc-gui.fyne2 347

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.743 try : macro/2 or more

Usage: (try (finals ...)body ...)

Evaluate the forms of the body and afterwards the forms in finals. If during the execution of body an
error occurs, first all finals are executed and then the error is printed by the default error printer.

See also: with-final, with-error-handler. →index →topic

4.744 type-of : macro/1

Usage: (type-of datum)=> sym

Returns the type of datum as symbol like type-of* but without having to quote the argument. If datum
is an unbound symbol, then this macro returns ’unbound. Otherwise the type of a given symbol’s value
or the type of a given literal is returned.

See also: type-of*. →index →topic

4.745 type-of* : procedure/1

Usage: (type-of* datum)=> sym

Return the type of datum as a symbol. This uses existing predicates and therefore is not faster than
testing with predicates directly.

See also: num?, str?, sym?, list?, array?, bool?, eof?, boxed?, intrinsic?, closure?, macro
?, blob?. →index →topic

4.746 unfocus-canvas-objects : procedure/1

Usage: (unfocus-canvas-objects canvas)

Remove the focus on any user interface element in canvas.

See also: get-window-canvas, focus-canvas-object, focus-next-canvas-object, focus-
previous-canvas-object, get-focused-canvas-object. →index →topic

4.747 unicode.is-control? : procedure/1

Usage: (unicode.is-control? s)=> bool

Version 2.4+891b3dc-gui.fyne2 348

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Return true if number s or the first unicode glyph of string s represents a control character, nil other-
wise.

See also: char->str, str->chars, unicode.is-space?, unicode.is-punct?, unicode.is
-symbol?, unicode.is-title?, unicode.is-upper?, unicode.is-digit?, unicode.is-
graphic?, unicode.is-letter?, unicode.is-lower?, unicode.is-mark?, unicode.is-
number?, unicode.is-print?. →index →topic

4.748 unicode.is-digit? : procedure/1

Usage: (unicode.is-digit? s)=> bool

Return true if number s or the first unicode glyph of string s represents a numerical digit, nil other-
wise.

See also: char->str, str->chars, unicode.is-space?, unicode.is-punct?, unicode.is
-symbol?, unicode.is-title?, unicode.is-upper?, unicode.is-control?, unicode.is
-graphic?, unicode.is-letter?, unicode.is-lower?, unicode.is-mark?, unicode.is-
number?, unicode.is-print?. →index →topic

4.749 unicode.is-graphic? : procedure/1

Usage: (unicode.is-graphic? s)=> bool

Return true if number s or the first unicode glyph of string s is graphically visible, nil otherwise.

See also: char->str, str->chars, unicode.is-space?, unicode.is-punct?, unicode.is
-symbol?, unicode.is-title?, unicode.is-upper?, unicode.is-control?, unicode.
is-digit?, unicode.is-letter?, unicode.is-lower?, unicode.is-mark?, unicode.is-
number?, unicode.is-print?. →index →topic

4.750 unicode.is-letter? : procedure/1

Usage: (unicode.is-letter? s)=> bool

Return true if number s or the first unicode glyph of string s represents a letter, nil otherwise.

See also: char->str, str->chars, unicode.is-space?, unicode.is-punct?, unicode.is
-symbol?, unicode.is-title?, unicode.is-upper?, unicode.is-control?, unicode.is
-graphic?, unicode.is-digit?, unicode.is-lower?, unicode.is-mark?, unicode.is-
number?, unicode.is-print?. →index →topic

Version 2.4+891b3dc-gui.fyne2 349

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.751 unicode.is-lower? : procedure/1

Usage: (unicode.is-lower? s)=> bool

Return true if number s or the first unicode glyph of string s is a lowercase character, nil otherwise.

See also: char->str, str->chars, unicode.is-space?, unicode.is-punct?, unicode.is
-symbol?, unicode.is-title?, unicode.is-upper?, unicode.is-control?, unicode.is
-digit?, unicode.is-letter?, unicode.is-graphic?, unicode.is-mark?, unicode.is-
number?, unicode.is-print?. →index →topic

4.752 unicode.is-mark? : procedure/1

Usage: (unicode.is-mark? s)=> bool

Return true if number s or the first unicode glyph of string s represents a mark (unicode category M),
nil otherwise.

See also: char->str, str->chars, unicode.is-space?, unicode.is-punct?, unicode.is-
symbol?, unicode.is-title?, unicode.is-upper?, unicode.is-control?, unicode.is-
digit?, unicode.is-letter?, unicode.is-graphic?, unicode.is-lower?, unicode.is-
number?, unicode.is-print?. →index →topic

4.753 unicode.is-number? : procedure/1

Usage: (unicode.is-number? s)=> bool

Return true if number s or the first unicode glyph of string s represents a letter that may occur in a
number, nil otherwise. This is for testing the unicode number category, which contains number and
digit glyphs in other writing system. Note that it does not test whether a character belongs to a valid
Z3S5 Lisp number.

See also: char->str, str->chars, unicode.is-space?, unicode.is-punct?, unicode.is-
symbol?, unicode.is-title?, unicode.is-upper?, unicode.is-control?, unicode.is-
digit?, unicode.is-letter?, unicode.is-graphic?, unicode.is-lower?, unicode.is-
mark?, unicode.is-print?. →index →topic

4.754 unicode.is-print? : procedure/1

Usage: (unicode.is-print? s)=> bool

Return true if number s or the first unicode glyph of string s represents a printable character.

Version 2.4+891b3dc-gui.fyne2 350

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: char->str, str->chars, unicode.is-space?, unicode.is-punct?, unicode.is-
symbol?, unicode.is-title?, unicode.is-upper?, unicode.is-control?, unicode.is-
digit?, unicode.is-letter?, unicode.is-graphic?, unicode.is-lower?, unicode.is-
mark?, unicode.is-number?. →index →topic

4.755 unicode.is-punct? : procedure/1

Usage: (unicode.is-punct? s)=> bool

Return true if number s or the first unicode glyph of string s represents a punctuation character, nil
otherwise.

See also: char->str, str->chars, unicode.is-space?, unicode.is-symbol?, unicode.is
-title?, unicode.is-upper?, unicode.is-control?, unicode.is-digit?, unicode.is-
graphic?, unicode.is-letter?, unicode.is-lower?, unicode.is-mark?, unicode.is-
number?, unicode.is-print?. →index →topic

4.756 unicode.is-space? : procedure/1

Usage: (unicode.is-space? s)=> bool

Return true if number s or the first unicode glyph of string s represents a white space character, nil
otherwise.

See also: char->str, str->chars, unicode.is-punct?, unicode.is-symbol?, unicode.is
-title?, unicode.is-upper?, unicode.is-control?, unicode.is-digit?, unicode.is-
graphic?, unicode.is-letter?, unicode.is-lower?, unicode.is-mark?, unicode.is-
number?, unicode.is-print?. →index →topic

4.757 unicode.is-symbol? : procedure/1

Usage: (unicode.is-symbol? s)=> bool

Return true if number s or the first unicode glyph of string s represents a symbol, nil otherwise.

See also: char->str, str->chars, unicode.is-space?, unicode.is-punct?, unicode.is
-title?, unicode.is-upper?, unicode.is-control?, unicode.is-digit?, unicode.is-
graphic?, unicode.is-letter?, unicode.is-lower?, unicode.is-mark?, unicode.is-
number?, unicode.is-print?. →index →topic

Version 2.4+891b3dc-gui.fyne2 351

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.758 unicode.is-title? : procedure/1

Usage: (unicode.is-title? s)=> bool

Return true if number s or the first unicode glyph of string s represents a titlecase character, nil
otherwise.

See also: char->str, str->chars, unicode.is-space?, unicode.is-punct?, unicode.is
-symbol?, unicode.is-upper?, unicode.is-control?, unicode.is-digit?, unicode.is
-graphic?, unicode.is-letter?, unicode.is-lower?, unicode.is-mark?, unicode.is-
number?, unicode.is-print?. →index →topic

4.759 unicode.is-upper? : procedure/1

Usage: (unicode.is-upper? s)=> bool

Return true if number s or the first unicode glyph of string s represents an uppercase character, nil
otherwise.

See also: char->str, str->chars, unicode.is-space?, unicode.is-punct?, unicode.is
-symbol?, unicode.is-title?, unicode.is-control?, unicode.is-digit?, unicode.is
-graphic?, unicode.is-letter?, unicode.is-lower?, unicode.is-mark?, unicode.is-
number?, unicode.is-print?. →index →topic

4.760 unless : macro/1 or more

Usage: (unless cond expr ...)=> any

Evaluate expressions expr if cond is not true, returns void otherwise.

See also: if, when, cond. →index →topic

4.761 unprotect : procedure/0 or more

Usage: (unprotect [sym] ...)

Unprotect symbols sym . . . , allowing mutation or rebinding them. The symbols need to be quoted.
This operation requires the permission ’allow-unprotect to be set, or else an error is caused.

See also: protect, protected?, dict-unprotect, dict-protected?, permissions,
permission?, setq, bind, interpret. →index →topic

Version 2.4+891b3dc-gui.fyne2 352

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.762 unprotect-toplevel-symbols : procedure/0

Usage: (unprotect-toplevel-symbols)

Attempts to unprotect all toplevel symbols.

See also: protect-toplevel-symbols, protect, unprotect, declare-unprotected. →index
→topic

4.763 valid? : procedure/1

Usage: (valid? obj)=> bool

Return true if obj is a valid object, nil otherwise. What exactly object validity means is undefined,
but certain kind of objects such as graphics objects may be marked invalid when they can no longer
be used because they have been disposed off by a subsystem and cannot be automatically garbage
collected. Generally, invalid objects ought no longer be used and need to be discarded.

See also: blob?. →index →topic

4.764 validate-object : procedure/2

Usage: (validate-object obj)=> str

Validate the validatable object obj programmatically and return the validation failure as string, or the
empty string if validation succeeded. It sometimes makes sense to call this explicitly in order to force
the object to display its validation state.

See also: set-object-on-validation-change-callback, new-validator, set-entry-
validator. →index →topic

4.765 void : procedure/0 or more

Usage: (void [any] ...)

Always returns void, no matter what values are given to it. Void is a special value that is not printed in
the console.

See also: void?. →index →topic

Version 2.4+891b3dc-gui.fyne2 353

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.766 void? : procedure/1

Usage: (void? datum)

Return true if datum is the special symbol void, nil otherwise.

See also: void. →index →topic

4.767 wait-for : procedure/2

Usage: (wait-for dict key)

Block execution until the value for key in dict is not-nil. This function may wait indefinitely if no other
thread sets the value for key to not-nil.

See also: wait-for*, future, force, wait-until, wait-until*. →index

Warning: This cannot be used for synchronization of multiple tasks due to potential race-
conditions. →topic

4.768 wait-for* : procedure/3

Usage: (wait-for* dict key timeout)

Blocks execution until the value for key in dict is not-nil or timeout nanoseconds have passed, and
returns that value or nil if waiting timed out. If timeout is negative, then the function waits potentially
indefinitely without any timeout. If a non-nil key is not found, the function sleeps at least sync-wait-
lower-bound nanoseconds and up to sync-wait-upper-bound nanoseconds until it looks for the key
again.

See also: future, force, wait-for, wait-until, wait-until*. →index

Warning: This cannot be used for synchronization of multiple tasks due to potential race-
conditions. →topic

4.769 wait-for-empty* : procedure/3

Usage: (wait-for-empty* dict key timeout)

Blocks execution until the key is no longer present in dict or timeout nanoseconds have passed. If
timeout is negative, then the function waits potentially indefinitely without any timeout.

See also: future, force, wait-for, wait-until, wait-until*. →index

Version 2.4+891b3dc-gui.fyne2 354

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Warning: This cannot be used for synchronization of multiple tasks due to potential race-
conditions. →topic

4.770 wait-until : procedure/2

Usage: (wait-until dict key pred)

Blocks execution until the unary predicate pred returns true for the value at key in dict. This function
may wait indefinitely if no other thread sets the value in such a way thatpred returns true when applied
to it.

See also: wait-for, future, force, wait-until*. →index

Warning: This cannot be used for synchronization of multiple tasks due to potential race-
conditions. →topic

4.771 wait-until* : procedure/4

Usage: (wait-until* dict key pred timeout)

Blocks execution until the unary predicate pred returns true for the value at key in dict, or timeout
nanoseconds have passed, and returns the value or nil if waiting timed out. If timeout is negative,
then the function waits potentially indefinitely without any timeout. If a non-nil key is not found,
the function sleeps at least sync-wait-lower-bound nanoseconds and up to sync-wait-upper-bound
nanoseconds until it looks for the key again.

See also: future, force, wait-for, wait-until*, wait-until. →index

Warning: This cannot be used for synchronization of multiple tasks due to potential race-
conditions. →topic

4.772 warn : procedure/1 or more

Usage: (warn msg [args...])

Output the warning message msg in error colors. The optional args are applied to the message as in
fmt. The message should not end with a newline.

See also: error. →index →topic

Version 2.4+891b3dc-gui.fyne2 355

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.773 week+ : procedure/2

Usage: (week+ dateli n)=> dateli

Adds n weeks to the given date dateli in datelist format and returns the new datelist.

See also: sec+, minute+, hour+, day+, month+, year+, now. →index →topic

4.774 week-of-date : procedure/3

Usage: (week-of-date Y M D)=> int

Return the week of the date in the year given by year Y, month M, and day D.

See also: day-of-week, datestr->datelist, date->epoch-ns, epoch-ns->datelist,
datestr, datestr*, now. →index →topic

4.775 when : macro/1 or more

Usage: (when cond expr ...)=> any

Evaluate the expressions expr if cond is true, returns void otherwise.

See also: if, cond, unless. →index →topic

4.776 when-permission : macro/1 or more

Usage: (when-permission perm body ...)=> any

Execute the expressions in body if and only if the symbolic permission perm is available.

See also: permission?. →index →topic

4.777 while : macro/1 or more

Usage: (while test body ...)=> any

Evaluate the expressions in body while test is not nil.

See also: letrec, dotimes, dolist. →index →topic

Version 2.4+891b3dc-gui.fyne2 356

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.778 window-fixed-size? : procedure/1

Usage: (window-fixed-size? window)=> bool

Return nil if window is fixed size, true otherwise.

See also: set-window-fixed-size. →index →topic

4.779 window-full-screen? : procedure/1

Usage: (window-full-screen? window)=> bool

Return nil if window is full screen, true otherwise.

See also: set-window-full-screen, center-window-on-screen. →index →topic

4.780 window-padded? : procedure/1

Usage: (window-padded? window)=> bool

Return nil if window is padded, true otherwise.

See also: set-window-padded, set-window-full-screen, center-window-on-screen.
→index →topic

4.781 with-colors : procedure/3

Usage: (with-colors textcolor backcolor proc)

Execute proc for display side effects, where the default colors are set to textcolor and backcolor.
These are color specifications like in the-color. After proc has finished or if an error occurs, the default
colors are restored to their original state.

See also: the-color, color, set-color, with-final. →index →topic

4.782 with-error-handler : macro/2 or more

Usage: (with-error-handler handler body ...)

Evaluate the forms of the body with error handler handler in place. The handler is a procedure that
takes the error as argument and handles it. If an error occurs in handler, a default error handler is
used. Handlers are only active within the same thread.

See also: with-final. →index →topic

Version 2.4+891b3dc-gui.fyne2 357

Z3S5 Lisp Reference Manual 2024-1-2 15:04

4.783 with-final : macro/2 or more

Usage: (with-final finalizer body ...)

Evaluate the forms of the body with the given finalizer as error handler. If an error occurs, then
finalizer is called with that error and nil. If no error occurs, finalizer is called with nil as first
argument and the result of evaluating all forms of body as second argument.

See also: with-error-handler. →index →topic

4.784 with-mutex-lock : macro/1 or more

Usage: (with-mutex-lock m ...)=> any

Execute the body with mutex m locked for writing and unlock the mutex afterwards.

See also: with-mutex-rlock, make-mutex, mutex-lock, mutex-rlock, mutex-unlock, mutex
-runlock. →index

Warning: Make sure to never lock the same mutex twice from the same task, otherwise a deadlock
will occur!

4.785 with-mutex-rlock : macro/1 or more

Usage: (with-mutex-rlock m ...)=> any

Execute the body with mutex m locked for reading and unlock the mutex afterwards.

See also: with-mutex-lock, make-mutex, mutex-lock, mutex-rlock, mutex-unlock, mutex-
runlock. →index →topic

4.786 wrap-delete-text-grid : procedure/8

Usage: (wrap-delete-text-grid grid range-list wrapcol soft-wrap? hard-lf-rune
soft-lf-rune cursor-row cursor-column)=> li

This helper implements deletion with word wrapping in grid. The range-list must contain integers
of the form (start-row start-colum end-row end-column), which must be within the grid’s maximum
row and column ranges. wrapcol is an integer indicating the number of chars per line; any more chars
are wrapped. If soft-wrap? is not nil, then the paragraphs in which deletion takes place are soft-
wrapped. hard-lf-rune is a string containing the rune for a hard line feed, whereas soft-lf-rune
is a string containing the rune for soft line feeds. The current cursor-row and cursor-column must

Version 2.4+891b3dc-gui.fyne2 358

Z3S5 Lisp Reference Manual 2024-1-2 15:04

be provided as well; when the function wraps the deleted paragraphs, their values are updated and
returned in the list li, which is of the form (new-cursor-row new-cursor-column).

See also: wrap-insert-text-grid, new-text-grid. →index →topic

4.787 wrap-insert-text-grid : procedure/8

Usage: (wrap-insert-text-grid grid cells row col wrapcol soft-wrap? hard-lf-
rune soft-lf-rune)=> li

This helper implements inserting styled text with word wrapping in grid. cells must be a list of text
grid cells, each of which consists of a rune string, and a list containing a foreground and background
color, or nil. row and col are the line and column in grid before which the text is inserted. The number
of characters per line is indicated with wrapcol. If soft-wrap? is true, then the paragraph into which
it is inserted is soft-word-wrapped, using soft-lf-rune as a line ending. Otherwise, hard-lf-rune
is used for line-endings, which is also used for the last line of a paragraph. The returned list of the
form (new-cursor-row new-cursor-column) reflects the updated cursor position if row and col are the
current cursor position.

See also: wrap-delete-text-grid, new-text-grid. →index →topic

4.788 write : procedure/2

Usage: (write p datum)=> int

Write datum to output port p and return the number of bytes written.

See also: write-binary, write-binary-at, read, close, open. →index →topic

4.789 write-binary : procedure/4

Usage: (write-binary p buff n offset)=> int

Write n bytes starting at offset in binary blob buff to the stream port p. This function returns the
number of bytes actually written.

See also: write-binary-at, read-binary, write, close, open. →index →topic

4.790 write-binary-at : procedure/5

Usage: (write-binary-at p buff n offset fpos)=> int

Version 2.4+891b3dc-gui.fyne2 359

Z3S5 Lisp Reference Manual 2024-1-2 15:04

Write n bytes starting at offset in binary blob buff to the seekable stream port p at the stream
position fpos. If there is not enough data in p to overwrite at position fpos, then an error is caused
and only part of the data might be written. The function returns the number of bytes actually written.

See also: read-binary, write-binary, write, close, open. →index →topic

4.791 write-string : procedure/2

Usage: (write-string p s)=> int

Write string s to output port p and return the number of bytes written. LF are not automatically
converted to CR LF sequences on windows.

See also: write, write-binary, write-binary-at, read, close, open. →index →topic

4.792 write-zimage : procedure/4

Usage: (write-zimage out min-version info entry-point)=> list

Write the current state of the system as an zimage to stream out. The min-version argument desig-
nates the minimum system version required to load the zimage. The info argument should be a list
whose first argument is a human-readable string explaining the purpose of the zimage and remainder
is user data. The entry-point is either nil or an expression that can be evaluated to start the zimage
after it has been loaded with run-zimage. The procedure returns a header with information of the
zimage.

See also: save-zimage, read-zimage, load-zimage, current-zimage, externalize. →index
→topic

4.793 year+ : procedure/2

Usage: (month+ dateli n)=> dateli

Adds n years to the given date dateli in datelist format and returns the new datelist.

See also: sec+, minute+, hour+, day+, week+, month+, now. →index →topic

4.794 zimage-header : procedure/1

Usage: (zimage-header fi)=> li

Return the zimage header from file fi.

Version 2.4+891b3dc-gui.fyne2 360

Z3S5 Lisp Reference Manual 2024-1-2 15:04

See also: load-zimage, run-zimage. →index →topic

4.795 zimage-loadable? : procedure/1 or more

Usage: (zimage-loadable? fi)

Checks whether the file fi is loadable. This does not check whether the file actually is an zimage file,
so you can only use this on readable lisp files.

See also: zimage-runable?, load-zimage, save-zimage, current-zimage. →index →topic

4.796 zimage-runable? : procedure/1 or more

Usage: (zimage-runable? [sel] fi

Returns the non-nil entry-point of the zimage if the the zimage in file fi can be run, nil otherwise.

See also: load-zimage, zimage-loadable?, save-zimage, current-zimage. →index →topic

Version 2.4+891b3dc-gui.fyne2 361

	Introduction
	Index
	By Topics
	Actions
	action : class
	action-start : method
	action-stop : method
	action.get-args : procedure/3
	action.progress : procedure/5
	action.result : procedure/5
	action.start : procedure/3
	change-action-prefix : procedure/2
	change-all-action-prefixes : procedure/2
	get-action : procedure/1
	has-action-system? : procedure/0
	has-action? : procedure/1
	init-actions : procedure/0
	register-action : procedure/1
	rename-action : procedure/2

	Arrays
	array : procedure/0 or more
	array+ : procedure/1 or more
	array-append : procedure/2
	array-copy : procedure/1
	array-exists? : procedure/2
	array-forall? : procedure/2
	array-foreach : procedure/2
	array-len : procedure/1
	array-map! : procedure/2
	array-pmap! : procedure/2
	array-ref : procedure/1
	array-reverse : procedure/1
	array-set : procedure/3
	array-slice : procedure/3
	array-sort : procedure/2
	array-walk : procedure/2
	array? : procedure/1
	build-array : procedure/2

	Binary Manipulation
	bitand : procedure/2
	bitclear : procedure/2
	bitor : procedure/2
	bitshl : procedure/2
	bitshr : procedure/2
	bitxor : procedure/2
	blob-chksum : procedure/1 or more
	blob-equal? : procedure/2
	blob-free : procedure/1
	blob? : procedure/1
	make-blob : procedure/1
	peek : procedure/4
	poke : procedure/5

	Boxed Data Structures
	valid? : procedure/1

	Concurrency and Parallel Programming
	ccmp : macro/2
	cdec! : macro/1
	cinc! : macro/1
	cpunum : procedure/0
	cst! : procedure/2
	cwait : procedure/3
	enq : procedure/1
	force : procedure/1
	future : special form
	make-mutex : procedure/1
	mutex-lock : procedure/1
	mutex-rlock : procedure/1
	mutex-runlock : procedure/1
	mutex-unlock : procedure/1
	prune-task-table : procedure/0
	run-at : procedure/2
	systask : special form
	task : procedure/1
	task-broadcast : procedure/2
	task-recv : procedure/1
	task-remove : procedure/1
	task-run : procedure/1
	task-schedule : procedure/1
	task-send : procedure/2
	task-state : procedure/1
	task? : procedure/1
	wait-for : procedure/2
	wait-for* : procedure/3
	wait-for-empty* : procedure/3
	wait-until : procedure/2
	wait-until* : procedure/4
	with-mutex-rlock : macro/1 or more

	Console Input & Output
	nl : procedure/0
	prin1 : procedure/1
	princ : procedure/1
	print : procedure/1
	terpri : procedure/0

	Data Type Conversion
	alist->dict : procedure/1
	array->list : procedure/1
	array->str : procedure/1
	ascii85->blob : procedure/1
	base64->blob : procedure/1
	blob->ascii85 : procedure/1 or more
	blob->base64 : procedure/1 or more
	blob->hex : procedure/1 or more
	blob->str : procedure/1 or more
	char->str : procedure/1
	chars->str : procedure/1
	dict->alist : procedure/1
	dict->array : procedure/1
	dict->keys : procedure/1
	dict->list : procedure/1
	dict->values : procedure/1
	expr->str : procedure/1
	hex->blob : procedure/1
	list->array : procedure/1
	list->set : procedure/1
	list->str : procedure/1
	set->list : procedure/1
	str->array : procedure/1
	str->blob : procedure/1
	str->char : procedure/1
	str->chars : procedure/1
	str->expr : procedure/0 or more
	str->expr* : procedure/0 or more
	str->list : procedure/1
	str->sym : procedure/1
	sym->str : procedure/1

	Special Data Structures
	chars : procedure/1
	dequeue! : macro/1 or more
	enqueue! : macro/2
	glance : procedure/1
	inchars : procedure/2
	make-queue : procedure/0
	make-set : procedure/0 or more
	make-stack : procedure/0
	pop! : macro/1 or more
	push! : macro/2
	queue-empty? : procedure/1
	queue-len : procedure/1
	queue? : procedure/1
	set-complement : procedure/2
	set-difference : procedure/2
	set-element? : procedure/2
	set-empty? : procedure/1
	set-equal? : procedure/2
	set-intersection : procedure/2
	set-subset? : procedure/2
	set-union : procedure/2
	set? : procedure/1
	stack-empty? : procedure/1
	stack-len : procedure/1
	stack? : procedure/1

	Databases
	db.blob : procedure/2
	db.close : procedure/1
	db.close-result : procedure/1
	db.exec : procedure/2 or more
	db.float : procedure/2
	db.int : procedure/2
	db.open : procedure/1
	db.open* : procedure/1
	db.query : procedure/2 or more
	db.result-column-count : procedure/1
	db.result-columns : procedure/1
	db.row : procedure/1
	db.step : procedure/1
	db.str : procedure/2
	forget : procedure/1
	init-remember : procedure/0
	kvdb.begin : procedure/1
	kvdb.close : procedure/1
	kvdb.commit : procedure/1
	kvdb.db? : procedure/1
	kvdb.forget : procedure/1
	kvdb.forget-everything : procedure/1
	kvdb.get : procedure/2 or more
	kvdb.info : procedure/2 or more
	kvdb.open : procedure/1 or more
	kvdb.rollback : procedure/1
	kvdb.search : procedure/2 or more
	kvdb.set : procedure/3 or more
	kvdb.when : procedure/2 or more
	recall : procedure/1 or more
	recall-info : procedure/1 or more
	recall-when : procedure/1 or more
	recollect : procedure/1 or more
	remember : procedure/2

	Dictionaries
	delete : procedure/2
	dict : procedure/0 or more
	dict-copy : procedure/1
	dict-empty? : procedure/1
	dict-foreach : procedure/2
	dict-map : procedure/2
	dict-map! : procedure/2
	dict-merge : procedure/2
	dict? : procedure/1
	get : procedure/2 or more
	get-or-set : procedure/3
	getstacked : procedure/3
	has : procedure/2
	has-key? : procedure/2
	popstacked : procedure/3
	pushstacked : procedure/3
	set : procedure/3
	set* : procedure/2

	File Input & Output
	close : procedure/1
	dir : procedure/1
	dir? : procedure/1
	fdelete : procedure/1
	file-port? : procedure/1
	open : procedure/1 or more
	read : procedure/1
	read-binary : procedure/3
	read-string : procedure/2
	str-port? : procedure/1
	write : procedure/2
	write-binary : procedure/4
	write-binary-at : procedure/5
	write-string : procedure/2

	Floating Point Arithmetics Package
	fl.abs : procedure/1
	fl.acos : procedure/1
	fl.asin : procedure/1
	fl.asinh : procedure/1
	fl.atan : procedure/1
	fl.atan2 : procedure/2
	fl.atanh : procedure/1
	fl.cbrt : procedure/1
	fl.ceil : procedure/1
	fl.cos : procedure/1
	fl.cosh : procedure/1
	fl.dim : procedure/2
	fl.erf : procedure/1
	fl.erfc : procedure/1
	fl.erfcinv : procedure/1
	fl.erfinv : procedure/1
	fl.exp : procedure/1
	fl.exp2 : procedure/2
	fl.expm1 : procedure/1
	fl.floor : procedure/1
	fl.fma : procedure/3
	fl.frexp : procedure/1
	fl.gamma : procedure/1
	fl.hypot : procedure/2
	fl.ilogb : procedure/1
	fl.inf : procedure/1
	fl.is-nan? : procedure/1
	fl.j0 : procedure/1
	fl.j1 : procedure/1
	fl.jn : procedure/1
	fl.ldexp : procedure/2
	fl.lgamma : procedure/1
	fl.log : procedure/1
	fl.log10 : procedure/1
	fl.log1p : procedure/1
	fl.log2 : procedure/1
	fl.logb : procedure/1
	fl.max : procedure/2
	fl.min : procedure/2
	fl.mod : procedure/2
	fl.modf : procedure/1
	fl.nan : procedure/1
	fl.next-after : procedure/1
	fl.pow : procedure/2
	fl.pow10 : procedure/1
	fl.remainder : procedure/2
	fl.round : procedure/1
	fl.round-to-even : procedure/1
	fl.signbit : procedure/1
	fl.sin : procedure/1
	fl.sinh : procedure/1
	fl.sqrt : procedure/1
	fl.tan : procedure/1
	fl.tanh : procedure/1
	fl.trunc : procedure/1
	fl.y0 : procedure/1
	fl.y1 : procedure/1
	fl.yn : procedure/1

	Graphical User Interface
	activate-menu-last-submenu : procedure/1
	activate-menu-next : procedure/1
	activate-menu-previous : procedure/1
	add-canvas-shortcut : procedure/3
	append-form : procedure/0
	center-window-on-screen : procedure/1
	close-gui : procedure/0
	close-window : procedure/1
	color->color64 : procedure/1
	color64->color : procedure/1
	count-text-grid-row-columns : procedure/2
	count-text-grid-rows : procedure/1
	create-lorem-ipsum : procedure/3
	deactivate-menu-child : procedure/1
	deactivate-menu-last-submenu : procedure/1
	disable-object : procedure/1
	enable-object : procedure/1
	entry-accepts-tab? : procedure/1
	focus-canvas-object : procedure/2
	focus-next-canvas-object : procedure/1
	focus-previous-canvas-object : procedure/1
	forget-gui-object : procedure/1
	get-clipboard-content : procedure/0
	get-device-info : procedure/0
	get-entry-cursor : procedure/1
	get-entry-cursor-pos : procedure/1
	get-focused-canvas-object : procedure/1
	get-label-text : procedure/1
	get-menu-item-label : procedure/1
	get-object-min-size : procedure/1
	get-object-position : procedure/1
	get-object-size : procedure/1
	get-progress-bar-value : procedure/1
	get-scroll-offset : procedure/1
	get-text-grid-cell : procedure/3
	get-text-grid-cell-size : procedure/1
	get-text-grid-row : procedure/2
	get-text-grid-row-text : procedure/2
	get-text-grid-rune : procedure/3
	get-text-grid-tab-width : procedure/1
	get-text-grid-text : procedure/1
	get-window-canvas : procedure/1
	get-window-content : procedure/2
	get-window-icon : procedure/1
	get-window-main-menu : procedure/2
	get-window-title : procedure/1
	hide-object : procedure/1
	hide-window : procedure/1
	insert-text-grid-row : procedure/2
	menu-item-checked? : procedure/1
	menu-item-disabled? : procedure/1
	move-object : procedure/2
	new-app-tabs : procedure/0 or more
	new-border : procedure/4 or more
	new-button : procedure/2
	new-button-with-icon : procedure/3
	new-center-layout : procedure/0
	new-check : procedure/2
	new-choice : procedure/3
	new-circle : procedure/1 or more
	new-combined-string-validator : procedure/1 or more
	new-container : procedure/1 or more
	new-container-without-layout : procedure/0 or more
	new-doc-tabs : procedure/0 or more
	new-entry : procedure/1
	new-form : procedure/0
	new-form-layout : procedure/0
	new-grid-layout : procedure/1
	new-grid-wrap-layout : procedure/2
	new-hbox-layout : procedure/0
	new-hscroll : procedure/1
	new-hsplit : procedure/2
	new-hyperlink : procedure/2
	new-icon : procedure/1
	new-image-from-file : procedure/1
	new-image-from-resource : procedure/1
	new-label : procedure/1
	new-line : procedure/1 or more
	new-list : procedure/3
	new-main-menu : procedure/1 or more
	new-menu : procedure/1
	new-menu* : procedure/1 or more
	new-menu-item : procedure/2 or more
	new-menu-item-separator : procedure/0
	new-progress-bar : procedure/0
	new-raster-with-pixels : procedure/1
	new-rectangle : procedure/1 or more
	new-regexp-validator : procedure/2
	new-scroll : procedure/1
	new-slider : procedure/3
	new-spacer : procedure/0
	new-stack-layout : procedure/0
	new-tabitem : procedure/2
	new-tabitem-with-icon : procedure/3
	new-table : procedure/3
	new-text : procedure/2
	new-text-grid : procedure/0 or more
	new-time-validator : procedure/1
	new-tree : procedure/4
	new-validator : procedure/1
	new-vbox-layout : procedure/0
	new-vscroll : procedure/1
	new-vsplit : procedure/2
	new-window : procedure/1
	nrgba : procedure/4
	nrgba64 : procedure/4
	object-disabled? : procedure/1
	refresh-main-menu : procedure/1
	refresh-menu* : procedure/1
	refresh-object : procedure/1
	remove-canvas-shortcut : procedure/2
	remove-text-grid-row : procedure/2
	resize-object : procedure/2
	set-canvas-on-typed-key : procedure/2
	set-canvas-on-typed-rune : procedure/2
	set-clipboard-content : procedure/1
	set-entry-cursor-column : procedure/2
	set-entry-cursor-row : procedure/2
	set-entry-min-rows-visible : procedure/2
	set-entry-on-change-callback : procedure/2
	set-entry-on-cursor-change-callback : procedure/2
	set-entry-place-holder : procedure/2
	set-entry-text : procedure/2
	set-entry-text-wrap : procedure/2
	set-entry-validator : procedure/2
	set-label-text : procedure/2
	set-menu-item-checked : procedure/2
	set-menu-item-disabled : procedure/2
	set-menu-item-label : procedure/2
	set-object-on-validation-change-callback : procedure/2
	set-progress-bar : procedure/1 or more
	set-scroll-offset : procedure/2
	set-slider-value : procedure/2
	set-split-offset : procedure/2
	set-text-alignment : procedure/2
	set-text-grid-cell : procedure/4
	set-text-grid-row : procedure/3
	set-text-grid-row-style : procedure/3
	set-text-grid-rune : procedure/4
	set-text-grid-show-line-numbers : procedure/2
	set-text-grid-show-whitespace : procedure/2
	set-text-grid-style : procedure/4
	set-text-grid-style-range : procedure/6
	set-text-grid-tab-width : procedure/2
	set-text-grid-text : procedure/2
	set-text-size : procedure/2
	set-text-style : procedure/2
	set-window-content : procedure/2
	set-window-fixed-size : procedure/2
	set-window-full-screen : procedure/2
	set-window-icon : procedure/1
	set-window-main-menu : procedure/2
	set-window-on-close-callback : procedure/2
	set-window-padded : procedure/2
	set-window-size : procedure/2
	set-window-title : procedure/2
	show-object : procedure/1
	text-grid-show-line-numbers? : procedure/1
	text-grid-show-whitespace? : procedure/1
	theme-color : procedure/1
	theme-icon : procedure/1
	theme-is-dark? : procedure/1
	trigger-menu-last : procedure/1
	unfocus-canvas-objects : procedure/1
	validate-object : procedure/2
	window-fixed-size? : procedure/1
	window-full-screen? : procedure/1
	window-padded? : procedure/1
	wrap-delete-text-grid : procedure/8
	wrap-insert-text-grid : procedure/8

	Help System
	help : dict
	apropos : procedure/1
	help : macro/1
	help->manual-entry : nil
	help-about : procedure/1 or more
	help-entry : procedure/1
	help-strings : procedure/2
	help-topic-info : procedure/1
	help-topics : procedure/0
	prune-unneeded-help-entries : procedure/0
	set-help-topic-info : procedure/3

	Library System
	global-sym? : procedure/1
	load : procedure/1 or more

	Soundex, Metaphone, etc.
	ling.damerau-levenshtein : procedure/2
	ling.hamming : procedure/2
	ling.jaro : procedure/2
	ling.jaro-winkler : procedure/2
	ling.levenshtein : procedure/2
	ling.match-rating-codex : procedure/1
	ling.match-rating-compare : procedure/2
	ling.metaphone : procedure/1
	ling.nysiis : procedure/1
	ling.porter : procedure/1
	ling.soundex : procedure/1

	Lisp - Traditional Lisp Functions
	alist? : procedure/1
	and : macro/0 or more
	append : procedure/1 or more
	apply : procedure/2
	assoc : procedure/2
	assoc1 : procedure/2
	assq : procedure/2
	atom? : procedure/1
	bool? : procedure/1
	build-list : procedure/2
	caaar : procedure/1
	caadr : procedure/1
	caar : procedure/1
	cadar : procedure/1
	caddr : procedure/1
	cadr : procedure/1
	car : procedure/1
	case : macro/2 or more
	cdaar : procedure/1
	cdadr : procedure/1
	cdar : procedure/1
	cddar : procedure/1
	cdddr : procedure/1
	cddr : procedure/1
	cdr : procedure/1
	cond : special form
	cons : procedure/2
	cons? : procedure/1
	count-partitions : procedure/2
	defmacro : macro/2 or more
	defun : macro/1 or more
	dolist : macro/1 or more
	dotimes : macro/1 or more
	eq? : procedure/2
	eql? : procedure/2
	equal? : procedure/2
	filter : procedure/2
	flatten : procedure/1
	get-partitions : procedure/2
	identity : procedure/1
	if : macro/3
	iterate : procedure/2
	lambda : special form
	lcons : procedure/2
	let : macro/1 or more
	letrec : macro/1 or more
	list : procedure/0 or more
	list-exists? : procedure/2
	list-forall? : procedure/2
	list-foreach : procedure/2
	list-last : procedure/1
	list-ref : procedure/2
	list-reverse : procedure/1
	list-slice : procedure/3
	list? : procedure/1
	macro : special form
	mapcar : procedure/2
	member : procedure/2
	memq : procedure/2
	nconc : procedure/0 or more
	not : procedure/1
	nreverse : procedure/1
	nth-partition : procedure/3
	null? : procedure/1
	num? : procedure/1
	or : macro/0 or more
	progn : special form
	quasiquote : special form
	quote : special form
	replacd : procedure/2
	rplaca : procedure/2
	setcar : procedure/1
	setcdr : procedure/1
	setq : special form
	sort : procedure/2
	sort-symbols : nil
	sym? : procedure/1
	type-of : macro/1
	type-of* : procedure/1
	unless : macro/1 or more
	void : procedure/0 or more
	void? : procedure/1
	when : macro/1 or more
	while : macro/1 or more

	Numeric Functions
	% : procedure/2
	* : procedure/0 or more
	+ : procedure/0 or more
	- : procedure/1 or more
	/ : procedure/1 or more
	/= : procedure/2
	< : procedure/2
	<= : procedure/2
	= : procedure/2
	> : procedure/2
	>= : procedure/2
	abs : procedure/1
	add1 : procedure/1
	div : procedure/2
	even? : procedure/1
	float : procedure/1
	int : procedure/1
	max : procedure/1 or more
	min : procedure/1 or more
	minmax : procedure/3
	mod : procedure/2
	odd? : procedure/1
	rand : procedure/2
	rnd : procedure/0
	rndseed : procedure/1
	sub1 : procedure/1
	truncate : procedure/1 or more

	Object-oriented Programming
	call-method : procedure/3
	call-super : procedure/3
	class-name : procedure/1
	class-of : procedure/1
	class? : procedure/1
	copy-record : procedure/1
	defclass : macro/2 or more
	defmethod : macro/2 or more
	defstruct : macro/1 or more
	has-method? : procedure/2
	has-prop? : procedure/2
	isa? : procedure/2
	make : macro/2
	make* : macro/1 or more
	methods : procedure/1
	new : macro/1 or more
	new-struct : procedure/2
	object? : procedure/1
	prop : procedure/2
	props : procedure/1
	record? : procedure/1
	setprop : procedure/3
	struct-index : procedure/1
	struct-instantiate : procedure/2
	struct-name : procedure/1
	struct-props : procedure/1
	struct-size : procedure/1
	struct? : procedure/1
	supers : procedure/1

	Semver Semantic Versioning
	semver.build : procedure/1
	semver.canonical : procedure/1
	semver.compare : procedure/2
	semver.is-valid? : procedure/1
	semver.major : procedure/1
	semver.major-minor : procedure/1
	semver.max : procedure/2
	semver.prerelease : procedure/1

	Sequence Functions
	10th : procedure/1 or more
	1st : procedure/1 or more
	2nd : procedure/1 or more
	3rd : procedure/1 or more
	4th : procedure/1 or more
	5th : procedure/1 or more
	6th : procedure/1 or more
	7th : procedure/1 or more
	8th : procedure/1 or more
	9th : procedure/1 or more
	exists? : procedure/2
	forall? : procedure/2
	foreach : procedure/2
	index : procedure/2 or more
	last : procedure/1 or more
	len : procedure/1
	map : procedure/2
	map-pairwise : procedure/2
	nth : procedure/2
	nthdef : procedure/3
	remove-duplicates : procedure/1
	reverse : procedure/1
	seq? : procedure/1
	slice : procedure/3
	take : procedure/3

	Sound Support
	beep : procedure/1
	set-volume : procedure/1

	String Manipulation
	fmt : procedure/1 or more
	instr : procedure/2
	shorten : procedure/2
	spaces : procedure/1
	str+ : procedure/0 or more
	str-count-substr : procedure/2
	str-empty? : procedure/1
	str-exists? : procedure/2
	str-forall? : procedure/2
	str-foreach : procedure/2
	str-index : procedure/2 or more
	str-join : procedure/2
	str-ref : procedure/2
	str-remove-number : procedure/1
	str-remove-prefix : procedure/1
	str-remove-suffix : procedure/1
	str-replace : procedure/4
	str-replace* : procedure/3
	str-reverse : procedure/1
	str-segment : procedure/3
	str-slice : procedure/3
	strbuild : procedure/2
	strcase : procedure/2
	strcenter : procedure/2
	strcnt : procedure/2
	strleft : procedure/2
	strlen : procedure/1
	strless : procedure/2
	strlimit : procedure/2
	strmap : procedure/2
	stropen : procedure/1
	strright : procedure/2
	strsplit : procedure/2

	System Functions
	error-handler : dict
	error-printer : procedure/1
	last-error : sym
	reflect : symbol
	add-hook : procedure/2
	add-hook-internal : procedure/2
	add-hook-once : procedure/2
	bind : procedure/2
	bound? : macro/1
	boxed? : procedure/1
	can-externalize? : procedure/1
	closure? : procedure/1
	collect-garbage : procedure/0 or more
	current-error-handler : procedure/0
	def-custom-hook : procedure/2
	default-error-handler : procedure/0
	dict-protect : procedure/1
	dict-protected? : procedure/1
	dict-unprotect : procedure/1
	dump : procedure/0 or more
	dump-bindings : procedure/0
	error : procedure/0 or more
	error->str : procedure/1
	error? : procedure/1
	eval : procedure/1
	exit : procedure/0 or more
	expand-macros : procedure/1
	expect : macro/2
	expect-err : macro/1 or more
	expect-false : macro/1 or more
	expect-ok : macro/1 or more
	expect-true : macro/1 or more
	externalize : procedure/1
	externalize0 : procedure/1
	feature? : procedure/1
	find-missing-help-entries : procedure/0
	find-unneeded-help-entries : procedure/0
	functional-arity : procedure/1
	functional-has-rest? : procedure/1
	functional? : macro/1
	gensym : procedure/0
	global-startup-time : procedure/0
	hook : procedure/1
	include : procedure/1
	intern : procedure/1
	internalize : procedure/2
	intrinsic : procedure/1
	intrinsic? : procedure/1
	macro? : procedure/1
	make-symbol : procedure/1
	memstats : procedure/0
	nonce : procedure/0
	on-feature : macro/1 or more
	permission? : procedure/1
	permissions : procedure/0
	pop-error-handler : procedure/0
	pop-finalizer : procedure/0
	proc? : macro/1
	protect : procedure/0 or more
	protect-toplevel-symbols : procedure/0
	protected? : procedure/1
	push-error-handler : procedure/1
	push-finalizer : procedure/1
	read-eval-reply : procedure/0
	remove-hook : procedure/2
	remove-hook-internal : procedure/2
	remove-hooks : procedure/1
	replace-hook : procedure/2
	run-hook : procedure/1
	run-hook-internal : procedure/1 or more
	run-selftest : procedure/0
	set-permissions : nil
	sleep : procedure/1
	sleep-ns : procedure/1
	sys-key? : procedure/1
	sysmsg : procedure/1
	sysmsg* : procedure/1
	testing : macro/1
	try : macro/2 or more
	unprotect : procedure/0 or more
	unprotect-toplevel-symbols : procedure/0
	warn : procedure/1 or more
	when-permission : macro/1 or more
	with-colors : procedure/3
	with-error-handler : macro/2 or more
	with-final : macro/2 or more

	Time & Date
	date->epoch-ns : procedure/7
	datelist->epoch-ns : procedure/1
	datestr : procedure/1
	datestr* : procedure/1
	datestr->datelist : procedure/1
	day+ : procedure/2
	day-of-week : procedure/3
	epoch-ns->datelist : procedure/1
	hour+ : procedure/2
	minute+ : procedure/2
	month+ : procedure/2
	now : procedure/0
	now-ms : procedure/0
	now-ns : procedure/0
	sec+ : procedure/2
	time : procedure/1
	week+ : procedure/2
	week-of-date : procedure/3
	year+ : procedure/2

	User Interface
	colors : dict
	color : procedure/1
	darken : procedure/1
	lighten : procedure/1
	out : procedure/1
	outy : procedure/1
	random-color : procedure/0 or more
	reset-color : procedure/0
	set-color : procedure/1
	synout : procedure/1
	the-color : procedure/1
	the-color-names : procedure/0

	Unicode Standard
	unicode.is-control? : procedure/1
	unicode.is-digit? : procedure/1
	unicode.is-graphic? : procedure/1
	unicode.is-letter? : procedure/1
	unicode.is-lower? : procedure/1
	unicode.is-mark? : procedure/1
	unicode.is-number? : procedure/1
	unicode.is-print? : procedure/1
	unicode.is-punct? : procedure/1
	unicode.is-space? : procedure/1
	unicode.is-symbol? : procedure/1
	unicode.is-title? : procedure/1
	unicode.is-upper? : procedure/1

	Runtime System Images
	current-zimage : procedure/0
	declare-volatile : procedure/1
	load-zimage : procedure/1 or more
	read-zimage : procedure/2
	run-zimage : procedure/1 or more
	save-zimage : procedure/1 or more
	write-zimage : procedure/4
	zimage-header : procedure/1
	zimage-loadable? : procedure/1 or more
	zimage-runable? : procedure/1 or more

	Complete Reference
	% : procedure/2
	* : procedure/0 or more
	colors : dict
	error-handler : dict
	error-printer : procedure/1
	help : dict
	hooks : dict
	last-error : sym
	reflect : symbol
	+ : procedure/0 or more
	- : procedure/1 or more
	/ : procedure/1 or more
	/= : procedure/2
	10th : procedure/1 or more
	1st : procedure/1 or more
	2nd : procedure/1 or more
	3rd : procedure/1 or more
	4th : procedure/1 or more
	5th : procedure/1 or more
	6th : procedure/1 or more
	7th : procedure/1 or more
	8th : procedure/1 or more
	9th : procedure/1 or more
	< : procedure/2
	<= : procedure/2
	= : procedure/2
	> : procedure/2
	>= : procedure/2
	abs : procedure/1
	action : class
	action-start : method
	action-stop : method
	activate-menu-last-submenu : procedure/1
	activate-menu-next : procedure/1
	activate-menu-previous : procedure/1
	add-canvas-shortcut : procedure/3
	add-hook : procedure/2
	add-hook-internal : procedure/2
	add-hook-once : procedure/2
	add1 : procedure/1
	alist->dict : procedure/1
	alist? : procedure/1
	and : macro/0 or more
	append : procedure/1 or more
	append-form : procedure/0
	apply : procedure/2
	apropos : procedure/1
	array : procedure/0 or more
	array+ : procedure/1 or more
	array->list : procedure/1
	array->str : procedure/1
	array-append : procedure/2
	array-copy : procedure/1
	array-exists? : procedure/2
	array-forall? : procedure/2
	array-foreach : procedure/2
	array-len : procedure/1
	array-map! : procedure/2
	array-pmap! : procedure/2
	array-ref : procedure/1
	array-reverse : procedure/1
	array-set : procedure/3
	array-slice : procedure/3
	array-sort : procedure/2
	array-walk : procedure/2
	array? : procedure/1
	ascii85->blob : procedure/1
	assoc : procedure/2
	assoc1 : procedure/2
	assq : procedure/2
	atom? : procedure/1
	base64->blob : procedure/1
	beep : procedure/1
	bind : procedure/2
	bitand : procedure/2
	bitclear : procedure/2
	bitor : procedure/2
	bitshl : procedure/2
	bitshr : procedure/2
	bitxor : procedure/2
	blob->ascii85 : procedure/1 or more
	blob->base64 : procedure/1 or more
	blob->hex : procedure/1 or more
	blob->str : procedure/1 or more
	blob-chksum : procedure/1 or more
	blob-equal? : procedure/2
	blob-free : procedure/1
	blob? : procedure/1
	bool? : procedure/1
	bound? : macro/1
	boxed? : procedure/1
	build-array : procedure/2
	build-list : procedure/2
	caaar : procedure/1
	caadr : procedure/1
	caar : procedure/1
	cadar : procedure/1
	caddr : procedure/1
	cadr : procedure/1
	call-method : procedure/3
	call-super : procedure/3
	can-externalize? : procedure/1
	car : procedure/1
	case : macro/2 or more
	ccmp : macro/2
	cdaar : procedure/1
	cdadr : procedure/1
	cdar : procedure/1
	cddar : procedure/1
	cdddr : procedure/1
	cddr : procedure/1
	cdec! : macro/1
	cdr : procedure/1
	center-window-on-screen : procedure/1
	change-action-prefix : procedure/2
	change-all-action-prefixes : procedure/2
	char->str : procedure/1
	chars : procedure/1
	chars->str : procedure/1
	cinc! : macro/1
	class-name : procedure/1
	class-of : procedure/1
	class? : procedure/1
	close : procedure/1
	close-gui : procedure/0
	close-window : procedure/1
	closure? : procedure/1
	collect-garbage : procedure/0 or more
	color : procedure/1
	color->color64 : procedure/1
	color64->color : procedure/1
	cons : procedure/2
	cons? : procedure/1
	copy-record : procedure/1
	count-partitions : procedure/2
	count-text-grid-row-columns : procedure/2
	count-text-grid-rows : procedure/1
	cpunum : procedure/0
	create-lorem-ipsum : procedure/3
	cst! : procedure/2
	current-error-handler : procedure/0
	current-zimage : procedure/0
	cwait : procedure/3
	darken : procedure/1
	date->epoch-ns : procedure/7
	datelist->epoch-ns : procedure/1
	datestr : procedure/1
	datestr* : procedure/1
	datestr->datelist : procedure/1
	day+ : procedure/2
	day-of-week : procedure/3
	db.blob : procedure/2
	db.close : procedure/1
	db.close-result : procedure/1
	db.exec : procedure/2 or more
	db.float : procedure/2
	db.int : procedure/2
	db.open : procedure/1
	db.open* : procedure/1
	db.query : procedure/2 or more
	db.result-column-count : procedure/1
	db.result-columns : procedure/1
	db.row : procedure/1
	db.step : procedure/1
	db.str : procedure/2
	deactivate-menu-child : procedure/1
	deactivate-menu-last-submenu : procedure/1
	declare-volatile : procedure/1
	def-custom-hook : procedure/2
	default-error-handler : procedure/0
	defclass : macro/2 or more
	defmacro : macro/2 or more
	defmethod : macro/2 or more
	defstruct : macro/1 or more
	defun : macro/1 or more
	delete : procedure/2
	dequeue! : macro/1 or more
	dict : procedure/0 or more
	dict->alist : procedure/1
	dict->array : procedure/1
	dict->keys : procedure/1
	dict->list : procedure/1
	dict->values : procedure/1
	dict-copy : procedure/1
	dict-empty? : procedure/1
	dict-foreach : procedure/2
	dict-map : procedure/2
	dict-map! : procedure/2
	dict-merge : procedure/2
	dict-protect : procedure/1
	dict-protected? : procedure/1
	dict-unprotect : procedure/1
	dict? : procedure/1
	dir : procedure/1
	dir? : procedure/1
	disable-object : procedure/1
	div : procedure/2
	dolist : macro/1 or more
	dotimes : macro/1 or more
	dump : procedure/0 or more
	dump-bindings : procedure/0
	enable-object : procedure/1
	enq : procedure/1
	enqueue! : macro/2
	entry-accepts-tab? : procedure/1
	epoch-ns->datelist : procedure/1
	eq? : procedure/2
	eql? : procedure/2
	equal? : procedure/2
	error : procedure/0 or more
	error->str : procedure/1
	error? : procedure/1
	eval : procedure/1
	even? : procedure/1
	exists? : procedure/2
	exit : procedure/0 or more
	expand-macros : procedure/1
	expect : macro/2
	expect-err : macro/1 or more
	expect-false : macro/1 or more
	expect-ok : macro/1 or more
	expect-true : macro/1 or more
	expr->str : procedure/1
	externalize : procedure/1
	externalize0 : procedure/1
	fdelete : procedure/1
	feature? : procedure/1
	file-port? : procedure/1
	filter : procedure/2
	find-missing-help-entries : procedure/0
	find-unneeded-help-entries : procedure/0
	fl.abs : procedure/1
	fl.acos : procedure/1
	fl.asin : procedure/1
	fl.asinh : procedure/1
	fl.atan : procedure/1
	fl.atan2 : procedure/2
	fl.atanh : procedure/1
	fl.cbrt : procedure/1
	fl.ceil : procedure/1
	fl.cos : procedure/1
	fl.cosh : procedure/1
	fl.dim : procedure/2
	fl.erf : procedure/1
	fl.erfc : procedure/1
	fl.erfcinv : procedure/1
	fl.erfinv : procedure/1
	fl.exp : procedure/1
	fl.exp2 : procedure/2
	fl.expm1 : procedure/1
	fl.floor : procedure/1
	fl.fma : procedure/3
	fl.frexp : procedure/1
	fl.gamma : procedure/1
	fl.hypot : procedure/2
	fl.ilogb : procedure/1
	fl.inf : procedure/1
	fl.is-nan? : procedure/1
	fl.j0 : procedure/1
	fl.j1 : procedure/1
	fl.jn : procedure/1
	fl.ldexp : procedure/2
	fl.lgamma : procedure/1
	fl.log : procedure/1
	fl.log10 : procedure/1
	fl.log1p : procedure/1
	fl.log2 : procedure/1
	fl.logb : procedure/1
	fl.max : procedure/2
	fl.min : procedure/2
	fl.mod : procedure/2
	fl.modf : procedure/1
	fl.nan : procedure/1
	fl.next-after : procedure/1
	fl.pow : procedure/2
	fl.pow10 : procedure/1
	fl.remainder : procedure/2
	fl.round : procedure/1
	fl.round-to-even : procedure/1
	fl.signbit : procedure/1
	fl.sin : procedure/1
	fl.sinh : procedure/1
	fl.sqrt : procedure/1
	fl.tan : procedure/1
	fl.tanh : procedure/1
	fl.trunc : procedure/1
	fl.y0 : procedure/1
	fl.y1 : procedure/1
	fl.yn : procedure/1
	flatten : procedure/1
	float : procedure/1
	fmt : procedure/1 or more
	focus-canvas-object : procedure/2
	focus-next-canvas-object : procedure/1
	focus-previous-canvas-object : procedure/1
	forall? : procedure/2
	force : procedure/1
	foreach : procedure/2
	forget : procedure/1
	forget-gui-object : procedure/1
	functional-arity : procedure/1
	functional-has-rest? : procedure/1
	functional? : macro/1
	gensym : procedure/0
	get : procedure/2 or more
	get-action : procedure/1
	get-clipboard-content : procedure/0
	get-device-info : procedure/0
	get-entry-cursor : procedure/1
	get-entry-cursor-pos : procedure/1
	get-focused-canvas-object : procedure/1
	get-label-text : procedure/1
	get-menu-item-label : procedure/1
	get-object-min-size : procedure/1
	get-object-position : procedure/1
	get-object-size : procedure/1
	get-or-set : procedure/3
	get-partitions : procedure/2
	get-progress-bar-value : procedure/1
	get-scroll-offset : procedure/1
	get-text-grid-cell : procedure/3
	get-text-grid-cell-size : procedure/1
	get-text-grid-row : procedure/2
	get-text-grid-row-text : procedure/2
	get-text-grid-rune : procedure/3
	get-text-grid-tab-width : procedure/1
	get-text-grid-text : procedure/1
	get-window-canvas : procedure/1
	get-window-content : procedure/2
	get-window-icon : procedure/1
	get-window-main-menu : procedure/2
	get-window-title : procedure/1
	getstacked : procedure/3
	glance : procedure/1
	global-startup-time : procedure/0
	global-sym? : procedure/1
	has : procedure/2
	has-action-system? : procedure/0
	has-action? : procedure/1
	has-key? : procedure/2
	has-method? : procedure/2
	has-prop? : procedure/2
	help : macro/1
	help->manual-entry : nil
	help-about : procedure/1 or more
	help-entry : procedure/1
	help-strings : procedure/2
	help-topic-info : procedure/1
	help-topics : procedure/0
	hex->blob : procedure/1
	hide-object : procedure/1
	hide-window : procedure/1
	hook : procedure/1
	hour+ : procedure/2
	identity : procedure/1
	if : macro/3
	inchars : procedure/2
	include : procedure/1
	index : procedure/2 or more
	init-actions : procedure/0
	init-remember : procedure/0
	insert-text-grid-row : procedure/2
	instr : procedure/2
	int : procedure/1
	intern : procedure/1
	internalize : procedure/2
	intrinsic : procedure/1
	intrinsic? : procedure/1
	isa? : procedure/2
	iterate : procedure/2
	kvdb.begin : procedure/1
	kvdb.close : procedure/1
	kvdb.commit : procedure/1
	kvdb.db? : procedure/1
	kvdb.forget : procedure/1
	kvdb.forget-everything : procedure/1
	kvdb.get : procedure/2 or more
	kvdb.info : procedure/2 or more
	kvdb.open : procedure/1 or more
	kvdb.rollback : procedure/1
	kvdb.search : procedure/2 or more
	kvdb.set : procedure/3 or more
	kvdb.when : procedure/2 or more
	last : procedure/1 or more
	lcons : procedure/2
	len : procedure/1
	let : macro/1 or more
	letrec : macro/1 or more
	lighten : procedure/1
	ling.damerau-levenshtein : procedure/2
	ling.hamming : procedure/2
	ling.jaro : procedure/2
	ling.jaro-winkler : procedure/2
	ling.levenshtein : procedure/2
	ling.match-rating-codex : procedure/1
	ling.match-rating-compare : procedure/2
	ling.metaphone : procedure/1
	ling.nysiis : procedure/1
	ling.porter : procedure/1
	ling.soundex : procedure/1
	list : procedure/0 or more
	list->array : procedure/1
	list->set : procedure/1
	list->str : procedure/1
	list-exists? : procedure/2
	list-forall? : procedure/2
	list-foreach : procedure/2
	list-last : procedure/1
	list-ref : procedure/2
	list-reverse : procedure/1
	list-slice : procedure/3
	list? : procedure/1
	load : procedure/1 or more
	load-zimage : procedure/1 or more
	macro? : procedure/1
	make : macro/2
	make* : macro/1 or more
	make-blob : procedure/1
	make-mutex : procedure/1
	make-queue : procedure/0
	make-set : procedure/0 or more
	make-stack : procedure/0
	make-symbol : procedure/1
	map : procedure/2
	map-pairwise : procedure/2
	mapcar : procedure/2
	max : procedure/1 or more
	member : procedure/2
	memq : procedure/2
	memstats : procedure/0
	menu-item-checked? : procedure/1
	menu-item-disabled? : procedure/1
	methods : procedure/1
	min : procedure/1 or more
	minmax : procedure/3
	minute+ : procedure/2
	mod : procedure/2
	month+ : procedure/2
	move-object : procedure/2
	mutex-lock : procedure/1
	mutex-rlock : procedure/1
	mutex-runlock : procedure/1
	mutex-unlock : procedure/1
	nconc : procedure/0 or more
	new : macro/1 or more
	new-app-tabs : procedure/0 or more
	new-border : procedure/4 or more
	new-button : procedure/2
	new-button-with-icon : procedure/3
	new-center-layout : procedure/0
	new-check : procedure/2
	new-choice : procedure/3
	new-circle : procedure/1 or more
	new-combined-string-validator : procedure/1 or more
	new-container : procedure/1 or more
	new-container-without-layout : procedure/0 or more
	new-doc-tabs : procedure/0 or more
	new-entry : procedure/1
	new-form : procedure/0
	new-form-layout : procedure/0
	new-grid-layout : procedure/1
	new-grid-wrap-layout : procedure/2
	new-hbox-layout : procedure/0
	new-hscroll : procedure/1
	new-hsplit : procedure/2
	new-hyperlink : procedure/2
	new-icon : procedure/1
	new-image-from-file : procedure/1
	new-image-from-resource : procedure/1
	new-label : procedure/1
	new-line : procedure/1 or more
	new-list : procedure/3
	new-main-menu : procedure/1 or more
	new-menu : procedure/1
	new-menu* : procedure/1 or more
	new-menu-item : procedure/2 or more
	new-menu-item-separator : procedure/0
	new-progress-bar : procedure/0
	new-raster-with-pixels : procedure/1
	new-rectangle : procedure/1 or more
	new-regexp-validator : procedure/2
	new-scroll : procedure/1
	new-slider : procedure/3
	new-spacer : procedure/0
	new-stack-layout : procedure/0
	new-struct : procedure/2
	new-tabitem : procedure/2
	new-tabitem-with-icon : procedure/3
	new-table : procedure/3
	new-text : procedure/2
	new-text-grid : procedure/0 or more
	new-time-validator : procedure/1
	new-tree : procedure/4
	new-validator : procedure/1
	new-vbox-layout : procedure/0
	new-vscroll : procedure/1
	new-vsplit : procedure/2
	new-window : procedure/1
	nl : procedure/0
	nonce : procedure/0
	not : procedure/1
	now : procedure/0
	now-ms : procedure/0
	now-ns : procedure/0
	nreverse : procedure/1
	nrgba : procedure/4
	nrgba64 : procedure/4
	nth : procedure/2
	nth-partition : procedure/3
	nthdef : procedure/3
	null? : procedure/1
	num? : procedure/1
	object-disabled? : procedure/1
	object? : procedure/1
	odd? : procedure/1
	on-feature : macro/1 or more
	open : procedure/1 or more
	or : macro/0 or more
	out : procedure/1
	outy : procedure/1
	peek : procedure/4
	permission? : procedure/1
	permissions : procedure/0
	poke : procedure/5
	pop! : macro/1 or more
	pop-error-handler : procedure/0
	pop-finalizer : procedure/0
	popstacked : procedure/3
	prin1 : procedure/1
	princ : procedure/1
	print : procedure/1
	proc? : macro/1
	prop : procedure/2
	props : procedure/1
	protect : procedure/0 or more
	protect-toplevel-symbols : procedure/0
	protected? : procedure/1
	prune-task-table : procedure/0
	prune-unneeded-help-entries : procedure/0
	push! : macro/2
	push-error-handler : procedure/1
	push-finalizer : procedure/1
	pushstacked : procedure/3
	queue-empty? : procedure/1
	queue-len : procedure/1
	queue? : procedure/1
	rand : procedure/2
	random-color : procedure/0 or more
	read : procedure/1
	read-binary : procedure/3
	read-string : procedure/2
	read-zimage : procedure/2
	readall : procedure/1
	readall-str : procedure/1 or more
	recall : procedure/1 or more
	recall-info : procedure/1 or more
	recall-when : procedure/1 or more
	recollect : procedure/1 or more
	record? : procedure/1
	refresh-main-menu : procedure/1
	refresh-menu* : procedure/1
	refresh-object : procedure/1
	register-action : procedure/1
	remember : procedure/2
	remove-canvas-shortcut : procedure/2
	remove-duplicates : procedure/1
	remove-hook : procedure/2
	remove-hook-internal : procedure/2
	remove-hooks : procedure/1
	remove-text-grid-row : procedure/2
	rename-action : procedure/2
	replace-hook : procedure/2
	reset-color : procedure/0
	resize-object : procedure/2
	reverse : procedure/1
	rnd : procedure/0
	rndseed : procedure/1
	rplaca : procedure/2
	run-at : procedure/2
	run-hook : procedure/1
	run-hook-internal : procedure/1 or more
	run-selftest : procedure/0
	run-zimage : procedure/1 or more
	save-zimage : procedure/1 or more
	sec+ : procedure/2
	semver.build : procedure/1
	semver.canonical : procedure/1
	semver.compare : procedure/2
	semver.is-valid? : procedure/1
	semver.major : procedure/1
	semver.major-minor : procedure/1
	semver.max : procedure/2
	semver.prerelease : procedure/1
	seq? : procedure/1
	set : procedure/3
	set* : procedure/2
	set->list : procedure/1
	set-canvas-on-typed-key : procedure/2
	set-canvas-on-typed-rune : procedure/2
	set-clipboard-content : procedure/1
	set-color : procedure/1
	set-complement : procedure/2
	set-difference : procedure/2
	set-element? : procedure/2
	set-empty? : procedure/1
	set-entry-cursor-column : procedure/2
	set-entry-cursor-row : procedure/2
	set-entry-min-rows-visible : procedure/2
	set-entry-on-change-callback : procedure/2
	set-entry-on-cursor-change-callback : procedure/2
	set-entry-place-holder : procedure/2
	set-entry-text : procedure/2
	set-entry-text-wrap : procedure/2
	set-entry-validator : procedure/2
	set-equal? : procedure/2
	set-help-topic-info : procedure/3
	set-intersection : procedure/2
	set-label-text : procedure/2
	set-menu-item-checked : procedure/2
	set-menu-item-disabled : procedure/2
	set-menu-item-label : procedure/2
	set-object-on-validation-change-callback : procedure/2
	set-permissions : nil
	set-progress-bar : procedure/1 or more
	set-scroll-offset : procedure/2
	set-slider-value : procedure/2
	set-split-offset : procedure/2
	set-subset? : procedure/2
	set-text-alignment : procedure/2
	set-text-grid-cell : procedure/4
	set-text-grid-row : procedure/3
	set-text-grid-row-style : procedure/3
	set-text-grid-rune : procedure/4
	set-text-grid-show-line-numbers : procedure/2
	set-text-grid-show-whitespace : procedure/2
	set-text-grid-style : procedure/4
	set-text-grid-style-range : procedure/6
	set-text-grid-tab-width : procedure/2
	set-text-grid-text : procedure/2
	set-text-size : procedure/2
	set-text-style : procedure/2
	set-union : procedure/2
	set-volume : procedure/1
	set-window-content : procedure/2
	set-window-full-screen : procedure/2
	set-window-icon : procedure/1
	set-window-main-menu : procedure/2
	set-window-on-close-callback : procedure/2
	set-window-padded : procedure/2
	set-window-size : procedure/2
	set-window-title : procedure/2
	set? : procedure/1
	setcar : procedure/1
	setcdr : procedure/1
	setprop : procedure/3
	shorten : procedure/2
	show-object : procedure/1
	sleep : procedure/1
	sleep-ns : procedure/1
	slice : procedure/3
	sort : procedure/2
	sort-symbols : nil
	spaces : procedure/1
	stack-empty? : procedure/1
	stack-len : procedure/1
	stack? : procedure/1
	str+ : procedure/0 or more
	str->array : procedure/1
	str->blob : procedure/1
	str->char : procedure/1
	str->chars : procedure/1
	str->expr : procedure/0 or more
	str->expr* : procedure/0 or more
	str->list : procedure/1
	str->sym : procedure/1
	str-count-substr : procedure/2
	str-empty? : procedure/1
	str-exists? : procedure/2
	str-forall? : procedure/2
	str-foreach : procedure/2
	str-index : procedure/2 or more
	str-join : procedure/2
	str-port? : procedure/1
	str-ref : procedure/2
	str-remove-number : procedure/1
	str-remove-prefix : procedure/1
	str-remove-suffix : procedure/1
	str-replace : procedure/4
	str-replace* : procedure/3
	str-reverse : procedure/1
	str-segment : procedure/3
	str-slice : procedure/3
	str? : procedure/1
	strbuild : procedure/2
	strcase : procedure/2
	strcenter : procedure/2
	strcnt : procedure/2
	strleft : procedure/2
	strlen : procedure/1
	strless : procedure/2
	strlimit : procedure/2
	strmap : procedure/2
	stropen : procedure/1
	strright : procedure/2
	strsplit : procedure/2
	struct-index : procedure/1
	struct-instantiate : procedure/2
	struct-name : procedure/1
	struct-props : procedure/1
	struct-size : procedure/1
	struct? : procedure/1
	sub1 : procedure/1
	supers : procedure/1
	sym->str : procedure/1
	sym? : procedure/1
	synout : procedure/1
	synouty : procedure/1
	sys-key? : procedure/1
	sysmsg : procedure/1
	sysmsg* : procedure/1
	take : procedure/3
	task : procedure/1
	task-broadcast : procedure/2
	task-recv : procedure/1
	task-remove : procedure/1
	task-run : procedure/1
	task-schedule : procedure/1
	task-send : procedure/2
	task-state : procedure/1
	task? : procedure/1
	terpri : procedure/0
	testing : macro/1
	text-grid-show-line-numbers? : procedure/1
	text-grid-show-whitespace? : procedure/1
	the-color : procedure/1
	the-color-names : procedure/0
	theme-color : procedure/1
	theme-icon : procedure/1
	theme-is-dark? : procedure/1
	time : procedure/1
	trigger-menu-last : procedure/1
	truncate : procedure/1 or more
	try : macro/2 or more
	type-of : macro/1
	type-of* : procedure/1
	unfocus-canvas-objects : procedure/1
	unicode.is-control? : procedure/1
	unicode.is-digit? : procedure/1
	unicode.is-graphic? : procedure/1
	unicode.is-letter? : procedure/1
	unicode.is-lower? : procedure/1
	unicode.is-mark? : procedure/1
	unicode.is-number? : procedure/1
	unicode.is-print? : procedure/1
	unicode.is-punct? : procedure/1
	unicode.is-space? : procedure/1
	unicode.is-symbol? : procedure/1
	unicode.is-title? : procedure/1
	unicode.is-upper? : procedure/1
	unless : macro/1 or more
	unprotect : procedure/0 or more
	unprotect-toplevel-symbols : procedure/0
	valid? : procedure/1
	validate-object : procedure/2
	void : procedure/0 or more
	void? : procedure/1
	wait-for : procedure/2
	wait-for* : procedure/3
	wait-for-empty* : procedure/3
	wait-until : procedure/2
	wait-until* : procedure/4
	warn : procedure/1 or more
	week+ : procedure/2
	week-of-date : procedure/3
	when : macro/1 or more
	when-permission : macro/1 or more
	while : macro/1 or more
	window-fixed-size? : procedure/1
	window-full-screen? : procedure/1
	window-padded? : procedure/1
	with-colors : procedure/3
	with-error-handler : macro/2 or more
	with-final : macro/2 or more
	with-mutex-lock : macro/1 or more
	with-mutex-rlock : macro/1 or more
	wrap-delete-text-grid : procedure/8
	wrap-insert-text-grid : procedure/8
	write : procedure/2
	write-binary : procedure/4
	write-binary-at : procedure/5
	write-string : procedure/2
	write-zimage : procedure/4
	year+ : procedure/2
	zimage-header : procedure/1
	zimage-loadable? : procedure/1 or more
	zimage-runable? : procedure/1 or more

