
Z3S5 Lisp User Manual

by Erich Rast

2023-9-24 16:00



Z3S5 Lisp User Manual 2023-9-24 16:00

for Z3S5 Lisp Version “2.4+560e0ea”

1 Introduction

Z3S5 Lisp can be used as a standalone interpreter or as an extension language embedded into Go
programs. It is a traditional Lisp-1 dialect, where the suffix 1 means that symbols hold one value and
this value might either represent functions and closures or data. This is in contrast to Lisp-2 language
like CommonLisp in which symbols may hold functions in a separate slot. Scheme dialects are also
Lisp-1 and Z3S5 Lisp shares many similarities with Scheme while also having features of traditional
Lisp systems.

1.1 Invoking Lisp

1.1.1 The Standalone Interpreter

In the directory cmd/z3 there is an example standalone version z3.go that you can build on your
system using go build z3.go. The interpreter is started in a terminal using ./z3. The z3 interpreter
is fairly limited. It starts a read-eval-reply loop until it is quit with the command (exit [n])where the
optional number n is an integer for the Unix return code of the program. It reads one line of input from
the command line and returns the result of evaluating it. Better editing capabilities and parenthesis
matching are planned for the future.

When an interpreter starts either in a standalone executable or when the interp.Boot() function
is called in a Go program, then it first loads the standard prelude and help files in directory embed.
These are embedded into the executable and so the directory is not needed to run the interpreter. After
this start sequence, the interpreter checks whether there is a file named init.lisp in the executable
directory – that is, the z3 directory for standalone or the directory of the program that includes Z3S5
Lisp as a package. If there is such a file, then it is loaded and executed.

The z3 interpreter also has a number of command-line options. If option -l <filename> is provided,
then Z3S5 Lisp sets *interactive-session* to nil (which usually suppresses the start banner),
loads and executes the specified file, and returns to the shell afterwards. The flag -e does the same
but executes the expressions directly provided as string on the command-line. Special characters in
the provided expressions have to be suitably escaped not to be interpreted by the shell, of course, and
how to do this depends on the type of shell used to run the interpreter.

If in addition to the -e or -l flags the -i option is provided, then *interactive-session* is set
to true right from the start, the file is loaded and executed, and then an interactive session is started

2.4+560e0ea 2



Z3S5 Lisp User Manual 2023-9-24 16:00

as if the interpreter had been started without any command-line options. By using the -s flag, *
interactive-session* can be set to nil regardless of how the interpreter is started, and therefore
printing a start banner is suppressed (and anything else that requires *interactive-session* to
be non-nil.)

Example 1: ./z3 -e "(out 'hello-world)(nl)"-i -s starts the interpreter, does not print a
start banner since-s is specified, prints hello-world and new line, and then enters an interactive session
since -i is specified.

Example 2: ./z3 -l /home/user/tests/test.lisp -s starts the interpreter, loads and executes
the file in directory /home/tests/test.lisp (an absolute Unix path) while suppressing the start-
banner with the -s option, and returns to the shell.

Example 3: ./z3 -i -l my_prelude.lisp launches the interpreter and loads the file my_prelude
.lisp in the same directory as the interpreter and then starts an interactive session

See ./z3 -h for a list of all command-line options.

1.1.2 Using the Interpreter in Go

See cmd/z3/z3.go for an example of how to use Z3S5 Lisp in Go. It is best to include the package
with z3 "github.com/rasteric/z3s5-lisp" so z3 can be used as the package shortcut, since
this has to be called often when writing extensions. The following snippet from z3.go imports the
Lisp interpreter, boots the standard prelude, and runs an interactive read-eval-reply loop:

1 import (
2 "fmt"
3 "os"
4
5 z3 "github.com/rasteric/z3s5-lisp"
6 )
7
8 func main() {
9 interp, err := z3.NewInterp(z3.NewBasicRuntime(z3.FullPermissions))

10 if err != nil {
11 fmt.Fprintf(os.Stderr, "Z3S5 Lisp failed to start: %v\n", err)
12 os.Exit(1)
13 }
14 err = interp.Boot()
15 if err != nil {
16 fmt.Fprintf(os.Stderr, "Z3S5 Lisp failed to boot the standard

prelude: %v\n", err)
17 os.Exit(2)
18 }
19 interp.SafeEval(&z3.Cell{Car: z3.NewSym("protect-toplevel-symbols")

, Cdr: z3.Nil}, z3.Nil)

2.4+560e0ea 3



Z3S5 Lisp User Manual 2023-9-24 16:00

20 interp.Run(nil, z3.NewInternalSource("repl",""))
21 }

Calling inter.Runwith nil as first argument starts the interpreter’s read-eval-reply loop. The second
argument is a new source location (see sourceloc.go in the repository), in this case an internal
source with name “repl” and no initial input line. If you would run a file, you could pass an io.Reader
and a file source location obtained from z3.NewFileSource to the method. However, interp.
EvalFile(path string)bool already does this for you, and likewise there is interp.EvalStr(s
string)(any, error) for evaluating a string.

What deserves a bit more explanation is the line starting with interp.SafeEval. This creates a list
with the symbol protect-toplevel-symbols as car and an empty cdr and executes it within an
empty environment. So it runs the equivalent of (protect-toplevel-symbols), which is inter-
preted as a function call that applies protect to all toplevel symbols defined thus far. It is not put in
the standard prelude because a common way to extend Z3S5 Lisp is to simply redefine some of its prim-
itives. Once a symbol is protected, attempts of redefining or mutating it result in a security violation
error. As long as the Permissions given to NewBasicRuntime have AllowUnprotect set to true,
you may use unprotect to remove this safeguard again and redefine existing functions. Symbols are
protected in the z3 interpreter because it is easy to mess up the system with dynamic redefinitions.
For example, you could redefine (setq + -) and + is suddenly interpreted as subtraction! However,
redefining toplevel symbols is a very important feature. By usingunbind on certain functions or setting
them to something else like (setq func (lambda ()(error "not allowed to use func!"
))) it is possible to create fine-grained access control to functions even when they are intrinsic or
defined in the standard prelude. It is not possible to access an intrinsic function after it has been
defined away in this manner. After you added all your toplevel symbols and removed or redefined
the ones you do not like, you may thus protect all symbols and use set-permissions to revoke the
privilege AllowUnprotect. This fixes the base vocabulary and any attempt to redefine it in the future
will result in a security violation, since permissions can only be changed from less secure to more
secure and never vice versa.

See the Chapter Extending Z3S5 Lisp for information about how to define your own functions in Z3S5
Lisp.

1.2 Data Types

Basic data types of Z3S5 Lisp are:

• Bools: t and nil. The empty list nil is interpreted as false and any non-nil value is true; the
symbol t is predefined as non-nil and usually used for true.

2.4+560e0ea 4



Z3S5 Lisp User Manual 2023-9-24 16:00

• Symbols: abracadabra, foo, bar, ...hel%lo*_. These have few restrictions, as the last
example illustrates.

• Integers: 3, 1, -28. These are bignums with functions such as +, -, sub, div,. . .
• Floats: 3.14, 1.92829 with a large range of functions with prefix fl.. Get a list with (dump '
fl.)

• UTF-8 Strings: "This is a test."with functions such asstr+,str-empty?,str-forall?,
str-join,. . . Get an overview with (dump 'str).

• Lists: '(a b c d e f) with functions such as car, cdr, mapcar, 1st, 2nd, member, filter
,. . .

• Arrays: #(a b c d e f) with functions such as array-ref, array-set, array-len, . . .
• Dictionaries: (dict) with functions such as get, set, dict->alist, dict->array, dict->
values, dict-map,. . .

• Blobs: These contain binary data with functions like peek, poke, blob->base64,. . .
• Boxed values with functions like valid?. Boxed values are used to embed foreign types like

Go structures into the runtime system which cannot be automatically garbage collected. They
typically require manual destruction to free memory. See the source code forlisp_decimal.go
for an example of such an embedding.

• Futures: Futures encapsulate the result of a future computation and are returned by the special
form (future ...) whose body evaluates to a future. The result of a future computation may
be obtained with (force <future>).

• Tasks: Tasks are heavyweight concurrency constructs similar to threads in other programming
languages. See (dump 'task) for a list of functions.

Strings, lists, and arrays are also sequences testable with the seq? predicate. These support con-
venience successor functions like map and foreach. Check the init.lisp preamble in directory
embed/ for how these work.

Numbers are generally one bignum type for which num? is true and they will extend and shrink in their
representation as necessary. However, numbers larger than 64 bit only support basic arithmetics and
floating point arithmetics is limited to values that fit into a Float64. There is also a built-in decimal
arithmetics extension with prefix dec for correct accounting and banking arithmetics and rounding –
see (dump 'dec.) for a list of available decimal arithmetics functions and lisp_decimal.go for
implementation details.

2 Writing Programs

The z3 interpreter loads and executes any file init.lisp in the same directory as the executable
at startup. It is also possible to use the command-line option -l <filename> to load and execute

2.4+560e0ea 5



Z3S5 Lisp User Manual 2023-9-24 16:00

it. This sets *interactive-session* to nil, executes the contents of the file and returns to the
shell. This behavior can be overridden by specifying the -i flag on the command-line, which sets
‘interactive-session to true and ensures that an interactive session is started after the initial files are
loaded.

2.1 Finding Functions and Online Help

Built-in help on functions can be obtained with (help func) where the function name is not quoted.
For example, (help help) returns the help entry for the help function. A list of bound toplevel
symbols can be obtained with (dump [sym]) where the optional symbol sym must be a quoted
prefix. For example, (dump) returns all toplevel bindings and (dump 'str) returns a list of all bound
symbols starting with “str”. By convention, internal helper functions without help entry are prefixed
with an underscore and omitted by dump. To get a list of all bindings, including those starting with an
underscore, use (dump-bindings).

2.2 Peculiarities of Z3S5 Lisp

• Iterators over sequences use the order(iterator sequence function), not sometimes one
and sometimes the other. Exception: memq and member ask whether an element is a member of
a list and have order (member element list).

• There is no meaningful eq, equality is generally tested with equal?.

• Predicate names usually end in a question mark like in Scheme dialects, with a few exceptions
like = for numeric equality. Example: equal?. There is no p-suffix like in other Lisps.

• dict data structures are multi-threading safe.

• There is support for futures and concurrent tasks.

2.3 Basic Control Flow and Examples

When Z3S5 Lisp encounters an unquoted list, it attempts to interpret the first element of the list as
a function call. Thus, if the symbol is bound to a function or macro, it calls the function with the
remainder of the list as argument:

1 > (+ 10 20 30 40 50)
2 150

Symbols evaluate to their values and need to be quoted otherwise. They can be defined with setq:

2.4+560e0ea 6



Z3S5 Lisp User Manual 2023-9-24 16:00

1 > hello
2 EvalError: void variable: hello
3 hello
4 > (setq hello 'world)
5 world
6 > hello
7 world

To define a function, the macrodefun can be used as in other Lisp dialects. The syntax is the traditional
one, not in Scheme dialects:

1 > (defun fib (n)
2 (if (or (= n 0) (= n 1))
3 1
4 (+ (fib (- n 1))
5 (fib (- n 2)))))
6 fib
7 > (fib 10)
8 89
9 > (fib 30)

10 1346269

(defun foo (bar)...) is really just a macro shortcut for (setq foo (lambda (bar)...)) like
in most other Lisp dialects. Macros are expanded before a program is executed, which unfortunately
makes error reporting in Z3S5 Lisp sometimes a bit obtuse. The system neither keeps track of source
locations nor of original definitions and will present the expanded macros when an error occurs. This
will not change in the future, so better get used to it! Changing this and turning Z3S5 Lisp into a real,
full-fledged Lisp would be a gigantic task and not worth the effort, as there are already far more capable
Lisp systems like CommonLisp and Racket out there.

The above function demonstrates recursion, a feature that is often used in Lisp. Z3S5 Lisp eliminates
tail recursion. The example also illustrates the use of = for numeric equality, + and - functions on
(potential) bignums and the macro (if <condition> <then-clause> <else-clause>). The
more general cond construct is also available and in fact the primitive operation:

1 > (defun day (n)
2 (cond
3 ((= n 0) 'sunday)
4 ((= n 1) 'monday)
5 ((= n 2) 'tuesday)
6 (t 'late-in-the-week)))
7 day
8 > (day 1)
9 monday

10 > (day 0)
11 sunday
12 > (day -1)

2.4+560e0ea 7



Z3S5 Lisp User Manual 2023-9-24 16:00

13 late-in-the-week
14 > (day 5)
15 late-in-the-week

Looks like some programmer was lazy there.

In Lisp languages it is common to iterate over lists and other data structures either using recursive
functions or by using some of the standard iteration constructs such as map, foreach, mapcar, and
so on. Nesting calls of macros or functions like map and filter to achieve the desired data transfor-
mation is very common functional programming style and often desirable for performance. Here is an
example:

1 > (map '(1 2 3 4 5 6) add1)
2 (2 3 4 5 6 7)

Local variables are bound with let or with letrec in Z3S5 Lisp. The latter needs to be used whenever
a variable in the form depends on the other variable, which is not possible with let since it makes the
bindings only available in the body. Here is the definition of apropos from the preamble:

1 (defun apropos (arg)
2 (let ((info (get *help* arg nil)))
3 (if info
4 (cadr (assoc 'see info))
5 nil)))

The variable info is bound to the result of (get *help* arg nil), which evaluates to default nil
if there is no help entry for arg in the global dictionary *help*. That avoids calling (get *help*
arg nil) twice, once for the check to nil and once in the first if branch. But it can often be better to
avoid uses of let and re-use accessors; it depends a bit on clarity and intent, and whether the initial
computation is costly or not. Here is an example where let would not do and instead letrec has to
be used:

1 > (letrec ((is-even? (lambda (n)
2 (or (= n 0)
3 (is-odd? (sub1 n)))))
4 (is-odd? (lambda (n)
5 (and (not (= n 0))
6 (is-even? (sub1 n))))))
7 (is-odd? 11))
8 t

The reason this doesn’t work with let is that is-even? is not bound in the definition of is-odd
? and vice versa when let is used, whereas letrec makes sure that these bindings are mutually
available. Although the current implementation always uses letrec under the hood, it is best to use
let whenever it is possible since at least in theory it could be implemented more efficiently. Notice
that setq can be used to mutate local bindings, of course, and is not just intended for toplevel symbols.

2.4+560e0ea 8



Z3S5 Lisp User Manual 2023-9-24 16:00

Although beginners should avoid it, sometimes mutating variables with setq can make definitions
simpler at the cost of some elegance.

3 GUI Programming

Starting from version 2.4, Z3S5 Lisp has an optional GUI based on Go’s Fyne framework. This allows
users to write GUI applications in Z3S5 Lisp.

3.1 Embedding the GUI

To activate the GUI in your own application embedding Z3S5 Lisp, you need to import the separate
library import z3ui "github.com/rasteric/z3s5-lisp/gui". After booting the interpreter
during application startup, you may then call the GUI definitions and help declarations as follows:

1 z3ui.DefGUI(interp, z3ui.DefaultConfig)
2 if err := z3ui.DefGUIHelp(interp); err != nil {
3 fmt.Fprintf(os.Stderr, err.Error())
4 return 3
5 }

Function z3ui.DefGUI() defines the GUI functions in the given interpreter and takes a Config struc-
ture defined in the GUI library. The default configuration provided above allows full access to all GUI
functions. However, the GUI Config structure may be changed to prohibit access to certain functions.
For example, links may be prohibited or creating new windows may raise an error. This will make it
possible in the future to use the GUI in an environment where functions may only modify a particular
window, e.g. to create some embedded GUI plugins.

When the GUI is started using z3ui.RunGUI(), the call blocks and events are handled by the GUI and
its respective callback functions. Therefore, the Z3S5 Lisp interpreter needs to be run concurrently
using e.g. interp.Run() in a separate goroutine. See the implementation in cmd/z3g/z3g.go for
an example of how to do this.

3.2 GUI Basics

Functions defined in Lisp are derived from corresponding functions of the Fyne framework and listed
under the ’gui label in the help system. If the GUI is present, the symbols gui and fyne2 are present in
the global list *reflect*.

The names of Lisp functions roughly follow those of Fyne functions with the following adaptations to
Lisp style :

2.4+560e0ea 9

https://fyne.io
https://fyne.io


Z3S5 Lisp User Manual 2023-9-24 16:00

1. Camelcase is translated to lowercase with hyphens.

2. A function object.VerbQualifier becomes verb-object-qualifier.

3. Getters are written in the formget-object-qualifier and setters set-object-qualifier.

4. As an exception of the previous rules, when the result of a function is a bool, the form is object
-predicate?.

Fyne objects are represented by integer numbers. The system internally translates between these
numbers and objects in a thread-safe way. This means that they are not automatically garbage-
collected. To forget an object no longer in use on the Lisp side, use the function (forget-gui-
object id). This has to be called if you create a lot of objects and want to free them after use. If and
when they are garbage-collected depends on the Go and Fyne side, however.

Occasionally, Fyne objects are also created on the fly for performance reasons. For example, sometimes
color lists of the form (r g b a) with integers r, g,b, a are used instead of creating and storing color
objects using(nrgba r g b a). There are also sometimes shortcut accessors using selector symbols
and other convenience wrappers for Fyne functions. When in doubt, refer to the Lisp help for details.

3.3 Examples

Take a look at the examples in cmd/z3g/demo.lisp to see how the GUI may be used. Here is an
example snippet:

1 (defun demo4 ()
2 (letrec ((win (new-window "Demo 4: Forms"))
3 (form (new-form)))
4 (append-form form "Name" (new-entry))
5 (append-form form "Address" (new-entry))
6 (append-form form "Phone" (new-entry))
7 (append-form form "Email" (new-entry))
8 (append-form form "More" (new-hyperlink "Click here for more info"

"https://z3s5.com"))
9 (set-window-content win form)

10 (show-window win)))

In this example, a window is created and as its only content a form widget is added to it. This form
widget displays a label string plus a widget per line and neatly justifies the columns of the form.

As another example, the following program opens a window with a button that displays a predefined
icon from the default theme, and when the button is pressed, the window is closed:

1 (defun demo5 ()
2 (letrec ((win (new-window "Demo 5: Button with Icon"))
3 (button (new-button-with-icon "Press me!"

2.4+560e0ea 10



Z3S5 Lisp User Manual 2023-9-24 16:00

4 (theme-icon 'view-restore)
5 (lambda () (close-window win)))))
6 (set-window-content win button)
7 (show-window win)))

Generally, when windows are closed the GUI keeps being active and new windows can be created
again. There is no MasterWindow that causes the application to close when it is closed like in Fyne.
To close the GUI entirely, use either z3ui.ShutDownGUI() in Go or (close-gui) in Lisp. After this
function has been called, the GUI can no longer be used and using GUI functions may result in undefined
behavior.

Note that Z3S5 Lisp can continue to run once the GUI has been closed. The interpreter is independent
of the GUI and keeps running until it is exited by the usual mechanisms like (exit 0).

See the help topic 'gui for more information about GUI-related function and check the Fyne docu-
mentation for more information about the underlying framework. At the time of this writing, not all
Fyne functions have been implemented on the Z3S5 Lisp side yet, although the framework is already
fairly complete and usable for small GUI programs. More functionality from Fyne and other libraries is
on the roadmap.

4 Advanced Topics

4.1 Error Handling

There are no continuations and there is no fancy stuff like dynamic wind. Instead, there are primitives
like push-error-handler and pop-error-handler and macros such as with-final and with-
error-handler.

4.2 Debugging

Not only are error messages fairly rudimentary, they also use the expanded macro definitions and
are therefore hard to read. Local bindings are implemented with lambda-terms and displayed as
such. This makes debugging a challenge, as it should be. Z3S5 programmers have the habit of writing
bug-free code from the start and thereby avoid debugging entirely. But you could write your own trace
or stepper functions for enhanced debugging features by redefining all toplevel symbols appropriately.
Then again, you could also just write your own Lisp with better debugging capabilities. The choice is
up to you!

2.4+560e0ea 11



Z3S5 Lisp User Manual 2023-9-24 16:00

4.3 Concurrency

Dicts use Go’s sync.Map under the hood and are therefore concurrency-safe. The global symbol table
is also cuncurrency-safe. This means that dicts can be accessed safely from futures and tasks and can
even be used for synchronization purposes, as the (admittedly horrible) current implementation of
tasks in embed/init.lisp illustrates. Generally, futures should be used and can be spawned in large
quantities without much of a performance penalty. Tasks need some work to become efficient and
there are plans to include a more direct interface to Go’s goroutines with cancelable contexts in the
future.

4.4 File Access

For obvious reasons, not all embedded interpreters should provide full file access. Therefore, this option
needs to be enabled with build tag fileio, or otherwise none of the filesystem-related functions will
be available. The z3Makefile in cmd/z3 enables this option by default for the standalone executable.

4.5 Images

Z3S5 Lisp supports the writing and reading of Lisp images called “zimages”. To save a zimage, use
(save-zimage <version> <info> <entry-point> <file>), where the <version> must be
a semver string and <info> a list. The entry point is a procedure that is executed after the image has
been loaded and can be nil for not executing anything. The filename <file> by convention ends in .
zimage. To load such an image, overwriting the current lisp system, use (load-zimage <file>).

Important limitations need to be kept in mind when working with zimages. Symbols will get unpro-
tected when loading a zimage and therefore the interpreter must have the permission to unprotect
symbols. See declare-unprotected, protect, unprotect, and protected? for more informa-
tion. Symbols may also be declared volatile with declare-volatile and some of the predefined
global variables such as *tasks* are already declared volatile. A volatile toplevel symbol is neither
written to a zimage nor is a symbol marked volatile in the running system overwritten when it is present
in a zimage and the image is loaded. This can be a rare source of incompatibility; there is currently no
way to force the loading of a symbol in the image when it is declared volatile in the running system
and providing such a mechanism would introduce new problems. You should declare as volatile any
symbol that cannot be overwritten because it contains data essential to the running system, and at the
same time be aware of the possibility that a global symbol might be declared volatile in the future and
therefore not be loaded. Use prefixes and sanity checks where necessary to avoid problems.

Finally, not all values can be externalized. For example, ports, tasks, futures, and mutexes cannot be
externalized. If a symbol bound to such a value is declared volatile, then it is neither written nor loaded.

2.4+560e0ea 12



Z3S5 Lisp User Manual 2023-9-24 16:00

If it is not volatile, however, then the value nil is written and loaded for it. For most applications this
is desirable. The procedure in your entry point can check for nil and make sure to re-introduce the
desired state of such values after loading an image if this is necessary for the proper functioning of the
system. In general, it is desirable to use initialization functions and not rely on global variables when
dealing with images.

4.6 Database Access

The build tags db and fts5 enable a database module with Sqlite3 support. See (dump 'db.) for
available functions and consult the reference and help system for more information on them. The tag
fts5 is required if db is used, since the key-value module kvdb makes use of the fts5 text indexing
features of Sqlite. So the tags always have to be combined.

Take a look at (dump 'kvdb) for more information about the key-value database and look up (help
remember) for information on the remember system. Basically, you can use(remember key value)
to remember a value, (recall key)=> value to recall it, and (forget key) to forget it. However,
this requires (init-remember) to be executed first once. In the z3 executable this is loaded in the
local init.lisp file that also prints the start banner, but you might want to disable it if you don’t use
remember because it slows down startup.

4.7 Object-oriented Programming

The extension for object-oriented programming is embedded into the init file and adds the symbol
oop in *reflect*. It provides a simple object system with multiple inheritance and more lightweight
structure. Both of them are based on arrays whose first element is a symbol starting with %, so it is best
not to use arrays starting with such symbols for other purposes.

4.7.1 Classes, Objects, Methods

Classes should be created with the defclass macro; there are other ways of creating them but this
is most convenient. When a class is created, it’s name, a possibly empty list of superclasses, and if
necessary some properties can be declared:

1 (defclass named nil (name "<unknown>"))

This defines a class called named with no superclasses and a name property with default value "<
unknown>". Methods that subclasses shall inherit must be defined before the respective subclass is
defined. So let’s add a convenience method to retrieve the name:

2.4+560e0ea 13



Z3S5 Lisp User Manual 2023-9-24 16:00

1 (defmethod named-name (this) (prop this 'name))

This method takes the instance of the class as first argument (“this”) and retrieves the instance’s
property name. The name in the first unquoted argument must be composed out of a valid class name
and the method name. The following definitions illustrate inheritance:

1 (defclass point (named) (x 0) (y 0))
2 (defmethod point-move (this delta-x delta-y)
3 (setprop this 'x (+ (prop this 'x) delta-x))
4 (setprop this 'y (+ (prop this 'y) delta-y)))

This defines a named point with methodspoint-nameandpoint-move, where the former is inherited
from the superclass named. To make instances, use new as follows:

1 (setq a (new point (x 10) (y 20) (name "A")))
2 (point-name a)
3 ==> "A"
4 (prop a 'x)
5 (setprop a 'x 99)
6 (prop a 'x)
7 ==> 99
8 (point-move a 1 20)
9 (prop a 'x)

10 ==> 100
11 (prop a 'y)
12 ==> 40

As you can see in the example, the “this” argument must be named in the definition of point-move
but when calling the method does not need to be taken into account; when the method is called, the
first argument is always the object it is called upon. If no property value is specified in a new call, then
a property gets its default value. If no default value has been specified during class definition, then the
value is nil. Aside from the direct names bound by defmethod, it is also possible to use the method
function to call methods, and properties can be get and set withprop andsetprop respectively. There
are a few more helper functions such as object? and class? to test for objects and classes, as well
as isa? for checking whether an object is a subclass of a given class. Check out the “Object-oriented
Programming” section of the Reference Manual for a complete list.

One thing to bear in mind when using this very simple OOP extension is that everything is defined
dynamically at runtime and order matters. If you instantiate a class before all of its methods are defined,
the resulting object will not take into account any future changes or definitions of the class, it will just
be derived from the current state of the class. Likewise, when a subclass is defined, the methods of the
superclass need to be defined already or else they will not become part of the subclass. If you look at
the implementation, you can see why: It simply copies symbols and their closure from dictionaries.

2.4+560e0ea 14



Z3S5 Lisp User Manual 2023-9-24 16:00

4.7.2 Structures

Structures are more lightweight array-based representations of named fields without inheritance. They
are similar to association lists and the corresponding macros allow the getting and setting of values
based on a name in the struct (which is just an assessor to the array):

1 (defstruct point (x 0) (y 0))

This is similar to the previous example but no inheritance is possible. Instances of a struct are arays
called “records” and created with make and make*:

1 (setq a (make point '((x 20)(y 100))))
2 (setq b (make* point (x 10) (y 10)))
3 (point-x a)
4 ==> 20
5 (point-x! a 30)
6 (point-x a)
7 ==> 30

That’s about it. These macros basically just provide conveniently named getter and setter functions for
arrays. Consult the Reference Manual for a complete list of all structure-related functions.

4.8 Language Stability

At this stage, built-in commands may still change. The good news is that any change introduced in
Z3S5 Lisp needs to be tracked and checked in Z3S5 Machine, and so no larger changes are planned.
However, no guarantees can be made and you should vendor the repository or even fork it if you want
to make sure no breaking changes occur. Once the language is stable, it will be marked on the home
page.

4.9 Known Bugs

Since this language has been ported from a larger system, there may be known bugs not in the issue
tracker at Github. A known issue of this version is a problem with the recursive externalization of Dict
containing Dict.

4.10 Roadmap

A library system, a robust key-value database with fulltext search, some basic OOP, and a simple
persistence layer will likely be ported from Z3S5 Machine to this embedded Lisp in the future.

2.4+560e0ea 15



Z3S5 Lisp User Manual 2023-9-24 16:00

5 Extending Z3S5 Lisp

The system is extended by calling interp.Def. As an example, consider the following function from
lisp_base.go:

1 // (str->chars s) => array of int convert a UTF-8 string into an
array of runes

2 interp.Def("str->chars", 1, func(a []any) any {
3 runes := []rune(norm.NFC.String(a[0].(string)))
4 arr := make([]any, len(runes), len(runes))
5 for i := range runes {
6 arr[i] = goarith.AsNumber(runes[i])
7 }
8 return arr
9 })

The Def function takes the function symbol as string, the number n of arguments, and a function that
takes an array of any and returns a value any (aka interface{}). The function may explicitly check
the type of the arguments for correctness but doesn’t need to. It is normal for functions to panic and
even deliberately throw an error. These are caught by the intepreter and displayed to the user. So
how much you check depends primarily on what errors you want to provide. By convenience, custom
errors thrown in function definitions start with the name of the function such as panic(error.New
("foobar: the foobar function has failed")) for a function foobar. If a function returns
no value, then the definition should return Void, a special Lisp value that is not printed in the read-
eval-print loop.

Care must be taken with numbers. Pure Go numbers will not do and may lead to bizzare and unex-
pected runtime behavior. Every number needs to be converted using goarith.AsNumber and other
conversion functions from z3s5-lisp and the package github.com/nukata/goarith. Check the
source code of some of the implementation files for examples. Again, this is really important: Always
convert Go numbers to bigint numbers with goarith.AsNumber!

There are a few helper functions such as ExpectInts that can be used for checking arguments. Other
useful conversion functions are AsBool, ToLispBool, ArrayToList, ListToArray, etc.

Notice that lists are structures composed by &Cell{Car: a, Cdr: b}, where Cdr might be another
Cell and the final Cdr is Nil, just like in any Lisp. If you construct these without the member names
Car and Cdr Go will complain about this and refuse to compile, even though in this case it is perfectly
fine to use anonymous access. If you want to create a lot of lists by hand in your function definitions
without creating runtime performance penalties by using functions like ArrayToList, then it might
make sense to switch off this behavior of the go vet command by running go vet -composites=
false instead. Of course, this will also disable such checks for other parts of your application where
they might be useful. The only other way is to make the list construction fully explicit, as in: &z3

2.4+560e0ea 16



Z3S5 Lisp User Manual 2023-9-24 16:00

.Cell{z3.NewSym("hello"), &z3.Cell{z3.NewSym("world"), z3.Nil}} which yields the
list (hello world).

Custom data structures: Since there is currently no way to modify the printer for custom structures
directly in the Lisp system, it is best to put them into a box using interp.DefBoxed, which takes a
symbol for a boxed value and creates a number of auxiliary functions. See lisp_decimal.go for an
example of how to use boxed values.

6 License

Z3S5 Lisp was written by RAST Erich and is based on Nukata Lisp by SUZUKI Hisao. It is licensed under
the MIT License that allows free use and modification as long as the copyright notices remain. Please
read the LICENSE file for more information.

This document is Copyright (c) 2022 by Erich Rast.

2.4+560e0ea 17

https://github.com/rasteric/z3s5-lisp
https://github.com/nukata/lisp-in-go
https://github.com/rasteric/z3s5-lisp/blob/main/LICENSE

	Introduction
	Invoking Lisp
	The Standalone Interpreter
	Using the Interpreter in Go

	Data Types

	Writing Programs
	Finding Functions and Online Help
	Peculiarities of Z3S5 Lisp
	Basic Control Flow and Examples

	GUI Programming
	Embedding the GUI
	GUI Basics
	Examples

	Advanced Topics
	Error Handling
	Debugging
	Concurrency
	File Access
	Images
	Database Access
	Object-oriented Programming
	Classes, Objects, Methods
	Structures

	Language Stability
	Known Bugs
	Roadmap

	Extending Z3S5 Lisp
	License

