{ "cells": [ { "attachments": {}, "cell_type": "markdown", "id": "6df76a1f", "metadata": {}, "source": [ "# Using MLflow with Tune\n", "\n", "(tune-mlflow-ref)=\n", "\n", "[MLflow](https://mlflow.org/) is an open source platform to manage the ML lifecycle, including experimentation,\n", "reproducibility, deployment, and a central model registry. It currently offers four components, including\n", "MLflow Tracking to record and query experiments, including code, data, config, and results.\n", "\n", "```{image} /images/mlflow.png\n", ":align: center\n", ":alt: MLflow\n", ":height: 80px\n", ":target: https://www.mlflow.org/\n", "```\n", "\n", "Ray Tune currently offers two lightweight integrations for MLflow Tracking.\n", "One is the {ref}`MLflowLoggerCallback <tune-mlflow-logger>`, which automatically logs\n", "metrics reported to Tune to the MLflow Tracking API.\n", "\n", "The other one is the {ref}`setup_mlflow <tune-mlflow-setup>` function, which can be\n", "used with the function API. It automatically\n", "initializes the MLflow API with Tune's training information and creates a run for each Tune trial.\n", "Then within your training function, you can just use the\n", "MLflow like you would normally do, e.g. using `mlflow.log_metrics()` or even `mlflow.autolog()`\n", "to log to your training process.\n", "\n", "```{contents}\n", ":backlinks: none\n", ":local: true\n", "```\n", "\n", "## Running an MLflow Example\n", "\n", "In the following example we're going to use both of the above methods, namely the `MLflowLoggerCallback` and\n", "the `setup_mlflow` function to log metrics.\n", "Let's start with a few crucial imports:" ] }, { "cell_type": "code", "execution_count": 1, "id": "b0e47339", "metadata": {}, "outputs": [], "source": [ "import os\n", "import tempfile\n", "import time\n", "\n", "import mlflow\n", "\n", "from ray import train, tune\n", "from ray.air.integrations.mlflow import MLflowLoggerCallback, setup_mlflow\n" ] }, { "attachments": {}, "cell_type": "markdown", "id": "618b6935", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "Next, let's define an easy training function (a Tune `Trainable`) that iteratively computes steps and evaluates\n", "intermediate scores that we report to Tune." ] }, { "cell_type": "code", "execution_count": 2, "id": "f449538e", "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "def evaluation_fn(step, width, height):\n", " return (0.1 + width * step / 100) ** (-1) + height * 0.1\n", "\n", "\n", "def train_function(config):\n", " width, height = config[\"width\"], config[\"height\"]\n", "\n", " for step in range(config.get(\"steps\", 100)):\n", " # Iterative training function - can be any arbitrary training procedure\n", " intermediate_score = evaluation_fn(step, width, height)\n", " # Feed the score back to Tune.\n", " train.report({\"iterations\": step, \"mean_loss\": intermediate_score})\n", " time.sleep(0.1)\n" ] }, { "attachments": {}, "cell_type": "markdown", "id": "722e5d2f", "metadata": { "pycharm": { "name": "#%% md\n" } }, "source": [ "Given an MLFlow tracking URI, you can now simply use the `MLflowLoggerCallback` as a `callback` argument to\n", "your `RunConfig()`:" ] }, { "cell_type": "code", "execution_count": 3, "id": "8e0b9ab7", "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "def tune_with_callback(mlflow_tracking_uri, finish_fast=False):\n", " tuner = tune.Tuner(\n", " train_function,\n", " tune_config=tune.TuneConfig(num_samples=5),\n", " run_config=train.RunConfig(\n", " name=\"mlflow\",\n", " callbacks=[\n", " MLflowLoggerCallback(\n", " tracking_uri=mlflow_tracking_uri,\n", " experiment_name=\"mlflow_callback_example\",\n", " save_artifact=True,\n", " )\n", " ],\n", " ),\n", " param_space={\n", " \"width\": tune.randint(10, 100),\n", " \"height\": tune.randint(0, 100),\n", " \"steps\": 5 if finish_fast else 100,\n", " },\n", " )\n", " results = tuner.fit()\n" ] }, { "attachments": {}, "cell_type": "markdown", "id": "e086f110", "metadata": {}, "source": [ "To use the `setup_mlflow` utility, you simply call this function in your training function.\n", "Note that we also use `mlflow.log_metrics(...)` to log metrics to MLflow.\n", "Otherwise, this version of our training function is identical to its original." ] }, { "cell_type": "code", "execution_count": 4, "id": "144b8f39", "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "def train_function_mlflow(config):\n", " tracking_uri = config.pop(\"tracking_uri\", None)\n", " setup_mlflow(\n", " config,\n", " experiment_name=\"setup_mlflow_example\",\n", " tracking_uri=tracking_uri,\n", " )\n", "\n", " # Hyperparameters\n", " width, height = config[\"width\"], config[\"height\"]\n", "\n", " for step in range(config.get(\"steps\", 100)):\n", " # Iterative training function - can be any arbitrary training procedure\n", " intermediate_score = evaluation_fn(step, width, height)\n", " # Log the metrics to mlflow\n", " mlflow.log_metrics(dict(mean_loss=intermediate_score), step=step)\n", " # Feed the score back to Tune.\n", " train.report({\"iterations\": step, \"mean_loss\": intermediate_score})\n", " time.sleep(0.1)\n" ] }, { "attachments": {}, "cell_type": "markdown", "id": "dc480366", "metadata": {}, "source": [ "With this new objective function ready, you can now create a Tune run with it as follows:" ] }, { "cell_type": "code", "execution_count": 5, "id": "4b9fe6be", "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [], "source": [ "def tune_with_setup(mlflow_tracking_uri, finish_fast=False):\n", " # Set the experiment, or create a new one if does not exist yet.\n", " mlflow.set_tracking_uri(mlflow_tracking_uri)\n", " mlflow.set_experiment(experiment_name=\"setup_mlflow_example\")\n", "\n", " tuner = tune.Tuner(\n", " train_function_mlflow,\n", " tune_config=tune.TuneConfig(num_samples=5),\n", " run_config=train.RunConfig(\n", " name=\"mlflow\",\n", " ),\n", " param_space={\n", " \"width\": tune.randint(10, 100),\n", " \"height\": tune.randint(0, 100),\n", " \"steps\": 5 if finish_fast else 100,\n", " \"tracking_uri\": mlflow.get_tracking_uri(),\n", " },\n", " )\n", " results = tuner.fit()\n" ] }, { "attachments": {}, "cell_type": "markdown", "id": "915dfd30", "metadata": {}, "source": [ "If you hapen to have an MLFlow tracking URI, you can set it below in the `mlflow_tracking_uri` variable and set\n", "`smoke_test=False`.\n", "Otherwise, you can just run a quick test of the `tune_function` and `tune_decorated` functions without using MLflow." ] }, { "cell_type": "code", "execution_count": 6, "id": "05d11774", "metadata": { "pycharm": { "name": "#%%\n" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2022-12-22 10:37:53,580\tINFO worker.py:1542 -- Started a local Ray instance. View the dashboard at \u001b[1m\u001b[32mhttp://127.0.0.1:8265 \u001b[39m\u001b[22m\n" ] }, { "data": { "text/html": [ "<div class=\"tuneStatus\">\n", " <div style=\"display: flex;flex-direction: row\">\n", " <div style=\"display: flex;flex-direction: column;\">\n", " <h3>Tune Status</h3>\n", " <table>\n", "<tbody>\n", "<tr><td>Current time:</td><td>2022-12-22 10:38:04</td></tr>\n", "<tr><td>Running for: </td><td>00:00:06.73 </td></tr>\n", "<tr><td>Memory: </td><td>10.4/16.0 GiB </td></tr>\n", "</tbody>\n", "</table>\n", " </div>\n", " <div class=\"vDivider\"></div>\n", " <div class=\"systemInfo\">\n", " <h3>System Info</h3>\n", " Using FIFO scheduling algorithm.<br>Resources requested: 0/16 CPUs, 0/0 GPUs, 0.0/4.03 GiB heap, 0.0/2.0 GiB objects\n", " </div>\n", " \n", " </div>\n", " <div class=\"hDivider\"></div>\n", " <div class=\"trialStatus\">\n", " <h3>Trial Status</h3>\n", " <table>\n", "<thead>\n", "<tr><th>Trial name </th><th>status </th><th>loc </th><th style=\"text-align: right;\"> height</th><th style=\"text-align: right;\"> width</th><th style=\"text-align: right;\"> loss</th><th style=\"text-align: right;\"> iter</th><th style=\"text-align: right;\"> total time (s)</th><th style=\"text-align: right;\"> iterations</th><th style=\"text-align: right;\"> neg_mean_loss</th></tr>\n", "</thead>\n", "<tbody>\n", "<tr><td>train_function_b275b_00000</td><td>TERMINATED</td><td>127.0.0.1:801</td><td style=\"text-align: right;\"> 66</td><td style=\"text-align: right;\"> 36</td><td style=\"text-align: right;\">7.24935</td><td style=\"text-align: right;\"> 5</td><td style=\"text-align: right;\"> 0.587302</td><td style=\"text-align: right;\"> 4</td><td style=\"text-align: right;\"> -7.24935</td></tr>\n", "<tr><td>train_function_b275b_00001</td><td>TERMINATED</td><td>127.0.0.1:813</td><td style=\"text-align: right;\"> 33</td><td style=\"text-align: right;\"> 35</td><td style=\"text-align: right;\">3.96667</td><td style=\"text-align: right;\"> 5</td><td style=\"text-align: right;\"> 0.507423</td><td style=\"text-align: right;\"> 4</td><td style=\"text-align: right;\"> -3.96667</td></tr>\n", "<tr><td>train_function_b275b_00002</td><td>TERMINATED</td><td>127.0.0.1:814</td><td style=\"text-align: right;\"> 75</td><td style=\"text-align: right;\"> 29</td><td style=\"text-align: right;\">8.29365</td><td style=\"text-align: right;\"> 5</td><td style=\"text-align: right;\"> 0.518995</td><td style=\"text-align: right;\"> 4</td><td style=\"text-align: right;\"> -8.29365</td></tr>\n", "<tr><td>train_function_b275b_00003</td><td>TERMINATED</td><td>127.0.0.1:815</td><td style=\"text-align: right;\"> 28</td><td style=\"text-align: right;\"> 63</td><td style=\"text-align: right;\">3.18168</td><td style=\"text-align: right;\"> 5</td><td style=\"text-align: right;\"> 0.567739</td><td style=\"text-align: right;\"> 4</td><td style=\"text-align: right;\"> -3.18168</td></tr>\n", "<tr><td>train_function_b275b_00004</td><td>TERMINATED</td><td>127.0.0.1:816</td><td style=\"text-align: right;\"> 20</td><td style=\"text-align: right;\"> 18</td><td style=\"text-align: right;\">3.21951</td><td style=\"text-align: right;\"> 5</td><td style=\"text-align: right;\"> 0.526536</td><td style=\"text-align: right;\"> 4</td><td style=\"text-align: right;\"> -3.21951</td></tr>\n", "</tbody>\n", "</table>\n", " </div>\n", "</div>\n", "<style>\n", ".tuneStatus {\n", " color: var(--jp-ui-font-color1);\n", "}\n", ".tuneStatus .systemInfo {\n", " display: flex;\n", " flex-direction: column;\n", "}\n", ".tuneStatus td {\n", " white-space: nowrap;\n", "}\n", ".tuneStatus .trialStatus {\n", " display: flex;\n", " flex-direction: column;\n", "}\n", ".tuneStatus h3 {\n", " font-weight: bold;\n", "}\n", ".tuneStatus .hDivider {\n", " border-bottom-width: var(--jp-border-width);\n", " border-bottom-color: var(--jp-border-color0);\n", " border-bottom-style: solid;\n", "}\n", ".tuneStatus .vDivider {\n", " border-left-width: var(--jp-border-width);\n", " border-left-color: var(--jp-border-color0);\n", " border-left-style: solid;\n", " margin: 0.5em 1em 0.5em 1em;\n", "}\n", "</style>\n" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<div class=\"trialProgress\">\n", " <h3>Trial Progress</h3>\n", " <table>\n", "<thead>\n", "<tr><th>Trial name </th><th>date </th><th>done </th><th>episodes_total </th><th>experiment_id </th><th>experiment_tag </th><th>hostname </th><th style=\"text-align: right;\"> iterations</th><th style=\"text-align: right;\"> iterations_since_restore</th><th style=\"text-align: right;\"> mean_loss</th><th style=\"text-align: right;\"> neg_mean_loss</th><th>node_ip </th><th style=\"text-align: right;\"> pid</th><th style=\"text-align: right;\"> time_since_restore</th><th style=\"text-align: right;\"> time_this_iter_s</th><th style=\"text-align: right;\"> time_total_s</th><th style=\"text-align: right;\"> timestamp</th><th style=\"text-align: right;\"> timesteps_since_restore</th><th>timesteps_total </th><th style=\"text-align: right;\"> training_iteration</th><th>trial_id </th><th style=\"text-align: right;\"> warmup_time</th></tr>\n", "</thead>\n", "<tbody>\n", "<tr><td>train_function_b275b_00000</td><td>2022-12-22_10-38-01</td><td>True </td><td> </td><td>28feaa4dd8ab4edab810e8109e77502e</td><td>0_height=66,width=36</td><td>kais-macbook-pro.anyscale.com.beta.tailscale.net</td><td style=\"text-align: right;\"> 4</td><td style=\"text-align: right;\"> 5</td><td style=\"text-align: right;\"> 7.24935</td><td style=\"text-align: right;\"> -7.24935</td><td>127.0.0.1</td><td style=\"text-align: right;\"> 801</td><td style=\"text-align: right;\"> 0.587302</td><td style=\"text-align: right;\"> 0.126818</td><td style=\"text-align: right;\"> 0.587302</td><td style=\"text-align: right;\"> 1671705481</td><td style=\"text-align: right;\"> 0</td><td> </td><td style=\"text-align: right;\"> 5</td><td>b275b_00000</td><td style=\"text-align: right;\"> 0.00293493</td></tr>\n", "<tr><td>train_function_b275b_00001</td><td>2022-12-22_10-38-04</td><td>True </td><td> </td><td>245010d0c3d0439ebfb664764ae9db3c</td><td>1_height=33,width=35</td><td>kais-macbook-pro.anyscale.com.beta.tailscale.net</td><td style=\"text-align: right;\"> 4</td><td style=\"text-align: right;\"> 5</td><td style=\"text-align: right;\"> 3.96667</td><td style=\"text-align: right;\"> -3.96667</td><td>127.0.0.1</td><td style=\"text-align: right;\"> 813</td><td style=\"text-align: right;\"> 0.507423</td><td style=\"text-align: right;\"> 0.122086</td><td style=\"text-align: right;\"> 0.507423</td><td style=\"text-align: right;\"> 1671705484</td><td style=\"text-align: right;\"> 0</td><td> </td><td style=\"text-align: right;\"> 5</td><td>b275b_00001</td><td style=\"text-align: right;\"> 0.00553799</td></tr>\n", "<tr><td>train_function_b275b_00002</td><td>2022-12-22_10-38-04</td><td>True </td><td> </td><td>898afbf9b906448c980f399c72a2324c</td><td>2_height=75,width=29</td><td>kais-macbook-pro.anyscale.com.beta.tailscale.net</td><td style=\"text-align: right;\"> 4</td><td style=\"text-align: right;\"> 5</td><td style=\"text-align: right;\"> 8.29365</td><td style=\"text-align: right;\"> -8.29365</td><td>127.0.0.1</td><td style=\"text-align: right;\"> 814</td><td style=\"text-align: right;\"> 0.518995</td><td style=\"text-align: right;\"> 0.123554</td><td style=\"text-align: right;\"> 0.518995</td><td style=\"text-align: right;\"> 1671705484</td><td style=\"text-align: right;\"> 0</td><td> </td><td style=\"text-align: right;\"> 5</td><td>b275b_00002</td><td style=\"text-align: right;\"> 0.0040431 </td></tr>\n", "<tr><td>train_function_b275b_00003</td><td>2022-12-22_10-38-04</td><td>True </td><td> </td><td>03a4476f82734642b6ab0a5040ca58f8</td><td>3_height=28,width=63</td><td>kais-macbook-pro.anyscale.com.beta.tailscale.net</td><td style=\"text-align: right;\"> 4</td><td style=\"text-align: right;\"> 5</td><td style=\"text-align: right;\"> 3.18168</td><td style=\"text-align: right;\"> -3.18168</td><td>127.0.0.1</td><td style=\"text-align: right;\"> 815</td><td style=\"text-align: right;\"> 0.567739</td><td style=\"text-align: right;\"> 0.125471</td><td style=\"text-align: right;\"> 0.567739</td><td style=\"text-align: right;\"> 1671705484</td><td style=\"text-align: right;\"> 0</td><td> </td><td style=\"text-align: right;\"> 5</td><td>b275b_00003</td><td style=\"text-align: right;\"> 0.00406194</td></tr>\n", "<tr><td>train_function_b275b_00004</td><td>2022-12-22_10-38-04</td><td>True </td><td> </td><td>ff8c7c55ce6e404f9b0552c17f7a0c40</td><td>4_height=20,width=18</td><td>kais-macbook-pro.anyscale.com.beta.tailscale.net</td><td style=\"text-align: right;\"> 4</td><td style=\"text-align: right;\"> 5</td><td style=\"text-align: right;\"> 3.21951</td><td style=\"text-align: right;\"> -3.21951</td><td>127.0.0.1</td><td style=\"text-align: right;\"> 816</td><td style=\"text-align: right;\"> 0.526536</td><td style=\"text-align: right;\"> 0.123327</td><td style=\"text-align: right;\"> 0.526536</td><td style=\"text-align: right;\"> 1671705484</td><td style=\"text-align: right;\"> 0</td><td> </td><td style=\"text-align: right;\"> 5</td><td>b275b_00004</td><td style=\"text-align: right;\"> 0.00332022</td></tr>\n", "</tbody>\n", "</table>\n", "</div>\n", "<style>\n", ".trialProgress {\n", " display: flex;\n", " flex-direction: column;\n", " color: var(--jp-ui-font-color1);\n", "}\n", ".trialProgress h3 {\n", " font-weight: bold;\n", "}\n", ".trialProgress td {\n", " white-space: nowrap;\n", "}\n", "</style>\n" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "2022-12-22 10:38:04,477\tINFO tune.py:772 -- Total run time: 7.99 seconds (6.71 seconds for the tuning loop).\n" ] }, { "data": { "text/html": [ "<div class=\"tuneStatus\">\n", " <div style=\"display: flex;flex-direction: row\">\n", " <div style=\"display: flex;flex-direction: column;\">\n", " <h3>Tune Status</h3>\n", " <table>\n", "<tbody>\n", "<tr><td>Current time:</td><td>2022-12-22 10:38:11</td></tr>\n", "<tr><td>Running for: </td><td>00:00:07.00 </td></tr>\n", "<tr><td>Memory: </td><td>10.7/16.0 GiB </td></tr>\n", "</tbody>\n", "</table>\n", " </div>\n", " <div class=\"vDivider\"></div>\n", " <div class=\"systemInfo\">\n", " <h3>System Info</h3>\n", " Using FIFO scheduling algorithm.<br>Resources requested: 0/16 CPUs, 0/0 GPUs, 0.0/4.03 GiB heap, 0.0/2.0 GiB objects\n", " </div>\n", " \n", " </div>\n", " <div class=\"hDivider\"></div>\n", " <div class=\"trialStatus\">\n", " <h3>Trial Status</h3>\n", " <table>\n", "<thead>\n", "<tr><th>Trial name </th><th>status </th><th>loc </th><th style=\"text-align: right;\"> height</th><th style=\"text-align: right;\"> width</th><th style=\"text-align: right;\"> loss</th><th style=\"text-align: right;\"> iter</th><th style=\"text-align: right;\"> total time (s)</th><th style=\"text-align: right;\"> iterations</th><th style=\"text-align: right;\"> neg_mean_loss</th></tr>\n", "</thead>\n", "<tbody>\n", "<tr><td>train_function_mlflow_b73bd_00000</td><td>TERMINATED</td><td>127.0.0.1:842</td><td style=\"text-align: right;\"> 37</td><td style=\"text-align: right;\"> 68</td><td style=\"text-align: right;\">4.05461</td><td style=\"text-align: right;\"> 5</td><td style=\"text-align: right;\"> 0.750435</td><td style=\"text-align: right;\"> 4</td><td style=\"text-align: right;\"> -4.05461</td></tr>\n", "<tr><td>train_function_mlflow_b73bd_00001</td><td>TERMINATED</td><td>127.0.0.1:853</td><td style=\"text-align: right;\"> 50</td><td style=\"text-align: right;\"> 20</td><td style=\"text-align: right;\">6.11111</td><td style=\"text-align: right;\"> 5</td><td style=\"text-align: right;\"> 0.652748</td><td style=\"text-align: right;\"> 4</td><td style=\"text-align: right;\"> -6.11111</td></tr>\n", "<tr><td>train_function_mlflow_b73bd_00002</td><td>TERMINATED</td><td>127.0.0.1:854</td><td style=\"text-align: right;\"> 38</td><td style=\"text-align: right;\"> 83</td><td style=\"text-align: right;\">4.0924 </td><td style=\"text-align: right;\"> 5</td><td style=\"text-align: right;\"> 0.6513 </td><td style=\"text-align: right;\"> 4</td><td style=\"text-align: right;\"> -4.0924 </td></tr>\n", "<tr><td>train_function_mlflow_b73bd_00003</td><td>TERMINATED</td><td>127.0.0.1:855</td><td style=\"text-align: right;\"> 15</td><td style=\"text-align: right;\"> 93</td><td style=\"text-align: right;\">1.76178</td><td style=\"text-align: right;\"> 5</td><td style=\"text-align: right;\"> 0.650586</td><td style=\"text-align: right;\"> 4</td><td style=\"text-align: right;\"> -1.76178</td></tr>\n", "<tr><td>train_function_mlflow_b73bd_00004</td><td>TERMINATED</td><td>127.0.0.1:856</td><td style=\"text-align: right;\"> 75</td><td style=\"text-align: right;\"> 43</td><td style=\"text-align: right;\">8.04945</td><td style=\"text-align: right;\"> 5</td><td style=\"text-align: right;\"> 0.656046</td><td style=\"text-align: right;\"> 4</td><td style=\"text-align: right;\"> -8.04945</td></tr>\n", "</tbody>\n", "</table>\n", " </div>\n", "</div>\n", "<style>\n", ".tuneStatus {\n", " color: var(--jp-ui-font-color1);\n", "}\n", ".tuneStatus .systemInfo {\n", " display: flex;\n", " flex-direction: column;\n", "}\n", ".tuneStatus td {\n", " white-space: nowrap;\n", "}\n", ".tuneStatus .trialStatus {\n", " display: flex;\n", " flex-direction: column;\n", "}\n", ".tuneStatus h3 {\n", " font-weight: bold;\n", "}\n", ".tuneStatus .hDivider {\n", " border-bottom-width: var(--jp-border-width);\n", " border-bottom-color: var(--jp-border-color0);\n", " border-bottom-style: solid;\n", "}\n", ".tuneStatus .vDivider {\n", " border-left-width: var(--jp-border-width);\n", " border-left-color: var(--jp-border-color0);\n", " border-left-style: solid;\n", " margin: 0.5em 1em 0.5em 1em;\n", "}\n", "</style>\n" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "<div class=\"trialProgress\">\n", " <h3>Trial Progress</h3>\n", " <table>\n", "<thead>\n", "<tr><th>Trial name </th><th>date </th><th>done </th><th>episodes_total </th><th>experiment_id </th><th>experiment_tag </th><th>hostname </th><th style=\"text-align: right;\"> iterations</th><th style=\"text-align: right;\"> iterations_since_restore</th><th style=\"text-align: right;\"> mean_loss</th><th style=\"text-align: right;\"> neg_mean_loss</th><th>node_ip </th><th style=\"text-align: right;\"> pid</th><th style=\"text-align: right;\"> time_since_restore</th><th style=\"text-align: right;\"> time_this_iter_s</th><th style=\"text-align: right;\"> time_total_s</th><th style=\"text-align: right;\"> timestamp</th><th style=\"text-align: right;\"> timesteps_since_restore</th><th>timesteps_total </th><th style=\"text-align: right;\"> training_iteration</th><th>trial_id </th><th style=\"text-align: right;\"> warmup_time</th></tr>\n", "</thead>\n", "<tbody>\n", "<tr><td>train_function_mlflow_b73bd_00000</td><td>2022-12-22_10-38-08</td><td>True </td><td> </td><td>62703cfe82e54d74972377fbb525b000</td><td>0_height=37,width=68</td><td>kais-macbook-pro.anyscale.com.beta.tailscale.net</td><td style=\"text-align: right;\"> 4</td><td style=\"text-align: right;\"> 5</td><td style=\"text-align: right;\"> 4.05461</td><td style=\"text-align: right;\"> -4.05461</td><td>127.0.0.1</td><td style=\"text-align: right;\"> 842</td><td style=\"text-align: right;\"> 0.750435</td><td style=\"text-align: right;\"> 0.108625</td><td style=\"text-align: right;\"> 0.750435</td><td style=\"text-align: right;\"> 1671705488</td><td style=\"text-align: right;\"> 0</td><td> </td><td style=\"text-align: right;\"> 5</td><td>b73bd_00000</td><td style=\"text-align: right;\"> 0.0030272 </td></tr>\n", "<tr><td>train_function_mlflow_b73bd_00001</td><td>2022-12-22_10-38-11</td><td>True </td><td> </td><td>03ea89852115465392ed318db8021614</td><td>1_height=50,width=20</td><td>kais-macbook-pro.anyscale.com.beta.tailscale.net</td><td style=\"text-align: right;\"> 4</td><td style=\"text-align: right;\"> 5</td><td style=\"text-align: right;\"> 6.11111</td><td style=\"text-align: right;\"> -6.11111</td><td>127.0.0.1</td><td style=\"text-align: right;\"> 853</td><td style=\"text-align: right;\"> 0.652748</td><td style=\"text-align: right;\"> 0.110796</td><td style=\"text-align: right;\"> 0.652748</td><td style=\"text-align: right;\"> 1671705491</td><td style=\"text-align: right;\"> 0</td><td> </td><td style=\"text-align: right;\"> 5</td><td>b73bd_00001</td><td style=\"text-align: right;\"> 0.00303078</td></tr>\n", "<tr><td>train_function_mlflow_b73bd_00002</td><td>2022-12-22_10-38-11</td><td>True </td><td> </td><td>3731fc2966f9453ba58c650d89035ab4</td><td>2_height=38,width=83</td><td>kais-macbook-pro.anyscale.com.beta.tailscale.net</td><td style=\"text-align: right;\"> 4</td><td style=\"text-align: right;\"> 5</td><td style=\"text-align: right;\"> 4.0924 </td><td style=\"text-align: right;\"> -4.0924 </td><td>127.0.0.1</td><td style=\"text-align: right;\"> 854</td><td style=\"text-align: right;\"> 0.6513 </td><td style=\"text-align: right;\"> 0.108578</td><td style=\"text-align: right;\"> 0.6513 </td><td style=\"text-align: right;\"> 1671705491</td><td style=\"text-align: right;\"> 0</td><td> </td><td style=\"text-align: right;\"> 5</td><td>b73bd_00002</td><td style=\"text-align: right;\"> 0.00310016</td></tr>\n", "<tr><td>train_function_mlflow_b73bd_00003</td><td>2022-12-22_10-38-11</td><td>True </td><td> </td><td>fb35841742b348b9912d10203c730f1e</td><td>3_height=15,width=93</td><td>kais-macbook-pro.anyscale.com.beta.tailscale.net</td><td style=\"text-align: right;\"> 4</td><td style=\"text-align: right;\"> 5</td><td style=\"text-align: right;\"> 1.76178</td><td style=\"text-align: right;\"> -1.76178</td><td>127.0.0.1</td><td style=\"text-align: right;\"> 855</td><td style=\"text-align: right;\"> 0.650586</td><td style=\"text-align: right;\"> 0.109097</td><td style=\"text-align: right;\"> 0.650586</td><td style=\"text-align: right;\"> 1671705491</td><td style=\"text-align: right;\"> 0</td><td> </td><td style=\"text-align: right;\"> 5</td><td>b73bd_00003</td><td style=\"text-align: right;\"> 0.0576491 </td></tr>\n", "<tr><td>train_function_mlflow_b73bd_00004</td><td>2022-12-22_10-38-11</td><td>True </td><td> </td><td>6d3cbf9ecc3446369e607ff78c67bc29</td><td>4_height=75,width=43</td><td>kais-macbook-pro.anyscale.com.beta.tailscale.net</td><td style=\"text-align: right;\"> 4</td><td style=\"text-align: right;\"> 5</td><td style=\"text-align: right;\"> 8.04945</td><td style=\"text-align: right;\"> -8.04945</td><td>127.0.0.1</td><td style=\"text-align: right;\"> 856</td><td style=\"text-align: right;\"> 0.656046</td><td style=\"text-align: right;\"> 0.109869</td><td style=\"text-align: right;\"> 0.656046</td><td style=\"text-align: right;\"> 1671705491</td><td style=\"text-align: right;\"> 0</td><td> </td><td style=\"text-align: right;\"> 5</td><td>b73bd_00004</td><td style=\"text-align: right;\"> 0.00265694</td></tr>\n", "</tbody>\n", "</table>\n", "</div>\n", "<style>\n", ".trialProgress {\n", " display: flex;\n", " flex-direction: column;\n", " color: var(--jp-ui-font-color1);\n", "}\n", ".trialProgress h3 {\n", " font-weight: bold;\n", "}\n", ".trialProgress td {\n", " white-space: nowrap;\n", "}\n", "</style>\n" ], "text/plain": [ "<IPython.core.display.HTML object>" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "2022-12-22 10:38:11,514\tINFO tune.py:772 -- Total run time: 7.01 seconds (6.98 seconds for the tuning loop).\n" ] } ], "source": [ "smoke_test = True\n", "\n", "if smoke_test:\n", " mlflow_tracking_uri = os.path.join(tempfile.gettempdir(), \"mlruns\")\n", "else:\n", " mlflow_tracking_uri = \"<MLFLOW_TRACKING_URI>\"\n", "\n", "tune_with_callback(mlflow_tracking_uri, finish_fast=smoke_test)\n", "if not smoke_test:\n", " df = mlflow.search_runs(\n", " [mlflow.get_experiment_by_name(\"mlflow_callback_example\").experiment_id]\n", " )\n", " print(df)\n", "\n", "tune_with_setup(mlflow_tracking_uri, finish_fast=smoke_test)\n", "if not smoke_test:\n", " df = mlflow.search_runs(\n", " [mlflow.get_experiment_by_name(\"setup_mlflow_example\").experiment_id]\n", " )\n", " print(df)\n" ] }, { "attachments": {}, "cell_type": "markdown", "id": "f0df0817", "metadata": {}, "source": [ "This completes our Tune and MLflow walk-through.\n", "In the following sections you can find more details on the API of the Tune-MLflow integration.\n", "\n", "## MLflow AutoLogging\n", "\n", "You can also check out {doc}`here </tune/examples/includes/mlflow_ptl_example>` for an example on how you can\n", "leverage MLflow auto-logging, in this case with Pytorch Lightning\n", "\n", "## MLflow Logger API\n", "\n", "(tune-mlflow-logger)=\n", "\n", "```{eval-rst}\n", ".. autoclass:: ray.air.integrations.mlflow.MLflowLoggerCallback\n", " :noindex:\n", "```\n", "\n", "## MLflow setup API\n", "\n", "(tune-mlflow-setup)=\n", "\n", "```{eval-rst}\n", ".. autofunction:: ray.air.integrations.mlflow.setup_mlflow\n", " :noindex:\n", "```\n", "\n", "## More MLflow Examples\n", "\n", "- {doc}`/tune/examples/includes/mlflow_ptl_example`: Example for using [MLflow](https://github.com/mlflow/mlflow/)\n", " and [Pytorch Lightning](https://github.com/PyTorchLightning/pytorch-lightning) with Ray Tune." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.7" }, "orphan": true }, "nbformat": 4, "nbformat_minor": 5 }