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In this article, we derive the general electromagnetic wave dispersion relation in a plasma, subject to a background
magnetic field, using Maxwell’s equations and the plasma fluid conservation laws. The plasma fluid conservation
laws are derived from the Boltzmann equation. Different modes of electromagnetic wave propagation are derived
from the non-trivial solution of the dispersion relation. Electromagnetic wave propagation is important for laser-based
diagnostics of laboratory plasmas, in order to obtain plasma properties such as plasma density and magnetic field. A
theoretical framework for the use of interferometry to determine the line-integrated plasma density, and the use of
Faraday polarimetry to determine the magnetic field, is presented. Finally, the methodology of determination of the
line-averaged plasma density from interferometry is also presented.

I. INTRODUCTION AND BACKGROUND

A plasma can be defined as ionized gas; a plasma has
at least two components - delocalized negatively charged
electrons, and positively charged ions1. Plasmas are the most
ubiquitous state of matter in the universe - stellar media,
interstellar matter, solar wind and solar corona, and cosmic
rays, are all composed of plasma4. When the energy of the
electron is high, electrons are able to overcome the Coulombic
potential well of the atom, and become delocalized. On earth,
plasmas are produced naturally by lightning, and are found
in the earth’s ionosphere4. Artificial plasmas are of particular
interest in fusion reactors1, as well as in plasma-synthesized
nanotechnology6.

Laboratory plasmas are also crucial to understanding the
physics of astrophysical plasmas52. In the laboratory, plasmas
can be generated by focusing a high-intensity laser beam onto
a surface, or by introducing a large current through a cylin-
drical wire (a configuration known as a Z-pinch). A common
approach is to use cylindrical wire arrays in pulsed-power
systems, which drive fast rising (∼ 100ns) and high-amplitude
(∼ 1MA) current pulses through inductive loads. When a
large current is applied to an a solid wire, it begins to boil,
vaporize and ionize, and eventually ablates plasma. The
strong current also generates strong azimuthal magnetic
fields around each wire; the magnetic field Bθ = µ0I/(2πr)
varies linearly with the current I and inversely with the radial
distance r from a cylindrical load. The Lorentz force (j×B)
accelerates the ablated plasma radially outwards or inwards
(depending on the geometry of the wire array). The magnetic
fields are advected by the accelerated plasma, creating high
velocity high energy density magnetized plasma flows. These
high-energy density plasmas are critical to the investigation
of plasma turbulence, magnetic reconnection and plasma
shocks. Laser-based refractive index diagnostic enable us
to visualize and determine fluctuations in plasma density,
velocity, and magnetic field.

A plasma is said to exhibit collective behavior and quasi-
neutrality1. Collective behavior means that the particles in a
plasma interact over large distances via long-range electro-

magnetic forces. Quasi-neutrality means that although the
plasma contains charged particles, the effective charge den-
sity in a plasma is zero. Any electric potential introduced into
the plasma is shielded out exponentially over a characteristic
length scale called the Debye length1. For quasi-neutrality to
apply, the length scale of the plasma must be much larger than
the Debye length, and there must be enough particles within a
Debye sphere to shield out introduced potentials1. The Debye
length λd is can be shown to be:

λd =

(
ε0kBTe

ne2

)1/2

(1)

Here, ε0 is the vacuum permittivity, kb is the Boltzmann con-
stant, Te is the electron temperature, n is the plasma density,
and e is the charge of a proton. In a plasma with singly-
charged ions, quasi-neutrality implies that:

ne ≈ ni ≈ n (2)

This is known as the plasma approximation.

In a plasma, quantum effects can be largely ignored if the
electron wavelength is small compared to the average inter-
particle separation. We assume the electron distribution func-
tion in an ionized plasma to be Maxwellian.

f (v) = n
(

me

2πkBTe

)1/2

exp
(
− v2

v2
th

)
(3)

Here, vth =
√

2kBTe/me is the thermal velocity, and me is
the electron mass. The thermal de Broglie electron wave-
length λth is then:

λth =
h

mvth
= h(2kbT me)

−1/2 (4)

Here, h is the Plank constant. Thus, quantum size effects
can be neglected when:

h(2kBT me)
−1/2n1/3� 1 (5)

The refractive index of a plasma is different than that
of vacuum. Thus, an electromagnetic wave propagating



2

through a plasma accumulates a phase relative to a wave
that propagates through vacuum. The phase difference can
be used to determine the plasma density. In addition, the
polarization of a linearly polarized wave is also changed by
the action of a magnetised plasma. This is called the Faraday
effect, and can be used to determine the magnetic field in a
plasma. The goal of this article is to provide a theoretical
description of electromagnetic wave propagation in plasmas,
and the use of refractive-index based diagnostic methods to
determine properties of the plasma through which the wave
propagates.

This article is structured as follows. The plasma fluid
mass and momentum conservation laws are derived from the
zero-th and first moments of Boltzmann equation respec-
tively. These conservation equations are then used together
with Maxwell’s equations and Ohm’s law to derive expres-
sions from the conductivity and dielectric tensors for a plasma.
Then, the general dispersion relation in a plasma, for an elec-
tromagnetic wave propagating at an angle to the background
magnetic field, is derived. The dispersion relation is solved
to determine the principal modes of propagation and the re-
fractive indices parallel and perpendicular to the unperturbed
magnetic field. The refractive indices are then used to develop
a theoretical framework for the use of laser interferometry to
determine the line-integrated plasma density, and the use of
Faraday polarimetry to determine the magnetic field. Finally,
a methodology of determination of the line-averaged plasma
density from the analysis of interferograms is presented.

II. CONSERVATION LAWS IN PLASMAS

In this section, we derive the plasma continuity and mo-
mentum equations from the Boltzmann equation. The Boltz-
mann equation relates the total rate of change of the distribu-
tion function f (r,v, t) to a collisional source term (∂ f/∂ t)c.

∂ f
∂ t

+v ·∇ f +
F
m
·∇v f =

(
∂ f
∂ t

)
c

(6)

Here, r and v are the position and velocity, F is the external
force, and m is the mass.

In a plasma, the external force is given by the Lorentz force
F = q(E+v×B). Thus, the Boltzmann equation for a plasma
becomes:

∂ f
∂ t

+v ·∇ f +
q
m
(E+v×B) ·∇v f

=

(
∂ f
∂ t

)
c

(7)

We can now take moments of Equation (7) to determine the
plasma continuity and momentum conservation equations.

A. Continuity Equation

The density is defined as:

n(r, t) =
∫

∞

−∞

f dv (8)

Therefore, we take the zero-th moment of Equation (7):∫
∂ f
∂ t

dv+
∫

v ·∇ f dv+
∫ q

m
(E+v×B)·∇v f dv=

∫ (
∂ f
∂ t

)
c
dv

(9)
We evaluate the integrals term-by-term. The first term is

just the time rate of change of the density n.∫
∂ f
∂ t

dv =
∂

∂ t

∫
f dv =

∂n
∂ t

(10)

The second term can be written as:∫
v ·∇ f dv =

∫
∇ ·vf− f ∇ ·v (11)

The second term on the right hand side vanishes because in
phase space v is not a function of r. Therefore, we get: The
second term can be written as:∫

v ·∇ f dv = ∇ ·
∫

v f = ∇ · (nu) (12)

Here, u is the mean velocity v̄.

Next, we look at the contribution of the electric field.∫
E ·∇v f dv =

∫
∇v ·E f dv =

∫
S

E f ·dS (13)

Where, Gauss’ theorem is used to convert the volume
integral to a surface integral. Since f → 0 falls to zero as
v→ ∞ for a distribution function with finite energy, the term
goes to 0.

The contribution of the magnetic field is:∫
(v×B) ·∇v f dv =

∫
∇v · f (v×B)dv

−
∫

f ∇v · (v×B)dv
(14)

The second term vanishes since ∇v · (v×B) = 0, and the
first term can again be converted to a velocity surface integral
evaluated at v→ ∞.

∫
(v×B) ·∇v f dv =

∫
S

f (v×B) ·dS = 0 (15)

Finally, the zero-th moment of the collisonal term is 0 be-
cause particle collisions conserve particle number.

∫ (
∂ f
∂ t

)
c
dv = 0 (16)

Therefore, the continuity equation is:

∂n
∂ t

+∇ · (nu) = 0 (17)
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B. Momentum Conservation Equation

The momentum is defined as:

p = mu = m
∫

∞

−∞

v f dv (18)

Therefore, we take the first moment of Equation (7).

m
∫

v
∂ f
∂ t

dv+m
∫

vv ·∇ f dv

+m
∫ q

m
v(E+v×B) ·∇v f dv = m

∫
v
(

∂ f
∂ t

)
c
dv

(19)

Again, we evaluate the equation term-by-term. The first
term gives us the time rate of change of momentum density.

m
∫

v
∂ f
∂ t

dv = m
∂

∂ t

∫
v f dv = mn

∂u
∂ t

(20)

The second term can we written as:

m
∫

∇ · (vv f )dv = ∇ ·mn < vv > (21)

Expressing the total velocity v as the superposition of a
mean velocity u and the thermal velocity w, we get:

mn < (u+w)(u+v)>= mn < uu+ww+uw >

= mnuu+P
(22)

Here, we use < w >= 0 and P = mn < ww > is the stress
tensor.

The force term becomes:∫
qv(E+v×B) ·∇v f dv

=
∫

∇v ·qv(E+v×B) f dv

−
∫

f q(E+v×B)dv

(23)

The first term becomes zero, as f → 0 when v→ ∞. The
second term becomes the total Lorentz force.∫

S∞

∇v ·qv(E+v×B) f dv =
∫

S
qv(E+v×B) f ·dS = 0

(24)∫
f q(E+v×B)dv = qn(E+v×B) (25)

Finally the collision term represents the momentum gained
by the fluid due to collisions with other fluids in the system.

m
∫

v
(

∂ f
∂ t

)
c
dv = Pij (26)

Collecting terms, and using the plasma continuity equation,
we get the plasma momentum equation:

mn
(

∂u
∂ t

+∂u ·∇∂u
)
=−∇ ·P+qn(E+v×B)+Pij (27)

III. ELECTROMAGNETIC DISPERSION RELATION

An electromagnetic wave obeys Maxwell’s equations:

∇×B = µ0j+µ0ε0
∂E
∂ t

(28)

∇×E =−∂B
∂ t

(29)

Here, µ0 is the magnetic constant, jjj is the current density,
BBB is the magnetic field, and EEE is the electric field.

Taking the curl of Equation (29) and substituting Equation
(28), we get:

∇×∇×E =− ∂

∂ t
∇×B (30)

∇×∇×E =− ∂

∂ t
(µ0j+µ0ε0

∂E
∂ t

) (31)

If we express the electric and magnetic fields as a super-
position of uniform homogeneous zero-th order components,
and time and space varying first order components (of the
form EEE1, jjj1 ∼ e−iωteik·x), and keep only the first-order terms,
we can express the wave equation (31) as:

k× (k×E) =− iω
c2

(
j

ε0
− iωE

)
(32)

Here, we have made the substitution c2 = 1/µ0ε0. kkk and
ω are the wavevector and frequency of the perturbed electric
field and charge density. The subscript 1 has been dropped
from first-order terms for simplicity. Using the identity k×
(k×E) = k(k ·E)−k2E, we get:

k(k ·E)− k2E+
ω2

c2 E+
iω

c2ε0
j = 0 (33)

Equation (33) represents the linearized electromagnetic
wave equation. In a vacuum, j = 0 and ∇ ·E = 0, so the dis-
persion relation for an electromagnetic wave propagating in
vacuum becomes:

ω
2 = c2k2 (34)

In a medium, using Ohm’s law, the current density j = σ ·E
can be written as the dot product of the conductivity tensor and
the electric field. Thus, we get:

(
kk+(

ω2

c2 − k2)I+
iω

c2ε0
σσσ

)
·E = 0 (35)

Introducing the dielectric tensor εεε = I+ iσσσ/(ωε0), we can
write:
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(
kk− k2I+

ω2

c2 εεε

)
·E = 0 (36)

We can determine an expression for the conductivity tensor
σσσ , and hence for the dielectric tensor εεε from:

jjj = ∑
s

jjjs = ∑
s

nsqsvvvs ≡∑
s

σσσ s ·E (37)

Where ns, qs and vsvsvs are the number density, charge and the
velocity of species s (electron and ion) in the plasma. From
the plasma fluid momentum equation, we can determine the
velocity as a function of the electric field. Here, we assume a
cold plasma (∇p≈ 0) and neglect collisions.

ms
Dvvvs

Dt
= qs (E+vvvs×B) (38)

Assuming the zero-th order magnetic field is BBB0 = B0ẑ̂ẑz, and
that the zero-th order velocity and electric fields are zero, we
linearize the momentum equation to get:

ms
∂vvvs

∂ t
= qs (E+vvvs×B0) (39)

Here, the subscript 1 has been dropped from first-order
terms for simplicity.

− imsω

vx
vy
vz


s

= qs

Ex
Ey
Ez

+qs

 vyB0
−vxB0

0


s

(40)

Or:

vx,s =
qs

ms

(
iωEx−ΩsEy

ω2−Ω2
s

)
(41)

vy,s =
qs

ms

(
iωEy +ΩsEx

ω2−Ω2
s

)
(42)

vz,s =
qs

ms

(
iEz

ω

)
(43)

Here, Ω = qB0/m is the cyclotron frequency, and repre-
sents the frequency with which a charged particle gyrates in
the plane perpendicular to the background magnetic field.

The current density jjj is:

jx,s = ε0
q2

s ns

msε0

(
iωEx−ΩsEy

ω2−Ω2
s

)
= ε0ω

2
ps

(
iωEx−ΩsEy

ω2−Ω2
s

)
(44)

jy,s = ε0
q2

s ns

msε0

(
iωEy +ΩsEx

ω2−Ω2
s

)
= ε0ω

2
ps

(
iωEy +ΩsEx

ω2−Ω2
s

)
(45)

jz,s = ε0
q2

s ns

msε0

(
iEz

ω

)
= ε0ω

2
p,s

(
iEz

ω

)
(46)

Here, ωp =
√

q2n/(ε0m) is the plasma frequency, and
represents a high-frequency electrostatic plasma oscillation.
Thus, the current density jjj can be represented as:

jjjs =σσσ s ·E = ε0ω
2
p,s


iω

ω2−Ω2
s

−Ωs
ω2−Ω2

s
0

Ωs
ω2−Ω2

s

iω
ω2−Ω2

s
0

0 0 i/ω

 ·EEE (47)

And the dielectric tensor εεε is:

εεε = I+ i
∑s σσσ s

ωε0
=

 S −iD 0
iD S 0
0 0 P

 (48)

Where:

S = 1−∑
s

ω2
p,s

ω2−Ω2
s

(49)

D = ∑
s

Ωs

ω

ω2
p,s

ω2−Ω2
s

(50)

P = 1−∑
s

ω2
p,s

ω2 (51)

In the case, where the ion contribution is small, i.e.
ω Ωi >> 1, we can approximate S, P and D as functions of
the electron contribution only.

Assuming the wavevector k is in the yz plane and forms an
angle θ with the unperturbed magnetic field B0ẑ, the dyadic
product kk becomes:

kk = k2

 sin2
θ 0 sinθ cosθ

0 0 0
sinθ cosθ 0 cos2 θ

 (52)

We can now construct the dispersion matrix as:

D =

(
kk− k2I+

ω2

c2 εεε

)
(53)

D=

k2 sin2
θ − k2 + ω2

c2 S −iD ω2

c2 k2 sinθ cosθ

iD ω2

c2 −k2 + ω2

c2 S 0
k2 sinθ cosθ 0 k2 cos2 θ − k2 + ω2

c2 P


(54)
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D =

−k2 cos2 θ + ω2

c2 S −iD ω2

c2 k2 sinθ cosθ

iD ω2

c2 −k2 + ω2

c2 S 0
k2 sinθ cosθ 0 −k2 sin2

θ + ω2

c2 P


(55)

Multiplying with c2/ω2 throughout, and using the relation
N = kc/ω for the refractive index N:

DN ·E=

−N2 cos2 θ +S −iD N2 sinθ cosθ

iD −N2 +S 0
N2 sinθ cosθ 0 −N2 sin2

θ +P

 ·E= 0

(56)
For non-trivial solutions the determinant of the dispersion

matrix must be zero, i.e det(DN) = 0. Thus, the dispersion
relation for an electromagnetic wave propagating an a plasma
at an angle θ compared to the background magnetic field is:

det

−N2 cos2 θ +S −iD N2 sinθ cosθ

iD −N2 +S 0
N2 sinθ cosθ 0 −N2 sin2

θ +P

= 0 (57)

For the special case where the unperturbed magnetic field
is small, , i.e. Ω/ω ≈ 0, and ignoring the ion contribution, we
get:

S = 1−
ω2

p,e

ω2−Ω2
e
≈ 1−

ω2
p,e

ω2 = P (58)

D =
Ωe

ω

ω2
p,e

ω2−Ω2
e
≈ 0 (59)

P = 1−
ω2

p,e

ω2 (60)

The dispersion relation is:

det

−N2 cos2 θ +P 0 N2 sinθ cosθ

0 −N2 +P 0
N2 sinθ cosθ 0 −N2 sin2

θ +P

= 0 (61)

The only non-trivial solution is:

N2 = P (62)

Or

ω
2 = c2k2 +ω

2
p (63)

This wave propagating through the plasma is termed the
ordinary wave.

For the case where the wave vector is perpendicular to the
unperturbed magnetic field, i.e. θ = π/2, the determinant of
the dispersion tensor is:

det

 S −iD 0
iD −N2 +S 0
0 0 −N2 +P

= 0 (64)

(P−n2)
(
S(S−n2)−D2)= 0 (65)

The solutions are:

N2 = P (66)

N2 =
S2−D2

S
(67)

The first solution is the same as that for the ordinary wave.
The ordinary wave is a transverse ( k⊥ E1) wave propagating
perpendicular to the background magnetic field (k⊥E1), with
the perturbed electric field parallel to the background mag-
netic field (E1 ‖ B0). The second solution represents the ex-
traordinary (X) wave, in which both the wavevector and the
perturbed electric field are perpendicular to the background
magnetic field (k ⊥ B0, E1 ⊥ B0), and the perturbed electric
field has components both perpendicular (transverse) and par-
allel (longitudinal) to the direction of propagation. For the
extraordinary wave, the dispersion relation is:

c2k2

ω2 = 1−
ω2

p

ω2

(
ω2−ω2

p

ω2−ω2
h

)
(68)

Here, ω2
h = ω2

p +ω2
c is terms the upper hybrid frequency.

Similarly, when the wave vector is along the unperturbed
magnetic field θ = 0, we get:

det

−N2 +S −iD 0
iD −N2 +S 0
0 0 P

= 0 (69)

P((S−N2)2−D2) = 0 (70)

The solutions are:

P = 0, N2 = S+D, N2 = S−D (71)

The solutions represent the electron plasma waves, and the
right and left circularly polarized waves respectively. We can
verify that the last two expressions result in circularly polar-
ized waves by substituting N2 = S±D into the dispersion re-
lation.

Ex

Ey
=

iD
S− (S±D)

=±i (72)

The dispersion relation for the right and left circularly po-
larized waves can be written as:

R = S+D = 1−
ω2

pe

ω(ω +Ωe)
(73)
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L = S−D = 1−
ω2

pe

ω(ω−Ωe)
(74)

Here, we have assumed that the ion contribution is small
compared to the electron contribution.

These solutions apply for the case of a constant and uniform
background medium. The Fourier transformation ∼ e−iωteik·xk·xk·x

no longer applies in media with spatial gradients. However,
for the case where the medium is slowly varying, the WKB
(Wentzel, Kramers Brillouin) approximation can be used:

E ∼ exp
(∫

k ·dl
)

exp(−iωt) (75)

The WKB approximation is valid when:

|∇k|
k2 << 1 (76)

IV. REFRACTIVE INDEX BASED PLASMA
DIAGNOSTICS

A. Laser Interferometry

Laser interferometry is a technique used to measure the
line integrated plasma density, and is based on the principle
of interference of two electromagnetic waves with different
phases. In a typical interferometer, a monochromatic beam is
split into a reference and a probe beam using a beam splitter.
The probe beam is then allowed to propagate through the
plasma, while the reference beam propagates via vacuum.
Since the refractive index of the plasma is different than that
of vacuum, the probing beam accumulates a different phase
compared to the reference beam as it propagates through the
plasma. The reference and probe beams, which now have
a relative phase difference between them, are allowed to
recombine and form an interference pattern at the target. The
phase difference between the two beams can be determined
form the interferogram, and the phase difference can then be
related to the plasma density.

Let us consider two monochromatic electromagnetic
waves:

Er = Er,0e−iωteikr·x (77)

Ep = Ep,0e−iωteikp·x (78)

The reference and probing waves are allowed to interfere at
the target. The total field becomes:

Et = Er +Ep =
(
Er,0eikr·x +Ep,0eikp·x

)
e−iωt (79)

The total intensity is:

It = Et ·E∗t (80)

It = |Er,0|2 + |Ep,0|2

+Er,0 ·Ep,0(ei(k1−k2)·x + e−i(k1−k2)·x)
(81)

Using the identity eiθ + e−iθ = 2cosθ , we get:

It = |Er,0|2 + |Ep,0|2 +2Er,0 ·Ep,0 cos((k1−k2) ·x) (82)

Or:

It = (|Er,0|2 + |Ep,0|2)
(

1+
2Er,0 ·Ep,0

|Er,0|2 + |Ep,0|2
cos∆φ

)
(83)

Where ∆φ = (k1−k2) ·x is the phase difference between
the reference and probe beams. Thus, we expect to observe a
periodic fluctuation of the total intensity of the interferogram
based on the value of the phase difference ∆φ between the
reference and probe beams.

Let us consider the situation where the plasma has a weak
magnetic field. In this case, the ordinary wave is the predomi-
nant mode of propagation. From Equation (63), the dispersion
relation is:

N2 =
k2c2

ω2 = 1−
ω2

p

ω2 (84)

When ω =ωp, the wave is cut-off. When ω <ωp, the wave
vector k becomes imaginary and the wave cannot propagate.
The wave is said to be evanescent and is damped exponen-
tially. The cutoff plasma density nc is:

nc =
ω2mε0

e2 (85)

And the refractive index can be written as:

N2 = 1−ne/nc (86)

The phase difference ∆φ between the reference beam and
the probing beam, using the WKB approximation, is:

∆φ =
∫

(k1−k2) ·dl =
ω

c

∫
1−
√

1−ω2
p/ω2dl (87)

In the limit where ω2
p/ω2 << 1, we can write:

∆φ =
1

2cω

∫
ω

2
pdl =

ω

2cnc

∫
nedl (88)

Thus, the phase difference between the reference and probe
beams can be used to determine the line integrated plasma
density.

B. Faraday Polarimetry

Faraday polarimetry is used to determine the magnetic
field in a plasma. This technique is based on the Faraday
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effect, which causes a linearly polarized wave’s electric field
vector to rotate as it propagates through a medium where the
principal modes are circularly polarized in the presence of a
magnetic field.

Assuming that the direction of propagation of the wave is
parallel to the background magnetic field, i.e. B = Bẑ,k ‖
B, then the perturbed electric field lies in the x-y plane. We
assume that the wave is initially linearly polarized with E =
Ex̂. The transverse components of the circularly polarized
modes satisfy:

Ex

Ey
=±i (89)

The total electric field is the superposition of the right and left
polarized waves:

E =
E
2

(
1
−i

)
eik+z +

E
2

(
1
i

)
eik−z (90)

Here, k+ and k− are the wave vectors of the right and left
polarized waves respectively, and E = E0e−iωt is the time
varying amplitude of the wave.

The x-component of E can be written as:

Ex =
E
2
(eik+z + eik−z) (91)

The sum of the exponential terms can be written as:

eim + ein = cosm+ cosn+ i(sinm+ sinn)

= 2cos(
m+n

2
)cos(

m−n
2

)

+2i
(

sin(
m+n

2
)cos(

m−n
2

)

)
= 2exp

(
i
m+n

2

)
cos(

m−n
2

)

(92)

Thus,

Ex =
E
2
(eik+z + eik−z) = Eexp

(
iz

k++ k−
2

)
cos
(

k+− k−
2

z
)

(93)
Similarly, the y-component of the electric field can be

shown to be:

Ey = i
E
2
(−eik+z+eik−z)=Eexp

(
i
k++ k−

2
z
)

sin
(

k+− k−
2

z
)

(94)
In terms of the refractive indices N± the propagating elec-

tric field is:

E = E exp
(

i
N++N−

2
ω

c
z
)(

cos(∆φ/2)
sin(∆φ/2)

)
(95)

Thus, the polarization of the electric field vector of a lin-
early polarized wave is rotated by an angle ∆φ(z) with respect

to the initial polarization of the wave. The Faraday rotation
angle is:

α(z) =
∆φ

2
=

N+−N−
2

ω

c
z (96)

In a plasma with a magnetic field Bẑ and the wave vec-
tor k ‖ B, the right and left circularly polarized waves, as de-
scribed by Equations (73) and (74), are obtained. The Faraday
rotation angle can then be calculated from Equation (96).

α(z) =

(
R1/2−L1/2

2

)
ω

c
z =

Ωeω2
pe

2c(ω2−Ω2
e)

z

≈
Ωeω2

pe

2cω2 z≈ e3

2ε0m2ω2c
(B · k̂̂k̂k)nez

(97)

In a slowly-varying plasma, and with an angle θ between
the wave vector and the magnetic field, the rotation angle can
be written as3:

α =
∆φ

2
=

1
2

∫
ω2

peΩe cosθ

ω2
(
1−ω2

pe/ω2
)1/2

dl
c

≈ e3

2cε0m2ω2

∫
neB ·dl for

ωpe

ω
� 1

(98)

Thus, we can determine the line integrated product of the
plasma density and magnetic field from Faraday polarimetry.

V. DETERMINATION OF PLASMA DENSITY USING
INTERFEROMETRY

In this section, we provide an example to show how
interferometry can be used to determine the plasma density
in laboratory plasmas. In a simple interferometry setup, a
beamsplitter splits a coherent laser beam into a reference
beam and a probing beam. The probing beam is allowed to
travel through the plasma, while the reference beam travels
through vacuum. The reference and probe beams are then
allowed to recombine at the target, which is typically a CCD.
If the probing and reference beams are misaligned, we get an
interference pattern. The interference pattern in the absence
of the plasma is compared with that in the presence of the
plasma to determine the phase shift introduced by the plasma.

In Figure 1, synthetic background and spot interferograms
are shown. These synthetic interferograms are produced by
calculating the total intensity of two plane electromagnetic
waves whose wavefronts are misaligned by a small angle α ,
that interfere at the target. In order to determine the phase
shift, we first trace the background and spot interferograms.
Each bright of dark fringe represents a constant phase differ-
ence. The fringes are then indexed, and the region between the
fringes is interpolated, as shown in Figure 2. The phase shift
is determined by subtracting the spot and background phase
maps, which is then converted into a line-averaged density
map using Equation (88), as shown in Figure 3.
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FIG. 1. Interference patterns from interference of reference and prob-
ing beams through vacuum (left) and plasma (right)

FIG. 2. The bright and dark fringes are traced and the area between
them is interpolated

FIG. 3. Subtracting the spot phase from the background phase de-
termines the phase map (left) which is then converted to an electron
density map(right)

VI. CONCLUSIONS

In this article, we derive the plasma continuity and momen-
tum equations from the Boltzmann equation. These conserva-
tion laws are then used to determine the conductivity tensor.
The conductivity tensor is used in the wave equation to deter-
mine the dispersion relation for electromagnetic waves. The
non-trivial solutions of the dispersion tensor give the princi-
pal modes of electromagnetic wave propagation through the
plasma. The refractive index of a plasma is different com-
pared to that of vacuum, so an electromagnetic wave propagat-
ing through the plasma accumulates a phase relative to a wave
which propagates through vacuum. We show that this phase
difference can be used to determine the line averaged plasma
density using interferometry. When the principal modes of
propagation are circularly polarized, the electric field vector
of the wave is rotated as is propagates through the plasma. We
show that this effect can be used to measure the line averaged
magnetic field in a plasma.
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