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Zusammenfassung

Die vorliegende Arbeit befasst sich mit dem Echtzeit-Rendering indirekter
Beleuchtung und anderer globaler Beleuchtungseffekte mit Hilfe des Voxel-
Cone-Tracing-Verfahrens, das von Crassin et al. entwickelt wurde [Cra+11].
Voxel-Cone-Tracing ist eines der ersten Verfahren, die eine annäherungsweise
Berechnung von dynamischen, indirekten Beleuchtungseffekten in Echtzeit er-
möglichen und dabei nicht auf Offline-Berechnungen im Vorhinein beruhen. Im
Gegensatz zu lokalen Beleuchtungsmodellen, wie dem Phong-Modell, ist es bei
indirekter Beleuchtung notwendig, die Interreflektionen zwischen allen Ober-
flächen in der Szene zu berücksichtigen, was die Berechnungszeit maßgeblich
erhöht. Beim Voxel-Cone-Tracing wird die Szene zunächst in eine hierarchi-
sche Voxel-Repräsentation übergeführt, die es erlaubt indirekte Beleuchtungs-
effekte durch das Cone-Tracing mit hohen Bildraten zu rendern. Ziel dieser
Arbeit ist es, einen Renderer zu implementieren der von dem Verfahren Ge-
brauch macht. Abschließend werden Verbesserungsmöglichkeiten sowie Vor-
und Nachteile des Verfahrens diskutiert.

Abstract

The present work deals with real-time rendering of indirect illumination and
other global illumination effects using voxel cone tracing, a rendering tech-
nique that was presented by Crassin et al. [Cra+11]. Voxel cone tracing is one
of the first techniques that allow for approximated calculation of fully dynamic
indirect illumination effects in real-time without relying on pre-computed so-
lutions. In contrast to local illumination models, such as the Phong model, for
indirect lighting it is necessary to calculate interreflections between the sur-
faces in the scene which vastly increases the computational complexity. Using
voxel cone tracing, the scene is converted into a hierarchical voxel representa-
tion which allows for cone tracing of secondary lighting effects at interactive
frame rates. The goal of this thesis is to implement a simple GPU-based
renderer using voxel cone tracing.
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1 Introduction

As illustrated in Figure 1, we can distinguish several ways in which light is
reflected in a scene. A fundamental distinction is whether the light is reflected
only once (direct light) or multiple times (indirect light) before it reaches the
eye. Early lighting models in real-time graphics were limited to direct light,
because it is fast to compute. Once it is determined whether a surface point is
visible from the light source, its lighting calculations are independent of other
objects in the scene and can be fully described by local information such as
material, normal and light direction information. The main disadvantage of
this approach is, however, that it produces a flat and unrealistic appearance
of the virtual scene (see Figure 2.a).

Lighting algorithms that additionally describe the light at a certain sur-
face point as a function of other geometries in the scene are hence called global
illumination algorithms. Since light is naturally scattered many times before
reaching the eye, global illumination algorithms are necessary for synthesiz-
ing naturally looking images of a virtual scene. Moreover, global lighting
effects are known to provide visual cues that help the viewer to understand
the volumetric structure and the spatial relationships of objects in the scene
[Sto+04; AMHH08]. For these reasons, there is a high interest in developing
real-time global illumination techniques, most notably in the entertainment,
architecture and design industry.

In this theses we will review the voxel cone tracing technique by develop-
ing a renderer that demonstrates voxel cone tracing-based global illumination
effects in real-time.
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Figure 1. Example scene with global illumination. The diffusely reflected rays on the left wall
indirectly lighten the floor under the table. The mirror on the wall is an example for specular
reflection and it also casts caustics both on the floor and on the table which create an indirect
shadow. Light reflected on the red canvas produces a color bleeding effect, and the Happy Buddha
wax sculpture on the table (courtesy of Stanford University) is an example for light scattering
in a semi-translucent object.

(a) Omitting indirect lighting re-
sults in strong contrasts between
lit and shaded regions. A constant
brightening term would make these
regions appear unshaded and flat.

(b) Single indirect light bounce.
Simulating a single indirect bounce
lightens shaded regions consider-
ably and enhances the realism of
the resulting image.

(c) Multiple indirect light bounces.
In many scenes, more indirect
bounces have a diminishing effect
since the probability of absorption
increases with each bounce.

Figure 2. Direct and indirect illumination. (Images courtesy of PDI/DreamWorks [TL04]).
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1.1 Thesis Outline
This thesis is organized in four main parts. In the following part (Chapter 2)
we provide a brief introduction to the mathematical framework used for light
transport calculations and we give a compact overview of rendering techniques
for real-time global illumination. At the end of this part we outline the voxel
cone tracing technique. Chapter 3 contains a detailed description of the im-
plemented renderer that makes use of voxel cone tracing to produce indirect
illumination, as well as soft shadows and ambient occlusion effects. In Chapter
4 we evaluate the results of the implementation and Chapter 5 summarizes
the results and discusses possible ways of improvement of the implemented
rendering method.

2 Theoretical Background

Lighting calculations are based on the interaction of electromagnetic radiation
and matter. Depending on the circumstances, light propagation is described
with different mathematical models. In increasing order of complexity, these
models are either based on rays using geometric optics, on electromagnetic
waves, or on photons described by particle physics. The wavelength of a
photon (which manifests as the color) is, however, the only wave property that
is always prominently noticeable to us. For this reason, even in photorealistic
image synthesis it usually suffices to model light propagation with geometric
optics [AMHH08].

For calculating the light propagation in a geometric scene it is useful to
have several radiometric measures at hand. The most basic one is the radiant
energy Q which is the total energy of a collection of photons and is measured
in joules. Since light sources emit a flow of photons one considers the radi-
ant energy per time unit, a quantity called radiant flux (or power) which is
measured in watts:

Φ =
dQ
dt

[
J

s
= W

]
.

All other quantities in radiometry are densities of flux. Irradiance (E) is a
flux area density, a measure for the flux that is incident upon a differential
surface segment from all directions. The surface segment dA can generally be
imaginary or part of an object in the scene.

E =
dΦ

dA

[
W

m2

]
.

The area density of flux leaving the surface is called radiosity. Similarily, we
can measure the flux that is incident upon a surface from a certain direction
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dω. The direction is expressed as a solid angle and measured in steradians.
The flux solid angle density is called radiant intensity :

I =
dΦ

dω

[
W

sr

]
.

Finally, we define radiance (L) as a measure for the flux at a differential surface
segment dA coming from or leaving towards a certain direction dω. We define
this quantity as the radiant intensity per unit projected area normal to the
beam direction A⊥:

L =
dI
dA⊥

=
d2Φ

dω dA⊥
=

d2Φ

dω dA cos θ

[
W

m2 sr

]
.

2.1 The Rendering Equation
The interactions of light under geometric optics approximation can be ex-
pressed by the Rendering Equation [Kaj86] which defines the outgoing radi-
ance Lo at a surface point x in direction ωo as the sum of emitted radiance
Le and the reflected radiance Lr:

Lo(x,ωo) = Le(x,ωo) + Lr(x,ωo)

= Le(x,ωo) +

∫
ωi∈Ω+

Li(x,ωi) fr(x,ωi → ωo) 〈N(x),ωi〉+ dωi . (2.1)

The reflected radiance is the weighted incident radiance Li coming from all
directions on the upper unit hemisphere Ω+ centered at the surface point x
and oriented around the surface normal N(x). The vector ωi is the negative
direction of the incoming light, 〈· · ·〉+ is a dot product that is clamped to zero,
and fr is the bidirectional reflectance distribution function or BRDF. The dot
product is a weakening factor that accounts for the increasing incident area
relative to the projected area perpendicular to the ray as the incident angle
increases.

The BRDF describes the reflectance properties at a surface point x when
viewed from direction ωo. It is defined as the ratio of the radiance that is
reflected toward ωo and the incoming radiance from direction ωi:

fr(x,ωi → ωo) =
dLo(x,ωo)

dLi(x,ωi) cos θi dωi
=

dLo(x,ωo)

dEi(x,ωi)
.

[
1

sr

]
(2.2)

Physically based BRDFs must be both symmetric fr(ωi → ωo) = fr(ωo →
ωi) and energy-conserving, i. e. that ∀ωo

∫
Ω+ f(ωi → ωo)dωi ≤ 1. Two
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Figure 2: The rendering equation

ator is used to determine from which other surface location
this radiance is emitted and reflected. It can be seen that the
rendering equation is a Fredholm integral equation of the
second kind. The goal of global illumination algorithms is
to compute Lo(x,w) for a given scene, materials and lighting
Le.

Alternatively, the reflection integral can also be formulated
over the scenes’ surfaces S instead of directions. This impli-
cates two modifications: first, a geometry term is introduced
which accounts for the solid angle of a differential surface;
second, the visibility function (sometimes considered part of
the geometry term) determines the mutual visibility of two
surface points:

Lr(x,w) :=
Z

S
Li(s,wi) fr(x,wi ! w)hN(x),wii+ G(x,s)ds,

(3)

where S is the surface of the entire scene, w0 := s� x the
difference vector from x to s, wi := w0/||w0|| the normalized
difference vector and

G(x,s) :=
hN(s),(�wi)i+V (x,s)

||s�x||2 ,

a distance term where V (x,s) is the visibility function that is
zero if a ray between x and s is blocked and one otherwise.

Due to the repetitive application of the reflection integral,
indirect lighting is distributed spatially and angularly and ulti-
mately gets smoother with an increasing number of bounces.

Light In addition to geometry and material definition, the
initial lighting in a scene Le, obviously is an essential input to
the lighting simulation. In computer graphics several models
of light sources, such as point, spot, directional, and area
lights, exist.

Point lights are the simplest type of light sources, where the
emission is specified as the position of the light source and
the directional distribution of spectral intensity. The incident
radiance due to a point light at a surface is then computed
from these parameters.

Real-world light sources have a finite area that emits light,
where the spatial, directional and spectral distribution can,
in principle, be arbitrary. In computer graphics, often a di-
rectional Lambertian emission is assumed, while a spatially
varying emission is often referred to as “textured area-light”.

Other commonly used models in computer graphics are: (1)
spot lights, which can be considered as point lights with a
directionally focused emission; (2) directional lights, assum-
ing parallel light rays; and (3) environment maps which store
incident radiance for every direction, however, assuming that
Li(x,wi) is independent of x, i. e., Li(x,wi) = Lenv(wi).

Reflectance The Bi-directional Reflectance Distribution
Function (BRDF) is a 4D function that defines how light
is reflected at a surface. The function returns the ratio of re-
flected radiance exiting along wo to the irradiance incident
on the surface from direction wi. Physically plausible BRDFs
have to be both symmetric fr(wi ! wo) = fr(wo ! wi) and
energy conserving

R
W+ fr(wi ! wo)hN,wii+ dwi < 1. A spe-

cial case is the Lambertian BRDF which is independent of
the outgoing direction, and the perfect mirror BRDF which
is a Dirac delta function in the direction of wi mirrored at
the surface normal at x. BRDFs inbetween these two extrema
are often vaguely classified as directional-diffuse, glossy, and
specular. BRDFs can be spatially invariant, or vary across
the surface. In the latter case, BRDFs are called spatially
varying BRDFs or Bi-directional Texture Functions (BTFs).
Many analytical BRDFs models, ranging from purely phe-
nomenological to physically-based models, exist, which can
be either used as is, of fitted to measured BRDF or BTF data.
If the material is not purely opaque, i. e., if light can enter or
leave an object, then Bi-directional Scattering Distribution
Functions (BSDFs) are used which extend the domain from
the hemisphere to the entire sphere.

Visibility Both versions of the rendering equation imply
some form of visibility computation: Eq. 1 uses the ray cast-
ing operator to determine the closest surface (for a given
direction) and Eq. 3 explicitly uses a binary visibility func-
tion to test mutual visibility. Non-visible surfaces are usually
referred to as being occluded.

If the visibility is computed between a point and a surface,
then the surface is said to be in shadow or be unshadowed.
The visibility between a surface point and an area light source
is non-binary resulting in soft shadows. A full survey of exist-
ing (soft) shadow methods is beyond the scope of this report
and we refer to the survey of Hasenfratz et al. [HLHS03]
and a recent book [ESAW11]. Note that many methods ded-
icated to real-time rendering of soft-shadows often make
simplifying assumptions like planar rectangular light sources,
isotropic emittance, Lambertian receivers, and so forth, that
allow for drastic speed-up compared to accurate computation
(as in most GI methods), but also a loss of realism. Indirect
light bouncing off a surface is comparable to lighting from
an area light source.

2.2. Volume rendering equation

Light transport in the presence of participating media is de-
scribed by the volume rendering equation (Fig. 3). It com-

c� 2011 The Author(s)
Journal compilation c� 2011 The Eurographics Association and Blackwell Publishing Ltd.

(b)

Figure 3. Visualization of the BRDF and the Rendering Equation. The BRDF
(a) relates the incoming radiance from direction ωi with the outgoing radiance in
direction ωo at a surface point x and thereby describes the scattering properties of a
surface. θ and φ are the corresponding spherical coordinates of the solid angles. The
illustration of the Rendering Equation (b) is courtesy of [Rit+12].

extreme cases of the BRDF are the Lambertian BRDF which is constant for
any pair (ωi, ωo), and the perfectly specular BRDF which is a Dirac delta
function in the reflected viewing direction. Many surfaces can be modelled as
a combination of these two extremes [Rit+12].

All of the functions defined above can additionally be parameterized by
the wavelength λ which allows modelling of colored materials and lights.

2.2 Rendering Techniques
The Rendering Equation is very difficult to compute for several reasons. One
reason is that the hemisphere Ω+ describes a continuous space of solid angles
which means that infinitely many directions and intersections with the scene
geometry must be regarded. Moreover, the integral in Equation 2.1 is defined
in terms of itself (notice the Li on the right-hand side) which makes it a type
of integral equation to which no general algebraic solution is known [McG13].
For these reasons, computations of the Rendering Equation generally involve
approximations.

There are several different approaches to approximating the Rendering
Equation. In photo-realistic rendering the most important techniques include
photon mapping [Jen96], finite element methods such as the radiosity method
[Gor+84] and Monte Carlo-based methods such as bidirectional path tracing
[LW93]. These methods produce near-ideal results but are not directly suit-
able for interactive applications. Instead, we make use of algorithms that are
specifically tailored for highly parallel computing on GPUs. A selection of
notable real-time techniques are briefly summarized in the following list.
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• Manual placement of lights. Since direct lighting models are computa-
tionally cheap, it is still common practice that 3D artists manually place
numerous point lights throughout the scene to achieve diffuse indirect
illumination effects. However, while this approach enables fine-grained
artistic decisions over the lighting, it is often impractical for scenes with
dynamic lights and requires additional work.

• Virtual point lights. A common approach to fully dynamic real-time GI
is based on a rendering method called Instant Radiosity [Kel97] in which
a number of virtual point light are generated at positions where random
light paths from the light source hit the surfaces in the scene. Secondary
lighting is efficiently accumulated by calculating the radiance that comes
directly from each VPL. For visibility tests, however, shadow maps need
to be calculated for each VPL which is the main disadvantage of this
approach.

• Reflective shadow maps. In this technique, shadow maps are used as the
source of secondary lighting [DS05]. It is based on the observation that
the directly lit surfaces are the only sources for secondary light bounces.
To allow a fast computation, however, occlusion information is neglected
when sampling the indirect light from the RSMs, which may result in
implausible light effects.

• Photon mapping. This approach works in two main steps: First, rays are
traced from the light sources throughout the scene. At each point where
the light is reflected a photon is deposited on the surface and cached in a
space-partitioning data structure. Afterwards, the photons are gathered
from the visible surfaces to estimate radiance values. The GPU-based
photon mapping technique by McGuire et al. [ML09] exploits the fact
that both in the photon emission and in the gathering step, all rays
have a common center of projection and can thus be accelerated using
the rasterization pipeline. The tracing of secondary bounces and beyond,
however, takes place on the CPU.

• Screen space approaches. These techniques work exclusively with the
scene geometry that is left after the clipping is performed or even only
with the front-most fragments in the framebuffer. For example, in the
screen space directional occlusion method by Ritschel et al. [RGS09],
approximated indirect lighting is efficiently calculated from framebuffers
with normal, position and direct light information. The main limitation
is, however, that scene information beyond the field of view is not in-
cluded which may result in missing shadows and reflections.
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• Light propagation volumes. Like voxel cone tracing, the LPVs method
[KD10] is based on a volumetric data structure. First, any light emitted
from surfaces and area lights is accumulated in a coarse volumetric grid.
The light is then iteratively propagated throughout the scene in the LPV
grid using a diffusion algorithm. Indirect light can then be sampled from
the LPV grid. This approach is, however, limited to diffuse reflections
and often produces noticeable light leaking.

2.3 Voxel Cone Tracing
Currently, there is a trend toward more general computations on GPUs as
graphics hardware and APIs provide increasingly general functions to read and
manipulate video memory and more flexible ways to invoke GPU programs.
The Image Load Store extension exposed in OpenGL 4.2, for example, enables
us to gain random read/write access to texture images and buffer memory from
any stage of the pipeline. Moreover, compute shaders enable computations of
arbitrary information on the GPU since OpenGL 4.3. Voxel cone tracing
makes use of both of these extensions to calculate global illumination effects
in real-time. The whole procedure works as follows:

In a proceeding step, we voxelize the scene. As in [CG12], we use the
Image Load Store extension in conjunction with a framebuffer without at-
tachments (enabled by the ARB_framebuffer_no_attachments extension) to
write the produced fragments into a 3D texture. For each fragment, we use
a diffuse, direct lighting model to compute a radiosity value which is stored
in the corresponding voxel together with an opacity value. In contrast to the
original method [Cra+11], the voxel data is not sparsely encoded in an octree.
The consequence of this is that the memory usage is considerably higher, but
it also simplifies the program.

The voxel representation is then used to approximate the integral of the in-
coming radiance values Lr(x,ωo) in the Rendering Equation (2.1) for indirect
light:

Lr(x,ωo) =

∫
ωi∈Ω+

Li(x,ωi) fr(x,ωi → ωo) 〈N(x),ωi〉+ dωi . (2.3)

This is achieved by sampling the incoming radiance Li with a small set of
cone-shaped beams that are distributed across the hemisphere Ω+. One ap-
proach of determining a radiance value in a single cone would be to perform
ray marching along the cone axis by sampling the previously generated voxel
map in successive steps to accumulate both radiance and opacity values. The
traversal can be halted once the accumulated opacity is greater or equal to 1.
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This approach, however, would introduce aliasing, and the quantity of sub-
samples required to eliminate the aliasing would be impractical for real-time
purposes.

At this point, one can draw an analogy to 2D texture minification, since in
both cases it is necessary to integrate large regions of a texture while keeping
aliasing effects at a minimum. A commonly used technique for this problem is
to precompute a multi-resolution pyramid of the original texture, a so called
mipmap [Wil83], by repeatedly downsampling the texture by a factor of two.
This can be done, for example, by averaging 2×2 pixel blocks at a time in each
mip image and storing the result in the corresponding mip level above. We
can then sample the pre-filtered texture at an appropriate mip level instead
of relying on a multitude of samples.

The same principle can be applied to 3D textures by regarding 2 × 2 ×
2 blocks during the downsampling. The radiance value of a cone is then
determined by stepping along the axis of the cone and sampling the pre-filtered
voxel data at a mip level with a voxel size that corresponds to the current cone
diameter. The radiance and opacity values are interpolated between adjacent
texels in the 3D texture and between two mip levels, which results in smooth
transitions.

Voxel cone tracing enables us to approximate arbitrary BRDFs fr (Equa-
tion 2.3) by arranging multiple cones with different apertures and weights on
the hemisphere Ω+. A specular BRDF, for example, can be represented by
a single narrow cone in the direction of the viewing vector reflected about
the normal, and a diffuse BRDF can be achieved with a set of uniformly dis-
tributed wide cones (∼5–12 suffice). Especially when using wide cones, this
approach allows very fast, approximated evaluation of the lighting integral
because the sampling rate can be quickly decreased when stepping through
coarser mip levels of the voxel representation. Regarding the solid angle we
integrate over, the runtime behavior is thus converse to that of ray tracing.
Moreover, relying on a data structure with a fixed resolution also decouples
the cone tracing from the geometric complexity of the scene.

In summary, voxel cone tracing allows us to calculate LD{S|D}E light paths
in real-time and LDDE with particularly high efficiency. Furthermore, by
accumulating only the opacity values of the voxels, the same technique can be
employed for soft shadows and ambient occlusion effects which is explained in
detail in the next chapter.
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3 Implementation

The voxel cone tracing renderer which was implemented in the course of this
thesis, is written in the C++11 programming language and uses the OpenGL
4.4 graphics API as well as the OpenGL Shading Language (GLSL) in version
420 (shader model 5.0). For the scene and material management we make use
of the graphics framework CVK (provided by Arbeitsgruppe Müller) which
is based on the Open Asset Import Library (Assimp 3.1.1). We extend parts
of the CVK framework to satisfy requirements, e.g. for special framebuffer
configurations and for recompilation of shader programs for debugging pur-
poses. Furthermore, we make use of the AntTweakBar library (in version
1.16) to provide a simple user interface with options for adjusting several pa-
rameters at runtime. The GLFW library (version 3.0.4) is used for creating
the OpenGL context and handling user input, and we leverage the OpenGL
Mathematics Library (GLM 0.9.5.4) for GLSL-compliant arithmetics and lin-
ear algebra functions and classes.

The main functionality of the program is realized in three singleton objects
called Renderer, Context and Profiler. The Renderer singleton contains
the rendering loop and takes care of the initialization of the shaders, textures,
framebuffers and the scene graph. The Context singleton encapsulates parts
of the user interface, initializes the OpenGL context and the AntTweakBar.
The Profiler singleton takes care of the time measurements which are ob-
tained using GL_TIME_ELAPSED queries that are sent to the GPU at each major
stage of the rendering engine. To reduce the variance, the measurements are
smoothed with an exponentially weighted moving average. For a simplified
overview of the implementation see Figures 4 and 5.

Singleton

+ getInstance()

Renderer

– m_scene : CVK::Node*
– m_camera : CVK::Camera*
– m_FBOs : std::vector<CVK::FBO*>
– m_shaders : std::vector<CVK::ShaderSet*>

+ run()

Context

- tw_bar : TWBar*

+ init()
+ update()

Profiler

- m_timings : double*

+ init()
+ update()

Figure 4. Simplified class diagram of the basic application structure.
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Geometry buffer pass

Uncleared 3D textures Vertex data and textures
Position map,
Normal map

Clear and voxelization pass Shadow map pass Tangent map

Voxelized scene
in lowest mip levels

Shadow map Depth map

Pre-integration pass Global illumination pass Direct illumination pass

3D textures
with complete mipmaps

Global illumination map,
Ambient occlusion map

Direct illumination map

Compositing pass Diffuse color mapFinal image

Figure 5. Data flow diagram of the rendering procedure.

The presented implementation1 is based on a deferred rendering approach
in which the scene geometry is first rendered to separate buffers for diffuse
color, normal, tangent and depth information. Both, during the lighting and
compositing stages the shader programs access the geometry buffers instead
of re-rasterizing the scene. This way, the overdraw can be saved at a small
expense to memory space, which is particularily effective during the expensive
voxel cone tracing operations. When the geometry buffer is complete, the
shadow map is generated by rendering the scene from the view of the scene
light (only a single spot light is supported). In the next step we use the
shadow map and the geometry buffer to calculate direct lighting with the
Blinn-Phong lighting model [Bli77]. Alternatively, voxel cone tracing can
be used at a later stage of the renderer to trace soft shadows. After these
preceding steps, we voxelize the scene and use the voxel representation to
render global illumination effects with cone tracing, which is described in
detail in the following sections.

1The source code is available at https://github.com/dinse/VCTGI.
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(a) Conservative (b) 6-separating (c) Solid

Figure 2: Different kinds of voxelizations covered.

ing of multiple (identically-sized) voxels. A new triangle/box test
that fulfills these requirements is detailed in the following.

Given a triangleT with vertices v0, v1, v2 and an axis-aligned boxB
(e.g. a voxel) with minimum corner p and maximum corner p+∆p,
we observe that T overlaps B iff

a) T ’s plane overlaps B and

b) for each of the three coordinate planes (xy, xz, yz), the 2D pro-
jections of T and B into this plane overlap.

To test for the plane overlap, similar to Haines and Wallace [1991],
we determine T ’s normal n and the critical point

c =

({
∆px, nx > 0
0, nx ≤ 0

}
,

{
∆py, ny > 0
0, ny ≤ 0

}
,

{
∆pz, nz > 0
0, nz ≤ 0

})T

and check whether p + c and the opposite box corner p + (∆p − c)
are on different sides of the plane or one of them is on the plane,
that is whether

(⟨n,p⟩ + d1

) (⟨n,p⟩ + d2

) ≤ 0, (1)

where d1 = ⟨n, c − v0⟩ and d2 = ⟨n, (∆p − c) − v0⟩.
For the 2D projection overlap tests, we utilize edge functions
[Pineda 1988], each evaluated at that corner of B’s projection, a 2D
axis-aligned box, that yields the largest value and hence is “most in-
terior” with respect to the edge (cf. Fig. 3 a). More precisely, using
the xy coordinate plane as example, we compute

n
xy
ei
= (−ei,y, ei,x)T ·

{
1, nz ≥ 0
−1, nz < 0

}
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for all three edges ei = vi+1 mod 3 − vi and test whether

∧2

i=0

(
⟨nxy

ei
,pxy⟩ + d

xy
ei
≥ 0
)

(3)

holds true, indicating overlap. Because the evaluation points for the
edge functions differ, it is additionally necessary to verify that T ’s
axis-aligned bounding box actually overlaps B.

Consequently, for a given triangleT and box extent ∆p, T ’s bound-
ing box, n, d1, d2, and n

xy
ei

, d
xy
ei

, nxz
ei

, dxz
ei

, n
yz
ei

, d
yz
ei

(i = 0, 1, 2) can be
determined in a setup stage. The actual overlap test for a box with
minimum corner p then requires merely testing for bounding box
overlap and checking the criteria in Eqs. 1 and 3.
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Figure 3: Critical points for evaluating the edge functions in the 2D
projection overlap tests, annotated with the function result’s sign.

Comparison The current standard triangle/box overlap test by
Akenine-Möller [2001] is based on the separating axis theorem
(SAT). The tests for the coordinate axes (x, y, z) and the normal n
are equivalent to our bounding box and plane overlap tests, respec-
tively. Interestingly, the remaining 9 axes tested essentially corre-
spond to our 2D edge normals n

xy
ei

, nxz
ei

, n
yz
ei

(i = 0, 1, 2). However,
while the SAT approach requires testing the projections of T and B
onto an axis for overlap, our method merely necessitates evaluating
an edge function and checking the result’s sign. As illustrated in
Fig. 4, the SAT test for one of these axes actually performs unnec-
essary work. Of the two configurations where an axis is separating
(a, c), i.e. the projections onto it don’t overlap, only the one where
the box is in the exterior half-space of the corresponding edge (a)
needs to be captured; the other one is already handled by the axis
for the more adjacent edge (c). Overall, the SAT-based triangle/box
overlap test requires more instructions than our approach, and a
setup-based formulation additionally involves more set-up quanti-
ties in the per-box test part, hence consuming more registers when
implemented on the GPU.

ne
−

axis a

+ +−

(a) (b) (c)

Figure 4: Different configurations for SAT-based overlap test.

3.2 Triangle-parallel conservative voxelization

To obtain a conservative voxelization, all voxels overlapped by
an input mesh’s triangles must be determined. One natural data-
parallel approach to this computation is processing all triangles
in parallel, launching one thread per triangle. For each triangle,
first the bounding box is determined and then all voxels inside the
bounding box are tested for overlap utilizing our triangle/box over-
lap test. If an overlap test passes, the corresponding voxel is set.

Note that we also consider voxels that are merely touched by the
bounding box, which is important to make the voxelization inde-
pendent of the tessellation of planar surfaces (cf. Fig. 5 a). More-
over, since only voxels overlapped by the bounding box are pro-
cessed in the first place, the bounding box overlap test can be omit-
ted when running the triangle/box overlap test.

Voxel updates Each voxel’s state is encoded by a single bit in a
linear array. With multiple triangles being processed concurrently,
some of them may try to update the same 32-bit value at the same
time. We hence employ the atomic or function to avoid conflicting
writes and ultimately missing any update. Moreover, when looping
over the voxels within the bounding box, we make the inner-most
loop proceed in x direction, where adjacent voxels are stored in
consecutive bits. Instead of writing each set voxel instantaneously,
we buffer the 32-bit value a voxel’s bit belongs to in a register and
only write it to memory once all relevant voxels within this 32-bit
value have been processed, potentially saving many atomic updates.

Figure 6. Examples of different types of vox-
elization. The left pair shows a 26-separating (or
conservative) voxelization, the middle pair a 6-
separating (or thin) voxelization and the right
pair a solid voxelization. In a conservative vox-
elization, all voxels that are touched by the geom-
etry are regarded. (The illustrations are courtesy
of [SS10].)

Figure 7. Conservative triangle
rasterization. The triangle is en-
larged to ensure that each pixel
cell it touches, produces a frag-
ment. The axis-aligned bound-
ing box and the enlarged trian-
gle are highlighted with dashed
lines.

3.1 Voxelization
Analogously, to the rasterization of triangles in two dimensions, there are sev-
eral ways in which a three-dimensional rasterisation, or voxelization, can be
performed. One can distinguish, for example, solid from surface voxelization,
6- from 26-separating voxelization and whether it regards anti-aliasing [SS10].
See Figure 6 for visualizations of these properties. In the presented implemen-
tation we perform a thin voxelization without addressing aliasing. The lack
of anti-aliasing will be especially noticeable as temporal aliasing on moving
objects, but it simplifies the voxelization procedure considerably.

We implement the voxelization method described in [CG12] which is based
on the rasterization pipeline, the Image Load Store extension and orthogonal
projection. The entire scene is re-voxelized in each frame. The voxels are
stored in a 3D texture that is generated using glTexStorage3D which specifies
an uninitialized image for each mip level in one operation. Afterwards, we
clear the lowest mip level of the texture using glClearTexImage. Higher mip
levels may remain uninitialized at this point, because they will be written
to during the pre-integration stage. Back face culling and depth testing are
disabled, with the result that the triangles produce fragments independent
of their orientation and do not interfere with one another. The frame buffer
resolution is set in correspondence with the voxel grid of the lowest mip level.
In the first step, we determine the direction of projection along one of the

11



Figure 8. Voxelization with conservative triangle rasterization. The left picture
shows the voxelized truck without conservative rasterization, while on the right pic-
ture the conservative rasterization is enabled. In the middle the differences between
the two approaches are highlighted.

three major axes in which the surface area of the triangle is maximized. This
calculation takes place in the geometry shader. The resulting projection also
maximizes the number of fragments that are produced during the rasterization.
It can be shown that using this projection, the voxelized surfaces will not yield
any holes and will result in a 6-separating or thin surface voxelization [SS10].
The maximizing direction can quickly be determined by finding the maximal
component of the absolute normal vector of the triangle. Once the direction of
projection is determined, the triangles are projected accordingly and emitted
from the geometry shader. In the fragment shader we then light the fragment
with a direct lighting model using the earlier generated shadow map and write
the resulting radiosity value along with an opacity in the alpha component to
the voxel map.

One issue that must be carefully considered is that hardware-based ras-
terization computes the point-in-triangle tests only for the fragment centers,
which may result in small triangles being omitted. One way to avoid gaps
due to small triangles is to rasterize them conservatively. Analogously to the
conservative voxelization (Fig. 6), conservative rasterization ensures that all
fragment cells that the triangle touches result in a fragment shader invocation.
This is achieved by enlarging the triangle in the geometry shader so that each
edge is shifted outward by the semi-diagonal of a pixel (Fig. 7). The residue
at the corners due to the enlargement is clipped in the fragment shader by
passing an axis-aligned bounding box which is extended by half the size of a
pixel cell in all directions. See Figure 8 for the result.

Another implementation issue is the way in which the lighting information
is written to the 3D texture. Since multiple fragments can easily fall into the
same voxel location and since the order in which the fragments are generated
is not deterministic, flickering may occur. This can be avoided by averaging
all values that are written to a voxel. As in [CG12], this is achieved using a
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simple moving average which is calculated as

An+1 =
nAn +xi+1

n+ 1
.

The fastest way to write to texture images from a shader is to use the
imageStore operation. This is, however, not suitable for the averaging because
the changes made with imageStore are not guaranteed to become visible for
other threads during the rendering pass. Hence, we need to make use of
atomic image store operations which are also provided by the Image Load
Store extension. One limitation of this approach is that in OpenGL 4.4 atomic
image operations only support 32-bit integer values. For this reason, it is
necessary to bind the images in the R32UI format, in which the color and alpha
components are represented by four concatenated unsigned 8-bit integers. To
avoid storing the number of samples n in a separate texture, we rely on a 4-bit
integer value which is encoded in the least significant bits of the voxel values.
Minor disadvantages of this approach are that it reduces the color depth of
the voxels by a factor of two and that at most 16 samples can be taken
into account, which may lead to flickering when voxelizing highly detailed
geometry.

Since the cone tracing pass depends on linear interpolation of the voxel
values, it would be advantageous to leverage hardware-based interpolation for
this task. To circumvent color leaking from voxels with zero opacity during
linear interpolation, it is necessary to store the color components of the voxel
values pre-multiplied with the alpha component in the form (ra, ga, ba, a)T

[PD84].

3.2 Pre-Integration
The multi-resolution representation of the scene is generated using a compute
shader. Compute shaders are an addition to the GLSL language since OpenGL
4.3 and they allow us to use the GPU for computing arbitrary information.
Compute shaders are invocated within a work group of many compute shader
invocations which in turn is situated in a 3-dimensional space, called compute
space. Each shader invocation can be identified with a 3D vector within the
compute space called gl_GlobalInvocationID. We use this ID to address the
voxel space.

Using a single texture for the mipmapping would result in a loss of light
direction information. To reduce implausible lighting results, the mipmapped
radiosity values are thus stored in six textures, one for each of the six directions
along the coordinate axes. For illustrations of the light leaking problem see
Figures 11(b) and 12. The pre-integration is achieved by composing four voxels
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Figure 9. Visualisation of the mip levels of the directly lit and voxelized scene.
The top left figure shows the full resolution of 2563 voxels. Furthermore, in reading
direction the mip levels 3 through 7 are shown.

at a time, averaging the result and writing it to one of the six 3D textures. To
maintain the visibility information of the composed voxels when viewed from
one of the six directions, it is necessary to perform a single step of volumetric
integration [Cra+11; Max95]. The composed radiosity and opacity value c′

and α′ for a given pair of voxels c1 (front voxel) and c2 (back voxel) with
corresponding opacities α1 and α2 is calculated as:

c′ :=α1 · c1 + (1− α1) ·α2 · c2 (3.1)
α′ :=α1 + (1− α1) ·α2 . (3.2)

See Figure 9 for the result of the pre-integration stage.

3.3 Voxel Cone Tracing
A single cone gathers a radiance value from the hierarchical voxel representa-
tion of the scene using the classical emission-absorption optical model [Max95].
Assuming a diffusely reflecting surface, the BRDF fr in the Rendering Equa-
tion 2.1 is constant for all pairs of incoming and outgoing directions as ex-
plained in Section 2. Hence, the reflected radiance Lr at a surface point x in

14



the Rendering Equation can be rewritten as

Lr(x,ωo) =

∫
ωi∈Ω+

Li(x,ωi) fr(x,ωi → ωo) 〈N(x),ωi〉+ dωi

=
ρ

π

∫
ωi∈Ω+

Li(x,ωi) 〈N(x),ωi〉+ dωi,

where ρ is called albedo and describes the reflectivity of the surface. Next,
we partition the integral into n cones and it is assumed that in each cone the
incoming radiance is constant, which allows us to factor out Li:

Lr(x,ωo) =
ρ

π

n∑
k=1

∫
ωi∈Ω+

k

Li(x,ωi) 〈N(x),ωi〉+ dωi
Li const. for k⇔

Lr(x,ωo) =
ρ

π

n∑
k=1

Lk(x,ωk)

∫
ωi∈Ω+

k

〈N(x),ωi〉+ dωi

=
ρ

π

n∑
k=1

Lk(x,ωk)Wk.

The weights Wk sum up to π for a diffuse surface [Rau13]. The incoming
radiance Lk of a cone is obtained by splitting the cone into successive elements
and perform a volumetric front-to-back accumulation which uses the same
blending of the currently accumulated value and the next sample as used
during the pre-integration in Equation 3.2 [HN12]. For glossy BRDFs we
trace a single narrow cone in the reflected viewing direction (see Figure 10).

The mip level of a sample at tracing distance d is determined by log2(2r),
where r is the current radius of the cone at the sample. The six-directional
radiosity values are modulated with the absolute components of the normal-
ized cone direction vector. At each step the sampling step size is adapted to
the cone diameter of 2r.

Besides rendering of indirect illumination with arbitrary BRDFs we can
use voxel cone tracing for other global illumination effects such as ambient oc-
clusion. The AO value at a surface point can be interpreted as an accessibility
value [Mil94]. In an outdoor scene with a diffusely radiating, overcast sky the
AO value at a surface point can be thought to depend on the solid angle that
is subtended by visible sky. This value can be used to shade the surface point,
which results in a diffuse lighting effect where creases and niches are darkened
and openly exposed features of the scene appear bright. In an indoor scene
only objects within a certain radius are taken into account and the walls are
assumed to play the role of diffuse radiators [Cra+11].
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Figure 10. Illustration of seven cones
that are used to approximate a diffuse
BRDF with a glossy component. The
six large cones are arranged on the ver-
tices of an icosahedron and capture dif-
fusely reflected incoming radiance; the
thin cone is traced along the reflected
viewing direction ωr to gather specularly
reflected light.

ωo
n

ωr

AO can be very cheaply calculated during the voxel cone tracing of the
diffuse indirect lighting and hence there is no need for an additional rendering
stage. It uses the same opacity blending model as described above but each
sample is weakened by the distance d and a falloff factor λ so that remote
regions do not contribute to the accumulated occlusion information. At each
sample from the voxel map with opacity α the AO sample for the current cone
is updated according to

ao← ao +
(1− ao) · α

1 + d ·λ
.

Another global illumination effect that can easily be implemented with
voxel cone tracing is the penumbra or soft shadow effect. This is achieved
by tracing cones from the fragment toward the light source, accumulating
only the opacclusion information and shading the fragment according to the
resulting visibility value. For results of this effect see Figure 17.

One problem with using a voxel representation of the scene arises from
the fact that the surfaces become inevitably thicker. When starting the cone
tracing at a surface point it is very likely that the first samples coincide with
the voxelized surface of the point itself. Moreover, the problem is amplified by
the thickening effect at grazing angles as illustrated in Figure 11(c). To avoid
self-intersection it is hence necessary to shift the apex of the cone at least by
the space diagonal of a voxel outward along the normal.
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Algorithm 1 Cone tracing algorithm with empty space skipping.
Input:

pos Position of the cone apex in voxel space coordinates.
dir Direction vector of the cone.
aperture Diameter of the cone at unit cone axis length.
voxelMap[6] Contains 6-directional voxel data: [+X,−X,+Y,−Y,+Z,−Z]
voxelRes Number of voxels along one axis of the voxel grid.

Output:
coneSample The gathered radiance.

1: visibleFace← ivec4(0)
2: visibleFace.x← (dir.x < 0) ? 0 : 1 . . . . ? . . . : . . . is the ternary operator.
3: visibleFace.y← (dir.y < 0) ? 2 : 3
4: visibleFace.z ← (dir.z < 0) ? 4 : 5
5:
6: dst← .0
7: diameter← .0
8: coneSample← vec4(.0)
9: samplePos ← pos

10: while coneSample.a < 1 do
11: mipLevel← max(0, log2(diameter · voxelRes))
12: voxelSample ←

abs(dir.x) · textureLod(voxelMap[visibleFace.x], pos, mipLevel)
+ abs(dir.y) · textureLod(voxelMap[visibleFace.y], pos, mipLevel)
+ abs(dir.z) · textureLod(voxelMap[visibleFace.z], pos, mipLevel)

13:
14: coneSample ← coneSample · coneSample.a

+ (1 − coneSample.a) · voxelSample · voxelSample.a
15:
16: skipDst ← .0 . Empty space skipping
17: if voxelSample.a < ε then
18: parentVoxel ← findLargestEmptyParentVoxel(samplePos, mipLevel)
19: skipDst ← distanceToBackPlanes(parentVoxel, samplePos, dir)
20: end if
21:
22: dst ← dst + max(diameter, skipDst)
23: diameter ← dst · aperture
24: pos ← pos + dst · dir
25: end while
26: return coneSample
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(a) (b) (c)

Figure 11. Visualisation of several aspects of voxel cone tracing. Figure (a) shows
the successive accesses to different mip levels of the hierarchical voxel representation
as the cone diameter increases. Figure (c) exemplifies the red-green wall problem
that occurs when directional light information is lost due to non-directional averaging
(left). Using anisotropic voxels (right) this problem can be mitigated. Figure (c)
shows the thickening effect that occurs at grazing angles along surfaces. Since the
average opacity of each block containing the actual scene geometry is 50% in the
direction of the ray (left), the accumulated opacity through the averaged blocks
along the same ray gives a divergent result (right).

Another problem is that while wide cones for diffuse light strongly benefit
form the voxel tracing approach, the tracing of thin cones is effectively equiv-
alent to an expensive ray marching operation through a 3D texture. In the
sparse voxel octree-based approach, empty space is skipped when the tracing
procedure encounters a childless node in the octree stucture in order to coun-
teract this problem. Equivalently, we can perform a search of the largest empty
parent voxel in the mipmap when we encounter an empty voxel. A problem
with this skipping approach is, however, that samples that are situated in an
empty voxel may still yield non-empty values when the interpolation of neigh-
boring non-empty voxels are taken into account. This results in artifacts, as
discussed in [Cra11], and is not resolved in the presented implementation (see
Figure 18). Algorithm 1 shows at which point in the cone tracing procedure
the space skipping is performed.

3.4 Compositing
Since the cone tracing is a very expensive operation, for the diffuse indirect
illumination it is only carried out every fourth pixel by reducing the side
lengths of the framebuffer by one half during the voxel cone tracing pass. As
in [Pan14], we reduce the side lengths of the framebuffer by one half once
more and use fourfold supersampling with a rotated grid pattern (RGSS ) to
reduce aliasing effects. In the compositing stage the individual subsamples are
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accessed using the NV_explicit_multisample extension. The upsampling is
achieved by bilateral low-pass filtering [Kop+07] using a 5x5 truncated Gaus-
sian kernel and an additional weight based both on the depth value and surface
normal from the geometry buffer. Let I(p) be the result image at position
p, I↓ the buffer with the sparsely sampled diffuse indirect light, F↓ a window
centered at p rounded to the coordinates of I↓, f the 5x5 Gaussian kernel, D
the depth, N the normal buffer and g a Gaussian to smooth the dissimilarities
in the depth and normal buffer, then the joint bilateral filter is given by:

I(p) =
1

wp

∑
p↓∈F↓

I↓(p↓) f
(
p− p↓

)
gN
(
N(p)−N(p↓)

)
gD
(
D(p)−D(p↓)

)
and the weight wp is:

wp =
∑

p↓∈F↓

f
(
p− p↓

)
gN
(
N(p)−N(p↓)

)
gD
(
D(p)−D(p↓)

)
.

Due to the edge preserving effect of the joint bilateral filtering (see Fig-
ure 14) the sparse sampling of the diffuse indirect illumination only has a
small effect on the resulting image since diffuse illumination is naturally a
low-frequency effect. To some extent the filtering can even improve the im-
age quality because it smoothes artifacts from the cone tracing. The same
upsampling procedure is performed for the ambient occlusion map.

Finally, all previous results are combined in one image. The global illumi-
nation and direct illumination maps are added together and then multiplied
with the diffuse map of the geometry buffer. The ambient occlusion map is
multiplied with the resulting image. Each of these compositings has an ad-
ditional blend factor which can be manipulated via the GUI at runtime. See
Figure 15 for an overview of all interim results of the rendering procedure.

In a last step we take care of aliasing effects due to the rasterization.
Since deferred shading prevents us from using hardware anti-aliasing tech-
niques (supersampling), the fast approximate anti-aliasing algorithm (FXAA)
is employed [Lot09]. FXAA computes an approximate gradient from the lu-
minosity values of four neighboring pixels. Based on a simple edge detection,
the pixels are then blurred with up to four samples along a direction that is
perpendicular to the gradient. See Figure 13 for the result.
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Figure 12. Light leaking inside the ambulance.
Light leaking may occur when voxels are sampled
that are averaged over both lit and unlit regions.
This is in particular a result of the wide cones
which are used for sampling the diffuse indirect
light. The expected result is a dark interior as
there are no light sources inside the ambulance.

Figure 13. Anti-aliasing post-
processing. Depicted is the
trunk of the truck in the car
scene provided along with the
source code. The left picture
shows FXAA compared to the
original image on the right.
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Figure 14. Rotated sample grid and joint bilateral upsampling of the sparsely cone
traced indirect lighting. Figure (a) shows the pattern used to reduce aliasing effects
due to the sparse cone tracing samples. The subdivision lines indicate the half and
full sampling resolution. Figure (b) shows a small sparsely sampled part of the car
scene (34×31 pixels). The black region lies in the background and the orange region
consists of two orthogonally joint surfaces with several surface details. The ripples
are a result of presenting the samples from the rotated grid in an axis-aligned grid.
In Figure (c) a simple 5× 5 Gaussian kernel is applied at the full resolution (68× 62
pixels). Figure (d) shows the result of the 5× 5 bilateral filtering taking only depth
information into account and (e) includes both depth and normal information. The
last three figures are slightly modified as the implementated algorithm caused subtle
artifacts along the edges.
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Figure 15. Overview of all rendering stages. The top row depicts the geometry
buffer, including the position, normal and diffuse color maps. In the second row two
mip levels of the voxel representation, as well as the direct light map are shown. In
the bottom row the indirect map (both diffuse and specular indirect lighting), the
ambient occlusion map and the final image are shown.

21



4 Results

In this section we will present measurements of execution time, as well as
memory usage and discuss the image quality and address possible improve-
ments of the implemented rendering technique. All of the measurements are
performed on a Pentium 4 computer with 2.7 Ghz clocking, Linux Mint 17
Qiana (32 bit) and 2 GB of primary memory. The GPU is a NVIDIA GeForce
GTX 670 with 2 GB of GDDR5 video memory. The viewport size is set to
800×600 pixels. We use the car scene which is provided along with the source
code in all measurements.

0 1 2 3 4 5

Geometry Buffer

Shadow Map

Voxelization
Voxelization (conserv. rast.)

Pre-Integration

Direct Lighting (shadow mapping)

6 Diffuse Cones
Specular Cone (3◦)

Compositing & Upsampling

FXAA

0.17

0.16

2.01

2.64

3.63

0.17

0.79

4.49

3.17

0.11

Table 1. Performance evaluation of all rendering stages. The timings are in milli-
seconds and measured with the car scene at 2563 voxel resolution. Empty space
skipping is enabled in the specular cone tracing algorithm.

Table 1 shows the timings of each rendering stage. Note that the voxeliza-
tion and pre-integration take up a substantial amount of time. Taken together,
they amount to roughly 40% of the total execution time. The render time of
the stages in which only the scene geometry is rasterized (the geometry buffer
and shadow mapping stages) and the post processing stage are negligible by
comparison. Also note that specular cones take an order of magnitude more
computing time than diffuse cones (see also Table 4). Besides that, we can
observe a ∼ 25% slowdown due to conservative rasterization. Using sparse
sampling we could, however, reduce the execution time for the cone tracing
stage by roughly two thirds.

As Table 2 shows, the 3D textures for the voxel maps are very memory
consuming. The 2563 voxel map requires almost a gigabyte of video memory,
while [Cra+11] achieve a 5123 resolution at the same memory demands but
using a sparse octree-based voxel map. In the presented implementation a lot
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Resolution Mem. Usage (MB)

323 174

643 378

1283 658

2563 939

Table 2. Statistics of the video memory usage.

of memory could be saved by removing the lowest mip level from five of the
six textures since they are identical. The reason for this is that the radiosity
values are stored isotropically during the voxelization. This is necessary since
the viewing direction dependent modulation of the directional voxel values (as
explained in Section 3.3) would result in noticeable fluctuations in brightness,
especially on flat, axis-aligned surfaces as shown in Figure 16. The reduction
to one image for the lowest mip level would also accelerate the voxelization
significantly, since currently the atomic averaging is used for all six texture
storages. During the pre-integration a lot of texture accesses could be saved
as well.

Another aspect that could be improved on is that the bilateral filtering
for the upsampling of the sparse cone tracing samples is a naive implemen-
tation which takes around 3 ms using a 5x5 Gaussian kernel (see Table 1).
A 3x3 kernel cuts down the execution time considerably but it produces a
considerably worse image quality. For this reason, the sparse cone tracing is
at the 600×800 resolution only worth doing when a large portion of the visible
surfaces is traced with very thin specular cones. Moreover, the blurred sparse
samples remain at the resolution of the sparse samples. To achieve smooth
transitions at the viewport resolution, the sparse samples need to be inter-
polated. However, hardware based interpolation cannot be leveraged for this
task because NV_explicit_multisample used for RGSS restricts the texture
accesses to nearest-neighbor filtering. The upsampling algorithm could possi-
bly generally be optimized by fetching 4 texels at a time with textureGather.

Diffuse cones Specular (aperture=0◦)

No skipping 0.82 ms 25.03 ms

Skipping 0.88 ms 9.62 ms

Speedup 0.93 2.6

Table 3. Statistics of empty space skipping.
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1 2 3 4 5 6 7

6 × Diffuse Cones 60◦

Single Specular Cone 15◦

12◦

9◦

6◦

3◦

0◦

0.79

1.14

1.34

1.81

2.66

3.71

5.74

Table 4. Performance evaluation of the specular light tracing with various apertures.
Each of the diffuse cones has an aperture of about 60◦. Empty space skipping is
enabled.

The implemented empty space skipping procedure yields a twofold speedup
for highly specular cones. However, it slows the diffuse cone tracing slightly
down, as table Table 3 shows. Therefore, it is only enabled for specular cone
tracing. The skipping could possibly be enhanced by pre-calculating the mip
level of the largest empty parent voxel of each empty voxel. This way, texture
accesses could be reduced during the cone tracing. The mip level information
could be stored, for example, in the least significant bits of the voxel values
which are also used for the averaging calculations during the voxelization (see
section 3.1). For full color depth an additional 3D texture storage could be
allocated for these tasks (e.g. using the R8UI format). However, this would
introduce more texture accesses.

For searching the largest empty parent voxel it appears to be faster to
use a top-down approach compared to a bottom-up search. This, however,
remains to be examined more thoroughly.

As explained in section 3.1, conservative rasterization prevents gaps be-
tween adjacent triangles, yet a 6-separating non-anti-aliased voxelization does
not prevent light leaking through thin geometries. This effect occurs in partic-
ular when a thin cone takes samples at the finest voxel resolution and simply
steps through the surface where adjacent voxels only share a vertex or an
edge (6-separating). It is especially noticeable during shadow tracing with
very thin cones as shown in Figure 17. To prevent light leaking in these sce-
narios, either a solid voxelization, a 26-separating surface voxelization or a
thickening approach of the surfaces as in [Pan14] is needed. An anti-aliased
thin voxelization and a higher sampling rate might also help to reduce this
problem.

Lastly, the implemented rendering algorithms are not yet free of artifacts
(see Figure 18), and many small inefficiencies can be found throughout the
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5 10 15

Direct Lighting (shadow mapping)

Cone traced soft shadows 12◦

9◦

6◦

3◦

0◦

0.17

1.92

2.37

3.34

5.28

15.51

Table 5. Performance evaluation of the shadow cone tracing. The timings are in
milliseconds and measured with the car scene with a 2563 voxel resolution. The cone
apertures are indicated by degree values. Empty space skipping and sparse sampling
are not implemented in the shadow cone tracing algorithm.

implementation. For example, some vertex shader programs still include the
calculation of the view-projection matrices and transposed inverse matrices,
which could instead be pre-computed on the CPU. That way expensive matrix
operations would not need to be carried out for each processed vertex resp.
triangle. Besides that, we could adobt optimizations from [RB13] for the
implemented voxilization technique. In particular, we could switch to the
proposed fragment-parallel voxelization for large triangles for a better thread
utilization on the GPU. Moreover, we could adopt the proposed coordinate
swlizzling technique instead of using tranformation matrices for the triangle
rotations during the voxelization.

Figure 16. Artifacts from using anisotropic voxels at the lowest mip level. The left
picture shows rippled surfaces as the result. The right picture illustrates the result
with anisotropic voxels at the lowest mip level as it is implemented. The dark band
is a result of the ambient occlusion effect.
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Figure 17. Cone traced direct shadows with different cone apertures. In reading
direction, the shadows in the first three pictures are traced with cone apertures of 9◦,
6◦ and 3◦. Note that the individual voxels become noticeable at 6◦ near the siren of
the police car. On the third picture one can notice light leaking near the taxi door,
due to thin voxelization with non-conservative triangle rasterization and a large step
size. On the bottom left picture the conservative rasterization is enabled, yet some
leaking remains due to the thin voxelization. On the fifth picture the aperture is set
to 0◦ and the last picture shows shadow mapping with percentage closer filtering for
comparison. See Table 5 for time measurements.

(a) (b)

Figure 18. Cone tracing artifacts. Figure (a) shows a grid pattern that occurs
in reflections due to empty space skipping. The banding in Figure (b) results from
clipped cones that extend beyond the boundaries of the voxel map. Solutions to this
problem might include to add another sample exactly where the cone is clipped or
to shift the last sample to this point.
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5 Conclusion and Future Work

In this thesis we have reviewed and implemented the voxel cone tracing tech-
nique for real-time rendering of global illumination effects which was developed
by C. Crassin et al. [Cra+11]. We have started with a short introduction into
the mathematical and physical background of image synthesis in Chapter 2.
After that, we have thoroughly described the implementation of the technique
in Chapter 3. In Section 3.1 we have explained the implemented conserva-
tive rasterization based voxelization technique which is similar to [CG12] but
does not rely on a sparse data structure. Furthermore, we have implemented
voxel cone tracing of both diffuse and specular reflections of indirect light
as described in Section 3.3. In the same section we have also touched upon
how voxel cone tracing can be used for ambient occlusion and soft shadow
effects, how empty space skipping is implemented and how self-intersections
are handled. Section 3.4 we have described how we upsample the sparse cone
tracing samples using joint bilateral filtering and how all intermediate results
are composed. Finally, in Section 4, we have presented and discussed the
results.

There are serveral aspects of the implemented renderer that can provide
opportunities for improvement and/or future research. As we have discussed
in Section 4, a main critical issue of the technique and in particular of the im-
plementation provided in this thesis, is the high memory demand of the voxel
maps. To mitigate this problem, we could employ a compression scheme such
as sparse voxel octrees [Cra+11] or directed acyclic graphs (DAGs) [KSA13].
Alternatively or additionally, we could rely on a cascaded approach like the
clipmap presented in [Pan14] in which the voxel map is centered around the
camera and regions remote from the camera are voxelized at a lower resolution
to save memory. For hardware native texture compression we could possibly
make use of the ARB_sparse_texture and EXT_sparse_texture2 extensions
which are exposed in NVIDIA’s Maxwell architecture2.

Two additional performance issues result from the voxelization and pre-
integration stages which take up a substantial amount of the render time. In
[CG12] the impact of these stages is alleviated by voxelizing the full scene only
once and updating subregions of the voxel structure as needed. In the clipmap
approach they minimize the voxel map updates during camera movements
by conserving the overlapping regions of the voxel map between two frames.
The observed slowdown due to conservative rasterization could be reduced
by using hardware native conservative rasterization which is standardized in
NV_conservative_raster and also exposed in the Maxwell architecture.
2https://developer.nvidia.com/content/maxwell-gm204-opengl-extensions (Febru-

ary 10, 2015)
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A fourth major issue is light leaking as a result of sampling large voxels
with coarsely approximated directional light information. A possible solution
might be to use orthogonal basis functions (such as spherical harmonics) at the
coarse mip levels as proposed in [Rau13]. This could enable a more detailed
description of the underlying scene geometry compared to the six-directional
approach, while still allowing a fast evaluation of the regions of space the
voxels represent.

In conclusion, we have reviewed a state-of-the-art rendering technique that
constitues an efficient alternative to other global illumination approaches. It
will be interesting to see whether the high memory demands and the light
leaking can be further improved in future research.
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