Exploring Noise in Data: Applications to ML Models

Robert Dunn , Cheolmin Hwang , and Amelia Kawasaki

0 Abstract

In machine learning, models are commonly built in such a way to avoid what is known as
overfitting. As it is generally understood, overfitting is when a model is fit exactly to the training
data causing the model to have poor performance on new examples. This means that overfit
models tend to have poor accuracy on unseen data because the model is fit exactly to the
training data. Therefore, in order to generalize to all examples of data and not only the
examples found in a given training set, models are built with certain techniques to avoid fitting
the data exactly. However, it can be found that overfitting does not always work in this way that
one might expect as will be shown by fitting models with a given level of noisiness. Specifically,
it is seen that some models fit exactly to data with high levels of noise still produce results with
high accuracy whereas others are more prone to overfitting.

1 Introduction

In our domain, we have studied recent papers that have rigorously shown the effects of building
a model that has been heavily over-parameterized. Such models are often trained to have zero
or near zero training loss, leading to believe that such models would be overfit and therefore
generalize poorly to unknown test datasets. However, we were able to discover that this
problem does not occur but rather the models still perform as well on test data as a non-overfit
model. Furthermore, in some cases, we were able to observe that a model that would typically
be considered overfit performs even better than a model built with the pretense of avoiding
overfitting (“Reconciling Modern Machine-Learning Practice”).

This concept of purposefully overfitting a model opposes the traditional bias-variance trade-off
paradigm that is well-known in data science, where a bit of error rate is left in the training phase
in order to prevent the model from being too biased on the dataset. In quarter one, we
attempted to replicate the empirical results from a related paper using the MNIST handwriting
recognition dataset with Laplacian and Gaussian kernel machines ("To understand deep
learning we need to understand kernel learning”). We were able to reproduce these results,
scoring near 100% on testing accuracy on the test data with the overfitted model.

For our project in quarter two, we investigated the effects of noise and data corruption on the
accuracy of multiple different types of overfitted models. These models include Laplacian /
Gaussian kernel machines, k-Nearest Neighbor classification, decision trees, logistic regression,
and neural networks. This study is interesting because if a model that is overfit on corrupted
data performs near-optimally on test data (once the noise is accounted for), overfitting of the
dataset with many parameters may become the new paradigm of machine learning— not
leaving any error in the training phase.

mailto:rdunn@ucsd.edu
mailto:c3hwang@ucsd.edu

There are results from previous literature pertaining specifically to kernel machines and noise
levels and we included their replication with the rest of our results to present a full picture of
models interacting with corrupted data ("To understand deep learning we need to understand
kernel learning”). Additionally, research into generalization error for convolutional neural
networks has been done but there is room for a more detailed, clearer investigation into the
effect corrupt data and noise has on model accuracy (Zhang).

2 Methodology

Our project was implemented in Python. We have primarily focused on testing models with the
MNIST dataset and other image datasets, as well as creating our own synthetic datasets. We
have used these datasets to train the Laplacian and Gaussian kernel machines, k-nearest
neighbor classifiers, random forests, and neural networks. To compare our results across
datasets and models, we used graphical representations of accuracy for ease analysis.

2.1 rruption Filter

The first form of corruption applied to the data we used is label corruption. In doing so, a set
proportion of randomly selected labels are given a new label in a uniformly random manner. For
example, in the case of the MNIST dataset, an image that has been chosen to have its label
randomized would be reassigned a value between 0 and 9, meaning that such image would
have a ten percent chance of being reassigned the correct label. In a more general sense, this
would similarly apply to any other dataset in which the chance of being reassigned the correct
label would be equal to 1 in the number of labels in the dataset.

Another form of corruption we used is random corruption. Unlike label corruption, random
corruption targets the actual data while keeping the labels clean. In this process, each data
point has a set proportion of its dimensions reassigned uniformly at random (shown in Figure 1).
Again using the MNIST dataset as an example, this would mean that if a pixel in the image were
to be randomized, it would be reassigned a completely random value spanning from the
minimum value possible to the maximum value possible. Similar to label corruption, this means
that each randomized value has the possibility to be reassigned the original value, however the
chance of such an occurrence is much more rare than that of label randomization.

original image

Image with 30% corruption Image with 60% corruption

Image with 90% corruption

20

25

o 5 10 15 20 25

Figure 1 - MNIST digit with various levels of random corruption applied

2.2 Models Used

Model Type Implementation Optimized Parameters

Laplacian/Gaussian kernel Custom Implementation Power of kernel function

machines

K-nearest neighbors scikit-learn’s Number of neighbors

classification KNeighborsClassifier

Random Forests scikit-learn’s Number of decision trees
RandomForestClassifier

Neural networks Pytorch API Number of epochs

For our custom implementation of the kernel machine models we derived the following formula
for general kernel machines given two matrices.

p
KX, 2) = exp(- =)

1
o = XX - Z||

When p = 1 the kernel machine is Laplacian and when p = 2 the kernel machine is Gaussian.
Using this formula, we created kernel machine implementations in Python for data corruption
analysis.

3 Results + Analysis

In terms of exactly fitting a model with corrupted values, it would generally be expected that the
resulting performance on uncorrupted testing data would be inversely proportional to the
proportion of corruption in the dataset. However, given that it is expected for real world data to
naturally be messy or corrupted, it would be beneficial to create models that can still perform
well despite being trained with incorrect data. Therefore, we can compare different models
trained with different levels and types of corruption to see what models produce this kind of
effect.

3.1 Label Corruption Results

When looking solely at the performance of the kernel machines (Figure 2), there is no clear
winner in terms of which kernel function is the best. However, from this data, it can be observed
that certain models perform better under different circumstances. More specifically, it is shown
that kernel machines with high power kernel functions have the best performance on extremely
clean data, however they fail on messier datasets. On the other hand, kernel machines with low
power kernel functions sacrifice some of the initial performance on clean data. However, they
end up being much more resistant to the effects of corruption, resulting in higher accuracy from

corrupted data than kernel machines with high power kernel functions. Therefore, in order to get
the best performance out of a model, it becomes important to understand the initial data and
how messy it is expected to be. For example, if one expects that the given dataset is quite
messy, it would be in the best interest to use a low power kernel function whereas if it is known
that the dataset is clean, it would be in the best interest to use a high power kernel function.

Kernels with label corruption

— power = 2
—— power = 1
power = 0.5
— power = 0.3333

0.0 01 02 03 04 05 06 07 08 09 10
Proportion label proportion

Figure 2 - Kernel machines trained with label corruption (MNIST)

In a similar sense to kernel machines, k-nearest neighbors (Figure 3) has no outright best
performing model in terms of how many neighbors are used in the classification process. In
terms of what is most resistant to corruption, it is clear that having a large number of neighbors
is beneficial. However, it can also be observed that having a high number of neighbors results in
worse initial performance on a clean dataset. This is likely due to the fact that in classifiers with
lower numbers of neighbors, there is a larger chance that the closest neighbors to a new data
point will be corrupted as the corruption proportion increases.

K-Mearest Neighbors with label corruption

—— num neighbors =1
num neighbors =5
num neighbors = 10

— num neighbors = 20

0.0 01 02 03 04 05 06 07 08 09 10
Propertion label propertion

Figure 3 - k-Nearest Neighbors trained with label corruption (MNIST)

In contrast to both kernel machines and k-nearest neighbors, random forests (Figure 4) do have
a clear winner in terms of the best performing model. At all levels of corruption, it can be seen
that forests with larger numbers of trees always outperforms those with less trees, regardless of
corruption level. Therefore, this becomes a simpler problem in terms of choosing how to build a
random forest even without knowing about how messy the dataset may or may not be. However
it should also be noted that adding trees to a random forest increases the level of computational
complexity of the model whereas in a model such as kernel machines, changing the power of
the kernel function in a kernel machine is relatively equal regardless of its power.

Random Forests with label corruption

—— forestsize=1
forest size = 10
forest size = 100

—— forest size = 500

01 3

0.0 01 0z 03 04 05 06 07 08 09 10
Propertion label proportion

Figure 4 - Random forests trained with label corruption (MNIST)

Unlike the previous model types, only one model was used for the neural networks, however in
order to view the effects of corruption on them, testing accuracy was calculated after training the
network for a certain number of epochs. By doing so, it can be seen that such a model is very
prone to overfitting. However, by using early stopping, the same model can perform well on a
testing set when trained with high levels of corruption. Looking at Figure 5, it is seen that
continuously training a neural network either increases, or keeps the results roughly the same,
whereas even at 10% corruption, training for too long tends to fit the corrupted data resulting in
an immediate decrease in testing accuracy, whereas with the use of early stopping, the network
does not begin to see a large decrease in performance until around 60% corruption.

Convolutional Neural Networks with label corruption

—— Trained for 5 epochs
Tained for 10 epochs

Tained for 25 epochs
—— Trained for 50 epochs

0.0 01 0z 03 04 05 06 o7 08 09 10
Proportion label proportion

Figure 5 - Neural Networks trained with label corruption (MNIST)

When comparing the performance of each different kind of model, there is no exact answer for
what is the universally best model to use, as each different model has clear positives and
negatives to them. On one hand, it may seem ideal to use random forests because it has the
advantage of its best performing model working the best on both clean and messy data.
However, in terms of the exact values of accuracy, it can be observed that certain kernels have
better performance in certain conditions. For example, the kernels with higher power kernel
functions have better performance than the forests with very clean data, whereas kernels with
lower power kernel functions outperform the trees at higher levels of corruption. All in all, this
highlights the importance of model selection based on a general understanding of the dataset
being worked with. Also, in the case where it is difficult to tell if the data is messy or not, models
such as the random forest allow for good general use.

3.2 Random Corruption Results

When looking at the performance of the kernel machines (Figure 6), models with a power of 2
(Gaussian) perform best of all implementations tested. In contrast to the performance of kernel
machines trained with label corruption, when trained with random corruption the resistance to
corruption across all powers of kernel functions are relatively the same. The big difference
however is that in this case kernel machines with higher power kernel functions have higher
performance whereas when trained with label corruption the kernels with high power kernel
functions were more prone to overfitting.

Kernels with randem data corruption

—— power = 2
power = 1

power = 0.5
— power = 0.3333

Accuracy

0.0 01 0z 03 04 05 06 o7 08 09 10
Propertion data proporticn

Figure 6 - Kernel machines trained with random data corruption (MNIST)

Out of the different k-Nearest Neighbor models that we tested, the model with the highest
number of neighbors performed the worst initially, however ended up being the most resistant to
the effects of random corruption. In contrast, the model with the lowest number of neighbors
performed best on completely clean data however had a more significant drop off in accuracy
with the addition of corruption compared to the models with a higher number of neighbors.

K-Mearest Neighbors with random data corruption

—— num neighbors = 1
num neighbors = 5
num neighbors = 10

—— num neighbors = 20

09

0.8

07

0.6

Accuracy

0.4

03

0.z

0.1

00 01 02 03 04 05 05 07 038 09 10
Propertion data proportion

Figure 7 - k-Nearest Neighbors trained with random data corruption (MNIST)

Like the performance of random forests trained with label corruption, random forests trained
with random corruption show that having a large number of trees in the forests is explicitly better
than having fewer numbers of trees. However, it can also be seen that when trained this way,
the random forest model is not as resistant to the effects of corruption as the other types of
models. In comparison to the other models, the random forests have a more significant
decrease in accuracy as corruption is added, similar to the decrease in accuracy seen with
kernels.

Random Forests with random data corruption

— forestsize=1
forest size = 10
forest size = 100

—— forest size = 500

09

08

07

06

05

Accuracy

04

03

02

o1

0.0 01 02 03 04 05 06 oy 08 09 10
Proportion data proportion

Figure 8 - Random forests trained with random data corruption (MNIST)

In contrast to the performance of neural networks trained with label corruption, when trained
with random corruption, the performance of neural networks is generally increased when
continuously training for more epochs (for example at 60% - 70% corruption). However, it can
also be seen that there is a very slight decrease in accuracy at higher levels of corruption,
meaning that early stopping could also be used in this case, however it is not nearly as
necessary to the extent of that for label corruption. This means that as the network is
continuously trained, it does begin to overfit to the training set, however it can also be noted that
such a fit is not detrimental to the performance of the network on the testing set.

Conwvolutional Neural Networks with random data corruption

—— Trained for 5 epochs
Tained for 10 epochs
Tained for 25 epochs

— Trained for 50 epochs

¥

Accuracy
=
in

00 01 0z 03 04 05 05 07 08 09 10
Propertion data proportion

Figure 9 - Neural Networks trained with random data corruption (MNIST)

Overall, it can be seen that the effects of fitting randomly corrupted data with clean labels has
less of an effect on model building than doing the reverse. Specifically it can be seen that
overfitting occurs in some variation of each model when trained with label corruption whereas
the only significant case of overfitting with random corruption occurs in the random forest model.
As for which model works the best, there are again no clear winners. In the case of completely
clean data, it can be seen that neural networks and kernel machines generally have the best

performance while k-nearest neighbors appear to have the most resistance to randomly
corrupted data.

4 Conclusion

To sum up, from the insight that models that are overfit on the training data do not actually
perform worse on the testing data when compared to models that leave training error, we added
the factor of corrupted data. To test the effects of corrupted data on the performance of our
models on the testing data, we utilized multiple different types of models and multiple datasets.
From the initial Laplacian and Gaussian kernel machines trained on the MNIST handwriting
image dataset, we further implemented the K-Nearest Neighbor classifier, random forest, and
logistic regression model. (Neural Networks are to be implemented soon). On each model, we
trained it on one dataset for each model while gradually increasing the proportion of the dataset
that was corrupted through label corruption or random corruption.

From the performance results we were able to comprehend that each model had different
strengths and weaknesses. From the kernel machines, we were able to conclude that the power
of the kernel functions were a key factor in deciding its performance in relation to the corruption
level of the dataset. The higher the power, the better its performance was on clean datasets and
less resistant to data corruption— meaning that as the data became corrupted, it rapidly
decreased in accuracy. The lower the power of the kernel function, the more resistant it was to
data corruption— leading to significantly better performance of accuracy than the higher power
kernel functions when trained on the same level of data corruption.

The K-Nearest Neighbors classifier also gave similar results. The higher the number of
neighbors, the more resistant it was to data corruption. The opposite gave result to less
resistance and better accuracy on the initial clean dataset.

However, from the results, we were able to observe that this was not the case for random
forests. The higher the number of trees the better the accuracy was on every level of data
corruption, but at the cost of higher computation cost.

Thus, from the results so far, we were able to learn that since each model has strengths and
weaknesses according to the value of the optimized parameter, there is no one ultimate or ideal
model to every dataset. We further concluded that to output the best results in terms of
performance of accuracy on the testing/unseen data, it is crucial to understand how much the
training data is corrupted, so that the adequate model would be selected.

References

Belkin, Mikhail, et al. “Reconciling Modern Machine-Learning Practice and the Classical
Bias—Variance Trade-Off.” Proceedings of the National Academy of Sciences, vol. 116,

no. 32, 2019, pp. 15849-15854., https://doi.org/10.1073/pnas.1903070116.

Belkin, Mikhail, Siyuan Ma, and Soumik Mandal. "To understand deep learning we need to
understand kernel learning." International Conference on Machine Learning. PMLR,
2018.

Zhang, Chiyuan, et al. "Understanding deep learning (still) requires rethinking generalization."
Communications of the ACM 64.3 (2021): 107-115.

https://doi.org/10.1073/pnas.1903070116

