{ "cells": [ { "cell_type": "markdown", "id": "8bf0d77b", "metadata": {}, "source": [ "# Annotating pathway into mouse Single-Cell clusters\n", "\n", "This tutorial shows how to use the descartes_rpa module with scanpy formated data outside of Descartes. Data from the [Trajectory inference for hematopoiesis in mouse](https://scanpy-tutorials.readthedocs.io/en/latest/paga-paul15.html) tutorial will be used." ] }, { "cell_type": "code", "execution_count": 1, "id": "9de47dbd", "metadata": {}, "outputs": [], "source": [ "import scanpy as sc" ] }, { "cell_type": "code", "execution_count": 2, "id": "a9db09ea", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "WARNING: In Scanpy 0.*, this returned logarithmized data. Now it returns non-logarithmized data.\n", "... storing 'paul15_clusters' as categorical\n", "Trying to set attribute `.uns` of view, copying.\n" ] } ], "source": [ "adata = sc.datasets.paul15()" ] }, { "cell_type": "code", "execution_count": 3, "id": "17c41a5f", "metadata": {}, "outputs": [], "source": [ "adata.X = adata.X.astype('float64') # this is not required and results will be comparable without it" ] }, { "cell_type": "code", "execution_count": 4, "id": "4daa7534", "metadata": {}, "outputs": [], "source": [ "sc.pp.recipe_zheng17(adata)" ] }, { "cell_type": "code", "execution_count": 5, "id": "dbb52fad", "metadata": {}, "outputs": [], "source": [ "sc.tl.pca(adata, svd_solver='arpack')" ] }, { "cell_type": "code", "execution_count": 6, "id": "5f18011f", "metadata": {}, "outputs": [], "source": [ "sc.pp.neighbors(adata, n_neighbors=4, n_pcs=20)" ] }, { "cell_type": "code", "execution_count": 7, "id": "cfb28bd8", "metadata": {}, "outputs": [], "source": [ "sc.tl.leiden(adata)" ] }, { "cell_type": "markdown", "id": "d926dd73", "metadata": {}, "source": [ "### Since this dataset is from mouse (Mus musculus), we pass its species as input" ] }, { "cell_type": "code", "execution_count": 8, "id": "0fd0bc3d", "metadata": {}, "outputs": [], "source": [ "from descartes_rpa import get_pathways_for_group" ] }, { "cell_type": "code", "execution_count": 9, "id": "aad14fa5", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/joao/miniconda3/envs/descartes-rpa/lib/python3.9/site-packages/scanpy/tools/_rank_genes_groups.py:419: RuntimeWarning: invalid value encountered in log2\n", " self.stats[group_name, 'logfoldchanges'] = np.log2(\n" ] } ], "source": [ "get_pathways_for_group(adata, groupby=\"paul15_clusters\", species=\"Mus musculus\")" ] }, { "cell_type": "markdown", "id": "75442d11", "metadata": {}, "source": [ "### We can look at the top 2 marker genes for each cluster" ] }, { "cell_type": "code", "execution_count": 10, "id": "de3e046d", "metadata": {}, "outputs": [], "source": [ "from descartes_rpa.pl import marker_genes" ] }, { "cell_type": "code", "execution_count": 11, "id": "4d34c813", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "WARNING: dendrogram data not found (using key=dendrogram_paul15_clusters). Running `sc.tl.dendrogram` with default parameters. For fine tuning it is recommended to run `sc.tl.dendrogram` independently.\n", "WARNING: saving figure to file dotplot_marker_genes.pdf\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8wAAAHmCAYAAACmgAcXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdZ3hcWXrY+f9bhZxzzoGIJAASIMHY7DA9M909UTMeWbbklndXli155bVsa9eS1+0oyUG2LMuSRyurNZIsa/JMT0fmiJxBBIIEkTNA5FhVZz8UwAZAABXJKpLn9zx8CNzw1ou6dW/dc08SpRSapmmapmmapmmapu1k8HQCmqZpmqZpmqZpmuaNdIFZ0zRN0zRN0zRN0/agC8yapmmapmmapmmatgddYNY0TdM0TdM0TdO0PegCs6ZpmqZpmqZpmqbtQReYNU3TNE3TNE3TNG0PusCsaZqmaZqmaZqmaXvQBWZN0zRN0zRN0zRN24MuMGuapmmapmmapmnaHnSBWdM0TdM0TdM0TdP24OPpBDRNs01EYoH/A8hg23mrlPrbnspJ0zRN0zRN0553usCsac+GHwE3gIuA2cO5aJqmaZqmadoLQZRSns5B0zQbRKRZKVXq6Tw0TdM0TdM07UWi+zBr2rPhJyLyhqeT0DRN0zRN07QXia5h1jQvJiILgAIECAbWgY3N1UopFeap3DRN0zRN0zTteacLzJqmaZqmaZqmaZq2Bz3ol6Y9I0Tkq8AZrDXON5RSP/RsRpqmaZqmaZr2fNM1zJr2DBCR/wbkAH+5uegbwH2l1C95LitN0zRN0zRNe77pArOmPQNE5A5QrDZPWBExAG1KqSLPZqa5i4iUAGc3f72hlGrxZD6ae+njq2mapmnPJj1KtqY9G7qBtG2/pwKtHspFczMR+RXgL4C4zX9/LiJ/37NZae6ij6+maZqmPbt0DbP2RIlIHPBPsTYnbgN+Uyk179msnj0icg2oAGo3F1UAVcAygFLqix5KTXMDEWkFTiqlljZ/DwaqlFJHPJuZ5g76+Gqapmnas0sP+qU9ad8CGoDfA94C/gvwticTekb9v55OQHuiBDBv+928uUx7Pujjq2mapmnPKF1g1p60BKXUr2/+/LGINHo0m2eUUuoagIiEse28VUrNeCwpzZ3+BKgRkR9gLUh9Cfhjz6akuZE+vpqmaZr2jNJNsrUnSkRagPN8WptyZfvvusBnHxH5BeBfASuABev7p5RSWR5N7BkhIg+wTse1gze9fyJyFOu0YQJcV0o1eTglzY28+fg+C+eHpmmapnmKrmHWnrRwrE2ytzc/3KplVoC+IbPPPwaKlFJTnk7kGVW+7ecA4OtAlIdyeYyIZAN3lFKNInIeOCsiD5RSsx5NTHOLZ+D4evX5oWmapmmepGuYnwMiUgZs3ZB1ejofzf1E5CPgq0qpZU/n8rwQkZtKqTOezgNARJqxFloygI+A94A8pdQbHkzrmSEiXwc+UkotiMhvAEeBf62U8oouIM/i8fWm80PTNE3TPEnXMD/jROT/Bf4m1lrcfyciv6mU+iMPp/XIZjPEfXnLDe0z4P8BbotIDbC2tVAp9X96LqVnx67PoQFr4SXUQ+nsxaKUMonIV4HfVUr9noh4TZPdZ8A/U0p9R0TOAJ8F/gPwB8AJz6b1iFcf32fg/NA0TdM0j9EF5mffN4BSpdSyiERjrb3wmgIzUA/cASY3f9/eNFsBrzz1jJ5N/x24jHVqLouHc3kW/cdtP5uAPuCveSaVPW2IyF8Hfg74wuYyXw/m86zZGoH6TeAPlFI/EpF3PJjPbt5+fL39/PBKIpKL9eFMNtZr8z9SSg17NitN0zTN3XSB+dm3utVMVyk1LSIGTye0y68CP4V1sKr/BfxAKbXo2ZQ+JSL/EJhTSv3xruV/HzAqpf6zRxJ7nEkp9Q89ncR+RCQceAc4u7noGvAvlVJzHktqG6XUy57OwYafB34R+DdKqQcikgn8uYdzesTbjy8wLCL/HXgN+G0R8cdaU+otvPr4PgPnh7f6H1inTrwOfBHr9Ilf9WhGmqZpmtvpPszPOBGZxfplDdba27Pbfkcp9UUPpPWYzRvEv451OpV+4N8qpZo9mhQgIu3AUaXU+q7l/kCdUuqIZzLbSUT+Ddb37T12Nsn2ilHGReR7QDvwp5uLfhYoUUp5xc2jiMQD/xZIUkp9XkQKgZO7H5Roe3sGjm8Q8DmgTSnVIyKJwGGl1CceTu2ZoM8P54hIs1KqdNvvjUqpA7shaZqmac8eXWB+xonISwet35q/1xuISBHw01hvtv+JUurbHk4JEWlTSh12dN3Ttjnty25eM63U7hvH/ZZ5ioh8iHUu3F9XSpWIiA/Q5EXHNxf4TaAQ6yjFgPdM6+PtxxdAREr4tAb8hlKqxZP5bPcMHF+vPj+8lYh0YX0QvNXV6C+An9n6XY/RoWma9nzQTbKfcd5UIN6LiGRhLSR/CRjE2iz73yilVj2a2DYiEq+UGt+9zFP57EUplenpHGxYEZEzSqmbACJyGmszfG8Ro5T6toj8PwCbAzCZbe30FP0J8M+B/wS8jLUJrxy4x9Pl1cdXRH4F+D+A728u+nMR+aZS6vc8mNZ23n58vfr8EJFipVS7p/PYwxjwO/v8rsfosJMXH19A5+cKb85N0xyhC8zPOBFpPWi9FzQpvge0Aj8C5oE04O+JWO8VlVK/s/+uT8W/B94XkV/l0/mhjwH/DutgLl5BROqx9pf7n140d+t2fxf4082+rgLMAG97NKOdljYHxVMAIlIJeEv/W4BApdQlERGlVD/wjojcwFrI8gbefnz/N+CEUmoJQER+G6jC2qfUG3j78fX28+MPRcQPeBcvugYqpc57Ogd7PAOFFq88vtvo/Jznzblpmt10gdlOInJMKdWwa9kXlFLveSqnTRasNzn/E2v/Vq+p9dn0L9m8CQNCPJnIXpRS3xKRSax5Fm8ubgf+uVLqQ89l9pifxlorVb9ZeP4T4BPlJX0qNvujl4hI2Obv857N6DH/EPgxkC0it4BY4GueTWmH1c0B+3pE5JeBYSDOwzk98gwcX+HTkbLZ/NmbanC9+vji5eeHUurMZrP2v431GlgL/IlS6oIn8xKRf6KU+nebP39dKfWdbev+rVLqn3ouux28utDircd3i87Ped6cm6Y5QvdhtpOINAJ/SynVtvn7Xwf+gVLK4/N8ikg+1n5UXwA6sBaeP1FKmTyamOZ2mzfdb2GdY9aCtdb5dz01+NfmKOP78oIWBI9s9svMw1qQ6lZKbXg4pUdEpALoBCKAfwWEA/9OKVXt4byeieO7meffAn6wuejLwLveMsq9tx7f7bz5/NgiIkasx/a/YG2xJMA/VUp9/6D9nmA+jwb52j3gl7cNALat0PJ1wCsLLd52fHfT+TnPm3PTNHvoArOdNvvifhf4G8AZrPNpvuVF06oAICLfAH4f+G2l1L/3gnyKgGyl1I83f/9PWG8WAf6rNwyKIiIvA78M5G8u6sSa21WPJbUHETmCtZb5DeBjrAPMnAF+1lODL4mIBWgGPsQ6eveOWj2l1L/wQFqPiMi5g9Yrpa4ftP5F5+3HdzsROYr1fBDgulKqycMpeb1n5fzYdu17E7gA/LFSqlFEkoAqpVS6h/JqUkqV7f55r9+9gbcWWrz1+Or8nu/cNM0RusDsABE5BPwQ6+BVX1ZKeUXzZxFJxtpk9yvAQ+DbeMl8xyLyHvCbSqnbm793AP8MCAJ+Sin1ZQ+mh4i8CfxXrE2yG7HeQBwFfgP4ZaXUBx5M7xERaQBmgT8GvqeUWhORE0qpGhH5vvLQ9D4iUor1s/c5oAH4S+CStzQV3/z87aaAEiBFKWV8yintICIxwC9hPW//B9Y+9WeB+8CvKqXueTC9Z+H4vqKUurz5c6ZS6sG2dV/1goKAtx9frz4/tojIdeCPgO/u/t4VkZ9VSv2Zh/J6JmqYvb3Q4q3Hd1sOOj8neXNumuYIXWC2QUTa+LQPLlj7nc2xOReu8vCgWiJyDQjFWkj+LtbBeB7xVFPdLSJSr5Qq3/Z7tVKqcvPnm0qpM57LDkTkKvAratcUNJs3GL+nlDpw2q6nRUSylFK9u5YNKKXSPJXTbiJyCmvXgNeAX9tqVeBNROQM8OtAJNbR2j06BoGIfALUYz2HX8XaN/09rIWqv6G8aFAhbzy+3l5geZaOL3jf+QGPakW/pZT6G57OZTexjiS+hPVBayCwvLUKCFBK+Xoqt+28udDizccXdH6u8ObcNM1RetAv297ydAI2pGMt0P8d4Be2LZfN5Z6e5zN0+y9bheVN3jDoTcLuwjKAUqpVvGhqqd2F5U1eM6iRiMQCZcBhYAiY8GxGO4nIq1hbNijg33pR3714pdQ/FREB+rd1o+gSkV/yZGLbefHxlX1+3ut3T3hWjq+3nh8opcwiEi0ifkqpdU/ns5231MAfZLPQMrhfodjTNXzefHxB5+cKb85N0xylC8y2LXg6gYMopTI8nYMNI1tNh7cvFOu0JSMeymm7JSfXeQOPNw8RkZ8HvgEEYG3h8NeUUt5SmNpqcv/rWFuF/LpS6paHU9rNDKCUUiIytWudxQP57ODtx5ed58Du88Hj5wfef3y9/fzY0g/cEpEfs+26rDw86JyIRB203tMtvDZzeBYKLV55fLfR+TnPm3PTNLvpArNtU1hrVLZGnN5ea+HxGtzNp8eBW/2VNwuifpurm5RSni7w/xrwVyLyLjvnOf5bWG/EPS1780K+m+D52vmtPoZ73fgLEP2U09nLHwNtwADwWeB1kU9PEaXUFz2U15b3sJ6/08Cvbc8NvCK/rM3Pn2z7mc3fMz2X1iPefny9/f3z9vy8/fzYMrL5z8CuVkse5tX3B9t4e6HFW4/vFp2f87w5N02zm+7DbIOI/C5wHriFdcCbm94y4A2AiPwHYEJ9OhfkA6zzCAcAjUqpX/NkfgCbTZt/CSjaXHQH+H2l1LjnsrISkQP7KCulrj2tXPai83ONzs81Oj/X6PyeHBHxUR6eOtHb7w+2iMg/32u58qJR7nfzhuN7EJ2f87w5N03bjy4w22Gz/9l5rAPeHAc+Af5g+4isniIiTUDF1sVHNqey2Mz5hqcH1dI0byMi0UqpaU/n8awSkTgva5atPae2DwwpIn+mlPrZbes8PqjbZh5ee39wEG8otHj78dX5PZ+5aZozDJ5O4FmgrK4A/wT4Q6zTM7zm2aweMez60vs1sOYMhHgmpU+JSLiI/JaIdIrI9Oa/zs1lEZ7O7yAi8qEX5BAiIv9SRO6IyJyITIpItYi87encAETkc9t+DheRPxaRVhH5n94waNrm5yxm8+dyEekFakSk31bt2tMgIgki8gci8vub/Qzf2Xz/vi0iiV6QX9Tuf0CtiETa6r/5lPIrF5ErIvLnIpIqIhdEZFZE6kTE43PgikiYiPymiPyZiPzMrnX/zVN5bcuhUUR+Q0SyPZ3LPoK3/Vy8a503DOrm1fcHInJz28+7B/eqfcrp7MXbj6/Oz3nenJumOUwXmG0QkWAR+RkR+RHwAdZC6FGl1B95OLUtfiLyqF+IUuoTsBZesDbL9rRvY52D9GWlVLRSKhp4eXPZdzyaGSAiR/f5dwwo9XR+wF8AvVj7j/4L4L8APwu8LCL/1pOJbdqew38ERoEvAHXAf/dIRju9qZTaGmzp3wPfUErlAJ/Bmq+nvQt0YJ3b/QqwgnVk/htYb749bQrr/Mvb/yVjHY+g3oN5bflvwL8D3gduA/9dKRUB/N+b6zztT7DeHH4P+GkR+Z6I+G+uq9x/t6cmEogArohIrYj8X2Kdm9dbePWgbs/A/YG3F1q8+vii83OFN+emaQ7Tg37ZNgH0YO2fdA/riV4hIhUASqnvezA3sM6t+Fci8otKqQEAEUkH/mBznadlKKV+e/sCpdQY8Nsi8rc9lNN2dcA19r55iHi6qewpQyn17ubPvyMidUqpfyXW0Ys7gH/qudQeU66UKt38+T+JyN/yZDKbfLc1PQxUStUBKKXubiu4eFK8Uur3AETk7207V35PRP43D+a15Z9grS37x0qpNrCOk6CU8oYBqwB8lVIfAojIbyulvguglLok1vEdPC1bKfVTmz//UER+HbgsIt4ymNZDpdQ/Av6RiJzF2qy4UUQ6gb9USn3Ts+kRISJfwfpwP0JEvrq5XIBwz6X1iLffH3h7ocXbj+9WToLOz1Hefmw1zSG6wGzbd7B+seRv/tv6ktma59ijX4hKqd8RkWXgpogEb+a0BPyWUuoPPJnbpn4R+SfAn24N8rXZVPdtrLVqntYJ/B2lVM/uFSLiDfkticgZpdRNEfkCMAOglLKIiDfUEMSJyD/Eej6EiYhsG/TGG1qw/D7wgYj8FvCRiPxnrOfsq0CzB/Pasv09+taudR6f41Up9R9E5H9hfQAyCPxzvONGe8uqiLyO9QZMiciXlVI/3Gxub/ZwbgD+ImJQSlkAlFL/RkSGgOt4QZeZ7ZRSN4AbIvL3sbbA+Abg6QLzNeCL235+a/Nnwfoeetq3N//fuj/YzuP3B3h/oeU6O4/vF7C+b95yfLdy2v0zeG9+3vL+efux1TSH6AKzbX8H+GlgWCl1UUT+BnAKa+2ep28mtlzAOlx/ATCL9Yn3//RkQtt8A2vzyGsiEre5bBz4MfB1j2X1qXfYv2D3959iHvv5ReD/E5FDWEc//9sAIhKLtTDoaX/Ep1NF/CkQA0yKSAJeUCBVSv2eiLQBfxc4hPWadwj4IfCvPJjalh+JSIhSalEp9RtbC0UkB+j2YF6PKKWGgK9vPrC5AAR5OKXtfhFrk2wL1m4Lf1esU9gNA/+HB/Pa8h7wCnBxa4FS6k9FZBz4PY9l9am7uxcopczAR5v/PO0PgS6l1JyIBGH9LjmKdaYFb+iS0gT8QCnlDQ9X97L7gcMXdq3zKKXU29t/32zlcBxo2+pe5klKqZ8XkQIgCajZmr4Tdo7f4Smb+Z0ALEqpOhEpAj4HdCqlPvBwbm/vXiYi31JK/ZwH0tE0l+lRsm0Qkb/AepMdhLUwGgz8AGsN1Z4XhadJRH4FeBPrE7s3sBZSHgJfAf6eUuqqx5KzQUR+Xin1J57OYz86P9fo/FzjjfmJSCDWZsbt3pjfdjo/13hDfiJyByhRSplE5JtYW099D+v3b4lS6qsHBnjy+c1t5nQfa7Psb28bM8GrecnxrVVKHd/8+X/HOv3kD4HXgfeUUr/lwfTYbG3xy1hbopUCv6KU+tHmOo+P9CzW6cI+j/Ue9QLWhw3XsHaj+Vgp9W88mNuP91j8CnAZvGqOd02ziy4w2yAirUqpIyLig7XWIkkpZd5sDtuilDri4fzagNLNnIKAD5RS50UkDfiRUsrjI8XuR0QGlFJpns5jPzo/1+j8XKPzc43OzzXekJ+IdCqlCjZ/3lFAEZHmbWMmeIRYp3U8hrWA8g2stbkNWAvP31dKLXgwvQN5yfFt2rpHEZE64A2l1ORm97JqpdRhD+fXBpxUSi2KSAbwXeDPlFK/uz13D+dXCvgDY0CKUmp+88FmjSfvTzfPjTvA/8enTbH/EmuLTa+e413T9qKbZNtmEBE/rDXLQVj7/cxgvUD5ejKxbXyw9tfzZ7N5rFJqQEQ8np+ItO63CvCGaYd0fi7Q+blG5+canZ9rvD0/YHtLhhYRKVdK1W92UdnwdHJYZ5WyYJ17+ZPN79zPYx087T8AsZ5M7hk4vgYRicTaLUqUUpMASqklEfHoHNGbjFvNsJVSfSJyHviuWAdW9YYxREybXSiWReS+UmoeQCm1IiIWD+d2DPgV4NexDhrZLCIruqCsPat0gdm2Pwa6sA7A8+vAd8Q6l2sl8L88mdim/w+oE5Fq4Bzw2/Coj+uMJxPbFI+1b+HDXcsF6zQwnqbzc43OzzU6P9fo/Fzj7fn978DvishvYJ3irGpz8LnBzXWetqPQpJTawDo+x483a/k8zduPbzjWGnnBOmhfglJqTERC8I4C6ZiIlCqlmgE2a5rfAv4H4NHa703rIhKklFrGWkAFHk0r6tEC8+aDpP8kIt/Z/H8cXebQnmH6w2uDUuo/ichfbf48IiLfwtr86o+UUrWezQ42mwZdxDrg1+8opbo2l09iLUB72k+AkK0vnO1E5OpTz+ZxOj/X6Pxco/Nzjc7PNV6dn1JqDnhbREKBLKz3LENbMy54gW/st0IptfI0E9mHtx/fjH1WWbCOw+JpPwfsqOlW1ikKf05E/rtnUtrhnFJqDR4VULf4At4wreP2QSPfBOY9nY+mOUv3YdY0TdM0TdM0TdO0PXjDPKmapmmapmmapmma5nVeyCbZIvKfsY4s6AnNSql/cNAGOr8D6fxco/Nzjc7PNTo/1+j8XKPzc43OzzU6P9fYzE/TnpQXtYa5FM+c8Pa+rr3buZu9r2vvdu5m7+vau5272fu69m7nbva+rr3buZu9r2vvdu5m7+vau5272fu69m7nbva+rr3buZu9r2vvdu5m7+vau5272fu69m7nbva+rr3buZu9r2vvdu5m7+vau5272fu69m7nbva+rr3buZu9r2vvdu7mqdfVNOAFrWHe1KyUOv80X9DBQTZ0frvo/Fyj83ONzs81Oj/X6Pxco/Nzjc7PNTo/13jDIHXai+1FrWHWNE3TNE3TNE3TtAPpArOmaZqmaZqmaZqm7UEXmDVN0zRN0zRN0zRtD7rArGmapmmapmmapml7EKWUp3Nwq5iYGJWRkeHpNDRN0zRN0zRN84C+vj6mpqY8nYYjxNMJaPt77kbJzsjIoL6+3tNpaJqmaZqmaZrmAeXl5Z5OQXuO6CbZmqZpmqZpmqZpmrYHXWDWNE3TNE3TNE3TtD3oArOmaZqmaZqmaZqm7UEXmDVN0zRN0zRN0zRtD7rArGmapmmapmmapml70AVmTdM0TdM0TdM0TduDLjBrmqZpmqZpmqZp2h50gVnTNE3TNE3TNE3T9qALzJqmaZqmaZqmaZq2Bx9PJ+ANejo7mO7txLixirKYsRh9MUTEU3bqLL6+vk7FVEqxvLzM+vo64eHhGAzOP5u423HnUX4oy6P8jp4+h4+PPoT2GBsdZejBfZSyEBoRRX5RsadT0jTtObG+vs5Afz9KWUhJTSMwMNDTKT1T1tbWGBwYQCkLqWnpBAQEeDqlHbw9P03TNO3JEqWUp3Nwq/LyclVfX2/Xtg9nZmi+8GMKowKIjQjbsc5kMtPUP07IoRKKjlbY/forKys0X7+IZXKQMLWGn8HArAksUYmkHC4nNSPL7lgz09O0XnyPwuhAYsJDH8uvsX+MsLwyCsvK7Y75oum92834vQ4SgnzISIoHYG5hka7RGXyj4jl26qyHM9Q07Vk1NjJCX3sjvitzZMREIAIDU7Os+IaQnH+YtEz7r/dblFK0tzSzujAHKHwCgiktr0BEnMrx03izAC7Hc6eRoUEGOprxXZnf8f6tBYSRnH+ElLR0z+d3pxm/1XnSYyIAGJieZc0/jJQCz+enadr+ysvLsbc84CU8f1HW9vXCFpjn5+dp/eA7nMpOPHC7oalZ5uNyKD523GbMhzMztP7kLzmdErHnzcj9yTk2ssooKq+0GWtubpb2j77HyayD8xucfMhiQh5FR5+/QvPExAQrKyukpqY6VUN/p7mBoLkxMhJj91y/uLRMw8gs59/8souZapr2oum928XSvRaK0va+Rt8fnWQjNpPC0qN2x7zX3cXE/U6KM1MIDQkGYGV1lZaefsKSMykqKXUox56uTiZ7uziclUJI8M544SlZFB4pcSieO93r7GCtr52C1IQ91/cMj6OSDpF/2DM59nTcYaO/g/zU+D3X3x2awJCax6Giw085M01zTX/fAyZGhlBKkZKZTVJSsqdTemRocJCh+10YzSYUCrPRn5yiI8TG7n0fdxBdYNbc6YUtMN967zucTAi2K2ZD7zCHv/SzNpthXfmzP+RcStiB2/ROzeF39DXSs3MPzu/H3+Fkor35jXDkyz+Lv7+/XdsrpWiorca8vICgMBt8KSg5SkREhF37P+l49+92M3G/k/hQP4IDAumffIghLIby0+fsjjEyPMRiVwO5qQc/cFhaXqFrCcpPv+RUrppmi8Viob76NmptefP88OPwsQpCQkI8nZrmpNnZWXqvf0BpVsqB290bmSAov8Kumsjee3cxjfWTm773zevA6DjLgdEUHD5iV473e7oxj/eTm753jo7Gc6epyUmGay5xOCPpwO26B8cJP3KSpOSD32d3m5yYYKzuMkXpB+fXOThKdOlZEhIP3m638fEx+u92AZCWm0dCwsHfU9qzY2VlhebaaoyWdQAsPgGUnzztFd3nVlZWqL7yCYeSY0mKjwOgb3CEvql5zr3+eYxGo0fza22sJ3hjnqzUndfAOz0P8I9PJze/wKF4usCsudNTH/RLRAwi8qcicmPzX7aIPBCRf7Ftm/dF5LubP18VEbfeWS4uLhKyvmD39mUZibRUXT9wm47mRkoibfd3zooJZ6Tt4BN4fn6esA1H8kug+fbB+W139eP3KUqI4HhhDhWFuVTmZ9BVd4uHDx/aHWN3vOLEnfE6a286FW+wv4+N0ftUFmSSmZJMXEwUFQXZ5IYZqbt5ze44A51tNgvLAMFBgWxMj/O8PTh6FiilsFgsXhvPHZRSXP7gx5Slx207P9JpvH6JpaUlT6f3yNjYKDXXr1B74wr3e+56Oh2v19VYY7OwDJCTFMdgZ4tdMSd67+5bWAZIS4zn4eB9u69V1nj755iWGM/s8AOPXPvutdTbLCwD5KXG09/e7HB8pRRtrS20NDc59ffda6m3WVgGKEhNpM/B/Jpqq5i/20JFeiwV6bEs9LTSVFvlcI7PEqUULc1NtLY0u+Xztra2Rm3VLWqrbrGxseGGDN1jfX2dqosfcOJQChUF2dZ/2Ylc/eDHXvHdVHPtIi+VFT4qLANkpCZx9kgut69cdDquxWKhubGB9rZWp2OMjY0SsDr7WGEZoCg3k5n+btbW1pyOr2mu8sQo2aWAv1LqLPAvgV8GpoEyABGJAA6upnXRnboqivdpZrUXg8GAejhx4DbzfV2EB9s30EvAwgSrq6v7ru+sr6LQ0fxmx+3atvf+PQpS4ggI2FkbfeJIAd2tTXa/5pb793ooTIl/rHa7sqSQrtZGh+MN9XSQt8dNY1hoCGphCrPZbDOGUgpZmrP7NYtSYulw4ULvrZrqaqi6doX19XW3xJuamuJBb69bYvV0d3L74x9Td+l96qtuuRzvblcHVZ+8Z41X7Xq8ubk5bl78iKpLHzM0OOB0nDttLRwvyHqsduHM0WJaG2pdyrGnu4vWJsfPsd2mpqYY7mrleEEWFflZWGbH6b3X41LMhw8fcuvix1Rd+pjhoSGXc/Q689N2b2pcmrN53erve0BqVOiB2wAUZSTbda3qe9BLeky4ze0K0xLpbG+zud1u/Q96uf3Rj6n66Mfc6+5yeH8W7X//WJx2uJB19eMPyAzzIzcqiMsfvud4IW3Bgfwc2HZ+fh7j/BQ52x5k5KSn4LMwzdyc/d9ZzxKlFJc/fI/cqCCywv25+vEHLsXb2Njg5icfUJ6dzLGsJK5++J5d9wUHGRsd5falj7l18SOmpqacjtNUV81Lxw7v6JJnMBg4U5JHc32dSzkODg4wNjbm9P4jI8OkR4fv2V3QaDQS5qNYXFx0OK5Siksf/Jj8uFDSQoxcu/CRU/k96LpDbkbqvuvLi/JorqtxKramuYMn2ogMAYj1rI0AJjeXd4tIHnACeA/Y0WlYRD4HvA38nFLKpRKAwbzu8IAnBvPBL2lcXwHsKzAnhwYwOjJMZlb2Pq+1gYhjzzIMZvuesk6NDlORu/dFaasJkSNmxkfJytm7FsNoZ07b+Zj2zyE/NZG73V0UFBYdGGN1dZVgP/vfv9CQYJYnZu3efsvY6Ciz01PkF7unD1vN9SvMTU/y+lf+msuxOjvukBbiQ2RKKjVVNzn50isux2yvuUFGUiIPeiEzy/HBjLabGRnk1FFr38S6lnbrQw4XBiF6ODrIyTJr09LaljaX43U0N3C6pBCA6tZOUlLTnIqzMj9LaPzj+4qIU+fHlvHxcSwzI6TFRNPa1MiRMvv7ye72oKeb8qL8R7/nZKRR391HVs7B3UYO0t3azKkSa/O56rYOklNcb1I7NDDA2uoy2YfybW/8hBlM9h+76GA/Hj58SExMzL7bTIwOU55iu49eWGgIy/2TNrebHB2hPHX/19ser2fA8QLC6P1uTh7OA6DmTg85efYfE4vFgo8DBZxwf18WFxcJDbX9QAGsD4DSosMJDg4CoCAtkcHBQdLS7DuHTSYT/thfGxjsI6ysrNg1MnpXewvluZmPLS/KyaC+vZXjp50fhLK5vgalFGUVtsdIeZqGhoYoSEskMNDapS0tOpzJyUmn+qQCtDQ1cv54KSKCiHD2aDHtba2UlJY5neODrnZOHrF+hqvbW4g5/6pTcQym9T3HW/H398e04nxhd3p6mod93SwsLRP96htOzd4y3P+A8sz9W00czsumob2dikrHPj9373ZTUZCNv78//v7+RAf6sLy8TFBQkENxfJTpwPUGg8Hmffhe3n33Xfr6+hzeD+DMmTO89tprTu2rPX88UcM8BViATuDfAe9uLv8e8FPAm8DuR5BfBH4G+Jt7FZZF5BdEpF5E6icnbd9MONVNwNbNtwM35yazBR8np6s6IAG7tlIHbHfQuv33cW7dfiwH7LSyukZAgO2bEqPRiPmgQHty/G8PDQsj1Ml+2nsJCQ8nJDzSLbFCQ8OYnptnbn4B/0DHvrj2s25W9I+MEWLnjetBTOZPb0g3XKwdANgewmR2rbAMIEbjo6Z+ZhdaEB5UseVKw8TAwEDGp2cZGBkjNNx2TeJBLHs0ZTe72HxQiWAymVBKufT+bRcSFkZIWIR7grlIDA5e7230X3SkAtSebZUDny5nDo9p2+fDrBw710TEodc0WWy/f9sFBASwtLLy6PfFJcdu3g0GA2YHDog9x3eL0ccXk+nxgoHZbMbgYh/XkNBwQr3k/NguMDCQhW3dT5ZXV12ads0/IICl5eVHvy8sLhEUZN94L/sxq0+79FhcaDJ+UEsGl6/3M7MsLK853c9YcXB+Gxsb+Pg6/hkMDg5hfuHT47u6tu5Ugd6+69rT09fXx82bN5/iK2rezhM1zJ8FVpRS+SJyFPidzeU1WJtozwC724X8S+C8Uns/glJKfRP4JlgH/bKVgCEwhPWNh/g5cFKbjAcP+GUKCAPse/o1uGyi/IBRCSUwlA3THL4OfIGafOybFzIrr4Due23kZWXsWG42mzEb7Rs0bLuM3Hx6HnSQm7Hz6b3ZbMZiZ07bWfz3/yLtnZjlZPnLNmP4+fmxYrH/Jm5kYpq4ZMdrrYKDgwkOdu2LeruiEudrCXdLSU1lUClG5+c4etz5J+/bvf7Fr7olDkDukTJutzZhNAhxmYdcLuDmHCmlqrUZgwHisw65nN/xU2epq7qJxWSmtPK003HiUzMYGh0hJXHnSMBra2sYAp0fmiEsLIzyVz7H+vq604PrbTlacYIrH/2El4+XYjAYqG5u59BR12qpjp8+S93tmyiLhTIX3r/tXP073cnka/+1cmbNzCEbDzVy8gvpbq8lL/PgWtDhsQniU20PIJadV8jdjnoOHdDEEWBobIKE1MdrPG0pPn6aqoYaBMizYwaJ7USEDR/7379FMw4VsEJCQjAFhFLT1IYIGEIiOHRA7f5uBoOBDQe+C1cw2l1AKDlaTu3HP+Lk4Z3fN/Wd96j47Jfsfs29OFLL/zTFxMTQd8+X2mZryx+/iFiXBjw8fKSEaxc+IiUiBIvFwtjiKmdfde07ruL0OWpqbgPCibPnnY7jFxrJ4tLSoxHpt0xOTRMR5/zAbkFBQXzmS193en+AguIS2htvcTgvZ8/1zd33KX/lDYfjpqSkUNPXy1hLOxaLIiAq3qkCs8Un4MCWYSsrq/iFRDgc9+2333Z4H4B33nnHqf2055enhu3bGg1qFmuzbJRSSkS+D+zVSfIbwLdE5OtKKQc6F+2ttPI0dd/5E45n2zey5crqGgEJB9/IpBw+xlD9R6RE267tMUcmHfiUsLTyNA3fe5eKLPvyW15dJSjJvvkgY2NjGXwQxP3+QbLTrTdT8wsL1HX18vLnv2hXjO3i4uIY6rtPb/8QWZv9slyJV3iskts3PuFU8c5Cz4OhMSLT9r7Q7ykk0u5muYMLq1RmOn7T6O1S7WyC6AlxcfHEvfY5N8f7rNviGQwGTjgwKvt+0jMyqLk5gGV4hLRk6/k883CWlt5hXv78Wy7FDgoKcrjZ2158fX156XNv0dhQDygKj58h3MVaa6PRSOXZ53fkeWNEHGaz2b7antBom9ehqKgoOldtt7Tom5rjTIXta1V0dDSdyxvYenTUPzXHmQrH5xKOiIjg1KvOn2+G8BgsFovN6QKVUhBqf2F3y9HjlY9q05x5GCdh0XZ9fyilkDD78/Px8SGpoITbba0cyUpFBFruD5KUd8QrRlF+UsorT7t0PHZ76TOfY3JyEoPBQG50tMvx/P39OXnO9sN4W0qOHuPaJx9QmBxLbEwUACPjE/TNLHP65RMux3dFaGgoCxYflpdXCAra+QBq5uEsPmHRTtdenzhzzuXje/hYBfW3LlFRnLfn+rrO+5x78ytOxdY0d/BEk+xPgCQRuQb8T6y1xwAopf5QKfXJHvt0A/8X8Jci4vKAYEajERWVyMYeTaP2Uj84RemJkwduk5qRSa8KxWSjeWnjyCz5Jw++kfTx8cEUHmd3fg2DM5Q40G/p6PFKglNzqb07QH3PAIPLilff/LLTF8ujx08SlJrzKN7QijgdLzw8nKIzn6Gmd5y6rl7qu+5TfXcQSchyqK9wUXkl9T39NrcbGp8iMtWBgrimOejEmXMYYtKouztI3d1+Ji3+vPLGF9xy4+guvr6+VFSepKLylMuF5RdBWeUZbvXYHsys7t4ghRWn7IpZUH6S6rbufdc3d/eSXVJud44F5ZXUtO8/4nlT932H4rlT2cmz3O4ZtLld7b0hjlSeceo1tvq4OqPs1Dmq7Miv5t6gw/llZOVw6o2vMGAOoN8UwKk3vkKmC+MFPCtcOR57iY2NJdoNhWV3EhHOf/ZN5v0jqOsZpK5niI2wBE6/7B39YE+df5X2kRlq2zpZWFzk4ewc1S0dDCyaOHbCvuvUflw9vsHBwSTml3CzqZ21tU9bay4sLnK9qYPCE2e86jtTe/G8sPMwWywWLn37zziXHnlg0+fWwQlijp0nJT3DZkyz2czV7/05Bb6rxEfs7Oe5YTJRMzxH7qtfJMmOJnUWi4XL3/kzzqVF4eOzf8GzeWCc+IpXSLZjns8XzfDgACMtNZQf2vu96R+bZC4gmpLj3jVIiqZp3m9mepqWy+9zMif5se49ZrOZ6p5Bck6+QqIDcwjPzMzQ2VBNqMFC8ebgUN19Azxcs5BVfJSERMeadc7MzNDVWEOowUJRTsa2eIqs4jKH47nT1OQk7Vc/4mROMr67+k6aTCaq7w2Rd/ozxHsox8mJce5c+5iTOSn75DdM/tnPEBefsE8ETfNOZrOZu93d+Pj4kJOb61UFUYvFQnN9Hea1JZSCoPAoio6UOJWjK/MwbzXJfspNs73nQGiPeWELzGA9Mas+fg+/+UlK0+N31Ij2T0wzsm4k+8RLJBzQ33gvvXe7GOtoxrgyh7JYwD8Qn7h0yk6fc6jWdSs//4VJStMTdjRf6xu35pdT6Xh+L5K5uTk6GmpgcYbIAB98jEZmFlcxB4aRmJNPxj4jlWuaptlisVhoqrnN+vQYRtMaoDAb/TBGxFJWecapvnwACwsLdHd0AIrsQ3lERro2GKC747mL2WymuaaK9elRfCzr1kHijH74RMZRVnnG482UzWYzTdW32JgZ35af/2Z+pz2en6Zp+9MFZs2dXugC85b19XWaq25gWFtGWcxYjL6kFpSQ5IapUNxhfX2d5tvXkbVlUBYsRl/SikpJ1AVluyllnWNwY2OD8PBwp5ufa5qmaZqmad5NF5g1d9KPR7GOqnz8Jefm3Xsa/Pz8OH7eO/rAPKtExO55PDVN0zRN0zRN08Azg35pmqZpmqZpmqZpmtfTBWZN0zRN0zRN0zRN24MuMGuapmmapmmapmnaHnQfZmByYoL7zbUYN1ZRFjPK6EtociaFJWWeTg2AifExelvqMKyvgrK4nJ/FYqG5thrL6iLKYo13qOQYERERTsUzm8201NW4LZ6mPU9MJhPNNVWwsYKyKJSPL4VHjxMSEuLp1DRN0zRN0zQbXuhRstfW1qj+4AckGtfJSYrdsW5ucZmOyQUSSyrJOpT/JFK1aXV1lZoPf0CSzwbZiXvnl1x2ioycQ3bHrL1+GTU7QUlGEn5+n0550tU/wozJwJGzrxIWFmZ/vGuXUXOPx+vsG+ahxYcjZ15xKB5YR7RubahjfXYasGDx8efIidMEBgY6FGe7B/fvMTU6BErhGxjMkaPlO6bp0jR3U0pRffkTfJYfUpKZ/GgKGqUUd/qGmMefY+dfd+lzrT1/LBYLTXU1WFaXAFA+/pQdr3R6iiqz2UxzfS1qbRmlFPgGUFpxwul4mqZpzwJXRsn+xV/8RVZXV8nIyLC57ZkzZ3jtNbcMzKtHyfZiL2wN88bGBje+/+e8nJO454To4SFBnAwJ4m5XHfctiuz8Artj373TzlRvJ8aVeUSBydcfQ0QcFS+9avd0Ruvr69z8/l/wcu7B+XV3VNNrtpCVZ7tQf+39H3E0MZTguPTH1uWnJwFw69JPOPzyG3bVDl99/4ccSwwjOP7xeAUZyY/iHXnlTcLDw23GA7jX2cF4Rz1HkmMIjrMWJJRStH7yPdbD4jnx8mfsirNleGiQ/rYGsmLDKU+JAmB1bY26j35AYHwqR44ddyjei2pmZoZ7nXcQIDYpmYzMLE+n9EQppbjb3c36+hoFhUUOz7eqlOLSD7/N6ewE/P12nh8iQnFmKkoprv7ke5x886sEBQW5M32nzM/PYzab3TJHr1KK7q4uNjbWnXr/njU93V08HBsGFMGRsRQdKXEqTntzI0uj/ZTmZuDnZx3V32Qy0XL5fYyR8ZQdP+nReE/K3a4OZsdHAUVodDwFxYc9ndIO3Z13mJsYAyAsJp78omIPZ6R5s+GhIUYG+lBKkZ6TS3x8gqdTesRkMtFUVwPrKyCCMSCE0vIKXYHgpL6+PgB3FZg1L/bC1jDf+vBHnIj2sesiUdUzTOVf+3m7CrtNt28QuzxOUnTEjuVms5kr90Z55Wt/066bx1sf/JDKWL89C8u73e4Z5tQ3/vaBf0tTzW2yfJYJDQ62Ge/G3SFe+uLXD9ymqfo2Wb52xusZ5qUvfM3mdg96ulm/10Jucuye6xeWVuhYEk6+9nmbsQBGR4YZv9NASe7jBXqAsckZxlSA19w0utPMzAw97a2IKGKT08jMynYqjlKKm5c+JjbASF6W9X0cnZjk7vAUR8++7HDrgWdBW1MDS5Mj5KUm4O/nR8eDQUx+wZw4e96u8xGg5tolDkcYCfD3P3A7pRS37o9z7q2vuCN1p9y728XkQC8RAb74GA1ML64SHJPI4bKjTsVrbaxneWqE/LQkfH196OgdRAWGc/zMOTdn7nlLS0vUXvqQouQYYqOtDxrm5hdo6Rul+PTLREfH2B2ro7WF0LUZUuL3vv5NzjxkeN3H7utVR2szoWsP9403MT3DyIavR69/CwsLNFz5mOLUOKIjrQ9VH87N09o3Rsm5V4mMjPJYbmB9iNR49WOKU+N35NfWP07Judec7na0tLRER2sTSimKSo4SbMf3qOb9VldXqb56gay4SFKTrIXk3oEhhh4ucfrVz3r8weHQ4AB9rfWcOJz3KJfV1TXqOu9RcPwMsbFxHs1vu9HRUXx9fYmJsf8autvTmIfZzfM16xpmL/bEHimJiFFE/kJErorIuyLiKyIpIvJ9EbkmIjdE5F9ubvu2iCyJSPDm78dFRIlIsYhkiMjkZpxbIpLjam4bGxv4LkzZ/UTtWEYcTdU3bW43OjJM8MOBxwrLAEajkVdyk6i99LHNOOvr6/gtTtt9c34sPY7mmtsHbrMyMWxX4RYgLdSPkeGhA7dZnRqxO15qsI/NeACjnc37FpYBQoMDCV99yMzMtF2v+6Ctad/CMkBCbBTmmVE2NjbsivesaG9uZKSlmuOZcVRkxOP/cJgbFz5yKlbVtUtUZKc8KiwDJMbF8lJZAY03LrsrZa/R2dZKFCucKD5ERHgYgYEBHCvM5XByJNXX7ft7lVKYZydtFpbBWtscZTQxOzvrUJ59vfepuXKBmisf09HW4tC+2z24fw9mx6gsPkR+TiY5memcOJxHrO8GrY2O32jcaWkm1rjGieI8wsNCCQoMpLzoEAXxIdTcuOp0nt6q7srHnD+S+6iwDBAeFsq5I4dou3kZex9IK6WYG+rdt3ALEBsViWlmzK7rlVKK+eEHB8aLi47CNDOGyWSyK8cnofHaBV46kvuoMAoQGR7GSyWHaPWC60vT9Qu8dOTQY/mdO5JLy42LTsXsbGul+9ZFjiVFUJ4cSfeti3S0NrspY81ZJpMJs9nsUozqqxc4V5L/qLAMkJWWwpnDudy+csHVFF1iMpnob2vgdNnOFj8BAf6cLSuis+6W3derJ2l0ZISbH73H+vA9Zu+3cf2j9xz+ftS0J+FJtsH4KtCrlDoPdGz+/hfA7yilXlJKnQW2f+N0AFtVh18D6ratu7YZ53eAX3M1seaaW5Smxdu9vZ+vLxuTIza362trICdp/7gGgwGZn8RisRwYp6XmFqXp9ufn7+fL2sT+BdL7PXfJirb/CXZ6YhwDnW0HxsuOsX/AooykeAa69o8HMND3gLQQ233q8tMS6W6ssbndzMwMUbbLK5TmZtBUU2V7w2fE+vo6K2MDFOVkPFqWGBdDQXwYXR3tDsfyN63i7++35/ri9CTudnU6lefGxgY3L1+g6upFpqYmnYrxJOLNjQ2StEchIygwEL+NZdbW1mzGaG9uojhl/4LKboWZKXQ11tq9/eBAP2tjDziel8bxvAyi1BJ3Wprt3n+7sb57ZKelPLY8PiaapalRh2+gFsaHSIh9vEYgJDgYw+r8c/VwanCgn6zo0H3Xl2Ym0dneales9pZmijOTbW5XlpdFc53t619bc5Nd8UoPZdJUW21XjtuNj41x+5P3qbrwPsNDgw7vD9DX20tu/P5ddYrT4unuuONU7Ht3u6m68AFVFz5wOkbvvR7yEvav4S5MjqWn27Hr39raGovD9ynLz0FEEBHK8nNYHu1jdXXVqTy3jI6OMDpq+z7FE+52djw6Hvfudrkcb2F+nqqrF7l95SLLS0sux6uvukXz1Y9puPwhzfX2X4u3Gx4eIjM2cs+KDoPBQEygj0cLfk111Rwv3n+8m5LsNDra7Lte7dbZ3kr1xQ+4feF9eu/1OJsiAPdbGzhdWkhaShLZ6WmcLS2kve75uUfTnl1PssCcBTRv/twIfBZQSqlHVbVKqevbtv8R8MXNnwuxFqB3awcev7tz1NoqPj729SXeYjSv29zGsLZsc5uUsADGxsYO3mht1e6+zlsOym9mYpy4KMf6JRos+9c6zEyMExNhX5/kT+Md/OR2fKifpBj7cjSabB+L+3e7OZRu+6NiNBoRk+1C0F4mxsfp6drrY+qcmutXuPDD77gUo7WpkbL8x5tfR0dGMD9p43O3S3trCyV5+zfljo6KYNbBmFsaam5zsiiHyqJc7rY2OhVju/qq7fGanIqxvr5OgGH/h1ml+Tm0NTfbjLO6OE9IsGN9ko02zo/tRvrucygj9dHv8THRLE47dxyMlv0LsKmxkYyM2H8Dvri4SFjA/tet0rxs2pws2AOMDA/xwMWbMXcaG+gjNXH/JozhYaEszUzZFWt1cc6uz4zRaIQN2wWrtaV5gu3oF+/j4wMbjl//eu80Wc+3wpwDH64eZHJkgMQ9Hq5siYoIY35q3LnYA71UlhZRWVrEzEi/UzGmx4aJj9m/wBwTFcHshGPnXVtzI0fzH28kV5aXTVtTg8M5bpmammK8q5Xxrlamp+1rgWVLS30NrY11tje0w/Rw36PjMTnwwOV47Y11nDycz8nDebTY8QDpIGazGcviQ44dLqTiSBGrM8595kb6+0hL3r+vckFOpkv3C0111bQ1ufBdub56YJPwsNAQlucfOhV6bmyIEyVFnCwtZmKg19kMGRwcJDMh+rHl/phsVjTt59133+Wdd9559O/iRedahmjakywwdwKvbP78GpAIjAKISNRmE+suEdn6Vp8FAkXkJLDfHe9ZoHv3QhH5BRGpF5H6yUnXa6ucZ7sJtdlssd0U3M29GOxt2r1jnwNydCqeE/s8jVibEZ3ay9fPDx/fvWtfPRXPYDAc8MXi2N9pMBjsaKLm3HtnMBgfxVbK9eNpMMqnuTr5+RCRA2tULRYLYrAd27nzzZF99tjW7ecEmExmhx7ciQgWy/7vn13XvgP4+vrh6+e+8+2peAI90tx9/XMm3vZzVvEEm3E6+bduz8kbmplusZ4jj1+fLRYLBgcfkm/n4+PD4soKiysrDj9s3zemrx8+Pu4537YfA/d8XqzXaqWUy9e+3dctZz8utv4uVz+Hvr7++Pp558j229+/g74DbPHx8cFkevz8cNcp3NfXx82btrtXatpenmSB+SfAuohcBoKAESAZQCk1s9nEemxXDp8A/w343q5YL4nIVeAN4Dd3v5BS6ptKqXKlVHlsrO2mkMagENYdbBpo9rXdvlcF7N88b8voson4+IObW0tAEBsO9is7KL+45BRGJhx76mw27P8kMi4phdHJGbfFA0jOzKFvzPbDDqUUJh/bxyKvsIg79wdsbre+voEEODetT2RkJJnZLnepf+Ro5WlefvNLLsUoOXqMhq77jy0fnZgiJnn//tx7KT5SQsvd/WsDxianiE1O3Xf9QcorT9F4f5jqjvscrqh0KsZ2FSfPPIpXfOyEUzF8fX1ZVfvfbDZ13afEjoGwQiKjmJ1ftPt1lVKYbJwf26Xn5tPe8+lxGRgZJzLBueNgNux/Qzw6u0hCgv2juwYHB7Owvn8tQEvPAw6XlDqS3g6xcXGkpDn2GX6SUrMP8WBodN/10w/nCI9LtCtWSEQ0D+fmbG63vr6B+NuuOQ4Oj2JufsHmdmtr64i/49e/gmMnqOp8QHXXA3JLKhzeHyApI5vB0Yl9149PzRCd6FyDspTcQqpbO6lu7SQxK8+pGAlpmQyN7Z/f2OQMsQ5eU0uOllPfee+x5Q1d9yk5Wu5wjlsiIiIoe+l1jp7/rNMDke1WVFJGoZOjve+WmJX36Hgk59g/48h+jlaeoqbjPjUd9yk/dcalWAaDgaDYJGpa7lDd3E54UppTcTJy8rjXv3/3hPa7vRQUH3E2TYpLy8gvcn70eGNgKGtr+7fOm56ZJTzG/q6A28Vl5FDT1klVSwdpeYXOpkhiYiIDUztruZVSrIl9A/Tu5e23335Uu2zPFFGatp8nVmBWSlmUUv+XUuoVYAb4E0CJyEvbNtt9l/gDoE4p1bxr+TWl1Hml1FeVUs61l9mm9MQpmgftr4leWV0jYI+pk3bLKaugY2D/G6j1jQ0M0XtPE7VdWeUZmvr3/6LebWlllaCEjH3Xp6VnMLhgf7O7e0OjZBWV7h8vI4OBefv7W/UMjpJz5OCCRlJyCqN2hLzTP0Lx8dM2twsLC2PhgMLPlqaePsrcUGDzFkajkZisfOru3H1Uk9HTN8jgkpmsHMcK9z4+PhAUzuIefcSUUnQNTTo9+rbBYKDy7EucfMnxebqfZLzYtGweDD3eDPnh7DwSEmnXKKf5RYfpGrP/gVJb7yDF5fZ/BhMSE4nJPULtvWHqeoYwhSdwqMC5m5TUQwV03Ot7bPnA8BgRiY4XwqNTM+kffryZ6vTMLL7hMW6r/fIGCYmJDMyt7ltz1D44waF8+45LQfFhuodsfyc19/RRWm57KrzCw0foHLT9Vdl6f4CyCscfMEVGRnLqtc9x8tXPERvn3Mi6ySmp9M4s7vn+KaXoGp0hKyfXqdhp6RmcfNWan7MPNVPT0rk/tbBvft3jD8nIcmx6PR8fH+Jyi6lq62J9fYP19Q2q27uJyS5weQTl4OBgr5iebi+Z2TmPjkd6RqbL8fwDAqg8d56TL73slvnEjxw9RuXrb3Hys1+g8LBzDwni4uIYfri8Z6us9fV1FixGQkLsH/vF3UrLK6i5c3ff9e39IxxyYPrU7XIO5VH5yuc49drnSUl17oHDlqLjp7nV1k1zRzeNd7q41dbDsdMv2d5R056wJzbGvYgkAP8LMAEXlVI3ReRvAL+3OTr2GnATeNTxVyk1BfzCk8ppi8FgQEUksGEy4WvHl1TD4BRnf9p2zV9MbCzjqQX0jt0jK2Fn36yV1TWqR+Z55as/bTOO0WjEHB6LyWS2q6910/AMZ7/x5QO3CU1KZ2p2ymbfY6UUo8sWDtmoBQ9NSmd6dproiIMLJ0opxlYVeTG2a/7TS4/T3lpFcdretVpTs/OsRyYTGmq7Jh8g7+gJamuvcbxg7xumgdEJQlOyn6ubeIDc/ELWMrNpbKxDmS1kFRzjkJNTMxw/c46aG1fxWRumND8Hg8HA3QcDjC2scuq1z7k3cS+Qk5dPT5eFmjv3iAz0wd/Pl7HZJQKi4qg4ddbuOAGxycwvLhMWcvANrMViYV4CHL6RSkxKIjEpyaF99pKSmoZSiuo7XRjNawhgNvoSlZROgROF8EMFRXR3tFPd3kN0sB++PkbG55YJjI7n6IlTLufrbU6//ibXP3mftPAAMlOstcnD45Pcm5jj2MufdShWbFYe9wYGyEnbe7CuofFJghPT7b5exWQe4v7gENmpe39OBscmCE5M9+j8qydfe4MbFz8kPTKI9M0BMwdHJ+idXqDiFc9fX068+nmuX/6IjIgg0jf7pw6OTvBgZpHjTuaXfSiPzJxcWhqtfZaPf/ZLz9130Ivq7Gc+x+0rF4jyN1KwOfBmW/d9FpUPp86/6tHcDAYDBRVnuF5/i7LcdEI3v3OmZx7S3j9K2ZlXbER4OqKiojjzmTfY2NhARDw+FZembXlh52G2WCxc+s6f8VJ69IGF0rbBCaLKzpHqwFPRwf4+hjtbkKU5BGsT4oC4VMoqT9ndX8xisXDx29/i5cyDa2VaB8aJOXaelPQMmzGrLn1MbghEhe9dyFVKcaX9Pqff+hqBgbab6d2++DGHQt0XD2Cw7wH9TVVkRwYSHxUBwNr6Oi0D4wQkZVFa6Vjzq6nJSbobqogP9n104zj9cI6e0Wmi0nPJKyp2KN6Lam1tjdamRkCRmXPIpbkRnxWzs7NsbGwQExPjVD/Pax/8iNL44H2nXzObzVzp6OOVr/y019wUKKXc1kfW1ffvWTI2OsrAPevwGvGp6U7XovV0dTD14C55KbFEhlsfbi4uLdP+YJjwlEwKj5Q6HG+6r4e85FgiNq/Ti0vL3OkbJiw5y21Nbl01MjzMUK91QLfE9ExSvajpPcDw0BDDD6xNqZMyslyuRdOeb3Nzc9ztvAMIhYePeNU820op7rS2sLIwC0BYdBx5TrZQ8na752F2ZM5kPQ+zttsLW2AGa6H09oc/JmhlmpL0nU2lh6ce0r9sIaviHEke+nI0m81UffRjgldmOLIrv6HJGQZWFNknzpOYbH8/r5baapbG+smLjyQyPPTR6zTfH2TdP4zy86/hb8f8sdvjLY8PkBcfSURYyGPxKl7+DH5ODNRz/243MyMDoBQ+QaGUVJxwqSZkYmKc/p67gCI8OsbuppKa5oqGW9dZmxqhOCX20SjIGxsmmnuHMAdHcOLl13XtkvaYzvY2Fmet404EhIRTXFLq0kOHzvY2luZmUEoRGBpB0ZGS5/4hhqZpLzZdYNbcyTuqNTzEYDBw5s0vs7KyQl3VDXw2VlAWCxajDwl5JziT6Vz/THcxGo2cefMrLC8vU19z0zptlVJYjD4kFZ7mjB21yruVHK8EKulqb+PB5BTKYkF8/Sj53E85VbDditfZ1krv5PSjeKWf/5pLfYuyD+WRfci5wVr2EhcXT1yccwNaaJqzjp0+Z32i39LM6uQsymLB4BdA+Vt/TReUtX0VFDs/uM/TiKdpmqZpL5IXusC8JTAwkMpXXvd0GvsKCgrixMvuzS/f3Tdkh50f/VHTnmciQnFpmafT0DRN0zRN05ygC8yapmmapmmapj23xsbGWF1dtav5dF9fn56GStvBc8NjapqmaZqmaZqmeZGMjAzOnHFtjm/t+aJrmDVN0zRN0zRNe24lJFinhnPTAF3aC0YXmF9AA30PGLnbjmFjDaUsKKMvATGJlJSfcGrk1P4HvYz23HFbPE17nvT23GWitwuDaR2lLFiMvoQkpFJcekyfH5qmaZqmaV5OF5iBhYUF2mtvY9xYBRQWgw9xWYfIyjnk6dQAmJ+fp722Ch/Tp/nFZ+eTmZ3jUJzZ2Ye0XP2IrDB/jidGAaGP1q2szlH9gz8n6lAJecX2DeC1FS87fO94VT/4c6IdiLcz9iw9d1pBKWKTUsjIcn7E8uXlZVrqqvAxb4BSmMVI6qFCklPsn45L0xw1OTFO561L5EYGcTwpYse6xeVJbn3/z0k6XEHWoXzPJKh5pUfzpM4/BMA3MISSY+VOP1zZire6MItSyuV4mqZpmvaieeELzA23rmOcGeF4VgoiIY+Wj4/2cLmtkcrPfpGgoCCH4yqluNvVyfLSEnmFRU7FAKi/eQ2/uVFOZOzMb2y4i0stdZz6/JcJDAy0GWd+fo72Sz/h7KHUPdcHBvhzIjeVvrG7dFrMFBw5eFTfublZ2i+9x9lDe89RHRjgT+VmvC5lIf9wqc0crXHnaLtxkQjWOZaRDAhjg+1U3WkgNqeYnALH5k9urL6NzI1z4lDmjhvE/oEOrjTXc/Zzb+Hj88KfBjYtLS1xp7UJAVIzs0lISPR0Sk/U+vo6rU2NKGUhJ6+AyMhIh/afmpzgwe2LnMlJ3nN9SFAgpw6lcvd+C/eVIjuvwB1pu2RxcRGz2Ux4eLjLsdbW1mhrbkIpC4cKitwS80Vwt/MOM/09FKYlEpoeC8DK6iq1H/2I4MQ0ikuPOhxvuu8uRelJhKbFfBrv4x8RnOB4PE3Tnn1KKUZHRzEajcTH6+k2Nc0eL3RJoanqFqmyREz244XI+OgI4qLCufLB93nlqz+DwWD/+Gh3mhuY6++hICma4MAAOq6+x4IEcer1Nxyae7Xx9g3SDMvEZD6eX0JMJPHREVx5//u8+lM/Y7O2oOXqJ5zep7C8XUZ8DA09rSxlHyI4OHjf7VqvXeD0PoXlveKt5OTZLNjPz8/TcuHHnMlP37E8ITqShGi4P9hBt9lkd411c101KX7rxOZlPbYuPSme1AQLVz/4Ea9+8afsivesmJyY4F5rPca1ZQQw+/oTk55DjhOFMqUUVdcuEWRZozwvGxGht6+Dq021HH/pM04/CPJmNTeu4rO2SFl+DgaDgc62OlpXNjj1yut2zy3eefsyp7P3LixvdyglnqrWGjJyDjl0bVhfX6eloQ5lsZBXfMSlAum97i4mB3oJ8zPg42Okc3mN4JhEDpcdcziWUoqaG1fx21imbPPz0tlSTcuqmVOvvK4fTh3gbucdjA9HOFG4s+VQYEAAx4tyGB6fpLWxjiNHK+yO5/NwlMqi3MfjFVrjtTU1OHWcNU3bm1KK5oZ6NpbmAQgIi+RwaZnXtOhorq9ldWaSlNgINswWqlsbCEtIpvBwiadT0zSv5pZRskUkVERqRGRRRIo3l31DRG6LyGURSd1cFiAi/1lEbojINRH5CxEJE5EMEVEi8vLmdn4i8lBEfnnz9x4RuSoiDSLyBXfkbDabWR/vJyYi7KC/i9M5yTTXVdsdt7u9ldD5ESrz0gkPDcHHx4cjWWlUpkVy44Mf2h3HZDJhmhi0md/JrESb+U1PTxHra7b7tY/mpNFWc2vf9VOTk8Q5FC+VluqbNrdrr7r6WGF5u+ykOKbutqKUshnLbDazPjlMbNT+NYMGg4Gy9Dg629tsxntWTE9N0d94i8rsJCoKcygvzOFEbio+U4N032l3OF7NjauUpMZQkp/z6As/Ky2Fc0fyqL78sZuz97yaG9coiA/jaOGhRw/JCnIyOFOUzc0LH9oVY7C/j/QQ+wrWAOXZKTRV73++7dbT1UHTpfcpSwyjPDWKgYabNNVW2b3/dvd7upG5MSqLcyk8lM2hrAxOFOcR72uiub7W4Xg1N65SnBRJWUEuBoMBEaEwJ5NTBZncvPiRUzk+C+qrblF78QNqL75P9fUrdl2jtlNKMfXgLlkp+7fcSI6PZWV8ELPZ9rXXGq+bzJSEA+Mtjw3YFW8vy8vLLC0tObXvdkop6m7foPbi+06/f0+SUoq6W5/mV3Pjmsv53evuoubKJ9Rc+YSerk43Zap5msVi4eJPfkB+TDAVeRlU5GWQGebDlQ9/4hWf6aa6alKCjJw4kk9yYgJpKUmcOJxHmHmZjrYWT6enaV7NXdNKrQBvAd8FEBFf4B8C54F/tvkP4DeAcaXUWaXUS8Bv8mktdz3w1c2fXwN6tsWfU0qdB94EftsdCTfV3KY003YNkL+fH2tTo3bHnenvISUu5rHlRqOR9BAfRoaH7Muv+halWbbzCwzwZ9VGfj3N9Rw64MZpNxFBzU/vu/5eaz25DsebOnCb9fV1/FcXbMYqSY2jtaHO5nZNtdWU5u5f+N4SGR7G7OiAze2eFXdbGjiWl/nY8vSkOGb6e/bYY38bGxsY1xYI2qNlgIhQlJbAvbvdTufa1txEza0bTt+w7xnvtvPxzGYzLM8RGhLy2DqDwUBmbDjDQ7bP3+HudlLiou1+XV9fH0wPJ+za1mQyMf2gm+PFeRiNRkSE4txMQjcWGRuz/zq1ZXKgl6zUx68zsdFRrM6MO3STZ/28LBK8R6sDo9FISkQg4+NjDufo7eqrbnEoOoCKwmwqCnMoS4vh9tVLDsXoaGulMM32NbXsUCZNdjzA7WhrpSg9yeZ2pbkZdsXbre7mdXpuX6S3+jK3r1x0eP/t6qtuUhgfSkVhDhWFOZSmxlB9/bJLMU0mE1XXr1J1/Srr6+suxaq9eZ3ChE/zO5IcSc2Nq07H6+nqxHd+nOO5aRzPTcN/YeK5LzSvr68/Oh4mk8ktMduaG7nT6p5CXnN9LdWfvEfVx+9xp6XZ6TgNtdWcKykgIMD/0bKQ4GDKD6XR7kJcd7BYLKzPThEdFfHYuuSEOObHR5yOvbKyQtW1K1TfuOaW7/PRkRGqLn/CrUuf8PDhQ5fjaZo7uKXArJQyKaUmty3KBe4opdaVUreAw5vLvwb8x237tSulZjZ/7QfSxFqN9RXgB3u8zhgQ4I6cWVvG19e+5oE+Jvu+cNfX1wkwr+67Pj0xjqF7dhYw1lbsbr5oKz+jecO+19y+j2X/mE7FMx+cY093F3lJsTbjBAUGsD4/Y3M7tbZid/NZH4vjfw/AnZYmbl+54NS+e5mfn2ewv8+lGMaN5X3XxYf4MzV18IOL7dpaminN23+wtbiYKGac/JLtaG8jIQCOZSdTc/OaUzG2u9PWSmKgcDQziZqb152K0d7aSsmhx5vvb0lPTmS4r9dmHMMTOD+2tDY1cnSPLgbZackM9Dj28MJsNuNr2f/mtTAzha7ODrvjtTY3UZa//0CE2Wmp9N9z7KHNdjMz03Y/cHyazEuzOx6y+Pn54XPAebiXlYVZwsNCbW7n6+sL6/t/x2xZnn9IWOjjD3528/OzL952Kysr+K3OciQ/l+K8HBICYGzM+QchlqW5HQ/l/P39MKw79v7tVnvrBsfzMjiRn0n9bdutmw60uvOhYUCAP7K26HS4mdFB0hI/7TeamhjPzIjrD23bmxtpb25yOc6W+fl5FhZsP8S2R92tG5zIz+R4Xga1t264HK+1sYG08EASAo0uF5rNZjPrDyc4UXqYyrLDzI8NOh1LrS7h5+f32PLQkJBHg/g5q7Wxng4X/taOO+0UZ2fsuz462N/pwmlj9S1OFGRRnptGnavnG9Db0Url4XxOHcmno6nepVjvvvsu77zzDu+88w59fX0u56a9uNxVw7xbBDC/7fetznn+Sql1ABH5log0i8gr27arAs4BscBj1SUikgc8dkaLyC+ISL2I1E9OTu5evSdlcX/zGKWUzX4q9vZjcaRm50k09VGWg9Y9iffO4jV9fOxlNpkwb7jnaTlYa0XMZvfF281gEIee/iqlHOq77wiz2YSvr481vhs+TjvjORfQYjFjMNg6f23HceZ8tHcfi8VywDFx5u/efx+jwejw58X29c/ucI8xm8yY3VQ75VZu+Py6/XrvQE7ONB/f/hn0MTr2ObHvRVzdf/tn0eVgLu6/05P6ljObTZideFi3fzyz247r1qEQEaevz9uZzWZ8fXzx9fVx+Zpg/Tx/elSe2G2Ii3+39fg6fzwO/u6wtqKyWA648TuAiPXYiohb7kdln59dlZGRwZkzZ9wYUXuRPKkRWB4C2zvfbp3layLir5RaU0r9nIi8A2xvv/c94K+Ab+2KFy4iVwEL8Eu7X0wp9U3gmwDl5eV2na3KLwCz2WzXQDsmo301lf7+/iyz/7ZDE1PEpx3ed/3OYPbnZ/Z5/InmjvUGxw+z5YDabYuN19s7h4Pfw5xD+XR+coeSrIMHJltdW8MYtH+/7i3K18/+989Gbvs5csy+wXfsFRUVRVRUlEsxLH77D6w2Or/CSQdGxCw+UkLLzQuUFeTuuX7m4SzhMc6NsHm4pIzG2hrWhqcpP+X6F9iR0qPWeENTVJw+61SM4iMlNF/9iPKivD3XD4+NE59ie6A75eP458li5zXmSNlRGi9/QEXRzinv+odHScpwbBo8o9HI+gFfAe33+yl/9Q274x0uKaX5xgWOFu6dR//wKMnpjk2Ft11sXJzT+z5RgSGsrq49aoZpNpvZMPrb2Gkn/+AwFpeWCQk+eBA9k8mE8rEd2z8kjKXl5T2bx++Oh69jjbaCgoJYNATSOzCEj9FI/9wq547b7j60H+UfzNraOv7+fo9yMjmY025HK09RvTkuQElFpUuxLH7BrK+vP6o53NjYwOxre2aK/YTFJTI6MUXiZtetsclpwuJcn3Wg5Nhxl2Ns5+jMAAcpPX6S6s1xFo5WnnY9XnkFzfV1GAwGSo6VuxTLx8cHgiNoaLuDxaIIiHJh1Gi/wD3vO5aXV/ALcW2mgDIXP8dFxYdpuPwhFYf3HvxzYm6J7Gj7uxJtd/jYCaoaalBKOH7mnCtpApB6qIDq1k4UkGtjxhZb3n77bZfz0TR4cgXme0ChiPgBFUDr5vLvAv8Y+Nd7vb5SqkdEbm5u99q2VVt9mN2mrPI0Te9/m/JDGQdut7FhwjfS/gtoRFo2Y9NjJETv/LJRSnH/4Sovnzv49baUnjhNy4ff5aiNfrhr6+v4RR3c9y2zuIx7TdfISbHv71BKQejj/bC3ZBSV0Nt6k6wk+25grfEOvhAHBASw6me7SWJL/zgnvvwzNrcrO36S5kvvcSz/4Pmb5xcWCY1/fuZjziwsoaWtlpKcnZ+bkckpwpIzHIrl7+/PqjFgx83idm19I5x/8ytO53r0+Amn930S8Xx9fTH5BbOyskpg4M4bdqUUPaMzvHzUdmE8Pjuf0YF2EmPsu+E0m80YImx3RwBrc9/Q5Cyau+5RsjkK9b3+IWYlgIpU26Pg7xaVnMbgyBipSTuvIQ9n5zCGRjk0cvfW52V74WeLUoq+qTnOVzhfsPJWx0+fo/r6FQzrSwiwbvDj5PnXbO633eHSMqo//CGVxXs/nNrSfPcBZa++5bZ4LT39lL36pkO5Apw8/yrj4+OYzWbOnbDdV/ogJ86ep/r6ZQxr1mbYJt8ATr70qksxAwICOHXetRhbKs+9TNW1SxjXVwDX88svOkxnWyuD3X0AhMYmUmjnzA/PqqCgILcdD7DWZpZVuO8BQXnlaUwmEyLi0DVvt2MnTnL5Jz/k/LHiR13q1tbWqOq4x6tvfsld6TrFaDQiwRHMLywQFrrzXmtiapqQWOcf2oSGhnLKwWveQVLT0klNsz0GjaY9TW4rMIvIB0ApkAf8AfCfgGvAKvBzm5v9a+C3NwvFi8AU8F/Z1i9ZKfV/bsZzV2p78vX1xRCTzOz8IhFh+/f1utUzyEtf+et2xy0sOUpLbTUD3Q8oyUzC38+Prv4RJjcMnP68/RdMPz8/VGQicwtLhIfuP71T1b0Rzn/14PziExK4uyHYW7fT+mCY4lf2zzUhMYkbdbB/b8+dWnqHOPya7YJVXsVpaq5/yIncvWvxBsanCMsqsKuZsK+vLxIex8O5BSLD9y6IK6Wo7x3hlS9+zWa8Z0V8QiJm8zGq7zRjXF/CKAY2jH5EJGdSdNjxm7KTL73KjYsfERtgJD/b+gU2Mj7BvdEZjp513w2Qt6g89zK3r14iTDYoys1CRHgwOMzAzAKVr7xuV4zM7FxutNWTuP8zpx3q7w1R/iXbD4G2FBw+wkJGJnUtjQiQnnuE3Hj7B+HbLq+wmM72VqrbukmOCsPf34/ekQn8I2MpP+l4TdCp869y6/IFIn0VBdkZ1mnIBocYerjMqVc/51SO3k5EOPnSK7Y3tBEjIjWbwbEJUhP2fhA5MT2DT1SCXWMziAjhKVkHxhufmsYnKt7pqb7cNX+r9f3z3muJiLi1MADWcxie70Lys8YdU94ZjUZeeevLNNRUweYDFkNgCK+88UWv6HJWceoMdbdvYn4wSFF2OiaTma6+IYJiEig5pudk17SDiDcMde9O5eXlqr7e/kECqi5/QuT6PIfSdj5dm51foGloiorXv0hYmO0mwLtZLBZaGxvZ2FglO6/Q6aa2ty9+TLR5gdzUnfk9nFugeWSa469/kdBQ2zWzM9PT3L3+IcdzDq5NHZ58yGxYMofLD356Oz01xb2bH1GRbTveXEQKxXbOHTo1OUln1VUSAyAryXpDNju/SPfkPJFZBeQ7OFdgzfUrhJmXyN81l/XY5DSdow85/dm38Pd3rPnks0Ip5bZ+yDMzM9zrvIMIxCYmk5Fp7+OSZ9PCwgKdbS2IQEpGFomJjtWijY0MM9pwjZKMg/d7MDaFKfGQ3XOLP0kjIyOsr6+Tnp7u8s3d3Nwc3XfaEIG0rBzinSzQv2jutDSxMPKA0pyMHU2Um+4+wDcqgbLjJ90Wzy86kVIXm3lqmvbsMZvNdHd14ePjQ+6hQ15RmH8SysvLcaQ84Ix33nlnx/8uej4PxHPihS8wA0xOTnCvpQHjxgoohcXgQ1hSBoVHvGMi98fz8yU8OWPzKbX9piYnaL/2CUUJYUSH73wIYDKZaXowTHBGgd2F28mJcTpuXKAwfu94jb1DhGYVUVTmeB+jsdFRBnq6QFkIi44jv9jOvt97ePjwIV3N9fiY1wGFWXyIS88mK+fg5oqa5orR4SF6qq9wODGS8F0jFq9vbND4YISY/KMcKnL+s609fywWCy0NdZhWFkGB+AVQWnHC6Rowi8VCc30tlrVllEUh/gGUljsfT9M07VmgC8yaO+kC8wvobscdZvp7MJrXUcqCMvhgCI+hrPKMUzdRdzvu8HDgHgbTmlviadrzpKO1mfnhPozmNZQCi8GIb2QCZZWnntgo5JqmaZr2ItMFZs2ddGnmBXSosAgKi7w2nqY9TwqPlMKRUk+noWmapmmapjlBV29omqZpmqZpmqZp2h50gVnTNE3TNE3TNE3T9qALzNoLY21tjaWlJZ63fvuapmmapmmapj0Zug+z9lybnBinp+4mTA0RZFnHx2Bg0aSwRCYQk1fi8AjFFouFhg/eY+XaJYzjwyizGUt4BIZjJyn5+l8n1IkpyNzJYrHQdOs668P3MawtAQrl44+KTuLwmVcICdl/znFN0zRN0zRN03bSBWbtudV4/RIBg+2cSIiClN3zYCum7t7iUms9L339Z+0azbu3uZG+//ivOTLej//20Y2nh1H32+l4769Qf+3nqfyZn3XvH2Kn3q4ORm5/zNG4EPyjfIFPC+9KTdP23f+OJeMIx85/xiP5aZqmaZqmadqzRheYX1DT09Pc7+pAlCIiNo7cvHzX43XeQcAt8VzVcO0iKQ/vE5Owu6D8qZiwYM6FWLjyl3/Ca3/zf0dk/xH9e5sbefgv/jEVK/Owx1RAIkLh6gIP//T3uL2xzqm/9b+55e+wV29XB2sNFzmZErnnehHhSFI0MzM91F7Y4Phn3niq+b3oxsfH6O+5iwjEJCaTmZXt6ZQ0TdM0TdM0O+g+zC8Yi8XC9U8+YPJOAxXpsZRnxBGxNsv193/I+NiYU/Guffy+NV5G3I54E+PjT+AvsG1mehq/gXZiQoNsbmswGDgT60P9tUv7bqOU4sF//k0OrczbjBcpisi//CP6OjscytkVFouFoVsfcyjWdnPwqJAgYqZ6GHjQ+xQy00wmE1c/fI+F+3es50d6HAFzo1x7/4c8fPjQ0+lpmqZpmqZpNjzRArOIhIpIjYgsikjx5rI/EZFJEfnlbdu9KyJ1InJRRD4QkaPb1n1FRG6KyHUReV9Ekp9kzs+7W5c+oTI3lbystEfLYqIiOFuSz926W2xsbDgU7+bFjzh5KG3PeN11Nx2O5w7dNdcpTIq2e3s/Xx82Ru7vu775wkcUj9hfwEzBzOCPv2f39q5qrrrJsXj7+yanR4cz1FL7BDPStty88CFni7LJTvv0spUQG8O5knxabl52aQC65eVl5udtP8TRNE3TNE3TnPekm2SvAG8B/37bsn8KXAN23+H/vFKqXUTSge+LyHkgGfi/gdeUUgsikgH4PeGcn1sLCwtE+Ch8fX33XH/ySD6NtdUcP33Wrnjz8/NE+cn+8Q7n01RXQ8WpMw7nqpSi9tZ1lNnEocNlREXt37T6sX2nhiA5wqHXywyw0NvTTVZu3mPrFq58QtAezbAPItXX2djY2Pe9cae1oXsERDr2OsbpYUwmk119t8Fai113+wbKbKGgpIzwiAgnMt1paGiQxYUF8gsKXY61FW9pcZG8/AK3xBvejHfIyXhjY6OkRgRh2Oezczw/m5aGekrLKxyOXV91E9/Vefz9fGlcWOelz75xYJcCewwO9LO6suK27hTujqd5j77e+4z2dFq7GKTnkKOPscMe9N5HKUVWdo7LsXrv9TD+oAcRIS4jh6ycXDdk6N16793DYDCQkZXlcqx7d7uZGnqAUpCYmUuGi11mVpaXaa6rAYTyU6efyn3A82RxcZG2hjoUcPz0WbvvUzTtSXqin0KllAmY3H4jp5QaPejGTinVLyLvA2eACuAPlVILm+v6nmS+g/19TI6NcvTESbfEu3HhQyzrKxSdOEdMTIzL8QYePGB6cpyy45VO7d/Z1kJ5Tsa+641GI6wt2x2vq72V8uyD46m1JQcy/FTd7ZuUpMTg7+/HrfrbnHn9Lbv2U0ph3FgBIhx6vbjwEBpHhvcsMBsnHW+qHjs3xeTkJElJSQ7v6yjD+jKPP386WFyAMDMzQ1xcnF3b192+ydGcNHx9fbnVUMPpVz/rRKafGh4eYmm4j5iIMFoaGig5dsyleENDgywN9xEdEUZLYwMlR12MNzjAyvgg0eFhtDU1crjsqO2ddhm410NFxv4NYgIDA1gfnnQ47uLiIv5rCxQXHAIgZXmZ1uYmSpzI8VGufX1sTI8SERLCnZZmikpKnY61Fc80M0p4UBB3WpspOuJaPICezg7W1lYoLnXt2GquG7l7h5OHrdfKqpYOrywwX3jvByiLhc988asuP0xyt57uLgKWZxAR7nZtOP1QbsvY/U5OlhQBUNVyx+sKzEopLvz4+4jBwGe+8BWX43V33CGUdUxmE/d7TGTnHnIp3kRfDyfLrDNmVDW3u1xgbqq5zcnD+SilqLl9k5MvvexSPLPZzKWf/AAxGN3y/gF0tLXi6+fnlgeaGxsbXP3wxxgMvrz61hddjtdcc5vTR/KxWCzU3LzOqfOvOB3r3Xffpa+vz6V8zpw5w2uvveZSDO3Z5619mEeAJCBx8+cDicgviEi9iNRPTjp+A7plaWGBpQX3NXHcWFslKiSI5SXnCo27LS3Ou5SfCDZvHBy5rxDsiIdzNypm0wZ+ftanskYHklJKYXDyNWHv5rHKbHY4khEwra87mYeDnGjWaxQDJpPJ/pewWB49JXfkeOxnaXGRyLBQwsNCWV21/yHNQfGiwsMIDwtlZdn1821HvBXn4tnzLjlzfqyurhIY4P/o98CAANbX1hyOs93S0iKR4aFEhIey7I73b3s8d17/dBN0r2Dc9rE1GryrMArW7wGxmPERa2HD2ywtWs+PyLBQlhYXXY63/Rh44/GwWCwYRSEWk0vdULYsLy0RGR5GZFj4E3j/XL8tNoggIhgMBrfcZJtMJnwNgNn+72xblhaX3PLegTU/f6MBZXZPF7yt64vBYEDE9c+LK/r6+rh586ZHc9C8g7e2c0gCqrEWlm32WVZKfRP4JkB5ebnTZ1d+8WHyix2bl/cgpz/zBouLi0RH29+f9iAFh0tc2j81M5u+/k4ykveu9VRKYTLY/5FIycyir7+LjJSD4hmdyrWkopJbN6/iY4DEbPufgBoMBkxGx5s/La2sEbhPM24VEQWjDxyKNxUQTEl8vMN5OEP5+tveaJep1Q2KHPhcFpcd42bNbXwMQnK2a0/zAQ7l5dPa1MiD3mHKK0+5HC8vv4DWpkZ6p4epOHna9XgFhbQ1NXJ/cpDySufiRcUnMj45QXzs3u+z2WzG4uN4D5OYmBhaaxdJTljDz8+Xy3UtnH/jy07luKWgqJjWxgZWJ2bdcjwKioppaahnfWKOY25qsVNa4VzLGs39guKSqW3txCDgG2lfK5WnSUSofPVzKIvFK5tzlhw9RmNtNUopt5wf/pHx1LVaB5oMiE5wOZ67GY1Gjp9/HTEY3FLbX1peQUNNNUajkbKK4y7H8wuPob7lDhZlITA60eV4mfmFVLW0oRTku6FFjL+/P0fPfcatn+WKk+65LgMEBgZSeuYVjG7KLz2viKrWdhRQeNS14/v222+7tP8777zj0v7a88PrvklEJBV4E2u/5/vAt0TkO5t9mNMAw5Numu0u/v7++Ps7Xph5UhISErneVM9+rURbuu9TWGFf/2WAxMQkrjXVk5Gyf7yi4+ecyBSCgoI4+7pzUx+pqETAsdrdtpkVTr25d5NWnxNnMXfUO1SzunHsJIGBgQ7l4LToFCyWsX37yu5lLSzeoc9mSGgoZ15zrRn2bkdcaEL8NOI50wx7u+zcXK69375vgbm+o4ejrzr3GX/581+gubGejfUNzr/xZbf0kTviYjP23UqOlbs1nuY9Dpcdw2Ips3aBMTr3UPRJCwlxrJvK0yQibnuQBFBafvxRTbq3Ho/QMNuzONhLRCivdN/7V1ZxArPZ/KhW2FXxCYnEJ7he8N4uPDzcrfHcLcyN+SUlJ5OUrMf31bzLE2+SLSIfAK8DfyQiPycivwn8Y+CXReQ/btv0T0TkItaa4l9USi0opbqB3wY+EpHrwO/jaElI26HszHmuNN5hcVszSaUU9Xe6CUnJcviibI3XztLyp81qt+KFpuYQ5sYvSXulHjnO4LT9TTeVUhhi0/Z98n3sq1+nPcz+PuhzZkWknX2u3aHspVdpHrV/iqLZpWUicoufYEbalsMnz3GtsZ3V1U+bTFssFmraOknIO4yfn3NjGIoIZccqOH7ylB5QRvMIg8HgtYWzF5HRaNTHwwVGo9EthWVN055PT7yGWSm1VxXK/7Nrm7cP2P/7wPfdnNYLKzQ0lJe/8FXamptYHR1EEMwGHw6feY3g4GCH44WFhfHyF37KGm/k03hHzn6GoCDb8yA/CakZmVxtjCJ+YxU/X9sf8dsj85R/7Wv7rvfz8yP45/4u4//tt4hXB/chMivFnbOf5fUzztWsO8Pf3x/f3GNMjN0hLuzgY2gym2laDeS1EvfWxmp7i4qK5txbX6WloZ6NxQlEBIuPH0dffdPpwrKmaZqmaZ43NjbG6uqqS0239aBizwava5KtPXki4tbmq+6O5w4vfeWnufLdP+do4CqhgQF7bqOU4vbIPEVvfMNm4b7sC1+iYWOdxf/xu2Sb9h5g6aFF0Xnmc7z26//iqY/KWnrmPI3XzcwPtpETG7HnNjMLy7RuBPHKN37uqeb2ojMYDG7pZ6dpmqZp2vNjawRvXWD2frrArD2XRIRXvv6ztNZWsdTfRZx5kfSYcESEuaUVOuc2MManU/H1r9vd1/jYV7/OWMUJWn/wbUy3rxE6NYqvUswGhUF5JTGf/RKfrfTcwERHz73K6HAetY3VMDlAhNGMr8HAzJoZU0Qi0fmnebXYtYHjNE3TNE3TNEhIsA6y52wNsx5U7NmhC8zac+3I8ZNw/CSjI8M09d5DKQth8TGcdnI09ITUNBL+z3+E+vu/ysLCAhsbGxSEh3vNSKyJySkkJn8NpdSj/DK8KD9N0zRN0zRNe5bou2jthZCYlExikvtGXRQRjwxoZi9vz0/TNE3TNM2b7ddHWfc7fvHoIQE1TdM0TdM0TdNs6Ovr4+bNm55OQ3vKdA2zpmmapmmapmnaNnv1Udb9jl9MusCsPfeUUrQ21LKxMIuyKCxGH46cOG33YF9PmlKKlksXWOu/jzKZITKK0i9+lYCAvUf3tmVmeoq71dcxrCwAYPH1J76wjMzcPHemrWmapmmapmnPPV1g1p5bSinqr13CNDnE4aRIgsICAEEpE60f/BXLAWGUvPQ6ISEhHsuv+s/fZf3i+xSO9xNokEfLm7/9LmvHz1H+9/4BwXbmt7S0RP2P/xexK9NUxIXDo/L2KmO173Or6hJpZ14nNSvnyfxBmqZpmqZpmvac0QXmJ2RyYoIHd1oQFCHR8RQc0dP5PE1KKa7+6NtUxAYQlJW4Y52IUJJhXXbrg+9w+PUvExER+dTzu/Bv36HsxgfWgrLh03mbRYTi5VnUlR9R3dNFxb//PcJs5Le4uEj9//omZ+KDkNDwx9YnhAeTAHRc/xFm01tkHNK1zZqmaZqmaZpmiy4wu5nZbObm+98n0bBOeVIsALMPe7n+7SayK18mOS3dwxm+GOquXrQWlm00az6dncT1iz/h/Nd+9illZlX1rf/xaWF5HyLCieG7VP3rf8Zn/sN/PTBe/Y/+0lpYlv3jARTGhFB19UekZP1DPdWUpnmxgYEBTKYNMjOzbJ7X9ujv78dsNrktnuYcpRStjfWsz80A4BsWScmxCn1MNA2YnJzg3p1WfMwbKMDs40dRWYWe9UPzOJujZItIqIjUiMiiiBRvLvtVEbktIp+ISNLmsne31rvTk4r7pNx8//ucSgwhZ7OwDBARGsyZnCRG6q4yNzfnwex2un+vh5amRtbX170ynrOUUpinhmwWlrfkhfvT29P9hLP6lMViYePCTw4sLG+XeaeOB3fa910/MTZG0sas3TdcFfEhNN+8Yte2mvt0d3XS1tKMyWTydCqPUUpt5teC2Wz2dDovtOGhQW5+/BN85sYIXZuj6sIHPLh/z+V4fgsThKzOcvsT1+JpzrNYLFz64XfI9lunPD2W8vRYcgM2uPiDv8JisXg6vRfWxMQEtTevU3PzGtPT0y7Hs1gstLe20HnnDkopN2ToXhPj49RV3aKu6hazDx96Op1HRoaHGGproDIvnfLCHCoKc6g8lEZ71VVmZ2c9nZ72grNnWqkV4C3guwAikgC8CZwGfgP4Z08su2fM5MQECbKG0Wjcc/3RjAQ6am895az2dvPyRUItqxQkRVN9+RPmXSzI37h0gTC1thnvAgvz8y7n2NJQT/WNa6yurjq2X10NJckxdm8fHxXORE+Ho+nR0lBH9bUrrK2tObRf00fvUzw5aPf2CaIY+sn3911/v+4m2TH2P331MRoxDTl+w7y4uMjkxITD++2lo62Fqk/ep+bC+1Rdv+rWeNU3rrmeoBsppbjy8QfE+UNuXDjXP/6A1ZUVl2K2NzdS9eEPqPnoh9TcuOqW/OIDhNy4MK5++BOHP9MvusnJCaoufUz15U8YGhxwOo5SigftzZwuKyYxPo6Y6ChOlhYxfr/LqWOyPV5CXCyxMdGcKrPG8/SDze3Gx8YevX/DQ/ZfG/ejlKKu+ja1VbfcUhAdGx2l6tLHVF36mJHhIafj1N28zkuFGQQHfTrgZFBgIOeLsqi76V3XLXeyWCzUVt2irvq21xUgBwf6Ge9upSI3heO5qQy01TM2Oup0PJPJxOUPfkxWZDApwT5c/uA9l//mocEBqi9/QtXlj5mYGHcp1mB/P5P996gozKWiMJfe9mYmxl2LaTabqbl1g4baapf+1v6udkoLHh9j5eSRArqaG1xJUdNcZrNNplLKBExuq71KB+4opZSINAJ/vHsfESkDflEp9XdExAjcBE4BHUADUAr8G+BLQCHw95VS1zbjVQEVwJ8qpX5/M+SviEgmsAR8WT2hK+7I8DBT4+McOXrUqf0fdLRQnhy373oRwbDsfMF0eGiImclJDpeVOR0D4F7PXfLTEoiJjgbg3Ilj1LQ2c+LsS07F67nbTWFGEtFRUZvxjlLd3EjlufNO59jSUE9aiIHwpCRuXrvEuc++afe+GwsPCYjwc+j1DOuOFWCa62vICLAQFhPDzSufcO5zX7A/v777+BsdmwLdMLz/TbhxZR6CHAqHYcWxBxoPZ2bobqgmOiKM6ckJ8oucb/ShlGJ2pJ+TR639+qdnHtLV2UF+QaHT8eZGBqg8egSAqekZurs6ycsvcDpHgMH+PpYWFsgvPuxSnLaWZioP5z8alf3lk+XUNtZx4vQ5p+KZzWYWR/upLLG+X+NT09zr6SEnN9epeC2NDZwqKXw0Kvsrpyqora9xOr8t/b29rK4uk1f4zDQQctrdpjpOHckH4HZzMympaU7FaWtp5mjB48ex4kghjU0NVFSecihea3MTxwoPPba8/HABTY31Dsfb7upH72HeMPHKW192uTnxvdaGT9+/lmaSU1Jdild94xpHs1MQEaquXeH0y6+6FO9+ayOnSj7NLyk5xblAK/P4+Dz+cNPHxweWXXvIfK+7CwRyDuW7FGd7PBEh2w3jXVRdu0JFXoZ1oMsb1zjpwr3B9vwMBgNZuY9/vh0x3NvDiYKsR7+XFuRS09VJQmLiAXvtr6muhldOHMNgsH7Hnz16mMbaWo6dOOF0jv0dLZwqLQLgdks9cZ+x/35ot9GBPo4f+fS78eiRImrbu4iLj3c6ZtW1y1QW5rCxsUHt7ZucOH3W4RgbGxv4q/1bX8nGslO5vfvuu/T19Tm1L1jnXM7IyHB6f+354dhdu9V9oEJE/IHXgMdGI1JKNQH5IuIHvAJc2izkJgC/iLWg/B+Bt4GfBf7O5q6RwO9iLVz/vIhsFQNuKKVeAxaBx+5eReQXRKReROonJyed+JOsZqYmmZkcc3p/e24ZxIWy/szkJNMTzj/53LK4sED4rv4gRoMzHwWrpcXFx+L57FPLbq+VpUXCw0IREfx9HctNOVWj4NhxWV1aepSfn6NvnTNNcg/ax5nPlMWxfWZmpslMSSI7I525hzOOv942JpOJAL9PH2hERoS71CLBZDIR4P9pvKjICLe0cJiemGB6wvnrwZb1tbUdU5iJCEZx/nxbX18nKODTvzc6Ipz5uVmn45k2TDumMBMRl64HW2amJphxU4sEb+e77QGYj51dLfayurJCQID/Y8sNBgPK4nhT+fW1Nfz9H394aDQanYq3nVpbxldtuKUG13fbe+bK+7dFlAU/Pz98fX0xuqFrsM+208HXhfwMB3zPHLTOHtMT424936bHR91y/QMwGsDX1xc/Pz9Euafp+fTkODNTzt/vbdnrfXflWAjqUWEZwM/PD6VcO9d8t8XzceG7A6z5Pb7MNT4GwWg0EhAQgHKyy9HGxgZ+vvvfNxpcztI5GRkZnDlzxiOvrXkXh0f9UUpNicgfAp8AjcB+nT9/ArwBfBn4rc1lvUqpRRExAT1KqVURGebTQveiUuougIj0AFuP+Jo2/x9k7wL6N4FvApSXlzt9pSsuKYWSUmd3JzQmgYdTPUSG7T8NkNnP+bl/rTXLrtUuAxQUFVN99SJnj1tr0vsGh4iIibWx18HxqnbFi4xz/mklwOFjFdy8eQU/o5H4TMdqzpSP9QvKkVoPi9GxU6H42HFu3riMr1FIyHGsJtMS7viI3OqAUbItPv6AY19SFr/Hb8oPkp2TS0tDPQ+6eik/edqhfXfz9fVlbt3CysoqAQH+XK1t5qwDLQj2ije7ZnJbvC2lFcddjgGQV1BITX01J8qsz/ru9vYRl+RkDRUQGBjI1IqJ1VVrYehaUwcvvfFlp+MdKiigtrGG46XW/Lru9ZKQ7FwN6XZlxytdjvGsCIpOoKG9E6PBgDE0yuk4BcWHudNcQ3HezmaJfYPDpGRk7bPX/vIKi+horaXo0M54DwaGSM3MdjpPgCNnXsNsNu/bBckRAVFxNLR1YjAIvuHRLsfLKiiiqqXZ+nPREZfj+UfGfppfhPP5mXz2v+6afO0bc2M/zrYQ2zfeuZfdFivjUCFVLa0A5BwpdUvME2fc8/f6Boczv7BAWGgoADMP5why4RinpGfR3nWX4nzrfUvTnS6yikpdytEYFknznS7MShEYleBSLJ+AIBYXlwgJCQZganqaECfuSbZLzcmnuvUOFqXIL6twKkZQUBCLa/s/WDA7eI+25e2333ZqP03bzalPoFLqXeBdETkPTO2z2Z8DfwiEKqW6tnbdHmbbz1slmxARyQV6gWxg9IBtvU5+8WGuf7uBM/sUmIenHhKXU/p0k9qDv78/R06cpqatBaNBiIiJIyfP+WZcj8WLjSfHxWZSwcHBnPvsW07tm3/0OB2Xf0BRmn1NqjZMJnwc/BIKCQnh7Oe/6Ex6FH7hK3R971vkm+xrBr5mtuB/8vy+68Oy8pnruUV4kP03XCrG8SaPJcfKHd5nP+df/zzNjfVsrG9w5vU38PNzrAn94/HecGs8dwoNCyP7cBk17XcwGozEJCaR5mITr5c//0Wa6uswmeY59/kv4evr63SssPBwMotKqb3TiUEMxCYlk5LmeoH5RVJcWsbGRjFms3lHbb2jQkNDWfcLZnBklNQk6/VrfGKK0cU1TiUlOxwvLCyMNd+gHfHGJiYZXzZxMjHJ6TwBoqNdL9huOXK0nPX1dZRS+Ps79jBvL3Fx8cS99lk3ZGZVWn7cLfnlHD5Kc9MtSnN2zpbR3NNHdplrDyK9WUJiotNNnJ+0sorj1Fffwtw/AoBfWBRlFc43n05ISmJjY4O6jnsoFOmHColy8Vw5duIUa2trGAwGl671sPX3VmFZWwEB/+Awl7/bk1NSSE5x/iHwlqCYBKamHxITvbMAPzA8RkxKhsvxNc0VdhWYReQDrP2O80TkD7DWHMcC/cAvbdv0j0RkafPnvwEEAD9yIJ+HwK8CR7H2YV5+1qZayDn1CnXVlynPTNxRwzk89ZDxgFjKvWT+2/CICLc+kXZ3PFeEh4cz7xNs9/aNfWMc/9rbTy6hXSKiolgqPw3VF+3avi02hXNv7t9HurCsnJtNNzhpZz/me5Nz5Lz5Zfs2fkJEhLJjzj2Jfhrx3C0mNpaY2PNuiyciHHVTDThAbFwcsXH7j7+g2ebr6+vyzSzAsRMn6e/ro7arDxGISkji1EvO39AeO3GKvgcPdsQ7ec77zhVvesi1F3fkFxsXh+nwcarbmjBuLCMIJt9A0g8fd6kPqeaa8kr3PqxITU8nNd29U4i640HSlvLKk26L5U5HjpbTVFfN/bYu8tKS2DCZuD88QXhiGoVu6puvac6yq8CslHpj16Jv7bHN27uXicga8Jfbtinf/H8VOL/58xTwuc1NLEqpX9wvrlLq/7YnX09KSkkj9LM/RV3tLWTxIaIsmP0Cic8to9zFWlfNfoVnXqXm4o85kXXwU+2+8RkiC4+5pVmhIw7/4j+g4f5djk0ePKJuv28gCX/3V3f0idpLwolXud9wgeyo/bsDAMyvrPEwIY88F5vMa5r25KRnZJDuxoFmMjIzycjMdFs8zXmJSckkOtFaQNNeBGUVlVgsFu7d68EnyIfK14/rOco1r+BcpwA7iMgPgW6l1Isx6ss2oaGhVL76Odsbak9MZGQUh15+k2sXf8LhuFCiwkN3rDeZzDQ8GCWy8Cj5h0ufen5RcXEU/dZ/ofpf/wZ599qI3DUyzYbFQktkAgm/9Gvk2zHiZE7REbo3TDTUXuBoYvieXzAPpueZjM3l5Oe/5La/Q9M0TdM0zV0MBgOHvKQ1pqZteWIFZqXUl53Yx32dJLUXXnRMLC//9M/T1dbKvf67GExrKIsF5eOLMTKBiq/9Let0Hh4Sk5jEa7//P+iovk3/x+/B6BDKZEIiY/A9eY4zX/yKQ/nllR5lMecQddcvocb7MK4ugrJg8QuA2DQyXnuTHGenQ9E0TdM0TdO0F5DnSgua9pTkHz4Ch10fKfVJKaw8BS7Mh7pdSEgIJ9/4tAZZKaWbM2mapmmapmmak1yfbFPTNK+lC8uapmmapmma5jxdYNY0TdM0TdM0TdO0PegCs6ZpmqZpmqZpmqbtQfdhfkEtLS1x7243pg0TSakpJCYmuTFeKomJB0/npD0bNjY2aLx9A8vsBEbzOsqiUD4+qOBI8stPEhkZ6XC8ptvXMc+MYjStg1JYjL6o0GgKjp8mIiLC8fxuXcPycGxXvBgKjp9yON76+jpNVTewzE5iNK+hLKB8fLAER1JY4Xi8LfPz8/Te68FiNpOSnkGcl8x5bP17b2KZn8RoNqGUQhmtx7eo4iRhYWEOxVtbW6Pp9nXU/NTm5+XT96/4xBmH472IenvuMvGgG4PZBIAy+hCRnEleUbFL8YwW86Pj60o8TdM0TXvR6ALzC2awv4/he50EmlfJS0vGJ9TI0P1WqlvrCYiOp7T8hEPxBvoeMNzTSZBa2xavherWOgJjEig5dvwJ/SXak9bZ2sTc3WaOZSVjjIh9fP3N9+kKjObka5+3K15Hcz0L3c0czUjAmBr9eLwrP6QrNJ5KO+Pdaaxn4W4TxzITMYbsEe/qD+kKcSBeUz2L99s5mpX02N+rlKLz+nt0hcRR+cpn7YoH0HvvLuO9PYQaTBSkJmEwGBjobqC32URIXDLFpUftjuVu7Y11LPd3cTQrBWP0zgdcSik6rr/PSmgcx1961a54bfW1rPR1UJ6djCFq5wMBpRR3rv6I1bBEjp9/zW1/w/NkZGiQ+/W3yI4M4njyzgdR03P93PxBGylHysnIznUg3k1yokI4nhzxeLwftpFy2P54mqZpmvai0k2yXyAdLc2s9ndyIiuRI7mZ+Pv7YTQaSU9O4MShNLIDzFx5/0copeyOtz7YRWVO0p7xsvxNXP3A/nia+8zPz1N7+wZ1t28yNDjg8P4dzQ0Ejt/jeG4aRqNxz20K0hIpCrZw88P3bMa701hH8NhdKrKT94+XGk+h3yo3P/yRXfFCxu9yPCdl/3gp8RT4rtgVr72hjtDpB1Tkpu4ZT0QoTE+iIGCDWx+/bzMeQEt9DcaJfipzkynKTsfPzxcfHx+yUhI5kZtKEkvcuviRXbG2m5gYp+ryJ9Re+Am1n7xH1aWP6O974FCMtvpaIuZHKM9N3/fvLcpI5pD/BlWXPrYZr7W2msi5AcpzUzEYHv9aERGK05PI9V3m9sUPHcr1RTA00MdE821O5yaTEPN4q43o8DBOHUphpaeF+92dNuMN9j/YjJdCfHTE3vFy7Y+naZqmaS8yXWB+QfT13sdvfpSc1P2bSocEB1GZnUDVlQt2xLuH/8IY2SkHxzueGW9XvO0sFgsNNVXUXv6YussfUX3tMnNzcw7F2M1sNtNUX0dd9W2XY3kzi8XC9Y8/oL/uOuXJkZSnRGIZuceND3/EzMy0XTEWFhZYfdBOWlyUzW1DggLID7Fwp7lx323m5+dZ720ldY+CwF7x8vzWudPcsO82c3NzbDxoIzXWdrzQ4EDy/NbpaGnad5vZ2VlMg52kxNr+e0ODA8kN2KCzteXA7e523CFyY560xMdr5rdEhodSHBdC3c1rNl93S3tzA9MdDVRmJ1JxKJ2KvAwqc5IxjPdSdfWSXTGmp6eQ8V6S7DgeYSFBZPqu032n/cB4xvF7dsULDwkm02flwHgvGovFQm/tDY5k2u4Wk5caz2RHPWtrawfGe1Bnf7yJOwfH0zRvsrq6SvWNa9Re+YTaK59Qc/M66+vrnk5L07Tn3BMtMItIqIjUiMiiiBRvLusRkaub/z6zuexdEbm6bb9/IiKTTzK3vQwPD9Nx5w4bGxtuiTc9PU1/fz8Wi8Ut8YaGhpzOb/Re54GF2y0B/v4ErC+wsrJiI14XWckJNuMFBgQQsL7I6uqqXXmazWYuvfd9imODqTiUTvmhDE5kJ9FTe53RkWG7Yux2v6eb2os/oTA2iGNpMQy11FBz46pTsbzd9Y/f52RuMsW5mY+mlEpNjOdMUQ5tNy/b9dlpr71FSWay3a8ZFRbC3OD9fdffqbnJkXT7+7RHh4cwN3Bv3/Wdtbc5nGb7s7c93mz/3X3XdzVUccSBvzcmIpTZwf3zA5geuE9qwv6F5S1hoSFY5iYxm802t+3rvU/w8kPyM1MfW5eSEMehyABaG+tsxrnbVEdhuv1jFsRFhTPT37Pv+p7GWgrS7D++8ZHhzBxwPF40zXXVlGfZ//6V56TRXH1z3/UtdTWUZ9l/fCty02iuvmX39gBNddXUXPyA2ksfUl91S7ci0p6Kubk5ai9/yPHsRCryM6nIz6Q8M55bH/+EpaUlT6f3TFheXubmxY+ovfATai68x83Ln2AymTydlqZ5vSddw7wCvAV8d9uyOaXU+c1/26seA0QkfvPn08DgE85th1tXLmIafUBaoIXbn/yE2dlZl+JVX7vCVEcDAbPDXHnveywuLroU7+blC1jG+0gNMHP7k584VEs6MzNDhI/9NzQluZk0197ed/309DSRvo7Ey6C5Zv9429VX3eJ8ST5+fn47lh8ryOVBe7Pdr7llbW2Nqd5uKo8U4ufnZ21am5tJTnQI7S2Ox/NmY2OjpIYF4OOz99AEpw/n0VRbbTvQ/JTD8zfH+ZgZHxvbe+XchMPxYlhjcmJiz3VqdszheNFqlanJvZ/BqVnHn81FyRrT01N7rhsaHCA5LMDuWKU56TTV2T4uo713yUiO33d9VEQYSxMjB8ZQSsGCfS0NtgtTa3teE5VSqDnH379Q09Jz1dLDYrFQe/sm1TeuOfxAc3VyhAB/f7u3NxgMWA54z1ennIg3b/8xrLt1nawQI8fzM6nIy6AwJsju1g37sb5/N6i+cc0rb97NZjM1t65Tc+u6XQ+3bGmur6HmwnvUXHjPrnPfHuPj40zsc818XtxpqOFsWfGO67/BYOClY8W01Fa5FFsp5bYHP8NDg1RfuUDVlQtMTIy7Jaa71Fy5wKnCLCqK8zhenM/JvHRu2dHtRtNedE+0wKyUMimldn8Th4jINRH5nyKyvQ3kD4Avi0gaMARYAEQkVUQui8gNEflvTyLPnrvd5MaGk5aSSHBQEOeOHaGjyXZNzX4GBvpJDjZyKCuduJhoXj52mLZ6578Uu7s6yU+IJDU5kZDgYIfzu9/duWet1H4MBgO+lv1vWnrvdpGX4Vg8o9nOJlOri/sW+CL8DczPz9v9ugAtDXWUF+c9tjwqMpylGdcaMczMTPPg/sE1jY5YXFxkZNi5WnSAgZ5uslL3r1kyGo2wevCDG4vFgq/J8eaZWUmxDPQ+/l6YzWb8zI7Hy0mKpf/+47WaJpMJf4vjze9ykmLpu/d4rebGxgaBOH4DnJMUx4Oe7j3XjQ70kZpo/yjYfn6+qNVlm9sZNw5u9QEQFeBz4MO+5eVlwnwce9gAkJeawP27XY8tX1paIsLPiXgp8dzvfjzeQYYGBrh/d+/33BlDA/1ui1d9/QqlabFU5CQ73AXF195r4zY+pv338XHi/HVkH/PCDGGhIY9+DwwMwGdt0aWWVLevXqIsPf7/Z++/gyRJ9vtO8OMpSmuttda6qrWYHj3zRrwHzQUfsDyskTw7tXskyAWxs8Y9noFLmu0tjyDvcYk3UCRBAE+OFq27S3dprbXWMrMy0++P6uopkSIiK1vHx2xsuiI8vvGLjAgP/7n//OdUpMdRe/Mbt3UOs7W1deqO6gNqb12nLCWG8tRY7t84nX1zc3P47W1SVZhLVWEugbYdZmZmTqU50NfL6nAXK8NdDKh8rxwxOjzE2MiwR7Rg//t22lFgvcV+pJoQAr3Fdf3oiNnZGe58/nNuffYzlpbUdygeZ6Szler8TGryM+lvbTq1HsDkxARzcw46pRUyMTFOZlz4iQ6HUG8d29uuv0HOWF9fdxmZ+DT4+OOP+eijj/jmG8/UKxovL09jDvM5KeUl4Avgo0PbvwauAT8AfnJo++8D/1JKeQHwFUJcOi4ohPg9IUSTEKJpwcEokjPWVlcJDws5ss2gcgTrMMuLi0RHfNcXIITAjTbqI9ZX1wgLDTmyzaBTI6i+11Q6a/y40wur8BCdk4JBfn5sbGyoOq2Q0m4SIgCdOF2o/OToCJPDjkNV1TIxOsLEKfSEgh9ZuLh3ZrMZo969akHaGXkxmUx4ua13stPGZDLh7aBDxRlCCLv27e7u4m20nzTMtZ6D58etUQoF906Bir+vt9NG6f71qv/9dDodNjv34zR6Vqu6kdip0WGmRhyH/qtlcmTIY3oGITEajeh0OnxUPk9SulEPSenQQXVLz6Z8dM1eHe1t0J1qKpOXDgwGA3q9Hm8364vjjI0MMeqhDs3D9nnpT/ExBxYX5omL/m66RlxUJIsLpxsZXpqfIzM1mcyUJJY8NKI5NTbM1JjnHObRoUHGTvm+Oft+neapmZ6coKooj/K8bKanJk+htI+3QW/336dhcnSYSZXJHY+zMDdHdMTJFSVCAvxVD0YcZ2RwwKMdLONjo6yurHhEq7u7m7t3HU9j0dBQwhNfVkpKedB999fA3zu0ywxsAe8C//uh7enAwXBqPZABHMmSI6X8EfAjgIqKCtWt1ezcPB7U33k0Erm0vIp3YIhamUfk5OXTdOMLzhTlAjAzv4B/qOv5jA7ty8vjQeNdyvP37VtcWsEnUPn6t77+gWxubRHg76f4GJsDJxPANyCAre0d/P18PaJ3GItw/EhOLa1SUaZ87ipAWHQMcwtLREee/Eg4O5cSisoqTnX8cXILCk91vN7bF5PJjLe3l8MyFuH84+3j48OuI0fQCbsmM95+wSe2+/r6sr3nnp6X78l3xs/Pj02z+pDNnV0T3n4nw5kDAgLYMKlv6G/v7OJrZykrAL2XNxaLxWGkhD1sCpp7Vhf3DmBudYOiMsej28HBwYxsK8sncJi1jU0Cg5Pt6o1t75KiUm91Y5PgSOXzxgGqL15WeRbn1Fy66jGtyIQUals7EUBoQqqqY6VOfT1k0+kcdgS6p6dXPM3BojtZv2xZwVtFGPhxIhJSqGvtAiThSRlu6xwmr6DIIzoAYXFJj+5vRMrpluHKys7hzhe/4HLFvn31Xf2cf/3dU2kWV1Rx/94tQFB+7uKptA44d+VVj+gcUFBccmoNq5Nn29W3zRml5ZU03L+DTqen8sw5t3UOMOu9mJtfYM9ixealvN3ljJoLJ8aKVFNQVEzrra9ORN1NLa1SU+54uo8SisvKT3X8cZKSUzyi88Mf/pDR0VGPaGm83DxRh1kI4QUIKaUJuAgc7/79E6BMSmk59PEeBCrZH5GuBn7sabsCAwNJyCuhvqcTvdBh8A+ktFLdesSH8fHxIbPiLHXtLRj0OnxDIigoKnZbLygoiLicYuq6OzHo9BgDgiipUO6s5RcWUffZ31KTp6whsrC8Qljcycbxd3rFqvTml1YIj3esd5j4jGyGJoZITzzamN7e2QH/YIdLCDkiPSOT6591Ex4afMSBaejsJafivCqtZ52SiipqP/spZ4ty7O6fmJkjLj3LpY7VL0T1udvG56n+8OT6xEIIrP7KO3ce6U0tUvMr37OrZwtwnc36OO3Ty9T8ynv27bPj6Luic3qZ6g/esruvqKyClq9+TkVuuiKt0alZEjMVdJb4BWGz2Rw6SgBmgy9Go9HhfoPBgNkrwOF+R/TMrnCm5uR61kajEbNXoGq9voUNzpy3/5w+j6SmZ5Ca7p6jZ/MNUn2MdPKOSl/1z7NU8Q6kFpRwp7mWipx0dDodTT2DJBeerrGclpFJWsazux50RlY2GVknp/a4g9FopPrqGzQ8TNBXefk1p++sEnx9fTl/7Q1PmPdMExgZx8LSMpHhR78BswtLhMQkuK0rhKDaQx0NAOeuXGN4eAiDwUh1SZLHdE+Ll5cXPhFx9AyOkpuRgpSStt5BwpMyVOcF0dB42XjsDrMQ4jOgBMgG/j3wfxFCbAEm4HcPl5VS3gZuH5P4I+BPhRB/ALQ/LONxYuPiiI1TnlnUFZGRUUS+ctKBcJe4+Hji4tWNyBwghAD/UKxWqyKHs39mmfPvXHGhF6JYb2B2mfMVjvUOk5ScQt/WJnWd/eQkxhDg70f7wAh7Xv5UX1SmcZzLb7xLw707CNM2OgEWnZGssjOEhqp35J5ldDodMVkF9IwMk5t69CM9t7jMnMVAZYrr0a+QxHRW18YJCfJXfvLgSIeOXHByBmsrIwQHqOhpD452+AEPSkxnfXWEIDV6IY71AuNTWd+cIihA2fVKKZFBEQ719p1Sf6SUihohU+u7nFfwbpefOc/NT37KldIcu7oN3YNkV7tu9PnHJLK1vaI4QkRKiXByvX6xSWzvLOLnqyzRmZQSERypNdAeklZYxlD7HdIVrDoAMLe0SmSq446vlIISRrruk6pwHv3s4gpRaco7L2Lj4omJ/T6d7a1YLXucfesDp504Gifx9/en5sLlp23Gc0dBSSmtTfWMdPRSlJmKzWajc3gMn7AYiss9F1HgCdLSlHWYPmkKS8tYXFyksa8HKSW5FecJClLfaaeh8bLx2L9yUsq3pJRxUsozUso/lVKWSykvSilflVJOPCzzQyll57HjKh7+f0JKeVVKeV5K+Q8et70vKlUXLnOjfcDlPLXOoXFSilyPXldduMLNjkGXeh2DyvQOk51XQM3r7zKvD6RzaZfCS69Tc+mq2w1snU5HzYVLVF97k8pX3uTMlWuEh0e4pfWsk56VTVhWCXWDUzT2DNHUO0Rd3xhrPmFUKuxBzysqoWVuXfGcxuaRGXIrzzjcn19cxoP5TcV6TaNz5NU4Hv3PKy6leU65XuPoLHnVjvXyi8tomlpVrjc8TX6V87C9igtXuNXe51LzQf8ImWU1is5rNBo5+8a73Osbp61/+JH2wNgk93tGSa88T1iY/TDxwxSVV9IwrjzXQ8PgJIXVjq+3qLyK+nH7GcPtUT80TVHNBcXlX3SiY2KYsXqzq2AtZKvVSs/yDulORjtjYmOZMhsxKVib1mq10ruyS1qm68iTwwghKCwupaS8QnOWNZ4oJRXVVLzyFgPrFoa3JJWvvE1xeeXTNuu5IiIigqpzF6g+f1FzljU0FKJ96V4S9Ho9l975kDs94wxPnszIuba+wd2OfkIyi0hIch0+rdfrufj2B9zpGXOs1zlAWHaxIr3jCCHIzsmltLzixBJTGs6JiY3lzNXXqHr9e1S+9j3OvPoW2Xn5qjTOvv19bvRNucx8+2BkhrjyC4SEOB+tP/POr3BjcNa13tg88VVXCA4OcVhGCMGZd3+FG4MzLvWax+ZIrH6F4GDHIadCCM68/X1u9k261huZIanqistGhre3N1Wvvsvt7hEmZk4m9FlaWeNu5yDxRdVExyifl+/r68uF198h8+w1mmc3aZpZJzS3nHNvvEtEhLI8CUIIqt94n5s9oy4d+sbBSVKrLxMQ4DiMWwhB1ZsfcrN3wrXe8AxpZ17B319F9MJLwIU33qVhep21DccJ23Z2TdwamOHSu993rffmu9RPrTnV297Z5dbgrCI9DY1nCb1eT1FxCYVFxVqHjYaGxhPhiSf90nh6eHl5cent95idmaGuux2DtCClxIaOwOh4zr97XtUo7r7e+yf1hI7AqHguvKuNIj2v+Pr6cvn7v0Xjza+Rq/MUJUQ8Crm12Wy0jkyz5xdK1vk3CI9wPVrv5+fH5V/5bRpvfAWrsxTGhuDnc0hvbBZLQASZl94iXIHj5+fnx6Uf/DYNN76C1WmK4sIe6VmtVtrG57AERpB1+R3CFEQT+Pv7c/HD36Lh5tewtkBxYiS+Pt6P9FpHZrAEhJJ94U3Cwl2P4h5oXn7nQyYnxqkf6EFv20NKsAk9ofFJXHjX/SQu/v7+VNacdfv4gIAAzr/369Tf+haxuURxUvSjtXv3r3cai28wOZfeIDTU9ZzxwMBAzn/wm9Tf/BrWFylJisLnYfI5q9VKy8gM1oBQcq+87bJz5WVECMHldz6ko6WJ3rEJwnR7pMREotMJJuaXmDNJvMPjeOXDX1dURx/W6xkdI1xvfaQ3PrfInEniExHPKx9c00LjNTQ0NDQ0XKA5zC8hMbGxxMTGPrN6Gs8GBoOBM9feREpJx4MmzKsPw7QNXhS9/euqs+IaDAbOvPrWQ71GTBtr+0swGX0pfu+/UR1JYDQaOfva20gpaW9uwLy5fkjvNff0HtrX3tyIeeXhMhsGb4rf/Q23Ix0SEpNISHx2Er8c4OXlxdlX33x0vXvLm0hpQxi9KXn7V1UnIvLy8uLsa29js9lob27Asrq1P1/Z6Evp937z1ImNXgYKSyugtIKlpSV6RkeQFklcYQ5notWtDuBML744l/So02XE1dDQ0NDQeJnQHGYNDQ2nCCEo8uAcsX29Ko/qFVe4n9Xevp7n7HvW8fT16nQ6SiqVzcvWsE94eDjhCiMZnoaehoaGxvPC7Owsu7u7fPTRR4rKnz9/nmvXrj1eozSeO7TJHxoaGhoaGhoaGhoaLzWjo6PcvXv3aZuh8QyijTBraGhoaGhoaGhoaLxwxDxMrKlkhFnpKLTGy4fmMGtoaDhESkl7UwPbsxPorSakTSINBggIp/TcRdXzmKWUtDXUsTM9it66C1Ji03shQqMoOXvJLb3W+lp2Z8bQW3aBA71oSs9dUj3vWEpJa0Mdu/MT6C1mpM2GNBgRQZGUnrv4QmZs7+loZ31qFJ1tb3+Nab0Br7BoiiuqVWegtdlstB38fta9h7+fFyI4grJzl7R5zAoYHuhnfrjvYZI4iU1nIDQxnez8Arf0hvr7WBjp95iehoaGhobGy4bmMGtoaNhlqLeH2Y56iuMj8EsIObLPZrPR9sl/hugUys9fVqQ32N3FfNs9imND8I3xA/wO6W3R9tOPIS6T8otXFekNdHcy33qfkjh7epu0/eTHiPgsyi5cUa7X0UBJQgS+cUeXobLZ9mj9xV+gi02n7Jz72a2fJUaHBphsbyQvJpTsxKOZq3dNW9T//D8RlJpLfkm5Ir2+zjaWupspSYjEJz7kyD6r1Uzrz/4cY2ImJdoazHaZmhhjpOk+aSHeVMUevR9Ly0Pc+0kbsQXlpGXlKNKbHB9ltLmW9FAfqmJDTujd/UkrcQUVivU0NDQ0NDReVjSH+SVkYWGBwc429JZdhACrMBASm0iOyrV6D+sNdbU/GuGzCgOhcUlk5+Z51nANxVitVjraWtkz75Gdl+dy3eDj9Hd1IMa7OJORYHe/TqejNC2BlY016q9/RfXV15zrdbYjhpqpSbGfnVen01GaHMPy+iz133xO9bU3ner1dbSiH2rlTKorvRnqv/2C6lfecKrX29GKYaKbMxnxDvXKUuNZWluk/sZXVF9xfr2HmZmeZrS3C4PNDEgswkBkYioZWdmKNTzNcH8fppEOzmYl2t3v4+1NdVYyU4tTtDXsUVzlPIlXT9sDfKb7qEm3//vp9XrK0+JZWJuj8da3VF565dTX8CIxPjLEamcDZ9PtZ8MODw7iTHAQA0PtDFisZLqoq/f16jmbbn/1gvDgIM4GB9E/1Mag1UaGVldrPEfMzc0yPjQIQEpmNpGRytag19DQ0HAXLenXS0ZXWwsL3U3UZMRRmZNGRXYa1VlJRFrXuPHZL/aXDXJDrzo9lors1Ed64Xur3Phcvd4BNpuNlqZGGmrvsba25pbGy0rDnVs0f/1LcoP0lMcGMNZ4m9tffMLOzo6i43d2dljpbiQ9xvX6xaGB/iSxQV9nh8MyW1tbrLbfJz3K9Xq+YUH+JJoX6etsd6q33llPWrTr9XzDgvxJMC3Q39XpsMzm5iYbPc2kRbvOIhweHED83goDPd0uywK0NtaxOdxJTWb8o/ejJiuJgK157nz9hSINT2M2m5ntqCc7wfXSQvERofiuTjI1OeGwzNraGruDbSQruL+RwYFE7cwzPNCnyuYXGYvFwnjTHQqSXS8dlRkfyVpfMxsbG071JpruUJDseqm/rPgoVnub2NzcVGWzhsbTYGNjg9uf/5LN4S4qkiKoSIpgpa+Vm5/9gu3t7adtnsZLwuzsLKOjo3z00UeMjo4+bXM0nhAedZiFEIFCiHohxKYQouDhtgQhxC+EEDeFEP/Tw20fCyE+P3RcnSft0LDP2OgIPlvL5KYln9gXFhLCmawk6m5dV6Xnu21fLzw0hDOZSdTdVq53wGBfL3Vf/JzcMB8qEsOZbK2l7tYN1TqHWV1dpe7OLRru3GJkeOhUWs8y9298Q16kH5V5mXh5GRFCUJCZyvncFO5/+YmiDoy22jtUpNsfebRHdGgwS6OOHaD2+7coT1G+jmxMaBBLQ44d0o7a25QlK19HNjY0iKXBLsd6dXcoS7M/MmqPuPAQFp3Yd8BAbw8RwkRG8slR+uiIcIoTwmm67142zq72NupvfEXDjS9prL2rqmOqpfYulZnK14XOiI9mvKvN4f6exvsUKXDODkiMDGOu3/H9eNloqbtHVbr9SA57lKYl0NV434neXSpV6nU2ONbT0HgWsNlsNFz/gguFmaQlfldfZ6YkcrEwk9pvPne7g15Dw11SUlI4f/780zZD4wng6RHmHeAd4G8Obftfgb8vpbwspfyfD21PEEIUe/j8p6K7s536+3cwmUyn1pJS0lh7l/rbN1haWvKAdae3b3qon7RExw1bb28v9LsbWK1WRXozwwOkJjjX020r14OHo5Fj/ZwpzsPb2wshBHkZqWRHBtD+oFmxzmHm5mYZaLpPdVYilVmJ6Nfm3NZ6lllbWyMYM/5+fif2CSE4k5dGW3OTSx3b6jxCCFXnDrXtsrS0aHefXJ5RrReyt8nysv33xrY4rVovaG+dlZVl+zvduN4gyzarq6tOyyxNjhIf7ThUMDDAn721RdWNvNameqJ0JqpyUqnMSaMgJoR7179WfLx1bR69Xq/qnIbdNfb29k5sl1IiV+dU/36+u2sv3Kjm1tYW6+vrqo/bW5rBYFB+P4QQ2FbnnejNelTPHn3dndR99Ql1X/2SrrZWVcc6YnNz0+nI+dPG0/YNDw0xPPTidt56mtamRs7mZ9ndJ4SgMiuFTg89iy8D6+vrbG1tPW0znktiYmJISUnho48+4qOPPtLWbH5J8KjDLKW0SCkXDv4WQhiBFOBfCyGuCyHOHir+vwL/6PDxQggfIcRfPCz7CyFEkBAiRQjxN4f23/SkzQe0tzwg0mCjMiOR+9e/OrVe/Z1bFMSEUJWZQEftrVPrtTU3EWU8nX06s+uQ3JKsVNpbHijUcx0CVZqdSpsK57SzpZmyvJMfxZDgILaX1TXqDhjp7aai8LvENolxMWwvzbqldRgpJTab7dQ6nqKvo43cNMcjh74+PpjWnHfe2Gw2jHu7qs+dnRjDcF/vie1WqxWvPWWh4Ef04iIYshP2bLFY8Laq18uJi2Sw+6Te3t4ePraTjqBLvYQoBnsdj5JKKdEpuO7cpFj6entUnXt3eZ6I8O/C0X18vAnSWxWFJEopMVrUd7ilRoYwPjZ2Yvv29jZBQv07kJcQrTis/XGxt7eneJqCK8bHRumtu8VYaz193epGz925HwE6m0PbjRb176+/sCruiN3Z2WFzapjqgkyqC7LQrc+zuGi/s0wpI0ODDDTeZeRBLQN96t6HJ8Hw4ACDjfcYbr7PYP/ppxN0tDzAe3Men60Fj3Xe1t+5RcPd2x7RAjCZTB4ZPPAUe5ur+Pg4XkUhMMCf7RX3n8Pm+vu0NjW4ffxhFhfmufP5L7n56c/ZcKMTzR7N9fdpa270iFZfTxdj7Y30NtxlbHTEI5rPKh9//DHddr79GhpqedxzmCOAIuB/AH4T+N8O7XsAhAshUg9t+3vAdSnlVeBPgd9TchIhxO8JIZqEEE0LCwuuD7DD7uY6EeGhCCHw9zp9LjS9tDyq3P299KcOFTJtbxIedmCfe0uzCFzbYDQaseyZPatnUaYHoMPmcLRKr+B89o872aDXi9OHbk1PT1HrwQbKzs4OXU7mArtCJ6TLkT5XL7zZbMZbxejUYaSdSAKTyeSWnhACpH09H4P699OR3u7uLj5G9+yTVseOotVqxaBzPeoaGODPpspRK70d2aiwEJTUfTabDQVmncDX25vtrZN27uzs4Out/n4YDHrF9cwBS0tLDD9M9OMJutvbafNQA3lmcpzS/BwKsjNYXVT3DZI25RE4B/h6GR12kLinZ1A8B3RxcZHYiO86bFLiY5iZnlJ9zsPMz0xTkpdNYU4my/PudYweZ252lsmJcY9oLczOUJyXRVFuFktzp+9s3d5YJS46itioSHY3PeNQWTZXsWyuekQLoKO1mc62Fo/pTU1OMDsz4/bxQkEbSudmGwFgZ2WRzSXPPHujQ8OcKS2gpjjPY3XWzvIiG4tzHtFaXVykIDuT0vwcZqcmPaI5OjzM0ik7zg4zMjTEsoeiM/Py8rSwaY1T87izZK8C/VLKSQAhhEUIcfic/5p9Z/qAPKBSCPHbgBG4A0dqQLtNPSnlj4AfAVRUVLhVY8alpHO36QF+3l7gE+COxBGCImNp7x0gPDiQbYyqQxaPE5ucyt2mVvy8vRB+gW5p2ITr/pHF5VXCIqMU6rl2NOYXlwmPVD7f1MsvkK3tbbthxRYF57OHRRiwWq1HwlDN8vR9RfHxCcTHK58r6ApfX1/yCwrdPt7g7cfurslpL7zVxTPg7e3NjkX9iOHengWD98nn0tfXl+099XrmvT0Mvr4ntvv5+bFptrilZ/Q7qefv78+GSZ3jBmAym/HycZwUzWAwYFZw2WNTsySmq7vne3a6PUZnF6kqqHZ5rF6vx+pGP+nS6jphObkntgcFBTG+pX4UamNrm4DwOFXHhIeHEx7uOjGbUorLlS2XpYSCknLu3r2FXi/ILqlQdazUqa/X1rZ3SQ0OtrtPCvWf9fVdM+kKM+nHx8dzs6WO2Oj970RTzyBV195Wfc7D5BaVcLfuLjqdILfM9XOshOgY5XkTXJFTWMzd+nsIIcivcJ4xXgmJ6Vncb2tFCEjO88zMtPgc978d9qioPuu6kAriE5TnxbCHTcGa8K6+b85ILSxTPVXFEaWVldTfvolOr6f6gmeWIUwtKsNg8Mw69um5+dxvbcJqs1HuoWUSU9LSPKJzQGp6ukd0fvjDH3pER0PjsTrMUsodIcSqECIYsABeUkrLgfMopfz6YSKwg5ZnL1ArpfxzeBTS7QcceCWea+EcIyExkfiEBCwWC0bj6Sul7Lx81hMSWV9f51LZ6Z2qxKRkEhKT9keu3BhhA5C+AUjpfBRyaG6JmteUfShtPv4u9YbnlzlTqrxnr6i0jG9//jdcrSg8otszNEZStntLn1Sdu8Dtrz4nPtSfQH8/BifnyCypdEvrWaaorJy6z3/GmUL7yxVNzMwRm5bpVEMIgdVX3RJUAK3js1R88Kp9vQDX2axP6E0uUflrH3hOb2qJyl89qafT6bD42nc8nNE2uUjV9507CVJBx9vcpokz0co7lAASswuobW2hqjAHnU5HR98QwXHJ6BQ0KAGsbnQITm2ZORN/MjGal5cXu97q9bpmVzlzoUD1cc8q/v7+XHz9LbeOtbnxvpm9Ax1+B2x+buh5BSh2FnQ6HVVX36S+uWE/qeDZK3h7O+6kU0JQUBAXXnPv93sSBAcHe9S+uPgE4jzY2QqQkupZh+VZIyYlg6nZSeJj7Hfoj0xMkZR5slNPKZ7s/Nbr9Zy94tml8zxpX0REBBHXnC+1qKGhcRSPh2QLIT4DXgP+w8OR4v8R+AT4Fvhndg75N8BBV9KPgFcfzmG+DrwmpVwDHggh7gAfetreY7Z7xFk+ICgoiIQEz1VyQgi3nWWAoooaajscz78am54lLFH5R7ewvJq6zn6H+0enZghPUtdLKITgzKtvcb93lIaOXpo6e6nvHcY/McPtHmq9Xs+VN98hPLMIc1AMF978HjGxyrP6Pi/odDoi03PoHzsZYrW4ssqsWUdySqqdI48SEJ/C5ra6uZ22wAiHDW7/hHS2dtTNq5ShMU70MtTrhcQ61POLTWF7V6VeUKRLBzWnpILmXsdJfQbGpohJV78Wc2JSMhWvvEXL5DKNI7OklJ0lt6BI8fHB8WmsritPuGWz2RBBjkfTfaKTMJnVjdKLkOhTR928KESkZbOwonzpvJ1dE77Rjr8r4SlZLK0pD/Pd3tnFP1Z51nSAgIAAai5dpfriFUJD1XdgaWioJSU1jbENM6t2nu2llVUW9vTE2enU09DQ0PAEHneYpZRvSSnjpJRnpJR/JqW8L6W8IKWskVJ+/rDMD6WUnQ///VdSSvHw37tSyt+WUl59+N+nD7f/g4ca/w8p5WVP2/yy4O/vT+6Zy9ztHGBy9ru5Oju7u9R19LHtG05Wbr5ivYCAALKrL3C3c4Cp2e/m7W3v7FDf2c+uf6QqvcN2nr/2BtVvvEfl6+9R88qbJHug9zw8PJzk5JNLYL1IZObkEZCaR/3gFI3dAzR1D1DXO8qiPpCqC5cVaRSWVdA46SCjtB3ax2fJdBJGWVRRRcOM8nm6bZOLZFWec6rXqEKvdWKBrErHURPFldXUjyufK9UyNkt25RmX5UJDQ0ksrORuRz9zi9/pb2xuUdvRh4hIIDU9Q/F5D+Pl5UVlzVmqz10k2EForiPyioppmV5WnFehbmCCkhrHUSIl1WeoG1M+d61pZIa8asf392UjMyePzsUtxfejdmSOkkrHYcFZefm0zW0q1qsfW6CovEpRWQ2Np8m5K9cY3xXUdQ3S1NlDU2cvdd1DzFq9qb54+Wmbp6Gh8QLzuOcwazxjhIWFceHN9xgfG6VxdBQhwMs3gJo333drxCc8POKRXtPYGCDx8g2g+o33tBGkp0R8QuKp5osJIah88wNuf/63XMhMcHofOyfmCMmvIiLS8fJJQggq3vkBdz79a86nRDrXm14itOQ84RGORzSFEJS/8wPufPpfOZ8S5VSvY2qJsLKLrvXe/IA7X/yU8xlxTvXaJ+aJKD5HWJiyubTRMTFEv/U+w4ODND0c+fcNDOGMm++bp6h5431ufvYTLuUkOR0pbxiYIPPsK/j4+Dgso9PpKH71e9z/9pecTXceudE6NkdshXon/0Xnwru/wvWf/hcuZ8U5jISQUnK7b4KqNz9w+excePcHXP/Zf+FyVrxzvf5JKt94us+ihoYaisv3p1MddAhpz66GhsaTQHOYX1KSklNISk55ZvU0ni5BQUFUf+/Xqbv5FYbNZUpT4h6t7SqlpGdilg2DHynll4hVMLcqODiEqg/+DnXXP8e4vkBJQuRRvakFNn2CSTnzGjFxyvQq3/871N34AuP6AqWJkY8cgyN6Z18nJs51mF5ISCiVD6/XuLlEaUrsEb3uiVk2jYGkVl1VpHectIwM0jLcG01+HPj7+3Px/V+n4dY3iI0lipNj8Hk4D9VqtdI6MsWeTxB5l98kJMR1yG1YeDglb/2A2ltf47W9TEny0d+vc2yGbZ8g0s+9RlS055IxvSh4eXlx9Qe/ReOtb7GtzZIXHUpQwH7iw+2dXTqmFiEogrPv/bqi+cLe3t5c/cHfOaQXQlCA/wm9c+/9Ol5eXo/12jQ0Hgeao6yhofEk0RxmDQ0Nu/j6+nLuzffY29ujreE+bOwibTZsegPZl94lJCREvd7bH+7r1d1Dbm6CBJveQM5rv6p61NHPz++RXmvtHdjZ3tczGN3Xe+v9fb26e2DaASQ2vZGcqx+8cKOiRqORs9fexGaz0d7cyN7iJkgJBi+K3/wV1Y5UQEAA597+ALPZTGv9PYTZhJQ2bHojea/9gMBA97L7vyzo9Xpqrr6GlJLezg4G1/bD5r39I6n54A3VDoIjPZ+AKLf0NDQ0NDQ0XlY0h1lDQ8MpRqORCg8tPfFIT+F8aqV6lRevelbPg/Y96+h0OkoqPbOUDzycX33hisf0XjaEEOQWKk/i9qT1NDQ0NF5UZmdn2d3d5aOPPrK7X1vP+eVFc5g1NDQ0NDQ0NDQ0NDQcMDo6+rRN0HiKaA6zhoaGhoaGhoaGhsZLTUzMfo4NeyPMjkadNV4ONIf5JWR5eZn+1kZ0FjPSZgO9gbDEVDJz8p4JPY1ni8XFBQbbW9Db9gCwCT2RyemkZWQ+ZcseD0MDfSyMDKKXFqSUSJ0e34hYCkvL3Zr3OT83x3DnA3RWy8P3w0h0ejYpaerWKH+cWK1WlpaWsFgsREZGnmo9+sG+XhbHBtHZLABInR7/qATyi0u0ebMaGhoaGhoazx2aw/wSsb6+Ttutrwk3WKhKigP8Hu1bWBzi3s/biM4qJiNXmaOrSC+7mIyn7Dhvb2/T3liH3mbeTwql05OYmUdcvPpsxy8TKyvLdN2/RZSPjurEo8sFzS0MUdvXTkx2IakZWU/JQs8yOT7GSEsdGRGBVCWFHdm3ubVG7S/+itDUHHKLShTpLS0u0l17kxhvSVX80czQMxOd3O9sJr6gjOQ05dmzzWYzLbV3sK0uYLA8TKpl8EIGhJFXeVZ1YrLpqSnGejvQ76wTHeyPTuhob9nEbPQjKjWT9Ezl93ZibISx1kYyIgNISzq67NbG1hK1v/grwtPzyS4oVGWjhoaGhoaGhsbTRHOYXxJWV1fp+PaXnMtJsbs/MjSEyNAQRqb76NkzkVtU6kJvhc7rn3IuO9m53lQfPWbXesfp7+1mdW4aAQgvX0qrahyuJ+qM+ts38N5doyoz5cjo1thYF7daG6i88jp+fn5OFJ4/+nu6WRofwmAxgZRY9UaMoVGUVtU4XXP3MIsLCwzWXedcdqrd/dHhYUSHhzE43kufyUx2foFi+3o6O1idmUBvNSMAq86AISiMMhX2Hddbm51EbzEBYBF6jMHhqvTGR4ZZ7X3Auewku/sD/P2oyU5mYn6SjmYzheVVTvXm52YZrbvBuQz7S2TFRoQRGwH9A60Mms2KOpUmx0YZa7xJdUYiutDoI/uklLTf/CW+aQXkFJa41ALobmtBvzxFTUocEPVoe0LsvvbU/CiNc9NUnr/sUmtksJ+toQ7OZttf/zvQ35+abH/GZkfoajWTX1KuyEYNDQ0NDc/R09nB2twkepsFIQQWnZGIhBQysrKftmkaGs80msN8iO3tbXZ2dggLC3smQwcP7AsPD3dd+BitNz7nogNn+TCpMRH0Tw4xExFFrJP1ZltvfM5FB87ycb2+Cdd6BywtLdJ57yZ5CZFkJkcCsLe3R+MXPyUkOZscFaNT9779kqKYIAL8w07sS46LJilWcvOrX3L+rQ9emLVIa69/RaofZKYdHdE0mc1c/9lfcendHygKt+26+y0X89NclstIiKFzpI/F6GgiIiJdlr/7zZfkRAaSc+zZMZv3uP6Lv+XiW++puheP9LKOOroHepfeft/l9e7t7THecp+zea5DpBOjwhmammZibIzEZPvPv5SS7jtfczE3xaVeVkI0bQNtrMbEOV2ma3FhnrnWe5zJsn9OIQTFqfEMTfcz7O1DWlaO0/MO9ffisz5LalKcwzLxURF4r6zS2lBHSVWNw3Imk4mZjgZqcl3/fskxkfRPjDEzHaOoPngZGRkaZG5sEN3eLgBWvRfh8clk5ea7rTc7OvCoQ8lm8CYsLpkshZFEGhoazz9SSm58/gtKk6LJOfYdmVuc5971cc5dffUpWaeh8eyjfjjnEEKIQCFEvRBiUwhR8HDbbSHETSHE/UPbPhZCNAohbgkhvhBC+HvCeE+xurrK3a8+ZbD+Bqv9rdR//Qk9ne2n0hwbGaH+xtc03vyK5vr7SClPad8nDNbfYKWvhdovf0FvV4fi4wf7esmJCFBcPishmrGuNof7B3q7yYsKUqyXnRjNaGery3IWi4Wue9e5WJRJRFjIo+1Go5Hq/EyMq9OMDA4oOufE+BgJvoIAf8ejx0IILhdn03z/jiLNZ5325gaygw1Eh4ee2Oft5cWV/DRqv/7MpU53exvFSVEuyx1QkJrIQNsDl+Ue1N+nMDaE8NCTYcNeXkauluZSd/0rxed1pXelJIfa61+61Gmpu0eVA0fUHunx0Uz2dTrc39HSRHlytMP9xylOS6Cnuc5pmYHmOkpTHTu3j2yLjWS21/G7e8D8UC+pca5tjAgNYXduApvN5rBMa/19qhxEItgjKzGWse7T1a8vKr1dHbA8SXVOKpWFuVQW5lKTl47/7gqtTQ2q9Xo622F5kprctEd61blp+O8u09bc6Ladm5ub1N+9Rf2dW6yurrqto6HhLlar1Wm99LSw2WzU371Nw40vabjxJU11907V/vMU9bdvcDYrmZDgk2236Ihw8qODaGmofQqWaWg8H5zKYQZ2gHeAvzm07RUp5WXgnwD/90Pbf0dKeQm4B7x/yvN6lLZ7NzhXkEFhdgZpyQlUF2Ths7PM2OiIW3qDfb3szQxRlRFPRXoCeWG+3Pnq81Pal0lhdgbpKYnUFGbjtbXI+NioouMXR/qJOuSAKkG/vcLe3p7dfUujg0SEqJsrqd9edah3QEtDHWecjPKlJcQwO9yn6HxTg70kKXAIhBCInbVn4oN2WrbnJgkNCnS4X6fTEW6wsra25lRnfWac4EDlHSwAYmvFZePFtLxAkBNdIQQRPjrFDXDzinM9nU5HuJfO5fVa1xYxGNQF23iZNjCZTHb3bc1O4u/nq0qP9SWHz6DJZMJrx/k1HCbR38C4k7prYnyMhCDl9hWnJ9DW7NhZs60tqg6l12+vuawPnjdGR0YY6O93+3gpJatTI6TEx57YFxcdiXV1HrPZrEpvbWrUod7e8qxb92BqcoLuu99QmRRBZXIEI423GR0eUq1znJHhYQYHlHWIPg2Gh4YYGhz0jNbgAPXXv6Du288ZGlD2TdPYR0rJnW+/ouXmFzy48QX3bnzjEd3NzU22t7dPrXPn6y8oTY6iMjeDytwM8qJDuH/zWw9Y6D5WqxXdzjre3o6jt4KDAtldnn+CVmloPF+cymGWUlqklAvHth18gYMAe8OggcAGgBDiLx6ORt8VQiQJIbyEEJ88HIm+LYTwEUIkCiGuCyHuCCH++DT22mOgv4/85JMjNynxscyMuPfxXhwfJj3xO00fH2/iAozMz6uvjPp7eyhMPRm6mJoQx/SwMvt0ezuqz5sTF8lAX6/H9LLjIhjsd94wkFtrLh0Xb6tJUSNPZ1b+4UuPDmNkeFhx+QOklB7t4T6N3uzsLDH+rkOtc1MS6HUxGqx34/6mRAQzOTnpcP/o6Ahp0SdHvk/Yl5ZMv4LojuGhIdKiT4ban9RLoq/D8YirlBKD1b7j64z85Dh6u+yPMutVPHsHxAR4s7CwYHdfR0szxQpGlw+IjwxjbtSxAzM7PkJCjOvw+QN8vL2xbNp32K1WK1425U7cAZlxEQwpjBY5YGlpkempKdXnehJ0tragX5sheG+d5rr77mm0t1KYbn8OPUBxdpqqUeGO1haKMhxHTpTkpNP2QP0o83hvJ5X5WfudjUJQkpPBzKD9b4VS2h8047U5T6BplZZG59EWSllZWWFpackjWm3NjfhsL+K/u0xLY/2ptHZ2dlge7aMqN53qvAxWxwfZ2to6tY11t29Sf+fWqXUOsFgsWCwWj+ktLS2xvLx8ap3WpkbK0hMpL8ynvDCP/MQoOlpbTqXZ293J0INaeuvvMDTgfqfX/Pw88SF+R6YB+fr6ECAsp3bGO1oeqIosPEx7ywNKslxHAaXHhDM85F7n18LCgsvOaTXs7Ox4pFP1448/5qOPPuKjjz7im28807mi8XJy2hHmEwghIoUQ94A/Bm4f2vVjIUQD+yPSB0/t7z0cjf6XwH8HJAK7D0eiL0kpd4HfB/6llPIC4CuEuGTnnL8nhGgSQjQ5anQ6YnV5kXAHo6964d6oo15aT2xLS4xjzA2nbG1lmVAHo7lK7ZNW9R89Xx9vtrc27e+0nbw+V/j5eLPtolEgcO0sBvp5K2pcCJTfu6CAADbW1Vf0/X29fPuF6xBnxXq9PVz/0r1IhNWVZUKDXI8KCyHQufpt3Bht9/f1ZWtzw+H+1eVlQu2EgtlDyXOwurJMmIIoByGEUz2r1Yr6VHJgNBowmx042lJ9p4e/rzebG/Z/P2m1qk+G5uwddadTxmb/mdjZ2cHHS30qDH9fH7Y3HdQvDmhvqKOz8dkMGdzZWCUhNobIiDBsJvcaxqadHfx8HY/86/V6VXWvaXcbX18fp3rSDYfIwEkbDAreWWfsbq4RFx1FVGQ4lp3TO48ALQ21tNS713lxHPPWBrFRkURHRmDZUffcHmd2dpbkQx1WyTGRzMxMn0rTZrMhdjZge91jnbh1d2/TcP+uR7QAWuprafVAZ4jFbMLvUARPcFAQu9une2bWlxYpys2itCCHpblZt3XGR0dITTw5wBEXGc7c3NxpTGR9boqlqXG3jrXsmRTlLgkLCWZ1xb1OjZa6e7Q0eKazC6D21g2a3Ox8tMfo6Ch373ruedZ4+fB40q+HI87nhBBVwL8A3ni463eklJ1CiF8F/nshxL8A/kgIUQJ4A11SyqGHo8sfA1NCiD8E0oGDbvB6IAM40o0qpfwR8COAiooKVa39uIRkxqeGSDq27AuAxa2mNFh0J4/rHBght/qyaq2Y+EQmpkdJtBNerNg+N7JLr21sERxx8jcBkG5kMl7d2CQk2nmSH6uC/pvVrV3SAh2HHR9gk8ptnFtcJjJFeZbnA7JzcsnOyVV9nEO93Dyy3UzEEx0Ty2xzH0EBzp1mq9UKeucfTinU39+V9U1Csx0nmoqJi2dquJOUhJPhoYex2Wygc10txcbHMznaTbKdcNPD7F+vYz2DwYDFjX6xre0d/APsz/N26/fb2CIq3/6IudHbB5N5GW8VydCknTroNPbZHCRB9PPzY2tX/Qjz6vomwZHq1qG+9Ppbz+ScRYCwmHhqWzrRCQiKUz4f/jAh4REsLi8TEWY/EmNnZxejj/KM/iFhESwtrxDuQG97ZwcvX/XpRPY4WX/sCfe+lQfs/34dCAFhicqXWXPGldfe9IgOQEh07EP7BGGJp1s/PSEhgdqvWrgQvv++94xNUX2t5FSaOp2OgNikR//2BOcvX/WIzgGvvPm2R3SCwsKYW1gkOjICgKnZecIilefcsEdsciq1rZ3YbJKMYvcz+Ofk5dPVfI/C7KPP8OjMPKWX1a0Ucpz47HyMRveSk/oHBrOxuUVggPP3fXJ2nthk99ogr77znlvHOeLqG295ROeHP/whAB999JFH9DReXjw6wiyEMAjxqDW2Btjr9lsBwoASIPrhyPH/sn+48Ab+rZTyh0AkcA4YBCofHlsNeHSSU3xCAsOLa/sN60O09Q2RkV/klmZKXjF1Hb2PGndjUzOYfUMIcOHM2CMxKYmh+ZUT9rX2DpFZUKxIw+bt2sE8Tt/cMhkO1mB1R29gfpW0dOcNIb/wGLa2nYcDW7z8FS0vZfNR3hCcWtsmLk55yOuzSGhoKCsW169z6+AYxZXVTstYvdQvszW1vkNMjP0OFoCYmBhmN1yHerf2DVNc4XzJJoDY2Dhm1l3rtfWPUOxiCSiLG9fbNTFHTp79rMU2H/Xv+ZJ5/x7ao6isnNYx5aMe/ZOzpDmpGzLyi+gddRw+f5zl1XWCHXR26XQ6t36/gbkVl/WBvXOpnWv+pEjPzOLM6+9S9eo75BUqq5ePk5GZRf+k42k7Lf3DFJcpb8xnZufQN+l4VKu1f4Si0jJVNgLkV9Zwq7WH1bV1Nja3uN3STVZppesDnZCRlc2Z179H9avvku3gvVLLQci4J8jMzqXmtXepfvWdU9tnNBrJr7lIff849f3j5Fad98gqDflFxeQXuffsPQk8dT+yc/OZ2bbS2NlLY1cfS3s6VevF2yMxKZmzr77N+dffISbGeSesMwICAtg1+LKw+N0o7fTcPIbg8FPXXSmpacQn2F+m0BW5+QV0j7mOYphd3yU21r3r9+T7pqHxLHLq1ocQ4jP2nd9s4N8DvyuEsAE24B8eKvpjIcQmIIDfBeaAWCHE10D3wzLJwH986HSvAw+AEeBPhRB/ALRLKQ+HeXuEi6+9Tf2dG+j3dtABFp2R5JwiIt3stYyNiyck9E2aHzSBzUpsciYVSY7nprm07/V3HtknpMSq9yIlt5iIiAhFx6cUlDDaU0+KinmLuuBIh5Vfcn4xYz0NJMcq05NSIoIc6x1QWFrGtz//a64UZdrtJW/pHyG9+Iyic2YXl9P14C75Tubwwf4oizFE+e/yLBOZmsX43AhJ0favZ2t7B4t/uMvGWWxGDjMzA8RGup4jDAf313XZsMRUJucWSHBg387uLmbvAMWNx7CEVKbmFoh3oLe9s8OeT6BLPf/oeLa2N9Ul6goMcziSE5WWw/zcAFFhyhLj2Ww29CGO6xqdTocMjNj/nRU0SJZsRnKcLPEVFhZGr0V5w6Z/dokzb192uN8nIpZdkwkfb29FelJKROCzuXTfafBEgzE5v4SW3g5Kc452JnQNjhKTkadaPzm/1KFebGaBW/YGBwdz+d3v09fbg2XPwsV3v++Re/msN7g9NXILEB4eQfilVzym97JR6qLT92lSde4ivd1djPaPI5GExyZQWnw6h/60CCHwi4pjcWWViNAQu2UmZxcIS0x5onZpaDxPnNphllIej5v4Uztlfujg8AsKtm0Cno0NOoZer+fs5Wse1fT19aXqnL3LU89p7YuNi+dmk40km03RR795aJLcS47DYeLiE7jZVEeiCr38K++4LCeE4PI7H3L/+pcEiT0KM1IQQjA5O8/E6japRZVERStbricsLIzJ0BinDprJZKZ+aIYrb7+vSPNZJz07l87tLVoHRijOSD7S+BybmWdiF86/6jrMKSUtnRsdD4iJCFXUgK3rHab0tfddlsvOK6D9QSMr/cMUZKYe0Z6YmWN0bZcLryoPo8zOL6CtqYGVgRHyHz4r7ugVlVVy86f/iUt5rtedBmgbniS7xnGVlJ6VzfXOFiJDgxT9frX941S/+2tOy5RdfIXbv/grLuU473h7MDJNZo3rhnhaUTlt7fUUu+hQGp6aIzLDeYheSWUNt376n7mkYN1ugJahCfIuvOG64EtIQmISAYFB1Lc9QGcxIYTAojOQnldCVJTypcoO6/kHBFLX/gC9xfxQz0hGfhmRkafrKPTkdBQNjReJ/egjz0RKeIqiskqa7t9lbmmE/IzvEoBJKWntHcQYmUChm2u9a2i8DDyb8W0aHuf8W+9z42d/xcWMOIxGx7e9bXSamKIagoOdj46df3tf71JmnNNQo9aRaeJKzhIUpCzhk8Fg4MJrb7O5uUlzRxtISUxCFmdr1M8LLCqvorezg4beYTJiwggL2bdhb2+PtsFxrH7BXHn7/Wd6VEMtBaUVbGbm0NBUv5/tWkqseiNJOcVciFceznXuzfe4/ou/4XJ+qtMQ+OaBcVLKL+DrJFnRYYrKKllbW6O+pQmDdQ+QWHV6EjJyuVidqNi+A4orqlhbW6OhtRm9xfxILzEzj4vVyq5XCEHJlTe5d/MLzuU6zyTaOTpFaHYJYWHhTsudefM9bvzyb7icm+S0U6lxcJKsc9dcjoL7+PhQ8eaH3PzyF+RG+BF9LFHh+uYWrZNLZJ97hahox6HxB8TExrFnLuVeax1V2aknEsJIKXnQN0xAcg452c4dI51OR+HF16i99w1nclKclu0YmSIqv9Jl/fIyExISQs0lz/URh4aGckYbzdTQeOmpOHue1dVV6lqbMcj9hH9WvReF567h768+n4GGxsuE5jC/JBgMBl758DdouPkNtrVpChMiH4WgSinpGJlk1yuQ9MrLRCoYyTiqN0VRYjR+DzOySilpH57E5B1IepUyveMEBARQeeac6uOOk1NQCAWF9Pd0MzK1gLTZ0Hl5U/bae4rmQj+PBAQEUHP5dA1kLy8vrnzwazTc+hbd1ipFKbGPQm5tNhvtw+OYjAFk1VwhLNy583ic4OBgzpzSvuN6p3UwQkPDKLn2LrX3buBr2aEoLeGIo9s/Ps2KzUByQTVxCa4de19fXy5/+Bs03Pwa3eYyxckxj5J22Ww22oYn2fMNJvvi64SGKgt9DwwM5OoPfovhgX4ahnrQW81IacOm9yYgNolLv/K2qs6fxOQUYuMTaG2sx7I6g95m2V/aTG8Av2CKrryNn5+y+ckRkZF4XX2butpb+O5tU5SeeMSWvvEpVm1epBafJeY5zxegoaGh8bwSEhLi0e+vhsbLguYwv0TodDpqrr627yC3NGFeWkfaJFKvJ//qe6p7GE/oLa4j5UO9V9TrPU6y3Mw+/TKj1+s58/D+tjU3sreyCVIidQaKrn4PHx/HS9Y8jwQGBnLuje+xu7tLc0MtOqsZpMQm9GSUXyInXFnOgAMMBgNnr7257yA31WNd30ZKCQYjRW/8AG+Fc36Pk5aZRdopk9wctrHCAx1TAEFBQZx9/V22t7dpaqxDLy1Imw2bzkBmxVVyw5R1DGhoaGhoaGhoPEtoDvNLiBCCorLTZTV9nHoazxZCCEoUZK5+UfDx8aH64hWP6el0OkqrlCWrexHw8/Oj2oMhxRoaGhoaGqdhdnaW3d1dl8tLjY6OkpKS8kRs0ni+8OiyUhoaGhoaGhoaGhoaGs8bKSkpnD9//mmbofEMoo0wa2hoaGhoaGhoaGi8kMTE7CfDdDXCrKHhCM1hfgnZ3d2lraEWncUEEmw6PYlZucSpyKJsT09vNSNt8tR6Gs8Wk+PjTPV1orPtIaUNKQwExiaRV1Tslt7S0iIDrU0YbJb9OcI6A1FpWaSkpbutN9jWfOj5MxCTkUNyqrJljo4zPjrCdH/XwyRYNqTOQFBcCrmFRW7pbW5u0tXcgN629+j9SM0rUrxE2uNmfm6O4c4H6KwWQCLF6X6/sZFhZga60NusD38/IyEJqWTnF3jWcA0NDQ0NDQ2NJ4DmML9EmEwmGm98hZ9lm4r0RHS675YCGht4QG1bI/G5xSQpbCgf6Plbt6lIO6o32t/M/dYGEvJKFOtpPFvMTk8z1HSPBH89lbFHE16tbUxR+7NuQtPzyClU5jivrCzTdfc64fo9qhJjj+ybHmvjXkcjcXllpCpMaLW8tET3/RuE6/eoTIwFvkuiNTXSwv2ORuLyy0hJz1SkNzM1yVDTXZICjFTFHs38vbI+zv2fdhCeWUh2gTLHeWNjg7a71wnCTGVqAkJ8l3F6qLOWoQeQUlRBrMqOJSklrY11WLY2kNIGRh9Kqs+6XJrqOAvzc/TW3yHGW1IVf3QpqunxDu53NhOXV6L495scH2WstY7kQC+qYo8m+FpeHeH+z9qJzComM09b69MZUkq6O9rZWV9FSomXXwBFZeVuL38npaSrvY3djTWP6GloaGhoaLxsaA7zS8L29jZ1n/2EywXpdhtKybFRJAN9Q+0MmnbJyHGeVXpra4uGL37Gpfw0u3opcdGkAL2DbYr0jjM5Mc706BACgU9AMAUlJadu4FksFqxWq9vZiZ8XFhcXGWx/gN5iQgAWnYGolAzSMpQ5PgBTE+PMt97nTJr9JYCCAwOoDgxgYn6YjiYThS6Sgi3MzzF072vOZth3DuMiwoiLgIGhNvrNJrLyC0+lFx8ZTnwk9Pe30L+761JvYnSEpY5azjq43tCgAGqCAhibHaDTbKLARZK71dUVOp2s65yeEEM60NFRj9lkIlnh6Hpr/X12pkcpSo7BN3o/C73VaqXti79lzz+MmquvKXpPZqYmmWy6zbkM+0tkHdyP/sE2Bkxml07u2PAga92NnEmNtbs/LCiQmqBARqZ66DLtkF9a4dLGl5HO1mY2psfIS4wmKCEEgJ3dXeo//wne4XGUVqtLHtfR0sTmzPgRve2dHbf1NDQ0NDQ0Xka0pF8vCQ1ff+rQWT5MdmIMO6M9LCzMOy3X+M2nDp3lw+QkxbI90s3i4oIiOzc2Nrj92c+wTfZRmRhGRWIoKV671H72twz19ynSOE5/Tze1X39G+/XP6L/3DbVf/oL6u7f3l/h5wWhrrGe+9R7VyRFUpMdTnh5PdWo0fstj3Pzs54qu2WKxMFR3g+JU1+vlJkaF47sywdjIkMMyUkq6bn9JlQPn9jCZ8ZGYRjtZmHf8/Ekp6bz5hSK9rIQodkec6+3t7THacIuiFNfXmxwdjtfCKBNjo07LtV537CwfpjA1nrnORjY3N12WbbxzgzjrGtXZyfj6fNfpo9frKctIojjMyM1PfupSx2q10l97nXIHzvJhshKi2R7pdPr+mkwmph7coyDZvrN8mNSYCHSzQ0xPTbos+7LxoO4+4Xvr1OSlExQY8Gi7r48P1XkZJPtYqb35rSq9SOvmCT0/X1+q8zJI8rZQd+u6R69BQ0Pj2UdKSU93FwP9/S9kO0hD43HwWB1mIUSgEKJeCLEphCg4tD1JCGE62CaE+FgIcfPQ/n8khFDmYXmIoYF+6m9+Q8ONr6m/dxubzfYkT++Sw/Y13L+jyr6xkWEyw/wUj9AWpMYz1NHicP/o8BBZ4QGK9QrTEhhsf+CynM1mo/HbT7mQl0pibNSj7QH+fpzJz2RvZsilo3KcztYWfLaWqMlLpzQ/m4LsDGoKsimKDeHmF5+o0nrWGejpJmxvjdzUk45QdHgY1SlR1N38xqVOS909qhU4UwekxUYy3dflcH/HgybKEyMV6+UnxTLU1uRwf3tzA5Upyuf/FiTHMtjqWK+l9i41WcqvNyMukqneDof7ezraKVZxvRVZyXQ21TktMzszTcjuMhEhQQ7L+Hh7UxYTSHtzo1Ot1oZaqhV0NhxQmBLHQKtjzZb7t6nKVP77ZSdEM9bpuH55GZmfn8PftEJMpOO1qkODA0nyg+HBAZd6c3Oz+O+uEB0R6rBMWEgQCT42RoYGVds7NzdL/e0bNNy5wdSk1vmh8WSRUtLV2UFPd5fm8Kmkq62V+q8/Ic5gJsyyRt1XnzDQ1/O0zdLQeOZ53CPMO8A7wN8c2/6PgXvHtvkIIQ5aweeAicds2yN6OtsxrM1RlZ1MZU4KZUmR3Pzil6fS7O3qoPbLX9Dw1S+4/dVnp6rUu9vbMK5/Z19JQji3vvxU8fEzgz3ERYW7LngI3eYKVqvV7r7ZoV5inTTs7CE2V1w6+S2NdZzLy3C4Pzs5nsl+x47ZcaxWK5uz40ec7wN8fLwpTIykv/fF+VAsjg2SEB3hcL+PtzfG7TX29vac6uwtz2I0qput4WPeYGtry+6+rdkx/P187e5zhNhYcvj8bc9N4Ofro0pPt+VYz7Iyh16vV6XntbvG7u6u3X1r06OEBAXY3WcPIQRyfclpHTHa2Ub6sXnG9gj092NrznnVaVqcwctoVGwfABvLDt9f29oCOp26T4l+a9nlc/i8MT4+xtCgeucTYKizjaxk150YcVERzI26dpiHu9rISnGtFx8dyeyIa73DDPR2s9zXRlVaDJWpMWyP9dDd3qZKwx5jY6MMDzmOVHnajI6OMDIy7BGt3d1d6u7cpO72TXZ2djyi+bKwsrLCrc9+TpIfxBot3PjkZ2xsbDxts45w78Y3NH7zKQ1ff0rdnVtP25xHjAwP4b+3QXVhDkGBAYSFhlBTlIN5fpL5+bmnbZ6GxjPNY3WYpZQWKeWRkWIhRCoggfFjxX8KvC+ESAImAdvD8olCiOtCiDtCiD9+HHauTk+QdKgxajAYyI2PYtiNnneApaUlrEtT1BRmU1mQTXVWIg33brtt39rsBIlx39lnNBrJjgtnVOHHW2faVn3O7PhIBhyEQLujlxUbzuBAv9My1o1VvLycN+S9LLuKG9rtDx5Qmu044Vh4aCgrMy/G6Mj29jb+uP5dSjKTaWtucLhfSonBrL4BV5SaQHd7q919ul37jrQzsmPDGOjr9ZheZlQoQ3ZG5qxWK94W+46vM4pS4uhydL1uvB9R/kaWl5cd7teZlDcIjaYtLBaLw/0Gs3r7MqJCGBk+Wd/s7OwQIByfyxGFybF0d7SrOkZK6dHRJE/qtT9ohqUpAnZXaLx/V/Xxap4ZvYL3U2dS/g7r99Q9D4tjQ+SkJT36OyM5gbXpUVUax2ltakC/OoPv9hLN9fdPpXXA7u6ux5zRlsZ6DGuzeG8s8KCh9tR6td9+SVVGPFWZ8dRd/9IDFu7/hq1Njuv2p83Ozo7DTkY19LQ2c6miiAB/f4KDArlSVUzXA+dRNa6YmZ7m7pefcPuLX7K4uHgqrZbGBoqTY6kozKOyKI/MyGC6PNChNDV5eqd2bmyYZDsdr3kZKQz3KB+MsMf29jYmk+lUGo+Djz/+mI8++ojR0dGnbYrGc87TmMP8j4F/ZWf718A14AfATw5t/33gX0opLwC+QohLxw8UQvyeEKJJCNG0sKA+ktsgTo6cxERFsORm5TQ2MkxWynchil5eXuis7o+mGDhpX2xUJAtzM4qOF3aOd0WAny9bDnpt3dEL9Pdjc33daRkh7Y8AHibY30fRfE8Ai3nXZeZgHe43mDvb2/j0Z3/r9vHHmZ2dpe6e+sY2wNraGmGB/i7L6fV6pBNnand3Fx8v9bkAhRDgYARSSPeev80N+8+LO3qB/r5srK2d2L61tYW/j8rRVkCn0zn8Hd2yz8+X9fWT9j3StLl+Nx5p+Xg7HO3f29vDqFdf7e+/vyft29zcJNBHfRI9by8vzCqcOoD7t2/y5S9/rvpcT0LPtLlKYlwMUZHh4EaHk04or4eUPF86O980h3o2dXWggZPPor1tajBvrhMfE01MVAS2HfUdOva4e/0b7nzjGWfUsr1BfEw0sdGRWLaUfX+cEeCtRwiBEAJ/L3XRLfaQUrKzOMPOorI2gRLaHjTT3up6KpVS7nzzFXevf31qHaOdZ9twiu84wOToMOfKCrlQXsTwgP2OWqVYTDv4+3+3IkJYaDBbDr5lahjqaqW3tflUGnonbTdn+5Rw+6svuHvd9ZQvpfT39jA747nnOSUlhfPnz3tMT+Pl44lmyRZCpANIKUftzH81A1vAu8D/fmh7OnDQfVgPZABHYlyklD8CfgRQUVGhuua02Ok3mJ6bJyrWdRIge6SmZ9DbVkdB1v7o5s7OLhjVhZAete/kB3VyZpaYuGRlAkL9B3lja5uAoHiP6a1vbhEY4txem4L+m7WtXVICAxWd0+jjy+6uCR8nDXrbKTJvFxQVU+DmWsT2iImJISbGdditPUJCQhjY2MJV1K7FYkHnJBzXx8eHXbP6EUObzQY6B7o6956/wDAHSaRUhv8CrG9tExR5MkTV39+fzV2zaj2r1YrO4CDM3I3rXd/aJiw4xOF+m1B+zes7u2QE2A8JNxqN7LmRn2F9c4vA2JPvb2BgINM76keNdk1mvH0cz8e2x7lLV1Sf50np+QVHMDAyhpfRiM7XdcfVcaSKekhJnSVV9IXbVFaBFnGy2WBvmxp8g8MYHB1Hr9Nh8FdWv7vi0quve0QHwDswlMHRcXRC4BUYfGq9DZPl0RSHDZP6+vY4Qgj8oxI8ulRYcVm5x7QArrzxlkd0jreHpJTscbrrTs7I5F5LIzYpKag8dyotL98A1jc2CHrYTllYXCYwJORUmgDZJZUYDKd7zyxOfifrKcfPrr71juqpOc7Iysn1iM4Pf/hDj+hoaDzpZaWKgXwhxBdAIZAhhDjcavkToExKaTlU8Q8ClcAXQDXwY08bFRafzPDEFGmJ+w6iyWSmf2aFKyXuVZyhoaEsxiRT39mPXicwCS/OXX3VbftC45MYmZgmNXHfgd/dNTE0v87lsiQXR+5jMaqbPwrQO7VA1btXPabXP7NMVcU1p2W8QiLYNZnwcbLs057RT/FHo6i0jIavPqG6MNvu/vnFZcKVdjo84/j6+rKtc70Ob8vAGGVvfOBwvxACi5f6Bn/7yBSFr3/f7j6rj/L5vAf0za5QVWP/vrlj38D8KlVnTi6rpdfrMbvxPLeNTlP01q/Z3Wf18rO73RkL21YywhznBZC+yp1Li2+g0znZVm/1v9/w4jrV505Ob/Dx8WFbqB9h7pyYo8xB/fI8kl9czMLCAnt7e5THqe9otam4J0rKqnkG1ZwbICo1k/b+QYoedgj3DI8Sluh46osSCkvLmJ+fx2q1khbrOtu6Eoxq5+k7oaisnLm5OaSUpLvZqXmYC6+9TVNDLUi4+Po7HrBw38ZnGU/dj/yySm7euU5+Sjw2Kekem6bmymun0oyKiibqNc/ch+Lycmpv3cCwN4VEIvyCqDx7+nsTHa080aUj4lIzGZ4Ye9TWPaCzf5jMgtMt9ecqmu9FYHZ29tG0gpSUlKdrjMYT57E7zEKIz4ASIBv4dw9DqxFCfAz8Kynl3oFzLKW8DRyf7PtHwJ8KIf4AaH9YxqNk5xUwNjpCQ/8wQkp0vv5cfuPtU2lm5uSRqXLtYUfk5BcesU/vF8Cl15X31ibkFDAx2kGik4RQx5EBoQ57C+Oz85kc6yAhWnkmYGd6BxSXV3L95/+VqyU5dnvKu0cmSMopUXxOnU5HcHwKI5PTpCYcbcRubm3RN7/KxVdfnHVIo1KzGJsZIdlOkjOAre0dZGC4yw4Hr4gYzHtmVYmhTD6B+PjYj6IIjEthY2uWQH8VjmRQhMPnJTA+hc3tBQLUJBILdKxnCI1mb8+iKtHZnm+wwwZCaGIqy6vThDnJaH0YKSUEOk+il1ZYxkDbHTITnDsTq+ubdkeCD+MTEY/JvI23mgZOUITD0St9aDRWq1VV4jSrX+ipR0ueNSIjldeHx8ksLKOn7T65ac47QSdm5olNs9+RdESvqJSe9jqXeuPTc8Sl56iyNT0zm5WIKBo620BCWm7Fqa79gKgo+/XWs4InHJYDjEYj1ecuekzvZSIoKIgrb7/P0NAger2eq29XPW2TTnDGw9EwniI5JZXerU3q2ntJjg7DYrExtbxGdFo24eHqEsO+zGjh3S8n4kVLyV9RUSGbmhwvIfOycuPnf82lbGUhW21DEyRWXyE83LGDffPnf81FhXqtQxMk17xCmJMRtAO2t7dpuvk1cYFepD8cUV9eXadvaoH4vGKSU9NdahxneHCAudFBDBYTQgj20OEVEk559VnVWs86nS3NWOZGKcpIOXJvJmbnGduyceE11x0tVquVuz/5Sy7kpig65+D0PL7ZFSQm2y8vpeTm3/w5l3KURUR0jM2QcOZVh8+flJIbf/PnXFao1z46TdK51wkLs98gsFgs3P/JX3Be4fX2Tc4RVHCG+ETH57/5s//CJYV6dT0jlLz+Pr6+zjsAHty/Q4x1nZjwELv7N7e2aV3Y4eJb33OqY7PZuP2Tv+SiQvvaRqZIOfc6oaH2lygym800/uI/cyZbWbRGz8Qs4aUXiXFzysuLSntzA2HWDeKj7D/3C8srjG0LKs+fSONhl7ameiLkFnGR9p/7heVVxncEFZrjpqHxUiGlZGJiAoPBQJwbETHPCxUVFXjSH/joo4+O/P8xaHpuToWGx3kaSb80ngJn3/geN7qGXS7t1D02TXBWsVNnGeCMQr2u0SlCsooVOcsAfn5+XHzrPYKyy2icXKVpcpVFrzDOvv2hW84yQFpGJmeuvUnlG+9T/tr3OPP6uy+kswxQUFpO2tlXaZhcpWl4mqbhaepH59El5SlylmE/TDn73DWah1xnEB+ZXcQSlerQWYb9MO+SV97hfr/rleJ6JmYJyCxx+vwJISi5+jb3+48n2rejNzlLYFapQ2cZ9rPiZ5x9hQfDUy71hqbnIT7LqbMMUP7K29zuGnaZhbl1aILEsrMunWWAsrMXWPaPorZvnPXN75J6mc17NPSP0rutc+ksw37kRd6FV2kYUPD7jc8SnFXi0FmG/VC85KpLtI1Mu9QbnF7AkJSnOct2KCqvYtMvkrqeYRaXVx9tX1vfoL5nmDn8FTvLAMUV1ax7h1PXM8zSyncJ277T89OcZQ2NlxAhBElJSS+0s6yh4Wm0EeaXCIvFQv2NrzDurFGanngkJHJgYoalPR1JBaUunYED9vb2aLj5tV29/vFpli16kgvLiEtIdKKi8ayyMD9PX/1tor0k6fFHwxEXVtYYWtkiMqOQzLx8RXrr6+u03/6GQNs2BSnxR0bAR2cXmN2FxMIKElNSVekF2XbIT4k7oTdnFiQWVJDgxJk/zPzcLP0Nd4jxkqTFHQ0PnVtaZWRtl6jsIjIUTrXY2dnhwe1v8dnboiQ98UhIeM/oFGsYSS+pIipa3ZxIKSVdba3srO6v3Wzw9ae4slr1WtLLS0t0194kVLdHbvLROW3790OSWFBGYrKy+zE7M81g411ifSD12LSA2aUVRtdNxOSUkJalLgT4ZWSgr5e1xXmklASEhJFbUHhKvR7WFhc8pqehoaHxrKONMGt4Es1hfgmxWCy0NtTB3i7SZsUm9KQXFBMR4d48tH292od6tlPraTxbzM/NMdLZgs66h5T72bDDk9NJz3I9l9IeGxsbdDfVobftgZTYdAYScwqIjXOQlV2FnrTZkHrjqfTmZmcY7Wrdv16bDfRGIlIyScvMckvPbDbTWn8fnW0PaZPYdHqyi8sJ8UDmVE+wurpK74OG/d9PSqTeQFJOodu/38z0FOPd7Q+v1wZ6LyLTMklNP5l0TUNDQ0ND43GgOcwanuTFyrqioQiDwUDFWc8lLNjXu+AxPY1ni6joaKKi3/CYXmBgINVX3M8a/7j1omNiiY7xTKZe2A9Zrrpw2WN6niYkJISaq6fLMnuY2Lh4t51tDQ0NDQ0NDY1nDW0Os4aGhoaGhoaGhoaGhoaGHTSHWUNDQ0NDQ0NDQ0NDQ0PDDlpItoaGhiKklEgpXa6nrfF8sbiwwFBbE3qreX8OuMGL2Kx8p5nPnySz09N8+fGfszo5jbTZCIyO5NJv/hoZ2e7NoZ+dmuLbP/tL1h/q+UdHcuE3f420LPfmqGtoaGhoaGi82GgOs4aGhkO2trZob6xFbK1hkBaQYBU6pF8QyTmFxL6gy1IMDfSzsjCPlDZ8/AMpKC5RtOb488TC/Bx9tTeJFGYq46MAn0f7Jntqud9SS1xBOSkZ6h3Jwf4+VhcXkNKGb0AQ+UXFqn+/qbEx/vwP/zmDn3yJYXntyL77//qPSX79Cj/4g39MXmmJIr3J0VH+6//0/2Lss6/wXjmq9+B/+3fEvXaF9/7pPyKnpFiVnRoaGhoaGhovNprDfIjNzU12d3cJCwt7JkfRnnX7NF4shgf6WexrozonDSFOrqM92PeA5tFhylUmkFtYWGCwqw29xYwQYBUGopLTSEvPcMvO+fl5hns60FvMSGnDKgxEp6S7pdff08XyxAipUaGkJe2v3by1vU3dFz/HJzya0qozbtn4rDEzNclU3becTbG/pFVCZBgJQH9PIwNmM5l5BYp0ezs7WJkaIT0mgvSHv9/G5hZ1X/4C3/AYSiqrFekM9fby//mV/wZzZ5/dj5Rxa5vpn3zK/7fxAb/7F/8HFRedJx0c6u3l//ervw3d/Xjb2e+9uc3STz7lPzS28Hf+7EeUXvBcUkS1zExPM9rTjsFqRtokVoMX8Zm5JLk54j89NcVYb4fH9DQ0NDQ0NF42NIcZ6OloZ21mnCCjwNfbm6G1TSzeflRfvHpkbWE1bG1t0d3ShJCSyIQkklPT3Lavu72NtZlxgr10+Hh5MbS+hdUngKoLl922b3Nzk+62FgSS6ISkUzeePK2n8XSZHB9jd7yXytx0h2UykuKYX1qlrbGeYoWOUEtDLb67a9RkJB/ZPrc4y80vern0+tuqRiIf1N/Hz7ROdfpRvdmFGdV6na0PCNxbpzrv6DX7+/lRU5jN6to69258zTk3MnKvrq7S39WBAOJT0oiLf3pZpC0WC4N3vuRcZoLLsllxEXQPtjAXFu4yc3j7gyZCbdtk5x9dPiowwJ+agiyWV9aovfUtZy694lRnb2+Pf/Pb/yfMnX0u7bNNzPAnv/P3ib/9JbEOflOz2cx/+Lu/B939LvX0E9P85d/7h8Td/ILoWM9lSldKw50bhNu2qUk5eu7JyT7u9vdw/tU3VenV375OhNzxmJ6GhoaGhsbLyGNxmIUQgcA3QD5QI6XsFEL8n4Hffljkn0spfymE+Phhma2H2/+elHLwcdjkiLamBiLFLjm53zm0KYlgs9m4/slPufruh+j1elWaLbV3EUuTlKUmIIRgeryT662NnH/7A7y8vNRpNdQSY7CQe6gRnwpYrVZufvozrr77oerR5gf19zFsrVCRmbpv39w4NzpbOf/a2xiNRlVa9vSmZse50dnG+dfecksP9kM6l6bGEUiEjz/l1We0UfUnyERPGzUZrh2qqPAQxnqGsVorXL4n3e1tRBssxKYln9gXHRFOSGAg9298w7mryhzS7vY2Yr1sxMSf1IuJjCA0KIjam99y9so1l1pra2tYl6ZJynbcQRASHESmxUpPZwe5BYWKbARouHOLALlNZVoKAONT/dzseMDF1952+5nu7epkbX4aAej9AymrrFHcMfDg/m2qU5U7g3nxUdS3NRId8z2HZZaXl9Gtz5OQkeqwTFhoMKlWC/29PWTl5Dos9+mf/QXbja3oFC5JaRse57P/8Cf8tx/9M7v7P/vTP8fS1IZO4e+jGxrji//wJ/zdP/wfFZUH6O5oZ2NpDgEYA0IorahUfOwBbU31pPlBeMjJe5MQE0nI1jYNd25QdeGKMr3GejICdIQFe0bvcdLZ1srWygJCCLwDQykuK3/aJh2ho7WFnbUlAHyCwigqLXvKFmloaGhoPEkelweyA7wD/M2hbf8AOAtcA/7poe2/I6W8/PC/J+osm81mLMszxEZFnNin0+m4XJzNg4ZaVZoDvd1E7q1QlJb4qAEbFxnOpax46r/5TJWWyWTCtjJPTGT4iX16vZ6LhZm0NNap0uzv7SbWy0ZhVtp39kVHcrEwk/qb36jSAujv6SbOWx7Ri4+J5GJhBvW3vlWtB9DR0ozv5gJVWUlUZiVTFBPEzc9/6ZbWy8pAbw91X39Kwzef0nDvjqpj5+fniPBSXjWUZCTS0uD6OVybGbf7rh3g7e2Fn22X3d1dReddmxm3+24c1vOx7GAymVxq9bQ2U5jlOgokMjyUtbkpRfYBdLQ8ID3Em9yHzjJAUlwMZ7OTqbt9XbHOYR7U3yfUskZVZiKVmYnkhHpz5+vPFR9vWZrGYFDXCahbW8RisTjc39/RSr4TZ/mA6IhwlqfHnZZp+uufKnaWD2j9219gtVrt7mv7258rdpYP6PrpLx3qHaep9h5RejNVOalU5qSSEerF3etfqzofwPbcBOEhwQ73B/j7wfqSYru25yYICw5yqifXFrHZbKpt7Wx9QN2Xv6Th609obapXffxhGu7dJs7buv/7ZaeQEqjj/k33vh2Pg/o7t4j3sVGZnUJldgpJ/oLaW+69uwd0tDyg/utPqf/6U9ofNHnI0peHtuYmGm58Rf2NL+lsa/WIXv23n1P/7ece0XvWaW1spPHm1zTc+Jru9ranbY6GxnPBY3GYpZQWKeXCsc2DgC8QCCw5OlYIkSiEuC6EuCOE+OOH294XQjQKIW4KIf6+p+xsa2qg2Ekj2WAwYNtcc7jfHkujg8RFnJzvKYTA37Kt2Bk4sK8kx/GIl9FoxLK+qsq+5Wn7ToZOp8OPPcxmsyq9lZkJou1cr06nw9dmUq0npWRrfoq46MhH27y8vMhLiGR4yP3+lK3NTW5+8Sl1179ieHDAbZ3ngcXFRczzE1TnZ1KZl0lGqC8dLQ8UHz/a101GkvJkXkajEduW8/dkenqauFB/l1pFWWm0Nze6LDc1NUl8WIDLcsXZabQ1N7gsJ8zbikdo9Xs7ip2MrcVZwkJPOkFGoxHdzgZSSkU6B1gsFiwr80SFf/fO+fn6khjkzczMtMvjzWYzvnvK66ADihIj6XLSsBKmLYf7jqMzbzvct7Ozw3it6/t1nO3OXloaTh63vb3NbJ3r5+k45vYeOh64fmfMZjNie5XwsJBH2wL8/Yny07O4uKj4fH093eTERbosV5yWSJuC96O3u4vcBNd6JelJtDWrc9jGRkfw312hOi+dypw0IjEx2N+rSuOAnZ0dvMxbhB7qKAgKDCTEIFldXXVLE2B+bpZ7X33K/a8/Y2ZKeQfXcba2tvCx7hyxLzgokEBhYX193S3NkaFBgq1bVOVnUpWfSajceeG/STNTU9z/+jPuffUp83Ozp9Ia7O8j3MtGZUE2VQU5BNh2GB0ZPpVehNFKVUE2VQXZBFi3GBsdOZWNU5OT3PvqU+58+QkLC/On0vI0A709RPsbqCzMo6ooD1/rLpPjzjsxXTE5Psb9r/evd0lFvaeh8TzxJOcwfwF0A3rgh4e2/1gIcdDaegf4feBfSim/EEL8WAhxCfg++yPRnUIIjzn50rrnMoxUJ9X1vutsew73xYcFMTs7S0pKiiItYbO6DNkUUtlowwF6Jw39mLAQ5ufnSUhwHYp7gM7meNQpOjSYpaUlYlXMBTSbzfgZT96T6IhwmsZm3U4M1dPVyeWaCgCauvpJy8h0ccTzy/DAABWH5vSGhgQxNOzamTpAqHTiAHDhQM7PzpAX6Xh0+QCdTqfomZ6bmaEoyrVDoNPpEAqcWx3Kr9nfx5udnR38/V13AOhxfC1+XgZMJhM+Pj4OyxxnYWGBuPCQE9tTEuJoHB0mNtZ5R8fGxgaBPuqmhQB4e3lh3t1xuF/N72fU6bBYLHbzL2xsbCA3HZ/HoSaC1cWT/bDr6+uILXf0YGXOdUN3YmKClLjoE9szU5JoHBggIsL1Mw+wvrpCVlSgy3JeXkas5g2X5TbWVslWqGcxbSqy8YC5qUkqk76r0+OiI2gam4OsHFU6ACPDw2Qkn5x7npOeTHNfL5XVNao1AcaHBjlXVgRAU/+Iw/ntrhgaHCArJfHE9tyMFFr7eimvrFKtuTg3S0XKd89MQmw0jSOzL/Q3aWpshLOl+9NYmvoHiYq2n2xQCStLC1RkfHdPkhPiaBqaJMXNPDEriwukp39XbybHx9I0PE1yiuuIGUdMH77egX4iI6Pc1vI0aytLZGZ9d22pSQk0DYyTkJTktubsxBhnSx++bwN9hCus954EH3/8MaOjo6fWOX/+6SWC1Hg2eCKTQoUQQcDvAZlADvAvxHfDOYdDsjeBdOCgC70eyAD+OfAPhRB/Bpz4Qgkhfk8I0SSEaFpYOD6w7RgpdC5HeGwqQ/mswrEDPre6SWSk60b+o3MjXNonVfYfWJ1cz8LqOuHhjkNc7WFzcv7FtQ1CQ0NV6Xl5ebFtPumEr6yuERiiTuswGVnZ3KxtoK65hYBT6DwPJCQnMTQ++ejvre1t9F7KnTLpzvJJLo4Ji4hgcXnV9bmlRDp5h47qrSjUc/2OSBUhwNsmE76+vorKWqVj3W2zBW9vezmbHRMeHs7cysmRranZeWLiXHd0+fv7s2VSF/UBYLFYMRgdO9pq6iGLTTpMVujv74/OT9lvexgrkkA74cz+/v5IX+XP/iMbgQAFdVdcXBwTsye/OaMT0ySmnJxb7whff3+2d1w79larFaEg0aOPr58KPXXh+aERkczMfzeKtLS6hn9wiCqNAxISExmdPDniODw+SUqa4+gqV8QkJHKvqZX7zW1EuuhEckZScgojkyc7G4dOYV9QaBjzS8uP/l5YXiFI5XfyeSMqLp77zW3ca2olJuFkB4QaAoJCWFz6ru6fnV8gJMx9B80/KIilQ9+m2YVFQsJP5/BFxMRxv7mNu02txCWlnErL0/gFBLFyKHpjenaOcBXtUnuERcVQ29zGnYYW4p+x6/UEo6Oj3L1792mbofGUeVIjzDZgFzCx3xbxBoct1EGgkv0R6Wrgx8CElPLvCyHigT8Hrh4+QEr5I+BHABUVFYqHOgpKK+isv0lhpv2eRJvNBj6ue+kPExSXzPLaHGHBJ49bw0vRqNQBeSVldDXepsCJfcLP8Rw1ewRExLKyuk5oyMnjNmw6xY7AAf7hsayubRBy7HqllGxKvarRM9gPXTeGRLC8svYolFVKyYOhca597weqtA4TEhrK5TffRUr5wq2ne5y4uHg65+ep7+hFrxOYdN6KE2kBxKWkMz7WRVLsyZEze1itVqS38+c6KSmZ2p42YqOdf5i7h8bIKTvn8pwpKanU9nUQ7WLUumtwlNwK50sOAViNyp/TPZ234mRdxuAwtra38ffzO7JdSonF6Kv6WfTy8mLPO4CNzS0CA/Z/c6vVSv/sClcrLrk83sfHh22dOicdoGNijoJ3HWe3thqUa1qNjsv6+/sTXVbE+m11uRkMmWmUVp/M1B4QEEBEaRGme+rCvHXZaZRUuU7c5evry7YwHrnHe3t7jC1tcLlSuaOWX1hM/ad/S3Wu81GytsFxiq6961KvoLhEkV7rwBjFr72n2E6AzOwcHtQtM9HZv99P5h9K1QX3llsLCgpi1SLY2dnF92HHhtlsZmpth4xTNOITkpKJT9wfMTtNfR8SEkKHycburgkfn/3n1mQyMbthIktl5/IB2bl5NNfdY3SmF4FABIRQeVbZKgPPK0kpqSQ+XDnjtN/f3PwCGmvvMjI1i5QSQ2AI5dXZbuvlFRTRcO8Ow1MzSLlfZ5cVuK8HkJqeTkra/rv3rLU38gqLaLh3GzE+iZTgFRhKSb57kXsHpGVmkfowQuJZu94f/vCHp9b46KOPTq2h8fzz2BxmIcRnQAmQDfw79hOA1bIfkv1vpZS2hy/W4ZDs/xvwR8CfCiH+AGiXUt4WQvyREOIMEAD8K0/Z6O/vz65XgF0HUkrJ7dYezr2prjGRX1xK7bdfErU1T2rcfhjO5tY2jaNzVL2hTiswMJAtvS+ra+uEBJ+071ZLNxfe/kCVZkFxCfdvfkPs5iYpCfsNuo3NLZr6R6m6+oYqLYCCkn29uM1NkuNjj+hVv+LekiXlNefobG1hsHcEwf66oRffcJyhVw3PWmX+uCgoKQVK3To2ITGJ2s4WkhRG0rcNjlOqoBHvFxHjsLMG9h2/ZZOkIEhZJ5BveLRLvRUzFAa67vTKyC+mr6eZbDsZvA+zsbmFX5iyjgSA8uqz3P7qM9LCAoiP2XcAVlbXaBme4sIbrn8ze9RcukprUwOmyVEEEpuXL5feVK4lQqOxKZjucRizX6jT0fDU3AKGhrtIT3Ie+rq6tk5AhPMHq+z773Hjdi1Cxah/0Qfv2F2BQAhBwQfv0nS3XtW7n/f+u4oz/J+9fI0HDXXsbc0gAGn05eJr6uo+IQT6kEg2t7b3k3vZwWzeY9fLX9FKCwd6W9s7+DsYsTeb9zB5B7i1kkFZzVnVxzji3JVrNNfXYt2e3L9H3n5c9MByV56q689ffY3m+vvYdjb3O1x9/LlwTf238jDlNa47BV80PPntrTzj2fDYqnOuO1XV8iy3NarOXfS45rN8vRoankCoTTrzrFNRUSGbmtQlMWlpqGV3aY6cxBj8fH3oG51k3aaj5MxFAgJcJxayx8z0FBN93Qhs+IREUFBS5naF8qD+PqblOXISY/Hz9aF3dIINm57Ss5dUjVgfZnpqisnhfgTgExhCQXHJqSq8w3q+QaHkFxVrFehzzPBAH3JmmLR4587h2sYmA5s2Ks9fVqRbe+tbkgONxB6bf7y9s0NtzwiX33pP1drizvTudw9z5e33Fes1190jwZcjCbUOs7trom5ggisqnNMDxsdGmR0fQQCB4ZHk5BWo1vAUu7u7tPz8L6lWsGwYwNDsIj4F5x6NEDmi8d4dUgINRBxKgHWY7Z0dmoZnuPT62051tre3+R8qzmPrUZbkT8ZE8Y9vf05apv05oFtbW/xh1QX0fcoSA1liI/m/3vyC5HT3Q4Ld5c5Xn5IT6nviN1zf2KRpfIGr736oql69/eUn5Ib5eUxPQ0ND43mhoqICtf6APY6PMHtyxPlA6+H/tcr4GUZzmB8ipWSgv5+d7S3SM7PcdpQfF1JK+vv62N3Zfibt03jx6Glvg4UxclLsO1ZzS8sMb9o4e/U1VbpDA/3Mj4+gt5oRAqzCgG9oFEVl7nUqDQ30szAxis5iAiRWYcAvPJqiUvV67Q8a2Z6fpig96VGIqNVqpbVviD3vAGouXn0hHIzRwX42u+rJS3CejGZ8YZmN8DQKK5WFjLY21rO7NENxRsqjEFar1UpL7yBWnyCqL15R9Pu11Tfw73/t7yLHnGc4toUF8+v/8d9y9X3nEShttXX82W/+LvoJ58nvLGEhvPd//Bsufc+90X9P0NfdxfLkCAarGSklVr2RwOhE8t3s1Ozt6mRlchSD7bBeEvnFWqemhobGi4vmMGt4Es1h1tDQcMjM9DSjPe3odzaIDvbDoDcwv7rBrsGHsIRUsvPyn7aJHkdKSVtzE5bdrf2kYToDJZXVikJhnycmRocZa75HepA30WFHE2atb27Ts7BOaFYROUXqQvttNtuj3w8Ag5GSimrVob+9be38xT/5Q6a/vYOX+ejqA3s6HeHnKvnwD3+fmmuO51Yfpq+tnf/6T/+QpRv37OgJAs5V8c4f/GOqX7nqQEFDQ0ND43lBc5g1PMmTXFZKQ0PjOSM2Lo7YuLj9+cXLy5jNZvLKI1Rnd36eEEJQUuE64dPzTmJKGokpaQwP9NE42IvOZkbabEi9kYD4FGoulro1AqnT6Sh1Y7md4+QUF/G/fPYzOpqbuf0X/4XVyWlsNhuBUZFU/eB9zqp0bLOLi/hnn/6MzqZm7v3lf2FjehZps+EfFUn5D96n+srlU9usoaGhoaGh8eKhOcwaGhou0ev1qpZE03h+SMvMJi3zdFlhHyeF5eUUlpd7TK+gopyCCs/paWhoaGhoaLzYPJF1mDU0NDQ0NDQ0NDQ0NDQ0njc0h1lDQ0NDQ0NDQ0NDQ0NDww5aSLaGhoaGhsYpkFKyvb2NzWYjICDg1Nmnn3U9TyOlZGtrP0mcv7+/Zp+GhoaGxjOF5jA/ZHZmmomhfpAS38AQt5fweFx8Zx/4BYWQp61zrKGhofFUmZ2ZZqS1EbE2R6ABBIINiw1bUBTxeSUkpaSq1hvtbIH1JQKNAiEEG2YrtoBQEnKKXK6FfZyZ6SnGOlthY5FAo+6RngwMIz67ULWep5memmSsvQmxNk+QUYCE9T0bMjiKxIIyEpKSn659k5OMdzTD2ixBRt0j+wiJJrGgjPjEpKdqn4aGhobGk+Gld5jHR4aY6m4h0mCjPC4KEGxszVD3sy68ohIpP3fpmbAvymijPHZ/zdSNrWlqf9aJT3QSZWcvPlX7NDQ0nm9mpqcZ7e3EYNtfasmqMxCVlEZaRuZTtuzZpq3+Hl7T/VTHR0J43In9Y513aBgZpOrKq8r0GmrxXhqjKiEGYvxP7B/tb6RhdIiqS8qW0WprqMVnaZyqhGiIta/XODZM5UXl2cZtNhst925jmhzAsLOOlGD1CcAQl0b5xavo9XrFWq21d/CdH6I6NsLu7zfSdpOmkQQqFF6vp2m5fxv/hWGqYiMgPP7E/uGWGzSPJlF+4cpTsE5DQ+NJMTs7y+7uLgApKSlP1xiNp8ZL7TAP9fVgGm6nOin6yPZAfz+qM/zY2Nri9mc/4+Jb7z8V+wZ7utkb7bBrX02GH+ubm9z5/BdcePN7qnRnpqcZ6+9Gt7eLEGARegIjYikoLnHLzpnpaUb7utBbTB7RAzCZTLQ/aASbJCE1ndi4kw0qNezu7tLR+gCkjcTUdGJiYk+l9zIxNTnBxEDv/vMCWHR6gqMTyCssetqmPRdMjI8xNdSP7tH7YSA0NoGcvIKnbRr1t28QobdQk3HUIZhbnOHm571ceuMdLZLFDt0tTYQujZAQ7zhzfHJUGAFrSzy4e5Oy85ed6nW1NBG2OUt8QozDMikxkQSubfDg/m2XHaVdLU2Eb80RlxDtsExKTCQBq+u01N6h9MwFp3oAe3t73PxP/4FzYQa8w4xA2Hf7tke58ad/zNlf/2/x8/NzqdXRWEfk+gSxsREOy6RGhxOwtkBr7R1KFNjnSToa64henyTGiX1pMeHMr87SVn+X4urzT9A6DQ2Np0FKSgrnz2vv+svKqRxmIUQg8A2QD9QAI8BPAR/ACvyOlHJUCPHxwzLbwA7wfSnl1mnOfVosFgtzHQ3UZDsO+Qr096PQJmltqKWk6swTtA7MZjPznQ3U5KQ4LBMU4Ee+3KS9qZ6iimpFuqPDQ2xODVOdfVR3eWWN2lvXOXNJ3dqmI0ODbE+PnLBzaXmVuts3qLmovve9pb4WuTpLWWYKOp2OkeF2brY0cuGNd1SNYDzSa6xDbixRlp2BTqdjeKyXm63NXHj1Tbf0XiYG+3qxLExSnXU09HB+aZnGe3eoPPdkG7JPEovFgtVqPdWa0/093bA2S/Wx92NucYnmunuU15w7pZXu09pYR0aIN2EhUSf2RUeEExoUxL1vv+T8tTfc0t/b28Nms71wa3ZLKVntbyMn1bEzekB4cACjIwOYzWfx8vJyqLc20ktuZoICvUBGBkbZ2zuD0Wh0qLc+2ktuhmu9iJAgRgdG2Nurcah3wL2f/CcuR3mj053MFWo0GLgc58+dn/4nrvzW33OqI6VkY6iD/DTXnZaRwQGMjfRhqTyDwfBk+vdtNhtbw53kpzruvDggKiSQ0eEerBVnFH9LrFYrjXdvozPvN4FsXn5Unr+kfYteMCYnJ9Hr9cTGap3zzzsxMft1wUcfffR0DdF4qpw2S/YO8A7wNw//trDvJF8E/t/A//NQ2d+RUl4C7gHvn/K8p6al7i4V6a4bFMGB/mzPjrt9HimlW8e11N6lMjPRZbmQwAC2ZpTbNz3QRX5GyontYaHBJAZ5MTI8pFhLSsn0QBd5dvTCw0JICDQyOjKsWA+gr7uTaN0OpdlpjxpmqQmxnM9JpPb6V6q0APp6uojxhtLcrEd6aUkJnC/IoPbmt6r1XiaklMwP95KdevI5jAoPI1y/x/TUlNv6gwMDtD5odvsdOanXT1vLg1PrSSm5d+MbWm99Sc/969z64hN2dnZU69hsNpbGB8lMPvn7RUeEE4SJ+fk5t+0c6O+jvbXFreuVUrKzMENYSLDDMl5eRgLZY3NzU7X2nW+/ov32V3Tf+5abX3yCyWRSbeOzSkdzAwXRQYrLlyRF0XLvlsP97Q8aKYwPV6xXmhZPS+1dx3rNDRTGOx4ZPWFfajwtdY71ABbm54gxL9t1lg8QQpAqtpgYHXGq1VpfS3FcmNMyR+xLjKSl9o7i8gf0dHfR1dmh+rjW+vsUq7gfJYkRTu/HcW5++jMqksKozE6hMjuFiqRwbn76M9V2Pm90dXbQ093lMb3uzg56PaTX39tNw81vqL/5NUMD/afSWltb49YXv4TlKcyzo9z4/Jdsb297xE5P8aChjsabX9Nw42u62lpPrSelpKO9jb7e3tMbB/R2ddJw82vqbnylqk2qofE4OZXDLKW0SCkXDv1tklIetKD32HegjxMIbAAIIf5CCHFTCHFXCJEkhPASQnwihLglhLgthPARQiQKIa4LIe4IIf74NPYexrq6iMGgrEc3yksyPz+vSn9+bo7bv/xb6r/4Ga2NdartkxvLinucw/R7rKysuCzX09VJXorjToL4mGjmJ0aVmkhvdxcFaY6TnsTHRDM7ps5hXpkaIzbyZGNFr9fjZ9tR3fBemZkkxoGeL3uYzWZVes8LNpuN2199zv1vPmdhQd2ze0B7ywOKM1Mc7k9NjGd8wL0PZHP9fQJMa2RHBHDzy0/d0jipt05mmN+p9R401lOaGkd5QS7FedlcKMnlgQuHwh6tTU2UZqc73J+RnMhwj3sNvsb7dwk2r5EeZODWl5+pPr67s52CVNcdhoWZqXS1NKvSbqq/T2VmImUFuZTk53CxJJdmNxyeZ5XdhWkC/HwVl9fr9bCx5HC/aWkOf5V6ctNxfW9amsPP10exnsHgXA9g+EEdmVEhLrUSw4OY6nT+vOwtzeDrozzqwGDQY1tbcF3wELW3bxJttJHgp+PeDXUdo5blWby9nI+2H8bLaMS6qqyOHezvoygp+si3Xa/XU5QUTX9vjyo7DyOl5P7Nb7l/81uPdUB6kns3viXeVxBttFF7+6ZH9BICjER7Q91tx51RSpicGEe3sURlXgZVeZmYl6aZm5t1W6/rQSMXy4uIj40hKSGOS+WFtDbUnspGgNamRjo94Nz2dnWQGOxPZWEeVUV5BOksjKkc2DjOnW+/IiXQi3Bhov7u7VNpjY2O4G1aozIvk+r8LDanR1lcXDyVpoaGJ3gsMU5CCCPwh8Dh2KwfCyEkEAB89HDb70kpt4UQ3wP+O+BPgF0p5TtCCCGllEKI3wf+pZTyCyHEj4UQl6SUp6shAZ20Ki4bHRrM+NwsUVEnQxcdMTbQy4Wy/TmKjd2Dqu0TNnt9DfaJCglifm6W0NBQp+U211cJTnEeRqjmd9lcWyXIRViiHptiPQD9w8RD9kiMDGN6eprUVOWZZ/VOrichKpyZmRmSk93LxFp35xZrSwu8/v4P3Dr+OEODA0yOjXLpFWVJgpzR+qCZmtxUjEYjDT1dREYqf3YPMO9s4Rft2ft7gG1ni+jU/XnpAYbTz5H1pJ7NtIOv73e/lxACLzeu07q3i7e383dSzft2BNMmkREZAPjr1du2tbFOQILrUT4hBDq11242HQnDFkJgcPc6HyNdHW1sbmxQfVblnDSrBVDuUAEIm5Prd7bPHT2p/nkQVuc2CItZ8SXrLM47IaV1D1AXpi+syr+HAAarmdCH0RNeclLVsbj4LexicfzdOszK/CzpSSc7cCPCQhgdnwdy1Z+b/fq+LDUWKaGt5QElZeVu6Rzm5pefIXSCS6++eWotL2khOGg/KsMwOXNqPW9hIygwcF9v4nR6M5MTVKR/FwWUk5ZC0/AI0dGuQ/LtYRRH3z8hBEZO14kxOztLECaWFxewWApONT1hc3WVnJy0R38nxsXS1D9Kcmqak6Oc46uTBAT4E4A/IzPuddAfMD89RcWh6SQFWek0DQ4SEaE8auYwH3/8MaOjo3b3nT9/nmvXrrmlq/Hy8bgmBf0I+PdSysOxFL8jpewUQvwq8N8LIf4F8EdCiBL2v55dUsqhh6PLHwNTQog/BNKBxoca9UAGcMRhFkL8HvB7AElJypZ5kEL54PrG9g4BMcpD8ABCo6IZnpgiLjICkzsD+U5C346zub1DQLJr+3R6I3t7e07nqkmUOxs6gwGLxeK08rZJdc6LTTgeVV9YWSchQ3moHIDNyfUsrqyRnOp+4qWC0nLWVlfdPv44aekZpKY5HpFUQ0ZWNndvfo2PUU9Ueo5bGlIIbDab0zBMm5vtgF2rDavVil6vZ8ukrjFsK7tXygAA6BRJREFUV89ySM98Oj2LFEgpjyS7sqh8jgFscELnOGrqocPs7Nke3Zsts/oGvk5vePR7uULtLbb3Wzl7r58WeQXuJa0TKurmQwc53uXOM+DMBneStLm4JqlTfv9clRU6N5odKs4PsG3eezTSumVW5sx+dy7190MojAYz+vhhMpnx9j46n91kMmPwVh4VcJysnFzqbn2DlJKqy6fvcAUoKK9079m0w9ah+7Gt9n7Y09s1e0wvICiY5ZVVwkJDAJhbWCQ0XF074zBWO/Wf9ZSJE6Oiorjb0YpObzz1XH6p02E2mx/lVNjY2MTH72QWfTVsmfbvgc1mY/uU319f/wDW1tcfdbBMzc4RoWKwSikHTrTmMGsoxeMOsxDiD4ARKeVfOSiywn56zRIgWkp54eEI84dCCG/g30opbUKIHwHngEGgEvgCqAZ+fFxQSvkj9p10KioqFLXvpG+g4msaW92mRuV6kBlZOUyM+9G3OO9W0hw19k1umKlRkEW6uKyclptfUJGfbXf/1vY2PsHKPxTFZRVO9Ta3tvANUffh0QWEsmsy4WMnUdDKHuQFqeu40PkF2W2gAKyYrOQHBKjSO0xAQAABpzj+OEIIj2UkDgoK4ur3vn8qjaKyStrufkNprv3lhVZW1wiOdi97+dnL12isvQs2G8UeWBrt7JVrNN6/C9JGydnTLQVXXFHFjW++oKYwG29vL+rbu0ktrFCtU1BSTnvDLYpz7P9+C0vLhMe6Dou2x9mrr9Fw/w5CSkrPq0+sV1xWQev1zyjPzXBabnRqlsR0daNeheWV3LjxFTWFORiNBurbe8goqVJt4+PG3XfN5huE1bqtKkmT1cdxPWH19nPZMXXiGC/HIdw2b3839Jxnto5Iy2Wu/Ruig53Xd2vbOwSkFDo/l28ANptZsX1SSqze6urZmsvXqK/fD4OtUrFsFuzfKyktip8PKSVWH2Xf66Kycu5++hMuFB/txGzoHeL82+7X1/7+/lx+6z23j7dHRITjDPBqqbp4lfqmBmD/3pxe7wr1TY0goFplotLj5OYXUHfnFrqJKaQEfWAIFTVZbuvFpmbQ0tVHSd6+RmN7N8l5JaeyUafTcfFV95IvHqei5iw3vviU6GB/LBYrm1bBuSunW7qt/Pxl6lsfIOX+t/g0FBSXcP/mdQyWCWw2iVdIBGVF7o9+//CHP7S7XUvgpaGWUzvMQojP2Hd+s4UQ/w74n4B7QoirQK2U8p88LPpjIcQmIIDfBeaAWCHE10D3wzLJwH8U+92a68AD9jNv/+lDR7xdSnm6CRIPySmvofvuZ+QlO2/w22w2CIp0q3GVmJREosIR7+NklVbRW/sVOUnOMyzabDZEsDL7DAYDhuAI5peWiQo/Go5ps9mo7Rzk2vc+VGyjwWBAHxTuUK++e5hX3v1AsR5AxZlz3Pj0Z5QmRRDy0Dm2Wq3c7xwg/7z6Sr2i5iw3Pv+E0rQ4QoL39SwWC7XtveTXvLgZnj2Bj48PVr8QllfWCAs9mhzKYrHQMjLFK++ou78H6PV6as57bo1zvV5PzQXP6Pn5+XH13Q/obG/DtLtB1StvucwgbA9/f39MRn9W1zYICT7aoN7b26NzfI6rbynLbn8cg8HAGTcy0B9gNBoxGXxcjjJPrGxy8Yy6TpGAgACuvPMBHW2t7Jk3qHn17SeW4fhJUHruEq0//VPKU5Vlv+2bmifrguOl/0rPXKD18/9KWbrrJI8AveMzZJ95zale2+f/lVKFej1j0+Sccx52m56Ty+3GG7jKC965ZuFCifNw4NJzl2n7+Z9TqvD365lcIO+aOmfS29ubMxcvqzrmgKIzF+n47D9TlKwsJLdzYo6C139NUVmdTkdu9UVqWxswWnYRQmDWe5NTdVFVB8fzhp+fn9v3wx6+fn7UXPTc98NT3w6A5JRUQkLDaOxsR+gEBWcu4e9/uhFcTyKE4Oqb77C9vd/p54lVDAIDAz36G569fLpOEA2Nx8GpWzFSyreObfozO2V+6OBwex7L8W2bgMffnpCQEAZD4lhcXScixP6opZSSW30TXPzgNz19epeEhYUzFBjN8voGYUH2e6+llNzsm+Dyh7+lWLe0sobO1hZGOvtJCA/C18eH0Zl5doUXV95+T3XHQFnVGTpbWxju6CMxIviI3uW3vqdaTwjB1Xc+oLerk/6RKYSU4OXHmbc+dMtpEUJw9a136enqpL9/DCEBLx/OvPaOW3ovG5Vnz9PW3EB/Zx/JkaF4e3kxPD2P2eDDZZXrfz9PCCEoPMU64gdUn79Ea1M9vWO9pMSE42U0MjQ1h8Xow+U33jm9oaeg5vI1vv3FT7hclHniXZBScqetl9LLjh0zZwghKCop9YSZzxxeXl5YwxLY3t3Cz8d5GK3FYmVeF0Cuk/l33t7e7AVGsr2z6zJZl8ViZREf8sIcR+54e3tjDohgZ9fkMrmWxWJlSfiR7yL/BUDOqx/Q+MVfURlrP7N66+waaZdd1/k+Pj6YQmLYNZnxsRP5c5g9i4UVr2AKgh1nc/c0/v7+bAVEYjLvuUz+Zd7bY8M3nMBA5RFhkVFRRL72zn5nPLzQjvLLSnBwMNXP+JKLStZL19DQ+A7xLGZUPA0VFRWyqalJcfmW2jvszY5QkhJ/JGv28PQ8U7tQ9dq7+Poqz2DqaR7cv41ldpTStPgjI0FDU3NM7ULNG+/h46LR5ojJyUl2d3dITk7xiPPoaT2NZwcpJZOTk5hMu6SkpL5QI4ZPAiklExMT7O2ZSUlJfWbWXLXZbDTV3sOyvowX+2GoZpsA/yBKqs4+1brvWUZKya1f/DWlQYJAf/u/kXlvjzsTa7zyq7/t0imSUnLrk59QGulLoL/9hqzJbObu8AKvfP83FOuVRfk5zOhtMpu5N7LI1Q9/XbHTtrS4QN+db/BamSYr3B8BDCxvshsSS3r1ZaLj4hXpSCm58ZP/QmWEEX8HnQS7JjP3Z7a4+oPfeuJO5b59/5mqSC+HnSI7uyZq57Z55Qd/x2NTaTQ0NDxHRUUFjvyBg5BsJaHZasqq5Zi2VpE8w7z0rd7SMxfY26uhpe4uYncTpA2rzkhK0Xkuxbo3P9OTlJ29yN7emRP2pZZcIjPGvSyOByQkuDd/8knpaTw7CCFITFQW4qlxEiGE4oSETxKdTkfVw5EQKSU2m+2ZceafZYQQXH7vV2mpvcPu5Cip/nqiQvcjlVY2tuhf2UEfHs+1X3tfkTMlhODyu9+ntf4+OyPjpAb7EhW2P6q6sr5J3/w6hvAYrv3gN1XptdTeZXdkkrQQXyJDv9PrX9zAEBbDK9//DVXOXnhEJGc/+A1MJhNDfb3YbDayr2WpDjkVQnD1+7/Bg3u3MU2MkhZoJDJkf5R2eX2TgVUTxqhEXvmVD56KMyqE4MqHv8GDe7cwjY+REexFxMNpFUtrmwyumTBGJfHKDz7UnGUNDQ2Nl4CX3mGG/fl8VRfcnw/4uHnW7dPQ0Hj+EUJozrJKSs9cAC4wPNBP8+w0IAmMTubMK84TXzmipPoscJbhwX4ezM0ipSQoLIWz59zL5l96Zn/JrOHBfiYO6Z1xU+8Ab29v8oqKT6UBUHbuInCRof5eJubnkFISHJfKmWv5p9Y+LUIIys9fBmCwr4ex+TkAQhLTOPNq3lO0TENDQ0PjSaM5zBoaGhoaGqcgLTOLtEz3M+ue0MvIIi3j2dXzNOlZOZDl3vJ3T4KM7FzIdm+NZA0NDQ2N5x/NYdbQ0NDQ0NDQ0NDQeCmYnZ1ld3dX0bzk0dFRUlJSHrtNGs82WnpGDQ0NDQ0NDQ0NDQ2NY6SkpHD+/PmnbYbGU0YbYdbQ0NDQ0HiGWFpaYmxoEID4pGSiT5ngcXFxgfHhYY/paWhoaDzPxDysAx9H5muNFxPNYdbQ0HDJ9vY2fT3d2Kw2ktPSiHCyrqzG88fm5iYDfT3YrJKU9HTCwx2v86txlLGRYWb6O9HtmQCw6Y2Ep2aRmaM+MVRnSxPr44OEs0tBdARCwERzP7V7BryjEymtOacqK3PHg0Y2J4f39aLCEQLGm/oY2jPgE5OkWg/2lyJru38Hy9oiUkr0gaGUnL/sdsK40eFBZvu70VvN+5naDV5EpuWQnpXtlp6nGRkcYG6wG53FDIDN4EVUeq5H56xraGhoaDzbaA4z+85Ae0Mt+r0dsNmw6o3EpmeTnJr2tE0DYGtra98+8zYCsOqNxGXkkqTNqdB4zMzPzTHc1YqPdZf81ER0OgOjPU0MmWz8/9n76yhJsvTAE/1dh2BmZo7IoAxIpmLo6mpSS2odqTSr1zvzZqaHtKPReU+aHp1ZeivY2dn3erZnd1Utau4uxmQK5shg5shgdA+n+/4IqMgMB3MPz8zILPudkyczze797HMzdzP77keRyenbxXBUnlqmpyYZ7W4nwGaiMC0RjUbLYEct/WaISctWjQInrK2t0fjZe2SF+lAVFwF80VppbqaX651NFJ57keiYWJeypJTcfP+XHAuBgsRQIHRvX1psFGnApnGOq7/8By587TddGqfbfaJ/QXGoICwhBAjZ25ceF036PnkXv+66r/MujZc/xDTQTmm4D7767dcH8+wYDf+1DpmUx4nXlLeBWllZpuXKR2SH+VAVH87+8zc72cn19nqOXXiFyCe0OLe8vETrlY/IDvPd0e8LZic6uNHeQPHFVwiPiHBbttVqZWR4GIC09KPTl11FRUVFxT5feoP5XmszW5P9VGWlIUTw3vapyV6udbZy7tWvPtGHWWdLI6apQaqz0hDii5eeyfEurnU0c/61NxW/7HzZkVICqH0zFTI+OsLiQAfVWWkPbM9MSSQTGJ+Zor1pjeLjVU9Ev0eFlJL2lma21lcQgNT5UF51Ap3u2bpdjgwOsD7aQ3Xmg/21c9K2+6mPTI7QubFGUelxt+Q+fP7w8aOsouqZOn+bm5s0ffxLzufa700eHR5CdHgI9bc/RXv+NSJceOzvfvo+FRE6/P18HY4J8PPjbJKem+/9nItf+02n8u588h5VUT74+fq4lHfj3Z+5lAdw85f/wDHjBCExAQ9s1+u0VMYEYlgb5NqP/5pLv/2PXMpaX1+n7bN3OJdj//zFRoQRGxFGzfUPKHz+q4SFhdsd96hYW1uj4/N3XegHNVffp+iFrxIaGqZIrtVqpe7aZ2jWF8mMCUcgaOysxxoUTvXFF1XDWUVFReWI8uy8wXjAYG83AStTFGSnH9iXEBNJTISF25+8z/nX3nz8ygH93V0Erc2Sake/xNgoYiMt3P7kA869+obbsjtaW9hcWUBIsGr0lFVV4+fn57Gu3pZnMploa6pHWq2k5eQRo8BL44jFxUV6WhvQWc0IJBaNjujkdLKOcBuTJ43VamW0vYHTxY7PUXJcDNbJWUaGh0g7ItEYh2Vzc5OaK59QXZhNYEIqABaLhdrPPySzpJL4hASP5LY0NmBaX0EIsGl9qDhx6okakCaTienuFk4UOfYgpyXGMjA+xdTkBAmJSYrkrq+vU3/tc6oLswnYOX9ms5mazz8gp+zEM5M723Lzc87muD4nVZmJ1NRc4/Tr33Q4ZmF+nkjTEv5+MS7l6XRasgMkI4MDpGVm2R0zPzdHtGkZP19l8rL8bYwOD5KanulwXGfDXQoME4QEODbo/X19qDAu0HLzKmXnLjk9btvNy5xxYIzu52R2MjV3rnH6ta+7HOtN2m9d5rQi/ZKouX1VkX42m42rv/4pF3KT0CZ8sfgdERaC1Wrlyq9+yvPf+E11AfwxY7PZaKy9C1sGADQBQRyvOqEurKuoqDyAV+/MQohgIUSdEGJdCFEkhPARQlzf+VMnhGjZGfe2EOLjffNqvamHUuaGekmLd/xSodPpSPQXzM7MPEatvmB+uJfUuGiH+3U6HXG+Nubn59ySW3f7JomBWqoKsqkszKY6L5U7lz/GYrF4pKe35U1NTtDw2buUxQVTmRLJUk8zLfU1Hskym8101NzgZGE2lcUFVBQXcqIoF7Eyx/BOUR2Vg7Q01FKV7/gFepe0xFimh/rcli+lpKWxgbq7tzEYDJ6oeEBec0M9dXdvs7W15bGcxtvXuVhRTGDAF140nU7H6bIi+lsbPJJ5++rnZEUGUlWYTWVBNpXZyVz7+P29iIcnQUvdXSoVXN+s5ATGersUy22+c5OLlcUEBPjvbdPr9ZwpO0Zfi2fn76hhNpvRbywrfqEOk0aWlhYd7u9rqiUnwbVxu0tCZBjTvR0O9w+01JGdqFxeYlQ4U93tTses9bYR7sRY3iXQzwfjUKfTMVtbW/gaVhTrF2zdYHV1VfF42DaCGmprqK+5i9VqdWuuwWDAf0v58QLN66yvr7sc11JXw5mseLteZK1Wy7nsBJpr77ql69OC1WqlvuYuDbU12Gy2J63OA1z7+H1Kk6OozM+gMj+DwthQbnz20aFkWiyWI/t5HwVms5n6mjs01dc90eeaisqjxNtLmQbgdeAXAFJKk5TygpTyAvCfgXf2jU0SQpR4+fiKuX9/lmhf1y88mUnxjHQ7fjl5VExPTxEfqHc5Ljs5gcGOVsVy19fX8bNtER72RY6cEIJzx4tpaax3W8+1tTX8pclr8gBGOls5VZy/92KRk5aMWJljY2PDbVktjXWcKi08sD0jJZGZ0UGP9HsamBgf4/bH71L76bt0tDS5Pd+6toxe7/r7B6Axrrv9kLx5+VNyY0KozErizueeL67sl5cXG0plVhK3Pv3Q7ZdkgNXVVcJ9dQ4NoeKsVLo63bsX3L9/n7hgP4KCvsjP1Gg0nCrOp7212W0ddxkdGebOJ+9S++l7dLW3uS/AsKY4/FMYlRkPi4uLxAQ7NqryU+Pp6+lWJOso09ZQS1l6vOLx+Snx9LU6/g1qNpbc1kGz7tgAF072eaLD6uoqwWuzimUlWFeZnBh3uL+9oYbSDOWRGoUp8XQ3u/csufbxB5SmxlCeHsfVj95za25HYy0l6YmKxx9LS6BLgX6mxRl8fRyHyPv46DEvKT/PD7O1tXWoxcJHKe/qR+9Rnh5HaWoMVz96/9Dy+nu6qb38MTWXP2ZooN9jOb3dXZSkJz7wrPPz8yUrNpyx0VGPZEopufbx+xzPSKAkJYbrn37osX6PCpvNRu3tWzTUeOaI2I+UkuufbH/eosQIrn3ywaFlWq1Wam5co7HmzqFlqah4C6/GBEopLcCcgxfObwF/vO///wvwb4Hv7G4QQvgB/yeQAKwDvwNEAH8upfzmzv5PdgzwQzE+MkqJE+/yfoTFfNjDuc3E6CjHnXiX96OxKTc2uu91cjwv+8B2nU4HO1VA3aGn6x7Hcw+GBnoqD0BnOzivOCedpo52Kk+cdEuWsJgdhr7q5LO78js1Msjpsu2FgoZ77r9QaNw4N4G+PhiNRvz9/V0P3iFAI/H33w7ZryjMZnBwgNxcz0Pk98srz89iaGiQbDcLVg0NDlCQkeJwf2hIMP1DU27JHB0aoCLzoMyAAH9M4/fdkrWfmdEhTpUWAdDQ1Q+4t/aosSlfUNDYbEgpXXpUB/v7OJ6e6nB/ZEQ4w0PTio97VJFmE9pA93JNnZ1v4cb9W8kcYfWuvLnZGWIDHBt6D5MQGkj7+BiJSQ5Cmi0Wt8KOhRBuPePMZjORgb579/2kqFDW1tYIDg52MXPneFYLQrinn7C6fkfQKrguWgVyHHF7xyv63Fe+5rGMB+R9um34PPfGNw4lZ319naSo0L0FuqggP0wmEz5OFg9csXx/hhPl2/e8hnu9ZGQdfKdRwuriPDmZBxdHEuNiaRwaJyXV8f3MEUtLS2TERaPRaNBoNIT66rFarUcqP72lqZGKY3kYjUbudXZQWHTMY1mzs7PkJsej0Wjw8fEhWK9R9Lxwql9DPZW5aaxvbNDT1UVegfsdB3Z5++23GRkZObB9ZGSENLVwroobPJZkGbFdTStZSrk/tq8ZiBRC7E/Q/QPgqpTyEvAj4LsK5X9XCNEohGicm1MWnhwYHMT6psJQ0CeQU+QfEMCmwahorET5jSkqJobZ+/N291lt7ofSREXHcH9uwYE8t8UBYLPzsjIzt0B0rPt5zM50eHbNZdD5+rO8sorVasVg8eCTuvGw2zKb8fV1Ha75wJx9HuCJmfuHylE/KG+W6GjlIam7hEdEsLC07HC/lNKt3xpAYFAwa3bCNaWUWPE8dE2j92VtfR2LxYLR6oEcd15mhEbRy09oWDjLK4690Tab7YncS72OJ59B4/j8CU/kCScv3872OcSxDv6BQWyalBusBpMZv4BAxwM8eZF24xzpdDrWjV94RpdWNwgICHAy4yE80U/BObcpEGtz8/6yn/jUDOJTvVdLIj4ti4R0zwzR/fj7+7O0+kV02LpxS3H0kiPMNsnW1hYGg8Hu+4JSpNDYDZne2tpCq/fMoA8ODmZu6YuUA6PZcqSMZYDklFRqGpppbOskJcX9RYH9hIWFMbuwvPf/LYvt0PnfSamp1LR00NzVT1Ky61oCnpCWlsaZM2ceiWyVZ5PHVXXmDcBeXNRfAH+47/8FQKUQ4ncBPXALHnirtPsrlFL+EPghQEVFhaK3x9y8fOo+6KA6N8jpuLX1Dfwj3H/5PiwFRceo/+BnVOc5fwCurq8TGKW8kE56egY3PukiLvZB73Xv4Aip2e73vUzPyODGJx8QG/Ng64+ewWHSPCyq5RMew+LyKhFh24VRpJT0TC9wqeKC27JSc3IZGOknK+3Bm67JZAI/Jy91TznlVSfobGtlc2GO08+95PZ8q065AWzS6N0uVJNRWEZtxz20GkFwVBzh4YergrstrxON0BAaE09YWJjbMlJT06j5vIu4GPuRHe09AxRVn3NLZn5hETc/eZ9zFQ96gNu6+ygoO+G2jrtUnjpDW3MTW3NznL70otvzLTrlBfmsemXfhZzcXGo++5AT+9Iz9tPWM0DJmecUH/eokpiRzUjnbdIURgAtrq4RHO04X9ysc8OY28Hi4ziaw9k+T+bEx8dTY/NFWdk36F41c7ywyOH+uLRMxvvqSY5R1uv7/uIK4QnK29cJIUjKLaKuo3f7eJl5bhks0cnpTA23kBCl7J40s7BMZLJrD530D3E9JsD1GEcUFHs3w81b8rRaLXGZeXvXIym36NAG1cnzF2lpaEAIqDrt3j15PyXHK6m//iknSh5M22q418fpl90vpgrbNRui07Op6+hBSklS7sGUsCdNTGwsMbHuvxfYw8/Pj7CkdOo7+7BJG6kFxYeWGRefQFy8Z+f/Yd566y2vyFFReVwG87eA/9fDG6WUnwsh/j2wa231ADVSyr8FEELogQDYe1a719/ECUIICIrEbLag1zs+Da2j05x984K3DqsYjUaDLTDcpX7tY/c589WLbskuOXGGO401hPv7EOjvx/TiChGJqcTHe1YBuOTEGe401BAR6EuAn++evDgPK+KWV5+ivbmBgd6R7arWWj/OvPQVj2TFxyfQNjVJe08/x3KzEEIwOTNL//QCF156zSOZTwtFJaUez80oLGagt5msFOevySaTGV2I+31IExITSUhUnif4uORFp2YwMDpOVuqDCyxz84tY/ILd81SxfZ8pqDjBndYmooL98NHpmV1ZIzY1i5AQz1+OAUrKPb8dJufkMzrWTWqi89+owWjEL0K59z8yOZ3h8SnSkx+8l9yfX4CgsEOFYR4VEhKTuNukIU3h+L75dU6ddWxQhaVms7w0QFiQsgU8k9mMT4zj32VYajYrS0OEBin7rm6ZzPjGOE5FEEIgEjKRpglFho4tLtNpBfjk1DTuttWi1G80tGLk1EX3+r2npWd4XLk/LSOTux0NJChs/zyyauKUgvSPnLJK2mqvUJJu/9p1jEySXeXes/xpISMr2+OwaXsIISivOnw7Q19fX5LyS6hp7yQmJACbtDG3ZiSrtOpQ1cozs3PI/BL1sM/OzYNDpFSpqDwNCG9XtBNCfASUAqPAD4BfAzeklOX7xrzNdl5ypxDi28BPpJRiJ0f5h3xhIP+FlPJDIcT/DzgGNADlznKYKyoqZGNjoyJdbTYbV975GedykvHxORgi1DowRnRRJUmHDFnxlF39zuem2DWaW/rHiC2uIjHZ8cuOM9bW1tjc3CQmJsYrLRTW1tYwGAzExDx+j7wrVldX6e5oRSM0xCQkkarmrrik9sZV8iL8CA2xn/tns9m42trLc1/95jPVCmVkaJDp4QG0VhMCsGi0BEclUFRaeii5KysrmM1moqIUvok/Ym5f/oTShDACA+x7F61WK9c7h3jujW+4dX8YGuhndnTogfMXGptIwbEnVuPR6wz19SCH20iPc34tpxeWWQ5PpbCswum46z/9a85lKltgvN03yelv/75Tr+mNn77N2UxlCx23+yc58+1/5PQ3vL6+Tsvf/385Fe08MqFx3kjON/+A8Ajn3uP+rk50k12kuvAyT84vsR6VQX5JudNx3qbvXgc+Uz2kxDhfDJyYW2QzNpu8Y6WK5I4ODTLeWsPxjMS9AmBbJhNNQ5MklVSTluk9o1LFPRYWFtBoNIeOdlI5OlRUVKDUHnhSfP/739//t9rL7AjjdYP5SeOOwQzb4b71t65jW5knwleDr17P/LoBs18wmcXlxMQ+2b6hNpuN+lvXkasLRPpp8dHpmFs3YPELJqukgugjaJyqPDvU37qOzrBMSXb6Ay/Ug2OTTK6bOPX8K4fORzvKHLZ4yVGn9sZV/E2rHMtKe+Bz9o1OMLNp5cyLrx0q/+5ZPn/3mhvRzfaT7aAl1PjcIgv+sZQrCBmdn7vP4I0PqUxz/rxpH79PVPl5klLTnI6buz/L0I2PqEx3Lq9tbJaYioskKlgUnr8/S8evf0RliMDf98FIAZPZQt2imbw3vkNcojLfcUdjHf7zI2TE2190GJ1dYCUkgdITTybPsL2+hoDFMYf6jczOsxaaTEn1Kbfk2mw2Wutrsa5v57lqg0IprTrxTC06qqgcBVSDWcWbfOkN5v0sLy+ztbVFZGSk05CyJ8VR10/l2cRoNNJaX7NTwVViFVoyCo4dulCXytFgY2ODjsY6tDYzSIlVoyOrqPTIeMKPMhNjo4x3taHbWCI+xA8hBDMrm5j8Q4nNLiTDjbDMxYUFum5/TqzGTOZDRtrY/UUmtwSZ1eeJS1CWerAwP0f37SvEak1kxj+Ybz06u8CUSUtm9TnF8mB7AaT17k0MQ/fQGta2C+EFhKBPyaHszEW3F1fGR0eY6N49f/7b5291E5N/GPE5RaRlHuzA8DgZGxlmsrsd/eYycbvXd1e/3CLSMp6sfioqKo5RDWYVb6IazCoqKioqKofAbDZz//59bDYbMTExbleN38/92VmG25vQWrcrPVs1epLyiz1Ovbk/O7Mjz7QnL7mglIQkpWW8Hj27509KSUxMzJHLdTeZTMzNzR1Z/VRUVA6iGswq3kR1U6qoqKioqBwCvV5PopeK2MXExhLzwqtekbUtL46YF452gUNvnr9HgY+Pz5HWT0VFRUXl0aImzaioqKioqKioqKioqKio2EE1mFVUVFRUVFRUVFRUVFRU7KCGZKuoqKioqKg8M1gsFhYXF5FSEhER8UxX8n8aMJvNLC4uIoQgIiJCLVr6jKFeX5UvA+q3WkVFRUVFxQOklHQ0N7IxM4rWYtquMq71wScqnrLqU2qrIBdIKWlvqmdzZhyt1YSUEpvOF9+oBI9aLY0MDTLddw+dYYXoYH+Q0LZuwOwXQkxmHpk5uW7r19pQi/H+5AP6+UUnUlp14pltmeYthvr7mB3o3rkeASBgdM2AxT+UuOwC0j2sgr6+vs7I0CBCaEjPzCQgIMDLmqsoob+ni/nhPvTGVaKDA7BJyciaEWtgKAk5RaSmZ7gtc27uPoP32tFKK7BdpLCgrIKQkBBvq6+i4haqwayioqKiouImUxPjDNRcpTQpkqCk8Af2bZnWuPvLvyGx9CTp2e4ZaV8WJsZGGKq9TnlKNAHJD54/49YKd37xN6RUnCFVYeum2qufkcAG1UmRQNje9t3a4tNT3dweHuDMS8oKoE2MjjBUZ18/g3GJ2z//EamV50jxwCj4MnDn849I05uoTo4Avjh/KTutwSdGO6gZGeTkcy8pljkxNspE7z0C5RYZCTFICf23PsGg9Scl79iRqfxutVoZHx9HCEFycvKhF842Nzfp7b6HEBoKio55XKVdSkl7czObCzPopBWhEZjREhafTH7RMbfk3P7kA7ICJJnJEUDE3r7U+O2/RwdbqB8bpur8c4pkbmxs0HTjMvFBPlSnJTxwrK6G6yxZtZx67mW3W9epqHgLta0UO6vIjQ2Y15cRSCwaHQWlFYSGhj4iLd3jqOv3tDA2NsrmxibZOTnqTVdFRcVjZqenmay/SmlanNNxPRP3CcyvVGz07WKz2ei614nVaqXoWPGh71felndYpicnmG26TvHu27UD7o3NEHbsFMlp6U7H1V2/TI6fmdCgQKfj1jc36VyFU8+/7HTc1MQ495tvuNSvc3SGiNLTJKWkOR33MONjo0yPDAIQn5ZJckqqW/OPOncvf0JhMAQHOvf8rqxv0GfUU33heZcye+91IuZGyU62f016RifxScomMyfPI51tNhvAoYxbi8VC3c1r6M0GUuOikFIyMjOP9A+m+uwFt2Wvr6/Tevc6QVgozEjGZpN0Do1h0PpTdf45twxng8HA3c8+pDo3lcCHPPJLKyu0jMxy4dU3FN0bbn/6AaURPgT4+zkdt7i6xogtiIoz552O29zcpP7z9zlXnOswasNqtXKtvZ/nvvotxedRbSul4k2+9B7mjY0Naj//iJOFmfjHba9OSinpaLyFf0I6OfmFT1S/9fV16q98zMmCLPz26ddWf4PApEyP9TOZTLQ1N4LNRnJGJnFxzl8M3JGXkplFbKzzF8nHyUBfD3MjA6TGhJMQGEDztY8hIJTKU2eftGoqXxIMBgMdrU0gJRk5+URFRT1plVQOwUDDLU66MJYB8pJiqGmtdctgbm9uZHNuiqLMFHRaPU1XPkIbEsHxE6c90nVX3rGsVLSaw8vzBoONtziV5vqZU5gSR01LjVODeXV1Ff+1+4RGufYuBgUEEL4wzeLiIhEREQ7HDTfd5qQC/YpS47jbdFexwWyxWLj10btkRfhTGR8NwMTYPa61NnL21a8+E7mfi4uLhJtXCA50ff5CgwIJmJ9kdXXVacjt3Nx9zNODFKYnOxyTl5pIS989VmLj3XImjAwNMjPch85qRiKx6nxJyi4gyc2+5xaLhWsf/ppL5UUPGHSx0VGYzWaufvguz73+puIw/s3NTRqvfMj5kgcXAMrzMpFScuWDX3HxjW8q/s7UXvmEi6V5do8fHhrKucJAbn/+Medfft2pnJnpaeI1RgL8XYdIR4QEMzY4jtFoxM/PsXHdfPuaU2MZQKvVcuFYFnU3r3HygjKvtYqKN3nsCVZCiAtCiCtCiBtCiK8KIfqFENd3/nzwuPVpunWVi+UF+O/7MQshKM7JYH18gLW1tcet0gM0377GxfJC/Px897YJISjNy2J1bID19XW3ZU6Mj9F47RPKUmKoyExkfayfxto7Hus4PjZK07VPKU+NpSIzkdWR3kPJ8yYT42NYFyY5cSyX+NgYgoOCqCjMJScqiKYjoqPKs83QQD+dd65RkZ5AZWYS93vbaGs6eqveZrMZo9H4pNU48sxMTxHnY1M8PicqkL6ue4rG9tzrIFJsUX0sj8CAAHx9fagsyiUt2IfWxnq3de2510GUxkT1sTwC/P335KUG6WlranBbnjeYGBsjOUC5hzsjzJeh/j6H+7saaylMU94jOTc5nr4Wx+dybGSYlEDlhmt6qA8jQwOKxt79/GPO5SaRFBu9ty0pNppzuUnUXP5Y8TEfpq2pnrrLH1F/5WPam5/svaWvpZ5cB15gexSkJtDVWOt0zEB7i1NjeZfS7DS6mpX/TibGxzBMj1BdkMXxY/lUHCugOj+TxaFuZmdnFMsBaKy5w8WyQrveT71ez5nCLJob6hTLa629zbli++kcQggulebSePeWIllDgwPkxUc4NUh1Oh1xAToWFhacyhrpbCE9PkbRcQGK0xNpq73tcL/BYCBAbilaSNDpdLC5zLMWGavydPBYDWYhhB/wb4BXpJTnpZTvAitSygs7f15/aPwj1W95eZkof53DH2ppXhadbtx8vc3i4iIxAY6re5bnZ9HZ7P5Lz3hfFydLj+2F3mSmJhOMmfn5eY/0nOjv5kTpF6uqWWkpBEmTyxuvM0wmEzc++ZCayx8xNjrisZzxgR5y0g6uFIcEB2FaWVBvvG7Q39tDc4P3fg+NtXe4e/0KW1tbXpVnMpm8Iq+vp5uWxsMbFbPD/VQcy9+7z+RnZWBbXWBzc/NQcufm5hgbGz20fgDdHe203bxCT+1NmmrvekVmb3cXbc1NXpF1lBjtaiM9Ptr1wB0iQ0NYGh9UNHZpapyE2IOyI8JD2Vxw7wV+V158zMFohsiIMDbmp92Wt5/25kaa62vcnjfZd4/kmEjF42MjwpgfcWwwi81lt4tviY1lh/tmBnpIjHbsfX6Y+MhwZgd7XI7b2NggRBrtGlQajYYQueXRAnhXRxsJvjaqCjKpzM8gzsdCV0eb23K8hbNza3e8EIhN53M0BmWOCyGE4rEA4/095GUcfD84lpPBUHenYjkAGNachjP7+vpgXl1SLE4YVp1+rzUaDVLhub4/OkRctOuoppy0ZPo7nX933L2+Go0G1h3P6WhqoCTbecrFfopSE7jX/uS+3ypfXh53/M8pwAC8L4TYBP6JvUFCiOtAE1AkhOgBfiKlrBFCvApUSyn/vTeU6e/p4Xi647AbIQS6nUp9nlB36wbzMxO89q3veDR/sK+XChf6aaxmt+XqbJYD23LSU2ns73U7VFRKaVdebkYajf29REaecls/gJaGWs6WbIfo1HX1kpKa5pEcZ9cvISKUubk5YmKUr5bup725kZWFOc6+8IpH8x/GYDAwOjJMXn6BV+Q11txhdWmRS69+5dCyzGYzS2ND5Gel097aQnFp2aHkdd3rJDMqmNCQROrrazlx1nmOkyvudXaQHRNKcFAi9fU1nHCRM+UKo9HI2tQoWWnJdLS1cqyk1CM5q6urRAQdDEUryc+mqb2dyhMnPNaxu+EuAT46oqKiD10ldn1hlsqS7fSOhnZl3lBnrK2tYZqfIiU+lq57nRQUFh1a5ujIMJvr624Vp3HG4uIiqysrpKUrf1kD0NjcfyYIO/dIe+ik43H+WoHZbHarRZIzeX6a7TBST8KABwcGiNGaCQjypbO9jaLiEsVzNTYL4F7RIuHknAuLsnOrVJ5H+lld69DX3UVRuuOw8cL0JNq7uyivrHLr2OuLc+Rnf+F9jY4IZ6R/3C0Z9rhz9TNAcPrSC27Nc3ZuHc5xcQ21KJepUfhbA+e/D3vvNc7QKnhX1Do53n5MJhP+WgUeV4Xvp1qpPCLG1efQePBO7Oz+J6TVrdzuoMAADFPKF0XefvttRkZGnI45c+YMzz/vOo9e5cvN4zaYY4F04DTwHPB9IHTHQAYYkFL+wc6/P5JS/hshxHHg94Ea4Ds7cx5ACPFd4LsAKSnK8078AwLYNBgOFEDYj5Se5+DHJiahPUROkq+fHwaj8YFw8YeRHtQIsNmZYzRuoffxtTPaOUII7N2KDQYjPr7uy9slPDKayZn7xESGYzlEHQSbEwfy2qaByEMYGnGJyfgHOC8y4w7+/v7k5uV7TV5sYhL+gUFekaXT6Vg2GGntGSCnvPLQ8mLj4ulquENoUADhUYfLn9+Vd6+phpBAf8IjDy/Px8eHhbUNNnoGyauo9liOn58fm8aDHu/llVVCwg5XtE8XEMiaweA0N0wpJqvN7r89xd/fn5mlVZbWNyms8k6ubGJSMmaz+wuEjggPDyc8PNz1wIfxpJWQwmApe/fmXcwWq9vFuqQTXS02m8fFv6JjYmi40oxOqyH/hJu1IDw4f049yN5u7eSRfq6vb3BoKCtLY0SG2//dr65vEBSiPLR8F5udQEF729wlNjHl8bXNcnEct+LA3AhMlE7Ok7t3QSU6Kn1f0+l0WBTchxWfF7cuo4vBngR+evv368Wv5a4xrRrMKq543AbzMnBbSmkSQlwF/pidkGw7YxsApJRNQoi/EEKEAbFSyv6HB0opfwj8ELarZCtVpvDYMWo/eYcTRfbzRFbX1gmIUB569zBpGZmkZWR6PP9YSSl1n7xLdVGO3f3LK6sER8W6Ldei88VkMj1QYbHhXi9nXvbME2nR+R3wfDTc6+Xcq1/1SB5ATl4+A329dM4sc/qieyvc+5E+AVit9l80V802goI8NyhjYmOJiXX//DvDmy8oySmp4KXqq0IIXnzj616RBRAZGUn5+RcwmUxeqfYeFRVF4LnnvSZPo9Hw4le/cWg5Pj4+rFsFNpvtgVX09sFRLhzi9wFwSkFlWaWUVJ2ipqkejRBkF5cfWp5Op+MFL35fdmV6syiSp7814R+M2WxAr1emi5QSq17ZooZV53iR0aLzc7vKrlXn+LgWrZ/H5yAkJIRLb34LcP88St9ArFazYmNdSonFyedQem6VzrH6+B/4vTrDZrNh9XGtQ1Z2DrUftDs0mPtmljhR4X4xo9ziMm7fvcrJ4u3F1pr2bopOXXJbzsNk5XpWbdrb1wPAolW++G7RKY8OsPn4230/MJlMaPyDFcsB57+1veMpPDcajQaLgrE2H2UL9hatD1JKl79Vg9GINsD557Zo3W9pZXNybkIiollcXiQiTFmf5YGxKVLzlD+j3nrrLaf7d6tUq6i44nEX/aoHduNNy4AhJ2P3L699DPwA+LU3lRFCEBibxOz8wVxbKSUN/WMUuhFq5m2EEPhHJ3B/YfHAPiklTYMTFBwrdlvuyfOXaBqcpKGjh8aObmo6+8ivPOlxO4WT5y/RODBBfXv3nryCqlOHNv6ycnI5XlV9KDkVJ09zrekelodCvpq7+kjLd//cqXgPf39/r7ZG87Y8b3HywnPUdA/R0NFNQ3sXdzv7KD11uJBxbxMUHMzJC89Rff4SMUeowv1RpOzEaVpHlecTd41NU1ipLDWlqOIEt1u7DtRWaLjXR1ax+2kQBeVV3G69d0BefWcv2SWHWxgRQnh0by47eYbWEeX50x2j0xyrdhylEJyQytqG8noABuMW/jGOPbllJ8/SOjylWF77yBSlJ88pGhuWmsPw1OyB7SPT9wlLtb8w7orw8HCqX/gKrVPLtE4tc+LFNzyLnPAS/jGJGIzK61KsbWwSnOB8YdcnIoatLde1KdY3NgmMVu6lrzx1hust3axvbOxtW1ld43bnABUn3Esni03NYMzOtd2lf3SC5CzlixCh8anMzjvOeR6fmSMmTVn1/dKqk7T0uK6j0No/SmmF8wgyfUQcZrPycPXF1TXCUx07jnILCumbUl4/Z95oJSbGu44KFRUlPFYPs5RyQQjxnhDiJtsG8T8CPt0Xko0Db/PfAf8B+Ofe1qm4vJKOlkaGO/vIS44jMMCfnpEJVq0azr3yxuMLSXJASUUV7c0NDHX2kZ8ST4C/H93D46xaNZz30EOl0Wg4deHwK9CPSp430el0XHr9TZrra5HGjb0+1nnlp57oS4XKlwedTscZN/MAVY4uWq0WIuK3DS8/554vq9XKsjaYY05a5uwnJCSE8vMvUNdYh866bSBYtHryK88QFhbmtq6hoaGUn3+R+qZ6tJZtI8aq9SG/+twTW1zS6/VYQmIwbpnw83XurTKbLaz7hBAY6NiTVlhSxs1f/h1n85RF0zSNzHD2G46jM3x8fDAFRbFlMuHros+t2WzB4B+hOC0i71gxQ32+1A32oNnaRAiB1cef6PRc8jz06O7qXFHtWb0Qb1NSUc3NX/wtZ/PTFI1vHZ/j3DdecjqmrPIEV9/5GZeKsx2+k9lsNuoGJ3nuzd9QrKtWq+W519+ks60Vw9QYIAiKiOK519x/t8rIyqajZZV7A0MUZmXsbZdS0tY7iH9sColJrluf7ZJ/rJjGOzcxTM6QlvjgImbf6ARbQdEUZ2UrkuXv748+OoGp2XkSYu3XqRmamCYqI9el46TsxCnu/urvOJ2vrPbDvellzp96zemYkMTtxYHYKOfvZMOTM8Rl2I8IVVF51IinoUqwECIB+M9SSpcxkhUVFdKTRuVSSvr7etnc2CA7N8/pA/pJIKWkr7cHw+bmkdRPRUVF5cuClJLr7/2Cilh/Av397Y4xmy3cHL7Ppa//tse5ws8qUkquvfMzqhOCHS46mMxmbo8scOnrv+XyJX5maoqJhuuUZzo3SNqGp4gpPUWiix67Ukqu/vonnEwKc2jUb5lM3Bld5Llv/PYTX1g/akyOj3G/9S4l6QlOx7UMTZJYcZ64BOfjALa2tqj57ENyY0KIi3qwivnk7Dz9C+ucefkrbhXFexQsLi7S29GyVzTMotFTWFbhtM+0MybGxxjv60JnMwMCq86H9PxiYuPcjwTqam9leWKYgpR4QkO2Q6/nFpYYnF0kOj2brFxlNVTGhodY7qqnKNX5dWsYGCfj1PNEK/AIN965RZxui0Q7XQIABsanMIXEUuhGZExFRQWu7IHdkOwnFZr90PHVG8kR5sgbzEKI08CfA/9KSum8WR+eG8wqKioqKiru0Hj7Oqa5CfKiQggL2V7E3DQYaZ+cRxMeR9WFFzxOdXnWkVLSeOsa5vlJCmLDCAnaLsC4vmmgc2oRTXgc1RdfUGyM3p+dobf2JilBOpIf8qJNzi0yurpFZsVp4hOVefmklDTcvIp5fpLCuDBCggIf0E8XmUDl+edUY9kB05MTDDbeITXE90CbrvHZecbWzeRUnyM2zr0ijSNDg8wM9aHdM0h1JGbne9xJ48tIV0c7m6vLAIRGxZDtQXTD5PgYw813SQ/1I/6hBYzRmXnGNywUnLpIVLTyOkD9Pd3Mjw8TiImkmEhsNhvj9xcx6vxIzHL/GqsGs4o3OfIGs7uoBrOKioqKyuOku6OdjeUFpLThGxTCsbIK1ZBSiJRy7/yBxC84jKLSco/P38TYGBM9HWhsFiQSqdGTkFNASpp77cP269fV3ophdRkpbfiHhFNYUqZeX4WMjQwz3d8NVhMCgdTqScwtIsmNjiYqR5fhwQHuD/UirNsecJtWT0pBMQkKF6bssbm5yeTEBFqdlsTEJHw97LiiGswHEUKksV1Uebd/5L+XUt7wQM5bwD/sFHF+C+iVUtZ4Uc/fB/4Z8BdSyn/wQLcgKeX/LoRolFJWeEOnx10lW0VFRUVF5Zki34PiiyrbCCEo8GJxzaSUFK8aY0IICksO13f+y0xKWrrHixUqR5/0zCzSM5UVH1NKQEAA2TmeFcFTUcQNKeU3H94ohNBIqbhp91vALwCTlPJtL+q2y28Cz0spHVe+e8yoBrOKioqKioqKioqKypeKmZkZjEaj1z3MZ86ceWp6OwshuoBGYE4I8QnbLX+DgF9JKf8nIYQ/8H8DCYAZ+BOgFPhYCPELIBxolFJ+IIT4K6ASsAC/L6UcFkJ0A81sd0n6Synl3z50/D8EvsF2a/F/DuQC1cB7Qoh/KaVs2hkngP8dKGa7cPTXgDC2uyj5Ai1Syn/l4DP+R+C5Hf3/rZIU34dRDWYVFRUVFRUVFRUVFZVDMjIyAnCUDebz+7oTfRVIAk5LKZeEEAFSyks7xmmNEOI/Ad8F6qWUf7XrhRZCtAKvSynXhRDfBxBCVALxUsozQojzwJ8Cvw/EAf+EbSP3c2DPYBZCxAFvAKeBNOCHUsrnhRDf3ZW/T+83AIuU8uzOXA3wfwD/TynloBDiPwshHIVfvwSclFJadua5jWowq6ioqKioqKioqKh8qYjbqTbuTQ/zk8qHdoMHQrKFEAP7Qp/LhBD/AdADGUAMkAf8XwAuQrYz2c6PBqgD/uPOv4eklKs7x3o4TzsNaNuROySEcNbvMA+4tfufHcM9F/i/dsQGA1cczP1/A/+HEMIC/Htgxslx7KIazCoqKioqKh7S393FwkAXGrMBAKvOh+DkTApLj6uFoRTQ29nB0nAPGrMRKSVS70dIajYFRyRvuKejneWRHjTmrW39fPwITc0hv7j0SaumoqKi4g32G8H/Dvge0APUs12IrJttD3DjvjxnM/Bwv8QB4M2df1cD/Tv/dlZdegQo3fH6pgHLTsZ2AxfZzp3eNb57gT+UUo7u/F8L/I6duTellJ8KIX6bbY/5nzk5jl1Ug1lFRUVFRcVN5mZn6br2AflhfmRGBbG9IL/N6sIAt3/SQvqp50lKdb/gkZSSqakppJTEx8cfuo/zfnkJCQlHotXV7PQUvTc+piDcj+yoIOCLfscr93u4+Q9NZJ55gcSUVLdlr6ys0NfdBUBWbh7h4eFuy5iZmqT3+scURQWQExXIdorcNsuzXdz8cRPZ514kPjHZbdlfNpaWlhjo7QEgJ7+A0FBnTiSVp42FhQWG+vsAyCssIjg4+AlrpHIIfgn8FOgANna2/VfgbSHENwAD2+HN7wE/E0L8bHeilLJRCDEthLjNTg6zq4NJKWeEEO8Cd/gih9kR7wOv7Mg3Ad8C/gj4L0IIX7YN/3/kYO47O7nYvsAfuNLLHqrBvMPa2hrdbS0IbETGJZKRlf2kVXqA1dVVetpbEUii4hO9XpVQRUVFRUUZC/NzDF17j7OpMXb3hwT6czrQn476Kwih3Oiz2WzU3boOm6skR4Wh0Who7GzE4hNI1dkL6PV6VyLsyLuGMKyTFBm6Le9eE2Z9gEfyvMXc7CxjNz/iTKr9Hq2hQQGcCQqgre5zhOZFEpKUVb1eWVmho+42YT6C45lpCCHo7qila0tSUHFSseE8Oz3FxK2POZtuX7+woEDOBAXSeudTxJlXiEtIVCQX4F5rE6vjg2iNawBY/YIIScqisOy4YhlPC0tLS3Q11hDuK6jISNtuIdZ6l06TpKjqtGo4P+XMz8/R21xPlL+OivQUpJTca7zFsllSduo8QUFBbstsqqvBtLKATu702db6EBKTSKEXK+l/SbDr1d3XSlg+tE0+tL9o5+9h+2L2xr3oQD7AkAP50smcxn3b1pyMA5i3o9vovn//593jPTS33c68XRyGhakGM1B74wqB5nUqMlIQQjA7P86N99soOfs8YWFhT1o9aq9fIcjyhX4z86Ncv9dK2fkXPH7gDPT3sTA9iUYAel/KK6sP5cXwtjxv097SjGFlEYHEqvWhrLIaPz+/J62WypeEnq57rMzPIgCdfxBlFZVquO5TTNeNTzntwFjez7GkaO7UXCExxdGi9xdIKbny/q85X5yNXh+/tz0+NhqbzcbVD3/Nxde/jk6n7LEtpeTqB+9w7lgWen2CHXnvcPH1rymW5016bn3G6RT7xuh+SpKiuXP3Kgm/8ZbLsWtra3TcvsLpkvwHtudnpAFQW3uD/JMXFD3T+25fVqRfaXI0d25/TpwC/QBqr3xCpmaT/MQwtou7brOwPErt5fuceP4VRXKeBpaXl+mpvcGpY7l724QQFGSmAXDn9hWKzz5PSEjIE9Lw0SClpL2lma31VRAQGBZJ4RFqO2cymWiqvYvWagIE0sePypOn3Y46WViYZ6iphlOFXziXhBAUZW9H1Ny4+gmVz71CYGCgYpnXP/mQiqwEApMfdFjNLy5Rd+s61WcvuKWjioo3eaRxWUKIKiHE9Z0/vUKIvxJCDO8klO+O+XCnLDlCiLeFEA375mQJId4SQvQLIW4KId7dcbt7jZa6GvLCfCnKTN17gY2NiuBcURZtNy8fSvbw0CAtjQ1YLBaPZTTX3iE/wpfCffrFRUVy/lgWLTc+80hmU10N/sZlqvLSqchNpyQ5mqsfvYvVavVQ3l0Ctla8Jm+X6elperq77a0qucXtq5+TGqKnqiCLyoJsqnNSuHv5Y4xG46HkfplYW1uj9tYN6m/fYHxs7NDyZmdnqLt5jYZb1+jfCdU7DDMz09TdvEbj7etekQfQ19tLW2sLNpvStoT2qb11gwiMVOVlUJmXQX5sKFc+fO/Q3+ujTm9PD+1trc/c57w/O0Os2FI8PjtYT/9OeLAzGmvvcLYoy67XV6PRcKm8kIY7NxUfd1tephN5BW7J8xZTE+Mk6pQ/EzMCNQwP9Lsc19FQc8BY3s+JY7l0NdW5lDMxNkqyr/JnV5q/YHRo0OW4gd5ukm0rRIYe9LpFhgaRyrqi78nTQldTHSf2GcsPc7okn85Gtzu7ANuRE80N9bQ2NR65+8v1Tz8iI9yPyrx0KnPTSfDbfgc5ClgsFm5+8j7VOclUFmRRWZBJeVosVz9y/3nU19pEZaHjSMxzZQW01dcoltfa2MDxzHgCAwIO7IuKCCcxUMuwgt+Zisqj4pEazFLKeinlBSnlBbYrm70DLABlAEKIMODh5cXf350jpRzY2fafpJTngDHgQLPtw2BcmCY0xH7YSGFSNH09nj3AGu/ewndxksJwPdff/6VHRrOUEtPSLCHB9vUrSIxioK/XLZkbGxvottZJiP3CO6LX67lwvJjmBtcvEw+zvr6ObmuD+JgvVuP1ej3ny4/R0ljvtrxdmuvuYhjrJl6zyZX3f+3xQ3F6eorE0ABC9uXUCCG4UFlKa6P7n/fLyNbWFo03rlC98wKwMjHIxPi4x/KWlpYYv9e2t8CiW19w+3v8sLyJrm15x3PS0K7NH0oeQM3N64RLAzmRgVzx4GVil7m5OSJ8IDoqcm+bn58vJwqz6WhrOZSOUspDL0rtYrVauXvjGjU3rrG2unpoeXeuXSFKYyIrPIArH75/5F5qD8NwexNZ8VGKx8eEh7Aw1O1ynGV1CV9fH4f7NRoNGNYc7n8Y69oyPj7ek/cww0ODHv3Oxu+1khYboXh8fEQo9/vvOR1jtVrRmTZdyvK1bmEymZyOmehqJSVauX6JUWHM9Ha6HDc30E18pOOQ8NiIUOaHPF/sGxocYGhwwPXAx4DJZMLX6npRSWfadPseJqXk6kfvcywpirzYUK5/8qGnau4xNjrC3csfcefzj5ianPRYTm93F8fSEgja51UNCw0hNTL4UAvNUkoaau7Q0uD5OxVAc0MtFyqKH4hu0ul0VOVncK+jTbGcjY0NAjA7HSOEQGNcV3zvNyzPPXDeHiYxLoaZkaPx/X5WaW1t5Qc/+MGTVsMu3/nOd7BarXzwwQdUV1fzJ3/yJwAYjUa++93v7o37yU9+ws9//vNHosNjicUSQuiAE2xXJgPo3SkFXs12EneVQlGdbPcL8wpGo5FAreMfc2R4KMMTs5BX4LZsubZIfP52nvHFsgJamhqpqD7hlozNzU1C9I7XNKIjwhmdnIYcx6u4D9PV0c7x3IP5zzqdDrllcEs/gO7ODrvy9Ho9Ng/k7WJZXSR9Z/WyOj+N7q57FBQWuZh1kImRISoyD35lhBBorc5v+K5oqa9hZWGOC6+8cSg5uxgMBqYmJ8j0Uv58c30Na0tLnH/p1UPJudfRztmKL/KHCrMzaewbISnZs2I3A73dVBR98Z1NS06koXfYre/xQXl5e/9PT0misW/EY3kAWtMmUZEZAFQX5tDT3U1+gfv3gZGBPioyD+avBgYGYJyY9Vg/gCsfvMOWYZPXfuM7h5ID0FxfT/WxPLRaLbVtLZw4e95jWTabDR/rFhHhYQAUZyYzPDxMRkbGoXScnBhny2AgIzvnUHIOi8Zixkmak12ExfW9Rodrw8FXs71IoiTdRStdL9L6COXy9rO6usrKcDdBAf5MTgaSmKj8sayxmnD31UNYnRu5CwsLxIa7LjSUEhfF5OQk6emOC7FtX1/3crtd6QfsVFF3ntOpNXv2zJybm8M4vZ1qOB8aRlSU8gUdR3S0NG2H2JaWuz13amqK5NhIl+PiIkKYn58nNjZWseyx0VGKM1PQ6/Xo9XrSYsKZn5sjKtp1CL1DfYf6OFlSCEDdvW4SEpXnpO9nZX6OnNyD9/uk+Dga+kdJTlGWi/8wLY0NFMZHYDKbuNfR7nGItzBv2f2tBwcFsTk1ameGfUaGh8hMjnc5LjTAl42NDUW5zDrp+v6nw/1or7fffnuvL7I9RkZGSEtLc1vus0hpaSmlpaVekWWz2bxWXPLmzZsUFxej1Wr527/9W27fvs23v/1tAP63/+1/45/9s3+2N/ab3/wmX/va1/jWt77llWPv53GVyrzEdt+v3W/7L4FvAK8BHz009q/3hWQ//Cs7y3YJ8QcQQnxXCNEohGicm5tTrJRWq8Vidb765alfxGL7YubK2jqBHhQ/0Ol0mCzObyI2m3sa+vj6YjTaX/mVHuRU+vj6srVl/2XhMD4ly74w2MXlNUI8zNWWCIcrnG6eugOEhkcSFuU6j1Epfn5+JCV79kC1R1hEJKGRh39x8g8IZG39i97xUkosVs/DlDUa7YGIC3e/x/sRQnNAnvUQ+gEP3BcWl1c8/v4JjdahB0XKw+Uwh4RHEhTmfvVfewSHhjC/sLAdgaJ37JVUghAC877zv7y65pWqqeERkYRHef5S7C2Exv3rpmSOEkeM1a2XENfHtEnp0UuNn58fs8urjM7MERzsXg6q0Lhf20II53P0ej0ms+sFgq0tk1OvO3h2fZWdQwVyhWevZIGBgUzOLTI5t+hWzqgzwiIiCfPw+aHX6zGZXC8SbZnMLq/HwwQGBrKy9sXzaG1zE387YbzuYLHJ7ZZhUuLildApjm7pUspDvQ+FhoUxNj3N2PR9Qg9xz3f2mHXneaTX+2BW8Hszmc2KCwsqOT+PIlApLS2NM2fOeF/wU8j169f5wz/8QwDKy8v5J//kn1BdXc3/+D/+jwfG/uhHP6KiooLf+73f49ixY8B2/+nf+73f45VXXuHevXv8q3/1rzhz5gwXLlxgeHh7Qa+iomJPxokT207Et956i3/8j/8xly5d4vd+7/cOHOudd97Zu0Z+fn5YLBY0Gg3z8/NMT09TXPzFApJOp8Pf35/Z2cM5JOzxuKp9fAv4+33/r2O7B9YisP7Q2N+XUu7FN+2EjvwLIcRvAK1slzJ/ACnlD4EfAlRUVCj+Sen1era0jm/WA2NTpOV7VrkyLruQ2s5OdBqB1T+EE+dPui3D19cXg3B8s+kbnSCzyD2vdXFpGXc/+4BTZcce2D43v0holPJV3l2OlZRS89mHnCp/UN79uQXCY1yvQDoiMaeImo7t86cNjuB4kmfezGOl5TTfvc7xYw/mtq2ureEXcjhjw9ueLiEEvr7eS9HPyPKOfvkFBVz/7GOKUm0EBQZwp6WTk8+95LG8sopKrn70HufKCtHr9dS0dJJXecpjeeWVVVz58B3Olx/zijyAqJR0als70Wo0aAJDqPDQ41BcVk7Tjc+p2vFe7DI2OU28B+2G9lN15tyh5u8nr6CQvp5uZmeXqDjh/r1qP0IIIpLSqGu7h0YIdMFh5BzC+7NLQEAAAYd8MfYGNp8AbLZ1twxNm49rva161799q9ZPcbE4i5Nn2xfyfD0qPufj48NL3/htt+cBWPR+SGl067hWvfMCjeHh4fRsbOGqd8T4wjInKhKcjrH6BCDllmL9pJSYda4LSMqAMJdjbP6eFcAKCAjgha9926O5jkhOTfN4bkJCArUdDSTGO3+nmN/YItvNll9R0dGMDQ1Q19IBgF949KEXCcpPnqW2vhYEVJ72/L6anpNP71AXuTuF5nZp6+6jsOK0x3Izs3OYDQlFp9MRGenac++I4MgYFhaXiIx48JyPjE+RmJGpWE5Wdjb1n75H9THn39dNq/J3GpvO9TglYx7mrbfecnuOynbRvn/37/4dycnJlJWV8cd//Md7+ywWC3/1V39FfX096+vrD3joU1JS+NGPfkRDQwPT09Pcvn2bGzdu8Gd/9mf89V//tcPjlZeX81/+y3/hu9/9LtevX+fChQt7+3p6evaO8a//9b/mv/lv/ht+4zd+gz//8z/nu9/9Lv/df/ffERUVxR/90R8BkJGRQVdXl1uRK0p45B7mnXDsk8BedZGd+t6/Av5vhWL+k5TynJTye/u81F4hLjOf/vGpA9sNRiMzWxAT49kJT8/K5uSrX6Py5Tc5cf6Sx/rFZuTRP3ZQv02DgfsmjduhV0IIknKLuNPUjtG4hZSSrv5BRpY2yCsodC3gITQaDUl5Rdxt7mBra1vevb4BRpc3yclzXIDFFanpGZx66Q2qXvgKx094/qDx9/cnMDaJpo4vioeNjE/SPjJNSfmz18bjUXHhxVdYEv70LWxw/pWvHMpw0Wg0XHr1DTqmlmgYnKL49AUiIpTnDNqT99xrb9IxtUTj0PSh5cF2r9CTL7xK1XMvU3HCc+Pbx8eHyNQsals6MZvN2xVUe/pZtGhISXW/v+yjJCcvn+Iy98Mv7ZFXWMSJ51+h6rmXKa9yb1HvqFN6+jyt4/cVj++bmiP7uOtFiKikdKZmHUdILSwtExStfBEyMimV6fv2um58IS84xrnx+CgoPnmOtjHlq/9dE/fJq3L9DNAFR2AwOC7kuLVlQhMY5tIQPnbyHB1uXN97E/cpPHHW5bjs41V0jM44ljM+S1aZ0uy0o40QAk1guMPoMwCDwYgu2LP7dHn1SapfeJXqF16lpKLSUzX3CAgI4NSFS5w6f8ltj/d+YmJiMPuG0NzZg81mw2q1Ut92D//oRI9aLO0nNjb2UMYyQEHRMfpmVxjZ987bOzTColVDkhtOCY1GgwwIdlqbZ31jA99w5e+n8enZjExOO9zf1jtIXol3nk8qrgkPDyc1NRWNRoO/v/8D++bn50lOTsbHx4eIiAgyM79YbKms3P49Dg4O7v27urqagYGD+ef7oz+PHz++9/fg4MHibrtdbUpKSviHf/gHysvL8ff35+bNm3zrW99ia2uL3t7eA3K9yePwMF8Ebj5s6Eop/wuAECLtofF/LYTYbZb9Lx+1culZ2QxJSW1vDyE6GwG+PsyubiKCIznzwpNv8ZCRncMQ2/qF6sHfR8/s6iaakCiP9UtNSyc5JZX21mZMWyZyiyoO1Q/xYXl5xVVHqlVEftExDJlZNLY2g7SRlJbB2eOeeQy/zGTneM+jrtFoOF7pvZdDb8vzJlk5uaRlZNLW3IzVaqHw+CmvhU2qPH58fHzYConFbLGgd9GSSUrJrAggT8HCZnZuHs11i5gnp0lNfNAwnpmbZ2TVxEk3IpVy8gpoqr2DeWqGlIS4A/JGV80eRT4dloCAADYCoxTlTttsNhZ0wRQpaAVVcfI01z5+j+rsZAIeesEzGre42zPMpdfedCknMDCQVb9wxfot+4Qqet5FRkaxnF9JQ/tdjmck7kUoSClpGpokorD6UHm4R42qM+e4+uE7nMpLx8/vQc/gpsFAXf84F71U/+MocaysHKPRSHNrC0JoKL/w4hPrd26PUxcuMTU1ScPAEFJKMvOKFd2fHqb67EWuvP9rzh3LOrDIsLa+QcvoLOdfek2xvNS0dDqXl+nsG6Io54t6F1JKGjt7iczIOxJtXr8sOFtYjI6OZmJiApPJxObmJkNDQ3v7du9rWVlZvPPOOwDU1dWRnb1dm8doNGK1WpmYmGB+/osF3ZaWFo4fP05LSwu/+Zu/+cDxcnNzGRwcfGDB6C//8i/5n//n/5kf/vCHmEwmNBoN6zupg8PDw+Tne+6wc8QjN5illJ8Dn+/7f8VD+0fYqXwtpXzLjojWR6fdNhnZOWRk57CxsYHBYCA1IsJryereICM7l4zsXNbX1zEajaRFRh66h6tGo6G0vML1wCckz9v4+/tTddJzT7WKymHQ6XQcrzqaBr2K+5x8+Q2u/uxvOJsY7NBottlsXB+e5+y3flex3PLqU4wMD1Hb249ObueAmtESnZzOybI8F7MPcvzEaUZHhqnt7duTZxE6opPTOVHmeVG8w3Lq1Te58tO3uZAcjk5n3yi12WxcG57nwrffUiRTCMHFV96gpaEO49Ak+p0iQmahwSc0ikuvvan4uXn69a9z5Sd/zcXUCIdGs9Vq5froIhcV6geQmZdPYlo6TTW3EDsVym1+QZR+5bf3PCjPCkIILr32Jk11NZhXJ9DZtr2RFo0O37AoLr7yxjPbi97Pz4/KQ6a2PEoSEhJJSDic00Cj0fD8G1+noeY21rXlvaJdFo0e/4gYt4zlXYpKy1haWqK2vRk9tu2cco0PxWdfOBLpOCrbaLVavve973Hq1Cny8vJItRMtV1FRQXx8PGfOnEGn0+2FY3/nO9/h5MmTlJeXPxAJWF9fz9///d+TkpLyQDg2wJtvvsnly5ep2nmHunv3LseOHSM4OJivfe1rfOc73yEqKoo//uM/xmKxsLm5SVzcg4vE3kA8S+0+YDuHubGx8UmroaKioqLyDGOz2aj7/CPE4iSliZH47HiRrFYrrRNzmIKjqXrxK0fKu3SUsNls1H72AdqlaUqTovYWHiyW7fNnDomh+qWvoHPhxX9UWK1Waj/9AN3KjF39LGFxVL/4utsVxlVUVB4PFRUVPAl74Pvf//4Df7sx1psrSI/UuDPvFHRbXFzklVdeoa7O8zatb731Fn/4h39IUZHjTji/9Vu/xd/93d+5vN/+9Kc/RQjBb/zGb3iqjsNr8GSeRCoqKioqKk8xGo2Gky+9js1mo7X2DtaNnZ7GPiGUfkM1lF2h0Wg49fIb2wsMtXeQmxtIKRF+oZR/640nZijvotVqOf3qV3f0u43c3NzRL+xI6KeioqLypPjBD37Ar371K9bW1viP//E/PvLj/fjHP1Y0brfd1KNAveOrqKioqKh4iEajofyU66JPKvbRarUcP0Rl4kfNtn6e9yVXUVFRedb43ve+x/e+9z2vyHr77be9IudRc3QSdVVUVFRUVFRUVFRUVFRUjhCqwayioqKioqKioqKioqKiYgc1JFtFRUVFRUVF5SllanKCqdERABJS00hITHqyCj1lTIyPMT0xBkBSagbxCYfrT+5teSaTicXFRTQaDREREc98/vzY6AizU5MIIUhOyyD2EVQ8Vnn2WVxcpKOjA7PZTFRUFCUlJYeqzP9s/+pUVFRUVFRUvjRYrVZa6muRJiMgET7+lFZWP3NGhs1mo+XODbYmB0nQGCmN2O4FPXGnlRrpj09CJuVnzrv1gmixWGi5/hnWoS40O22vrH5B6DKLKL/4okcVwS0WC60NdUiTARAIHz/Kqk488eriNpuN5ppbmO6Pk+QnKI8KR0rJeMsVaup1+MYmU3bitOLzZ7PZaL57C9Pcw/KucrdOg19cilvyAHrvdbI42oePYZXoYH+klLSuGzEHhBGXXUh6VranH99rmEwm2hrqkGYjIND6BVBaWe329bVarTTfvYV5fpKUQC3lkdvnb7T5CoNmLQHxaZRUVj+zrchU7LO6usrY2BgBAQGkpqYq+l41NzdTW1vL6Ogofn5+aDQatra2ePfdd8nLy+O1114jKCjIbV3UtlIqKioqKioqTzVSSmqvX0a3uUJJZvJelXKLxULb4Dgm3yBOXHwBjebpz0QzmUzc+OlfczpKj6+P/WrsWyYzd+bNnP/27+Pj4+NSZl9LE3OXf8HxYIH+od7YZouVpjVJ7EvfJqu4VJGONpuNmquf4bO1TmlWyt6Chdlspm1wHEtAKCcuPO+2AWQymWipr0VjNSGEwKb1obz6pFsLIgaDgdvv/IRz6VEO+6gbt0zUTK5y7mu/6bLivcFg4M67P+VsWqRDeQbjFrVTa5z/+m+51FVKybV3f0FRuI6osBC7Y6bmlxix+HHmpdedynpUWK1Waq99jp9pg5KslD1DxmQy0zo4hgyKoPr8JUXXd2Njg5r3f865jFiHfdk3DUbqZta58Oa3FRvjT6qt1D/+x/8Yo9FIWlqay7EjIyOkpaU9dW2l3EVK6dZvvbGxkbt37zI2NoZer8dqteLr60tubi6vvvrqAz2c9/PjH/+Yjo4OfH19HeoB8Pu///t2+0fj5BqoBrPKlwKz2Ux7SzM2m5X0rByioqKetEoqKioqKl5ASsmVd3/J2dxkfBwYkGazmRtdIzz35reeaqNZSsnlv/uvXIz3c/kCKqXk2rSR53/n/+F0bH9bM/Lqz8gMdm4Y9q+a0L/422QWlTgdZ7PZuPLOzzlfkObQ2DSZzNzqHee5r35D8Yt0S30N1qX7lOZm7BlNFouF1t4hfGMSKS6vdCnDZrNx5Wd/w6XMGJfHtdlsXB9Z5Llv/Y7DsdvyfsSlzFhF8m6MLvHct37H6bgb7/+K6viAvd7ujljfNNKxBqdffM3pOG9jtVq5+u7PuViU6dB4NRiN1A7NcvH1N52eF6vVyrWf/y0Xs+Ndnj+r1cqN0SWe/+ZvK9LzaTCYAc6cOcPzzz8Pz5jB3N3dzfXr1xkZGcFsNhMcHExubi5f/epXCQwMdDjvnXfeob6+3qHRa7PZ+IM/+AOSk5Mf2P6rX/2KpqYmRQuENpuN733ve0RGRj68SzWYXTE1Ocn4YB8aAT6BIRSXlR+p0I/JiQkmhvrRCPANCuVYadmR0u8o01hzBzYWKc3dvrn3j4wzvWrk5KUXFf2wVFRUVFSOLnU3r1ES5Y+vr/P7udlspml6lZMXX3hMmtlndXWVns42APKKSggJse9FtEdr7R0yF7oJ8LP/Mvkwm8YthqMLKa46aXe/zWbj7l/9CSdDlS0i1KzB6X/5Z07fP2qufc7x+BCXntmtLRNt8waqz110edzWhloSfKxER4Tb3T99f555EUBxeYVTOc01t8mXiw498w+zur7JRGgaRWXH7e5vvHOTQrGsWN7K+ibT4RkUlJTZ3T/Y10PgZBcxEaGK5A1NzRFUeo64eGV50gsL8/R3tKLZCaG26v0oLK906zt45/InVKdEuvT0GoxGupYtVDhpG1d/8xolvgb0emURAgsrayzG5JJbWORy7JMymHe8xXt/u8GRM5hXVlb4+OOPmZycRKfTkZuby0svveTS/rh79y4ffvjhgXdsKSUajYZ/8S/+BaGhB7/jd+/e5YMPPnBoLO+X86d/+qd7i5+rq6v89//9f09AQIDiz5aamspbb7318GaHH+yxLrMKIYKFEHVCiHUhRNHOtn4hxPWdPx88Tn126WhpYmOsh6qsRCoyE8kM0XL5/V9js9mehDoHaG9uxDDRt6dfRrDmSOl3lGlvbiQtWMfxgpy9m3t2WjJnj2Vx98onT1g7FRUVFZXDIKVEri64NJYB9Ho9mo3lJ/rsvNfWylDjbSpSY6hIjWG46TadrS2K52+O9Sk2lgEC/HzZGOtzuL/11jXKApSfjxIfC+13bzrcb7PZ0GwsuzSWAXx9fZCrC7hy3FgsFkwLMw6NZYD4mCg2ZsZdytqaHVds3AKEBAWwNjHkcL/pvnvyQoMCWBkbcLh/brBbsbEMkJEQzXB7s6KxCwvzDLXUUp2TQmVhDpWF2ZzISab11hU2NjYUyTCbzfgY1xSFRfv7+WFZnnM6xrIwpdhYBogMDWZpxPH3WcU+vb29fPbZZ8zNOb8e+1lcXOQv//Iv6e3tZX19neXlZW7fvs0PfvADp/OMRiPvvfeeXYeUEAIpJT/+8Y/tzr1z545LYxm2ow2uXLmy9/9PPvkEf39/l/P209vbi8lkUjz+ccclGYDXgV/s27Yipbyw8+eBZAwhxCPXz2QyYZybIiv1C9d+YEAA50tyaaqredSHd8nW1hbmxRkyU76oehkYEMC54hyaG2qfoGaPHqPRyMLCwqFkbMxNERkRdmC7EILUyGCmJicPJV9FReXx0Nt1j/bmpiethkM2NjZYXl72qrzVlRWvyVtfX/eqPG+ztrbGigf6dbQ0cywtXvH40swU2prq3T7O2toaq6urbs/bz9bWFsa5CUryshBCIISgODeLrflJjEajy/mrq6uEGpfcPm7w5oJD3U2Dnfi5YbAE+Oow9Lc53N/W1EBpZopiecfS4ulocW7wtTTUUpab4VJWSXYqbU2OPYpzc3NEa5S/IO8SsLWCwWA4sP3+/VlitBa35fkbV+xe7+3FBvevr1hX9p7U195CRUHOge1nSgtob6xTJKO1oY6ynDTFuuUlRtHd2WF338T4OMkB7hd/020uYrG4f96/rFy+fJkf/ehH1NTU8L/+r/8rg4ODiuZ9+OGHB9JX9Ho94+PjtLe3O5z38ccfuzR6R0ZGWFtbe2DbwMCA4nd+nU5HZ2fnA3Pdjbr18fHh2rVrisc/1rKRUkoLMOfqQwkhrgNNQJEQogf4iZSyRgjxKlAtpfz33tKpvaWZsvysA9v1ej1sHbxBukPDnVsszE7x8te/7bGMjtYWyvIO6ufj44NtU9mKoCPGR0dZmLtPaYXrvB8ljI2MsLQwT8lx5yFRSrnz+UdEhwazkZpDiv3kfKesra0R5u/Y65CWlEDjyDAJiYke6Vd38xorC/O8+LVveTT/UTM8OMDayrLLEDWVx8Pw4ACb6+sUlpR6Rd5gfy+GjU2KSu2H9j1LDA0OELAxT2ygP+3NTRSX2w+PfFJIKbnz6fsE+PpSev4FjypwPizv7ucf4e+rp+zcC07zvZTKq73yMX4+esrPv+hW2NrjwGazUXf5I/Q6HVXPv+qWp8BkWCcgNFjxeB8fPdYt9wxfi8VC3eWP0Go0nH7lqx6n8rS3NFNu53lempdFc2szlSdOOZ0/PTFOfKj734X40ABmp6fsht0Kwzood1gDoDGsO9xn3TLgE6E8vDfA35+tZRfXw2xSVNTL388P8+x9h/unJ8bJjnLspXZETHAAc3P3SUl58D1kenyc3Gj35UUH+zM/P09S0oPtv1ZWVgh38s7iCI3NoqioktZif7FACIHWqnAhwbyFVqv8/hEaHEz/tP1FgNmpCUoiwxTL2iUiwJfl5WVFtWjefvttRkZGFMvel0/8zLA/H9jHx4ebN2+SmZnpct74+Ljd7X5+fnR0dFBcXGx3//z8vMs6Eb6+vjQ3N3P+/Pm9bcPDw27d+/cvAm5sbLh9X9ZoNKyvO76XHRjvlvRHQ+i+kOz/c9/2j6SULwF/A3xnZ9t3gL97WIAQ4rtCiEYhRKM74QYAOr0Oi8Vqd588ZAqAr78/vv6HezHRarWOV9IOme3g6+eLn5shDM7w8/fzqjyh1bG8vuGxTK1Wi9VF6N1hcvh9/f3xCzjci+yjxM/fH79Dfv9UvIevrx++fn5ek+fnH+DV39tRxs/fnzXDJmsbhiP5mYUQ2BBsbil7sVeC1QaGLbPX5FmssGk0P/F2PvYQQmC2gcHkyef15EHo3hyNRoPZJtmy2A5VMEyr1WK1HnzfsFqtaDSur4tWp8PmwTPLZpNoHZ1XD06fcHoOHsX18E5qp1ar9Sgc3yYlWu3B86fRarHZPLkeNru/w+13Fs/eSZR415xJVnxUT2rnOJjjaRCpzcYjuY+NjIxw+/Ztr8t90jx8z1J6D3N2L3Z2/pXIl1IekO/uvXX/d97T+7I7845CY8IVKeUFO9sbAKSUTUKIvxBChAGxUsr+hwdKKX8I/BC2i365c/Di0nJqP32PkyUFD2xfW1/HL/RA9TS38IZnr7isnPrPP+BEcf4D21dW1/APO1yl55jYOGJivdcQ3tvyLr36xqHmBwQEsO4kaqdncJTsIs+966WVJzye+ziIT0gkPsEz77mK90l4yJtwWBKTkl0PekZISEhECMGWcYuc9PQnrY5dDhNJ9DBCCF7+uvciV7wtz9sIIXjlG56dv+DwSJZW5ggPVebVXFvfwC9IuQcUtl+qXvnGb3qi3gOUlB+n7rP3D7xvNHb1U/3iV1zOT0hKpq9mk/Bg9xZqJ1cN5DgoCmULDAWz63Dw/Vj8HZ8/v6BQ1tbXCA5SpuPSyirB4c7fZfQBQWwaDAS4WCxbXlklMNR+uxmApNQ0Rq82k5fs3nvK7JqBoujoA9uT09IZudbqgbwtig9W5yU4OJjlLfdDja1aZZ41q97XrifaarWCr7LFdX1AEMatLfwU5JkCzC4sEhlrP0IwOT2d4bp+MhNiFMnaZdFgIsNOwSh72Cnq5BAPinQ9Fbz88sv85Cc/2atU/frrylqRpaen09nZecCo3NzcpLq62uG85ORkRkZGnBrcFouFysoH378LCwv5/PPPFXuZ97eWCg4Otps24Qyz2eywPZU9joKH2RH7lwE/Bn4A/NrbB9FoNMRm5VPf0b238jg6OU3b2BzFZeXePpzbaLVaotNzD+jXObnAsS9BKOZhiUhMZWxq9sB2o3GLBZMkPNz9cCoVFZXHT3x8AmlH1FhWeXLkFhTSO6281sW98RmvpUW4i1arJT6niDut9zAYjBgMRu62dRGXXajIYxYQEMBmkHvGBcBmcIzDMPyQwkpWDMrzepc2twgvdrxYXFhSwr3xGcXyeqcXyHNR8bjkeAXtg2MuZXWPz1BwzH6YKEBoaCjLboQT72IKjLAb7hkWFuaRPHNQuMOCSIS45wiRUiqeU1p1ihvNnQ942S0WC9ea73G82nk6wC7F5RW0Dymv/TKysEZGVrbdfdHRMczZ3Pfb2YKjnurWcI+b0tJS/uzP/ow//MM/5E//9E/ttVKyy5tvvom/vz9ms3lvm8FgoKKignQnz+LnnnvOafSmzWYjLy/vwG8gLi6OhARl1d63trYeMLjz8vLcjh7RaDScPXtW+Xi3pHsBIcRHwIvAfxVC/C4PhmRfdzDt74CvAT99FDplZudSdvEVmscXaByZRR+fydnnX3oUh/KIrNw8Si+8TNPYPI0js/gkZHHmuReftFpPBTn5hRj8w6nr7GdiaobFpWUa7/XRNrHA6UvqOVRRUVF52vGPTmRpZc3luNW1dXwiXPd7fZSkZ2Zx+pU3GVizMbBm5dTLX3VoUNgjIucY86vK65fMr24QmePYiCw4XkWnVbnR10UweaWOnQlCCHwi4lldc50buLSyhn+06ygoIQQRqdkMT0w7HNM/OkFMRp5LWaEp2SyvKz9/M4vLRGcVONwfkpzFyvqmW/JicxwvECTlFTMyozy1sHNkivwK+y3DHiYgIIBTL75O48h9GvtGaOgdoWVigUuvf01xKoRGo0GERrKx6dqbN7+0TFCc8wJwgfHprCuQtcv4/QUS8h1/n1Xs4+PjQ3x8vFsLDXq9nj/6oz/iueeeIzk5mYyMDN566y2+9S3n0UparZbf/d3ftZtOajabCQoK4jvf+Y6dmXDp0iVFlatDQkKoqqra+//LL7/8gGHvCikl+fn5bp2Pp6IPsxAiAfjPUspvuBrraR9mlWefqakpDIZN0tLSj2Qen4qKioqKZ9y5/An5Ef6EOygAtrK2Rsf9dc6++Npj1sz7XP3F33MicMtlO6Mtk5k6gx8Xv/7bTsdNjgwx+6v/SkmIc6Opdc1Kwjf+W+JTXBfhvPXZhxyLCSI02P71WFpZo3vRwOnnX3Ypa5ferk4Wx4bITYwmPGw7JHd+cZmBmXmi03LIynVtMANc/fVPOB0fiN6FkWgwbtG4bOP86193Ou7KL3/MmcQgRfKaV+Hsq286HVd37XOy9QbCXITezy6tMOMbQ9nJM07HeRspJTc+fo/jSZEEBdpfbJlfWmZw3caJC84LaEkpufLLH3MuJRydzvl72YbBSNuahjMvKwspdrcP8yH6J3tLzpHrw3wYlpeX+fTTTxkeHt4LBy8uLubixYvO+7jX1PDee+/hZ6fmi8ViISAggH/+z//5geKat2/f5qOPPlLUlkqr1fJv/+2/tRfp4VCxI28wCyFOA38O/Csppcs+SqrBrKKioqKi8uWjvamezfuTZESFEr3TTnB+cZnB+RX8IuMprTradSeUIqXkxjs/Idu2RFyYfYN0emmVAW0k59/8tiKP+tToMAPv/QM5thWiAx984by/YaRfG072V79DfLLyjhWt9bUYF6bJjAolaud6zC0uMzS/QkBMIsXHq5wLcEBv9z1WF+YRQhAaFUO2QkN5Fykl19/9OXkBNmId9DyenF9ixBbAmVe+6vL82Ww2br7/S/ICbMSE28/vdkceQP31ywStzZCXcrBlmpSSjpEpiMuk9MRpl7IeFc21dzAtzpITF7m3UDUzv8DIwjrB8SkUlSnrZmCz2bjx7s8pDNUSFWb//I3fX2BChHD6JeULXqrB/PQyPT3NlStX6O/vZ319Ha1WS0xMDCUlJVy6dMmh0+v69etOezLvGu7/9J/+U0fdLJ5eg9ldVINZRUVFRUXly8tgfx9Lc/eRUhIWFe22QfW0MNTXw8y9FjRLU0T4bIcWLpps2CISiCsoIyPH/c890NXBXEsNWsMaCIHVP5iYslNk5hd6rGd/bw/L89thxhExsWRmH+wF/CQY7Ovhft89tBsLhPvpkcCSwYwtJJr43GOkZR5sAeaMgZ5u5ga6HpJnwRYS5ZG8xcUFepvqEOuLaKwmhBBYtXoIiaaw8hTBDrz3j5ve7nusLi4CEBUXT7qbn3OXvq57LAz3oF1fItzfB5u0sWS0IEOiSMwvISXNvRoWqsH85WRhYYHPPvuMnp6evV7PQghSU1M5fvw4p06dcrZopRrMKioqKioqKirPGjabjZWVFWC7sJVaEMk9ds+fEIKQkJBDnz9vy/uyYbVaWVlZQavVEhwc7PH5Uw1mFYPBgNFoJCQkRGkqpsNrcBTaSqmoqKioqKioqHiARqNROz4cAm+fP/V6HA6tVutWux8VFUf4+/srblPlCnXZS0VFRUVFRUVFRUVF5dlAPPxHCPHf2tuu9M9h5j9Fx3aIajCrqKioqKioPDNsbW0xPj7O2NgYRqPxSavzpcdoNDI2Nsb4+DhbW1tPWh0VL2MwGBgbG2NiYkJRSyCVJ8Z3n+D8p/nYgBqSraKioqKiovIM0Nd1j4WhHnyNy8SFbLfk6a7fxOgXQnhaLnlFx56whl8uejo7WBrpxW9rldjg7fZD9+o22PILIzIjj5wC9wqJbWxs0F57G9YW0NrMCKHBqtFDSCSlJ8/abUPzuJFS0t7chGlzHSEEfkGhFJaUHKr39/z8HKNDQwBkZOccKtzbbDbTWl8Llu0iYsLXj9KKao9abd5ra2FlbIAA0xqxIYHYbDY6ajcx+YcTnZVPVm6+W/Lm7t9nsKMZub6EVloBgVWjQwSFU1BxgpAQ+xW0VVQeB6rBrKKioqKiovLUIqXk+nu/oCAYshJCgS+qB8dFbedCLs73ceVXnVx889tqEaZHjM1m49o7P6MkQk9OQgjwhaGzez3mZrq41t/FhTe+qciYbKuvwTrZT1VGEiL6wVZLUkpaPvoZ/ukFFJZVKNbTZDLRUnsXubGE1moGwKLRow2JpPzEKXQu+io/rEP9revI1QWK0xPw32mPtLa+Ru2Hv0AfHkvF6XOK5cHOAtBoP1E+gtLEWKSU9Ddco8emIzYzjww3qo1brVZqrn6Gn2mDsuxUtNrtBSWTyUzjx7/CFhjOiQvPKboWVquVa7/+CeXRAeQnhgJftOaKj44EYHa8kxv9PZx77U1FMutuXCHcvEJVUvwD8mD73Hbe/hii0yiprFb8mVVUvIlqMKt8Kejt7mJlbmY7QUHvS3nVCY9WVFVUVFT2I6WkrakR8/p2lWLh509ZpXp/UYrNZqO1sR7r5joAGv9Ayiqr3TJqr7/3C07GBeCj1zscExESzNkAKzfe+zkX3/z2Y9Xvy8a1d37K2aQwdDrHv4HosFBOBpq58d4vufDVbzqV11ZXQ9TmDPGZyXb3CyEoz0pmYm6UzmZJUXmlSx1nZ6bpr7vJyYJMNJoHPZcWi4U77/+ConPPExkZ5VKWlJKr7/+K01mJ+CZmPLAvOCiQE/mZrG9scvOTDzj38usu5QE03blJHJtkZyY8sD0vLQmAkal+OlaXOaagl7XFYuHaez/nYlEWWm3sA/t8fPRU5WeytWXi6vu/4tJXvu7UwJVScvVXP+ZCWqTTe1xsRCghxi1uf/wuZ19906l+tdc+JzdIEBp8sOc0bF/fYxkpTM8v0N5YR3GFajR7yA+f4Pyn+diAmsO8h9Vqpbmhnoaa28zNzT1pdQ5gtVppqq+j/u4t5ufnn7Q6Tw0bGxtcff9XRFrXqMxMpCIzkZL4UOo+fY/R4aEnrZ6KispTzNz9+9x8/xfkhAgqMuKoyIijODqA2k9+zcTY6KFkSynxZttHb8vzBrMzM9z+8Ffkh+n3zl9RpB93P/oVU5MTimT0d3dRECycGsu76HRaSsJ96GprVajfNHc+/BUF4T57+hVG+HLnw18xPTWpSMbDGAwGam5cof7yR9Rf/oiaG1fY3Nz0SNYu9zraqL9xhfobV+jqbD+UrMPS3d5GaYSvU2N5Fx+9nvxgSX93l8Mxa2tr2KYHiI8McykvKTqCzeEul3nSRqORgfpbnC7KtrvwodPpOFecQ8fNy1itVpfHrb1+ZdtY9vVxOCYoMIDS+FCa7t52Ka+3s4N4YSAh2nGl6LT4aILW5xgZGnCt39XPdoxlx9fE19eHU1kJ1N+67lRWe1M91fHBihYE/f18SdNtOdVxcmKcaNsGocGBLuXFR4Vjnh7GYDC4HKtyECnloQzHw8x/mo+9y2M1mIUQaUKIOSHE9Z0/0UKI/n3//+Bx6rPL+NgodZc/pCgumIr0OJYGO6i7deNJqGKXsdER6j7/gGPxIVRmxLM40E79nZuHkrm1tUXd7Zs03LnFxPjYoXX0tjxv0XDjMhfKCogMD9vbptfrOVlSwGxfB+vr609OOZUvDevr63u/j5mZ6Setjl3MZrNaIMkNpJR01d7kXGk+/vtyJ/V6PaeO5THa3oDZbHZbrslk4tblT2m4/CENlz/k9uVPDnWf2pb3yZ68W59/fCTue1JKeupvcbYkDz8/373tPj56ThfnMdRSq8hYmR/qJjpMeW5jWHAgy2P9LsfZbDZ6G25zpiTvAUPI19eHMyV59DfeVaTffgwGA7Wff0B1RjyVeelU5qVTnRFP/eWPPDaar3/yIQlaE5VZSVRmJRGv2eL6Jx96JMsbLI32ER4SpHh8dFgo80PdDvd31t+lOD1RsbzyzCRa7t5yOqa17i4n8jOcjgE4lZ9Oc12N0zE2mw2xvuTUWN4lOCgQ09KMy3FL44PER7nOU06Lj2a63/G5g+3FgQCLQZGB6+fri1xdcLqwtjE1QlCA8jY9iVHhTPd0ONw/1t1BemKsw/0PU5qVQlvdXcXjVVS8xZMIyb4hpdyLvxFCrEgpL9gbKITQSCltj1qh0a42TpcW7P0/Oy2FmfvzDPT3keVGjsijYqyrjdNlXxTHyE5LYWr2PkODA2RkZrktz2KxcOvTD7hUVYoQgp6hAUYsFtLSXT9A7GE2m7n16ftcqipDCEH3YD/DZjPpGZkeydtlbHSE5aVFikvLPZo/NTlJWlSow/CiisJc6psbOHHu4mHUPLIsLi6ytrZKamrak1blS83m5iaNNz7jfEUpAG09HdisNhISlb8EPmpaG+uxLM+h12rZEHpOXXjuSat05LnX3kZZlv0QUYDqwmya62upOn3WLbl1N69xuij7gfvWrTs3OffSqx7pWX/rOqeLcrwmb5e2pkasVitllVUeFTRqb26iIjfN4f6q/ExaGmqpOHHa4Riz2Yx+c5n9OctKCDSts7m5SUBAgMMxbU2NVOY6fiZWF2TR2ljP8eqTio/bVl/D+bLCB86XEIJzZQU0NNZR7eaz6F57G6WpsYSGfPH5w0JDKEmBrs52CoqK3ZK3n62tLYQQ+Pi4NgR32dzcJNC0zsM5qK7wMSxvX0t7UQKr84johIPbHaDRaJCrs07HyPUlNJowl7L0ej3WFecLnK2NdZQ6CBW3R15CNN2dHeQ7KEA3NTlJXIDyV/Mg2xYbGxsEBtr30LY31HE8O1WxvOL0BNqbmyg5fjAXfGlpiXDp/qKqWNs2wu3eJ9aXAOVFzIQQyLVFt3VQwszMDEajke9///uHkjMyMkJaWppXdFI5OjyJkOzTQohbQoj/QTh4yu54m/8C+FgI8Z+EECd3tr8qhPgP3lRmfHyc9LjIA9vjYqJYnPEs5GqXtqZ6rnz4zqFkDA8PkZ0cd2B7QmwM81PjHslsbW7iQkXx3s0rLyONuYkRj3Vsa27mYmXpnrz8zHTmJg4Xjri0tMTScB9pwXqa6p2v8DpicnSI1ET7OTGwfePdLfThCRaLhbm5+x7Pf5i1tTXGDxnGuYvZbKbj7nVYmKKvx/kKtFLWVleZ9GL0wMT4GD33HK88u8v42KhX5a0sLzM1oSws1Bn32ls4d7xk7/8leVlMDPUdWm7Njatc/ei9Q8sBMC7OcvxYAcUFucQH+jI9fXgv+PLSEjNTU17Qbpv+7i46W5u8Ju+wGFYWCA5yHEao1WoRZvdDB32l5cCLZbBeeNyuxcdmPiAvSI9H3u9dOlpbSAkU5ET60Vxf65EM0/oyAf6OPVV6vR6bYcOpjIWFBWKClHu7dkkID2bGxXfcvLHygOf7YXx89NgM7nnqNWajXaNBCIHG7L4hsrE0/4CxvEtYaAjrC56nlhmNRm59+CtufPBLt753szMzJIS7t3gBEB3o7zDVTGuzuC1Pa3P+3dZJ5TJ10nkUgdVoUORd3iUsJJj1ZccG3+TYCKnxMYrlpcdHO00vE1azW/n2/n5+mDbtf68nx0ZJcRIm7ohQX53dqBaj0UiAzn0zROvG9Xv77bf5/ve/f+DP5cuX3T6uUtLS0jhz5swjk68UIcTxHXvrhhDiZ0IIvRDi20KIu0KIq0IIlys9QojfEkLM7fzb3bkXhBBXdo7/VaXzhRAaIcSPdnS/JYTIdDVXCBEshKgTQqwLIYoc6SuEKNiRWSOEeN7VZ9jP4/YwTwNZwCbwX4GvAaFCiOs7+weklH+w8++PpJT/RghxHPh9oAb4DvD9h4UKIb7LTp+tlJSUR6n/M8NhWhw8To66nkctJ1Dly8NRzElV+XIhONr350Oh/rRUVJ5JRkZGAHj++Qftpbi4befUYT3MR4hJ4CUp5aYQ4n8A3gT+NXAWqAT+BCc9ioUQGuCbwLgQQu/mXD/g3wCvSClNO/NvK5xfCvhKKc8KIV4A/hlwysVcA/A68L/sHN+Rvv8D8I+AWeATQPHKyWM1mKWUW8AWgBDil8BJwFFIdsPOnCYhxF8IIcKAWCnlgeSjnYTuHwJUVFS49ZhLTk7mTlcrCXEP5lDMzi0QEXe4kMkSBdULXZGensGdTzqJiXrQCz59f46oBOVhQPspLT/OtY/e3ReSPUJ0ovKQnYcpKS/n+sfvcXGfvJjkNI/lAYSHh7OWnsPw0iLHq5SHvO0nISWd0ckBh15mKSUWjec/AZ1OR0yM8twbVwQHBxMc7P7qvD30ej3HTl1gbW2VHC+FZAeHhBDsxT6IScneXdxKTvH8O2yP0LAwQsPCDi2nsLiMW9c+5VzFtpe5vXeApEz3+o/aw5th034RsTR1dH0Rkh3vODJDKWHh4XCIfqEPk51f4HrQY8QvJIK19Q2HXmar1YrUu+/93BK6A+GL6xbcCo3dj0mjPyjPjP3wV4UcKy3bCck2UF51wiMZ+sBQNg0Gh15ms9mMxt95IaDIyEjaN4wkuXns6eU1sk44/47rAoMxGrcceplNJjPCz3Whov1Y9b52Q1OllFh1jr3ZjggIi2Rlde2Al3l5ZZXACNfVnR3h5+fH2de+Drj3vYuNi2OgdY1IN3LKAeY2DBRH2dfX6sEz2qpx/t12tX8/FuE891fr58/Wlkmxl3llbY2gMMde2sSUNEYHWhR7mYen50g/e9zhfptGh81mU+xlNhiN+ATYz0FPTEll/FY7OUkHox6dsbJlIS/ooEw/Pz82Le5nXVqF8u/EW2+9dWDbM2QQO0VKuT9h3gzkAPeklCbgjhDiz12I+G3gF2wbvtluzj3FthH7vhBik21DVun8CYCdKOQwYM7VXCmlBZjbd291pG/8rh0phFgQQkRJKRVVUn7cRb/239XPAc7K++3/FX0M/AD49aPQKznvGHdb7+2FqA2MjjOyZDgS+csAyfnF3G3p3NOvf2SM8VWTR/nLsFMB8uWv0DAwSePABCHJ2aQdIt9Yr9dz5qXXH5TnYT70flJS0zzOXwZITEpiZH7FoReuqatPUUuGp5WIiAg1f/kIEBAQwPHzL1DfP0HT4BSx2ceOVP4yQGlFFSXnXyTnxHk1f1khRSWltAw4Toup7+qnzANjsvrcRW539FHf1klD+z1ut/dQdsq9POj9VJ29wO2O3j15t9q6KXezH6w9So5XUF5V7XEUUMnxChp7Rxzur+8epKzS+fnT6/WYA8LcPvaGT7DT/GXY/k009DoOda3vHqDMzZ6wpVWnuNFy74FnkpSSmy1dFLv4rPYoLC6hZWSGldW1vW3LK6u0jd2n8FiJk5mu8fX1xdfXPSM+ICCADR/3F33NAeGOF3BCIt2KpLHZbIgQF4sFgWHYbK4NNbPZjC4s2umY0opqWgeVp8f1TM07zF8GSEhMZGZTecjxusaXIDvG6C4lVSdo61ee6tU+PEVxuX0DPDw8nCXhZ3efU0KiHN8ngtxbVJVSQlCY+zp8iRFCpADPs+3hXd23y+FqkBBCC/wG8NOdTWFK5+4QC6QDX2Hbofl9N+bPs20DdgP/H+C6m8d2pu/+L+IKoDjH4HGHZJ8RQvxHtkOyh9l2kf/JvpBsHHib/w74D8A/fxRKpaSmkZiUTFtzE1aLibSsIrKjnd8kHycpqWkkJCbR3tKM1WIiPbuYHAersUrx8fGh+szhX5p28fX19ao8b1F5/nluXPuMY2nxRO54u8xmM41d/STkFTt90KioeIugoKAj+fvYj16vP5TX8cuGEIKCE+e4WXuDyrz0vUrZZrOZ+u4B0oqrPDqfPj4+nHvh5T0j4bBpKdvyXvGaPG8hhCCv6gw3629TlZex58k1mbbPX2b5SUWVfaMy8pmbuqe4Uvby2gahya4XmzUaDTkVp7nVeIfK3C/029oy0dAzRNbxU2732vb39+fEC69TV38XjWk7n9mq96Xq+VddGvD2EEJw8ZXXudfeRt/Adr2FwIgoLrz8mtuyvEVYSjZLi4OKK2XPLa8Qme444qao6jTtV96hJENZHEHz4ARlr/+m0zGl1aeo/ew9ThU6/x7c7R7m7BvfcjpGo9FAcIQiL/Pa+gY+Ea69s+HJmUzPT7mslD0yPUdcZp7TMX5+fmxo/bBarS6/r8atLQiOcHqPCIhPZX1zRnGl7Mn5JeLzDhYQ2yUl/xjDvU2KK2W3DoxR8twbisaqgBAiBPhbtlNbtcD+G6WzBP3fAX4mpbTtfB+W3JgLsAzc3gnHvgr8DTueYwXzXwIMUso8IUQ58EfA/oIWStoTONJ3/0pZGKC4gtzjDsn+mG1v8X6y7Yy78PAm4EOlbnNP0Gq1lFceXW+jTqc70vodVQIDA7n4+tfo7e5iaHASjRCg96X6pTfcftlRUVFR2U90TAznvvJN2poaMU1OI4RA+Plz8pWvH/r+4m3D9qgYyvuJjYsn+vVv0NbUgGVqCQCNfyCnX/uG4hDSrLx8rvfeIzTQ7LIXs8VipXVxi0vnSxXJjotPIOY1e/p93a1CSvvx9/fn5HnvRnEUFh/Om+xN8otLuPKrLs4G+LvsxWwym+leE1y45DjdIjg4GE1CFtMLMy57MY/fXyAgvcClZ9zPz4+sqrPcqbvJyYLMA9fSYrFwt2uIY+eeV/Q7rj5/iSvv/ZLT2Yn4OTj22voGLVNLnH/FtbGXW3SM5rvLML/k0GgemZ5jPSiaY1kHXqEPcPK5l7j27s+5eMxxL+atLRN3+id57o1vOJVVfLyKy7/4ey6k+SgwwE0Mm305l+44gjExKZmavm4i1lz3Yp6eX0Ifn+7R4tKXkR0v8d8Dfyal7NvJ6y0QQviwndfrrGl7AVAmhPgdtu2077oxF6Ae+Jc7/y4DPnNz/tLO38tAFJDqxlzYjmC2d7wZIUQ22znMEe7YleKoF40RQpwG/hz4V1JKl+U4KyoqZGNj46NXTEVFRUVFReWJI6Xkxnu/pCAYohx4mhdX1mhfNnPhq7/hsbGrogybzcb1d39OcZiOiFD7Idrzy6t0rcH5N76haDGnrb4Gy0QfpZnJB8bbbDZaBifwTy+gqLxSsZ4mk4nWuhps64tordvV5C0aHdqQKEqrTrgVISKlpP7WdeTqAsXpCXsRJ2vrG3SOzeATEUuFm6kQvfc6WRwbIMpHkJEYi5SS/vFplm06YjNzycjOVSzLarVSe+0zfLc2KM1O3TN2TSYzrYNjyKAIqs9fUnQtrFYr19/5KeVRAYQG2zdeZxdX6N/Sc/bVryqSWXv9MuHmFbKTD7YQk1LSMTSOiEmjxI00iIqKCuzZA7s5zA/nMjva/hjx6qqmEOK3gP8d2G0f8oOdv/8lYAR+V0rpMp9ACNEopawQQnzbnblCiH8KfJttr+4/YttwdTl/x9D/WyAR8GW7eFeyq7lCiI/YLhg2uvNZtx6eI4QoAP4Pth3Gfyql/NzV59+Tf9QNZndRDWYVFRUVFZUvH733Olkc7sXXuExscABCCGbXNjH6hhCWkk3+EfLEfhnobm9jeawfv61VYoMDkFJyf93All8Y4Wk55BYWuSVvY2ODjro7sLaAxmpCCA1WjR4RGkXJiTP4+XmQX+tlpJS0Nzdh2lxHaAR+gaEUlpQcKsJjbu4+Y8PDAGRk5xB+iGKKZrOZtoY6bDspAVq/AEorq91eRJJS0tXeysrYAAGmNWJDArHZbMysbWLyDyc6K5+s3Hy3ZN6/P8tQRwtsLKOxWQCBTauDwHAKKk4Q4mbR0S+7waziXR53DrOKioqKioqKitfJLSyCwiKMRiPz8/PYpCQ/OvpIGFJfRvKLS6C4BKPRyNzcHEII8qOiPL4egYGBnLj0ope19C5CCEqOO87Z9YTo6Biio5X3ZnaGXq+n4tThewQLISgsKYOSMgwGA3Nz99FotBRFR7tdLG6XmJhYYp57+dC6qag8ClSDWUVFRUVFReWZwc/Pj6Qkd5tNqTwq/Pz8SE72rA2mytHH39+fFC+3dVRROWqoiTwqKioqKioqKioqKioqKnZQPcwqKioqKioqKipfSmw2GysrKwghCAkJ8UpRuKPWxu1pQkrJ+vo6Go2GgIAA9RyqHAlUg1lFRUVFRUXlmWBsZJip/m40VjMANo2OuKw80jIct7Z5mrk/O8tQWxNamwkAq8aHzNIKomO8k/N6WEaGBpkZ6Nkp4gQ2rZ6E7HxS0tI9ktfb1cnSxDAa23ZbVZtGR2RKJtl57hWYAhjs6+F+fxfa9UXC/fRIJL0GCzI0irjcItIyXPfr3s/M9BTD7c2wvoB25/NatXoIjiK7rJKoqGi35G1tbdFSc2unyNkX8rRhMZSfPINO5/4rvJSSro52NlaWERpBWFQM2bnOezk7Y2igj7nhAYTVxHaRLh+S8gpJSk5xW9ZgXy9zgz2IjUVCfPVIKVk12ZDB4SQXlHokU0XFW6gGs4qKioqKispTzdz9+3TXXCct1JeqxKgH9k2N3+NmeyO5J84RGxf/hDT0Lisry7Rd+4Q4rYWqhGjAf29ff+2ndNv0lFx8mdDQsCei3+zMNL21N8kI96cqKfKBfRMj7dxsayD/5AXFhv3E2CjDLTXkx4aTnfLg9Z1bGuHWu+1kVZwhPjHRpSybzcaN939JXoCkOi4UONj/d2qgkZvdnYrbIt29/DHR5lWqE2Psyuutu8xwcCyV5y65lAXQ0VSPcayHiowkNJGxD+wzmy3Uv/P3ROaVkVtUrEielJLGOzexri5QkBxLcFIoAAtLs9R+3I1/dAIlFcpbNk1NjDPYdJfM8EAqEx+s2j3W38zNllqKzjxHRESkAwlfYLPZuPnBr8kN0VCVGAYcrIY92lNHTV8XJ9WiYCpPCNVgVlFRUVFRUXlqmbs/y3DtNc5k2y8slRAdSUI0NDfcQFacIy7+YK/Xp4nl5SU6P3uHM5n2P0d2YgzZwN1Pf03Ri28SFqa8DVFf1z0WR/vRmAwA2Hz8iUjLJie/ULGMmekpJhpvcibH/vVIiokiKQYaa6/CiYtEx8TaHbfL+Ogwy93NnM61X1gqOjyM6PAw2truIuUJEpKcFxi78d4vOBkXgI+TPssJkeGEG7e49dG7nHvtTafy7n7+EUXBgqAAx8Z/bnIci6vrNNy86tJobm+oJWJ9moQs+x5VvV7HidxUhqf76AWXRrOUkqvv/5qT2Qn4J2Y8sC8yPJTI8FCWV9e4/fnHnHnhFaeyACbHx5jrqOV0tv3Ceilx0aQAtTc+Ie/8yy6N5uvv/YLTyeHo9Y5NktTYKCI2DNRc+UQ1mlWeCGrRrx02Njaov3uLhjs3GRkeetLqHGB9fX1Pv9GR4SetzlNHV2c7ddc/p+HGZeru3MRsNj9plVRUVFRUvED33WtUZLmuwlyemUxf7fVHr9Ajpu3KR5xyYCzv51RmAm1XP1Yst+7a5wTPDVKVHEFFZiIVmYlUJUcQdH+A+uuXFcvpq71Oeabr61GRlUz33WtOx0gpGW66S2Ga689bkpHEQONtp2PutTVTEqZzaizv4u/nS5Z+i4Hebodjhgf7SdYYCApw3SorIiSIkI1ZZmdmHI5ZWVlBTg+QEOV6kSM9Loql3haX7zN1N69yKicRfyftvMJCgimMCaK1odapLCklA3U3KU5z7ck/kZtGx03n35uO5kbKYwKdGsu7BAf6E2ddY3x0xOVYFRVv81gNZiHEcSHELSHEDSHEz4QQeiFEvxDi+s6fDx6nPrv0dXfRU3udirRYKjLi8Vmd4fqnH+4VbXjS9HZ10ld/Y08/3fIUNz776Mjod9S5dflTYoWRqpxUKrJTKE+O4tbH77GxsfGkVVNRUVFROQRDA31kRwYrHl8QG0FvV+cj1Mg1Cwvz1N++Qf3tG8zPz7k1d2JslFR/5UWQUvxgcmLc5biuthbS9VvERoYd2BcXGU6q1kBPR7tLOb1dnRTERijWLzsymKGBPof725sbKUtTHkZfGB9JT2eHw/2rY4OEBR8MmXZEXGQYcwOODeaZvi4So934vIlxDLU3Odzf3VRLkQJjdJfjmUm01DpeJLBarWg2lvFT0Bs5LCQY4/y00zGdrc2UpjqPCNhPWqgf42OjDvevTQ0TEhSgWF5qXBQTPa6/h86YmZlhZGSE73//+w/8GRkZOZRclWebx+1hngReklKeBwaAN4EVKeWFnT+v7x8shHjk+lksFhbHBigvyNnLU4mPiaYyK5mWhvpHfXiXmM1mlieGKMv/Qr+E2BiOZybS2tj4hLV7tJhMJlZXVw8lY6Cvj5yYUCLCw/a26XQ6Lhwvot3FSurTjpQSi8XypNVQeQqQUtJYe5eam9fV6AsPmZ2dZUKBYaJin5mZGaamJt2ed3+o166R54iIsGCWxtyPIpuenvZIv4eZm7vPUEstlZkJVGYmMNxax/37s4rnT3S3kxLrOi90l9TYSMbvtboctzI5TFTYwdzRXaLDQ1maGHQpZ2lsiIgw5QsYsZFh3B/qdbh/8/4kgQH+Dvc/THhoMMuTI3b3raysEGrdVCxrF5/NJUwm04HtZrMZ3eay2/JYnXe4S67MuVUVWqvVYl2+73B/a2MdJZnKi2XlxEfR23XP4f71mXGCA5UbuMmxUUz1ddndt7i4SKTG/XcUsbb4SBxGaWlpnDlzxutyVZ4NHmsOs5RyfxyKGbD7SxFCXAeagCIhRA/wEylljRDiVaBaSvnvvaVTW3MTxwuyD2wPCPDHMqb8IWaPrvY2Fu7PcPb5lzyW0d7SzPGCnAPbAwMCMI87vkkqYXZmmsW5OfKPKSsa8TjlSSm59sGviY8MJzAhjczsg+dACYszk2RmHVytFUKgNRsPpeP92VlWlhbIzis4lJxdTCYTy8tLxLjI51LKJ7/6GaGBfqQeO05iov1cI3fY2tpibXWVqGj3Kn06YnZmhvW1VY+v7cPMTE+zsb7mNXlGg4GNjQ0io6JcD1bA5PgYmxsbHlVztcflD36NtFo4+9JX8HMSaqeE5vpaCuLC8fX1ofb2DU5ffP7Q+hk2NzEajYRHKPe+OKP3Xidbxk2Kj1d5RZ43mZ6eYr6/iwA/XwY2DWTlHP47eOfq55hNJi68/JoXNPS+vKsfvYvFZObFN795aFkT4+OsjvWh1+kYNhpJd6Oi9W41bHfQWA8aP84YGx1lc2oIjUbDyNYWaekZric5YLjnHpWFuXv/ryjMpb6nS/F9X2vZAnzcOqbW4vrzarc2AOf3Oq3RdVSWu+d2e47ja6jbqYbtljybfR0mRkdIjQ5zW15ssD9zc3MkPlRQbGFhgZhg5cb8Lr7ChtlsRm8nLFxnc9+A1Do5f3LLiI+PcgM3PDSYwUnHBr2zYznC0XdibHiI/Fj3n6+hvjrW19cJDna9MPP222/veY7PnDnD888/T1xcHADf//733T62ypeXJ5LDLIRIAZ4HPgBC94Vk/5/7hn0kpXwJ+BvgOzvbvgP8nR153xVCNAohGufm3AtvstmsaLVaB3sPt4K1Zdxky+D+auZ+bDar456Ah1xgMxoMbBkPZzQ+SnkBfr7ER0dhNBoOIcXxSTpsaz+jYRPjIa/vfra2tjB4MUzcV68lPioSo+Ew5+8LtoxGDJve089oNGDc9N75Mxo2vSvPaPTq9TUaDBg3vXMtAGwWC75arVc8wmaTCV9fHzQaDcJLK/fb5897n9do2PDq9fUmRoORsJAgwkKCMBq9o6Nx08vf500v368Mm5i2vHN9jUYDYSHBhAUHe/U74y2MRgOhwUGEBgYeWj973kONRvnDyBPPmpQ2JYOUSHL72IdFke4HJtnfbLVa0XrQY1mr0WC1HjRkt+W5/yKh1Wiw2Q5+ru1r68H1tSPraUDabB71WNZqBFarewspIyMj3L7tPL9dRcUZj71KthAiBPhb4PellGYhxIqU8oKdoQ0AUsomIcRfCCHCgFgpZf/DA6WUPwR+CFBRUeHW3aawuJS22uuU5j/oZbZarUifw3ltyqpOHmo+QH5RMe0NNynJs6ef65wUZ6SmZ5B6iJXyRylPCEF2eTULS0sUHvPcgxsQGsHa+jrBQUEH9ll1hzt/KWnp4GEvSXsEBwcrWjFVSumZS6yvr5GeYr+yqLuEhIYSEhrqFVkAqV48d4DX+6yGhYcTFq68uqwrMnNyXQ9yg/OvvIHFYiEwUHk+niOOnzhF7e0bCCkp9JIH11ue5V3caXnyuEnPyKCvZ4tVk4mi4hKvyHzu9a96Rc6jkvfS177ttbDIrOwceru7sFotFBQVuTVXalwXb3oYm5tzcnLz6Om6h5Q28guUV4u2R2xyGj1DA+RlbN+Xe4fHiElS/ty0ad1/bbNpXX9eq961p1TJGCXHehhn19Cjz6uxPyc+KZmJmk4yE92L4rq/tklO9MEK2FFRUdxb3SAhxj0vqcEq8bWTUyyEwOpAd2dIneOIA5tGh81mc+x4eYhNgwHfgIPvS3vyPLge0tH1SE5mquM2KW56mZcNZrJCHKcP7Oett94CVG+yyuF53EW/tMDfA38mpXRc5WGb/UtmHwM/AH7tbZ0CAgIQIZGMTX4RLb61ZeJa0z2OV5/y9uHcJigoCBkU8YB+RuMW15ruUXHi9BPU7NETFxdPXv7hwp0Li0uo7x09kMvbcK+PrCLvvNgeVSIiIkjxkrGscvTw9fX1irEMoNfrOX3xeU5deoFQLy6KfJnIycun0EvG8tOARqNxEp3lPrn5BRQo7Cm7n+D4FFbW1hWP39g04B/jfi/mvIJC8guPuT3vYVJS0/CPT6e+d5SGvjF8Y1PdWjyMysjj/tKK4vGziytEZ+a5HOcblcCmwXGE2PZ5c53a4x8dz4YbkTQra+sExzvOsdWFRmM2Kw9TNhi38IuKs7svOjqaOZv7Bv2mTwj+/gcXC3x9fTH6KjPc9iODnCwmBinPT4cdr7QTeSWV1bT1jyiW1zE8xbGycof79WExbNnJ53bE/PIKESn2F7Pj4uKZNrrvHbcFhileAFBR8RaP+xv3G8Ap4E92QrC/zYMh2dcdzPs74GvATx+FUqUV1YjoZOr7x2nsH6fr/jrPfeVr6HRHo011WeUJiEra0697boPnvvI1r76sPKsIIbj02ldpHpunvnuQxp4havvGyTp+iqgo7+TiqqioqKg8GQqKS7g3tah4fPv4fYrLKx+hRq5Jy8ik+sLzVJ1/jvTMLLfmZuXm07+sPPWpf9lIZo5rg7nsxCkaplYxGLcO7NvYNNA0u0Fp1QmXcorLK2l3o77KvalFCpwsNJVVn6R5UHkxvdbhKUqcRMn4xSa7ZfCtrm8SkuI4AiAsOZOlVeULNpNziyTkOo6iSD9WxuCk8vo5HSOTFFU5du74+vqyqfWzGwL+MCaTGYLCnYZJl1WfpHlIefG7vrlVsnIdf//0EQmY3EgrmltaJTLdO3VKVFTc4XEX/fox8OOHNh8wgu2EaEvgQyml40oEhyQlNY2U1LRHJf7QpKalez2E9cuCRqOh+sy5J62GioqKisojILmkiu6+FvJTnHuO+yZmiC887lHe5FEi88RF2huuUZziPLS4bXSGrJOXFMkUQnDhjW/QdPcmpskp9BbjdqcFH398IxM5//qLiuXEFx6nb6STnCT7nt5dusemSS5xngKi1WqJyDrGyPQwafHOF7kHJmeJzS91en1Lq09x5Wd/w6WsOJffA5vNRsPsOs+fK3M4pqC4hCu/7uZcoL9LJ8aWycSgQXDBSepabFw8wz7hRK9vumy3NLe0ioxOI8hOytl+qi+8wLUPfsnF4hyHnlmz2cz/v733Dm8jv+7130OQIiVREiWRKiQlUX3VG9W1Krtua697TZzYTnPs5Ben3bRrx9k0Xye2b+I4uc51ym/t2I7t9dpee6u3qEukKtV7JanC3jtw7h8zkCAKBIGZoUhJ530ePgQGMx8czGAwc77fU3aevsLj73p/Qq20tDQmzFvOhcozzMy/O0w9luNXKilaljg1cfna9bzxw++wZW5Bv8ejpyfMifpOHtsUTKFVw0iFIR/TICLrgWeBLw22LYZhGIZhDC2mzZjJyNlL2H3qYtwZ0s6uLvacusSwogXMCLiWwGCQXziFvOJN7LpwnYbmuwsxNjS3suvCdSau2kJ+4ZSkdUWE4vWbWPfuj7DivR+j+H0fZ927PsKK9Y+mNMgwY85chhUtYM/pS3Fnc9s7Otl96iIjZy9hWhK1J+YuXERX7jT2nb4Yt9hTT08PpacvkVYwh1n9dK1IS0tjw7s/zOvnrtOdoO1iR2cX2y7VsPm9H+n3s29+1wfZcamGppa+i+rVNjax70Ybm97x3oRaAGseewun2kJcut73TP3pq9epCI1h2dr+2yBlZGSw6cn3s/fiDcrOXryj9kA4HObg6QscqKjn8Xe9P6njPHvefMifw97Tl5xZ6V60tXew69Qlxs5fSWE/aWFpaWmse/L9vHG6ImHofUtbOzuv1LD5Xf6r8huGF2QgepkNJsXFxXrgAe9PbBiGYRjGnagqZftL6Ki5QSji3MiH09LJHDeJpavWPJB5jyePlNFUcYE0t3VUJH0YY6bMYt4QyKePRCKU7Suhs+4GIbddUjgtg6zcSSxduSblmf7u7m7KSvfQ01hNWrjnVpGs9DF5LFuzLqU0ukgkwqG9O+murqQgSyjIdQo8llfVcb07jWF5hSxfuz5pG1WVE0cO01RxkVGRdiaPHY2qcq2+mbaMkYydOptHFqaWA3+tsoIrx8uQ1joyNIKidEsIRuUya0kxeRMSz/DGo729naP7S0lTZ/9peiZLV66O2+KqP8LhMGX7SuiuryIter6FMhgxoYDFy1emdHyd47GL7rrrTM4UCvLGoQqXb1ZT05POyMlTUy78WFxcTNQfiBb9euqpp+54PMS4v0NfHnCGRpKuYRiGYRiGD0QkkO4U9xPzlyyFJUsH24y4pKWlsXxNcMVTMzIyWLlhUyBaaWlpFK93tCrKr3K4shyRNPKXLmZtfn7KeiLCwqXLYelyWlpauHH9GmlpIWYXT2bEiOT7IMeSX1BIfoFTaC0cDiMivgd9hg8fzuqNm31pRAmFQqxYG0zxWed4OKlz1yorOVpZTpqEmLJyCXOs3owxBDCH2TAMwzAMw3goKZwylcIpfVfqTpXs7GxmzQ62MNXDVOQ1v6CA/IKCwTbDMO7gwYtPMgzDMAzDMAzDMIwAMIfZMAzDMAzDMAzDMOJgIdmGYRiGYTwwdHR0cO1aJapKQUEhWVlZg23SQ01HRweVlRWICPn5Bb6Ox6UL57l58Swht2hVj6QzeeZcpiVo1ZSI08eP0Vh5CQl33yoiNn7aLGb3U227L6pu3uTiiSOEImEkTeiREHOWrGDcuHEpazmFxA7Rev0qEu4ChEgog7FTZzN3Qd+9nPuitbWVo/v2IK2NpEWiRdNCkD2O5Ws3MGzYsJQ1wSkkdq2yEkkTCgoKyczM9KRTV1fH2cP7oKWetHA3iBBOy0BGjWPR6vWMHDnSk65hBIE5zIZhGIZh3PdcvXyJa+dOk9ndytQJjoNy+kwZ7enDmTzrEYqSaGF0v9HS0sLxAyWEetwqxekZLCxe029v3nvB5YsXuH7+NMN72pniHo9Tpw/TkT6CgjnzmFo0PWmtaxXlXDpcwoxx2ayeOq7Xa6fYdfwgs1duYOKkxL24o1y5eIHyslLmTcxhTkHOHa9VV19g56kyZhRvoCDJ3Oa6ulpOlexkYpawuvBOG84c3M6JbmHpo48zatSopPQunj3N9WP7WDh5LKPyR/d6r/PsfPYw04sfpXBaUVJ6B/fsJFR/jdUzpyJypw3hcJhDL/2QkdPmsmDpiqT0AC6eP8vNC2cZEemkMG+s4+CfOkznsBFMeWRhSnnhpVtfZVR7Laum5sPEO4ukqSpHXvsJ6fmzWLwytUrZhhEU1lbKeOBRVY4cPEhXSz2CM4K8aMVKG600DMN4QDhRdoisxhvMKJgY9/UrN6poyhrH4hRb0wxlSra+yoiORhbOmHKrhY+qcvxiOW1ZY1iz5c2DZtvRA/sY1V5D0eT4x+Ni5U3aR09g4bLifrUqrl6h9sR+Fs8oTLjeofNXKVi+gUmTE1e5vnT+LG3nypg3ZVLC9Y5evkbu4rX99hKuranh3J7XWf1I4gGAnSfOs/TxJxk9enTC9c6fOkn48lFm5yeuDn386g3GLlrHlH4GHg7s3s60UCe5YxO/b0VVDQ0jJ7Jo+cqE6wEcLtnD+J4mpkyKb+O58uuEx09Jqr3Z3tdfYd5IZXR24mriN2obqB6ex5IkK+HHtpX61Kc+RUdHB0VFRVy+fJmioiJrK2WkhOUwu5RfvUrpjq3s3/kGh/btIxKJDLZJd3D1ypVb9h0+sJ8HbaBjoKiurmLH8z9i9pg0Vs4qpHhWAaumT+D07tc4efTIYJtnGIZh+OTiubMMb+rbWQaYNmkCYzrqOXfq5D20LD7d3d0c3FfKgdISurq6PGnsfu1lFo4dxqKZU+/odysiLJo5lQU5Gex+7eWUdVWV40fK2Lf1VfZtfZUTR4+kfL9x/vQpxnTU9eksA8womMiI5iounjvbrz2XDu7u11kGWD5rKmdKtiVcJxwOU1lW0q+zDLC4KJ+L+3f0+/lP7nmjX2cZ4NEFsyjb/vOE63R3d1N9orRfZxlg4dRJXNq3PaF91yorGNtZ36+zDFA4IZeeaxdpbm5OuN6Z48fIi7T06SwDzJ4ymfS6cq5evpRQ6+K5s0wJtffrLANMGp9DWtVl6uvr+103EUVFRWzYsMGXhvHwcU8dZhFZKCK7RWS7iLwgItkick5Etrl/z99Le6Ic2Lub8M1LrJpVQPHMQublDuf1nz5Le3v7YJhzF/t37yRSdfmWfXPHZvL6z56ls7NzsE0b0qgqJ0t2snHZfEYMH35ruYiwfP4cMltruHrl8uAZaBjGA0FtbS2lO7dRumMr169fG2xz7jtqampu7b+bN2+kvP3Ni6eZnt+3cxZl6qQ8ai6fS1m/urrKtW8bVVU3U94+lpNHj3D4jRdZMmkUSyeP5si2l1MevL154waTQ12MHDG8z3WyR45gUqiLmzeS35+qyhs/+zFTQu2snDGJlTMmUSCtvPH8T1JymqsvnWVqAmcqyvT8idy8eDrhOkcPHWD59OT7Ii8qyOPU8aN9vn64ZA8rZ/bvfEdZNmUCxw73HbV4/sxpHpk4Nmm9qaOzuFZZ0bd9e3dSPCP5lkrLp+Zx9OC+Pl+/euoYMwr6HxyIsmTWVE4cKEm4Tn35BQomjO9Xa1bhZCrPnEi4TtXF0+TnJp/fvaCogDOH+v68fTFp0qRbs8pPPfUUb3rTm1LWMB5u7vUM8xlVXa+qm4B9wHuBRlXd7P49GbuyiAy4fdevX2OsdDKt4HbOSVZWJo+vXMzhkt0D/fb9UllRQW5G+A77hg/P4rEVizi4d6c/7coKjgU4y1pZWcHxY31fqO41Rw8dpDjBqO+MKflcu5B4dPt+5saN65w7++B+vvuNK5cvc+pk4puHweLsqZOU/Px59r36AmUHUr8ZeZipqrrJ5bISVs0qYNXsQuovnOTKpYu+NFWVA6V7Kd29k3A47NvGoPUATh4/yrGyw751rl+7RsWx/bf2X/WZo5RfvZL09jU11YzPSP79Jo3M4Pq15Ac1rlVWcO3EIde+Am6eKqOi/GrybxhDY2MjPbXXWLnwEUKhEKFQiOIFc+mpvUZDQ0PSOpdOlDE9CSdoRsEkLp4oS1r3YMkeNswrYvSo2/nPY0aPYt2cKRzatzcpjevXrjFpZPIHZHyGMyDRFx3V1xgxPPkiYWPHjKKxsu/vT1ftdTIyki/fM3LEcFqu9328a65cIHfsmKT1pk2ewNXTx/t8PVx/M6WeyyOGZ9F2ozy+VjhMWmtD0lrgTCjQ0vcM7pXLl5gypv/Z4CijpIvGxsa4r3V0dJDZ2ZSSfQDaVJ3yNobhl3vqMKtqd8zTEUDcoUV3tvkrwEsi8lURWesuf7uI/GWQNpWfP8uMqXePNooI6T0dvrQPluxm64vP0d3d3f/KfVB56TxFhXeProoI6d3eZ5ivXauk8eo5po1KZ98ef443OM5yU/l5pmaH2L93l289gO2vvMj2F37iOfyms7n+jpnleKR1ez/GJ4+WsXf76563701LSwuVFfEvfKly/fo1ai+cZEx3M0cOBpPT39zczLXKykC0AM6fPR2oc3b+zGmOHNwfmF5Hezt1tbWBaF26eIGemgompPdQdiAYGy9dOB9YWkHNlfOsXjyPlYseIbOjibq6Ot+a7W1t1AegE+Xq5UucOz344bS9uXT6JMvnz7n1fN7Mady4fMGX5v69u1iQP47lM/Ip2bHNp4Wwb8/OW3qlO7f71jt66CATpJOpI+Bg6R5fWlfOnmLJI7NuPV8wezrXLiY/C3zp3FlmT01+Rq4ofyIVl5Mf0Cg/f4bFc28XC1s4ZwYVF84kvX0sZ44dYeHsuwdxF82ZwZljyZ/LoRSuW+kprBtuaWDYsLud3aysTHqaG5LSqLh8kaIkZvujzJ5awOXzfR/vUDj1+6dQuO8w9/RI6nrpCWxIVw96CWwIebivC/XE36ahoYHc7NQrkieyr6qinPwkZpejzCuawrnTp+K+VllRQeG45AcbbtvXk3Ta5NNPP81TTz3lO4zbMO55DrOIvFlEDgNbgAvAmJiQ7H+PWfVFVX0r8C3go+6yjwLfjqP5SRE5ICIHqqtTG3mSBCn2iV5Lhqb6OujuoKPDu1OWyAQR73nMjQ0NTModz6jsbHq6/Id2O3rjGJWdTXenv4GGKNrTxdSJuTR4/KGTJOon+NqHdbU01vQ9Mp4qDfV1NNTWBKRVz+Tc8eSOH0tbS+J8pOQ162ioC8Y+gMa6OhqD1Kuvo6E2uJHnhoZ66mqC0WtsqGdSXi5jc8bQ1toSiGZDXW1gxyMUc6qMGTWSlhb/NtbX1VEf0PcZoLG+lsaABjCCRPTuGzfBX42JSE8PWVlZpKenEwrgKq094Vt6aT5+86K0tTYzNmc0o7JH0tne5ksrnj2SUs6sh8+Tgn48W7weEkHvyDfu/dpgk5bgkpn0Z/ZSXyXBNhrn/OpXLpLIhoDt81DvJvE2Xr4H8bfp6ekh3eMPSF8h+KkeDxHpc5uenm7SU5hNjxISSSlS5uTJk33OchtGstzztlKq+iqwTET+GPgkbkh2nFX3u+sfFJGviEgOMFFV7xqKVNVvAN8Ap0p2KvaMzBlHY1MzY0bfXeo/nOatJ12UTW99B11dXb56Dg4fnUNzSwuj4rSI8GPfvPkLOLSvhDPXali0wn/V0PkLFnKwdC9dlTUsLl7jWw9g6frNNNTXUzQ9+dYTsYTT0lHt+wYFoEe8nwJrNz/uedt4FE6ZmlIbhkREj2/njXpWrF0fiOaUqdOAxNVCU2HFmnWBaQ2E3qTJ+dBPtdVkWbJsBfv27CTc3c3yNcEcj2UBtteIZGVTVVPLiOFZnKqo4rHF/s/h/MLk8wSTYVES1XQHgzETJnGjupZJec6sS0NjE5mjk89pjMe8JcvZc6AEAWYtWurbxkeWLGPPwVIEmL14mW+95avXsXfnVgRYusZf8ZxR4ydSVVvHhPFOHmNdfSPDc5KfwRo7fgI1deXkjstJav3G5hayxySfM5k9Po/q2jryXPtq6xoYkdN/fm488gqmcL3qGpMn3Ln99apq8gqmJK0TTkv+upXKuj2h+P1zVZXuUHL3G9k5OTQ21zFmVHJtrWrqGhib2/dvhYZSv0Yn2ibi4ZofSbAPI5K6w5dQz8Pn7Utv7NixnGhuY0pynbZuESatz/umrJGjaWtvTzpM/lpVLZOmzIv72sRJk7lxsSzp70qULoWMjOTC/j/xiU9w+fJlLl++nNJ7GEZv7nXRr9hf40agNcHqsUNSLwFfB34ctE3zFy7mwNkrd41WHTt7kSlz4p/kyZKWlubLWQZYsHgJpacuxbVv2iMLfGkvX7WGtZseS7ovYH+sWL2WtZseC6z/Y05OjmdnGWBx8SoOn+o71KupuYUR45IPHbvfcI7vFoYN8zfwY/hHRFi9fiPrNj/u+zdhIFi76TFassZxpQ0ee/u7Eg4yGXcyd94CaiOZ7Dt5nn0nz3OpqYslK/pvy5KIMWPGsP7xt7Lu8bcyYYL/36icnJxbenl5E3zrDRs2jA2Pv5X1j7/Vd3u+eQsXcbMr/db+K2+LsGjZ8qS3nzVnDuerG5Je/1RlNfMWLkp6/fmLlnCjK3TLvop2ZeHSpUlvH0vR9BlcqG2hsel21E9Tcwvnq5uZnkKP6JyCadQ39h85VNfQxNjCoqR1F6xYRcmJu6+Ze4+fZVGS7bjmLVjEqcrkI3POVzcwa87cPl+PDB+TUsGxnp4eJLvvAavIyNT0IpEIJNALjcmlqyv5sOymlhayJyRIIchOfrAI3Jng7PgDQMOGDaMzI/l841uaI/oOk160bBnHLidfA6C8sY0pU+NPBOTk5FAfSaEAQZQ+Pq9hDCT3eob5zSLyRzjOcDXwCeAzIrItukIfs83fBv4S+J2BMGrLO97Nvl07SOtqQ1DCoQymzV1IfkGwMyReEBHXvu2Eujtu2Vf0yGIm5wcz+/WgMmLECEZMns7FimvM6JUH3tTcwpHyaja+5e2DZJ1hDC1mzprV/0pGXBYu9T9r+zCzePkKX9tnjp9MS2sb2SMTOwdt7R2ke5gdXrw8uOiGR9/0Nk4cPcLZc069ihFjc9n4lidS0nhkwSK2/vh7bB6TeLD7aGUNW96bfDXg0aNHM3fNJkrLDpLW5YTahzOGM3/94ykNrKfn5NHW3tHvLGRLaxvDxiUuXrZ0zXrKXnuOZbOTi246fKGc5W//YJ+vzy9ey8ldL7GgKLm897KLFSx92wf6fH3ZqjXsf+EZVj8yIym94+XVrHvXlj5fn7V0JWf3vcqcwuQGyo5cqmTpEx/u8/VRk6fR1FLL6OzkBrYqqmoomNv3gJKIIKPH09nZRWZm4sH4xuYWRiQaHAAyc/Pp7GojM8mB/Ru19UycOT+pdQ0jSO6pw6yqzwO9W0fNjrPe5t6LgBdUNbiEuBhCoRBrN/X9AzbYpKensy7g8N+HhXmLFnP1ymVKz551C3xFiISGMXzsBHOWDcMwHgCWr1nHtheeo3iK9NlqqaOzk9LLN9ny5HvvsXV3s2DxEt8aK9/8JNt+/jxr5xTe5Wx0dnWx50w5q976zpR1x40bz5rH3uLLtuL1G9n6/I9ZO2MSWZnxw7xb29o5WFHH5ne8O6FWVlYWoYnTuFlbz8TxiVMdKqtqGTFlNunpfd/a5uTkcG70JOqamhkXJxUvlqr6RtInz0gYFRQKhciZPp8rN8qZ1k8rrXPl15k8f2nCCJ7cvDzOD8+lqaWt397E1fVNyKTE9s1fvITXf/IDtjwynLS0xEGlXV3dXGjqYfPUxIMTqzZu4fXnfsijc6bELRIH0NzSyrHqFh59y6aEWktXreGNZ7/Llkem9BvZ1NPTw5mGbrZsusttMBIgIkXAJeAxVd0qIsOAm8Cfq+o/D6pxASMi/1dVf3NAtFNtSH+vEZH1wJeB31fVxM3hcHKYDxwIpiqwYRiGYRj3B/t2biXSUMOSGQW3HLXOzi6OXKyA0eNZtXHLA5VuEIlEKNtfQmftTdIjTmXonrRhZI6fxNKVq/t1kAYSVaV0+xvQXMvSGVNuzUZ2dHZy5GIlaTm5rHo0+YmKwyW7yWy8wbw4M8OqyvFL5ZA3jcVJho7v2/46YztqmdlHe64z5ddpH5PP8nWPJqV36ugRWq6cZvnsaXft956eHg6cvULeI0uZ9UhyqX57X3+ZyeEmpk6MH6J9/tpNmkblU7xhc79a3d3dbPvZD1k/czLD+3CuG5tbOHyjic3veG9S54iqUrL1NdJa61k2a9qtVl1t7R0cvVRJxvhJFK/f2K8OQFtbG3te+BEbZ+f3OdjR1t5BaUU9W979waS/18XFxRw4cICnnnqKy5cv3+rDPIQZkB8n12F+BihR1d8RkbcDTwHfGooOs4ikqZdqfwPMkHeYU8UcZsMwDMN4OIlEIhw5uJ9wRxuqSihrOEuLB9d5fJiJRCKUHSgl3NGOiBDKGsGSFSs9HY+6ujrOlh2AljpCkTAi0JOWDiPHMm/FasaMSa1F0fVrlVw5cQSa6xgmYVShixCMGsfMxSuYMDG1+gGdnZ2Ule5Bm+sIaRgRoUfSSRs1jmVr1iVdqCpKxdUrVJw6Cs01jAhBJALtKsjoPIoWLXMKUyaJqnJ4XwmdtdfJyxSmTMhFUS5fr6I+nE72pCksWpZ6akQ4HKZsfymRrg5EhIwR2SxeXpzywFQ4HObQ3p301N9k6qhMJrnRBFdv1nCjQxk+oZAlK1enpGsOsyvqOMxfBjKA9+AUSb4INKvqP4vIJ4BfA0LA51T1DTd99glgDPCnqvqqiDwNdAPTcWpQvUdjnEgRmYFTbyoTOKyqvy8if4vTQvhZ4Ofu+38Z6ADmAOWq+nHXhieAbOCrQH4cm54GZuJEHX8MWAp81rXl+6r6dRE5oKrFIrLYtUVwIpT/VkSewolqHgeMBN6mqkm3ebjnVbINwzAMwzAGgrS0tEAryBv+SEtLY/mqtYFojRs3zne4eCyT8wuYnO/MWPf09DgOvYc2R1EyMzNZvTG49L7CqdModMOj29vbSUtLI7OPEPf+EBGWr3aOQ3V1NaeuXiEtlEZh8UIeGee9iFYoFAqkQ0UoFGKlO1t+5fIlDt+4DkDB/LWstXo9QbEX2AjkAbuBbBHJBX7BXT4c+BnwBvAvqvol9/VngFddjZ2q+hsi8h1gEXA0Rv/vgN9S1Qsi8jURKcapP/VzHGf4S6pa4w56HFLVT4nIN0Rks7t9l6q+w33PP4y1SUR2AvOANaqqIpIG/DXwK6p63H0eyxeAX8dx1l917QU4o6p/5TrybwJ+muzOM4fZMAzDMAzDeGhJlPc8FBg+PH5uvhfy8vLIy/PWGu1eMK1oOtOKvHdI6c2NGzdoa/PXL/4B4Vng+8C3YpbNAOYDW93n0S/GR0XkYzhFmmPzFg67/8uB3kUF5gL/4TrEo4DXVfWAiHwf+Iyq/mLMugdj/s8EwrjthOPZpKrdIvJV4D9FpBH4HI7D/PsiMhL4P0Bs2u5EVT0FICIH3Pfoz/6EWIySYRiGYRiGYRgPJCNGjGDDBn894+93VPUcsAv4YcziizizxFvcgstL3eX/A9gC9C4RH5vH2zuE/AzwcVenGHg+Zgb7WRH5tZh1l8X8v+A+juYt32WTiISAZ1T1V4Aq4H044dyfBv4MZ0Y5lpsiMk8c77045j0S2Z+QoT2kZhiGYRiGYRiG4YFJk5wJ0je9KfkWaw8qqvoZ4FYuuBsi/T1gu4iEgWPAZ3Bmd3cCpUBTkvJ/AvyriGTiOL+/CnzJXb4PeEVEXnPXXSUiHwWuquo2N4c5kU2fB37qhl5HgI8AT4nIWpy85y/3suWzwL/jTAw/r6qX/RZ8tKJfhmEYhmHc93R2dnJ4zw5orCEU6UZViYSGoaPGsXTdxkDDWo3+6ejooGzPDmiqJS3chYgQTsuA0bksW7/RUz6uqnLiSBntLY2ICCPHjGXewsWe7FNVjh0+SFtVBWlhJ4c5LCFG5RexYMlST5oNDQ2cPryfNLcoWSQ0jIXFqxk5Mrk+yHH1Du0jLdyNSBrhUDqLVq3zrHfh3BlqrlwkLdID7uctmDOfKf20kopHa2srR0t2Ic21hCI9AIRDw5AxeSxb9yjDkuytHKW+vo7TB0uRlnrSIs7n7UlLh+xxLF6zIeXPHFv0CxjqBb9ggIp+DTXc4l1fVtXjg21LKtgMs2EYhmEY9zVHSvfSVX6G4un5pOXcmZ+pqpS9+H3S8meybG1ybYLuF8LhMIf3laCd7QBI5nCWrVrjq3hVEBzeu5PItQusnF6AjL3zeEQiEcqe/2+GTXmExavWJKWnquzbsZVIYxULCyeQnef0KG5srmLvT79P+riJFK/flHQV5fOnT3Lz5GEWTckle8qdrZsam6+z60cnKFyyiqKZyfX8bWxs5NjurYxN62FVUUHsDB7Htj9Pk2RRvPktSQ/aNDY2cmzn64xN62LVtAKc2keu3hvP0Zw2nOLH3pa0XvmVy1w9up+ZuaOYMfXOz1tx5Ti7jh5gzsoNSVcGP7BzG6HqK6wqykfGTbjjtXC4h8M//S4jpi9g4YqVSentff0VRrfXsnpaPky88zOpKmWvPkto8iyWrvZfYMwwvGAzzMYDz7kzp6mpuEx6uBtU6ZEQ6aNyWLF6rbUaMQzDuM8pK9lFXssNJo/PSbheVUMjlRm5rNiw6d4YNsAc2rubntprLJ019VbLou7ubsrOl5OeO5nla9YPjl27d5DfVc2EnMRtnm7UNVI1ciJL1yTOLY1EIrzx3DNsmDWZzD5mLdvaOyi9WsuWd76vX6f5zPFjpF0/y8z8CYnXK79J5oxFzJgzN+F69fV1nNz+Cuvm9V2oSlXZceIiK9/2nn5nSutqazm1/SXWzu171ldV2X7qMqvf/v5+9a5cvEDz+SMsKCpMuN7Bc5cpXL6h33ZV+7e/TpE2MX7MqITrVdbU0zB2Kov66Y29++cvsGCUMDp7RML1btY1cmPYeJatTS4X2WaYjSAxb8FFVTl2pIz9JXtoako2XP/eoaocLTvE/pI9NDc3D7Y59w37d+9kZGsNa+YWUTx/NsUL5rBm/kwWTxzFG8//mJ6ensE20TAMw/BI1c2bZNVc7ddZBpiQM4ac5utUlpcPvGEJaG1tZd+eXezbs4uWlhZPGvt2bmPqsC5Wzpt5R3/fjIwMVs6bwdSMLvbv2h6QxclTWV7O6KbKfp1lgEnjxpBVfYWbN24kXG/Pay+xcXZBn84ywIjhWawtyqXkjZ8n1GptbaXp/JF+nWWAuVMmcuP4Prq7uxOud3T7qwmdZXByRjcumMH+117s932Pbn8lobMc1ds0r4gDr72QcL2enh4qjpT26ywDrJhdxNnSHQnXuXzhPBO76vp1lgEKcseiFWeor6/rc50zJ44zM7OnX2cZYOK4MWTVl1N182a/6xoDg4gsFZFPD7Ydg8GgOMwi8gsiUu0+Pici29y/5wfDnquXL7Pn5Z8yI1tYMWU8Vw/vYd8gXGj64urlS+x5+TlmjUpnxZTxXD64m327Ev+oGXD6xHGmjExj8oTcu14bNmwYW5bOo2Tb64NgmWEYDxItLS2U7tpB6a7t1NX1fXNoxKe5udndfztoaGhIaduLRw4wp6B/5yfK9Em5lJ8sS+k9mpqabtnX2NiY0ra9KTtQyrmSbRRPzaV4ai4X9u2g7EBpShp1dXVkdzYyPoFTOj5nDCPa66mvr/dlb6qUnyxjxqTkWxbNKZzIpaMH+3y9ra2NkV0tZGT0n0GYlZlJemt9Qgf32L49LJ81NWn7imcWUla6p8/Xz50+xSMTRyelJSJMGz2Ma5UVCfROMj8FvSnZ6Vy/VtnnOodL97BqblFSegCLp0zg5NEjfb5+4+xxCnOT78azcFo+Zw72/f2uu3KOCeP6H1yJMnfKZC4m+L4YA4uqlqnq14PQitM7eUhzz411d9AHcHpgATSq6mb378k46w4okUiE8lNlrFsyjxHDhyMiLJg9g5ljR3AiwY/GvSISiVB+8gjrlsxn+PAsRISFc2YwIyeLk8eO9i+QgMP791GyY5vnEe6B1vNLw40KJuaO7/P1tLQ0hmsXnZ2d99Aq42FEVdm/dzd7d2wbkt+3U8ePUvLz59n36vMcLNk92ObcV9TUVHNs1+usnDGJVTPzuVJWQkX5Vd+6ZQcPcKB0L0GkTakqhw/sD0wP4OKF85w9c9q3TlXVTU7u3ebuv8lcOLg7oUMRSyQSgabqlN8zrbkm6eiimzducLp0OytnTGLljEmc27+L69eupfyeABXl5YwOt7HkkVmICCLC4rkzGRNuo/xq8t+ZM2UHmDd9Sr/rzZ8xldOH9/e7Xm/Kr16h5PWXKHn9pZS+yz09PaQ116T8fjRVO8cyDsf2l7AkBQd36cxCDpf07eBqU23Sec7g9Gfuqa/q8/WaK+eZMC55B7IofyJXTx3r8/Xay+fJTWJ2/pbepDyunOj7XjXcWJNSj+kxo7Jpuh7/mHd0dDCsrSFprSjaEH//NTY2MirsoT9yc01gv2NGaojIZhH5svv4kIh8XURKReTP4qz7cRE5ICLfFJFj7rKn3OcvAQtE5B9EZJc7aTrdXedAjEaJ+/9pEflXEXlDRL55Tz5sLwbDu/9FnB5g8X8dAXfHfQV4SUS+6pYNR0TeLiJ/GaQxx8oOs3zuzLuWjxs7hpZaf2EfRw7uY/srLxAOh71rHDrIinmz7lo+flwOzTXe7Tu0r4SZ44azeu40Du7a2v8G/XCwdC+zxo9w9bb51gPY+drL7Hz5Z55nbELdHf2us3TuTI6VHe53vXicOnaEvduDm6Gur6/nyqWLgekdKt3LjldfDuzCUllRzukTwRU1PLRvLzteeyUw+w6W7mHHa68EogWOkxFUyH7prh0szB/P6jlTKQ3oO7N762tsfelnvn5fwCka1Fh5idWL57Fy0TwmZgmXL13ybV+Q+w+cSJtzp08GphcU508cY82S+bduwpfOm03FeX+O5P69u5g1fiSLCnPZs+0N3zbu37uL2bnZLCrMZe92/7/3p08cY1jTTcZ0N3L0kL/ZnounjrNq0SO39t/y+XO4evZUUts2NTUxPjP12qX5o4dTVdW3ExTLpdPHWbnwkVsO7ooFc7hy1tv3sPLSOaYX3p0fWlSYz7VL55PWSe9JftAtlXWjXD1xmNXzZrB63gyunEj++lhVVUX+6NQrkY/PTO8zFS6tuz1lB1e62+O+pqqEPOyPUE/f9xLp4a6U9RJtEwp7sC/BNqGe1O3rax+VX71CUV5OynrDCdPVdbcdF8+eZU7hpJT1xib4vvTm6aef5uTJoXfdeEDIAb4IrMVp83QLEUkHfh9Y5/6PzTG4qqpPAFnAZFXdAPwFTuuoRBxS1ceAThHZHID9KXFPHWa38fSHgO/HLB4TE5L97zHLX1TVtwLfAj7qLvso8O04up90RzEOVFenNtrc1dlBVlb81gZp+LuRb6iuYli4i9bWVs8aPd2dZGbGz9tJE+/2dXe0Myo7G4CsFEYf+6Kns4Nst/BEVnow1Tmlu5N50wq5eeO6t+2TuMg6Rb+87ceblVepSxAKlSrXK65y/erlwPQaa6qItDUH5rTcqKzgZmVwuX+NNVX0tDb1ObOQKk211XS3NgamV1dby/mzZwLRkkiYrKxMRISsjGDOj0hHGzlZGbS3x785TJaOjg5GxVRanZg7nrpaD7NEvaiuquLyxQu+daLcrCznZoX/mdugCcX5HfZ77Yh0dzNy5AiGDRtGeloAM8w9Pbf04tmbKg21teRPzGPC+HG0Njf40krTu8/XZPdfZ2cnwzxcbzIzhtGR5HkTz5Y0j4N8EuezJnqfPknl/T3YmhFzZ5iRQhmizo4OhqVn9L9iLzIz0uno6Msp9bCvI/G3iUQihLzc9SbYh+rhepNokNiTXsJtPOy/PjbpbG9nmIf7xcyMUNzIqnC4m5CHA5KZkZ5SpNb8+fPZsCG5QmFGStSr6hVVjQC9f1BzgXJV7VLVOiD2ZiAa9jIz5nEpcPfs4J2F0A7G/L97pnOAuddtpX4J+IGqRmKcmUZV3Rxn3f0AqnpQRL4iIjnARFU913tFVf0G8A1wqmSnYtD02XM5d/YIs4vuDm/qSfO3e9ZseTNNTU2MHp1cPko8ps2czfkLx5k17U77VJUe8W7fzPkL2X2wlIy0NLInJK6ImAwz5i1g96F9rl6Bbz2A6YtWcLO+lgWLFnjaPpxERH/ljSomTEq9/yDAxre8w/fsXizzFy0JTAtgzWNvoa2t7Y6CMH5YsXptIDpR1mx5C+3t7YG1P4nqBVX5fHxuLuNz785/98KUWXPZU3aYUJowrjBxcZhkmbtiDe1tbWS7A19eGTlyJNebWpnT00MoFGLn4eNseOs7fds3YeLEpFuUJMPK9RsD0wqSrNHjqG9oYmyO8zvf3t5B2nB/x6Ro7jz2HDmMoEyZ4+33L74eTJ3rX29x8Sp279pOWpqwaJW/Ni+Zo8bS2NTMmNFOEaHWtjbSRyZ3zczJyeFkazv9ByffSVVjM1MnJJf3PCw7h6bmFkaPco5pS2sr6SP7L3gUj9DwbLq6uu7qT9vV1YVkJT8zG5bkfzNTWTdKT2Y2125UoQrhrOS/y7l5eVw92kLu2ORDigFqW9qYPzZ+WHPEg/2RPq4poVCI7kjqhYgjaX3boKHU78M0gV6i9+pzmwT7KOIhszHSxzU0b9Jkqg6epGh4Vkp6zZ09ca9T4/ImUFt5IuXvS31rO/k5OUmt+4lPfCIlbSMlEvlb1UChiAwDRgAzYl6LjvCcB97jPl4NRP27LHeCtRDH8Y6yDMdZXgZ8z5flHrjXDvN8YJmI/BIwW0T+IcG6sUNmLwFfB34ctEG5ubmcOaZMamm5NeMKsLvsJEsefdyXdmZmJnl5yRe/iMeECRM5d/woE3vbd+Qkyza+2bNubm4eG976ZP8rJkle3gTyAtQDKCgspKCw/8qOfRHJHImqJpxpLq9rZm2xN4c5LS1tSLelGj58eNI9GgeDoO0byp83v6CA/IJgBpKiTEjyhj8ZHnv7uzm0v5RIOMyax5+464be6JtFS5dxqHQv5yrOAopmjmT1o5t9aU6cOImJE58IxL6B0BsxYgSPviUYvSUrijmwdzfhq9cBhaxRrH40ubZPmZmZtA9LfXCiUTIZNSo5p3dp8UrHvitONJEMH82qDd4Gb5YVr+KNn/2Ix1YsvKNP784jp9nyzvclrTNqUiGNzQ2M6eczNDQ1M3py6tfQdZvfxJUrlxER1q5I/vo4atQoGiV+xF4i2odlk5kZf7u8abO4WXWeieOTyxO+eqOaglkJBp9H5qRsHyMSbDMyh0gkkvS9QEdnJ+lj+h6IlexxKem1d3SSOb7vgcnI8NQGd1S1z20mTpzInk4oSkkRwiNz4t6HzZg5iz1HS1N2mNszRtg1aoijqmER+SdgD3AauBJnnQMicl1EdgE9wK+4L30H2AscAmJzMleJyEdxQrq3DaT98Ri0PswickBVi0XkHHArrlVVN4vINuBJVW1x1y3Amc4vVNWEsYJe+zCXHdhPZ1MdghIOZbBg2UpfM8NB09u+hctXJX3Bf1hpb29n32svsnFZ/BmVM5fKycyfzvSZ8aJADMMwjKHOkQOlzOiqYmSSg2WdXV2cDI9mxbrBCdHs7OzkUMlu0rqcCMbIsCyWr9nQp8MYD1Vl23M/YPOi2QnX23bsHFve82Ff9qbKwT27mB9qStgCKpbW9nYuZOSxdOWaPtfZ8/wzrJ2dXBzBnnOVrH/y/X2+fuHsGUbePMuEcTlJ6V29UU3G3JUUFMZ//66uLo698mOWz0luYKH0zGVWPfmhPh3izs5Ojr/8Q5YlWeis9OwV1rzno31ODFyrrKDrfBnTJic3wHrswlVmPPq2PiOX9u3YytLhXaQnmQrR0NzKjTHTmL9kadzX977+CqvyhiWdp97a1s7F0HiWFK/qd91oH+b7iAeqD7OIZKhqt4iMA15S1cQNuRNrPQ18WVWDK6STIvd6hvkWqlrs/r/rFz9OiLYCL/TnLPthafHKgZIOhKFu31Bk+PDhLN/8Fnbt2c7EkZm3wu6ra+u5eLOWCTPmmrNsGIZxH7N4xSpe+/63eGxOflI33XsuV7Hlg2+7B5bFJzMzk7WbHvOlISIs2/xWdm5/hXXzZtyV1hIOh9lz6iLLNr/V1/t4YdmadWx95r/YMqf/iBpVpeRqHW/6cOLotKmLV3Hi1AEWFCXWPHKhnBnLE6cIzJwzlzdOHmH8mFH9pgN1dXdzpSONTX04y+C0qEyfNI2btfX9zoKX36xh9LS5CWePMzMzSZ88g6r6Wib0M/NaXlVLzswFCb/3+QWF7DhWxsTOTrL6GZRpaGqhI3t8wjSf5eseZeez32bTnP4jF1SVQzeaedPGpX2us3TdRva8+Azr5/Q/QKCqlFyu5k0fGrzz10iJT4vI+4BRwOcG2xi/DNoMc7KIyHrgy8Dvq2pJf+t7nWE2Hmxqamq4dNapXDs2N49Zc+YOskWGYRhGELS2tlLy/DNsmpXfpzOiquw4V8mKJ943pKLH/NDd3c3hkj1EWuoIuZWXw6FhpI0ax7LV6wKrX5Eqzc3N7H/hh2yaU9inMxeJRNh+/hprnvwgI92CoYm4cvEC5UdKWT4jn+FZd+bQtra1c+jSNWaufJSCKf07XuFwmK3PPcOaqeMZ0Uc+blNLK4dvtrL5ne9LaiDm0N5dZDXdYF5RfEfy2MWryMTpLFqe3OTHoT07yWq8xiNT764xo6ocu1RBesFsFiahp6rsePlnzB83vM/w58qqGsq7Mlj7WP+pfvX1dRz5+XM8Orvv49vTE2b7hRtsfO9H+o2eqK66ybndr7JmVt9OeCQSYcfZClY98b6k63bYDLMRJEPeYU4Vc5gNwzAM4+Gip6eHAzveIFJ/g/kTchidPQKAlrZ2jl+vQ3ImsmLjY5b7eI/o6uri4I430IabLJw8juwRTsh8U0sbJ27WkzZ2Eis3PZ5Sj2BV5ciBfXTUXCcU6UFE6EkLMWJCIYuWrUip/ZSqUra/hPaqCiYMg6kTc1GFyzeqqQ2HyJ40lcUrUovsq6mp5tyRg6S1NRCKhFGFSCgdHTmWR5avIifJQlVRqquqOH/0ANJSTyjSA4hTjHbUeOYXr2HMmNRyf8+cPE59xSWyutuYmDOaSCTCzcYWujKzmTB9DjNmJQ7xj6W9vZ2yXVvRhmoWF9weeGhobuVMTTOSM4GVmx5Puqhnc3MzJ0p2QnMNS4smM8wd7Glta+dYZQ0yJo/ijY+nNAhkDrMRJOYwG4ZhGIbxQKCqnDp2lNbGegBGjM5h/uIlKTlTRnCoKiePHqGtqQGAkWPGMm/R4iF1PKqqblJ59SoiQuG0InID6I4QvbcO6nMGqdfZ2Ul1dTUiQl5enq9BJFXleNkhOlqaERGyc8bxyMJFnvXC4TBHDpQS7nTajGWNGsPCpcs9fW5zmI0gMYfZMAzDMAzDMIwHBnOYjSAZtKJfhmEYhmEYhmEYRnC87c1v0praGohOit7xX90OyhrzPOav9/O+lt31Onct01vPuXvdSHQd97WIuiY6690pG/tcY6QUd/GtptAaXSd2mft20eURvb2NKkTc5dVEXlHVuFXlzGE2DMMwDMMwDMN4AKipreXA9tcgEoZIBCJhNNzjPo8u64FwD/R0o91dEO6Gnh7nf3cXGn3e0wU90cfOa87jXs/DPdDdHfNaDxp9Hg7fek17wmh3GO1yH/eEiXRHbj/vDhPp7iHco4TDEXrCSk+38z8cjhDuUbp7IoTDSk9PhB5V9w/CqnS7z8Mo3RElDHSr0hVROiNKlypdEehSpSOit17riChfp7nPfIzkOqMbhmEYhmEYhmEYxkOGOcyGYRiGYRiGYRiGEQdzmA3DMAzDMAzDMAwjDuYwG4ZhGIZhGIZhGEYczGE2DMMwDMMwDMMwjDiYw2wYhmEYhmEYhmEYcTCH2TAMwzAMwzAMwzDiIBptZv2AICLVwBUfErlATUDmmJ7pmZ7pmZ7pmZ7pmZ7pmd691ZumqnlBGXM/ISIv4+y/vgj6WN0rBtruGlV9W7wXHjiH2S8ickBVi03P9EzP9EzP9EzP9EzP9Ezv/tczbnO/7tvBtNtCsg3DMAzDMAzDMAwjDuYwG4ZhGIZhGIZhGEYczGG+m2+YnumZnumZnumZnumZnumZ3gOjZ9zmft23g2a35TAbhmEYhmEYhmEYRhxshtkwDMMwDMMwDMMw4mAOs2EYhmEYhmEYhmHEwRxmY8giIvb9NAzDMAzDMIwAEJEvichOEfmOiAwbbHv6QkRGiUipiLSIyEJ32YdFZI+IvCEiU+6lPeaQuIhIvohsFpEiHxofcf8vC8yw29q+7eulF4jOQOiJyLtE5ACwU0T2i8g7A9CcJiJbRGRaACbG6gZ+rIciIpIpItNFJHOwbbnfCPpcczWz3OORFbS2YRgDh4hsFJFfEZGNAWrmichy97H9RhuGERf3nnWyqj4KnAQ+MMgmJaIdeBL4IYCIZAB/AGwG/tz9u2c81A6ziPzI/f9J4LvAW4B/EZHPepT8QxEZA/yjiAwXkRHRvyFiXyxfFJFXROSTIpIzxPT+AtisqutxToy/8CMmIn8D/CvwZuDr7nMvOr/V6++3gf8Skd/yY5+rvUxEPiEiG3xovNkdjdsTHbxxl7/g07aPA3uALwC7ReSXfeotEJEficjPRSQkIn86FPTcc/WjIrJCRHJE5I9F5LcDcEoDPdfc79tO4G+BbSLyKR9aIiLf9GuTqzVQ+6/3+4zysa3EPJ7k/l77tWcgvs9fEZH/EJH/FJH/HEp6vbT/OACNQPdfHP2f+9w+MPtE5P8HfhHIAH7Bfe4LEfkD4P8C/yFOVNZPfGitEJElvZY96s/Cu97D1/EIWk9EskXk10Tkz0Xk8yLyeY86A3X9HS8ifyEi33TtG+9R50si8vfx/vzYF+d9PB2Pgdp/xl2sBaLH6GVg3SDakhBV7VHV6phFs4ETqtqlqruBRffSnvR7+WZDkNHu/18AHlPVCICIRG9GU+VfgO8Di4EXgOjNmQKPDQH7bqGqH3FvPN8P/LeItAHfAn4WfZ9B1DsOhNzHIeB0qvb0YrOq3nJERWSXR53fBq4AP8A5pgARoMWLmIi8qqpvFpHPAG8Dfgp8WkTeqap/4kHyL4G3Al3A34jIeuB3AU8DNjF8Clijqt3ihO9sB/7Lh96/AB8G/ltVwyLyZuCLQ0Dv+8B+nB/hzcCzQDfwNPCRPrfqh6DPNeBjOMcjLCIhYDfOgJAX21REmkRkuqpe8qIRQ6D7T0Q+BvyRq/EDVY0e0+fw8HsqIr8L/IaIXAD2Ae8BWkXkO6r6b6nqxRD09/nbOJ+73IdG4Hoisp/bv3vRa9tsEfmAqq7yIR3I/hORH8RbjP+bqiCP71RVffyWcSJv+LQN4N2quklEtqpqRDzOMIvIPwHjgW7XKfu4qtbhXFe8nG+BHo8BPL7PAs/j/D7/hw+9gbr+PoPTSue/geXucy/3k8/7tOMOBuB4DNT+M+4kB7jmPm4Exg2eKSmTAzTFPA/1sd6A8LA7zOdF5Emcm7x3uhevZUCzFzFVfRp4WkR+QVX/e6jZF4fZwBIg6gTNxXGOnhgMvZgbspFAhYhcAoqAq16Mkdsz+6Ui8jhwCGf/7fOiByzEGbz4II7T/H3gw6r6LY960ZP9/cDjqtoD/KsPhz6sqg3u4z8QkU/gOBfZHvViyQbq3f/Sz7r9oqo3Yyb7fP/oBaSXrap/BSAih1T1S+7jD/u1j2DPtQM458UF9/8hn7atA94hInU45596dICC3n+fBpa7AzWfEZEf4gwWeP3+/SLOzdwI4AwwA8cZ3wH4cZiD/j5fUdXXfGoMhN6PgAXAP6tqCYCIvKSqXq8Xtwho/63EcSRiB6EEf4N7QKDH96yI/DpwEOdadFZE5rvvcdKjZlicSAl1B+a8DMIBLFXVjeDMNAM/ER/RKwR/PAbq+Gao6tfcgZ+vicjPPOoM1PW3U1W/5z4+6+qmjKpuByd1MKonzpfa6+9z0MdjIO9fjNvUc3syLgeoGzxTUibWdoDwvXzzh91h/gzwOzgXrncBDcAu4BNexERkEvBrwHERmQr8KdAKfElVqwbbvl627sS50f4vVf39mOVeR6d966nqSi/vnYAXcBwAwRmZvfVWXsTUaVr+XRH5HvBRnBnhXB/2zXLDoXoXLsjwqFcmIkWqehmcARwRuQJ83YeNAJ8DXnLD/cLA//Sp94qIPA0Uisg3gBeHiF7sfo8NNfXlAAV1rsUMKIWAt4tIC87NhK8Lnqqu8LN9DEHvv4iqdgOo6j+JyEngJbyPiLe753CriHxPVbsARKTHo16UoL/PmSLyKlCG+1ulqn5CnwPRU9X/JSLZwO+6s/X/jMff0l4Etf++BDSrak3sQhH55yFiH0AWsN79i/JHOPvxVz1q/hHOLOkCnFw/r9+VkIikqWpEVQ+KyC8C38EZWPJC0MdjoI5vt/tbfFVEvgjke9QZqOtvs4h8m9uDLE3ipoGp6v/xoPebwPfc7VVEfiP6PEWCPh4Dtf+MOykB/hAnyu2tOBFq9wvngflupONK4Oi9fHNx7h+MIBCR14Fv4oyA/DZOQnoT8Duq6rtwVRCIyNOq+gkR+Xx0Nmio6LmhyD8TkQnAU8B84CLwV9EfUY+6G1V1R8zz1apa6sdWVycNmKSq1/pdOf72m2Ke7lfVNneG4EOq+h9+7QsaEQmpaiAjeuJUPJwHnFbVY0NBT0QWuNuHY5YNA96sqinnUQV9rgWNiHyJPhweLw7VAOy//wl8N/bcd9/jK6r6Ng96fwJ8OY59/1tV/79U9XppR79/p1T1uE+tTb2XRWeHhoKeqzka+D1gpqp+3I+WqxfI/nNnzH5JVX3PKvfSDez4DlVE5AngmKpWxCwbiXP/4ikEfSCOh4g8qqo7Y56vUlWvUWOIiLiO4wic1KgSr9d0Vy8jOtDnPs9WVU9pW+72fZ5fqppy/QkR2YMT0dbufuY3VHWNR9sCPb4Ddf4ad+Je+9fgRG/+SnTweCgiIi8CS3HSIb8OdOJcezqAj6lqUKlL/dvyMDvMIvK4qr4uTiGep3AOynngL1S10oPeNlXd7D4uif4IicjrsXlLg2Wfq7kfJ6ftt4Cvxr7mZbQySD1xcrC2iMizOCGSb+DMDH9BVb3k7ER134jdXkSeUdUPetA5iFNQ5RlV9ZtXHRsyfheq2uZBL/b78pc435dz+Pi+uLrvAj6P8wOViTOA4TVsDXGKQL0JGIsbXqvew9oD13M1F/bS25F4i7gagZ5rMbqP4swSxNr3dg86dzlSMfb5dah877/7Bfd8+wwwE+d8++eY0EIver2rJ3cDF1X15lDQczUfxUkzOKuqXlNIolo5BLv/fqKq7/FjUy+9HHzaJyJfV9VPy9154Kr+8r8RkX9V1U+JU4zxT4CXVPWPfGpmAhO4ff56SotytYI+HoFcz91tVwA9qnokZtkdDrkHze3A76pqmTipYH8evS/0oRnk8XgCp4BnOVAIfFZVX/KhF/TxDVTPMILiYQ/J/izwOk5o2cs4IdSbgP/ECVVIlfToaCXw67HLh4h9AO8GNuLknbR61BgovbCIpOPkML+mTk5viTiFjVLGDTX6JDBXRPbh3qDg5C96oRtnxvuLIlKIE5L9jKqe8qgXGzJOzGOvReJ6f1/+BP/fF3CqlG9S1RZ3xmE74Nlhdm3bCVT0t+Jg6InIj3EKuUX1FCfPNVWCPteifA0nl9fzIAjc6RSLyEycUETf+ekB7r+o3j6cMOxGYAxQA1TjDASlnL8dtB7OoMj33b/VOGGs7/CgE+UPcHLLDuEMGDYDI0XkNVX9wmDruSGXw3FqQfyqODmRfmbog95/IRHZhpPrHwHfIe2+7VPVT7v/g047Apjj/n9cVReKSIkfMXEqn78XmI7jVLUAW3xIBnI84lzPwcf1XAIuchbDh4BvuPcyFThtcTwT1PEQkb/g9mDNT4E84DBOaKtnh5ngz7eg9QwjEB52hzlKgap+2338ioj8mUedd0cfRMO23B/N3+9zi3trH26o0fdE5BVVrfdpV9B6f41TWKYRp33RLpywbC/5NahT+fbfRORTquqpinAv2lT1O8B3xMnlexfwBRGZoqrFHuzzcxOSiMC+Ly4nCLZqeZuqBtk/L2i9bFV9r1+RoM+1GE7hhIZ297tmErg3jgXACpw8uTR8OLgEtP9iKAG+pqrnRGQWTjjWP+I4Ml5CCYPWy44JITwjIr/mQeMOYiKVBKfwzeM4dntxmIPWW6Sq0eiE/ysifqMHgt5/X/a5fW8Cs0+cOicf4M7oC7/pGlni5LRed5/7Da98n6qucZ2WLTjnhR+COh4ZOBX3o4PKUbyGSQZd5CzKHJwBud04HVPG47GThktQxyN2IEVxZpd/D+f33s93MOjzLWg9wwiEh91hLnRHKrNFZKyq1ouT0+apKp+q1sKtm5LHuHPGxsvMRaD29eLt4hRumY3zY16nqkv62WZA9VR1uzs6vg6YiFPk7G/dUV8/TI8+cI/NF1TVixN5a/bNzUn6Lk4RMF/HQ0R+rqpvibHvRfVWebbQDfkL+vuyAiiX21XLy6OhhR7DCetE5HM4o9vRIkR+CukErXdJRH6pl57XCrYQ/Ln2HHBZRM66z9VPygJOJeoN4qSUvF+catR+CHr/rVDVc67OeRFZ5v7vGCJ6lSLyBZxuBqvwH+lQICIzVfUCThjwJFVVEWkfIno94rRWOoDzef0O3AS6/9zrSGAREwHb9xxOupHnnNs4/DJOJNHfipOe4rcIVjQaphunmr+vtk0BHo+/Ac4CP+b24EBv5zkVgi5yFuU3gHeqaoOIzMVpVfUmH3qBHA9VfQXAtemPcO6LPqs+0qtc3UDPtwE4fw0jEB5qh1lV57gOyoKYGSAFUs4H7MX3cUJn3oETdjsRpyLdULEPnFnvdTgNzN+K02tyUPVE5J3Aq6q61actvbnl1Lk3iqs96rwl3kL1UdDDZViMVrT4SMqo6pw4iyN4/L64sxYAd+Xbqqqf78s5nJnq2Fl5Pw5u0HoZODNw0boDfirYQvDn2v8EHsVnSHYMne7/NhF5G/CIT72g99/zIrIVpyLmIuBFN3LHa3XPoPU+hhMyORvHqfqcR50ovwF8VZzihzeA33Tt++wQ0fs4TnrQH+Cce36LfgW6/wYgYiJI+6pV9d99bB+Pf1LVWyHiIvIOnLaHXvlfruP9F8DfA1/xY1yAx2MijuP5XpxIkK3AD9V7ga6/wXHKKgBUtcLdd74KAKrqx2IenxGRuPcNKRDI8RCRlTgV1NNxOrfs8WlXVDfQ820Azl/DCISH2mGGWw7K3+HmJLlhjl5aQMUyQVU/JCIrVPUPxcnpG0r2ATSoapfjjzMMp0DUYOv9G3BdRM4Az+DMtHqdBYklLCKLVfWoiCz2ofNnIvEHPH2G1V1zZyB3Ahu4PXqeEiLy+QQve7Ev6BF9AFT1L/1sP9B6ON+7Z6JPxOmF7oegz7UjwHVV7ex3zQSI0/9VcNoEZeI4QP8H8Ju+ENj+cwcM9+Pk4RcBl/V2saqUHb6g9VxCOHUXst2/EB77Q7r2fVRV4+2zlB36oPXglmMRzYsOgsD2n0vQERNB2tcpIv/OndEXngoAug7QKpz2hNHBzRA+Z0jV7dktIsNU9V1+tFwCOR7uvc9LOC0ONwL/gPNZf8+j3ksSc0F3w+Xb1XtF8L3cbvs3njtrJHiqQu3a+ZobKXYOZ/DL6/W3FDiJk9LzeyLyezHv8SGv9hH8+Ra0nmEEwkPvMLtUi8hf4txIRYsM+Jmh6han5VC9ODkxM4eYfQBPu6OW/wBsw+njONh6p9Spkr0U+CDwOTfs9BlV9fOj+ZvAl0SkAGc0OeUWNy7RVlQfxJmp2Yczq1ngRSzGYflVnGImv45zMfPqAAZqH8GP6AMgIh8FAgtRDloP+DTOgE2UXwee96EX9Lm2AqgQkYvuc6+h8V/FaWEWjV45LSIfAP4bf2Gdge0/d8Dwd9Vpy+e5qvNA6bn8ENgD7MLpk/pDnPoGXu3LE5HRqtrk17Cg9QBE5B9xIiZucHsAzY9jFdj+cwk6YiJI+37a67mfwccMnP1fz+2w3Wk4TlUQfB7n98ovgRwPcar6vw+YCuzF+e264NUoEfkM8EkRuYBzrXwPTo/2b3uJAlDVta7u13Bm/aM1EnzVsHHPt/U4g9Z+zrfp/a/iiaDPt6D1DCMQHuq2UlHEqR4Yi/qZMXRD3+pwRhk/CryuMW0LBtu+oYq4baV6LVsCfFBVPYfBich0HCfySZyKmq+rqqdCYq7eixrTxkdEXlIPOcci8ip3OiyIyFjge6rquap1UPb10oyO6O9U1d/zqXWAXiHKqvrribcaeD2JqcKKU9hMcAaotqnqn3i1LyhE5K9U9fPu49+OhsWLyD+oaso3ZRLTBq/X8rvOwyT1BmT/icj3cG6iYgcM/bTlClrvldjzVWJqEnjUO4EzyHU+xj7PrYcGQC/u98aHXiD7L2YAUnBm46bjREz8SFU9DwAFeXxFZIPGtOESkXer6nMetQbk+hGj9U310WM76OMhIhGcvPkr7qJbN69eZkhFpBRnIHgEzn3BDJw84R2q+miqejG6u1V1fczzPaq6zodeoOdbUAzA8R2Q89cwgsJmmHFCOkVkGs4P5kVVvdLfNv3oVcntPqQHcMJyhoR9IrIMpxp1NzF5LCLyH6qacvXPgPW+23uBO9DgabBBRP4EJ4/yIk6l7cdUNYjR95CI/DpOfs1ynBwbL2Ror+rJ6hTqyhwK9gU9oh/DUEwHQFX/zQ2X/KCq+skBBII/13DC9aO8n9u50F5n01VE8lS1OsbmiXgstDIA+28GTq7su3B6gB/HRzpK0Hox3BCRv8E535a5z98OqUUCiZM/uVNVF7gzU3+Fjwq2QevF8Lo4YfbHuB1W7LkvLAHtPwYuYiIo+wA+JSLvwakE/EWccF1PDjMDd/2IavnNTQ/6eAQ9Q9quzoxRq4h8T1W7AESkx6dubI2EhfhrwQjBn29BEfTxHajz1zACwRxmwL0YLgfKgKUiclB9tKmR4PuQBmnfPwG/gpOD9fciskZV/zfe854C01OnDVSQvAtnNPo5nHC6iB+xmBHQD+GEmX4S5xj3jgBIlr4clqFi31Zuj+ivBIpdp9RvztNQTAcAboWw/jL+iuZECfpcC5rP49yMPQtcw2kz8h7gtxJtlIiA9983cY7pl3H6Wb9NVT8whPSiREPjF+EMLr0XZzYXUis+9+eqGs11fBonp7oa52bRSxX0oPWiTMZJ1YimZijwiz70gtp/8RzIOnHyP/0QlH2o6i+JyL/gFAX9LZ/XvECvHzEasSkurTgpLl5qfwR6PPxOZMThJREJqWpYVf8HOHnbOG0UPSGSsEaCV4I+34Ii6PNtoM5fwwgEc5gdNqvqrdkbcfr/+iHoPqRB2qeqGr3Yf1BEnnJnhbx+F4LWuwuvIXCqul5ECnH6Xv4WsEBE3g1sV9UGD6ZER0AbcStVRkPgcEKBUyVohyVo+wYk50lv94h+Du+zKwOmhzPj8E38h+wGfW4sFJEf4AyKxD5e4EVMVXeKyGacgoKTccLgNve+afFAUPuvW1V/5D4+K07bFz8ErRflv3B+Y96BUyTvk6r63x502uFWSs9IVd3uPvfaWiVovSiP6O0+zEEQ1P4LNGIiSPtEZISqtonIv+GkAyzGqasxRlW99p0NfMDLJaiq/gN1PAJBVf8uzrIufFTJdgcMf1eDrZEQ9PkWFEEf3yH9fTEMc5gdSkXkcZxeycuAfeK29lHVNg96QfchDdK+KhEpUtXL7vZPuSPKH/VoW2B6rgNw12J89IFU1QrgH4F/FKfo1wdwqgF7uQD1FQLndcQ8aIclaPsCHdEXt3dzH++Vck7lAOgFHbIb9Lm20octcVGnx/l/BaE1APtvYcxvQuwggdcIh0D1JPiUj2YR+TRO5eMfuO+RAWQNEb0o50XkF3BCTj1f3wZg/wXqQAZs3/M4s/o/UNVX3WVPiogf52ygBryCSpkZKId+QBGRb2lMaygPBDVgGCWQ820ACPr43pffF+PhwRxmh+U4jmgUwamkrHgLXQu6D2mQ9h0DPtZrkkFw8qm8EKTeSpzPExs6LQR0Q6+qlTizsF/1KhH0CGiQDgtDf4T25WgqgfQqWjVE9IIO2Q30XBuAkMSgCXr/BT1AELReoCkfOAMpvwxs5/ZvwmSc9m5DQS9KBk5P+mjUzweAUR50At1/A+BABn18iXGWo8995WYGfP2IEkiKywA69IEgIn8fbzFOj3svegNVI6H3+eb3fjIQgj6+Q/37YhgPdZVsEXkvcE1VS0XkOZwm9gD/oKp3FaC61wyEfSISG5r7d8Ct6rWq+spg6onTS/IHqlrTa/mHVfX7qdoWNCLyKE542l0joKrqqadpkNwH9r2hqo8lejxU9PzoxGwf6Lk21Al6/90PxKR8PI4TZvsZvKd83JeIyKuq+maP2w7p/ReUfSLShFM5/o7FeG8JN6C4DvNknH7vHYNtz0AgIpXEzwX+iqoWe9DbiTPIcJyAaiS46RNfUjfH2jCMweNhd5i3Am9S1bC4rVREJAS8qB7aMojI11X1071CRT1fFIO2L56+emgfc6/0hiIiMo7bI6DXgBeG0gjoULbvPnCYq7jdd1Rwwva3ge8iZw/LuTFg++9+ICbl431DNOdwQBCfbbRidIb0/vNj3/10/rth/L+KM8M3A3haVf91cK0KHhH5a+BrqlrVa/lnVPWfPOgNyIChiDwNfEYD6qNuGIY3HnaHOfYme4uqbnUfv66qjyfeeuAZaPuCngEK8ALxYeB3cPKnhuwovJEaMQ5VrDMlwEZVTbm66wDoTevrNb/h0A/JbOuA7T9j8BGRZ7i7ZoAAG1R18iCYdN9wnznMJcB6d6A+BOzW29XWjT4YqAFDubOPumL3Q4YxKDz0OcwiMkFVq2Kc0cl476sb1ZwJfA5ndPYC8DeqejHxVvfGvpibnt6VdtXLj3rQei5/jFNgpdHj9sbQZEjnpAbt1A3QuTFkMaf4gcfCQr3jewb+HnIApyXSBff/ocE0ZqBxU5k+BeTg3Fupqr7dg1Sg1yMR+StV/bw6fdSDqNFhGIYPHnaH+c+Bn4vIj4Dr3M75/JRP3e/gtGY4iFOw67uAlxHagbAv6JuegbiJOop9Nx84gnao7gMHzRwM44HhPjjfhiyq2j3YNvRHTCpZCHhCRFqAbGBIpPQMIF8DPgZU+hEZgPNjQ8zj93O7vdeSgN/HMIwkeKidElXdLSKPcWdVvi3qVJ70Q42q7nUfl4hI7VCx7z5xWvYAF0Tk1O230XUD8D6GMWCYg2EYxn3E84NtwCBxCjh1PwxqGIYxeDzUOcwDhYg8D4zG6cO8FGgBTgCo6h8PnmX3ByJyCCeHqn2wbTEMwzCMB504Vf3/GLcl4YNY1T+KiHwE+Apw1l2kQ6HeRNA1OgzD8Ic5zAOAiPRZQVNVt99LW+5HROTrwF+r6rXBtsUwDMMwHibupyJlfhGRozipbrdCslW1c9AMcrEiioYxtHioQ7IHArdv3p+q6hODbct9zCpgp4jUY1UhDcMwDONe8jDNpBzB6Tc96E5yLOYUG8bQwhzmgFFVFZETIrIF2A9E3OVtg2vZ/YOqrhhsGwzDMAzjYeFhq+ofwwqgQkSinUxsgN4wjLuwkOwBQES29lo0JHJi7hdEZAHw1zgVOp8A/khVvzi4VhmGYRjGg4mFABuGYfSNOczGkENEtgEfBr6nqltE5HVVfXyQzTIMwzAM4wFCRLJx7jfyuV3k7K8G1SjDMIYcaYNtwIOIiGwWkddE5KiIhETkHwfbpvsNVb3J7Tyq0GDaYhiGYRjGA8mzwAicXsf1QOHgmmMYxlDEHOaB4W+AdwK1qhoGFg+yPfcbr4jI00ChiHwDeHGQ7TEMwzAM48EjQ1W/BjS6/ycPtkGGYQw9rOjXwBBR1XYRsRlSD6jq/xKRhcA84JSqHh9smwzDMAzDeDAQkUdVdSfQLSKjgKsi8kWc0GzDMIw7sBzmAUBEPg78Ao7DdxT4vqp+e3Ctun8QkVycvohjuZ1T9PeDaZNhGIZhGA8GIvKGqj4mImnAa8CTwNuAElW9NrjWGYYx1LCQ7AARkXeIyGhV/SbwOeAEMBw4NLiW3Xe8gLPfLgIX3D/DMAzDMIzAUNVbrT9V9UfmLBuGEQ+bYQ4QESlR1TXu413AZ4Fq4J+trVTyiMhzqvruwbbDMAzDMIwHDxGpArbhRLFtch8D8ID3nTYMwwOWwxws7QAiMgEYqarb3ecyqFbdf3xLRJ7FCWdXsDYPhmEYhmEExsrBNsAwjPsHc5iDpVlEPg2sAn4AICIZQNagWnX/8Tnga0DlYBtiGIZhGMaDhapeGWwbDMO4f7CQ7ABxKy3+MtAG/JeqhkVkKrBIVV8YXOvuH0TkJ6r6nsG2wzAMwzAMwzCMhxtzmI0hg4iMUNU2EXnFXRQbkv3Hg2eZYRiGYRiGYRgPIxaSbQwlngceA74w2IYYhmEYhmEYhmGYw2wMOaLF0gzDMAzDMAzDMAYTC8k2hgwi0gSc7r0YUFVdNQgmGYZhGIZhGIbxEGMzzMZQ4qCqbhlsIwzDMAzDMAzDMADSBtsAwzAMwzAMwzAMwxiKWEi2MWQQkQxV7R5sOwzDMAzDMAzDMMAcZsMwDMMwDMMwDMOIi4VkG4ZhGIZhGIZhGEYczGE2DMMwDMMwDMMwjDiYw2wYhmEYhmEYhmEYcTCH2TAMwzAMwzAMwzDiYA6zYRiGYRiGYRiGYcTh/wF5Ei+UUwCZ4AAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 1177.92x550.8 with 6 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "marker_genes(adata, n_genes=2)" ] }, { "cell_type": "markdown", "id": "337536c8", "metadata": {}, "source": [ "### Also, we can look at the shared pathways between clusters" ] }, { "cell_type": "code", "execution_count": 12, "id": "5e5bf836", "metadata": {}, "outputs": [], "source": [ "from descartes_rpa.pl import shared_pathways" ] }, { "cell_type": "code", "execution_count": 13, "id": "edec0555", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAACKAAAASBCAYAAAAJs3ToAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdebzcVX0//tcJWQhrICwR1ICIyKKySRUBwQVRBBTFBYsgoLYWflakVWwVtFawBVvXr8gi4IYLIoopUiyKCqgIIlHQCAKCLCYsIWEJIef3x50kc4csd+7MvXOX5/PxmMd8zpmzvCf3j8vD+/KcUmsNAAAAAAAAAAAM1oReFwAAAAAAAAAAwOgmgAIAAAAAAAAAQEcEUAAAAAAAAAAA6IgACgAAAAAAAAAAHRFAAQAAAAAAAACgIwIoAAAAAAAAAAB0RAAFAAAAAAAAAICOCKAAAAAAAAAAANARARQAAAAAAAAAADoigAIAAAAAAAAAQEcEUAAAAAAAAAAA6IgACgAAAAAAAAAAHRFAAQAAAAAAAACgIwIoAAAAAAAAAAB0RAAFAAAAAAAAAICOCKAAAAAAAAAAANARARQAAAAAAAAAADoigAIAAAAAAAAAQEcEUAAAAAAAAAAA6IgACgAAAAAAAAAAHRFAAQAAAAAAAACgIwIoAAAAAAAAAAB0RAAFAAAAAAAAAICOCKAAAAAAAAAAANARARQAAAAAAAAAADoigAIAAAAAAAAAQEcEUAAAAAAAAAAA6IgACgAAAAAAAAAAHRFAAQAAAAAAAACgIxN7XQAAACRJKWWDJNsn2TrJhknWTPJAkr8m+VWt9ebeVQcAAAAAAKxKqbX2ugYAAEawUsozkjw/ya6N952TrNs05LZa6xaDWHdSkpckOSDJ3ukLn6zKX5KcleRztda7291vgDWdn+SNLd2D+n4AAAAAADCeCKAAAPAkpZS9k5yQvtDJhqsZ3nZAo5TyN0n+J8kGgyjvgSTH1lq/PIi5q6rpwCQXreAjARQAAAAAAFgNV/AAALAiOybZdwjX3zgrDp8sSnJDkruTPJhkevpCMNObxkxL8qVSyia11k90o5hSyrQk/68bawEAAAAAwHgkgAIAQDseS3JHkq26uOaCJN9I8tUkV9ZaH2n+sJRSkrwmyX8neXrTR6eVUm6otf5vF2o4LclmjeeH0v+KIQAAAAAAYDUm9LoAAABGrMeT/DrJmUnemWSX9AUzju7S+vcmOT7JjFrrUbXWH7aGT5Kk9rkwyc5Jbmz5+FONgMqglVJeluTIRnNxkg91sh4AAAAAAIxHTkABAGBFzk3y+Vrro60fdJj3WOrnSZ5Ra1040Am11nmllDcnuTbLg9TPTt8VPb8cTBGllLWTnNHU9Yn0hW4AAAAAAIA2OAEFAIAnqbXev6LwSRfX/2s74ZOmedcn+WlL9z4dlHJyki0az7ckOamDtQAAAAAAYNwSQAEAYLS5rqW92WAWKaXsnuQfmrreuaIrgAAAAAAAgNUTQAEAYLRZ3NKe3O4CpZQpSc7O8v8ePrfWelmnhQEAAAAAwHglgAIAwGjzzJb2XYNY46Qk2zSe/5rkvZ0UBAAAAAAA450ACgAAo0YpZb0kL2/p/kWba+yc5Pimrn+stc7rtDYAAAAAABjPBFAAABhN3plkrab2g0kuH+jkUsrE9F29M7HRdUmt9avdKw8AAAAAAMYnARQAAEaFUsoWST7Y0v3JWuuiNpZ5f5LnNZ4XJvn7LpQGAAAAAADjngAKAAAjXillcpKvJ1m3qfvWJP/RxhrbJfnXpq4P1lpv7UZ9AAAAAAAw3k1c/RAAAEaLUsqaSbZq6rq51vpor+rpojOT7NbUfiLJ4bXWhQOZXEqZkOSsJFMaXb9K8qmuVggAAAAAAOOYAAoAwNiyVZLZTe0dkvy2R7V0RSnl35Ic1tJ9Qq31ijaWeXeSFzSeFyc5utb6RDfqAwAAAAAABFAAAMa02bNnz179qPZcfvnl2WeffZa1Z86cOTNJ7fY+SfLf//3fT+o77rjjctppp/1HBnj9zi233JK11lorDz/8cJLkn//5nyd+/OMfv25l44fz+wEAAAAAwBAovdh0Qi82BQCA1TnjjDNy3HHH9ev7+7//+5x22mkDXqPWmre//e3LwifPeMYzctJJJ3WzTAAAAAAAIAIoAACMQF/60pfyd3/3d6l1+cEjb3vb2/LZz362rXXOOOOM/N///d+y9umnn56pU6d2rU4AAAAAAKCPK3gAABhRzj///LztbW/LkiVLlvW95S1vyZlnnplS2js18MQTT1z2/KpXvSrPfOYzc+utt65yzt13392vvXjx4ifN2WyzzTJ58uS2agEAAAAAgLFMAAUAgBHjggsuyGGHHZYnnnhiWd8hhxySc889NxMmtH943yOPPLLsedasWdlyyy3bXuPOO+980rzrrrsuO+64Y9trAQAAAADAWOUKHgAARoTvfve7efOb35zFixcv63vNa16Tr371q1ljjTV6WBkAAAAAALA6AigAAPTcrFmzcsghh+Txxx9f1rf//vvn61//eiZOdGgfAAAAAACMdAIoAAD01P/+7//mda97XRYtWrSsb999980FF1yQyZMnd7T2Aw88kFprW6/LL7+83xozZ8580hjX7wAAAAAAQH/+76QAwKhQStkgyfZJtk6yYZI1kzyQ5K9JflVrvbl31TFYP/7xj3PQQQfl0UcfXdb3kpe8JN/5zncyZcqUHlYGAAAAAAC0QwAFAOhIKeUZSZ6fZNfG+85J1m0aclutdYtBrDspyUuSHJBk7/SFT1Y1/i9JzkryuVrr3W3udVKSE9utscm5tdYjOpg/Ll111VV59atfnUceeWRZ31577ZXvfe97mTp1ag8rAwAAAAAA2iWAAgC0rZSyd5IT0hc62XAI1v+bJP+TZIM2pm2W5INJji2lHFtr/XK36xpv7rjjjixevPhJ/Xff3T/fs3jx4tx6660rXGOdddbJRhtt9KT+6667Lq985SuzYMGCZX3bbLNNPvvZz+bee+9tq84111wzM2bMaGsOAAAAAADQXQIoAMBg7Jhk3yFcf+OsOHyyKMkNSe5O8mCS6ekLwUxvGjMtyZdKKZvUWj8xhDWOeXvssUduu+221Y678847s+WWW67ws8MPPzznnHPOk/ovuuiiPPjgg/36fv/73+c5z3lO23W++MUvzo9+9KO25wEAAAAAAN0jgAIAdNNjSe5IslUX11yQ5BtJvprkylrrI80fllJKktck+e8kT2/66LRSyg211v8dxJ5vTnJ1mzUCAAAAAACMWwIoAMBgPZ7kt0muSfLLxvsNSV6U5PIurH9vkv9I8vla68KVDaq11iQXllKuSPKTJNs2ffypUsp2jTHtuLvWemu7BQMAAAAAAIxXpf2/xwAA410pZYMkj9RaH13BZ3unfwDltlrrFm2uv3GSh1cVPFnJvOcluTbJhKbu3Wqtv1zNvJOSnNjUtU+t9Uft7D1SlFK2TzJ7aXv27NnZfvvte1gRAAAAAAAwzEovNp2w+iEAAP3VWu9fUfiki+v/td3wSWPe9Ul+2tK9T3eqAgAAAAAAYGUEUACAsea6lvZmPakCAAAAAABgHBFAAQDGmsUt7ck9qQIAAAAAAGAcEUABAMaaZ7a07+pJFQAAAAAAAOOIAAoAMGaUUtZL8vKW7l8MYql3llIuK6XcWUp5tJTyUCnl1lLKj0sp/15K2bML5QIAAAAAAIwZE3tdAABAF70zyVpN7QeTXD6Idd7U0p6SZJ0kM5PsleQDpZRrkpxQa71sMIUCAAAAAACMJQIoAMCYUErZIskHW7o/WWtdNERb7prk0lLKyUn+tdZau71BKWWTJBu3OW2r5saCBQsyf/787hUFAAAAAACMaOutt15P9hVAAQBGvVLK5CRfT7JuU/etSf6jzaXuTDIrfdf23JjkviRLkkxPsnOSVyd5RfPWST6QvmsNTxhE6avzriQndrLAL37xi9x9991dKgcAAAAAABjpDjrooJ7sK4ACAIwFZybZran9RJLDa60LBzj/F+kLlvzvKk4yuTLJZ0opuyb5apKtmz57fynl6lrrRW3WDQAAAAAAMCZM6HUBAACdKKX8W5LDWrpPqLVeMdA1aq2zaq2XDuQanVrrNUlekOQPLR+dUkpZY6B7AgAAAAAAjCVlAH9nAQAYsFLK3kkub+q6rda6xRDt9Y9J/qul+xO11vcOxX4te++c5Jr0XcOz1MtrrZd1cY9Nkmzc5rStkiw7ieXqq6/Otttu262SAAAAAACAEW699dYrqx/Vfa7gAQBGpVLK25N8oqX7/w1H+CRJaq3XllIuTd/VPUvtl6RrAZRa671J7m1nTin9/5tynXXWyXrrrdetkgAAAAAAAFbIFTwAwKhTSjksyefT//SRLyb5h2Eu5ZKW9nOHeX8AAAAAAIARwQkoAMCoUkp5U/rCJs1B2q8kOboO/92Ct7a0270uZ1R7++fu63UJXXXGuzbsdQkAAAAAADBqOQEFABg1SimvS/KlJGs0dX8zyeG11iU9KOmRlvbUHtQAAAAAAADQcwIoAMCoUEo5MMnX0v8Et+8kObTW+kRPiko2amnP7UkVAAAAAAAAPSaAAgCMeKWUV6XvpJNJTd3fT/LGWuvi3lSVJPmblvZfelIFAAAAAABAjwmgAAAjWinl5UkuSDK5qfvSJK+rtS7qTVVJKWXNJAe3dP+oB6UAAAAAAAD0nAAKADBilVJenOSiJGs2df9fktfUWh/rTVXLvC/J5k3tJ9J3KgsAAAAAAMC4I4ACAIxIpZQXJrk4ydSm7iuSHFBrfaSL+xxWStm0zTlvT3JiS/c5tdbbulUXAAAAAADAaDKx1wUAAKNTKeWpWfF/S8xoaU8spWyxkmUW1FrnrmDtnZL8T5J1mrp/n+QfkmxSSmmn1EdrrXev4vOjkpxeSvlmkm8k+VGtdeGKBpZSdk3ygSSvbfnoziT/2k5RAAAAAAAAY4kACgAwWD9NMnMA4zZP8qeVfHZukiNW0H9QkvVb+rZJcsNAi2vy4yR7r2bM1CRvbbyWlFLmJLk1yYPpu1pnepLnJVnRSSn3JdlvNSEXAAAAAACAMU0ABQCgvwnpC7tsM4CxP0xyRK31jqEtCQAAAAAAYGQTQAEAxrtPpu8KnRdlYCe6LExyaZLP1lp/OJSFAQAAAAAAjBYCKADAoNRatxjCtU9KctJQrd+y14VJLkySUsq0JNsneVr6rttZK30nojyQ5P4kNyb5Ta31ieGoDQAAAAAAYLQQQAEAaKi1PpDkZ72uAwAAAAAAYLSZ0OsCAAAAAAAAAAAY3QRQAAAAAAAAAADoiAAKAAAAAAAAAAAdEUABAAAAAAAAAKAjAigAAAAAAAAAAHREAAUAAAAAAAAAgI4IoAAAAAAAAAAA0BEBFAAAAAAAAAAAOiKAAgAAAAAAAABARwRQAAAAAAAAAADoiAAKAAAAAAAAAAAdEUABAAAAAAAAAKAjAigAAAAAAAAAAHREAAUAAAAAAAAAgI4IoAAAAAAAAAAA0BEBFAAAAAAAAAAAOiKAAgAAAAAAAABARwRQAAAAAAAAAADoiAAKAAAAAAAAAAAdEUABAAAAAAAAAKAjAigAAAAAAAAAAHREAAUAAAAAAAAAgI4IoAAAAAAAAAAA0BEBFAAAAAAAAAAAOiKAAgAAAAAAAABARwRQAAAAAAAAAADoiAAKAAAAAAAAAAAdEUABAAAAAAAAAKAjAigAAAAAAAAAAHREAAUAAAAAAAAAgI4IoAAAAAAAAAAA0BEBFAAAAAAAAAAAOiKAAgAAAAAAAABARwRQAAAAAAAAAADoiAAKAAAAAAAAAAAdEUABAAAAAAAAAKAjAigAAAAAAAAAAHREAAUAAAAAAAAAgI4IoAAAAAAAAAAA0BEBFAAAAAAAAAAAOiKAAgAAAAAAAABARwRQAAAAAAAAAADoiAAKAAAAAAAAAAAdEUABAAAAAAAAAKAjAigAAAAAAAAAAHREAAUAAAAAAAAAgI4IoAAAAAAAAAAA0BEBFAAAAAAAAAAAOiKAAgAAAAAAAABARwRQAAAAAAAAAADoiAAKAAAAAAAAAAAdEUABAAAAAAAAAKAjAigAAAAAAAAAAHREAAUAAAAAAAAAgI4IoAAAAAAAAAAA0BEBFAAAAAAAAAAAOiKAAgAAAAAAAABARwRQAAAAAAAAAADoiAAKAAAAAAAAAAAdEUABAAAAAAAAAKAjAigAAAAAAAAAAHREAAUAAAAAAAAAgI4IoAAAAAAAAAAA0BEBFAAAAAAAAAAAOiKAAgAAAAAAAABARwRQAAAAAAAAAADoiAAKAAAAAAAAAAAdEUABAAAAAAAAAKAjAigAAAAAAAAAAHREAAUAAAAAAAAAgI4IoAAAAAAAAAAA0BEBFAAAAAAAAAAAOiKAAgAAAAAAAABARwRQAAAAAAAAAADoiAAKAAAAAAAAAAAdEUABAAAAAAAAAKAjAigAAAAAAAAAAHREAAUAAAAAAAAAgI4IoAAAAAAAAAAA0JGJvS4AAKAdpZRJSV6U5OlJnpJkQZK/JLmu1nprl/faMsmOSTZLsk6Su5LcluTKWuvj3dwLAAAAAABgNBNAAQA6Ukp5RpLnJ9m18b5zknWbhtxWa92iC/tsnOTDSd6YZMOVjLkyySdqrRd0uNfrkxyX5IUrGXJfKeXrST5Ua53byV4AAAAAAABjgQAKANC2UsreSU5IX+hkhWGQLu/3yiTnJNlkNUN3T7J7KeUrSd5Za13Y5j7rJDkjyZtWM3TDJH+f5OBSyuG11h+0sw8AAAAAAMBYI4ACAAzGjkn2HY6NGmGX7ySZ3NRdk1yb5JYk05LslGSjps/fkmS9Uspraq1LBrjPGkm+nuRVLR/9Ncl1SR5MslVjr9L4bNMkF5VSXlZr/elAvxMAAAAAAMBYI4ACAD1WSnlqkmek71SNdZOUWut5va1q0B5Lckf6ghoda/zbfDv9wyc/S/L2WuuNTeOmJHlnklOTTGp0H5Dko0k+MMDtTkn/8Mnj6buG5wu11kVNe22X5Mwsv55nSpLvlFKeU2u9a4B7AQAAAAAAjCkCKADQA6WUmUnek+TAJDNXMORJAZRSyp5J9mk076+1fnroKhyQx5P8Nsk1SX7ZeL8hyYuSXN6lPT6cZIOm9pVJXlZrfbR5UK31sSSfKqXcnuTCpo+OK6WcXmu9bVWblFKekeTdLd2H1Fovah1ba/1dKeWlSX6Y5SGU6UlOTPJ3A/hOAAAAAAAAY44ACgAMo1LKhCT/luSfkqyR5Ve5NKsrmT43yUlLPy+lzKq13jwEZQ7EuUk+3xoESZJSVvSV2ldK2TrJ4U1di5IcsaI9l6q1fqeUcm7TvCnpC4YcuZrtTszyk1OS5JwVhU+a9nmklHJE+gI3S09nOaqU8h+11ltWsxcAAAAAAMCYM6HXBQDAeFFKmZTkkiTvz4pDoCsLnvR92HflzOVZHlo5tKsFtqHWev+qgiBdcmj6QjpLfbvWOmcA8z7e0n5DKWXNlQ0upUxN8vrVrPEktdY/JPlOU9fE9PBnAgAAAAAA0EsCKAAwfM5K8rLGc01fkOQnST6S5F+z4tNQWl3Q9LxvV6sbeV7b0v7iQCY1gjo/b+paO6v+t3pFkrWa2lfVWm8aUIVPrungAc4DAAAAAAAYUwRQAGAYlFJemuRvszx4cnOS3WqtL661npTkKwNc6vtLl0zy/FWd7DGalVJmJHleU9fiJD9rY4kftbRfuYqx+61m7qr8JH21LbVTKWXTNuYDAAAAAACMCQIoADA8Tmy8lyS3Jdm91npNu4vUWm9L8kCjOSnJs7tS3cizQ0v7N7XWhW3Mv7KlvX0be1010E0aNd3Qxl4AAAAAAABjkgAKAAyxUsqGSXZP3+knNcm7a61zO1jyd03Pz+qkthFsu5b2H9ucf/Nq1mu27TDuBQAAAAAAMCYJoADA0Nsjfb9zS5K/1lq/2+F6zeGVTTpca6R6Zkv79jbn39bSnl5K2aB1UCMctGGHe7WO37rN+QAAAAAAAKPexF4XAADjwFMa7zVJ29furMBDTc/rdGG9kWhaS/vedibXWheUUh5NsmZT9/pJ7l/NPg+3edXPimpbv835K1VK2STJxm1O26q5sWDBgsyfP79bJY1p/p0AAAAAABgL1ltvvZ7sK4ACAEOv+YSN1gDEYExten68C+uNRK3BmkcGscYj6R9AWXcI92m2on0G611JTuxkgV/84he5++67u1ROqz2HaN3euPzyy3tdAgAAAAAAdOyggw7qyb6u4AGAodd8rEI3wgmbNj3f14X1RqLWYMijg1ijNRiyotNihmsfAAAAAACAMU0ABQCG3l+bnrfuZKFSyhpJdmrququT9UaROsbmAAAAAAAAjCmu4AGAoXdD470k2aaU8tRa6x2DXOuVSdZqPNckV3da3Ai1oKU9dYWjVq11Tuuaw7nPYH0uyTfbnLNVkouWNnbbbbdsu+22XSxpuYu/vHhI1u2VffbZp9clAAAAAADAqCWAAgBDrNZ6YynlziSbpy+E8t4k72l3nVLKhCQfWLpskutrrQ90q84RRgAlSa313iT3tjOnlNKvvc4662S99dbrVkktxtYNUEP37wQAAAAAAGOfK3gAYHh8pfFekhxTSnn5INb4WJIXNLXP6LiqkevBlvbG7UwupayTJwdDHhjAPmuVUtZuZ68kmwxgHwAAAAAAgDFNAAUAhsd/JJmfvpNL1khyUSnlHQOZWErZqJRyTpJ/asxPkruTnD0EdY4Uc1raM9uc3zr+vlrr/a2Daq3zkrT2P73DvVprBwAAAAAAGPMEUABgGNRa70vy/6XvBJSaZM0k/6+UMqeUcnKSA5vHl1J2K6UcVkr5UpKbkxzWmFuSPJHkbbXWRcP5HYbZjS3tZ7Y5/xkt7d8N416t6wEAAAAAAIx5E3tdAACMF7XW80opz0zyr+kLoZQkWyX555ahJclVLe3aNOeEWuulQ19xT81uaT+3lLJWrfXhAc5/0WrWa/1s96b2C5N8byCbNK7reW4bewEAAAAAAIxJTkABgGFUa/1QkrcleXRpV+O9OWSyNGhSmsaUJIuSHF5rPXXYCu6RWutdSX7T1DUxyR5tLLF3S/t/VjH2ktXMXZU90z/Qe12t9Z425gMAAAAAAIwJAigAMMxqrecm2TbJ59IXRFkaNCnpHzxZ2rckyXlJtq21fmkYS+21C1vabxvIpFLKs5P8TVPXwiSrOjHmB0keaWq/sLHGQBzR0m6tGQAAAAAAYFxwBQ8A9ECt9fYkx5RS/jl9J3vskeRpSaYnmZxkbpJ7klyZ5Ie11gd6VGovfSV91xWt0WgfXErZutY6ZzXz3tfS/kat9dEVjkxSa324lPKtJIe1rLHKwEsp5VlJXtvUtTjJV1dTGwAAAAAAwJgkgAIAPVRrfTh9p3Os6oSOcanWOqeUcm6SIxtdk5OcU0p56coCJaWUg9L/VJJFST48gO1OSvKmJJMa7SNKKRfWWr+7kn3WTPLFRk1LnVVrvXkAewEAAAAAAIw5ruABAAallPLUUsoWra8kM1qGTlzRuMZro9Vsc2KS+5vauye5rPWKnFLKlFLKsUm+2TL/tFrrbav7LrXWW5J8sqX7W6WUY0opzSGTlFK2TfLDRi1LzcvAgi4AAAAAAABjkhNQAIDB+mmSmQMYt3mSP63ks3PT/8SSfmqtd5RSDk7ygyw/beRFSX5XSvlVkluSrJ9k5yQbt0y/OMkHB1DfUu9Psn2SVzbak5J8OskHSynXJnkoyTMae5WmeYuSvLbWelcbewEAAAAAAIwpAigAMAxKKXs1Ne+ttd40yHWmJPmbpe1a6xWd1jbS1Vp/VEp5bZJzsjxkUpLs2nityNeSvL3W+kQb+zxRSnlDkjOTvLHpo02S7LeSafcmObzW+pOB7gMAAAAAADAWuYIHAIbHj5Jc3nhdX0p5yyDXmdG01v91pbJRoNY6K8kOST6f/lfytLo6yetrrYfWWhcOYp8FtdY3JTmksdbK3Jfk/yXZodZ6Sbv7AAAAAAAAjDVOQAGA4VXSd7XLuaWUjWqtn+xgnZ6qtW4xzPvdm+TvSynvTt81PDPTF8hZmOTOJNfVWld21U+7e30rybdKKVum78qdzZKsneTuJLcl+VmtdVE39gIAAAAAABgLBFAAYHjVxvuEJJ8opWxSa/2XXhY02jSCH5cP015/StKVUAsAAAAAAMBY5goeABhepfGqjff3l1JOL6X0/EQTAAAAAAAAGCwBFAAYXjXJPyZ5LMtDKEen77qXyT2sCwAAAAAAAAZNAAUAhs/SU06+k2S/JPOzPITymiT/U0pZpyeVAQAAAAAAQAcEUACgB2qtVyTZO8k9WR5C2TvJj0opG/euMgAAAAAAAGifAAoA9Eit9fokeya5NX0hlCTZOclPSykze1UXAAAAAAAAtEsABQB6qNZ6c5IXJbkhfaeg1CRbJ/lZKWWHXtYGAAAAAAAAAyWAAgA9Vmu9O8leSX6S5SGUzZJcUUp5US9rAwAAAAAAgIEQQAGAEaDWOj/Jvkm+m+UhlGlJLi2l7N/D0gAAAAAAAGC1BFAAYISotT6W5OAkX8zyEMrUJBeWUt7ay9oAAAAAAABgVQRQAGAEqbUuqbUeleQ/szyEMjHJF0sp7+1pcQAAAAAAALASE3tdAADwZLXW95VS7k3yH+kLoZTG8849LQwAAAAAAABWwAkoADBC1VpPS3JkkieyPITypsYzAAAAAAAAjBgCKAAwfNoOjtRaz01ycJJHszyEAgAAAAAAACOKAAoADJ9BhUdqrRcneUWSB+P0EwAAAAAAAEagib0uAADGiQ83PT/Q7uRa609LKS9O8oMkM7pVFAAAAAAAAHSDAAoADINa64dXP2q1a9yQZLMulAMAAAAAAABd5QoeAAAAAAAAAAA6IoACAAAAAAAAAEBHBFAAAAAAAAAAAOiIAAoAAAAAAAAAAB2Z2OsCAGC0K6W8tbWv1nre6sZ0Q+s+AAAAAAAA0AsCKADQuXOS1Ja+1mDIisZ0gwAKAAAAAAAAPSeAAgDdVbLqoEnpwh51APsAAAAAAADAsBFAAYDuGEiwpBvhk26uAwAAAAAAAF0hgAIAnXtbl8YAAAAAAADAqCSAAgAdqrWe240xAAAAAAAAMFpN6HUBAAAAAAAAAACMbgIoAAAAAAAAAAB0RAAFAAAAAAAAAICOCKAAAAAAAAAAANCRib0uAABYsVLKS5K8NsmWSR5LcmOSL9dab+ppYQAAAAAAANBCAAUAhkEp5TlJDmk0a5KP1VofW8nYNZN8OX3hk2avSfK+Usq/11pPGqJSAQAAAAAAoG0CKAAwPI5NclTj+UcrC580fDbJwU3t2vS8RpIPllIer7X+e5drBAAAAAAAgEGZ0OsCAGCceGWS0ng+b2WDSim7Jnlb+kInS4MnpelVG+8fKqVsM2TVAgAAAAAAQBsEUABgiJVSNkuyeVPXJasY/o9LpzXeP5dklyTPS/KJRl9N3ylm/9y9KgEAAAAAAGDwXMEDAENv28Z7TfKXWus9KxpUSpmS5MAsP/nka7XWY5qGHF9KSZLjGu2DSynvrLUuHoKaAbritttuy69+9avcddddefDBBzNp0qRMmzYtW2+9dXbZZZesu+66vS4RAAAAAIAuEEABgKE3s+n5plWMe0GSdRrPNcl/rGDMKUnenWSNJOsl2SHJrzsvERirjjjiiJx77rldWWvmzJm59dZbVzvu4Ycfzmc+85mceeaZmTNnzkrHTZgwIfvtt1/e/e53Z9999+1KjQAAAAAA9IYreABg6E1rer5/FeP2bLzXJLfUWn/TOqDWOjfJDU1d23dcHcAATZ06dbVjrrrqquywww553/vet8rwSZIsWbIks2bNyite8Yoceuihefjhh7tVKgAAAAAAw8wJKAAw9Jr/YvvIKsa9sOn5f1cx7pYkOzaepw+yJoC2ve51r1vl51dddVX23XffLFiwoF//uuuum+c///nZdNNN89hjj+WPf/xjZs+enSVLliwb87WvfS333ntvZs2alcmTJw9J/QAAAAAADB0BFAAYeo81Pa+9ogGllJL+AZSfrWK95iMC1lnpKIAkp556ak466aS2511zzTU55JBDlrVLKTnyyCNXOv7RRx/NYYcd1i98MnXq1Jxyyil5xzvekTXXXLPf+Jtvvjnvec978r3vfW9Z3w9/+MOcdtppOeGEE9quFwAAAACA3hJAAYCh92DT88yVjNkp/a/quWoV6zWHWB4fZE3AOLHRRhtlo402anveKaec0q+9zz775BnPeMZKx59//vm5+eabl7VLKbnwwgvzile8YoXjt9pqq1x00UV5wxvekG9961v99n3ve9/rFBQAAAAAgFFmQq8LAIBxYE7jvSR5billvRWMeW3T8z211ltWsV7ztTsPrnQUwCA98sgjOf/88/v1HXXUUauc03ySSZIcdNBBKw2fLFVKyac//elMmjRpWd/8+fNzxRVXtFkxAAAAAAC9JoACAEPv10meSFLTd/rY/9f8YSll7SRHNT6vSS5fzXrbNz3f3rUqARq+9a1v5cEHl+fbpk2bloMPPniVc265pX9u7oADDhjQXjNmzMhuu+3Wr2/OnDkrGQ0AAAAAwEjlCh4AGGK11gdKKf+X5OWNrg+VUkqSC5JskuTfk8xYOjzJN1a2VillZvqfgOKvtEDXnXXWWf3ab3nLW7Lmmmuucs7ChQv7tZ/61KcOeL+nPe1p/dr333//gOcCAAAAADAyOAEFAIbHKY33paegnJTkhiQ/TPKCLD/95I9JvreC+Uvt3/R8f6315q5XCoxrN99885OuwDn66KNXO2/GjBn92o8++uiA92wdu+GGGw54LgAAAAAAI4MACgAMg1rr5Uk+naSkL2iSxnNpel6S5F211iWrWOr1S5dMctUQlAqMc2effXZqrcvaO++8c3bcccfVzttzzz37ta+99toB79k69vnPf/6A5wIAAAAAMDIIoADAMKm1vjvJB5M8luXBkzSe701ySK31hyubX0p5dpIXN3VdMhR1AuPXE088kXPPPbdf31FHHTWguUcffXQmT568rH322WfnkUceWe28Cy+8MLfffvuy9vbbb59ddtllgBUDAAAAADBSCKAAwDCqtf57khlJ3pjknxuvA5NsWWv9zmqm75zku0kuarx/d+gqBcajSy65JHfeeeey9tSpU3PooYcOaO6WW26Zk08+eVn7z3/+c9785jfn4YcfXumcX/7yl/2u95kwYUI+/elPD6JyAAAAAAB6bWKvCwCA8abWOj/JNwcx76tJvtr9igD6nH322f3ar3vd6zJt2rQBzz/uuOOyZMmSfOADH8jjjz+eiy66KNttt13+7u/+LnvssUc23XTTLFq0KHPmzMlFF12Ur3zlK3n88ceTJJMmTcoZZ5yRffbZp5tfCQAAAACAYVKa73cHAGB0K6Vsn2T20vbs2bOz/fbbD8leb//cfUOybq+c8a4Ne11CT/31r3/N5ptvviwQkiSXX3559t5777bXuvHGG3PqqafmwgsvzP3337/a8S972cvy8Y9/PDvvvHPbewEAAAAA8CSlF5s6AQUAAMh5553XL3yy1VZb5cUvfvGg1lq8eHEmTJiQSZMmrXbs4YcfnuOPPz477LDDoPYCAAAAAGBkmNDrAgAAgN774he/2K995JFHppT2QvKPPfZYjj322Dzvec/LmWeemXvvvXe1c84999w85znPyYEHHpg77rijrf0AAAAAABg5BFAAAGCcu/rqq/Pb3/52WXuNNdbIEUcc0dYaixcvzmte85p85jOfydJrPkspOfjgg3PRRRflzjvvzGOPPZb58+dn9uzZ+dSnPpWtt9562fzvfe972WmnnfLrX/+6G18JAAAAAIBhJoACAADj3FlnndWv/cpXvjKbbbZZW2v827/9Wy655JJl7alTp+biiy/OBRdckAMPPDCbbbZZJk+enHXXXTfbb799jj322Nxwww058sgjl82ZO3duXv3qV2fevHmdfSEAAAAAAIadAAoAAIxjCxcuzNe//vV+fUcddVRba9x333057bTT+vV97nOfy6te9apVzpsyZUrOOOOMvPjFL17Wd+edd+ZjH/tYW/sDAAAAANB7AigAADCOffOb38xDDz20rL3pppvm1a9+dVtrzJo1KwsXLlzW3nLLLXP44YcPaO6ECRPyoQ99qF/fueeeu+waHwAAAAAARgcBFAAAGMdar99561vfmokTJ7a1xvXXX9+vvc8++6SUMuD5e+21VyZPnrysPW/evPzxj39sqwYAAAAAAHpLAAUAAMapP/zhD/npT3/ar6/d63eS5IEHHujXnjFjRlvzJ06cmOnTp/frmzt3btt1AAAAAADQOwIoAAAwTp199tn92nvssUe22WabtteZNm1av3bzdTwDtWDBgn7tddZZp+01AAAAAADoHQEUAAAYh5544omcd955/foGc/pJkmy22Wb92tddd11b8+fMmZOHHnqoX1+7p6gAAAAAANBbAigAADAOzZo1K3fdddey9rrrrptDDjlkUGvtvffe/do/+9nP8rvf/W7A808//fR+7W222SYbb7zxoGoBAAAAAKA3BFAAAGAcOuuss/q13/SmN2Xttdce1Fo77rhjnvWsZy1rP/HEEznssMOedKrJilxyySX51Kc+1a/v9a9//aDqAAAAAACgdwRQAABgnLnnnnvy/e9/v1/f0UcfPej1Sik5+eST+/Vde+212WWXXXLxxRen1vqkOfPmzcuHPvShHHDAAXn88ceX9U+fPj3HH3/8oGsBAAAAAKA3Jva6AAAAYHidd955Wbx48bL2DjvskN12262jNQ8++OC85z3vyX/9138t65szZ04OOOCATJ8+Pbvssks22mijLFq0KLfeemt+/etf96shSaZMmZJvfOMbmTZtWke1AAAAAAAw/ARQAABgnDn77LP7tY866qiurHvaaadlk002yYknnphFixYt6583b14uvfTSVc6dOXNmzjnnnOy9995dqQUAAAAAgOHlCh4AABhHfvazn+Wmm25a1p48eXL+9m//titrl1Ly/ve/PzfccEOOOeaYbLDBBquds9122+W0007L7NmzhU8AAAAAAEaxsqL72AGA4VFK2SjJJknWTzKp3fm11iu6XhSjWill+ySzl7Znz56d7bfffkj2evvn7huSdXvljHdt2OsSxpxaa2666aZcf/31mTt3bubPn5+JEydm2rRp2XzzzbPrrrtm00037XWZAAAAAABjTenFpq7gAYBhVkp5UZJ3JHlJks06WKrG73JgBCulZNttt822227b61IAAAAAABhi/mgFAMOklLJektOTvGFpVw/LAQAAAAAAgK4RQAGAYVBKWTPJ95Psnr7gSW28hFAAAAAAAAAY9QRQAGB4/FOSF6V/8GRRkiuT3Jjk/iSP96w6AAAAAAAA6IAACgAMsVLKxCTvTf8TTz6Z5CO11vt7VhgAAAAAAAB0iQAKAAy9FyZZL8tPPzml1vovvS0JAAAAAAAAumdCrwsAgHHg2Y33kuShJB/pYS0AAAAAAADQdQIoADD0pjfea5Kra62P9bIYAAAAAAAA6DYBFAAYeg82Pf+1Z1UAAAAAAADAEBFAAYChd0fT8/o9qwIAAAAAAACGiAAKAAy9K5M83njeoZeFAAAAAAAAwFAQQAGAIVZrnZdkVpKSZGYpZecelwQAAAAAAABdJYACAMPjhCQPN55PLaX4HQwAAAAAAMCY4Y9fADAMaq03JTm20XxxknNKKVN6WBIAAAAAAAB0zcReFwAA40Wt9YullIeSnJvkLUn+ppRyapJZtdY7e1vdyFRKOSfJ4V1a7rZa6xar2Kt2uP6WtdZbO1wDuuLtn7uv1yV01Rnv2rDXJQAAAAAAsBoCKAAwDEoptzQ1lyQpSbZO8vnG5wuS3N/4bKBqrXWrrhU59j3S6wIAAAAAAADGKgEUABgeWySp6Que1MYrjXaSrNt4taPTEzvGmwt6XQAAAAAAAMBYJYACAMOrNTQy2BBJWf2QMeH4JCcNYt6uSb7Z1K5Jzm5j/s+TvKnNPe9oczwAAAAAAMCYIYACAMPj9jixpG211rlJ5rY7r5Ty/pauy2utt6xw8Io9Wmu9td19AQAAAAAAxisBFAAYBrXWLXpdw3hRSpmaJ59eclYvagEAAAAAABgvJvS6AACALnt9kvWb2g8k+XZvSgEAAAAAABgfBFAAgLHmqJb2V2qtj/akEgAAAAAAgHFCAAUAGDNKKVsl2aul+8xe1AIAAAAAADCeCKAAAGPJkUlKU/vaWuuve1QLAAAAAADAuDGx1wUAAH1KKWsk2TBJTXJ/rfWJHpc0qjT+/Q5v6T5rkMs9vZTyxSS7JdksydpJ7k8yN8l1Sa5I8q1a632DXB8AAAAAAGBMEUABgB4ppcxMcliSPZI8P8m0ls8fSPLLJD9N8uVa663DW+Gos1+SzZvajyT56iDX2rLxarZJ47Vdkrck+UQp5YwkH6y1LhjkPqtUStkkycZtTtuqubFgwYLMnz+/e0WNYf6dRi4/GwAAAACAgVtvvfV6sq8ACgAMs1LKjCSfTHJwll+HV1YwdIMkL2+8TiylfDvJP9Za7xqWQkefI1vaF9RaHxjC/dZO8o9JXlVKObjW+tsh2ONdSU7sZIFf/OIXufvuu7tUTqs9h2jd3rj88st7XUIX+dkAAAAAAIxXBx10UE/2FUABgGFUSnlp+k7l2CjLQye18VrptCRrJHl9kpeUUg6ttf7vkBY6ypRSNk5yQEv3YK7fWZy+E2cuS/KbJHckeSjJOkmenr6/6r81fSehLPWsJJeVUl5Qa71tEHsCAAAAAACMegIoADBMSim7JflukqmNrpq+cMnSIMrcJA82ntdPX0glTWOTZHqS75RSXlJr/fnQVjyqvDXJpKb2zUl+3OYa/5rkjFrrvSv5/NdJvltK+WD6TiV5X5b/7GYk+XYpZdda66rCRAAAAAAAAGNS8TcSABh6pZS1ksxJ8pQsD54sSfLtJOclubLWel/LnA2S7J6+cEXrdT1/SfKsWuvDw/IFRrhSyuwk2zd1/Uut9WNDvOc/JPlMS/dbaq1f7eIemyTZuM1pWyW5aGnj6quvzrbbbtutkvp575cXD8m6vXLa346dbLafDQAAAADA+LXeeuuV1Y/qPv9LLgAMj/ekf/jkj0kOrbVes7IJtdb7k3w/yfdLKbuk7+qeZzY+fkpjzX8fyqJHg1LKC9I/fPJEknOGet9a62dLKfsmObCp+13p+zl1a497k6zsRJYVKqX/f1Ous846WW+99bpVUov7Vj9kFBm6f6de8LMBAAAAAGB4TVj9EACgC96e5eGTW5PsuarwSata66+S7NWYu3Sdd3S9ytHpqJb2/9Ra/zJMe5/c0n5BKWXaMO0NAAAAAAAwYgigAMAQK6Vsm+Tp6QuN1CT/UGu9p911GnOOaayTJE8tpWzXtUJHoVLK2kne2NJ91jCW8Isk9ze110gyrn8mAAAAAADA+CSAAgBD73lNz3fWWv9nsAs15t7R1PXcQVc1NhySZN2m9j1JLh6uzWutS5Lc3tK98XDtDwAAAAAAMFIIoADA0FsaSKhJru/Ces1rjPewQ+v1O+fVWhcPcw2PtLSnDvP+AAAAAAAAPSeAAgBDb+2m5/ldWO+hlaw9rpRSnpVkj5bu4bx+Z6mNWtpze1ADAAAAAABATwmgAMDQm9f0/JQurDej6fm+Lqw3Wh3Z0v5prfX3w1lAKWWjJM9o6f7LcNYAAAAAAAAwEgigAMDQu7vxXpK8oJQy6FNLGnNf0NR1VyeFjVallDWSvLWluxenn7wp/f976p4kN/agDgAAAAAAgJ4SQAGAoffTJEuS1CRTkhzfwVrHJVmz8bwkyc86K23UelX6nybzUJJvDmcBpZRNk/xrS/f3aq11OOsAAAAAAAAYCQRQAGCI1VrvT3J1o1mSnFBKObDddUopr07yL+kLstQkP6+1jtcreI5qaZ9fa104mIVKKduUUg5oc86MJBcn2bSpe1GSkwdTAwAAAAAAwGgngAIAw+Nj6Quf1CSTk3yrlPLxUsq6q5tYSlmnlHJykguSTGqsk4zTsEPj5JH9W7rP7GDJpyT5binlN6WUfy6lbL2KvdctpRyT5NdJdm35+KO11ls6qAMAAAAAAGDUmtjrAgBgPKi1ziql/E+SV6YvhDIxfVfx/EMp5eIkVyb5Q5IHG5+vn+RZSXZP8uoka2V5gKUm+UGt9fvD/T1GiLem/3/DzK61/qIL6z4nyceTfLyU8mCS2Unmpu96n3WSPC3J87Li/376Qq3137pQAwAAAAAAwKgkgAIAw+eNSX6SvhBDTV+gZK0khzReK7P0xJOlc36T5A1DV+aId2RL+6wh2GP9JC8awLiFSd5Taz1jCGoAAAAAAAAYNVzBAwDDpNa6IMneSb6V/qeZpNFe0SstYy5IsndjrXGnlPKiJM9u6lqU5MsdLntj+q5I+lmSRwY45w9JPpBkC+ETAAAAAAAAJ6AAwLCqtT6Y5A2llAOTvDfJnquZsjSE8pMkp9VavzuU9Y10tdafZfm/SbfWvCfJvyRJKWVCkq2TbJVk8yTTkqyZvmDK/UnuSvLLWutfu1kDAAAAAADAaCeAAgA90AiSfLeUMjPJHkl2TbJJkg3SF7C4L8m9Sa5J8tNa6229qnU8qbUuSfL7xgsAAAAAAIABEkABgB5qBEtuS/KVXtcCAAAAAAAAgzWh1wUAAAAAAAAAADC6CaAAAAAAAAAAANARARQAAAAAAAAAADoigAIAAAAAAAAAQEcm9roAABjtSilPb+2rtd6+ujHd0LoPAAAAAAAA9IIACgB07tYktald8+Tfsa1jumFF+wAAAAAAAMCw80crAOie0qUxAAAAAAAAMKpM6HUBAAAAAAAAAACMbk5AAYDOndulMQAAAAAAADAqCaAAQIdqrW/rxhgAAAAAAAAYrVzBAwAAAAAAAABAR5yAAgAAMA7ddttt+dWvfpW77rorDz74YCZNmpRp06Zl6623zi677JJ111231yUCAAAAAKOIAAoAAECPnHTSSfnwhz886PmHH354zjnnnAGPf/jhh/OZz3wmZ555ZubMmbPScRMmTMh+++2Xd7/73dl3330HXR8AAAAAMH4IoADAMCilfKip+d+11vmDXGf9JO9e2q61fqTT2gAYH6666qq85S1vyZ/+9KfVjl2yZElmzZqVWbNm5c1vfnPOPPPMrLXWWsNQJQAAAAAwWgmgAMDwOClJbTyfk2RQAZQk01rWEkABYLWuuuqq7LvvvlmwYEG//nXXXTfPf/7zs+mmm+axxx7LH//4x8yePTtLlixZNuZrX/ta7r333syaNSuTJ08e7tIBAAAAgFFCAAUAhk/J8uDISFoLgBHia1/7Wl7wghcMePw666yz2jGPPvpoDjvssH7hk6lTp+aUU07JO97xjqy55pr9xt988815z3vek+9973vL+n74wx/mtNNOywknnDDg2gAAAACA8UUABQAAYISYMWNGtthii66uef755+fmm29e1i6l5MILL8wrXvGKFY7faqutctFFF+UNb3hDvvWtby3rP+WUU/Le977XKSgAAAAAwApN6HUBAEBbStPzkpWOAoCG5pNMkuSggw5aafhkqVJKPv3pT2fSpEnL+ubPn58rrrhiSGoEAAAAAEY/ARQAGF3Wb3p+uGdVADBq3HLLLf3aBxxwwIDmzZgxI7vttlu/vjlz5nStLgAAAABgbBFAAYDRZcfGe00yt4d1ADBKLFy4sF/7qU996oDnPu1pT+vXvv/++7tSEwAAAAAw9gigAMAoUUrZOsn7m7p+16taABg9ZsyY0a/96KOPDnhu69gNN9ywKzUBAAAAAGPPxF4XAABjRSnl/wY49PxSysD/+pdMSfKUJDNb+n/YxhoAjFN77rlnfvKTnyxrX3vttTnwwAMHNPfaa6/t137+85/f1doAAAAAgLFDAAUAumfv9F2Nsyolyd8MYu3SeF+6/gNJvjyIdQAYwU4//fR89KMfzY033ph58+Zl0qRJmT59embOnJk99tgj++23X/bcc8+21jz66KNz6qmnZtGiRUmSs88+O+973/syderUVc678MILc/vtty9rb7/99tlll13a/1IAAAAAwLjgCh4AGB2WBk9KkoeSHFprndvDegAYAueff35++MMf5i9/+Usee+yxLFiwILfddluuuOKKfOxjH8tee+2V5z//+bnssssGvOaWW26Zk08+eVn7z3/+c9785jfn4YcfXumcX/7ylzn66KOXtSdMmJBPf/rTg/tSAAAAAMC44AQUAOiusvohAxrT7LH0nXhyY5LLk5xZa72rzTUAGCOuueaa7LvvvjnhhBPy0Y9+NKWs/tfKcccdlyVLluQDH/hAHn/88Vx00UXZbrvt8nd/93fZY489summm2bRokWZM2dOLrroonzlK1/J448/niSZNGlSzjjjjOyzzz5D/dUAAAAAgFFMAAUAuqTWutKTxUopS7L8FJMta623r2wsAOPP5ptvnle96lXZbbfdsu2222bDDTfMhAkTMm/evFx77bW5+OKL84Mf/GDZ+FprPvaxj2XJkiX9TjdZleOPPz77779/Tj311Fx44YW57bbbcsIJJ6xyzste9rJ8/OMfz84779zR9wMAAAAAxj4BFAAYPiXLQygAkN122y0/+MEP8vKXv3ylJ5nsvvvuOeaYY3LNNdfk0EMPzZw5c5Z9dsopp+QFL3hBDjrooAHtt3jx4kyYMCGTJk1a7djDDz88xx9/fHbYYYeBfRkAAAAAYFxb6f9TGwDoqiuS/Ljx/miPawFghHjVq16Vfffdd0DX6Oy66665+uqr86xnPatf//vf//488cQTq5z72GOP5dhjj83znve8nHnmmbn33ntXu9+5556b5zznOTnwwANzxx13rHY8AAAAADC+CaAAwDCote5da92n8Vr9X/0AYAU23HDDfO1rX+sXWLnpppty+eWXr3TO4sWL85rXvCaf+cxnUmvfQVyllBx88MG56KKLcuedd+axxx7L/PnzM3v27HzqU5/K1ltvvWz+9773vey000759a9/PWTfCwAAAAAY/QRQAAAARpGdd945++67b7++Sy65ZKXj/+3f/q3f51OnTs3FF1+cCy64IAceeGA222yzTJ48Oeuuu2623377HHvssbnhhhty5JFHLpszd+7cvPrVr868efO6/4UAAAAAgDFBAAUAAGCU2W+//fq1f/Ob36xw3H333ZfTTjutX9/nPve5vOpVr1rl+lOmTMkZZ5yRF7/4xcv67rzzznzsYx8bZMUAAAAAwFgngAIAw6CUsmkp5UNNr40HscYmLWtsOBS1AjDybbHFFv3af/3rX1c4btasWVm4cOGy9pZbbpnDDz98QHtMmDAhH/rQh/r1nXvuucuu8QEAAAAAaDax1wUAwDhxVJKTktQkv6u1fqTdBWqt95ZSDkmyXaNrQZJPdK1CAEaNqVOn9ms/8sgjKxx3/fXX92vvs88+KaUMeJ+99torkydPzqJFi5Ik8+bNyx//+MdsvfXWbVYMAAAAAIx1TkABgOHxxqbnL3SwzhlJSuP15o4qAmDUmjt3br/2RhtttMJxDzzwQL/2jBkz2tpn4sSJmT59+ir3BgAAAABIBFAAYMg1rtt5TlPXBR0s1zx3p1LKBh2sBcAo9fOf/7xfe7PNNlvhuGnTpvVrN1/HM1ALFizo115nnXXaXgMAAAAAGPsEUABg6D2v8V6T/LnW+pfBLlRrvTPJ7Y1mSbJjZ6UBMNo8+uij+fa3v92vb++9917h2NZgynXXXdfWXnPmzMlDDz3Ur6/dU1QAAAAAgPFBAAUAht5WTc+/68J6N65kbQDGgY9//OO58847l7XXWGON7L///isc2xpM+dnPfpbf/W7gv4pOP/30fu1tttkmG2+88cCLBQAAAADGDQEUABh605qe7+vCes1rTFvZIABGti996Uu555572ppzxhln5MMf/nC/viOOOCIzZ85c4fgdd9wxz3rWs5a1n3jiiRx22GFPOtVkRS655JJ86lOf6tf3+te/vq16AQAAAIDxQwAFAIZebXqe0oX1Jjc9T+zCegD0wFlnnZUtt9wyhx9+eL7//e9n4cKFKx17zTXX5OCDD8473vGO1Lr818rmm2+ej370oyudV0rJySef3K/v2muvzS677JKLL76431pLzZs3Lx/60IdywAEH5PHHH1/WP3369Bx//PHtfEUAAAAAYBzxRysAGHpzm55ndGG95jW6caIKAD3yyCOP5Lzzzst5552XCRMmZOutt84WW2yR9ddfP2ussUbmzZuX66+/foUnpWy44Ya55JJLMmPGqn+1HHzwwXnPe96T//qv/1rWN2fOnBxwwAGZPn16dtlll2y00UZZtGhRbr311vz617/O4sWL+60xZcqUfOMb38i0adO68r0BAAAAgLFHAAUAht7djfeSZJdSypRa62ODWaiUMiXJLk1d93ZaHAAjw5IlS/L73/8+v//971c79qUvfWnOOeecPPWpTx3Q2qeddlo22WSTnHjiiVm0aNGy/nnz5uXSSy9d5dyZM2fmnHPOyd577z2gvQAAAACA8ckVPAAw9K5O3zU8NX1X8Lyhg7XekGTNlrUBGIXe/e5359BDD83MmTMHNH7ttdfOa1/72lx22WW57LLLBhw+Sfqu4nn/+9+fG264Icccc0w22GCD1c7Zbrvtctppp2X27NnCJwAAAADAapUV3fkNAHRXKeXaJM9L3ykotyXZqdb6QJtrTEtybZKZjXV+W2t9TncrZbQrpWyfZPbS9uzZs7P99tsPyV5v/9zYugHqjHdt2OsSusbPZvR54IEH8tvf/jZ//vOfc8899+Thhx/OkiVLMm3atGywwQbZdttt89znPjdrrLFGV/arteamm27K9ddfn7lz52b+/PmZOHFipk2bls033zy77rprNt10067sBQAAAAAMu9KLTV3BAwDD4/8lOT19p6A8PclFpZTX1FrvH8jkUsr6SS5MskWjqyb5/BDUCUAPTJs2LS960YuGbb9SSrbddttsu+22w7YnAAAAADC2uYIHAIbHF9N38slSeyS5vpRyWCll0somlVImllL+Nsn1SfZKX/AkSf6c5AtDVSwAAAAAAAC0wwkoADAMaq2LSylvSvKjJJMb3U9Nck6ST5ZSrk7y2yT3py9ksmGS7ZK8MMn66TsqrTbeH03yxlrr48P4FQAAAAAAAGClBFAAYJjUWn9eSnlb+k5DmZzlgZJpSV7ReLVaekdfc/jkrbXWnw95wQAAAAAAADBAruABgGFUaz0/yd7pu0Jn6akmtWlIyfLQSZo+K0luTrJnrfVbQ18pAAAAAAAADJwACgAMs8bpJVsneWeSXze6W4MnS9s1yTVJ3pbk2bXWXw1fpQAAAAAAADAwruABgB6otT6e5IwkZ5RSNkjywiRPSTK9MWRukruSXFVrfaAnRQIAAAAAAMAACaAAQI/VWu9PMqvXdQAAAAAAAMBguYIHAAAAAAAAAICOCKAAAAAAAAAAANARARQAAAAAAAAAADoysdcFAMB4VUrZMcmBSfZMslWSDZOsm6TWWp/0O7qUMi3Jeo3mY7XWe4anUgAAAAAAAFg1ARQAGGallOck+a8k+zR3D2DqPkm+1XheWEqZUWt9uNv1AQAAAAAAQLsEUABgGJVSjkjy2SRrpi90Ups+rll1EOWiJLcnmZlk7SSvS/KlISkUgCHx9s/d1+sSuuqMd23Y6xIAAAAAgBFiQq8LAIDxopTyuiRnJZna3J3kz0l+ndWcglJrXZLk601dB3a5RAAAAAAAABgUARQAGAallKckObfRXHrqyeeSbFVr3SLJwQNc6qKlSyZ5cdcKBAAAAAAAgA64ggcAhseHkqzVeH4iyZtqrRc0fV6fPGWFfpnk8SSTkkwvpWxZa/1T98oEAAAAAACA9jkBBQCGWClljSRvTl/IpCb5eEv4ZMBqrYuT3NTU9ezOKwQAAAAAAIDOCKAAwNB7QZL10ndtzuNJ/qPD9e5oen5ah2sBAAAAAABAxwRQAGDoPbPxXpP8stY6v8P1muev1+FaAAAAAAAA0DEBFAAYehs3Pf+5C+staXqe2IX1AAAAAAAAoCMCKAAw9GrT8xpdWG/DpucHurAeAAAAAAAAdEQABQCG3l+bnjfrwno7ND3P68J6AAAAAAAA0BEBFAAYerc33kuSnUopkwa7UCnlWUk2b+r6TSeFAQAAAAAAQDcIoADA0LsqySPpu4pnapI3d7DW/9f0fE+t9fedFAYAAAAAAADdIIACAEOs1vpYkh+m7wSUkuTfSynT2l2nlPKiJO9MX5ClJvl2F8sEAAAAAACAQRNAAYDh8e+N95q+K3QuLaVsMtDJpZR9knw3fb+7S5Inkpza7SIBAAAAAABgMARQAGAY1Fp/nuT89IVHapJdk9xUSvlgKWWbrOB3cilljVLKS0sp5ye5LMkGTfM/WWu9dbjqBwAAAAAAgFWZ2OsCAGAcOSrJNkl2Sl+IZFqSkxqvRc0DSyk3JtkyyaSlXY05JcmVSd4/DPUCAAAAAADAgDgBBQCGSa31kSSvSPJ/WR4oSeN5Skt7mySTG8/J8vDJpUn2r7U+MUxlAwAAAAAAwGoJoADAMKq1zk3y8iTvSzI3/QMmS9+bX2mMeTDJv6QvfDJ/2AoGAAAAAACAAXAFDwAMs1prTfKfpZRPJ3lz+gIpeyTZLP3Dofen77qdHyT5Uq31weGuFQAAAAAAAAZCAAUAeqTW+miSLzZeKaWUJBuk7+qdebXWx3tYHgAAAAAAAAyYAAoAjBCNk1Hu63UdAAAAAAAA0C4BFACAlSilTEryoiRPT/KUJAuS/CXJdbXWW3tYGgAAAAAAwIgigAIAjGillJOSnNjBEufWWo9oc8+Nk3w4yRuTbLiSMVcm+USt9YIOagMAAAAAABgTBFAAYIQqpWyd5MAkWyZ5LMmNSS6otd7f08LGuFLKK5Ock2ST1QzdPcnupZSvJHlnrXXhUNcGAAAAAAAwUgmgAMAwKKVskeQlTV1frrUuWsnYkuQ/k7w7yYSWjz9RSvn/aq3nDEWd410pZe8k30kyuam7Jrk2yS1JpiXZKclGTZ+/Jcl6pZTX1FqXDEedAAAAAAAAI40ACgAMj39Mcmzj+Ve11rNXMfZjSY5ratfGe0myTpKzSiml1vrFrlc5Orw5ydVtjF8wkEGllKcm+Xb6h09+luTttdYbm8ZNSfLOJKcmmdToPiDJR5N8oI26AAAAAAAAxgwBFAAYHvunL0BSk6w0OFJKeVaSf0r/0ElpGlIb7U+XUi6ttd45NOWOaHfXWm8dgnU/nGSDpvaVSV5Wa320eVCt9bEknyql3J7kwqaPjiulnF5rvW0IagMAAAAAABjRWo/1BwC6rJSyUZKtmrpmrWL4cen/+/niJK9LclD6TudYGmKZmuSfu1vp+FVK2TrJ4U1di5Ic0Ro+aVZr/U6Sc5u6piQ5cUgKBAAAAAAAGOEEUABg6G3f9PzXlZ2QUUpZI31hk6Wnn1xaaz2w1nphrfV7tdbXJ/lylp+K8oZSSlnRWrTt0CRrNLW/XWudM4B5H29pv6GUsmb3ygIAAAAAABgdBFAAYOjNbLzXJDeuYtyuSaZn+ZU7H13BmH/J8oDKJkm27UaB5LUt7ZVek9Ss1npjkp83da2dZN9uFQUAAAAAADBaCKAAwNCb3vQ8bxXj9mx6vqvW+rPWAbXWP6d/iGWHDmsb90opM5I8r6lrcZIn/duvwo9a2q/stCYAAAAAAIDRRgAFAIbe1KbnhasYt3vjvSa5dBXj/tD0vOlgi2KZ1hDPb2qtq/o5tbqypb39CkcBAAAAAACMYQIoADD0Fjc9T13pqOUBlCT56SrGLWh6XmdQFY1u7yylXFZKubOU8mgp5aFSyq2llB+XUv69lLLn6pfoZ7uW9h/bnH/zatYDAAAAAAAY8yb2ugAAGAfmNz0/dUUDSinbJtmkqeuqVazXHGJ5ooO6Rqs3tbSnpC+IMzPJXkk+UEq5JskJtdbLBrDeM1vat7dZz20t7emllA1qrfe3uQ4AAAAAAMCoJYACAEPvlsZ7SfK8UsqatdZHW8Yc1PR8f631xlWst2HT80PdKHAM2jXJpaWUk5P8a621rmLstJb2ve1sVGtdUEp5NMmaTd3rJ+k4gFJK2STJxm1O26q5sWDBgsyfP39lY2ni32nk8rMZufxsAAAAAGDkWW+99XqyrwAKAAy9XydZGoBYM8mRST639MNSysQkRzeaNclPVrPes5ue7+hOiaPCnUlmJflFkhuT3JdkSZLpSXZO8uokr2gaX5J8IH1XDp6winVbrzF6ZBC1PZL+AZR1B7HGirwryYmdLPCLX/wid999d5fKadXubUcj2+WXX97rErrIz2bk8rMBAAAAAIbWQQcdtPpBQ0AABQCGWK313lLKlUl2T18o4uOllIeSXJC+a3dOTfKMpinfWtlapZQZSZ7S1DWn+xWPOL9IX7Dkf1dxksmVST5TStk1yVeTbN302ftLKVfXWi9aydzWAErr6TQD8UiSDVaxJgAAAAAAwJg2odcFAMA48d/pC5/UJGsnOSd91+fcnOS1WX5Cyl1ZRQAlyX5NzwuS/L7LdY44tdZZtdZLV3ONztKx1yR5QZI/tHx0SilljYFu2W6Ng5wDAAAAAAAwZjgBBQCGQa31glLKt5McnL6wQmn+OMvDKe+ttT62iqUObprzi4GEMsabWut9pZQ3J7kmy/+dn51knySXrWDKgpb21EFs2zqndc3B+lySb7Y5Z6sky0572W233bLtttt2qZz+Lv7y4iFZt1f22WefXpfQNX42I5efDQAAAAAwVgmgAMDwOTTJZ5Mc1dJfkjyW5H211q+vbHIp5WlJXpnlp238YCiKHAtqrdeWUi5N39U9S+2XURZAqbXem+TeduaUUvq111lnnay33nrdKGcF7huidXtj6P6desHPZuTyswEAAAAAxiYBFAAYJrXWRUneXko5NcmBSWY2PropybdrrX9ZzRKvTDK7qf297lc5plyS/gGU565k3IMt7Y3b2aSUsk6eHEB5oJ01AAAAAAAARjsBFAAYZrXW3yf5z0HM+0KSL3S/ojHr1pb2yoIlc1raM1c4auVax99Xa72/zTUAAAAAAABGtQm9LgAAYIg80tJe2dU6N7a0n9nmPs9oaf+uzfkAAAAAAACjngAKAAyxUsr+pZRrm17tnrDB4GzU0p67knGzW9rPLaWs1cY+L1rNegAAAAAAAGOeAAoADL3tk+zYeK1Za72tp9WMH3/T0v7LigbVWu9K8pumrolJ9mhjn71b2v/TxlwAAAAAAIAxQQAFAIbeksZ7TTKnl4WMF6WUNZMc3NL9o1VMubCl/bYB7vPs9A+6LExy6UDmAgAAAAAAjCUCKAAw9O5uel7QsyrGl/cl2byp/USS769i/FcaY5Y6uJSy9QD3afaNWuujAysRAAAAAABg7BBAAYChd3vT84yeVTEKlVIOK6Vs2uactyc5saX7nFVdfVRrnZPk3KauyUnOaZyksrJ9DkpyRFPXoiQfbqdWAAAAAACAsUIABQCG3pVJ7ktSkjy/lDKpx/WMJkcl+VMp5dxSyv6llLVXNrCUsmsp5dtJvpC+f+ul7kzyrwPY68Qk9ze1d09yWeOaneZ9ppRSjk3yzZb5p60q5AIAAAAAADCWTex1AQAw1tVaF5dSvp7k75Osnb5TM87oaVGjy9Qkb228lpRS5iS5NcmD6bs2Z3qS5yVZ0Ukp9yXZr9Z69wo+66fWekcp5eAkP0jfCShJ8qIkvyul/CrJLUnWT7Jzko1bpl+c5IPtfS0AAAAAAICxQwAFAIbHvyY5KMlmSU4upfy01npjj2sajSYk2abxWp0fJjmi1nrHQBevtf6olPLaJOdkecikJNm18VqRryV5e631iYHuAwAAAAAAMNa4ggcAhkGt9f4kb0zfiRwbJrmilHJob6saFT6Z5KtJBnq1zcIkFyZ5Wa31Ze2ET5aqtc5KskOSz6f/lTytrk7y+lrrobXWhe3uAwAAAAAAMJY4AQUAhkEpZa/G4z8l+e/0XRvzpVLKx5J8N8l1Se5N8lA769Zar+himSNOrfXC9AVKUkqZlmT7JE9L33U7a6UvTPtA+oIiNyb5TTdOIqm13pvk70sp707fNTwzk8xIX8DlziTX1Vr/1Ok+AAAAAAAAY4UACgAMjx8lqU3tmr6rXZ6e5B8GuWbNOPpdXmt9IMnPhnnPRUkuH849AQAAAAAARqNx80crABghSpYHUWpLPwAAAAAAAIxKAigAMHxKyzsAAAAAAACMCQIoADA8PtzrAgAAAAAAAGCoCKAAwDCotQqgAAAAAAAAMGZN6HUBAAAAAAAAAACMbgIoAAAAAAAAAAB0RAAFAAAAAAAAAICOCKAAAAAAAAAAANCRib0uAADGs1LKpCS7JdkqyYZJ1k1Saq0f6WlhAAAAAAAA0AYBFADogVLKHkmOT7JvkikrGPKkAEopZb8kb2g076u1Hj90FQIAAAAAAMDACaAAwDAqpayd5AtJ3rS0awXD6kqm/zbJYWlcoVdK+VKt9fquFwkAAAAAAABtmtDrAgBgvCilrJfkyvSFT9oJnvR9WOufk8xqmvumVQwHAAAAAACAYSOAAgDD51tJntPUXpTkS0mOTHJEVhxKaXVh0/PLu1YZAAAAAAAAdMAVPAAwDEopr0/ysiw/5eSqJG+std7R+HzmAJe6ZOmSSZ5XSlmn1rqgq8UCAAAAAABAm5yAAgDD4wNNz7OTvHxp+KQdtda7k9zbaE5Ism0XagMAAAAAAICOCKAAwBArpTwlyY5NXcfWWh/uYMmbmp637mAdAAAAAAAA6AoBFAAYei9svNckf661XtHhevc1PU/vcC0AAAAAAADomAAKAAy9GU3P13dhvQVNz+t0YT0AAAAAAADoiAAKAAy99Zue53dhvebQyaNdWA8AAAAAAAA6IoACAEPv/qbn9Vc6auA2a3q+b6WjAAAAAAAAYJgIoADA0Ptr0/P2nSxUSpmSZMemrjs6WQ8AAAAAAAC6QQAFAIbetY33kmSLUsqzO1jrdUkmN54XJ7m6k8IAAAAAAACgGwRQAGCI1Vr/lOSPTV0nDGadxukn/7J02SS/rLUu7LA8AAAAAAAA6JgACgAMjy823kuSvy2lHN7O5FLKhCRnJNm2qfuzXaoNAAAAAAAAOiKAAgDD45NJ7k3fySUlyVmllI+VUtZa3cRSynZJLk3ylsb8mr4TVc4funIBAAAAAABg4Cb2ugAAGA9qrQ83Tj25OH0B0AlJ3pfkH0ops5Lc3jy+lPLGJM9Ksm+SF6YvtFIaHz+a5M211jpM5QMAAAAAAMAqCaAAwDCptf6glPKuJJ/L8lPI1k3yhpahJclXW9pLwyaLkxxVa712KGsFAAAAAACAdriCBwCGUa31jCSvSN91PM3BkmT59TpLr+lp7i9J5iZ5Ra31a8NTLQAAAAAAAAyMAAoADLNa6/8leWaSf07y5yy/Xqf5labneUk+kmSrWuvlw14wAAAAAAAArIYreACgB2qtC5OcmuTUUsqzkuyR5GlJpieZnL7TTu5JcmWSa2utdWVrAQAAAAAAQK8JoABAj9Va/5DkD72uAwAAAAAAAAbLFTwAAAAAAAAAAHTECSgAMAxKKU9vat5Ra10yyHXWSLL50nat9fZOawMAAAAAAIBOCaAAwPC4NUltvJ6RZLDBkacmuaXxXON3OQAAAAAAACOAP1oBwPApI2wdAAAAAAAA6IoJvS4AAMaR2usCAAAAAAAAYCgIoADA8HFyCQAAAAAAAGOSAAoAjC5Tmp4f7VkVAAAAAAAA0EQABQBGly2bnuf3rAoAAAAAAABoIoACAKPLYY33muTmXhYCAAAAAAAAS03sdQEAMFaUUt46wKGvL6XMbWPpKUmekmTfJC9s6v9FG2sAAAAAAADAkBFAAYDuOSd9J5OsSknynx3sUZqev9rBOgAAAAAAANA1AigA0H2lw89XpDXY8vla6zWDWAcAAAAAAAC6bkKvCwCAMWYw4ZKBrluS3JLk2FrrPwzRPgAAAAAAANA2J6AAQPe8bSX9JcnZjeea5J+TzB3gmjXJY0keSHJjrfX2TgoEAAAAAACAoSCAAgBdUms9d2WflVLOzvJrdL4pSAIAAAAAAMBY4goeABg+Q3U9DwAAAAAAAPSUE1AAYHhs2fR8Z8+qAAAAAAAAgCEggAIAw6DWeluvawAAAAAAAICh4goeAAAAAAAAAAA6IoACAAAAAAAAAEBHXMEDAD1UStkoySZJ1k8yqd35tdYrul4UAAAAAAAAtEkABQCGWSnlRUnekeQlSTbrYKkav8sBAAAAAAAYAfzRCgCGSSllvSSnJ3nD0q4elgMAAAAAAABdI4ACAMOglLJmku8n2T19wZPaeAmhAAAAAAAAMOoJoADA8PinJC9K/+DJoiRXJrkxyf1JHu9ZdQAAAAAAANABARQAGGKllIlJ3pv+J558MslHaq3396wwAAAAAAAA6BIBFAAYei9Msl6Wn35ySq31X3pbEgAAAAAAAHSPAAoADL1nN95LkvlJPtLDWgCANj3xxBP54x//mN/97nf5y1/+kgcffDBTpkzJBhtskK222iq77rpr1l577a7s9ec//zlz5szJHXfckblz5+aRRx7J5MmTs/766+fpT396dtlll2y88cZd2QsAAAAAukkABQCG3vTGe01yda31sV4WAwCs3u23355vf/vbueyyy/KTn/wk8+fPX+nYNdZYIy9/+ctzzDHHZP/9929rnzlz5uSLX/xirrrqqlx33XV58MEHVztnp512ylFHHZWjjz46U6ZMaWs/AAAAABgqE3pdAACMA81/Sfprz6oAAAbk0EMPzcyZM/Oe97wn3//+91cZPkn6Tki55JJL8upXvzoHHHBA7rnnngHv9eMf/zgnn3xyfvSjHw0ofJIk1113XY455pg897nPzc9//vMB7wUAAAAAQ8kJKAAw9O5oel6/Z1UAAAPyhz/8YYX9m2++ebbeeutsuummWbx4cW655ZZcf/31WbJkybIxF198cfbaa6/8+Mc/zowZM9reu5SSzTbbLM985jMzffr0rLXWWlm4cGH+9Kc/5be//W0ef/zxfnW+9KUvzfe///28+MUvbv+LAgAAAEAXCaAAwNC7Msnj6fu9u0OPawEA2rDTTjvlyCOPzCtf+cpstdVWT/r8zjvvzEc+8pF84QtfWNb3hz/8IYccckiuuOKKlFJWuX4pJdtss00OOOCA7L333tl9992zwQYbrHDsAw88kLPPPjsf/vCHl53KsnDhwhx66KH53e9+l/XXl3MFAAAAoHdcwQMAQ6zWOi/JrCQlycxSys49LgkAWIVSSvbff//88pe/zLXXXptjjjlmheGTpO9UlNNPPz2f/exn+/X/9Kc/zde//vXV7vXWt741N910U/7zP/8z+++//0rDJ0kybdq0HHfccfnxj3+ctddee1n/X/7yl3z+858f4LcDAAAAgKEhgAIAw+OEJA83nk8tpfgdDAAj1De/+c1cfPHF2XXXXQc8513velde97rX9ev70pe+tNp5kyZNaru+HXfcMccdd1y/vgsvvLDtdQAA+P/Zu/P4KOr7j+PvCQlnDLAgoCCgqKgMCopHEREVEJGKeFZR8FqqK/WsWvrzrGdta71YxUVFpZ5UxaMiouCtJYDWERVQAUE5l9twJMzvj1lCdsm12WNmsq/n45FHO9/M8V4/bLLZ/cz3CwAAgHTiwy8AALLAtu1vJf0htnmspAmGYTRyMRIAAKhC586d63Tc5ZdfHrc9ffr0NKSp3ODBg+O2FyxYkLFrAQAAAAAAALVBAwoAAFli2/aTks6WtFnScEn/MwwjaBhGe3eTAQCAdOjZs2fcdklJidauXZuRawUCgbjtDRs2ZOQ6AAAAAAAAQG3lux0AAIBcYBjGDxU2t0syJO0n6dHY9zdKWhP7Xm3Ztm13SVtIAACQkvz8Xf/E3rp1a0autWjRorjtPffcMyPXAQAAAAAAAGqLBhQAALKjsyRbTuOJHftSbFuSdot9JcOueRcAAJAticvg5Ofnq3Xr1hm51tNPPx23fdxxx2XkOgAAAAAAAEBt0YACAEB2JTaN1LWJxKh5FwAAkE2TJk2K2+7Vq5fy8tK/8u3YsWM1ceLE8u38/HxdddVVab8OAAAAAAAAkAwaUAAAyI7FYsYSAADqrY0bN+rxxx+PGxs2bFhazr1p0yYtWbJEn332mZ544gl98MEHcd+/++67dfDBB6flWgAAAAAAAEBd0YACAEAW2Lbd2e0MAAAgc8aMGaNly5aVb7do0UKXXHJJ0udZu3atWrZsWat9CwsLdd999ykYDCZ9nfqirKxMCxYs0Ny5c/Xzzz9r3bp1atSokVq2bKkuXbqoV69eatasWVqvuW3bNn388cdavHixfvnlFxUWFmrPPfdUz5491blz57ReCwAAAAAAwE9oQAEAAAAAIAWvvPKKHn744bixO++8U4FAICPXa9u2ra644gqNGjVKrVu3zsg1vGzx4sV6+eWXNW3aNH344Ydav359lfs2aNBAAwYM0OjRo3XyySendN2VK1fqlltu0QsvvKBoNFrpPr1799Y111yj008/PaVrAQAAAAAA+BENKAAAAAAA1NGXX36pESNGxI0NHDhQl112WcauuXz5cj366KMqKyvTlVdeqaKiooxdy2vOPfdcPffcc7Xev6ysTFOmTNGUKVM0ZMgQjR8/Xm3btk36um+99ZYuuOACrVixotr9PvnkE33yyScaPny4xo0bl/bZVwAAAAAAALyMBhQAAAAAAOpg8eLFOvnkk7Vx48bysU6dOmnixIkyDKNO5ywqKtKPP/5Yvr19+3atW7dOCxcu1IcffqiJEydq5cqV+umnn3TzzTdr/PjxmjRpkg4//PCUH48fzJs3r9Lx9u3ba7/99lPbtm1VWlqqH374QV9++aW2b99evs8bb7yhvn376v3331e7du1qfc0ZM2bo1FNP1datW8vHDMPQoYceqn322Udr167VnDlztGrVqvLv/+tf/9L69ev16quvKi8vrw6PFAAAAAAAwH94FwQAAAAAgCStWLFCAwYM0NKlS8vH2rVrp3feeUe77757nc+bl5enzp07l3/ts88+6tmzp4YNG6b77rtPCxcu1OjRo8v3X7x4sfr37y/LslJ6PH7Us2dPPfTQQ1qwYIGWLFmi6dOn6/nnn9ekSZM0e/ZsLV68WKNGjYo7Zt68eTrzzDNl23atrrFkyRKddtppcc0nRx99tL7++msVFxfrxRdf1NSpU7VkyRI98MADKigoKN/v9ddf14033pieBwsAAAAAAOADNKAAAAAAAJCEaDSq/v37x83G0bp1a02bNk377bdfRq/dtGlTPfTQQ7r66qvLx9avX68RI0bUuqnCzwzD0Mknn6yZM2dq9uzZGj16tLp06VLpvu3bt9e4ceM0duzYuPGPPvpIL7zwQq2ud8stt2jNmjXl271799a0adN04IEHxu3XqFEjXXHFFXrxxRfjxu+77z4tWrSoVtcCAAAAAADwOxpQAAAAAACopXXr1mngwIH66quvysdatmypd955R926dctajjvvvFN77rln+facOXM0bdq0rF3fLS+99JLeeOMN9erVq9bHhEIhnX766XFjzzzzTI3HzZ8/X0899VT5dsOGDTVhwgQ1bty4ymNOPfVUjRw5snx7y5Ytuu2222qdFQAAAAAAwM/y3Q4AAEB9YBhGXzeua9v2B25cFwCAXLRhwwYNGjRIs2bNKh8rKirSlClT1KNHj6xmadKkiU499VSFw+HysSlTpmjAgAFZzZFtnTt3rtNxl19+uf7973+Xb0+fPr3GY5599lmVlZWVb5922mm1muHmhhtuiGtcefHFFxUOh6ttXAEAAAAAAKgPaEABACA9ZkjK9rz3tnLod7lhGA0k7SvpIEl7SmouaYukNZK+l1Rs2/Ym9xICAOqzTZs2afDgwfrss8/KxwoLC/XWW2/piCOOcCVT165d47YXLFjgSg4/6NmzZ9x2SUmJ1q5dqxYtWlR5zCuvvBK3feGFF9bqWgceeKCOPPJIff7555KcfztTp07VKaecklxoAAAAAAAAn8mZD60AAMgSw+0A9YlhGB0lnSapv6RjJBVVs3uZYRjvSHrYtu0363CtVBuI9rZte2GK5wAAeFBJSYmGDBmijz76qHysadOmevPNN9W7d2/XchUUFMRtb9myxaUk3pefv+vbH1u3bq1y/2XLlunLL7+MO/7oo4+u9fX69etX3oAiSW+99RYNKAAAAAAAoN6jAQUAgPTK1iwo9b7RxTCMZyWdk8QhDSQNkjTIMIw3JF1i2/byjIQDAOSMzZs365RTTtGMGTPKxxo3bqzXXntNffu6sgJfuSVLlsRtt23b1qUk3pc4O0x+fr5at25d5f6WZcVtH3zwwWrWrFmtr5fYmPT111/X+lgAAAAAAAC/ogEFAID0WKzsL8FT3+1fxfhSSfMlLZfzWmYfSYdIyquwzxBJHxiGcaxt28symhIAUG9t3bpVp512mqZNm1Y+1qhRI7366qs64YQTXEzmmDp1atz2fvvt51IS75s0aVLcdq9evZSXl1fF3tLcuXPjtvfdd9+krtelS5dqzwcAAAAAAFAf0YACAEAa2Lbd2e0M9dwcSU9Iesu27e8Tv2kYRntJN0saVWF4f0kvGYbR17btZJuDPpf0uySPWVLzLgAAvygtLdVZZ52lt956q3ysoKBAkyZN0oknnuhiMsebb76p4uLiuLGhQ4e6lMbbNm7cqMcffzxubNiwYdUekzhjSseOHZO6ZqdOneK2V69erTVr1qhly5ZJnQcAAAAAAMBPaEABAABeZUt6U9Kttm0XV7ujbS+V9HvDML6UNLbCt/pIOlvS80lee7Nt2wuTPAYAUE+UlZVp+PDhmjx5cvlYfn6+XnjhBQ0ZMiRt1ykuLtZPP/1UYzNEopkzZ+r888+PG+vbt6+6d++etmz1yZgxY7Rs2c4J0Vq0aKFLLrmk2mPWrl0bt92mTZukrllYWKjGjRtr8+bN5WPr1q2jAQUAAAAAANRrNKAAAACvOjPZJhDbtsOGYRwv6fQKw+cr+QYUAEAOu+iii/Tiiy/Gjd11113q2bOnFi5cmNS52rVrp8aNG1f6vSVLlui0006TaZoaPny4Tj31VHXt2lWGYVS6/9y5czVu3DiFw2GVlpaWjzdu3FjhcDipXLnilVde0cMPPxw3dueddyoQCFR73MaNG+O2mzRpkvS1mzRpEteAsmHDhqTPAQAAAAAA4Cc0oAAAAE9KYQaSsYpvQDku9TQAgFzy9NNP7zJ2/fXX6/rrr0/6XNOnT1e/fv2q3ceyLI0ZM0ZjxozRbrvtJtM01bp1axUVFWnr1q2KRqOyLEvLly/f5dgmTZrotddeU7du3ZLOVt99+eWXGjFiRNzYwIEDddlll9V4bGIDSlVNRNVp0qSJ1qxZU+U5AQAAAAAA6hsaUAAAQH0zJ2G7iWEYLWzbXutGGAAAkrFhwwZ9+umntdr3qKOO0rhx43TwwQdnOJX/LF68WCeffHJc00enTp00ceLEKmeYqU62jgEAAAAAAPCzPLcDAAAApFlpJWMNs54CAIAaHH/88ZowYYLOOeccdejQoVbHNG3aVGeccYZef/11ffLJJzSfVGLFihUaMGCAli5dWj7Wrl07vfPOO9p9991rdY7CwsK47ZKSkqRzJB6TeE4AAAAAAID6hhlQAABAfbNvwnappFVuBAEA+JNt21m5TlFRkUaOHKmRI0dKkpYvX65vvvlGixYt0urVq/Xrr7+qoKBARUVFatWqlUzTVNeuXdWgQYOs5POjaDSq/v37a968eeVjrVu31rRp07TffvvV+jw0oPjXxo0b9fnnn2v+/Plas2aNbNtWUVGROnXqpIMOOkhdunRxOyIAAAAAAPUWDSgAAKC+OSNhu9i27e1JnqOjYRhPSjpC0p6SmklaI6eRZY6kDyRNsm07mmpYAAB2aNu2rdq2bet2DN9at26dBg4cqK+++qp8rGXLlnrnnXfUrVu3pM7VvHnzuO2VK1cmdfzGjRt3aUBp0aJFUufwux9++EEzZ85UcXGxZs6cqdmzZ2vDhg3l3+/UqZMWLlyYtuu99957+uc//6kpU6aotLSyCfEcrVq10oABAzRmzBhmEAIAAAAAIM1oQAEAAPWGYRiFki5OGH6lDqfaO/ZVUZvY10GShku6zzCMiKSbbNveWIdrAACANNmwYYMGDRqkWbNmlY8VFRVpypQp6tGjR9LnS5wtZdGiRUkdn7h/IBBQy5Ytk87hNzNmzNDdd9+t4uJiRaPZ6dNdtWqVRo0apVdeqd1LvtWrV+v555/XscceSwMKAAAAAABpRgMKAACoT+6W1K7C9lpJ4zN0rWaSrpI02DCM02zb/jrdFzAMo42k3ZM8LG5e+Y0bN2r9+vXpC1WP8d/Ju6iNd1EbeMGmTZt0+umn67PPPisfKyws1KRJk3TAAQfU6d9px44d47a/++67pM5jWVbcdteuXXPi+fLZZ59p6tSptdrXtu2U/5v8+OOPGjZsmH788ce48YYNG+rggw9Wu3bt1LhxY61bt07fffedFi9eXL5PSUlJTtQEAAAAAJCbioqKXLkuDSgAAKBeMAxjmKTRCcP/l+QyOaWSPpI0TdL/JC2RtEFSoaSOko6RNELOTCg77C9pmmEYR9m2ndzt0TULSbollRP897//1bJly9IUJ9ExGTqvO6ZPn+52hDSiNt5FbYB02rJli26//fa4ho9GjRppzJgx+vXXX+v8b3TNmjVx25ZlacqUKWrUqFGtjn/xxRfjtps3b54Tz5f58+dXOl5QUKBWrVrFvSYpKSlJ6b/JunXrdP3112v58uXlY4FAQMOHD1fv3r3VpEmTXY5Zu3atiouLNX36dM2fPz8nagIAAAAAyE1Dhw515bo0oAAAAN8zDOMQSU8nDE+V9EgSp7lRUsS27RVVfP8LSa8ZhnGTnKaQGyQZse+1k/SyYRi9bNu2k7gmAACoo61bt+quu+6Kaz5p2LCh/vznP6tbt24pnTsQCKhz585auHChJKmsrExz585Vz549a3V84gwohx56aEp5/CQ/P1977bWX9t133/KvTp066ZtvvtFNN92UtuuMGzcurvmkW7duuvHGGyttPNmhRYsW6t+/v/r376+ysrK0ZQEAAAAAAA4aUAAAgK8ZhtFR0ptyZinZYZGk85JpBrFt+85a7rdZ0hjDMJZIerjCtw6VdI6kZ2t7TQAAUDfbtm3TPffcoy+//LJ8rKCgQGPGjNEhhxySlmsceeSR5Q0okvTee+/VqgFlyZIlmjdvXvl248aN1aNHj7Rk8rrjjz9egwYNUsOGDTN6nU8//VSffPJJ+XaHDh100003qXHjxrU+R4MGDTIRDQAAAACAnEYDCgAA8C3DMNpIekdS+wrDyyQNsG17ZSavbdv2WMMwBko6pcJwSOltQAlLeinJY7pImrxj44gjjtCBBx6Yxkg7vTGxNCPndctxxx3ndoS0oTbeRW2A1JWWlmrEiBGaPXt2+VhBQYEmTpyoQYMGpe06HTt21KRJk8pnyvj888/VsWNHdenSpdrjQqFQ3PYZZ5yhE088MW25/Co/P/4tqCZNmtT5Z8h1110Xtx2JRNS7d+86ZwMAAAAAAOlBAwoAAPAlwzACkqZJ2r/C8CpJ/W3bnp+lGHcrvgHlKMMwWti2vTYdJ48tB1TVkkCVMgwjbruwsFBFRUXpiFOJaIbO647M/XdyA7XxLmoDpKKsrEznnnuu3nzzzfKx/Px8vfDCCxo2bFhar9WzZ0+NHDlSTzzxhCRnyZ/Ro0fr3XffrXKmjcmTJ+tf//pX+XbDhg11xx138FyR1KxZs7htwzDq9N9lxowZmj9/50u9Y445Jq2NRwAAAAAAoO5oQAEAAL5jGEZzSVMlda8wvEbOzCdfZzHKf2PXbRnbbiDpIEmfVHkEAACos4suukgvvvhi3Nhdd92lnj17xi2XUxvt2rWrccmW2267Ta+88orWrFkjSfrkk0/Uv39/jR8/XgcccED5flu2bNFjjz2ma6+9Nu74a6+9Vp06dUoqF6o3fvz4uO0LL7zQpSQAAAAAACARDSgAAMBXDMPYTdIUSYdVGF4vaZBt219kM4tt29sNw1isnQ0okrR7NjMAAJBLnn766V3Grr/+el1//fVJn2v69Onq169ftft06NBBL7/8sk488URt3bpVkvTxxx/roIMO0mGHHaZ99tlH69at0+zZs7VyZfzqf0OGDNHtt9+edC5Ub/r06XHbAwYMcCmJf/3www+aOXOmiouLNXPmTM2ePVsbNmwo/36nTp2SbuhKxldffaXDDjtM27Ztixt/8skndcEFF2TsugAAAACAzKMBBQAA+IZhGM0k/UfSURWGN0o6ybbt/7qTSiUJ201cSQEAADKiX79+euWVV3TBBReUN5nYtq3i4mIVFxdXesw555yjSCSiBg0aZDNqvbd06VL9/PPP5dsdOnRQhw4dJEnLly/Xs88+q1deeUU//PCDVq5cqaKiIrVt21a9e/fW4MGDdcoppygvL8+t+K6aMWOG7r77bhUXFysadW85uLKyMl100UW7NJ8AAAAAAOqH3PyrGwAA+I5hGE0kvSGpT4XhXyWdbNu2m0vetE7YXuVKCgAAkDGDBw+WZVm69NJL1bJlyyr3O+qoozRp0iQ9++yzatasWRYT5obEhp8DDzxQtm3r0Ucf1b777qtrrrlGH374oZYuXaqtW7dq1apV+vrrrxWJRDRs2DCZpqlp06a5lN5dX3zxhaZOnepq84kk/eMf/6iycQsAAAAA4H/MgAIAADzPMIzGkl6T1K/C8GZJp9i2/YEroSQZhtFa0j4Jwz9Xti8AAEidbduuXbtNmzZ65JFH9MADD+jjjz/WokWLtGzZMjVr1kzt27dXz549tffee7uWLxf88ssvcdvt27fX1VdfrQceeKBWx3/zzTcaNGiQHnjgAV1++eWZiOg7jRo1UocOHfT9999n/Frz58/XLbfcUr692267xS39g+z56aefNH/+fC1ZskSrVq1SSUmJGjZsqObNm6tjx4467LDDtPvurCwKAAAAIHk0oAAAAE8zDKOhpJcl9a8wvEXSqbZtv+tOqnK/U/yMcsslfeNSFgBACoJhd2cFSLdIKOB2hHqrYcOGOu6449yOkZPWrl0btz1t2jQtWbKkfLt37966+OKL1aNHDzVr1kxLly7VlClT9Mgjj2jjxo2SnCVg/vCHP6hjx4767W9/m834risoKFC3bt3Uq1cvHX744erVq5e6d++ujz/+OOP/pm3b1sUXX6zNmzdLks444wytXLlS77//fkav6zc//PCDZs6cqeLiYs2cOVOzZ8+Oa9Lp1KmTFi5cmPR558+fryeffFKffvqp5syZo3Xr1tV4TM+ePXXxxRfrkksuUaNGjZK+JgAAAIDcRAMKAADwLMMw8iW9KOmkCsPbJJ1h2/bb7qRyGIbRVtKNCcOv227emg0AAFCPJTag7Gg+MQxDf/vb33TttdfGfb9r1646/vjj9Yc//EGDBg3S3LlzJTnNECNHjtTChQtVVFSUlexuGzlypC699FI1btzYleuHw2F9+OGHkqTmzZvrwQcf1DnnnONKFq+ZMWOG7r77bhUXF2dsiaT3339fd999d1LHzJkzR6NHj9aDDz6op59+WkceeWRGsgEAAACoX/Jq3gUAACD7DMNoIOlfkoZWGC6VdLZt22+k8TpdDcNI6vZXwzDaSXpDUtsKw1slJfeuLgAAAGpt+/btlY5fddVVuzSfVLTXXntpypQpat68efnYmjVrNHbs2LRn9KqWLVu61nyyePFi/elPfyrfvvfee7XHHnu4ksWLvvjiC02dOjVjzSeVMQxD7du317HHHqvTTjtN5513noYNG6YePXqooKAgbt958+bphBNOYLYaAAAAALXCDCgAAMCrnpB0VsLYnyXNMQyjc5LnWmbb9uYqvreHpNcMw/hK0kRJr9i2Pb+yHQ3D2E3SSDkzn7RN+PYdtm3/kGQuAAAA1FJhYeEuY0VFRfrLX/5S47F77bWX/vjHP+qmm24qH5s4caLGjBmT1ozY1ahRo8qXQDrmmGMUDAZdTuQPjRo1UocOHfT999+nfC7DMNS1a1f99re/Vb9+/dS7d2+1bNmy0n3Xrl2rJ554QrfddpvWr18vSdq0aZPOPfdczZ07N66RCwAAAAAS0YACAAC8akQlY/fGvpJ1nKQZNezTXdJfJf3VMIx1kixJqyRtkFQoaS9Jh6jy10+P2bZ9ex1yAQAAoJYqa0AZNmxYpeOVGTFiRFwDyty5c7VixQq1adMmbRkRb8KECXr7bWflzEaNGumxxx6TYRgup/KegoICdevWTb169dLhhx+uXr16qXv37vr444913HHHpXz+ESNG6OKLL67Vvi1atNA111yj448/Xn369NGmTZskST///LMeffRR3XDDDSnnQdXWrFmjr7/+WvPnz1c0GtXmzZvVokUL7b777jrssMPUpUsXtyMCAAAA1aIBBQAAYFfNJR1di/02Sbratu1IhvMAAADkvBYtWuwydtRRR9X6+I4dO2qPPfbQL7/8Uj727bff0oCSIcuWLdM111xTvv1///d/OuCAA1xM5E0jR47UpZdemtElkhKX1amNHj166JprrtHtt+/ss3/llVdytgHlhx9+0MyZM1VcXKyZM2dq9uzZ2rBhQ/n3O3XqpIULFyZ93m3btum9997T66+/rhkzZujrr7+udv8999xTF198sUKhkNq1a5f09QAAAIBMowEFAADkum8k3SXpWEmHSmpSi2PmSZogKWLb9qrMRQMAAMAO+++//y5je+yxR1Ln2HPPPeMaUFavXp1yLlTu8ssv15o1ayRJ3bp1y9nGhZpUtRSOFwwePDiuAWXBggUupsm+GTNm6O6771ZxcbGi0Wjaz//555/rpJNOKn+e1MbPP/+s22+/XQ899JAeeughnXfeeWnPBQAAAKSCBhQAAOBJtm1nZW5u27aXS/o/STIMI0/SfpK6SGovqYWkxpJKJK2R9IukmbZtr8xGNgAAAOzUrVu3XcYaNWqU1DkS99+8eXNKmVC5l156SS+//LIkyTAMPfbYY2rYsKHLqZCsQCAQt11xxo9c8MUXX2jq1KkZO//KlSsrbT5p2LChunfvrnbt2ql58+ZavXq1iouL4xrm1q5dq/PPP18rVqyIm2kIAAAAcBsNKAAAADG2bW+X9F3sCwAAAB7SsmVLdejQQUuWLCkfW7t2bVLnSNy/VatWaUiGiqLRqEaPHl2+HQqF1Lt3bxcToa4WLVoUt73nnnu6lMRbGjVqpA4dOuj7779P2zkLCwt11lln6dxzz1Xv3r3VpEn8xJy2bevVV1/VVVddpcWLF5ePX3vtterevbsGDBiQtiwAAABAKvLcDgAAAAAAAADUxuDBg+O2v/7661ofu2XLll2WEOnQoUNacmGnK6+8UitWrJAktW/fXnfddZfLiVBXTz/9dNz2cccd51IS9xQUFKhHjx665JJLNG7cOM2aNUsbNmzQ+PHj03L+Nm3a6O9//7uWLVumxx9/XCeccMIuzSeSM5PQsGHDNHv2bB144IFx37viiitk23Za8gAAAACpogEFAAAAAAAAvnDGGWfEbU+ZMqXWx7733nvaunVr+Xbr1q13+SAXqfnPf/6jiRMnlm+PHTtWRUVFLiZCXY0dOzaulvn5+brqqqvcC+SCkSNHav369ZozZ44ikYhGjRqlQw89VAUFBWk5/5FHHqkffvhB1157rZo1a1arY1q1aqXnnntOeXk739b/9ttvVVxcnJZMAAAAQKpoQAEAAAAAAIAvHHfccercuXP5dnFxsT744INaHfv3v/89bnvw4MEyDCOd8XLa+vXrdemll5Zvn3766Ro6dKiLiZCMTZs26bvvvtNTTz2lY489Nm4ZJUm6++67dfDBB7uUzh0tW7ZU48aNM3b+3XffvdaNJxUdcsgh6tOnT9zY9OnT0xULAAAASAkNKAAAAAAAAPCF/Px83XnnnXFjF198cfmSL1X5xz/+offee698Oy8vTzfccENGMuaq66+/Xj/99JMkqXnz5nrooYdcToSqrF27VoZhxH0VFhbqgAMO0AUXXBDX1FVYWKjHHntMf/zjH11MjEQ9e/aM2/75559dSgIAAADEy3c7AAAAAAAAQFWC4ajbEdIqEgq4HSGjlixZotLS0l3Gly1bFrddWlqqhQsXVnqOwsJCtW7dusprnHPOORo3blz5h+QLFixQ79699cgjj2jAgAFx+65du1a33Xab7r///rjxK664QgcddFAtHhFqY8aMGXrsscfKt++9917tscceLiZCqtq2basrrrhCo0aNqvb5CHfk58e/rV9xeTEAAADATTSgAAAAAAAAIC369OmjRYsW1bjf0qVLtffee1f6vZEjR2rChAlVHmsYhl5++WX17t1b8+bNkyR9//33GjhwoDp27KgePXqoWbNmWrp0qT777LNdPpg94YQT9Le//a32DwrVKikp0SWXXCLbtiVJxxxzjILBoMupkKrly5fr0UcfVVlZma688koVFRW5HQkVLFiwIG6bhi8AAAB4BQ0oAAAAAAAA8JVWrVpp2rRpOu+88+KWC1m8eLEWL15c5XEXXXSRHnnkkV1mD0DdPf300/r+++8lOUsb/fnPf65VE9LmzZvjtletWhU3K07Tpk3Vpk2btGaFo6ioSD/++GP59vbt27Vu3TotXLhQH374oSZOnKiVK1fqp59+0s0336zx48dr0qRJOvzww11MjR3Wr1+vd955J27siCOOcCkNAAAAEI+/tgEAAAAAAOA7e+21V/nSL4888oi+/PLLSvdr0KCBjjvuON10003q27dvllPWfyUlJeX/f/v27TrppJPqdJ7rrrtO1113Xfn20KFD9eqrr6YaD5XIy8tT586ddxnv2bOnhg0bpjvuuEM33HCDHn74YUlOY1f//v318ccfyzTNLKdFonHjxunXX38t327evLmOO+44FxMBAAAAO9GAAgAAAAAAgLSoOINFNhiGod///vf6/e9/r3nz5umrr77Szz//rA0bNqhVq1bq0KGD+vTpo+bNm2c1F+BnTZs21UMPPaSCggL985//lOTMujFixAjNmjVLhmG4nDB3LVy4ULfffnvc2JVXXqmGDRu6lAgAAACIRwMKAAAAAAAAfG///ffX/vvv73YMoN6488479cILL+jnn3+WJM2ZM0fTpk3TgAEDXE6Wm7Zu3aqzzz5bGzZsKB/r3Lmzrr/+ehdTAQAAAPHy3A4AAAAAAAAAwJ+uuuoq2bad9Nexxx4bd54nn3wy7vssv+O+Jk2a6NRTT40bmzJlijthoEsuuUT//e9/y7cbNGigp556Ss2aNXMxFQAAABCPBhQAAAAAAAAAwC66du0at71gwQKXkuS2m266Sc8880zc2N13362+ffu6lAgAAACoHA0oAAAAAAAAAIBdFBQUxG1v2bLFpSS56/7779cdd9wRN3bNNdfouuuucykRAAAAULV8twMAAAAAAAAAyKwlS5aotLR0l/Fly5bFbZeWlmrhwoWVnqOwsFCtW7fORDx41JIlS+K227Zt61KS3BSJRHTNNdfEjV122WX6xz/+4VKi+qekpERffPGFvvnmG61Zs0abN29WUVGR2rRpo0MPPVT77ruvDMNwOyYAAIBv0IACAAAAAAAA1HN9+vTRokWLatxv6dKl2nvvvSv93siRIzVhwoQ0J4OXTZ06NW57v/32cylJ7nnmmWd06aWXyrbt8rELL7xQY8eOdTFV/fHpp5/q/vvv16uvvqqtW7dWuV/79u118cUX68orr1QgEMhiQgAAAH9iCR4AAAAAAAAAQJw333xTxcXFcWNDhw51KU1uef7553XhhRdq+/bt5WPDhw/X+PHjmY0jRaWlpRo9erSOPvpovfjii9U2n0hOU95f/vIXHXTQQZoyZUqWUgIAAPgXM6AAAAAAAAAAQD1UXFysn376ScOGDUvquJkzZ+r888+PG+vbt6+6d++eznioxL///W+df/75KisrKx8788wz9dRTTykvj/tJU2Hbts455xxNmjRpl+8dcMABOvDAA9WkSROtXLlSxcXFWrNmTfn3ly9frqFDh2ry5MkaNGhQNmMDAAD4Cg0oAAAAAAAAQD23cOFCtyPEmTFjhtsRPGPJkiUqLS3dZXzZsmVx26WlpVXWsbCwUK1bt6703KeddppM09Tw4cN16qmnqmvXrlXOojF37lyNGzdO4XA4LlPjxo0VDoeTeFSoi9dee03nnHNO3H/7U089Vc8++6waNGjgYrL6Yfz48bs0n/Tt21djx46VaZpx46WlpXrmmWd09dVXa926dZKkrVu3auTIkZo3b56aN2+etdwAAAB+QgMKAAAAAAAAALikT58+WrRoUY37LV26VHvvvXel3xs5cqQmTJhQ5bGWZWnMmDEaM2aMdtttN5mmqdatW6uoqEhbt25VNBqVZVlavnz5Lsc2adJEr732mrp161brx4Tk/ec//9GZZ56pbdu2lY+dfPLJeuGFF5Sfz9v46XDXXXfFbfft21fTpk1TQUHBLvvm5+frwgsvVPfu3dWnTx9t2bJFkrRixQo9+uijuuGGG7KSGQAAwG945QoAAAAAAAAAOWLDhg369NNPa7XvUUcdpXHjxunggw/OcKrc9s477+j000/X1q1by8cGDhyof//732rYsKGLyeqPr776apcZhB588MFKm08q6tWrl4LBoB5++OHysddff50GFAAAgCqwaCQAAAAAAAAA1EPHH3+8JkyYoHPOOUcdOnSo1TFNmzbVGWecoddff12ffPIJzScZ9v7772vo0KHavHlz+djxxx+vV199VY0aNXIxWf3yww8/xG3vtddeOuSQQ2p17NChQ+O258+fn7ZcAAAA9Q0zoAAAAAAAAACASxJnZUinoqIijRw5UiNHjpQkLV++XN98840WLVqk1atX69dff1VBQYGKiorUqlUrmaaprl27qkGDBhnLhJ0+/fRTDRkyRCUlJeVjffv21euvv64mTZq4mKz+2bRpU9x2bRuyJKdZpaI1a9akJRMAAEB9RAMKAAAAAAAAkhYMR92OkFaRUMDtCEDGtW3bVm3btnU7hm8sWbJEpaWlu4wvW7Ysbru0tLTKRqLCwkK1bt16l/E5c+bopJNO0saNG8vHunbtqrFjx2rFihVJ5WzcuLHatWuX1DG5JvG/T8UZZ2qSuG8gwO8LAACAqtCAAgAAAAAAAABAgj59+mjRokU17rd06VLtvffelX5v5MiRmjBhwi7jkydP1rp16+LGvvvuO3Xv3j3pnMcee6xmzJiR9HG55PDDD1ejRo20ZcsWSdI333yjkpKSWs00M2vWrF3OBQAAgMrluR0AAAAAAAAAAAAgU3bbbTeNGDGifHvz5s16/PHHazyurKxMDz/8cNzYjiWtAAAAsCsaUAAAAAAAAAAAQL12zz33qHPnzuXb119/vaZNm1bl/tu2bdOoUaM0Z86c8rHjjz9ep59+eiZjAgAA+BpL8AAAAAAAAAAAkGDhwoUZO/ett96qW2+9NWPnx64CgYCmT5+u0047TXPmzFFJSYlOPPFEnXHGGTrjjDN0wAEHqEmTJlq1apU+/fRTjRs3Tt9991358UcccYQmTZokwzBcfBQAAADeRgMKAAAAAAAAAACo9zp37qzPP/9cEyZM0GOPPaZZs2bpxRdf1IsvvljlMa1atdI111yj6667TgUFBVlMCwAA4D8swQMAAAAAAAAAAHJCWVmZysrK1KhRoxpnM9lrr73097//Xddccw3NJxly6623yjCMOn9dcMEFbj+Eeo36AACSRQMKAAAAAAAAAACo9z7++GMdeOCBuuyyy/Txxx9r+/bt1e7/008/6cILL1THjh01fvz4LKUEAADwLxpQAAAAAAAAAABAvfbuu++qf//+WrhwYflY+/btdc8992jOnDlau3attm7dqmXLlmnKlCkaOXKk8vPzJUkrV65UMBjUqFGjZNu2S48AAADA+/LdDgAAAAAAAAAgvYLhqNsR0iYSCrgdAYDPrVy5Uuecc442b95cPvbb3/5WEydOVFFRUdy+bdu21YknnqgTTzxRl156qYYMGaLVq1dLkiKRiLp06aIbbrghq/lzyXPPPaejjjqq1vsXFhZmMA0SUR8AQE1oQAEAAAAAAAAAAPXWfffdp5UrV5ZvH3DAAXrxxRfVuHHjao876qij9MILL6h///7lY7fddpsuvPBCtWnTJmN5c1m7du3UuXNnt2OgCtQHAFATluABAAAAAAAAAAD11ksvvRS3fcMNN9TYfLLDCSecoGOOOaZ8u6SkRM8//3xa8wEAANQXNKAAAAAAAAAAAIB6adOmTfr+++/jxk444YSkzlFxBhRJ+vzzz1POBQAAUB+xBA8AAAAAAAAAAKiX1q5du8tYu3btkjpH4v6rVq1KJRIApFVJSYm+/fZbLVq0SD///LM2bNigbdu2qaioSK1atZJpmurWrZvy8/lYGEDm8ZMGAAAAAAAAALIkGI66HSFtIqGA2xGAGrVo0WKXsU2bNlU6XpWNGzfGbRcWFqaYCgBS8+STT+q9997T559/ru+//17bt2+vdv/CwkKdddZZ+sMf/qAePXpkJySAnMQSPAAAAAAAAAAAoF5q1qyZioqK4sbmzJmT1DlmzZoVt53sDCoAkG433XSTJk6cqPnz59fYfCI5jXRPPPGEevXqpauvvlqlpaVZSAkgF9GAAgAAAAAAAAAA6q1+/frFbT/22GO1PnbZsmV67bXX4saOOeaYdMRCJcaNG6f+/furffv2aty4sXbbbTd17txZxx57rP7v//5PH374odsRcxr18a6mTZuqe/fuOvnkk3XOOefo7LPP1oABA3ZpmCsrK9P999+vM888U2VlZS6lBVCfsQQPAAAAAAAAAACot84+++y4JpIXXnhBJ598ss4777xqj9uyZYvOP//8uCV4CgsLdeKJJ2Ysa657/vnn47a3bNmijRs3atGiRfrggw901113qVevXrr77rvVv39/l1LmLurjHc2aNdMpp5yik046Sb1795ZpmsrLq3zegc8++0w33nij3n333fKxV199Vffdd5+uu+66bEUGkCNoQAEAAAAAAAAA5LxgOOp2hLSJhAJuR/CU3/3ud7r33nv15ZdfSpJs29aIESM0c+ZM/elPf9Iee+yxyzHTp0/XNddcoy+++CJu/IYbblDLli2zERtVKC4u1sCBAzVmzBjdcccdMgzD7UiogPpkh2VZKigoqNW+Rx11lKZOnaqRI0dq4sSJ5eN33nmnrrjiCjVq1ChTMXNaWVmZFixYoLlz5+rnn3/WunXr1KhRI7Vs2VJdunRRr1691KxZM7dj5iRqk1k0oAAAAAAAAAAAgHorLy9PkyZN0tFHH60VK1ZIcppQHnzwQT388MM6+OCDtc8++6hJkyaKRqOaM2eOli1btst5Bg8erBtuuCHb8XNC+/btNXjwYB1xxBE68MADFQgElJeXp9WrV2v27Nl644039Pbbb5fvb9u27rrrLm3fvl133323i8lzA/Xxnto2n+yQl5ensWPH6pVXXtGmTZskSevWrdP06dM1aNCgTETMSYsXL9bLL7+sadOm6cMPP9T69eur3LdBgwYaMGCARo8erZNPPjmLKXMTtckeGlAAAAAAAAAAAEC9tu++++r999/X+eefr+Li4vLx7du364svvthlppOKDMNQMBjU/fffn/SHvqjeEUccobffflsDBgyocqaM3r17a/To0SouLta5556r+fPnl3/vnnvu0VFHHaWhQ4dmK3JOoT71S1FRkfr06RPXLLRgwQIXE9Uv5557rp577rla719WVqYpU6ZoypQpGjJkiMaPH6+2bdtmMGHuojbZVfliYAAAAAAAAAAAAPXIAQccoE8//VRPPfWUfvOb39S4NEiTJk00fPhwffLJJxo3bpyaNGmSpaS5Y/DgwRo4cGCtlmnp1auXPvvsM+2///5x43/6059UVlaWqYg5jfrUP4FA/BJtGzZscClJ/TNv3rxKx9u3b69+/frp7LPP1umnn66ePXsqLy/+I/o33nhDffv2rXT2LaSO2mQXM6AAAAAAAAAAAICckJ+frxEjRmjEiBFat26diouL9eOPP2rt2rXasmWLdtttN7Vs2VKmaap79+7Kz+djFC8JBAJ67rnn1KtXL9m2LUn69ttvNX36dPXv39/ldKA+3rdo0aK47T333NOlJPVbz549ddFFF+mkk05Sly5ddvn+0qVL9Ze//EWPPfZY+di8efN05pln6oMPPqhV0xfqhtpkHq+cAAAAAAAAAABAzmnevLlOOOEEt2MgSYceeqgGDhwYt4zIlClTaHDwCOrjXfPmzdPnn39evm0Yho499lgXE9UvhmHo5JNP1q233qpevXpVu2/79u01btw4HXLIIbr88svLxz/66CO98MIL+t3vfpfpuDmF2mQXS/AAAAAAAAAAAADANwYNGhS3/b///c+lJKgM9fGeX375RWeeeWbcckhnnHGGOnfu7F6oeuall17SG2+8UWODQ0WhUEinn3563NgzzzyT7mg5j9pkFw0oAAAAAAAAAAAA8I3ED81XrlzpThBUivq4r7S0VCtXrtQHH3yg66+/XgcccEBcI9A+++yjhx9+2MWE9U9dm3kqzrIhSdOnT09DGlREbbKLJXgAAAAAAAAAAADgG02aNInbLikpcSkJKkN9su+qq67SAw88UKt9jzvuOD3zzDNq06ZNhlOhNnr27Bm3XVJSorVr16pFixbuBEI5alM3zIACAAAAAAAAAAAA31i1alXcduvWrV1KgspQH2865ZRT9Pbbb+u9995T+/bt3Y6DmPz8XeeL2Lp1qwtJkIja1A0zoAAAAAAAAAAAAMA3Pv/887jtPffc06UkqAz18aa33npLZWVlaty4sfr27et2HMQsWLAgbjs/P5+mLY+gNnXDDCgAAAAAAAAAAADwhc2bN+vll1+OG+vXr587YbAL6uOOm2++WT/++GP519y5c/Xhhx/qoYce0vHHHy9J2rZtm958800de+yxGj16tMrKylxODUmaNGlS3HavXr2Ul8dH+F5AbeqGGVAAAAAAAAAAAADgC3/961+1dOnS8u0GDRro5JNPdjERKqI+7ggEAgoEAruM9+nTR6NHj9ZHH32k8847T4sWLZIkjR07ViUlJXr88cezHRUVbNy4cZcaDBs2zKU0qIja1B0tOgAAAAAAAAAAAMiqZ555RsuXL0/qmEgkottuuy1u7IILLlCnTp3SGQ2iPvVNnz59NH36dLVq1ap87IknntDkyZNdTIUxY8Zo2bJl5dstWrTQJZdc4mIi7EBt6o4GFAAAAAAAAAAAAGTV448/rr333lsjR47Um2++qU2bNlW5b3FxsU477TSNGjVKtm2Xj7dv31533HFHNuLmHOpT/+y99966+eab48buvfdel9LglVde0cMPPxw3duedd1Y6kw2yi9qkhiV4AAAAAAAAAAAAkHUlJSV6+umn9fTTTysvL0/77befOnfurObNm6tBgwZavXq1vvzyy0pn4ggEApoyZYratWvnQvLcQH3qn9/97ne68sory7c/++wzrV27Vi1atHAvVA768ssvNWLEiLixgQMH6rLLLnMpEXagNqmjAQUAAAAAAAAAAACu2r59u7777jt99913Ne57wgknaMKECerQoUMWkkGiPvVFmzZt1LJlS61Zs0aSU9cff/xRPXv2dDlZ7li8eLFOPvlkbdy4sXysU6dOmjhxogzDcDEZqE160IACAAAAAAAAAACArLryyivVvn17ffzxx1q0aFGN+zdr1kwDBw7U5ZdfrhNOOCELCXMb9am/CgoK4ra3bNniUpLcs2LFCg0YMEBLly4tH2vXrp3eeecd7b777i4mA7VJHxpQAAAAAAAAAACAZwXDUbcjpE0kFHA7gmcMGzZMw4YNkyStXbtWX3/9tX766SctX75cv/76q7Zv364WLVqoZcuWOvDAA3XwwQerQYMGLqfOHdSnftq8ebNWrVoVN9a2bVuX0uSWaDSq/v37a968eeVjrVu31rRp07Tffvu5mAzUJr1oQAEAAAAAAAAAAIBrWrRooaOPPtrtGKgC9ak/3n33XW3fvr18u2nTpmrfvr2LiXLDunXrNHDgQH311VflYy1bttQ777yjbt26uZgM1Cb98twOAAAAAAAAAAAAAADInO3bt+v222+PGxs0aJAaNmzoUqLcsGHDBg0aNEizZs0qHysqKtKUKVPUo0cP94KB2mQIDSgAAAAAAAAAAAAA4AMPPfSQfvnll6SO2bZtmy6++GJ9/vnnceOXX355OqMhwaZNmzR48GB99tln5WOFhYV66623dMQRR7iYDNQmc2hAAQAAAAAAAAAAAAAfePzxx9WlSxedd955ev3117Vhw4Yq9y0pKdFzzz2nnj17asKECXHfO//883X88cdnOG3uKikp0ZAhQ/TRRx+VjzVt2lRvvvmmevfu7WIyUJvMync7AAAAAAAAAAAAAACgdkpKSvSvf/1L//rXv2QYhvbdd1917txZLVq0UMOGDbVhwwYtWrRIc+fO1bZt23Y5fsiQIYpEIi4kzw2bN2/WKaecohkzZpSPNW7cWK+99pr69u3rXjBQmyygAQUAAAAAAAAAAAAAfMi2bc2fP1/z58+vcd8mTZroxhtv1HXXXaeCgoIspMs9W7du1WmnnaZp06aVjzVq1EivvvqqTjjhBBeTgdpkBw0oAAAAAAAAAAAAAOADkUhEr732mt59913Nnj1bW7ZsqfGYAw44QMOHD9cFF1ygDh06ZCFlbiotLdVZZ52lt956q3ysoKBAkyZN0oknnuhiMlCb7KEBBQAAAAAAAAAAAAB84PDDD9fhhx+u22+/Xdu2bdM333yjH374QUuXLtXGjRu1bds2FRYWqqioSJ07d1bPnj3VsmVLt2PXe2VlZRo+fLgmT55cPpafn68XXnhBQ4YMcTEZqE120YACAAAAAAAAAAAAAD5TUFCggw8+WAcffLDbUXLeRRddpBdffDFu7K677lLPnj21cOHCpM7Vrl07NW7cOI3pchu1yS4aUAAAAAAAAAAAAAAAqKOnn356l7Hrr79e119/fdLnmj59uvr165eGVJCoTbbluR0AAAAAAAAAAAAAAAAA/kYDCgAAAAAAAAAAAAAAAFLCEjwAAAAAAAAAAAAAANSRbdtuR0AVqE120YACAAAAAAAAAACApAXDUbcjpE0kFHA7QlpRGwCAG1iCBwAAAAAAAAAAAAAAACmhAQUAAAAAAAAAAAAAAAApoQEFAAAAAAAAAAAAAAAAKaEBBQAAAAAAAAAAAAAAACmhAQUAAAAAAAAAAAAAAAApoQEFAAAAAAAAAAAAAAAAKcl3OwAAAIDXGYaxt6QekvaUVCjpF0mLJH1i2/Y2F6MBAAAAAAAAAAB4Ag0oAAAAVTAM4wxJ10j6TRW7RA3DeEHSzbZtr8peMgAAAAAAAAAAAG+hAQUAACCBYRiFkiKSflfDrgFJl0k6zTCMkbZtv53xcAAAAAAAAAB8KxiOuh0hbSKhgNsRAHhMntsBAAAAvMQwjAaSXtCuzScrJU2V9JKk2ZLsCt9rK2myYRh9shISAAAAAAAAAADAY2hAAQAAiHePpMEVtrdJ+oOkDrZtn2jb9lm2bR8myZT0aYX9Gkl61TCMPbIXFQAAAAAAAAAAwBtoQAEAAIgxDGMfSVcmDJ9p2/bDtm1vrTho2/ZcSScovgmllaRbMpsSAAAAAAAAAADAe/LdDgAAAOAht0gqqLA9wbbtyVXtbNt2iWEYF0j6SlLD2PDFhmHca9v2D5mLCQAAAAAAAABIp2A46naEtImEAm5HSCtq4x/MgAIAACDJMIwmks5IGP5rTcfZtj1P0qsVhvIlnZu+ZAAAAAAAAAAAAN5HAwoAAIDjRElNK2x/atv2t7U89smE7dPSEwkAAAAAAAAAAMAfaEABAABwDErYnpHEsR9KKq2w3dMwjLYpJwIAAAAAAAAAAPAJGlAAAAAcZsL2p7U90LbtTZK+ShjulnIiAAAAAAAAAAAAn6ABBQAAwHFgwvaCJI//PmH7oBSyAAAAAAAAAAAA+AoNKAAAIOcZhhGQFEgYXpzkaRL336/uiQAAAAAAAAAAAPwl3+0AAAAAHtAiYfvX2LI6yViRsN287nEchmG0kbR7kod1qbixceNGrV+/PtUoOYH/Tt5FbbyL2ngXtfEuauNd1Ma7qI13URvvojbeRW28i9p4F7XxLmrjXdTGu7JVm6KioqxcJxENKAAAAFJhwnZJHc6ReMxudcxSUUjSLamc4L///a+WLVuWhiiVOSZD53XH9OnT3Y6QRtTGu6iNd1Eb76I23kVtvK3+1IfaeBe18S5q413UxruojXdRG++iNt5FbbwrW7UZOnRoVq6TyLBt25ULAwAAeIVhGL0lfVxhaKlt2x2SPEdQ0mMVhqbatn1iirluVYoNKJJM27a/TvEcAAAAAAAAAAAA1cpzOwAAAIAH1aVDl65eAAAAAAAAAACQs1iCBwAAQNqYsN2kDudIPCbxnHURlvRSksc0lLSXpDWSopK+T0MOAAAAAAAAAACAatGAAgAA4NEGFNu2V0haUYdD56R6bQAAAAAAAAAAgGSwBA8AAIC0LmG7qWEYzZI8R5uE7bV1jwMAAAAAAAAAAOAvNKAAAICcZ9v2ajlL1lTUMcnTdErYnl/3RAAAAAAAAAAAAP5CAwoAAIDjm4TtfZM8fp8azgcAAAAAAAAAAFBv0YACAADgsBK2f1PbA2PL9Rxcw/kAAAAAAAAAAADqLRpQAAAAHFMStvslcewxkvIrbM+xbXt5yokAAAAAAAAAAAB8ggYUAAAAx9uSSips/8YwjANqeewFCduvpCURAAAAAAAAAACAT9CAAgAAIMm27V8lTUoYvqGm4wzD2F/SsApDpZKeTWM0AAAAAAAAAAAAz6MBBQAAYKdbJW2rsH2BYRinVLWzYRiNJT0pqWGF4cdt2/4+M/EAAAAAAAAAAAC8iQYUAACAGNu2f5D0QMLwJMMwRhuGUbHJRIZhHCjpXUm9KwyvlnRbZlMCAAAAAAAAAAB4j2HbttsZAAAAPMMwjAaSXpd0UsK3VkiaLWmDpH0kHSrJqPD9rZL627b9YTZyAgAAAAAAAAAAeAkNKAAAAAkMwyiUNF7S2bU8ZIWkkbZtT8lcKgAAAAAAAAAAAO9iCR4AAIAEtm1vtG37d5LOlPRZNbtGJT0iyaT5BAAAAAAAAAAA5DJmQAEAAKiBYRh7y1lyZ09JzSQtk7RI0se2bW91MxsAAAAAAAAAAIAX0IACAAAAAAAAAAAAAACAlLAEDwAAAAAAAAAAAAAAAFJCAwoAAAAAAAAAAAAAAABSQgMKAAAAAAAAAAAAAAAAUkIDCgAAAAAAAAAAAAAAAFJCAwoAAAAAAAAAAAAAAABSQgMKAAAAAAAAAAAAAAAAUkIDCgAAAAAAAAAAAAAAAFJCAwoAAAAAAAAAAAAAAABSQgMKAAAAAAAAAAAAAAAAUkIDCgAAAAAAAAAAAAAAAFJCAwoAAAAAAAAAAAAAAABSQgMKAAAAAAAAAAAAAAAAUkIDCgAAAAAAAAAAAAAAAFJCAwoAAAAAAAAAAAAAAABSQgMKAAAAAAAAAAAAAAAAUkIDCgAAAAAAAAAAAAAAAFJCAwoAAAAAAAAAAAAAAABSQgMKAAAAAAAAAAAAAAAAUkIDCgAAAAAAAAAAAAAAAFJCAwoAAAAAAAAAAAAAAABSQgMKAAAAAAAAAAAAAAAAUkIDCgAAAAAAAAAAAAAAAFJCAwoAAAAAAAAAAAAAAABSQgMKAAAAAAAAAAAAAAAAUkIDCgAAAAAAAAAAAAAAAFJCAwoAAAAAAAAAAAAAAABSQgMKAAAAAAAAAAAAAAAAUkIDCgAAAAAAAAAAAAAAAFJCAwoAAAAAAAAAAAAAAABSQgMKAAAAAAAAAAAAAAAAUkIDCgAAAAAAAAAAAAAAAFJCAwoAAAAAAAAAAAAAAABSQgMKAAAAAAAAAAAAAAAAUkIDCgAAAAAAAAAAAAAAAFJCAwoAAAAAAAAAAAAAAABSku92AMAvJk+e3E2SVWHIHDp06Ndu5clVO+owdOhQw+0sAAAAAAAAAAAAAAAHM6AAAAAAAAAAAAAAAAAgJTSgAAAAAAAAAAAAAAAAICU0oAAAAAAAAAAAAAAAACAlNKAAAAAAAAAAAAAAAAAgJTSgAAAAAAAAAAAAAAAAICU0oAAAAAAAAAAAAAAAACAlNKAAAAAAAAAAAAAAAAAgJTSgAAAAAAAAAAAAAAAAICU0oAAAAAAAAAAAAAAAACAlNKAAAAAAAAAAAAAAAAAgJTSgAAAAAAAAAAAAAAAAICU0oAAAAAAAAAAAAAAAACAlNKAAAAAAAAAAAAAAAAAgJTSgAAAAAAAAAAAAAAAAICU0oAAAAAAAAAAAAAAAACAl+W4HAAAAACqyLKu9pJ6SWktqEhveLGm1pC9M01zsVrZcZ1lWO0mHSmojqbEkQ05t1kj60jTNH12Ml9Msy2ojpzZt5TxvdtRmnZzafO9ivJwWDEdby6nNHnKeNw20szb/k7QgEgrY7iXMXcFwNCCnNnvKed7sqM16SV9Jmkdt3GFZVgs5temg+NpskGRJ+s40ze2uBcxhwXC0SE5tOsr5mZYvaYukjZK+lvRNJBQocy9h7rIsazc5r6E7yXneFMh53mySNFfSXNM0S91LmLuC4WgzObXZW05t8iVtlVObbyR9HQkFtrmXMHdZltVUUg9J+8ipTUM5P9M2SfpOkmWa5lbXAuawYDjaWNIhkvaV1FQ7a/OrpPmS/hcJBba4lzB3BcPRRpIOlrSfnNo0kvMz7VdJCyR9GQkFNruXMHcFw9GGkrpL6qr42pRI+l7SF5FQoMS9hLkrGI4WSDIlHSCpmZyfadvk1OZHObXZ5F7C3GVZVr6kg2JfzeQ8b0rl1GaRpDmmaW5wL6E/GbbNeylAbUyePLmbnDe6djCHDh36dTLnCIajPOFSVJi/Sf3aztbQoUMNt7MAANLDsqyukn4n6QhJh8n5AL06qyTNklQs6QXTNL/KbMLcZVlWF0nnSjpcUi85H6BXJyqnNrMkvWSa5uzMJsxdlmV1kjRcO583HWo4ZK2k2XKeNy+bpvl5RgPmsGA42l7SeZKOlFObjjUcsk7SHDnPm1cjocBHmU2Yu4LhaDs5z5vfyKlN5xoO2aCdtZkcCQXez2jAHGZZ1u7aWZtecj4IrM5GSV/Iqc0bkt41TZO/tzMg1qg1XFJvOc+bfeU0OVblV0lfyqnNfyS9HQkFaBbKgFij1jmS+sipzf6qvjYlchofZ0maIulNGrkyIxiO7ianNsfIqU1XVT8T+RbtrM1USa9HQgGahTLAsqxmks6W1FfO75sD5DQ5VmWrnKbUWZLelfSKaZo0C2VAMBxtIulMSf3kPG8OUvU3UG+T0/i4ozYv05CSGbGGk9MlHS+nNt3kNDlWpVRO4+MsSTMkvUTTQ2bEmhqGSeovpzamnMaGqpTJaXycJel9SS/S9JAZwXA0X9IpkgbI+X3TXU5jQ1W2S/pWTm0+lPR8JBSg6SEDLMtqIOlkSSfKed4cIqexvirb5TQ+Fkv6WNKzpmmuy3ROv6MBBaglGlC8gQYUAKgfYi/2h0q6XM6bGKn4WFJY0iTuTkudZVl5koZICkkaqOo/yKjJf+XU5gXTNLkDKkWWZRmSBsmpzWCltqTqLEmPyPnDmTcDUxQMRw1JJ8ipzSmq/oOMmvxPTm0mRkKBjWmIl/OC4Wg/ObU5VdW/WV6TuXJq83QkFFifejJYlnW0nNqcoerfLK/JPEmPSnrSNM21aYiW84Lh6BFyanO2qn9DtiY/SBon6fFIKLA6HdlynWVZPeW8hj5Hzt3NdbVI0mOSxpumuSId2XJdMBztLud5c56kwhROtVRSRNJjkVDgl3Rky3WWZR0opzYjJBWlcKplksZLGmea5pJ0ZMt1wXB0P0mXSbpAUssUTrVS0hOSHo2EAgtTT4ZgOLq3pEslXSRnhtq6ikqaIOmRSCiwIA3Rcl4wHN1LTm0uVs03cVVnnaSnJIUjocB36ciW64Lh6J6SRkkKyplps642SJoopzZWTTujZpZltZVTl1GS9krhVL9KelbSWNM0v0hDtHqJBhSglmhA8QYaUADA/yzLGi7pHtU8Y0OyVki62TTNcWk+b86wLOsMSX+XM3V7Oq2WdLukB7lDvW4syxoi6X5JXdJ86jVyno//ME2TJRPqIBiODpD0oJw7aNNpvZzn493cBV03wXD0WEkPy7kTMJ02ynk+3h4JBWh8rAPLsn4jaaycJSnS6Vc5jY8301xXN8Fw9FA5/w2PTPOpN8tpdvgzd9rWjWVZ3eXUpk+aT71V0pOSrjdNk+a6OgiGo13l1CbVxvpEpZKekXRtJBRYk+Zz54TYjI5j5dzlnE5lkp6XdLVpmivTfO6cEAxHO8p5nTZEqd30kGi7pJclXUEDV90Ew9E95Px9c5pSu+khkS3pdUmjI6HAT2k8b84IhqNtJP1TToNwKjc9VOYtSZdHQgGWVq6D2KyB/5DThFrd7E118a6c2tAkVAeWZTWXdK+cRsdUbnqozEeSLjNNkyahBDSgwLcMw2giZ43OA+V0RzeW8ybtCjnTiy+w0/gPnAYUb6ABBQD8y7KsdnLuTh6a4Uu9K+li0zQXZfg69YZlWa3lvDF7VoYv9aGkC03T/D7D16k3YtPrPyDnbs1M+lzSBaZpfpvh69Qbsen1/yHnDppMmiPpgkgo8L8MX6feCIajzeQ0Vl2u9H6gkciSU5tZGbxGvWJZVmM5DYnXKL0faCSaJ+f3zScZvEa9EgxHG0q6SdKflP43zSv6QdLFkVBgRgavUa/E1qX/k5z6pPtN84p+knSJaZpTM3iNeiUYjuZJulbSX5TaTEE1+UXS7yOhwOsZvEa9Eps5cLSc1wOpzBRUk5WSLjdN86UMXqPeCYajQTmN1qnMRlOTNZKujIQCz2TwGvVOMBwdIafROpXZaGqyXk5j3fgMXqPeCYajZ8tp2kplNpqabJJ0g5xZN/gsq5aC4ehQOe93tsvgZTZLulHSP1nesvYsyxokZ1a5dN8EWdFWOa8F/2qaJjcPxdCAAt8xDOM3kq6SM31ydX94L5X0uKQHbNuOpnrdHQ0oCxcu1B//+EeVlu7yc+RC27YnVHcOGlBSRwMKAPiTZVnnyPlDOZClS26Q9EfTNB/L0vV8y7Ks0+T8obx7li75q6Qxpmk+mKXr+ZZlWYPl/KGcyrStydgs6RZJf2OmmuoFw9ET5Ezx3TFLl9wm50P7uyKhADPVVCMYjh4jZ4rvfbJ0yVI5d1Pdwkw11bMs6whJT0vqmqVLbpfzAcqfTdPckqVr+lIwHO0pZ/r17lm6pC1ntojrIqEAM9VUw7KsbnJqc1gWLztezqwOLANXjWA4ur+c2hyVxctOlDNzwLosXtN3LMvaW86sPsdm8bKTJF1qmiZLjVUjGI52kPMaekAWL/u6pGAkFFiexWv6TjAcbSfnb88hWbzs23KaUpdm8Zq+EwxHW8t5z+b0LF52hqQLWc6qesFwtIWc9zqHZ/Gyn0oaGQkF5mfxmr5jWdZucv4WvCiLl50laYRpmnOzeE3PyuTdJkBaGYaRbxjGw5I+lnN3bk13fbSXdLOkuYZhDEpHhrKyMj388MOVNZ8AAIAqWJZ1i5y1MbPVfCJJu0kaZ1nWP2N3v6ESlmVdK+nfyl7zieTcgfiAZVmPWpbF3yNVsCzrMklvKHvNJ5Jz5+5fJT0Vu9salQiGoxfIebM0W80nklQg546a52OzFKASsbsC31X2mk8kZ6aIP0t6JRiOZvLud1+zLOsUSe8re80nkvOe1zWS3rQsqzCL1/WV2DJiHyp7zSeSMzPR5ZKmBsPR5lm8rq9YltVX0ifKbvOJJF0iabplWa2yfF3fCIajR8r5ACibzSeSM63/B8FwtG2Wr+sblmUdIukzZbf5RJLOkPSxZVl7Zfm6vhEMRw+UU5tsNp9I0m8lfRIMR7P5+tBXguFoFzk/07LZfCI5S2N9FgxH072Uab0RW6rqY2W3+USS+smpzcFZvq5vxJq2PlB2m08k6TeSPg2Go4dn+bq+EZvlebqy23wiOa/ZP7EsK93LZfoSb/jCFwzDMCQ9p8qnUP5W0ityPth6R870ehW1lTQ5HU0okydP1oIFC1I9DQAAOcOyrHsl3epihKvkNKLQhJLAsqyb5Ux77JbfS3qaJpRdxRqDwsrs0iHVOV/SizSh7CoYjl4m567NdK+3XVtnSHqVJpRdBcPRkXL+JixwKcIQSW8Fw9EmLl3fsyzLOlNOs6NbDTonSJpKE8quguHoEDnNjs1citBH0vTY3aOowLKs/pKmKLPLU1Snl6QPLMvKZpOyLwTD0T6Spim7zfUVHSzpo2A4ms0mZV+wLKuXnLv227gUoaukDy3L6uTS9T0rGI52l/NBbXuXIuwj53mzn0vX96xgONpVTiNqZ5cidJDTWGe6dH3PCoajneXUZn+XIrSVNCMYjma7EdbzguFoe2W/gbuiVpLeDYajvV26vmdZltVGzo0Pbv27bS7nb8/jXbq+Z/BmL/ziEjlvtlb0gaTutm0faNv2abZtD7dte6CcPzIuklRxOsqGkp4yDKPOd9Y899xzHZ9//vnybcMwNtX1XAAA5ALLsm6UdJ3bOSQFJf3D7RBeYlnW1ZJuczuHnDtFwm6H8BLLskbJ3cagHYZJeoLmrZ2C4ej5ksbKvcagHU6S9GwwHHWrCcZzguHo6XKWX3X7PY5+kiYFw1G3mmA8x7KskyT9S85MMW76jaTXLMtilpqYYDh6nKSXVPPsspnWU9KbwXDUrSYYz7Es6zeSXpXkdkPbQZKmWJblVhOM58SWq3pDktsNbfvKmUGIWWpiLMs6SE7TVguXo3SSNM2yrHYu5/CMYDi6r6Spklq7HGUPSdOC4Siz1MTEZtd4R85/GzftLudnWheXc3hGbHaNacrurJuVaSlpSmwGI6h8SaR35PwudtNukv4TDEd7uJzDMyzLai5nttqDXI7SRNJky7KOdDmHq9x+cwaorT8nbH8gqb9t21bijrZtl9q2/aSk/pIqrvPcRtKldbm4YRjG5MmTb9+6daskqXfv3mrcuDHreAEAUAXLsk6VdLvbOSq42rKsC90O4QWWZQ2Qtxpyfm9Z1h/cDuEFsWk6H3E7RwXnS7rB7RBeELvr6wm533yyw+lyd3YpzwiGowfJaXDwSkPOYDlLWeU8y7K6yGlw8EpDznGSHnQ7hBcEw9EOcmaS9UpDTm9Jj7kdwgtid22+JvdmpUl0qKSn3Q7hBbGZet6Qc2erF3ST9HyNe+WA2AxXb8i5I9wL9pU0iZkepdjyhK9L8kpDTkc5swm63RjruljD9GRJXmnI2UPSa8FwtJHbQdwWDEfzJL0sySsNOa0lvUGzsBQMRw05v3u90pDTXE5tvPLaxG3PSOrhdoiYQkmv5/Jsgjn/IgjeZxhGd+06BdwVtm1vq+4427aLJUUShn9bxxihzZs3HyZJTZs21SWXXFLH0wBA7jAM43nDMOyEr4W1PPaCSo6t69cXmX2kSGRZVkDSo27nqMQ/Lcvq4HYIN8XuYH1c3vkQfYd7Yh9U5izLsprIaXDw2t9ot1qW1c3tEG6KLXczQe7P4JDoT7k+HXJsFpgJkrz2RvWVsSUaclZs9qQn5J0P0XcIWpY10O0QHhCRdz5E3+HcYDh6qtshPCAs92cJSDTUsqzhbofwgAckeW3Zm/7BcHSU2yE84F5Je7sdIsHRkq50O4QH/EXSAW6HSHCopDFuh/CAP8s7H9TucJC8MVOr266RM3ufl+wj6R63Q3jApXKW9/SS9pL+6XYIt1mWNUJ1//w3U3aXM4tuTvLam5tAZfZJ2P7Jtu0va3ns5ITtpNd5NAyjoyr8ch05cqQCAbeWeQUAfzAM4xRJZ7udA655SM5asV7TXLs2p+aav8s7dzhV1FQs93KX6vBaNQsaSXrSsiyvzC7hhpsleXFN8nxJT8YaZHLVdZIOdztEJfIkPREMR91ePsNNoyX1dTtEFcbn8pIiwXD0IkmD3M5RhUeD4WjOvuFiWdbZcma48qIHc3lJkWA4OkTSCLdzVOHvwXC0k9sh3GJZ1nGq44zXWXCnZVn7ux3CLcFw9ChJ17qdowo3BcPRg90O4ZbYkh3/53aOKvwxGI4e4XYItwTD0a7y1mzCFV0eDEf7uR3CLcFwtLOchkcvujAYjg52O4RbLMvaQ9L9bueowpmWZZ3pdgg30IACP0i8Y2pJEsf+lLDdsg7Xf0yxtV0POuggDRzIzVIAUB3DMFrIW0tIIItiS++c63aOagyyLOsit0O4Ibb0TtDtHNXoK+cDy5xjWdbRkq5wO0c1DpfzQX/OCYajh8rbyxB1l3ST2yHcEFt651a3c1RjPzmNZTknNqOVl++Q3EtOQ2bOCYaj7SXd53aOarSV08icc2LTcz/sdo5qeHWGw4yLLb0zzu0c1dhN0ni3Q7jBsqxm8tYSiYmayGmyz7nPYGLLqDwp737+VCBpQi4uxRN7zE/KO0skJmogpzZem+Ew42JL7zwp7yyRmMiQ9HgOL8XzuGKfE3rUYzm8FM9jqttnv9kyNheX4vHqCwCgomUJ28n8Ak7cN5rMhQ3DuEDSibHNraFQSIbh1b9pAMAz/qGdUxNvSNM5P5czpW5dvnK2A9wld7gdoBZuzdHZHO50O0At3GRZVs690STnDiev/202JvYmf665Td5beifRtcFw1MtvtmTKzfLe0juJLg+Go7k4Y8Cf5cxs5WUXW5blteUasuF6eW/pnUTnxhrMcs3V8t7SO4mGWpblxVmnMu1yeW/pnUT9c/Su9KB2Xbbda46WdJLbIVxwvry39E6invLurFOZdKa8t/ROogMl5eLSb0PkvaV3Eu0jKedu6gqGoydIOt7tHDVoL+kyt0Nkm2VZR8l57njZ7srBZfm8/iYnIEkzJW2psH2gYRi1nco4cU30mbW9qGEY7VThzqA999zzsQ4dOtT2cADISYZh9NfOP0RK5Xw4lA6bbdteWMevn9OUATWwLOtYSd3czlELe8l764JmlGVZveTNZSoS7S7nDbGcYVnWAZKOcztHLRRJOs/tENkUm87eD02MTSRd6HaIbAqGo20lneZ2jlookLdnnko7y7JaSDrH7Ry1kCfvLtmQEcFwtKmkkW7nqKWQ2wGyybKshpIudjtHLeVUbYLhaANJo9zOUUs5VZvY0p1++aAtp2oT45fH7Jec6eSXx+yXnOnkl8fsl5+96eSX2vw+NpNOLvFLbS6xLMurM09lRK79Q4QP2ba9QdLTFYYaqxZ/mBuG0UC7TuP+VBKXHqud0zZ9fcstt+TkdJYAUFuGYTSTFKkwdJ+kL9xJA5f45UW/5K+s6eCnx+unrOngp8eba280XSr//M18aTAczaWpGoPy7rThiUbFPsDMFRfKaYryg4tybNat4fL+7Cc7nB8MR708xXm6nSGpjdshaulsy7ICbofIoiGSOrodopZODYaje7gdIotOkLS/2yFqaVAuzboVDEePkjO7iB/0DYajfriJJi2C4Wh3SX3czlFLhwXD0SPcDpEtwXC0i6SBbueopQOD4agfbqJJi9gSlqe4naOWOssfN9GkhWVZrSSd5XaOWmqrHJt1yy9vpgF/krSwwva9sbvsK2UYRoGcdb8qvth9T9K/a3MxwzDO1M476mxJo9q2bVuaTGAAyEF3a+f0tz9IutW1JMg6y7LaSRrmdo4k9Lcsaz+3Q2SDZVktJf3O7RxJ+I1lWT3cDpENsSVtRridIwmHWJZ1tNshsiEYjvrpbnRJ2k/SALdDZIPP7kaXpA7yzxuWKYndje6nWUVayz9vWKaDn5oIc23WLT81o+barFt+qk2uzbrlp9rkyV8/g1N1udsBkuSnf0up8ttj9VveVFwmyU83FORSbUbJ+8vyVpRLtblY3l+Wt6Jcqg0NKPAH27ajcqYmnxMbaiLpbcMwXjAM40zDMLobhrGvYRhHGYZxtaSvFL8W3X8lnWHbtl3TtQzDCEh6uMJQ2LbtT9LzSACgfjIMo7fi32T4vW3bJW7lSRfDMPJiv1vONQzjGsMwxhiGca7buTzqFPnnbnTJ+cM+VzrPB8s/d6PvcIbbAbKkv/xzN/oOuVKbvnKWhPKTXKnNEXKWUvOTXKlNd/nnbvQdcqI2wXB0H/nnbvQdcqI2sSZuvzV35kRtguFokfzX3JkTtYnNXjXE7RxJyonaxJZ+8NONKVKO1CbGb++BnJZDszz6rTanxG7ayAV+q82JOTSToN9qc4xlWX6Z9TBlNKDAN2zbXijpSDkdh8VyPjg6S9KLkv4nab6kT+Us+dA1dthqSf8nqY9t22tqeakHtHPq06WS/pyG+ABQbxmG0UjSE9r5uuIp27anuRip1gzDuMAwDLvC1wWx8SaGYdwl6Sc5v1v+Jekfku6SFI7t80jCsSPrmKE44Tx+nf61l9sB6uAwtwNkCbXxLmrjXdTGu6iNd1Eb7/JjbQ51O0CW+PHf4CGWZeXC0mKHyl93o0vSQcFw1G+N53VxsPx184Mk7Z0jy1cdIKmZ2yGS1CYYjnZwO0SmBcPRjvJfg/1u8l9zc9KC4Wgr7ZxR2i8aSjLdDpFpwXC0maQD3c6RpDz5r/E8aZZlFUg6xO0cdeDH1/51QgMK/KZB7GuLnKVxqvOTpD9Kus+27W21OblhGIMVP83r5bZtr69LUADIIbdqZ+PfSknXuhcldYZhHChptqQxkvasZtexCdtJTzlvGMZhin/h+aFt218nex6P8OMLaD9+GFMXfqyNHzPXhR//Dfa0LCsX/o70Y23MYDjqp+ln68qPPx/2D4aju7kdIgv8WJv2lmW1dTtEFvjxZ1rL2Mwt9Z0fa9NEkl+b5pPhx9o0kNTD7RBZ4MffN1JuNNb5tTZ+zZ0MP/5Mk/ybOxl+fYx+zZ2MHvLn5+i5UJtu8tfyOzvkwu8bSf584iBHGYZxtKRvJD0iZ3rSmv797iXpSUmLDcO4pBbnL5L0aIWhf9u2PbmOcQEgJxiGcaicZr8drrJte7VbedIgIOkNOXftSNJWSR/LmW3rVTkzbtmSZNu2JemDCsceZRhGsp3XietAP1rpXh5nWZZf73zoXN/vQos1CvjxzofdLcvy2xIbdeHHPzwLlQN3ocmftWkoZwmU+s6PtTHEh05e5tfcyfDrY/Rr7mT49TH6NXcy/PoY/Zo7GX59jH7NnQy/Pka/5k6GXx+jX3Mnw6+P0a+5k+HXx+jX3Mnw62P0a+6k0YACXzAM4wRJ0xQ/FdlSSX+S86FKCzlvuLaTNEjSU5JKY/vtLiliGMZjhmFUN3Xmvdq5lvg6SX9IU3wAqJcMw8iXs/ROfmxoim3bz7oYKR1ulbSPpM1ylmBrZdt2H9u2z7Zte5ht24co/gOkxFlQfl/bC8UaH39XYWilpH/XKbX7DpTze9iPergdIMP2kdMw4Ec93A6QSZZl7SH/TYG8Qw+3A2RSMBxtLv9NgbxDD7cDZFJsnXG/TYG8Qw+3A2SBH6dAlqiNl/VwO0AWUBvvojbeRW28i9p4F7XxLmrjXdTGu6iNx+XXvAvgLsMwdpf0nKTGFYZfl3ReJcvjLJf0tqS3DcN4VM5d7K1i3wtK+l7SXyu5Rj9JoyoMXW/b9i/pyA8A9diftPPF3ibtOptHOjU2DKNzHY/92bbtrbXcdzc5s56cZNv2jMp2sG37xwqbr0j6RdIese3zDMO43rbtjbW41gjFr438pG3bW2qZ02tauh0gBS3cDpBh1Ma7qI13tXA7QApauB0gw3aTs7yAH7VwO0AmWZbVWPF/s/tJC7cDZIFff+e0cDtAFlAb76I23kVtvIvaeBe18S5q413UxruojccxAwr84BrF3x36raSzKmk+iWPb9meSzk4YvsUwjDYVBwzDaCJpvJxpkSXpQ0mRlBIDQD1nGMZBkm6sMHSTbdsLM3jJIyX9WMevg5K81h1VNZ8ksm17m+J/Z+wm6dxaXqfibCm2pHG1PM6L/PqBk+SsYV+fURvvojbe5cd1hHfw87+r2vDz46vvzxtq41HBcLRA/n3/r17XJsavv3P8/JyvLWrjXX59jLnwM43aeBc/07yL2niXXx9jLvxMozYe59c/QJFbzkzY/qtt25trc6Bt2+/KaSjZoYnilzuQnDvQu8T+/3ZJd0nqZBhG54pfr7zyyp7Lly/Xjq/t27cnvjBonXBMGwFAPWQYRp6kx7XzD6RZkh50L1Fa/arkH8s47Vz2TarFMjyGYfSRZFYYmmrb9g9JXtdLbLcDpGC72wEyjNp4F7VBJvj531Vt+Pnx1ffnDbXxLmqDTPDzv6v6Lhdq49fHmAs/06gN0s2v/6ZyQS7Uxq+PMRd+plEbj2MJHniaYRjNtLM5ZId3kzzNNEnHVNg+MuH7FTvO8iS9VdlJnnrqKT311FMVhw5O2OVvsa8dJks6NZmgAOATV0o6Kvb/SyVdYtt2mYt50mm6bdvrkjnAtu2fDcN4VdIZsaFDDcM43LbtmdUcdmnC9iPJXNODStwOkAI/Z68NPz8+P2evDT8/Pj9nrw0/Pz4/Z68NPz8+P2evDT8/Pj9nr1EkFCgNhqOl8ud7gPW6NjElkhq6HaIOcqU2fpzePVdq40d+zZ0Mvz5Gv+ZOhl8fo19zJ8Ovj9GvuZPh18fo19zJ8Otj9GvupDEDCryuRSVjy5I8R+L+resWBQBgGMY+ku6oMHSfbdtfZOHS79u2bdTxK5l8c+qYb2zCdmKDSTnDMFppZ7OKJC2R9EYdr+sVK9wOkIKVbgfIMGrjXdTGu1bLv3el1PfarJe0xe0QdVSva2Oa5lZJSTXxeki9rk2MX3/nUBvvojbeRW28i9p4F7XxLmrjXdTGu6iNd+VCbSTRgALvW1vJWLMkz1GYsL2xblEAILcZhmFIikhqGhv6QdKtrgXKjDq9eLVte4akuRWGfmcYRvMqdr9Q8eu7RurBDDLzJG1yO0QdbJf0hdshMsk0zZ/kfJjuR7PdDpBJpmlGJS1yO0cd1evaREKBXyV963aOOprldoBMioQCZZL+53aOOqrXtYmpayOv2+r1z7QYvz5Gv+ZOhl8fYy78TKM23sXvG++iNt7l18eYCz/TqI13+fVnGrXxLr8+35NGAwo8zbbtTXLucquoZ5KnOSxhO25GFNu276/NHfSvvvqq+eqrr2rHV5MmTRKXVrgw4ZhTk8wJAF4XlHR8he3f27Zd36aN25DCseEK/7+ppPMTd4g18YyqMFQqaXwK1/QE0zT92sjxrWmafmycSZYf//BcbJrmKrdDZIEfa7PaNE2/Ns4kw4+12ST/Ns4kw4+12Sb/Ns4kw4+1sZUbbwL6sTaSf3Mnw6+P0a+5k+HXx+jX3Mnw62P0a+5k+PUx+jV3Mvz6GP2aOxl+fYx+zZ0Mvz5Gv+ZOhl8fo19zJ40GFPjBjITtUZXtVBnDMNpJOiVh+MNUAwFAjrqtwv//j6QFhmF0ru5LUruEc+RXsp8f1zyvzNOKb2D5fSX7nCBpvwrbr9m2/XNGU2WPH19A+zFzXfjxcfoxc1348XH6MXNd+PFxfhEJBfy6dFAy/FibryOhgF+XDkqGH2vzvWmafl06KBl+rM0vkVDgF7dDZIEfa7NO0vduh8gCP9Zms6Sv3Q6RBX6sjV9v2kiWH2sj+Td3Mvz6GP2aOxlz5M8lYHOhNpakrW6HqINcqM08pXYjqVtyoTaSaECBP7yQsH22YRjn1XSQYRiNJD2j+CV4Nkp6O43ZACCXNKnw/wdL+rEWX88lnKN9JfsclNHUWWLb9gY5v3d2MA3D6JOw26UJ249mNlVW/dftAHWQOJtZfUVtvIvaeBe18S5q413UxrtmypntxU9ypTazJPltOc5i0zT99u+pLr6U5LfmwS8ioUCp2yGy4Bv5b4n1ubkw+2YkFPhR0kq3cyTpx0go4Ndla2stEgqslLTQ7RxJWh4JBRa7HSLTIqHARjk/1/xkvaTv3A6RaZFQYKv81zy4WdJXbofItNhr0WK3cySpTLkx+6YkGlDgD8/L+aNvB0PS04ZhPGAYxh6VHWAYxnGSPpPUP+Fbf7Vte01mYgIAELcMj1Sh4aSSWbkWSJqWjVBZMln+6jzfql2bXOurtyT56Q217ZL+5XaILJkuaanbIZL0TM271Aufyfk57SdPux0gGyKhwP/kv+VscuJ5Y5rm93KeO36SE7WJhALLJL3rdo4k5URtYjPwvOF2jiTlRG0iocBmSf92O0eScqI2pmmWadebXbwuJ2oT47e/5XKpNhPdDpAkv+VNhd8e67M5Mvum5L/avJQjs29K/qvNa6Zprnc7RLbQgALPs217u6QzJK2oMGxIukLSEsMw5hiG8W/DMCYahvEfwzB+kfSepB4Jp/qPpL9mIzMAIDfZtv21pPcrDJ1hGEar2P+/RFJBhe+Ns2273tw5aJrmRvnrjZt/m6a5oubd/M80zS2SnnA7RxLeNE2z3t/lJJW/ef6Y2zmS8J5pmvX+LidJioQCtvw1S9XnkVBgjtshsugRtwMk4atIKJBLy8AmNuN62Q+SprgdIov8VJufJb3qdogs8lNtVit3mrglf9UmcUbO+m6s2wGSsFnS426HyKJH5J9Zt0rlr7/HUjVO/pl1y5a/XvOn6nH5a9YtP/1+TNVTkvw0g1Uu1eY5SX6acCCXakMDCvzBtu0Fko7VrlMq5clpNDlN0nBJJ0lql3i4nBeSZ9i2vS2zSQGg/rJtu4Vt20YyX5KOSzjNokr2+8KFh5NJFd8IayTpAsMw8uQ0oOywRdKTWU2VHX56Ie2nrOnwqPyzpnCu1SYiyS+vUXOtNk9KKnE7RC3lWm0mypn22Q9y6Y1zSXpR0iq3Q9TSozmyjMgOr0la4naIWorkyDIiO7wjab7bIWrpSdM0N7sdIlsiocDHip+V2csmRkIBP81ImRLTNL+U9KnbOWrpRdM0/TQjZUoiocA8+We219cioYDfZqSss0gosETS627nqKWpkVDge7dDZEtsiaRJbueopY8ioUC9X+Jlh0gosF7+mdlpdiQU8NuMlHVmmmaJpAlu56il7+S/GSlTQgMKfMO27W8l/UbSSDl/YNT0RlGJnF8MvW3b/r1t23558xgA4G+vyLlrc4dRkk6W1KnC2Eu2bde7N6BM00ycAcar/mea5kduh8gm0zT9cpf395LedjtENpmm+Yucnxtet1TOUls5IxIKROUsB+p1q5Rbd6PvWCfdD0sO5drd6Dtm3fLDXd6b5a/ZwVIWCQXK5Nz57HW5djf6jjXs/dCstl3+yJlufmny9EvOdPLLLCjUxrv8kjOd/PKY/ZIznfzymP2SM5388phz8feNX2bdeiTHbn6gAQX+Ytt2qW3bT9u23VtSS0n9JQUlXSfpRklXShoh6VBJRbZtn2fbdkY6/p577rkLE+7gn5CJ6wAA/MW27cQ3zfeX9HDCbvX5jds/yvngwKtsSVe7HcIlN0ja6naIGlyda3+QxfyfpF/dDlGD60zT9PJzO1Nukfdn2hiTQ2s8V3SHnKUgvOymWLNMrvmrpF/cDlGDO3LpbvQK7pe0yO0QNfhbJBT4uebd6p1H5NwZ6WUPx5qac82T8v4sKI9HQgHL7RAueF7S526HqMHzpml6PWMmvCZputshavB6JBR4z+0Q2RYJBaZJetPtHDV4V9IbbofItkgo8Kmc2QS9zA8Z0y4SCvxP3p/Jeo6c5YJyimma8+X9BqFv5Y8bAdKKBhT4lm3b62zbfte27fG2bf/dtu07bdt+0LbtZ2zbnhP7ABAAUD80NgyjcwpfDbOc9zHFN2F0rPD/v7Jt+5Ms58ka0zSLJf3N7RzVGGeaZs69ySRJpmlakv7ido5qTDRN0y/TAaeVaZoLJP3Z7RzVeMU0zefcDuGGSCjwk6Rr3c5RjbcjocB4t0O4IRIKLJf0B7dzVONDSQ+6HcINpmmukfR7t3NUY5acJpmcE2uIuljevUvwa0m3uh3CDbFlbS6Sd5dMXCBpjNsh3BAJBbZJukDebbL/SdI1bodwg2maZXJq49VloZZLGu12CDdEQgFbzu+bTW5nqYLXX6tk2ihJa90OUYWNki6J/RvKRZdLWul2iCpslnRhJBTw6muVTLtazsywXrRNTm28+lol0/4kyatN0tslXZhLS1juQAMKAADwgyMl/ZjC10HZDGvbdnVLatTn2U92uFXOBwhes0jOrGm57K9yPnjzml8kXeF2CJc9KOcDa69ZLekyt0O4KdbgMdXtHJVYL2c2yJwVCQWekzeXsPpV0kU5/Ma5Yg2FE93OUYmtki7I0RmdJEmRUOBdeXOJm1JJF0RCAa/P1pYxpml+ImeWGq+xJV1kmqbXZ2vLmEgo8IWku9zOUYVgJBTw+mxtGWOa5rdyZqzzostydLYtSVIkFPhRziycXnRlJBTw+mxtGRObacyrM8NeFwkFFrodwi2RUGCVpJDbOapwUyQU8PpsbRkTCQXWybt/f98ZCQW8PltbxpimuUlOI7cX//7+h2maGVmlw+toQAEAAMiMyqb/2yhvfhiTVqZpbpVzJ5qXPkAok3SxaZq5uBRCudgHbhdIKnE5SkW2pFGxO+ZzVmzpoYvk/JzwkpBpmsvdDuEBl8i5U9JLrorN0JLrLpO0wu0QCf4UCQUWuB3CA66QtMTtEAluic0Iluuuk/fuErwnEgoUux3CA26U9I3bIRLcb5qmF5tks+0OSbPdDpEgEgkF3nY7hAf8Q5LXZhl91jRNLzbJZltYznIqXjI5Ego843YIt0VCgQmSvDYD6TvKwWUqEkVCgUmSvDYD6ceS7nM7hNsiocBbkrw2A+lsebdJNmtM03xf3puB9GtJN7sdwi00oAAAAGSAbdvvS0r8gONftm1vcCNPtsWW4jlXTuOH23Y0OHjtjS9XxD54O0POFJ1ecKVpmjm3vnNlYkvxnCLvTCM+xjTNnFvfuTKxRo8h8s404ndEQgGvr0GdFbGleE6SMyOMF/wzEgo85HYIL4g1Fg6SM5OSFzxmmuY9bofwgkgosEHSiZKWuZ0l5hnl8JuzFZmmWSLneeOVBsN/ixkEJZUvxTNE0vduZ4l5S85SDTkvthTPUHmneWu6nOVncl5sNrjTJX3hcpQdPpU03O0QHnKupM/dDhEzR9KZuTyDYIKLJL3vdoiYuZKG5vDSO4kulzTF7RAxCySdHHuNAmf5ZK80fy6WdFIuLr2zAw0oAAAgY2zbnmHbtlHhq3Mtj5uQcFyqX1/U8joT0vjwpV0/DHs0zef3NNM0/y3nj2Y3m1BsOQ0OT7iYwXNM0/yPnDeb3P4j9U+mafJBbQWmaU6X0yC0xeUod/BBbbxIKPCJnA833F6C4L5IKHCTyxk8JRIKzJY0WO43oYyT86YXYkzT/FrOh+lRl6M8rRxfTixRbJaegXJ/BqFJyvElqxKZprlY0gBJS12O8qakc2Mf7kNSbMmOAZIWuhzlXUmn84HTTqZprpJTm3kuR/lY0im5/IFTotiyFSdq1xt0sq1Y0uBIKOCVhnLXRUKBjXIaud1epvcrSSfG/q1AUiQU2Czpt3J/dqfvJA2IhAJeaSh3XWy5yNMlvedylB8l9Y+EAl5pKHdd7DXrOZL+43KUJZL6m6bplYZyV9CAAgAAkAGGYRwkqXeFoc+qaoSpz0zTfFrSWXJnOZ4dy+7Q4FAJ0zQnyfkw3Y3leGxJl5um+VcXru15pmm+KefDdLeW47neNE0aHCoRCQXelfPhxlqXItwaCQVocKhEJBT4WNLxkla5FOHeSChwKR+i7yo2K9qxkn5xKcJYSReYpsldmwkiocBXko6Rc4eeG56Q9LtIKFDq0vU9yzTN7yT1kXuzbTwnaVhsaU1UEAkFfpRTG7dm23hVzt3OXlpS0xNM01wq52faFy5FeFvSwFxf9rUykVBghZzXAm7NtjFD0vGRUGCtS9f3rEgosEbOa+gPXIrwmaRjI6HASpeu71mxGesGSJrqUoQ5ko6JhAI/u3R9z4qEAr/Kec/mNZcizJXUJxIKLHLp+p5lmuYWSadKesGlCAsk9TFNc75L1/cMGlAAAAAyI/Eu20dcSeEBpmm+LOlISV9m8bLfSTrGNE2WqKiGaZpvSTpczt1g2fKjpONN0wxn8Zq+Y5rme5IOk3MXZbb8JGmQaZp/y+I1fSc2E8qhcqZXz5ZfJJ0SCQVuy+I1fScSCsyS1FPZnRJ5paSzIqHADVm8pu/Eln87VNl9k3aNpBGmaY42TZPGoCpEQoF5cn7fZHPJtfWSgpFQ4OJIKMDsGlUwTXOhnNdpT2fxspskjZY03DRNZteoQiQUWCrpKEmRLF62RNIf5cx84vZMeZ5lmuYKOQ1CD8tpes+GrZL+T9IQ0zTdninPsyKhQFRSP0l/l5StptBSSbdLGhj7MB+ViIQC6+U0Otwh579ZNpRJulfScbEmGFQi1uhwsqSblL0bu2xJD8ppcKAxqAqx38WnSbpe2V1GeZyko2gMqlrsNew5kq5QdmewfUrS4aZp0hgkybBt/gYHamPy5MndFD9VoDl06NCvkzlHMBzlCZeiwvxN6td2toYOHWq4nQUAqmIYRms50zI3iw2tlLSXbds5/UahZVkFkm6UNEZSQYYus13SPyXdyLTHtWdZVgM5fzTfKqlhhi5jSwpLusE0TaY9riXLsvIkXSnpTklNMnip8ZKuNU3T7SVMfCMYjhpymg3v1c6f95kwUdIVvDGbnGA4erGkf0hqnsHLvCTpct6YTY5lWcPlvKkdyOBlXpf0e9M03Zp1xZeC4ejpcn5Xt8ngZaZKuiQSCuT0lNTJsixriKTHJO2RwcvMkDN74A8ZvEa9EwxHB8h5HdUxg5f5RNKFsYYx1JJlWcfKmWlpnwxepljOLFtJvUec64Lh6FGSJkjqmsHL/E/SBZFQYE4Gr1HvBMPRwyQ9Kal7Bi/zrZzauDUjji8Fw9Hucp43h2bwMt/L+X3zYQavUe8Ew9ED5DxvjsrgZRZJujg2KytqybKsLnJeC/TN4GV+ljQqNpsxYmhAAWqJBhRvoAEFgB8YhvGEpAsrDN1q2zZ3rcdYltVD0t1y1oFO58/zGZL+bJrmp2k8Z06xLKubnNqcrPTOlviRpJtM05yRxnPmFMuy9pN0j5xlkxqk8dSfS7rZNE23pvX1vWA4urec581pSm9z3Ww5S+68nsZz5pRgONpBTm3OUnqb6/4n6S+RUODfaTxnTrEsq52ku+TcmdY4jaeeK+ku0zT/lcZz5pRgONpazh3Q50tqmsZTz5N0TyQUYHa6OrIsq6Wkv0i6QFJhGk/9g5xmyseYLahuguHobnIauS9WehsfF8tppnw4EgqwjFgdWJbVTM5NEL+X1DKNp14q6X5J95umyTJidRAMRxvLuTklJKl1Gk+9TNJDkv4WCQWYyakOguFoQ0nXSfqDpLZpPPVKOY2u90RCAW4YqoNgOJov6WpJV0naM42njsqZWeOO2KwrSFIwHM2T85y5VtJeaTz1OjmNrrcxk1PdWJZlSLpUzs+1vdN46g1ymsJuNk1zbRrPWy/QgALUEg0o3kADCgCvMQyjnZwPTvIldZY0StKZFXZZLWkf27aZVSBBrAv9UkkXqe53Qa+XMy152DRNt9Zhr3csy+okpzYXS9q9jqfZKOlfcmrzv3Rly3WWZXWQ83MmKKldHU/zq6Tn5NRmdrqy5bpgONpOTl1GSepQx9NslrMMRpg7AtMnGI7uLukSOR8+darjabZKmiSnNtlcGqtesywrIOd1wKWSutTxNNskvSrnZ9qM9CRDMBxtIWmknA8G96/jacrkzEYTljQtEgrwnkgaWJa1m6QRcmbh6lbH02yX9B85tZlC40l6BMPRZpKGy3neHFLH09hyZgoKS3qDxpP0sCyriZymx5CcZcfq6j1JYyW9RuNJegTD0UZymoVDSm32gA/kPG9epvEkPYLhaIGk0+XU5pgUTvWpnNq8xBJi6RFrRDlVTm2OS+FUM+XU5nmagtIjGI42kDRETm0GqO433n0hpzb/oikoPWIzDA+SdHnsf+t6450l6RFJz5imSVNQFWhAAWqJBhRvoAEFgNcYhjFD0rHV7HKebdvchVsNy7Iay5kN5XA5bwYepqqbHtZImiVnquNiOW+Ys5xLhliW1VDSQElHaGdtqroDaq2cGRt21GcKy7lkTmxJq/5yatNLTm2qmpZ/vXbWZpakt7g7I3NibzidIOlIOXXpJal9FbtvkDRHO2szJRIKrM5GzlwUuyvtODkfbvST8xyqzhw5H2bMkvR2JBRYkdGAOSx2V9qxkn6jnb9vOlexe4mcN2R3PG/eZqmdzIktN9ZHTm2Ol/OarTr/kzPz2SxJUyOhwJLMJsxtlmX9RtLR2vn7posq/6Bji5za7HjevMP69JkVDEcPl/OB7fFyZheszlztfN68GwkFvs9wvJxmWdahcqbi3/H7pqsq/xBqm6SvtfN5865pmiyDlEHBcPRgOa8HTpAz82N1vpOzPNUsSdMjocDcDMfLacFw9CA5r6MPk/N7p6bm1MmS3pU0IxIKfJXheDktGI52lfO7ZkdtDqjhkNfkNNN9wBJVmRUMR7vI+ZtzR20OquGQN+XU5sNIKDAzw/FymmVZneXUZsf7ad0lNapkV1vSAu18LfCRaZqfZSmmr9GAAtRSOhpQkLoddaABBYBX1NCAcrdt23/OYpx6IzbLQ2tJTWJDmyVFeaPcfZZl7SmpjZyZf/LkfBC4RtIi7p51l2VZe8ipTRPtrM06ST9SG3cFw9G2cmasaSxnCaXNitWGO5vdEQxHE/++q4wZCQX4m88llmW1ktO81UTOTHMlcmbX+t40zTI3s+UqnjfeZ1lWc0kd5TxvCuT8vtkk53nDjAAu4HnjfZZlFcppemwiZ8m+LXJmDPzeNE1ma3ABzxtvoz7eRW28i9p4W+wmry6Smsl532abnL8/F5umuc7NbH6V73YAAACAeqRUzpq2n0oaa9v2ey7n8S3TNJdI4o5ZDzJN82dJP7udA7uKzQDALAAeFAkFlkta7nYOwE9M01wtZylDALUUe4OcO82BJJimuVE1fygIAADqqVij9rdu56hPaEABAABIgW3b/dzOAAAAAAAAAAAA4LbK1jYEAAAAAAAAAAAAAAAAao0GFAAAAAAAAAAAAAAAAKSEBhQAAAAAAAAAAAAAAACkhAYUAAAAAAAAAAAAAAAApIQGFAAAAAAAAAAAAAAAAKSEBhQAAAAAAAAAAAAAAACkhAYUAAAAAAAAAAAAAAAApIQGFAAAAAAAAAAAAAAAAKSEBhQAAAAAAAAAAAAAAACkhAYUAAAAAAAAAAAAAAAApIQGFAAAAAAAAAAAAAAAAKSEBhQAAAAAAAAAAAAAAACkhAYUAAAAAAAAAAAAAAAApIQGFAAAAAAAAAAAAAAAAKSEBhQAAAAAAAAAAAAAAACkhAYUAAAAAAAAAAAAAAAApIQGFAAAAAAAAAAAAAAAAKSEBhQAAAAAAAAAAAAAAACkhAYUAAAAAAAAAAAAAAAApIQGFAAAAAAAAAAAAAAAAKSEBhQAAAAAAAAAAAAAAACkhAYUAAAAAAAAAAAAAAAApIQGFAAAAAAAAAAAAAAAAKSEBhQAAAAAAAAAAAAAAACkhAYUAAAAAAAAAAAAAAAApIQGFAAAAAAAAAAAAAAAAKSEBhQAAAAAAAAAAAAAAACkhAYUAAAAAAAAAAAAAAAApIQGFAAAAAAAAAAAAAAAAKTEsG3b7QxIwa+//koBs2Tjxo369NNPy7d/85vfqLCw0MVEuWlHHQYMGOB2FAAAAAA+9cua7bpn8tZq9/nT0IbaoyX37QA78LwBksfzBkgezxtvoz7eRW28i9rALU2bNjXcuC7/kgEAAAAAAAAAAAAAAJASGlAAAAAAAAAAAAAAAACQEhpQAAAAAAAAAAAAAAAAkBIaUAAAAAAAAAAAAAAAAJASGlAAAAAAAAAAAAAAAACQEhpQAAAAAAAAAAAAAAAAkBIaUAAAAAAAAAAAAAAAAJASGlAAAAAAAAAAAAAAAACQEhpQAAAAAAAAAAAAAAAAkBIaUAAAAAAAAAAAAAAAAJASGlAAAAAAAAAAAAAAAACQEhpQAAAAAAAAAAAAAAAAkJJ8twMAAAAAlbFtW7ZtS5IMw5BhGC4nwg7Uxrts29a2Muf/5zeQ8qiNp2zfvl0SzxsgGdtKbW23pYIGUl4ezxugNkrLbJVtd14LNOB5A9QKzxsAAHLbjvc7ec8mdTSgICdcOWFzyucozN+ifm13bt/96hZtLOUplG2JdQAA1A/btm3Tli1btGXLFm3dulVbtmwp/6B2h7y8PDVs2FCNGjUq/yooKHApce4oLS3V5s2by+tSWW0MwyivyY4aNWzY0KXEuWPtJluLV23XT6u366fVtn5avV2bNkt2hX0a5Ut7Bgx1bJWnvVrnaa9Whtq1YCLMTCstLS1/vuz4uVZWVha3j2EYlf5M402OzCorK9PmzZu1fv02SY2r3XfN2rUqzC9Qw4YN1bBhQ2qTYRs321q0aruWrLb1U+xn27pf43+mFTSQ9mhpaK9Wzs+zvVrlac+WBo0pGbZpi/P7Zu5P22vcd8oXpeq6Z55Tm4DBh7gZ9usWW4tXb9dPq+zy1wNrNtmyKzxxGuRJ7VpUeN60zlMHapNx27dv15YtW7Rhw1ZJjardNxqNqmleQfnrAX7fZNaWbTteQ+983qze4DQ77tAgT2pTZJQ/Z3Y8f/IbUJtM2rLN1k+rbX29pKzGfd+YvU377dGgvDYN86lNJm3fvr38PYFodJukwmr337Bhg1o0dv7Wycvj789M2lZqa0nU+Xn23c81P3c+X1Cmbh1sdWydp0YFPG8yqbTMdv62Wb1d3/1c8+voz+aX6aAOtjq1zlPjhtQmk2zbjnsPesf/T5Sfn7/L+50NGjRwIbH//D979x0eR3W2Dfw+W9TrSnI3tgEbYw/FNs3GpptQQmwILbQQYEPYJJBGer6QvO+bkJAQUlgICqGGYgg1CaEb40I1BsbY2Bh3W7akldXLlvP9MbtCWqtsnzma+3ddupJdr3ae4dHMzp55znN495yIiIiITCGlRFtbG1paWtDd3T3s6yORCLq6utDV9VlhaV5eHsrKylBSUsJBjQySUqK9vR0tLS39/nsP9XrmJjfCEYkPt0Ww/OMwNu4efgCjOwRs3iuxeW8YgDEYNbpcYP50J445yMlBjQySUqKjowMtLS3o7OxM6PWxgY4Yt9uN0tJSlJaWclAjg6SU6OzsREtLCzo6OgAALe0uDFeA0t7WhnoZAmAMPJWVlTE3GSalxMe7I1i+Poy12yP9bv4NJBgGtjVIbGv4bHC9shiYN82FudOcKC3kOS2TNu4OY/n6MD7YNnxuYtZsjWDNVuPzqbwImDvViXmHuFBexNxk0qY9ESxfH8L7WyMID3M5EI4AOwMSOwNhvLHReK60AJg7zchNZTFzk0lGkWML2tvbIaVEc7sLwKghf6ejowONjcbnjcPhQGlpKcrKylhsn2HbGyN4fX0Y720Ooyc09GvDEWD3Pond+yTe2mQcZEV5wDFTnZh/iBM1Zfx+k0m7miJ4fV0Y734aRvcwuYnRt0vo240XF7qBow82cjOaxfYZ1dPTg5aWFrS2tvZ2Qe3ocGG4ApTm5ma4QiEIIVBSUoLy8nJOUsmwvS3GNfTbn4TRsf9980G9ujaMV9eGkecC5kxxYv50JyZU8bjJpMZWY8zmzY1htA8/3Nlr6UdhLP0oDLcTmDXZgfnTXZhUw9xkUigU6j2nxU8SGuz1oVAI7e3tvc+VlJSgrKwMBQVDjyfYnZAywW+QZEkdHR1MYAIy0wGlHSeNXt37eOme2WgLFaf9vpScWB4WLlxodihERJSicDiM5uZmtLS07NdJI1UOhwMlJSWoqKiAy8Ua61TFcpPoF7FECCFQWlrK3KSpOyjx6towVm4IobkjM++Z5wKOOtCJ0w5zoqqUgxqpikQiaGlpQUtLC0KhBEfMhyGEQHFxMSoqKjhQmwYpZe/nTXxuGttdePDdoW8IXjZnL6qK+/8ec5MZ4YjE8vVGccPelswMazgdwBGTHDjtMBfGe3hOS1UkIrFyQxivrw+jbl9mcuMQwGEHGLk5oJq5SVVESry5MYxl68LY1ZS53Myc4MCph7kwZRRzk6pYYX1zc/N+s2dT/bwBgMLCQlRUVKCwsDCj8drN6k/DWPpRCFsbMnPcCACHjHPgFM2JQ8axKDUd728NY+naED7dm7lbHFPHOHDyTCdmTmRu0tHe3o7m5uYBJ6Skel4rKChAeXk5iot5TyUd63eG8craMDbsiiBTR87kGoGTZrgwawqPm3Rs3B3Gy3oY63dFkKlb7xOrBE6c4cJRBzrYIS0NXV1d2LdvX++ElEyITbwrLS21dG6KisyZCcARYCIiIiLKmfb2djQ0NGSsuCEmdgO4ra0NVVVVKC0tzej720FHRwfq6+sznhspZe/sgqqqKpSVlWX0/e3g411hPLIiiED78K9NRk8IWLkhjHc+DeOcOS4smO609JdmK+rq6sLevXszVngSE7uR1d7ejsrKSpSXlzM3Serq6kJ9fT2CwWBG3zeWm7a2NlRWVqKiooK5SdKOxgj+sTyYsRvoMeEIsHpzBGu29OC0w5z43BEuLpWQpN1NRm62N2Y2NxEJvL81gg+39eCkmU6cdaQLbi6VkJS9zRE8tCKIzRm8SQsYuflwewT69h4sONSJc+a4uIxFkoLBIOrr6xPqGpiszs5OdHZ2orS0FFVVVewqmKSmdolHVgSxPoFlD5IhAazfFcH6XREcc1AY5x7jRlE+j5tktHRILFkVxIcJLO2WrI11EWysi2DW5DDOP86NkgLmJhnhcBgNDQ39ZvtnSqxralFREaqrqzlBJUkd3RJPvBXE25syf9xsqZe497Ug3vwkjIvnuVHB7mhJ6eqReOrtEFZtzOx4GgBsb5R48PUg3vzEgS/Nc3HyUJIikQgCgQBaWloy/t49PT1oaGhAW1sbampq2LkuDs/wZEmtra1YuXIldu3ahYaGBpSWlmLs2LGYMWMGpk6danZ4RERElKRsDmL0FYlEUF9fj/b2dg5oJCgcDqOxsRFtbW1Z3Y6UsvdvoKamhrlJQFdQ4um3Q1i1IZyxmU0D6QkB/3zTaOP/peNdqOaAxrCyOYjRl5QSgUCg97hhx43hxf6bNTc3Z31bTU1NaG9vx6hRo5ibBIQjEs+/H8KLH4QTXs4lFREJvPBBGB9uj+DS+W5MZEvxYUUiEi/pYTy/JoRQ5u9pfLYdCbyiG8stXTLfjclsKT6siJR47aMw/r06hGDm72n0kgCWrQvjox0RfOl4Nw4ew9wMJ1ZkHQgEkO0O462trejs7ER1dTWKioqyuq2RYtWGEJ56O4SuzNah7uetTRF8vLsbF811s+NGgt7eFMYTbwXRkcSyFKl4b0sEG+u6ceFcN46YxNwkoq2tDQ0NDRnrVDuYjo4O7NixA9XV1SgpGXopHzLo28N4dGUQLcOv9JqWdTsjuPmpbiw+xoXjpnLMJhHrd4bx8Mog9mV3uBMbd0fwm6d78IWjXDj+EE4eSkRnZyfq6+szPmEoXldXF3bs2MHJQ3G4BI/i1q5dK999912sXr0aq1evxpo1a9Da2tr77wcccADWrVuX1jba29vx/vvvo+92Nm3a1O/L1Z133onLL788re0AwKpVq3DzzTdj6dKlg54UDjvsMFxzzTW4+uqrEz6QuQTPyMEleIiI1NPd3Y26urqMd9YYjsPhwJgxY7gm5xB6enqwe/funOdGCIExY8awnfgQGloiuOPFIBpac/t9Lc8FXHmSGzMncJB2MKFQCLt37854Z43hCCFQU1PDQdohhEIh1NXV7bf8wUDSWRJhIDU1Ney+NYS2Lom/vtSDbRla/iBRDgFcMNeFedM4gD6Yjm6Jv73Sg017cp+bxUe7cOIM5mYw3UGJv70SxIbd2b0RGE8AOHu2CwsPZ24GE4lEsHfv3oTauGf686aiogIejyeh19pRKCzxwOtBrNmS2+MGAE6a6cTio1y88TSIcETi4RXZ6d4wnOMPceL841xwMDcDik0W6XtfaSiZPK+VlJSgpqaGx80gpDQ6ayz9KLdjNgAwa7IDly1ws6PgEP69OogXPsh9brSJDlx5opsdBYfQ1NSEpqamnG+3sLAQo0ePtlTXOi7BQwkTQpwE4EcAjsrmdr71rW9hxYoV+Pjjj7N+UyIYDOK73/0u7r777mFf++GHH+KGG27AY489hrvvvhsTJkzIamxERESUuq6uLtTV1WV9Bs1AIpEIdu/ejdGjR3Om4AC6u7uxe/duU3IjpURdXR1GjRrF9Z8HsLspAv8LPVmf3TSQnhBw9ytBXLYAmM31n/cTDAaxa9eunBdtAcZxs3fvXkgpWegwgGAwiN27d2d9dtNg6uvrEYlEUF5ebsr2ray5Q+L253uwpzn3E6AiEnh0ZQhdPcApGofA4rV1Sfhf6MHOgDm5eeKtEDp7gDOOZG7idXRL3PliD7bmuGgLMLqh/Gt1CJ09El84iq3E40UiEdTV1WVlyZ1E7Nu3D5FIBFVVVbxhG6cnJHH3K5lfcidRS9eG0dkDXDyPhQ7xQmGJe5YGoWdhyZ1ErPg4jM4eicsWuOF0MDd9xb5jZLtb7WDa2toQiUQwevRontPiRKTEwytCeOuT3H/3BIwuQp09QVx9ipvL88WRUuLxN0NYvt6c3OjbI7jzxR589bQ85LuZm3iNjY056Yg6kM7OTuzevRtjxoyB02nvMTXrlOBQMo4EcDqArJa7L1myBB999FHWB1dDoRDOP//8/YpP3G435s2bh/PPPx9nnXUWJk6c2O/fly9fjnPOOQeNjY1ZjY+IiIhSY2aBQ4yUEnv27EFnpwl38i0s1vnECrlJZOaondS3RHD78+YUn8SEI8ADy4L4cJs5gylWFQqFTCs+6au+vj7rS2apJtaVxqzik5jGxsasL8ukmrYu84pP+nr6nRCWrTP378NqOnvMKz7p67k1Ibz0IXPTV3fQvOKTvl7Ww/j36tx2+7I6s4tPYmJL/9BnwhGJv79qXvFJzJsbw3hsFc9pfUUiEve9Zl7xSczqzRE8vCKY9SWzVCKl7F3C2EwdHR3Ys2cPcxNnyUrzik9i1u+K4O+vBhHO5vqZCnryLfOKT2I+2SNR+3IQwRBz01euluMdSqwTuJljrlbAKQYjSH5+PsaPH49PP/00q9sZN24c2tvbM3YQ//SnP8VLL73U77nrrrsOP/nJT1BZWdnv+Zdeegnf+ta3sHnzZgDAhg0bcMkll+C///0vK2SJiIbQ2tqKlStXYteuXWhoaEBpaSnGjh2LGTNmYOrUqVnZZnd3N9auXYtPP/0UdXV16OzshBAC5eXlKCsrw5QpUzBz5kx2PxihYjcDrTCAEOu2MX78eOTl5ZkdjuliubHKF6E9e/Zg3LhxyM/PNzsU07V3S/hfCKLV3HsaAIyZ6fcuDeKbZwhMHsV5C7GOSmYXn8Ts3bsXTqeTy1jhs5uBZhefxDQ0NMDlcrHzFozZzn99yfzik5gn3gyhrFDgyMn2nokGGDcDa182v/gk5tl3jdwcczBzI6VxE93s4pOYFz4Io7xIYP50DiEDxuev2cUnMc3NzXA6naioqDA7FEt4aHkQ63Za4/vNyg1hlBUJnMnuTgCAx94I4YNt1sjN25siKC0MYRG7OwEwbtRapbC9o6MDjY2NqK6uNjsUS/jPe0Gs2miN757rdhrFW5ct4HgaALz8YQivrbNGbjbWRfDA60FcdTJzAxjXRvv27TM7DADGfZE9e/ZgzJgxtr13zasgdQUBrL3yyiuPnDNnDmbNmgVN07Bq1SqceeaZGdvIqFGjMGvWLMyePRtz5szB7NmzMXr0aJxxxhl4/fXX037/9evX4/bbb+/33K9//Wtcf/31A77+tNNOw0svvYTTTjuttwhl+fLlePzxx3HBBRekHQ8R0UizatUq3HzzzVi6dOmgN2YOO+wwXHPNNbj66qvTviDq6OjAo48+in/+859YsWIFenp6hny9w+HAwQcfjDPOOAPnnnsujj766IRi2Lp1K2bMmDHgv61evRqHHHJISvFfc801ePjhh/d7/tJLL8Vdd92VUjx9ud1ulJeXo6qqCocddhiOPvponH/++RgzZkxK8VpZbCkCq4jN7Bk3bpxtL/xjGhoaLHMTHfgsN+PHj7d9bv75ZhCBNmvccAKAUAT4x/IgbvxCnu1b7jY2NiIYtNYs8Pr6ekyYMMFSawuboampadjrjVyL5cbuLXeffz+EbRa5iQ4Yy4o8uiqIA0c7UFZo73PaK2vD2LTHOrkBgMffDOLgMQ54Suydm9fXh03v4BDvqbdDOGScAzVl9v68aW1ttVznvkAggKKiItsX2b+3OYx3PrXWcfPC+yHMmODApGp7Hzdrt4excoN1vnsCwKt6GDMnOHHwGHvnprOz0/QuAfFaWlpQVFRk+0LuLfURvPiBtY6btzdFoE0M276Qe2cggn+/Z42JDzHvb43grU/Cti/k7unpsVx3uM7OTrS0tNh2mV57f8qq6z4AZVLKWbfffjuuuuoqzJo1C253Zit33333XWzevBlPPPEEfvrTn+LMM8/E6NGjM7qNW2+9td/NqZNPPnnQ4pOYMWPG4I477uj33E033WSpGylERGYLBoO4/vrrewv3hpoV/OGHH+KGG27AGWecgR07dqS0vXA4jNtvvx2HHHIIvvGNb+DVV19N6GZQJBLBhg0b8Kc//Qknn3wyjjrqKDzyyCNpndMfeOCBlH6vpaUFTz/9dMrbTUQwGERDQwM+/vhjPP744/jBD36A6dOn49prr7VMhXYmtLS0WHLJm+7ubssNsORaW1ub5QbOAeOLYlNTk9lhmOrDbWG8a7GBcwDY2yItN8CSax0dHWhtbTU7jP2EQiHbL0fa1dVlyfN6OBy2fW62N0bw0ofW+47e0Q0sWWWtYrJcq9sXwXMWPK93B4FHV9o7Nw2tETz7rvVyEwwb3SUiFuhsaBYrf+bu3bvXEl0nzdLWJfH4m9Y7d0SkcdyEwvbNTUe3xKMW/MyVAB5eEUSPjZetiEQiqK+vNzuMAVltMlOuhcIy+plrdiT7e+yNINq6LBhYjoQjRm7CFvzzfOKtIJo77Jub2MQ2K14PBQIBy01myhUWoChIStkkpcx6v8exY8dm9f2llHj++ef7PXfDDTck9LsLFizAnDlzeh9v2bIFy5Yty2h8RESqCoVCOP/883H33Xf3e97tdmPevHk4//zzcdZZZ2HixIn9/n358uU455xzkh5Y2717N8444wx8//vfH7DSeOzYsZg7dy7OPvtsXHjhhTj11FNx2GGHobS0dL/Xrl+/HldffTV++tOfJhVDXw8//HBKBSyPP/64KTfmg8EgHnzwQRxzzDHYtGlTzrefaVYenAWsOVM+V0KhEBoaGswOY1D79u1Dd3e32WGYor1bWvqG6GsfhfHpHguOsuRAJBKx9HFjxdnYuWLlgXPAKPhrb283OwxThMIS/7DowDkAfLgtgnc+tV5xTC5EogPnIYue0tfvimDlBusVYOSClBIPLw+ix6K7/+leiWUf2fO4Aax9Q7Snp2dETWZI1mOrgmizxqpI+6nbJ/HcGose1Dnw5FtBNFv0MrWhVVqy4C9XAoGAZZavjGf3Qu7/vBeyzPKV8dq6gMffsO64Rba9+EEYOyyyfGW8zh57F3I3NzdbdjzRysUx2cYCFDLNunXr+g3m5uXl4YQTTkj49xcuXNjv8VNPPZWp0IiIlPbTn/4UL730Ur/nrrvuOmzevBkvvvgi7rvvPjz22GNYv349nn76aUyZMqX3dRs2bMAll1yS8EXRtm3bcOqpp2LlypX9nh8/fjxuvvlmvPfee/jkk0/w0ksvYcmSJbjnnnvwzDPP4I033sD27dvx/PPP48Ybb8SoUaP6/X6yF419u4DV1dXhhRdeSOr3AeD+++8f8P1S9dFHH+33s2bNGjz//PO46aabcMABB/R7/c6dO7F48WK0tLSkvW0zNTY2WvqiWkpp28GMQCBg2YHzGCvf6M+m594LocV6TYN6SQksselAU1NTk2UHZ2MaGhosfd7NlubmZsvPJLJrbl5fH8buJmvv9xNv2nPm8xsbw9hqoWWRBvL02yF09Vg7xmx499MIPrHYskjx/rU6ZMuZz+3t7Zbs7tiXCtcr2bB+Vxhrtlr7+80rehj1LdaOMRs2743grU3W3u/X14WxM2DtGLOhu7vb8uNOra2t6OqyaGVZFu1tjuDVtdYu9nxvSwQbdls7xmwItEm88IG1P2fX7ohA326/3ITDYct3VO7q6rLl5BQWoJBpdu7c2e/xQQcdhPz8/IR/f+bMmf0e//e//81IXEREKlu/fj1uv/32fs/9+te/xu9+9ztUVlbu9/rYEj19i1CWL1+Oxx9/fNhtdXd345JLLsHWrVt7nxNC4Kc//Sk+/PBDfPOb38S0adMG/X2324358+fjpptuwrp163Dbbbdh/Pjxiezmfg4++GBMnTq193Gyy/CsX78eb7/9du/js846K6U4+po0adJ+P1OnTsX8+fNx44034r333sPFF1/c73c+/fRT3HbbbWlv2yyhUEiJC+rOzk7bdUEJh8NK5Ka7u9uysxaypSso8dYm6w8S7G6S+KTOXgO0kUjEkkvvxAuFQpa/MZZpUkrLD5wD6px7M0lKidfXW/+c1t4NrN5s/TgzbZkCuekKQonPxUxbts7aNzUAYymeNzbaLzdWXOptICp8Lmba6+us//cYkcDyj60fZ6apcE6TAJYr8LmYaaqcK1SJM5OWrw9btoNgX8sUOPdm2soNIUsuvRPPjrlpaWlRYtKHKteTmcQCFDJNfFVaRUVFUr9fXl7e7/GOHTtseRATEfV166239utwcPLJJ+P6668f8nfGjBmDO+64o99zN91007DL2HznO9/Be++91/vY5XLh/vvvx49+9KOkCgoBoKCgAF6vF2+99RYuuOCCpH435rLLLuv9///5z3+Sast/33339f7/iooKnHPOOSnFkIyCggL89a9/xdFHH93v+bvuuiulJYSsQKUBApVizYTW1lYlvpAB9vtS9vamMLqt3cSh1/L11h9IzqT29nbLdw2Ksds5rb29XZnPSrvlZt3OCBpb1fi8sdtNp017IpbvTBOzwmY3a7c3RizfmSZm5cdhRBS5psyEnp4eZWbhq3S9nwmBNom1O9S4TntrY9hWXbdaOiXet3hnmph3Pg3bqutWJBJBW1ub2WEkRKXr/UzoCakxMQUA1m6PYF+7fY6bUFjijQ1q5GbDrgj22qjrlpRSiUlDgD0n3LEAhUyTl5fX73GyB99AM5fXr1+fVkxERCqTUuL555/v99wNN9yQ0O8uWLAAc+bM6X28ZcsWLFu2bNDXv//++7j33nv7PffDH/4Q5513XuIBD6CiogL33nsvvv3tbyf9u5deeimcTicAIBgM4tFHH03o90KhEB555JHexxdccAEKCgqS3n4qXC4XfvCDH/R7rqmpCatXr87J9jNJpYt+AGhra1PmxnK6VOkUEGO3gaYVCt0A/WBbBC0d9hloUum46ejosPxyNJmkUm66urps1XVLpaKO7Y0SWxvscS0AqFVEWLdPYqON2rurdNw0tkmsU+Smfyao9Hljt65bKz4OQZV6m44ee3XdemNDWIlOAQDQE7JX1y2VCtVUG2NK17ufhtGpyFeGiDTOwXbx/tYIWtWoRYWEWmNM6ero6FBqCUKVriszgQUoZBqPx9PvcV1dXVK/P9DrN2zYkFZMREQqW7duHRoaGnof5+Xl4YQTTkj49xcuXNjv8VNPPTXoa2+99dZ+j2fOnInvf//7CW9rOBMnTkz6d8aOHYvTTjut93Giy/A899xz2Lt3b+/jK664Iultp+PEE0/sLZyJWbduXU5jyISOjg6ligYikYhtBmi7urqU+kImpVRmVla6ttZHsHufGgOAABCOGB1b7KCnp0e52Sl2GaANBoPKzEaPsUtuWjokPtqpyB2nKFVmM6ars0ed2egxdlnqpScklbsxbZfcqHhNapfPGwB46xO1/g7tctwAwBuq5cYm1wKAeucIO92sVe0c8aZix3k6VMvNW5/Yp1udauc0O02GBFiAQiaaNm1av8e7du3Czp07E/79N998c7/n7HRRQkQUL/4cetBBByW1FM7MmTP7Pf7vf/876HaefPLJfs9dd911+xVRmKFv8Yiu6/2WCBpM3+V3ZsyYgdmzZ2cltsEUFRXtV5TZ2NiY0xgyQbUbtQCUu4GZKhX3U8W/p1Rs3qveF8/N9erFnAoeN9al4n6q+PeUiq0NEWVmo8dssck5bVtDRJnZ6DFb6hX7Y0rRroBEjzp1wgDsc9wEg0HlbhJ0dXUp090gHQ2tEbR0mh1FcrY3SIQjIz83LZ1SmaX4Ynbtk+gOqhVzKiKRiHJd+UKhkFITnVIVCktsb1Trb7C5w1gKbaSLSImtil33dPQAe5tHfm4A9b5nSymVOw+ngwUoZJoxY8bsV4Ty0EMPJfS77e3teOaZZ/Z7XrWZCUREmdTU1NTvcUVFRVK/X15e3u/xjh070NzcvN/rXn311X5fAIuKinDhhRcmta1sOfvss1FdXd37eLguKHV1dXjxxRd7H+e6+0nMSBgkVPGGoIoxp0LF/VQx5lRsa1RrIAMAtisYcypU/BtUMeZUqLifPT09I+Kzfjgqnh/q9kkEQ3bIjXr72NAq0dGtXtzJUvFaoKUT2Nc+8nOj4ueNlNIWS/KpeE4LRYDdTerFnSwVrwWkBHYERn5uVDynAerGnYxdTVK5QmHAKHAe6eqbJboVKxQGgG0NI/+cFgqFlCsUBsACFKJcufjii/s9vu2227Br165hf++Xv/zlgDdFVWu5RESUSXl5ef0eJ/slbaALoPXr1+/33PLly/s9njVrFoqLi5PaVra43W5cdNFFvY+XLFky5H+Hf/zjH71Lk7jd7v0+l3Khs7Nzv+KhqqqqnMeRLhUHBexyQ1DF3Kg44zQVOxQcPN/XDrR1qRd3slQ8biKRiC1uOqmYG94QtK6IBHbyhqBl7QioGXcyVDxuAHX/ppKh4ucNYI8bG9sVvelph+NGxe83gD1yo+o5TdW4k6Hq35+qcSeD12nWpeq5QdW4U8ECFDLVtdde22/G/b59+7B48eIhi1D+9Kc/4fbbbx/w3xwO/kkTkX3FL+NSV1eX1O8P9PoNGzbs91z8Emhz5sxJajvZ1reLSVNTE5599tlBX/vggw/2/v8zzzwTNTU1WY1tIK+99tp+LUWnT5+e8zjSoXKxwEgfoA2Hw8q2rB3pX8q6gxJ7WxQdzFB00D9RKrdFHenHjZRS2X1UNe5kqHpusMMArbqD52rGnQxV//5UjTsZqp63VY07GaqeG1SNOxmqXgvssME5jd9vrEvVc4OqBWfJUPV6R9W4k6HquUHVuFPBu/VkqoqKCtxxxx39nlu7di1mz56Nn/zkJ3jttdewYcMGvP/++3jggQewcOFC/OhHP+qdrTx+/Ph+vxu/fAQRkZ3EL2u2a9cu7Ny5M+Hfjy8sAYCWlpb9ntu9e3e/x1OnTk14G7mgaRpmzZrV+3iwZXhWrVrVr8DGjOV3wuEwbrnlln7PVVRUWK6oZzixLjIqUjn2RKi8f6oWziRqX4eEqg14mjoUDTxBKv/tqXzMJyISiSjbuWqk5yYckWhVawnuXnZYSkTVfVQ17mSouo/72s2OIPtUPW+rGncyVD1umhSNOxmqfk9o4jnNslT+bpYontOsS9XcqBp3MlQ9p6kadypYgEKmW7RoEW655ZZ+3UtaW1tx22234ayzzsKsWbMwb948fO1rX8PKlSt7X3PdddfhpJNO6vdeFRUVOYqaiMh6xowZs18RykMPPZTQ77a3t+OZZ57Z7/m2trZ+j0Oh0H7LnVmx+K9vMckrr7wyYCHO/fff3/v/R48ejYULF+Yktpju7m74fD688cYb/Z6/5ppr4HQ6cxpLulS9GQioHXsiVN4/VbvqJCqk8DiayrEnQuXjRuXYE6Hy/qkceyKCCp8XVI49EREpEVb0I3Wk5wZQ9zM1GB7Z5zRA3fO2qnEnI6To35+qx3syVN1HVf+mkqHquWGkjwsA6l7vqHq8J0PV3KgadzJUPaepGncqWIBCluDz+fDkk0/ud+N0ICUlJfjDH/6AW265Zb+lekaPHp2tEImIlHDxxRf3e3zbbbcNuaxZzC9/+Us0Nzfv93x8sUljY+N+rykrK0s4vjvvvBPFxcUJ/QzWuSQRF154IQoKCgAYX1b/8Y9/9Pv39vZ2PPHEE72PL7nkErhcrpS3N5CtW7fu97Nx40asWLECv/vd7zB79ux+SwABwKRJk/Dtb387o3HQ0Eb6hf9I3z+VqTyOpuqNzETxuKFsGOl/Vyqf01SOPREq799I/7wBgIiipwZV47aDkf55AwCq1gqEbXDgqPqZY4fPGzucG1Slam7CisadDFVP26qei+1A1eM9FZm900KUhtNOOw3vvPMO/vWvf+H555/Hm2++ib1796K1tRU1NTWYPHkyPv/5z+Oiiy7CmDFjAKDf0gkAMHv2bDNCJyKyjGuvvRZ//OMfe4tJ9u3bh8WLF+Opp57CuHHjBvydP/3pT7j99tsH/Le+3alUUlFRgXPOOQePPfYYAODBBx/E97///d5//+c//9mvu8vll1+e8RhmzJiR1OvHjh2Lp59+WsluXkIIs0NImcqxJ0Ll/VM59kQo1uioH5fCsSdC5b89lWNPhMr7p3LsiVD5vKBy7IlwOQUEABWHOt0jPDcA4HKoeePTDrlR9bytatzJcDnVPKu5nSM/N6p+xxnp1wKAuucGVeNOhtPBc5pVudQcFuc5zcJUjTsVLEAhS3E6nVi0aBEWLVo07Gt37NjRb0mFcePGDXpzlYjILioqKnDHHXfgkksu6X1u7dq1mD17Nq6++mqcfvrpGDt2LDo7O/HBBx/g/vvv77e82fjx4/udW+OX1/F4PPtts6WlJQt7kr7LL7+8twBl06ZNWLFiBY4//ngA/ZffOfbYY3HIIYeYEiMAuFwunH/++bjlllsG/O+rApUvnlUtskqUyvun8t9VIgrc6u5fvkvd2BOh8nGjcuyJUPm8MNJz43YCDqHmLMF8G4yM5bmB7qDZUSTPDrnJdwPdCi4FnzfCrwUAdT9zRvrnDQAUKHpuyHObHUH2FSi6jyP9+w2g7rlB1biTka/scWN2BNmnbG4UHm9KFK/TrM8GpwgaqV599dV+jxcs4OFVMgAAqMhJREFUWGBSJERE1rJo0SLccsst+MEPftC7Vmpraytuu+023HbbbYP+3nXXXYeWlpZ+y9XEd+Nwu90oLS3ttzRPMgUol156Kc4888wB/+3LX/4y3n777YTfazinnHIKDjjgAGzbtg2AUXRy/PHHY+PGjVi1alXv66644oqMbXM4LpcL5eXl8Hg80DQNxxxzDC644AKMHTs2ZzFkQ15entkhpEzl2BPhdiv6bRkjPzeVxdGbTgreEBxbqeYX/UQ5nU44nU6Ew+otnKzyMZ8Ih8MBl8uFUEi9u7Uj/ZwmhMDoCoHdTepVoIytHPmDgGMrBLbUMzdWNKbCgZZO9VqgjK0Y2dcCgHHe5ueNNY2pFNip4ueNDY6bMRUObN6r3jX0SP9+AxjfEzo7O80OI2kj/fsNYJwbPtxmdhTJG2OTcxrA6zQrUvV6R9W4U8ECFFJW39nrAHDllVeaEwgRkQX5fD5MmzYNN954437LlcUrKSnB//zP/8Dr9eKcc87p92+jR4/e7/VjxozpV4Ay3Pv3VVpaitLS0gH/raCgIOH3SYQQApdeeil+/etfAwCefPJJ/P73v+/3+VFUVITzzjsvo9uNaW9vz8r7WpHD4YDb7UYwqNaddKfTCZdrZF8OCyGQl5eHnp4es0NJihBixA80CSEw0SPwyR61Bs+dDvsMZqg4QJufn292CFmXn5+v5A1BO+RmYpUDu5vUu+k0sWrkn9MmVjmwpV693EywRW4ENuw2O4rkTawe+cVB+fn56OjoMDuMpNnl8+bdT9W7ITixauQfNxOrBFYN/zLLsUNuVD03qBp3Moy/P/Wu0+xwLTCxWs1rUTvkRtVzg6pxp2Lk/xXSiLRy5cp+S0ZMmzYNJ5xwgokRERFZz2mnnYZ33nkHDz30EL785S9j+vTp8Hg8cLvdGDduHObNm4df/epXeP/99/HVr34VQoj9iklmz5693/see+yx/R6vXr06q/uRjssvv7y3JV97ezsee+wxPPTQQ73/vnjxYpSVlZkV3oii4gW0XarOVcxNfn6+su00kzFBwUGBcZUCLhus9aziceN2u23RzlXF3MS66ox0KhZyFOUDVaUj/7hRMTd5LmBMuXpxJ0vFGwQOAYy3QbcAFT9vAHt8x1G1WEDVuJOh6j6q+DmZLFXPaarGnQwVrwUAdY/3ZKi6j3Y4p6l6vaNq3KkY2VM+aUTq6OjA9ddf3++5n//85yZFQ0RkbU6nE4sWLcKiRYuGfe2OHTuwc+fO3sfjxo3DuHHj9nvdggUL8OCDD/Y+Xr16Ndrb21FcXJyZoDNo0qRJWLBgAZYtWwYA+NnPfoampqbef7/88svNCm3EUfEC2g4DGYCxn327FqnALrlRcaaTqgMwyVLxb1DFmFPBzxvrUvH8MMGjXsypUPHGxrhKAYdj5A+eq3iDYEyFgNulXtzJUvHzxuVy2aLgcUKVgACgUh/BskKgonjkHzfjKgWcDiCsUIOaAjdQUzbyc+N2uyGEgJTqHDmxjq4jXWWxQEkB0NZldiSJEwKY4Bn5x01xvoCnRCDQps5xA6j5vSxZqnbjtsvYAMAOKGQBybRPbmtrwxe/+EWsW7eu97nFixdj8eLFWYiMiMheXn311X6PFyxYMODrTj755H6DWh0dHXjssceyGls6rrjiit7/37f4ZMqUKYPuIyWvqKjI7BCSpmLMqVBxP1WMORXTxzngVOwb2YwJigWcosLCQuW68NjluCkoKFCu04tdcnNAtUBpZldUzLqZNjmnjakwBs9VMnPCyL+JDgDVpQ6MVqzTi12uBVwul3I3Pu3yeVPgFjhwtFrHzaE2Oae5nALTxqp1jjh0vEO56/5UCCGUO0eo+J0sVTMUO0ccPNqBfLc9cqPa94VJ1QIlBfbIjWrnNLfbPeKXG+9LrSOHegkhJgghJm/duhV9f/bs2dPvdaFQCPGvif00NDQMuY22trZBf7erq385ZmNj46CvHa7A5O6778aZZ56JBx54APX19YPG8uCDD2LWrFm9s9gBY2b7H/7whyHfn4iIEnP//ff3e3zllVcO+Lrx48fj3HPP7fec3+9HOGzNWfyLFy9GeXn5fs9fdtlltvkimwt5eXkoKFDnrpNq8abD5XIp9aXM7XbbJjclBQJHTFLnK1llsXqDL6lyOBwoKSkxO4yEOZ1OS3YiywbVcqNavOlwOgSOm6bO4HmeCzjmYHXiTYdDCMxTKDdOB5T6W0rX8Yeos69CAMcfYp+G2qot16pavOmYr9jf4QKFjvN0zZ+u1r7On67W31I6VDtHqBZvOuYrdo44XrHjPB0qXacB6sWbDtXOEarFmy77fLqOPMsBTJoxY8aQL9q1axcGe82ll16Ku+66a9DfffLJJ/G1r30toWB+8pOf4Cc/+cmA//bRRx9h0qRJg/6ulBLLli3DsmXLIITA5MmTMXXqVFRUVKCzsxN79uzBmjVr0NPT0+/3Jk+ejGeeeQajRo1KKEYiIhrcypUrsXLlyt7H06ZNwwknnDDo67/73e/i8ccf7328du1a/Pa3v8WPfvSjrMaZisLCQpx//vm4++67e59zOBy47LLLTIxqZCorK9uvSNWq7HbRX1ZWho6ODrPDSEhZWZmtisPmT3dh9eae4V9oAfOmuWyxHEJMWVmZMstXlZaW2uq4KSsrQ0tLi9lhJKSkpES5ji3pmDfNhZc/DCOiQJfqWVOcKMq3z3Ezd5oTz60JKbEswuEHOFBWaJ/cHHOwE/9aHUJP4g2CTTNjvEO5bjrpKCkpQSAQQCRi/QOnoKBAuY4t6ThisgOlbwGtCnz9nFQtlFwKLVUzJjiUWbJiTIXAwWPsk5vCwkJllqxwuVwoLCw0O4ycmVTjwMQqge2N1j9uygqNazW7GFvpwEGjBTbtsX5uivKB2VPsU4DidrtRWFiIzs5Os0MZlhACpaWlZoeRU/Y5S5ASpJTYvHkzXnjhBSxZsgTPPvss3nrrrf2KT84++2wsXboUBx10kEmREhGNHB0dHbj++uv7Pffzn/98yN85/PDDcdVVV/V77uabb8aTTz6Z8fgy4Wc/+xlefPHF3p/XXnsNEyZMMDusEae4uFiJNcftNBs9prCwEC6X9WvPhRC2y81Box0YV2n9Gzl2m40OGGvzqrI+r92K6vLy8pQZkLZbbjwlQpnlORbYaOYmYHTdOnKyGrmx02x0ACjME5hzoBp/j6p1NkiXSt8b7PZ543QIzFXk2tRu5zSVum6p1nUiE1Q5V9htYgqgzmfs3GlOOG00MQVQ5zx+7MFOuF32yo0q5zS7TUwBWIBCFjB37lycd955qKysHPJ1LpcLp59+Op599lksWbIENTU1OYqQiEgtwy191ldbWxu++MUvYt26db3PLV68GIsXLx72d3/3u99hzpw5/bZ7+eWX47e//e1+hYOJxNzW1pbU7ySjpqYG8+bN6/2ZPXt21rZlZ0IIVFRUmB3GsMrLy2130a9KbsrKypQoYsq0hYdbfzDjuKlOW81Gj1HhuCkpKVGiwCzTVMhNcXGxrWajxyw8zAWr3y+YPs6BiVX2uhYAgFM1F6x+v+Cg0faajR5zykwnXBbf7YlVAoeOt3iQWVBeXm75m6But9s2S/H1tWC6C4UW/5itLhWYpUjxXybNO8SJEouvqlpRZJ+l+PoqLS21/Hdup9Npu04BADBnihNVpdb+vCnMU6cYI5OOmOTA6HJr5ybfBZw4w365KSoqsvx3blXGZDPNfn+NI4SUcjIAdHR0ZK3v0+WXX47LL788W2/f64gjjsADDzwAKSU2btyI9evXY+fOnWhtbYUQAuXl5Tj44INx9NFH2/LCg4goWXfffTeeeuopXHLJJTjjjDMGLNhra2vDU089hV/84hfYtWtX7/OTJk3CH/7wh4S2k5+fj4ceegif+9znsGXLFgBGJ6tf/OIXuPvuu3HDDTfgjDPOwIEHHjjoe2zfvh3PPPMM7rjjDmzevDm5HSVLKisrQ3t7u2WX4snLy7PlRT/wWW6s2prS7XYPW5A8Us2e4sTqzWF8uM2a7d09xcAXjrLnV8fi4mKUlJRktUgyHU6nE1VVVWaHYYrCwkKUlpZadpkkh8Nh29xMHuXAiYc6sfSjsNmhDKjADVx8vNvsMEwx3uPAwsOdeP59a+bG7QS+ZNPcjCp34MxZLjz7rjXX4XE6gEvmuy1fiJENbrcbHo8HjY2NZocyqJqaGlvmpqxIYPHRLjy8wprHjYBxTrPbbHQAKM4XOP84N+5dat2lXi6e50a+2365cTgcqKmpQV1dndmhDKq6utryRTLZ4HYJfGmeC7c/H4RVF3s57xi3LSemOB0Cl8x344//6bHsUqNfOMqFymL75UYIgZqaGuzcudPsUAZVWVkJt9t+33HsOYpIliSEwLRp0zBt2jSzQyEiUpqUEsuWLcOyZcsghMDkyZMxdepUVFRUoLOzE3v27MGaNWv261IyefJkPPPMMxg1alTC25owYQJefvllXHHFFVixYkXv8zt27MCNN96IG2+8EePHj8fkyZPh8XhQXFyMjo4O7Nu3Dx9//DH27Nkz4PseeeSROProo1P7D0Cmil3479ixA1Ja71uZXQdnY2pqarB9+3bL5sZunWn6unCuG5/u6UZ7t9mR7O/i490osOHgbExVVRU6OzsRDlvvhq1dB2djYrlJpvtbrlRXV9uyM03M2bNd+GhHBHtbrPd5s+hoew7OxnzuCBc+3BbBribr5ebzs12oKbPvtcApM534YGsYWxusl5szjnBhXKV9c2PlIvuKigoUFFi81UQWHTfVhfe3RvDRDusVci841GnLjk4xsyY7sWZyGGu2WC83x0514tAJ9r2GLioqsmyRfXFxsS07OsVMHevE/OkRvL7eet89Z05w2LJrUMzkGgdOnunEy7r1cjN1rAPH23BJsZj8/HxUVlaiqanJ7FD2k5+fj/LycrPDMIV9r4CIiIhsQEqJzZs344UXXsCSJUvw7LPP4q233tqv+OTss8/G0qVLcdBBByW9jTFjxuC5557DLbfcMuBM3507d2LFihV49tln8cgjj+CZZ57BsmXLBiw+mT59Ov72t79h+fLlmD59etKxkDXEZglaTUVFBfLz880Ow1Qul8uSM/LLy8ttPXAOAGWFAucda70ZEfOmOXHIOPsOZABGl5Hq6mqzw9hPSUmJrQdnAWMGpxVzExvUt7M8l4h2SzA7kv6mj3Ng3jT7FgYBxgzOS+e7LbcUz4GjBE6YYe/PG0d0dq3VluKZWCVw6mH2zk2syN5qhex27iDY10Vz3ZZbiqe6VOCcOfb+vAGAC45zW24pnooi4NyjmZuqqirLFbJb9XtXrp0zx2W5pXiK8oCL5llvvCLXzprlstxSPPku4EvzXJa7Rsm1iooKyy3FY9Xrx1yx2FcaIiIiStfcuXNx3nnnDTsQ5XK5cPrpp+PZZ5/FkiVLBlyqJ1FOpxM+nw/r16/HX/7yF5x00kkJXfQ5HA4ceuihuO666/D666/j3XffxZe+9CXbXpiNJGVlZZa6MVpYWMjB2aiysjJLLWtYUFBgyYIlMxx1oBMnHGqdQcDJNQLnHsPBWcCYiWel5bvy8vI4OBtVVFRkqfO72+1O65pqJJkyyoHFFlq+q7pU4NIFHDgHgAlVDlxwnHVyU1kMfPnEPDj4HQBjKhy4+Hg3rPJfoqwQuPIkN5xWq1gygdvtTqpbaLY5HA6MHj2a350BVBQLXHGCG06L3OkodANfOcmNPBsuvROvpEDgyhPdcFvkK06+C/jKyXkozGNunE6npc4hQgiMGjXKckUxZsh3C1x1khuFFrlsdTqAK05wo7zIGn8rZnI5Ba462Y1ii8xtcwjg0gVuVJVa5APQREIIjB492lLnkJqaGssVxeSSsGL7bUpcR0cHE5iAG+5Nv0VmiasdJ41e3ft46Z7ZaAtZ58aaXcTysHDhQrNDIbI8KSU2btyI9evXY+fOnWhtbYUQAuXl5Tj44INx9NFHZ/UmdHd3N3Rdx6ZNm7Bnzx50dnbC4XCgoqIC5eXlmDBhAg4//HBLFSlQZkkpsWfPHnR0dJgaR0FBAcaMGWPr5V3iSSmxd+9etLe3mxpHfn4+xo4dy9z0IaXEP5YH8fYmc1tVj68U+MYZeSjK5yBTX/X19WhtbTU1BrfbjXHjxllqYMUKGhsb0dzcnPjr21148N2hbyReNmcvqooTX97H5XJh3Lhxtl56ZyDPvRfEf983t1V1RRFww1n58JTwnNbXyx+G8My75i5hVVoAXH9WHkbZeOmdgby+LoTH3zQ3N0X5wDfPyLP10jsDaW1tRX19fcKvz8bnjRAC48aNs313x3irN4fxwLIgIiaOlue5gOsW5uHA0Txu+vpwWxj3LA0ibOJXHLcT8J7qtn13x3gdHR3Ys2dPUsv0ZuO8Nnr0aI4Pxtm0J4I7X+xBj4mXAw4BXHGiG7Mm87jpa2tDBP7ne9AVNC8GAeCS+W5bL4s0kJ6eHuzatQuRiLljatXV1SgrKzM1hpiiInOqxzgqQkRENEIJITBt2jRMmzbNlO3n5+djzpw5mDNnjinbJ/PFqs/NLHQoLCzE6NGjWeAQJza7qL6+3rR1n1kYNDAhjPb7bmcIKzeYc8N2co3Ataex+GQg1dXVcDgcSRU6ZFJeXh7Gjh3L4pMBVFVVQQiBffv2mbJ9t9uNsWPHsvhkAGfOcsPlFPjXanNGz6tLBXynu1l8MoBTD3PB6QSeeisEM+7XVhYDvs+x+GQgCw41crNkVQhmzB0sLzJuoo9l8cl+YpM4kilCySSHw4GxY8ey+GQAs6c44RDA/cvMKXQozAOuPS0PU0bxuIl32AFOXH0KcM+rQQRN+IqT7wa8p7gxdSyvoeMVFRVhzJgxqKurS6oIJVNi40ZFRUU537bVHTTagesW5uGul3vQ2TP86zPN5TCKT46YxOMm3qRqB77xuTzc8WIP2rtzv/1Y55OjDmRu4uXl5WHcuHHYvXs3wmFzxtSsVHxiJl4NEREREVHWxAodysvLc77tsrIyFjgMIbYWqRnLipSUlDA3Q3AIgYvmufH52a6ctxKfc6ADvtNZfDIYIQSqqqp6ix1yqaioiJ1PhuHxeFBdXW1ablh8MriFh7tw6Xw38nPcSnzaWAduODOPbamHcNIMF6440Y2iHHeHPmi0wLfOymfxyRDmTXPhahPavE+qFrjhTBafDKW0tBRjxozJ+Wdy7KYKi08Gd+RkJ65b6EZFju9lj60QuP5MFp8MZeYEJ77+uTxU5bggdFSZwDfPyGPxyRAKCwsxbtw4uN25vVBzuVwYO3Ysi0+GcOBoB64/Mw9jKnJ73FQUA9ednsfikyFMrHbghrPyMMGT29yUFQLXnsbik6GYdb0UWx6RxScGjo4QERERUVbFbtgWFxejvr4ewWB2e1S6XC7U1NSgsLAwq9sZCYQQ8Hg8vbnp6cnutBqn04mamhoOMCVo4eEuzJzowEPLg9jemN3ZaKUFwIVz3TicA0wJKS8vR2FhIerr69Hdnd0pTw6HA9XV1SgpKcnqdkaKsrKy3tx0daW/FOtQHA4Hqqqqsrqk4UhyzMFOHDzGgUdWBvHxruxOTc93A4uOcuH4QzjslYjZU5w4aLQDj64MYu2O7OYmzwV8frYLJxzqzHmxmIoOO8CJKaMceGxVEGu2Zjc3bidw5iwXTp7hhMPB3AynqKgIEyZMQGNjY046ClZWVqKiooLHTQKmjnXih4sdePLtEN7cmN3Zzw4BnHqYE2cc4YLLydwMZ8ooB36wKA/PvBvCivXhrHbfEgI4aYYTZ89ywe1iboaTn5+P8ePHo6mpKSfdHsvKyuDxeDgpJQHjKh248Zw8PLcmhFf0cNaXGZs71YnFR7tQkMfjZjijyx34zufz8MIHYbz4QSjr3beOOtCBLx7r5oShBMSWLm5ubkZTU1PWOzwVFxejurqaE4b64DdxIiIiIsqJgoKCrA9olJaWoqqqioMYSeo72JSt5StKSkp6ly+hxI2rdODbZ+fh5Q/DeP79EEJZGNCYEx3EKOYgRlJis2qyOaDBQYzUxJbDaWlpQSAQyEpuioqKUF1dza4nSfKUCPhOz8PKDSE883YInVmoST1knAMXz+OSO8kqLxL46ml5eHtTGE+8FURHFmrrDhotcMnxblSz60lSSgoEvnJyHt7bHMbjbwbRloXausk1Rm5GVzA3yXA6nRg1ahSKi4vR0NCQlVbveXl5GDVqFPLyctymSHGFecbf9KxJDjyyKoh9WVgRdmylwKXHuzGxmsdNMvLdAhcc58aRkxx4eGUIja2Zv04bVWYsa8qONMmJFVdnc/IQJwylxuUUOGeOsRzOQ8uD2L0v88dNZTFw8Tw3po/nd89kOB0CZx7pwuEHGJOHdgQyn5vyImPCkDaRuUmGEAIVFRUoKirK2uQhp9OJqqoqThgagDBjXTfKnI6ODiYwATfcm/638xJXO04avbr38dI9s9EWKk77fSk5sTwsXLjQ7FCIiCgNoVAILS0taG1tTXug1uFwoLS0FGVlZTlvGTsShUIhtLa2oqWlhbmxmLYuiVUbwli5IYxAW3pfAwrdwNEHO3H8IU6M4c2mtIXD4d7jJhQKpfVeQgiUlJSgvLycN5syIBKJ9Oam7yB6Y7sLD747asjfvWzOXlQVf5bPWG7Kysq4/EEGdAUl3t4UxvL1YdSlOYjudgKzJjswf7oLk2p4TktXd1Di3c1GbnamOYjudABHTnZg/iEuHDiauUlXT0hidTQ36XZHczqAww8wjpuDxzA36ZJSoq2tDS0tLf1ucKTyeQMYhY6xrl7sepKecETi/S0RLP84hE170jtuhABmTnBg/iFOTB/vYG7SFI5IfLgtguUfh7Fxd3qV9gLA9PEOzJ/uxIwJDjiYm7RIKdHR0YGWlhZ0dnb2+7dUzmuFhYUoKytDUVERj5s0RaTEup0RLF8fxrqdEaR7i/eg0QILprtw+CQHnOyAlhYpJT7ebeRm7fZI2t1qpowSmH+IC0dOdrDLVgZ0dnaipaUF7e3pV6Xm5+ejrKwMxcXFlp9oV1RUZMofD6fqEBEREVHOuVwueDweVFZWor29HW1tbeju7k644MHpdCI/Px/FxcUoKSnhAEYGuVyu3hbfHR0dvblJ9Ka60+lEXl5eb26s/kVMJSUFAgsPd+HUw5z4aEcE72wKY2uDTLgYpTgfmFjlwBGTHJhzoBP5bh43meJ0OlFRUYHy8nJ0dnaitbU1qePG4XAgPz8fRUVFKC0t5XGTQQ6HA+Xl5f1yk8zSPA6Ho985jd1oMqfAbQx2L5juwid1Eby5MYQt9RJ7WxI7pxW4gQlVDsyc4MCxU53s4pRB+W6BedNcmDfNhc17I3hjYxib90awpzmx3OS7gQkegUPHOzF3mhMlBcxNpuS5BI6b6sJxU13Y2hDBGxvC+HRvBHv2yYSWsshzAeNjuZnqRJk549EjkhACpaWlKC0tRXd392efN+2J3VQXQiAvL6/3Ji07bGWO0yEw+0AnZh/oxK6mCFZtCGPTngh2BRI7btxOYFylwLRxDsyb5mKHrQxyOgSOnOzEkZOd2LMvgpUbwvhkTwS7m2RCS1m4HMA4j8DUMQ7Mm+Zkh60MEkKguLgYxcXFCAaDaGlpQVdXV1LL9sbOaaWlpSyszyCHEJg5wYmZE5xobDWOm427I9jVJBFMYEjNIYwOTgeNNo6bsZU8bjJFCIHp45yYPs6Jfe0SKzeE8PGuCHYGEsuNgJGbA6O5Ge9hbjKpsLAQhYWFvRPvOjo60NPTk3DHVLfbjYKCAk5ISRA7oCiOHVByp62tDatWrep9PHfuXLZVMkEsD+yAQkQ0MoVCIfT09PQWo8SuVYUQvYUN+fn5HJA1QTgcRnd394C5id08Z27M0d4lsT0QwfYGibYuY2BDSmOwvCAPGO9xYGKVg4PlJgiHw/ud06SUvcdN7JzGDkG5tzMQwm+fGbpA6HtnOzCh2s0ixxzbUh/GH/49dMv3r57mwozxTuYmx7bWh3HrMLnxnuLCjIlOzjzPsW0NYfz+X0Pn5ppTXJjJ3ORcIp833z1LYGJNHs9pObajMYxbnh36uLnqJBe0A5zsCpBjobDE7iaJ7Y0R1LcY329CEaPgxO0yltiZWOXA2ErB3OSYlBLb6rtx63+Gft0PvuDGOA8Lt3MpHJHQt4Xx96VDf+bceI4bE6qYm1yKRCQ+3B7G318d5nrg824cUM3c5JKUEsFgEN3d3QgGg4hEIr1jNkIIuFwu5OfnIy8vT9mJQuyAQkRERES253K54HK5UFRUZHYoFMfpdKKoqIi5saDigtgsG7MjoXhOp7N3lg1Zi0MMP3jkcrl4M9AE+a7h/5t7irnsgRnyEshNVSmXPTCDO4G27NXMjSkS+bxxu1nsaIZEChdGlXNJCjO4nAITqwUmVqt5s28kE0Igz50HYOhOKDyn5Z7TITCqfPhjhue03HM4BEYl0KEpkes5yqxYBzp2aco8foITERERERERERERERERERERUVpYgEJEREREREREREREREREREREaWEBChERERERERERERERERERERGlhQUoRERERERERERERERERERERJQWFqAQERERERERERERERERERERUVpYgEJEREREREREREREREREREREaWEBChERERERERERERERERERERGlhQUoRERERERERERERERERERERJQWFqAQERERERERERERERERERERUVpYgEJEREREREREREREREREREREaWEBChERERERERERERERERERERGlhQUoRERERERERERERERERERERJQWIaU0OwYiJTz99NMzAeh9ntIWLVq01qx47CqWh0WLFgmzYyEiIiIiIjV5/YH473cD0Wp9Hn7nyzHmxrqYG+tibqyLubEu5oYoNTx2rIu5sS7mhuyGHVCIiIiIiIiIiIiIiIiIiIiIKC0sQCEiIiIiIiIiIiIiIiIiIiKitLAAhYiIiIiIiIiIiIiIiIiIiIjSwgIUIiIiIiIiIiIiIiIiIiIiIkoLC1CIiIiIiIiIiIiIiIiIiIiIKC0sQCEiIiIiIiIiIiIiIiIiIiKitLAAhYiIiIiIiIiIiIiIiIiIiIjSwgIUIiIiIiIiIiIiIiIiIiIiIkoLC1CIiIiIiIiIiIiIiIiIiIiIKC0sQCEiIiIiIiIiIiIiIiIiIiKitLAAhYiIiIiIiIiIiIiIiIiIiIjSwgIUIiIiIiIiIiIiIiIiIiIiIkoLC1CIiIiIiIiIiIiIiIiIiIiIKC0sQCEiIiIiIiIiIiIiIiIiIiKitLAAhYiIiIiIiIiIiIiIiIiIiIjSwgIUIiIiIiIiIiIiIiIiIiIiIkoLC1CIiIiIiIiIiIiIiIiIiIiIKC0sQCEiIiIiIiIiIiIiIiIiIiKitLAAhYiIiIiIiIiIiIiIiIiIiIjSwgIUIiIiIiIiIiIiIiIiIiIiIkoLC1CIiIiIiIiIiIiIiIiIiIiIKC0sQCEiIiIiIiIiIiIiIiIiIiKitLAAhYiIiIiIiIiIiIiIiIiIiIjSwgIUIiIiIiIiIiIiIiIiIiIiIkoLC1CIiIiIiIiIiIiIiIiIiIiIKC0sQCEiIiIiIiIiIiIiIiIiIiKitLAAhYiIiIiIiIiIiIiIiIiIiIjSwgIUIiIiIiIiIiIiIiIiIiIiIkoLC1CIiIiIiIiIiIiIiIiIiIiIKC0sQCEiIiIiIiIiIiIiIiIiIiKitLAAhYiIiIiIiIiIiIiIiIiIiIjS4jI7ACIiIiIiANB13QHgEABzAMwCUA2gMPrPXQAaAawB8C6AdZqmhU0I05a8/oAAMBVGbmYDGAWgAICAkZsmAO/DyM3aWp8nZFKotqPrugBwED7LzWgYx00sN834LDe6pmlBk0K1JV3XD8RnuRkL47hx4rPcfAAjNx9qmtZjVpx2NGN0x7iP9hQN+ZrjJrVour7rE03TunMUFhnGJPCaw7z+wKZan6cr69FQX6MSeM2RXn9gc63P05H1aKjXwdWd1Z80FA75muOntMzS9V1bNE1rz1FYZKhK4DVzvP7AtlqfpzXr0VBflQm85mivP7C91udpyXo01EvXdQ+Ma+g5AA4GUAQgD0A3gA4AG2FcQ7+rado+k8K0Ja8/UAng2AReWpbtWKg/rz9QDuCYBF5akeVQKI6u66XzDyw+avmn5UO+boqny5OjkCjK6w8UwxiDngNgBoBiAPkAQgA6AWxF9POm1ufZbVacKhJSSrNjIBqQ1x+w1B9niasdJ41e3ft46Z7ZaAsVmxiRPcXysGjRImF2LERElD5d10sAXArgSzAu9ksS/NUOGMUoSwDcq2lac1YCtDGvP1AI4BIY+ZmDxAeQumAUPDwO4O+1Pk8gOxHal67r+QAuAnA5gKMBDD2K8ZluGAUPTwC4W9O0+uxEaF+6rucB+CKAL8MY/EvkxgYA9ADQATwFoFbTtLqsBGhjuq67AJwLIzfHNba7qh58d+h76ZfN2Yuq4lAQwFoAT8PIzc6sB2szXn/ACeAcAF8BMBdATYK/GgLwEYB/Afhrrc+zLTsR2pfXH3AAOBPA1QDmwShyTEQYwHoA/wFwZ63P82l2IrSvaAHq6TByM7+x3TU2wXNaBMDHAP4L4E5N0zZkPVgb8voDpwDwAlgAYHyCvyYBbADwAozj5qMshWdrXn/gBBi5OQHAAQn+mgTwCYCXAdxR6/N8kKXwbE3X9bkAvgrgJACTk/jVT2Hk5k5N01YP92JKntcfmAPgawBOAXBgEr+6BcBSGNdpb2Q+MvL6A0fAyM1pMCamJHrPZBuA1wDU1vo8r2cpPFvTdX0mjNwsBDCtsd0lErxW2wHgdRjfPV/NfqT24/UHDoGRm8/BmAiZ6GoxuwEsB/A3AC/W+jyWuodtNSxAIctiAQoNhAUoREQjg67rMwD4YNxAT3dmTDuAhwHcrmnamjTfy/a8/sBUGLn5MhK/eT6YLgCPAri91ud5O93Y7E7X9SkAroNxk7Y6zbfrhlEk5Nc0bWW6sdmdrusHALgWxo3ARG/QDiYI4EkYuXkt3djsTtf18TBuZlwDYFzs+cZ2FxIcAOz7VAjAMzBy83Lmo7UXrz8wGsZNwK8CmJjm20UA/BuAH8DzHAxMj9cfqIZxPrsWwJQ0304CeB5Gbv5d6/NE0nw/W9N1vRLAVTAGzQ+OPZ/iOU3CuGnrB/AMuwumJzrz/MswrtWmZ+AtX4ORmydrfR52sEuD1x8ohfG98zoAWgbecgWM3Dxe6/Owg10adF0vgjHh4ToYM9DT9RaM3DyqaRq7pKXB6w8UALgYxtjA0Rl4y9UA7gDwELukpcfrD+QDuABGbuZm4C0/gJGbB2t9nrYMvJ9t6bruBnAejNyc0PffUrxWWwcjN/dpmsZOXGmITnpYBODrMIrp0rURwJ0A7qn1eZoy8H4jDgtQyLJYgEIDYQEKEZHadF0vB3ArjIHzbHgUwDc0TWvI0vuPWF5/oATAb2AM/mXjc/ZpAF+r9XnY2SFJuq4XAvhfAN9C4jMzkvFfAF5N03Zk4b1HtGjHk5sA3IjsLHH7CoCrNU3bkoX3HtGig38/BvATAO74f09xALCv5QCu0jRtY5qh2k508O97AH4Bo71xpr0N4Ep2D0hedMm96wH8CsZyB5n2PozcrMnCe49o0Y4n1wL4LYDS+H/PwDntIwBXaprGguEUeP2Br8D4jlORhbffCOArtT7Piiy894jn9Qe+BODPSGwppGRtAXB1rc/zShbee8TTdf1cGDdW0y3eHshOGN9vnsvCe494Xn/gLAB3IfEOTsnYA2Nc4KksvPeI5/UHTgVwN4BJWXj7BgDfrPV5HsnCe494uq4vAPB39CkQ7ivNa7V9AL6ladp9aYZpS15/4FgA9wA4NAtv3wrgxlqf569ZeG+lsQBlBBNCTAQwFcAEGDMkC2G0dm6G0WLrXSllxtpuCyEKARwJ4yCuhLG+eQuAvTAqXD+RSfzBsQCFBsICFCIidem6/jkYbQonZHlTewFcp2naE1nezojh9QdOhjGIke4s5+EEYAxoPJTl7YwYuq7Pg/FFeVqWN9UM4Duapv09y9sZMXRdPwrAvQBmZnlTbQC+D6OtuKW+I1mVruuHA7gPxvfTAWXgZi1grAn9YwB/0jSNXR0S4PUHDoVx3CSyPn06umEUh91S6/Owq0MCvP7AwTAGzRdkeVNBGAUu/8euDonRdX0SjOu0Uwd7TYbOaWEAtwC4SdO07hRCtR2vPzAexk3as7K8qQiAPwL4Sa3P05nlbY0I0S5bd8BYfi+bJIwZ0N9n54DE6LpeBeAvMLprZNs9AL7NJXsTE+3kdBuAK3OwuYdgjA1wyd4ERCcM/Q5GMWq2/ROAr9bn2ZuDbSkv2snpVzCKuAe9Z5Wha7V/AbhW07RdKYRqO9FuQb8E8F0Azixv7iUYRalcFjaKBSgmEEIcCKNt2VHR/52N/rMXtkopJ6fwvlPx2ZrJs5DYWvDvwfgS+zcpZUpfLoUQc2HMxlwMIG+Il+6MbuuPUsphLyxYgEIDYQEKEZF6oh0C/gKjzX4uPQKjcwDbuw7C6w+4YMzW/Aay0/VkME8B+HKtz8MWooPQdd0B4GYYX5Sz0fVkMM8BuEzTNA4EDiI6C/3nMDprZKPryWBeAfAlTdM4EDgEXdd/CGOQab+uJ31laAAwZjmAizgQODSvP3ADjE5b2eh6Mpi3AVxY6/NsyeE2leP1B66FcT2Qja4ng1kDIzfsIjQEXdevgHEdvV/Xk74yfE5bC+OctjbROO3I6w9cCOCvyE7Xk8FsBHBRrc/zXg63qRyvP/AFGAV12eh6MpgtAL5U6/O8kcNtKic6KeU+ZKfryWB2ALhU07RlOdymcrz+wIkA/oHsdD0ZTB2AK2p9nhdzuE3leP2BuTCWnc5G15PBNAC4qtbneTaH21SOruuzYXRiHrDrSV8ZvFbbB+CrmqY9lmCYtuT1BzQAS5CdrieDaQXw9Vqf54EcbtOycjmQaWtCiJOEEM8LIRoBbIJxQ+R7AE7EMF8ik3AigB8BOAmJFZ8ARqHKXwB8IIQ4NpmNCSFcQoi/wFj38kIMXXwCGBcv/w/AR0KIM5LZFhEREalJ1/ViAM8i98UngDGj6kVd1ytM2LblRWcC/BPAN5Hb4hPAKFx+xesPVOd4u0qILh3yEIxlXXL9ne1MAK/puj42x9tVgq7rThhF9T9HbotPAGOd4td1XT8gx9tVgq7rQtf12wH8GsMUn2TBfAArdF0/KMfbVYbXH7gFxozaXBafAMakn+XRzis0AK8/8AsYs/dzWXwCGB2Klnv9gSNzvF1l6Lr+fRg3ajM1bpiomQCW6bqe1DihnXj9gW/AGNutyPGmpwJY6vUHTsjxdpXh9QeuAvAEclt8AgCTAbzs9QdOz/F2laHr+pdgjA3ksvgEMDqwPq/r+hdyvF1leP2BxQCeR26LTwBgDIB/e/2Bi3K8XWV4/YEzYHRWyGXxCWCsqPCk1x+4MsfbVYau6ycCWIoEik8yrALAo7qu+3K8XWV4/YHjACxDbotPAOOa/X6vP/C9HG/XkliAkjtHAjgdgCeH25Qwuo68BuPC+0EAT8KYZRLf5nQagJeFECcm8sZCCAGj6vLr2P+Gxfrodh4C8CKAprh/Hw3gaRahEBERjWy6rhcC+DeMayCzzAPwsq7rZSbGYDlefyAPRhcSMwfh5gB41esP5PL62PKiBQ5LAJg5CKfBKELJ9eCwpUW70jwAo+ukWabBuCmY7aXMVFQLwMxBuMkwCoQONDEGS/L6A7fBmIBjlvEAXvP6A9NNjMGSvP7A/8GYKGSWUTCuBY4wMQZL0nX9xzA6BpnFA+AlFqHsz+sPfAvAn5H7Au6YMgD/ZRHK/rz+gBfGkq/ZbrM/mCIAz3r9gc+ZtH3L0nX9Uhj3JnJdJBxTAOCfuq4vMmn7luX1B84F8DhyXyQc4wbwkNcf+JJJ27csrz9wJoCnkfsi4RgngL97/YGrTdq+Zem6fhKA/yL3RcIxAsDtuq5/06TtW1a0+ORFAJUmhnGL1x/4oYnbtwQWoJivG0ZHlEyQAD6GsRbc5wFUSSknSClPklJ+UUp5uZTyPCnlLBhf8r8LoG/b82IADwkhEumecg2A8+OeWwbgMCnlodHtXCqlPD26ratgrCsfkwfgvgS3RURERIrRdd0F4DEYHdrMNhvAs7quF5gdiBV4/QEHjME/KxQDawCe8/oDXNfwM3+H0SHGbFMBvKDrOq/XP/MXAFYYGJ0Eo7sTOwhF6bp+CwArDIyOhXHDlh2Eorz+wM8B3GB2HABqALzo9QfYQSgqOjPvx2bHAWMW5/NefyDXs0ctKzqj9f/MjgNACYD/6Lo+0+xArMLrD3wZxnJVZiuEUegw2+xArMLrD1wAo5uT2Ut25wF4wusPzDM5DsvQdf3zAO6F+feiXDC6BpxichyW4fUHToUxydisoq0YB4yuAWeZHIdleP2B42F0rB1u1YFsEwDu8voD8fcCbUvX9TkAnoFR2Ga2P0aXayT0LrvzHxjXsGb7dXSZU9sy+0PfboIwuo/8DcC1MGZ9lsIo5siE+6WU06WUN0op/y2ljO880ktKuU9KeSuMm0Ltff5pHICvJbCt+EGKZQBOk1LqA2wrJKW8B8BpMApuYkYluC0iIiJSzw8AnG12EH2cAGsM5FvB9QAuMDuIPo4B8Huzg7ACXde9AKw0eHA4jKIL29N1/RIA15kdRx/TAdxldhBWEG2nbqUWt1Ng3GSxPa8/cBqAm8yOo48JAP4RLcS0tehNDTO7a8QbDeARrz+Q66XNLEfX9dkA/mh2HH14YNywNWtmvGVEl/L6K8wvcIgpA7DE6w+YNTPeMrz+wIEA7oF17nUUAXjU6w/YvpBb1/XxMCY/WOX8ng/gYRZyA15/oAZG8YlVzu8uAA96/QHbF3J7/YEKAI/CKDa0AgeAe7z+wGSzAzFbdJnxx2Be55N4AsBfdV23fafH6DLjS2Bu55N4f7bzcqNWuSizg/sAlEkpZ0kpvVLKu6SUq6WU8UvhpCyV95JSrsH+lfvnDvU7QojDYLQX7uv64bYvpXwHRlvkvs4ZPkoiIiJSia7rh8Hcdu6D+Zau67aeieb1B6YC+JXZcQzg2uiNStvSdf0AWLMQ5zK7r5ceXYroz2bHMYBzdV23QkcW0+i67oFxM9BqTo8WlNmW1x8oBXC32XEMYD6MQkzb8voDhTC6bVltTHAOjAJm29J13Q2jgM0qN2pjZgL4udlBmMnrDzhh5MYqN2pjDgJws9lBmMnrDwgY5zSrdVScAGt0yzHbXQCsVogzCiyyBwA/jA5xVlIJFtkDwB9gLCFpJSUwluOxShGmWX4DY8KBlRQAuCe6ZLCd/RLAoWYHEccN4F6vP2DW8nOmsvsfZM5IKZuklF1mxzGI/8Q9Hq7tafya1tullO8nuK2n4x5PTfD3iIhsRwhxoBDiIiHELUKIpUKIFiGE7POzJYX3nBz3Hun+XDnM9rYM8DufCiGSbiE5wHvZfsaKFUWX3rkX5rcJHYgDxpcyq8wiyanojO97YJ1ZNPHujt6wtKtaWGcWTby/Rm/029WdMGaAW9GfowUydvUnAGPMDmIQv9N1faLZQZjodwCsutzNr6IFmXb1vwCmmR3EIP6f1x84zOwgTPQzAFbd/+/run602UGY6HswuvZZ0Te8/sAJZgdhoq/DGsu+DuQqrz9ghWVPTaHr+pUArLqkykW6rn/R7CDMEl2yyqpLqnze6w9YqStoTnn9gbMBXGl2HIM4GTZe0UDX9ZMB+MyOYxDHAfiO2UGYxesPHAvgu2bHMYgjAPzE7CDMwAIUAoBA3OPhBr7jK8p3JLGt7XGPrdQOiYjIdEKIk4QQzwshGgFsAvAIjMGuE2HNG5OdKfzOFNj4C4sNfA+AldcinwZrLQeQS18HcLzZQQzhANh0Bqeu618BcLrZcQxhDGw6g1PX9QsBLDY7jiFUwaYzOHVdPxvApWbHMYQyWLM7S9Z5/YGTAHzV7DiGUAhrdmfJOq8/cAyAb5kdxxDyYLR4t93s2mgHwR+ZHccQnADu1XXdaXYguRYtWPuF2XEMQcCYlW7FCQBZ5fUHVPj+UOv1B6zWnSXrogXSfzA7jmH4dV2vMDuIXPP6A5UAbjc7jmH80esPjDI7iFzz+gMlsH4HmN96/YEJZgeRa9GlCO+GdZbhG8j/6Lo+XHOBESe6hOc9MK5VrerHXn9AMzuIXGMBCgHApLjHu4Z5fV3c44IkthX/2vjiFyIiuzsSxk1Iq8607qsDwHMp/u5PhRBWLKihNOi6ngfg22bHkQCfruu2+vuLtg3/ntlxJOBqrz9gx+5GKiw5cFl0DXe7+aHZASTgi3YcaIIauTlT1/XDzQ7CBCrkZoHXH7Djsnzfh/XHAucAsOOyfN+D9ZbeiTcD9lxK+9uw3tI78Q4CcIHZQZjgm7De0jvxJsDaBbPZ8jUAFWYHMYxRAK4yOwgTXA3rLb0TrwLAtWYHYYLLAYwzO4hhlAD4htlBmOAiWG/pnXgFAG4wOwgTLIL1lt6J54Z1O7RkjdW/dFJuxLc0e3WY178NoLvP40OFEIm2cp8zwHsREdHwumF0REnXDhgXzKn8rIh7r8eklC0pxlEDNW6GU3LOhzGIY3Ul2P/6Z6T7PKy7FEJf+TAGxGxD1/VTARxidhwJcMJmg4C6rh8HYJbZcSRAALjO7CByKdopYL7ZcSTIqm2as8LrDxwEa3d06stuuRkHY4BWBbbKja7rVQAuNDuOBNkqN9HlIS8zO44E2S03BQC+YnYcCbJVbqLL8nrNjiNBX9N13codDTIq2mFMlY7EX41OpLETVb7TXeX1B6xemJlpqpzHr9B13eqFmZmmSm4u8voDKkw4zhgWoNicEOLr6P9FKgTgtqF+R0rZCuD+Pk8VIIEbBUIIJ/avjrwvoUCJiOwlCGANgL/BuNk3B8byO9ek+8ZSypCUckuyP9GYjot7u3Rbl39HCDE6zfcga1Hloh9Q54t9pqiUm2u9/oCdvqeolJtrdF13mx1EDqmUmyt1XU90UsBIoFJuLtV1vczsIHLoOli7NXVf53v9AavPAM6kr8L6HTZizrFZe/erkFx3YTOdpuv6VLODyKHLYc2lcAcyz+sPHGF2EDl0EYylCFVwhM26bi0CoErnxKkAFpodRA59DkbHJBVMAPAFs4PIFa8/sADAYWbHkaAa2Kjrlq7rswEca3YcCSqDOoWzafP6A9MBnGJ2HAkqhDqFsxlhp4FdAiCEKBZCHCKE+LIQ4jXsv174j6SUHyTwVj8EsKXP498KIQZtkSqEcMNYv67vDMJXAPwzsciJiGzjPgBlUspZUkqvlPIuKeVqKWXQ5LiuRP+1FDdKKV9P4X2e6vP/SwD8vzRiIguJzkY/3uw4kjBT1/UTzA4iF6Kz0VUaVJsC4Ayzg8gFXdfHQa1BtbEAFpsdRC4oNhsdMJbuu8jsIHJB1/USqDWoVgLjBuaIF50JqdKgWj5s0no/OoNYldnogPG946tmB5EL0Zn3KnUYU2n2fCaoVrSuWrzpUG1fVSqeTZdq+6ra31I6VNtX1eJNh2r7qlq86VBtX1WLNx2qXZOqFm9aWIAyggkhKoQQsu8PgDYA6wHcC6DvTZc2AF+VUv4ukfeWUgYAnAzgvehThQCeF0I8KoS4QAhxmBDiYCHEcUKIbwP4EP0Hdt4CcL6UUqa1k0REI4yUsklK2WV2HH0JIQT2v5mQaveTnwPo7PPYK4Q4OMX3Imv5nNkBpEDFmFNxOtSZjR5jl9ycCnVmo8fYJTcnwrg5rRK75OZ4GEUdKrFLbo6GUQylErvk5jAA48wOIkl2yc3BUGc2eowtchNdtkozO44k2SU3FVBnNnqMLXKj63oB+t9zUMFCXddH/H2yaDHqoBOILeokGy31oto5Yq7XH7BLl0fVcnOErut26TiuWm4Ojk4StIUR/8FKw9oD4CcApkgpa5P5xeiSDMfCmJXyDowbGxcCWALgAwAbAawCcCs+W9e+Mbq9+VLKpgzET0RE2Xci+g+KhpD6Emq7APyxz2M3gP9N8b1SIoQ4UAhxvhDiOiHEj4UQXxdCfFEIodqgvNXMMTuAFKgYcypU3E8VY06FivupYsypUHE/VYw5FSrup4oxp0LF/Zzt9QdUK9JMhYq5OdzrD6hWpJkKFXMzXdf1IrODyAEVczPZ6w+oVgiYitlmB5CCaq8/cIDZQeTAEVCvwL4Yn927GMmmA1Dt3O2GOsvSpMzrD0yGekXcAv1XOxiRdF2vATDR7DhSoOI1TFK8/kAJgGlmx5GCEZ+bGBag0GgYbX+uE0KkUrHojP50Axium8l2AN8DcKsFlpIgIqLEXR33+N9Syro03u9mAIE+jy8UQmT14iu6BN2PhBAbAWwC8BgAP4D/g7Ec3eMAdgoh3ot28kroRoQQYmlcp7FkYroyrlPZlcntleWoeAGtYsypUHE/j/T6A3b4rnKU2QGkYKau63aYhaZibg7Wdb3c7CByQMVz2jhd18eaHUQOqJibcqjXfSIVKp7TCgDMNDuIHFAxN07Y4KYT1MwNoG7cyVDx8wZQN+5kqLqPqsadDFXPDarGnQxV91HVuJOh6rnBDrmZBTVrHFT9m0qaismhxLUAmNLn5yAYFeLnAfgDgPro6yYC+CWAD4UQRyf65kKI4wGsA3AHjDbIw/09TQRwD4BtQohrEt8NIiIyixCiHMAX455OdfkdAICUshnAr/tuBsBv0nnPoQghPgfgUwC/gtHieihHwujk9UJ03ykBuq6XYfj/tlZUrev6JLODyKZou1oVb94Uw5ihNWJF2zwfaXYcKXADONzsIHJAxUEBATVnBCdLxdwA6sadDFX3UdW4k6HqPqoadzJU3UdV406GqvuoatzJUHUfVY07Garuo6pxJ0PVfVQ17mSouo+qxp0MVfdR1biToeo+qhp30liAMoJJKSNSyi19fj6VUr4npXxSSvkdAJNhzPqOOQDAS0KIYdc3FUKcCuCl6HvE7ATwQxiVZxUA8gCMAXAGjKUaQtHX1QCoFULclegMcyIiMs2XABT2ebwbwHMZeN8/A9jW5/GpQoiFGXjffoQQXgD/BjAq7p+2RJ9/CMC/YHTp6us0AMuFEKWZjmmEOhTGjU8VzTA7gCybCqNgQEUjPTeTYBTaqGhE50bX9VEAqsyOI0UjPTdFMI4dFY3o3ESXsVG1cHBE5yZK1X1UNe5kqLqPqsadDFX3UdW4k6HqPqoadzJU3UdV406GqvuoatzJUHUfVY07Garuo6pxJ0PVfVQ17qSxAMXGpJQdUspvwuiGElMG4P6hCkOEEDUAHobRDjXmWQAzpJS/kVKukVI2SymDUso9UsrnpZRXAlgAoLHP73gBfD9T+0NERFkRv/zOfVLK0ICvTIKUshvAz+OevjmThYlCiFNgdOly9nn6HwBmSimnSCk/L6W8VEp5jpTyAAAnA9D7vFYDcFem4hnhVL2JDqgdeyJU3j+VY0+EyvuncuyJUHn/VI49ESrvn8qxJ6IQ6o4xjfTcAECR2QGkyA65UXUfVY07Garuo6pxJ0PVfVQ17mSouo+qxp0MVfdR1biToeo+qhp3MlTdR1XjToaq+6hq3ElTdXCAMusnAHb1eTwLxszvwXwHRheTmPUALpRStgy1ESnlGwAuinv650KI+FnpRERkAUKIw7D/mpFpLb8T5370L/iYDeDiTLyxEKIERneTWPGJBHC1lPIyKeVHA/2OlHIpgLkAVvV5+mIhxAmZiGmEyzc7gDQUDP8SpTE31sXcWJfKuVE59kSovH88bqxrROfG6w/kQd1OdSM6N1GqHjuqxp0MVfdR1biToeo+8pxmXcyNdakadzJU3UdV406GqvvIc5p12SE3AFiAQgCklJ0Anop7+owhfuWCuMe/kVJ2JbitlwG83uepQmToZiMREWVcfPeT16SUn2TqzaWUEQA/jnv6f4UQmVgu5GsARvd5fIuU8u8JxNQGo1iyu8/T38tAPCNd2l1xTBQ0O4AsY26si7mxLpX3T+XYE8HjxrqYG+tibqxN1X1UNe5kqLqPqsadDFXPa8yNddkhN6ruo6pxJ0PVfVQ17mTwnGZdzI3FsQCFYj6Oe3zwQC8SQhQDOCju6ZeT3NZLcY+PTfL3iYgoy4QQeQAui3s6k91PAABSymfRvzDxQADXZuCtv9nn/7cB+J8kYtoOYEmfp04XQqhaVZ0rnWYHkAaVY0+EyvuncuyJUHn/VI49ESrvX0ITAxSmcm5Ujj0RKu+fyrEPq9bniQDoMTuOFI3o3ESpuo8j/fMGYG6sTNXcqBp3MlTdR1XjToaq+8hzmnUxN9alatzJUHUfVY07aSxAoZj4qqvBbrRVDPBcXZLbin99dZK/T0RE2bcIQFWfx80AHs/Stn4Q9/hn0SV0UiKEOATAAX2e+k+0s0kyXu3z//MBHJNqPDax1ewA0qBy7IlQef9Ujj0ROwCEzQ4iRSM9N3uh7mDaiM6NpmnNAPaZHUeKRnRuan2eEPov7auSEZ2bKFX3UdW4k7HN7ABSxNxYlx1yo+o+qhp3MlTdR1XjTgbPadbF3FiXqvuoatzJUHUfVY07aSxAoZgJcY/3DPK6fQM8V5zktuJvKiZ7U5CIiLIvfvmdh6NLtmWclHIVgKf7PDUK6S17Mz/u8TYhxORkfgBE4t4jvvsX9aFp2nYA9WbHkYIuAGvNDiKban2eAIAtZseRgjCANWYHkU2apnUAWGd2HCl61+wAsknTtBCA982OI0XvmB1ADqw2O4AU2SE3qp4bVI07Gar+/TE31qVq3MlQdR9VjTsZqp4bVI07Garuo6pxJ0PVc4OqcSdD1X1UNe5kqHpuYG6sS9W4k8YCFIo5Pe7xxoFeJKVsB9AS9/SsJLc1J+5xsh1UiIgoi4QQEwEsjHv6b1ne7I/QvxPAd4UQo1J8r4lxj78HYHOSP/fGvYcnxVjsRMUL6PejN5pHOhVzs77W5+kwO4gcUDE3WzRNC5gdRA6omJv6aEHgSKdibtoAbDA7iBxQMTdBAB+aHUQOqJgbCeA9s4PIARVzA6gbdzJU3UdV406GqvuoatzJUHUfVY07Garuo6pxJ0PVfVQ17mSouo+qxp0MVfdR1biTxgIUghDibABHxT399ECvjVoa9/irSWxrDIAvxD39eqK/T0REOXEl+l8jvC+lzOrFkZRyHfoXfZQA+FmKb1c1/EuSVpqF9xxpVLyAVjHmVKi4nyrGnAoV91PFmFOh4n6qGHMqVNzP9zRNi++uNhKpmBu91ufpNjuIHFAxNxtrfZ74CVAjkYq52alp2mCdk0cSFXPTVOvzfGp2EDmgYm46AXxkdhA5oGJuRnz3zag12L/brwpU7X6YjLUAVLweVfF4T9YnMJalV82Iz02tz7MLwG6z40jBiM9NDAtQRgghxFFCiHNT+L2jATwQ9/QyKeVQM4AejXt8kRDisgS2lR/dVt8leNoAPJ9IrERElH1CCAHgK3FP352jzf8cxqBMzLVCiFSWvsnLUDx9iSy850iz3OwAUqBizKlQcT9VjDkVKu6nijGnQsX9VDHmVKyE0RlBJXbJzRsAVOssZpfcvAtj6UGV2CU3HwBoNTuIJNklN+sBNJgdRJJWmB1ALtT6PFsBqNb17c1an0e1z8ikaZrWAOBjs+NI0mpN07Ky5LSV1Po87VCvs9hH0WWFR7RanycI4E2z40jS1lqfZ4fZQWSbpmkSxvdPldTDHt03AfWue1pgj+6bAFiAklNCiAlCiMnxPwDGxL3UNdDroj/Vg7z9BABPCCE+FEL8UAgxPXoTcbBYZggh/gjj5FnZ55+6APiG2ZVH0H9NdAHgfiHEH4UQYwfZ3skwBqNOi/un30gpm4bZHhER5c4pAKb0edwN4B+52LCUcieAP/d5yg3gf1N4q/hBwkuklCLNn5tS3a8hOLPwnmZ6AcBWs4NIQiOAJ80OIhdqfZ7XYQygq6INxvXmiKdp2ntQa/ZDF/YvXh+RNE3bALU6NYaw//JxI1J0mSGVJjFI5K6Y11S1Pk8Dhu6makXZXmbSEmp9nlbsP5nI6myRG03TuqHeZ6stclPr80QA3GN2HEmyRW6iVPtstVNuVNtX1eJNh2r7qlq86VBtX1WLNx2q7evd0cIZO1AtN/fX+jw9ZgeRKyxAya3lADYP8PNw3OvGD/K6zQB+N8w2NAC/BrAOQLMQYqUQ4hkhxINCiCVCiJeEEHUw2npdD8DV53c7AZwjpVw71AaklBEA5wPY2+dpEX2/HUKI94QQ/4xu8z9CiN0AXgFwZNxb/QfAb4bZHyIiyq2r4h4/IaXM5WyDXwPoW5h4kRBidpLvEd8Oelp6IQ2p3wwmIYRrsBcOoHL4l6gjurTAXWbHkYR7NE1TbSZwOu40O4AkPBi9UWYXd5gdQBIe0zSt0ewgcshvdgBJeEbTtJ1mB5FDKuXmBU3TNpkdRA6plJsVtT7PB2YHkUMq5ea9Wp9nldlB5JBKufkYwMtmB5FDd0KdJSu2AfiX2UHk0F1Qp+vWXgCPmR1EDv0d/bvbWlkzcjTpyiIehDEDXwUdUK8IMB1LoE7XrSCAWrODyKGnAajyXTsCtcb/0vUCjGWSVKHSNX/aWIAyspUCmAvgHACXArgAwKkARg/w2jcAHCelfCmRN5ZSfgLgRADvxP2TA0ahyXnRbZ6J/Tu8SBhfEs6XUgYT2R4REWWfEKICxvm7r5zOKpJS7oNRhBIjANyc5NvEt0Y8PZ2YhhH/xb0iid+dmcE4rOJvAFSo5JZQ66Z/JtwLYwBHBbb6QgbgIQD7zA4iQXbLzT+xf1GjVdktN/+GOl23bJWbWp/nFajTdctuuXkL+4/hWJWtrtM0TVsLYJnZcSToThvNqkWtz/Mp1Om6dVetzxM2O4hcqfV5dgN4yuw4EnS3nWY8a5oWgDpdt+7XNK3d7CBypdbnaYM6XbceqfV59pkdRK7U+jzdMIq3VPBErc+jyvfktGmaFoY6E+7+o2maKt+T01br80ioU3CztNbnWWd2ELnEApSR4xUAV8LoppLo2msdAB6HUaAyT0qZ1MwfKeV6GAUuXwawCsOvw90Jo6J4npTyWimlKpXQRER2cSmAgj6Pt8D4fMm1P6P/Z9lCIUT8Em5DWY3+swbmCiG0jES2v71xj2ck8ktCCDeAhZkPx1yapu2FGgNN/9Y07VOzg8ilWp+nGcD9ZseRgKW1Po9t1kMFgOh64yq0DX1b07Q3zA4ilzRNC0KNwYy1mqbZaTZ6rOvW7WbHkYBPYa/Z6DF/Hv4lptsFYzzEblTITSPsNRs95k9mB5CAFthkubc4KuRGlevJTFMhNz1Q43oy0/6M4e8VmC0MmxWjRt0OY9+tTAL4i9lBmOAOGN1FrE6Fc2+m3QU1OjvZMTd/B6BCF2Xb5YYFKDkkpZwspRRp/lw5yHu3SCnvk1JeIqWcCKPryMkwilK+C+BnAH4IwAfgIhizrsuklBdIKf8lpUzpglBKGZJS3i+lnAdjKYHTAHgB3AjgpwBuAHAFgNnR7V0mpbTVwDURkULil9/5e6qfD+mQUnYB+Hnc0zfD6IaSyO9H0H8QQQD4U5LL4yRqddzjcxL8vatgLLk3En0fQC6XbUpWO4xlA+3oJwDqzA5iCN0wrlXt6JewdjeHEICvmR2ESX4DYIPZQQwhAuCrZgdhkj8CsHrB2rXRYhm7+SuAt8wOYhg+O81G7+MBAEvNDmIY19f6PKp0bcsYTdP+CWOpaiv7nqZp+8wOItdqfZ7/wvoFaz+202z0mFqf53UA95kdxzB+WevzbDM7iFzTNG01rF/ccYumaap0bcuY6Az835sdxzD+UuvzvGd2ELlW6/NsAfC/ZscxjL/X+jzxnadHPE3T6mDcY7WyRzVNe9HsIHKt1udpgjEWbWX/qvV5njQ7iFxjAcoIJaXcI6VcGi1KuVVK+b9Syt9IKe+QUi6RUn4kpcxopauUsllK+bKU8m9Syt9JKf9PSvknKeUDUsr3pJSqrMtJRGQ7QogjYRQLxkRg7uy2+wCs7fN4DoADkvj936N/F5STAdwjhCgY5PUDEkIcIIQ4c4iXxHeIuVYIMXGY9zwOwK3JxKGS6Jeyb5odxxB+qGnaZrODMEOtzxOAtYsIfm63dpQxmqa1ArjG7DiG8OvoILLtRDvUXAXjc9GKbtM0zXYDgACgaVoPjAkXVv2eeZemaQktcTvSRJeAuBJGYaEV/aPW53na7CDMEG1TfTWMglwreqrW53nI7CBM9FUAzWYHMYgXNE2rNTsIE/kA1JsdxCCWw4azavv4FoyuVlb0LoxiZrv6AQCrfvdeC+Ams4Mw0f8DYNXv3ptgTKS2q18BsGrxzQ4A3zE7CBP9Afsv+24VewF8w+wgTPRXAFbtCrsPwLVmB2EGFqAQERFZjBBighBicvwPjO5WfbkGel30pzrJzV4d9/h5KeX2lHciTdEiyR+n8fstMDp+9b0pdRmA1UKIS4cqRBFCjBVCfEUI8QyM1vkXDbGdTwC82uepUgAvCyGOHuB9S4QQ34++vghAUzL7pBJN0x6CNdfjXgo1lmzImugNNyu2tX8TwO/MDsJM0RvVVlxX+AMA/2N2EGbSNG0FjG4bVrMBRtdJ24oWRv3a7DgGsBXA98wOwkzRgsL4jnZWUAf7dkIDANT6PJ/Cmjd2GmHtQtms0zRtJ4Bvmx3HAFpg7ULZrKv1eeoBfN3sOAbQCeCqWp/HqoWyWVfr8+yD0Y3banoAXFnr81i1UDbrNE1rh1HIbbWleMIAvqJpmlULZbOu1ufpBvAVWG8pHgnjnGa7Tmgx0XPGlbDmUjze6PLOthTtbPkVWHMpHp+maQ3Dv2xk6lNkb8WleG6o9XmsWiibVSxAISIisp7lMGaJxP88HPe68YO8bjOSuJErhMgHcEnc03enEngmSSmfAbAijd9/BfvPvj0UwIMAmoUQbwohnhRCPBD939eEEHtgzJ76O4zldJwJbOrb6P/FcCqAt4QQHwohHhNCPCKEeB1GR5bfACiAMdPkF6numyK+BsC0IqYBNAC4StM0qw1+meF6GMVVVrEPxuCs1Qa/zPA9WGsmWhuAKzRNs+LgV679BMAas4PooxNGbqw4+JVr/wPASsu89gC4MtrZyO5+h/6FumYLAfhKtCOY3d0Oay33EgHwVTsuIRJP07R7YL3lXr6uaZqVrutNUevzPAbrLffy7VqfZ6PZQZit1uf5D6y33MsPa30e3ewgzKZp2lJYb6LBTZqmvW12EGar9XnehPUmGvy21udZZnYQZqv1eT4A8COz44jzl+iSdLamadoGWK8LzD3RpRxtrdbn2QrrdYFZUuvz3G92EGZhAQoRERGdC8DT53E9gGdMiiXeD9L5ZSnlPwDMB/BJ3D/lATgGwGIYnVEWAzgBwKgB3mbITiVSyvcx8OwEDcD5MDqozAeQH31+NYDTYN322hmhadoeAKfDGq2qWwB8zq5L78SL3ng7DdZoVd0B4Oxan8d2a28PJHrD+nQY3RPM1g1gkaZp75sdiBVECz0+B8AKN3mCAC7QNO1NswOxgmiB1NkArHCTJwzg0ujNFtuLFhYugrEEgdliM2ptP3AO9M4SvABpFHtnmK/W53nC7CAs5DJYp4349zRNe9DsICzkGgD/NjuIqJ/X+jx/NTsIC/kmgMfMDiLqt7U+zx/MDsJCfgDrFG/9RdO0/zU7CKuo9Xl+AeBOs+OIugfWK7owTa3P83sYy4tbwaMAbjA7CKvQNO1OWGdS4TMwlnAkANFij++bHUfUiwAuNzsIM7EAhYiIiOKX33lASmmJ2e5SyhVIsxhGSvkOgOkwBnJXof+yPAOJwFhv9bcAZksph22DLaV8CEaRyWtDvGwbjBn086SUVrjxn3Wapq2HUehg5mzWfQDOiC7TQFG1Ps9mAKfCWMPXLG0APl/r81h1DV1TaJq2A8ApMHe99E4A52qa9oqJMViOpml7YeTmYxPD6AZwkaZpVrn5ZQmapgUALATwoYlhhGB0pbFa5wJT1fo8rTCKt94xMYwIjJbhD5gYg+VE29ufDXOLUCSA63kTvb/oshCLYH4Ryo80TbPKzS9LiC6NcD7ML0L5n1qf55cmx2Ap0WWILoX5HYRurfV50ppIM9JEu5BeDcDsz+E7YfNl+AbxdZi/FOz9MK7V2LG2j1qf53sAbjM5jCUALrfzUm8D0TTtJgD/Z3IY/4IxNmDbpd4GUuvz3ALgxyaH8RKAc2t9nh6T4zCVkJLndLImrz9gqT/OElc7Thr92b2rpXtmoy1UbGJE9hTLw6JFi4TZsRCRmoQQpQCOAzABRueXAhg3whthzGxfJ6VsSeP9xwNYAGAsjE4ru2F0YFklbXrhpev6VADPATgox5veBeAsdnAYnNcfmATgvzCKtHJpL4Bzan2et3K8XWXouj4OxnFzeI43HQCwWNO013O8XWXoul4D48bT0TnedDOA8zVNeynH21WGruuVMApX5w/32sZ2Fx58d6DGZ5+5bM5eVBUnNJ7XBuASTdOeTeTFduT1B0oBPAmj+DGXOmEs87Ykx9tVhtcfKIJxc+HsHG+6G8ayO7ZtSz0cXdfzYSwfev5wr83wOS0I4JuaprEwaBBef8ANY9naXM9sDQO4kd01Buf1B5wwluPJ9YzwCID/V+vzmH1D0rJ0XRcA/oDcd1KQAH6tadpPcrxdpXj9gV8B+CGAXI+5/wHAd1l8MjivP/BTAL9E7nNzJ4Cvs/hkcLqufxfGcuvDLuGe4Wu1+wFczeKTwXn9AR+APwJw5XjTj8Eo2urO8XYthwUoZFksQKGBsACFiEhNuq6XwPhSdh1y86X5fgA3aJq2LwfbUprXHygE8L8AvoXcdEh8FMA3an2ehhxsS2nRG08/h9FCdNgBjQx4CsDXokto0RB0XXfBmFXzUwDuHGzyOQBfjXbIoSHouu4E8D0YbZHzB3tdBgcAX4Ex+LcluUjtx+sPOGAskfArAEU52OQKAF+p9XmssHSWpXn9AQHgWgC3ACjJwSbfhlEY9FEOtqU8XdevhHGDrmKw12TwnPY+gCs1TVuTVJA25fUHvgTgzwCqcrC5j2AcN2/nYFvK8/oD5wK4A8DoHGxuI4xl3pbnYFvK03X9bBgdN8blYHNbYFynsbNjArz+wKkwiusm5WBzO2AUoj6Xg20pz+sPLADwdwAH52BzdQC+VuvzPJ2DbSlP1/VjYSwhdehQr8vQtVoDgG9omvZosnHakdcfmAXgXuRmYtc+AN+q9XmssuSc6bgEDxERERFlnaZpbZqmfR3GzOdsLi2yC8DnNU37MotPElPr83TW+jzfBXACgA1Z3NReAOfX+jwXs/gkMZqmdWua9mMYXZvWZnFTAQCXapp2LotPEqNpWkjTtF8COArGsm3Z0gzgKk3TzmLxSWI0TQtrmvYbALMAZLPLUhsAH4DTWHySmFqfJ1Lr8/wRwBEAsnmTrhPAdwCcwOKTxNT6PLLW57kTgIbsLvvSDeBHAOay+CRxmqbdCyM3/8niZoIAbgJwNItPElfr8zwMYCaMDk/ZEgZwM4DZLD5JXK3P8ySM3DySxc1EYBSHHcHik8RFl5KcCeOmYLZIGAVIh7H4JHG1Ps/LMD5v7oTx3zBb/g5AY/FJ4mp9ntdhXEP/EdnNzUMAZrL4JHGapr0J47vnb2F8ZmfLPwHMZPFJ4mp9nvdgjNn8EsaSudnybxjHDYtP+mAHFLIsdkChgbADChGR+nRdL4axzvDXAEzJ0NvuhDGL6k8sPEldtBvK12B0qpmaobetA/A3AH9k4UnqdF3Pg9FK3IdhZtYkoR7GDLfbWHiSumg3lKthnNcOy9DbBmDMovqDpmk7M/SethPthvJlAN+AMSjYK40ZaPsA3AcjN1szFqzNRLuhXAojN8dk6G1bATwA4NZan2dTht7Tlrz+wEUwutUcn6G3bIdxQ+P3tT7Pxxl6T1vSdf08ANcDOLHv82mc0zph3KC/VdM0PYOh2o7XH/g8jKVFTkVmOj52w2jj/vtan2dNBt7Ptrz+wOkwuj2egczkJgjjRuCtLApKj67rJwH4NoDPIzOTpUMAnoZxnbYiA+9nW15/4HgYBb1fQGaWsAjDuEn7h1qfZ2kG3s+2vP7AMTBycx4y040zAmNp5ttqfZ4XM/B+tqXr+iwA34WxfGK/bpwpXqtJAC8B+GO0eI9S5PUHDoNx3FwMoCBDb7sUwJ+iRa8UhwUoZFksQKGBsACFiGjk0HXdAWMQ8OvR/012wEnCWPrgdgDPaJqWzZkGthJtxb8QRrHD55Ha8i/LYOTmyVqfJ5jB8GxP1/WTYeRmMVIbDFwJwA/gMU3TejIYmu3puj4fRm6+CCAvhbd4G0ZuHtE0rSuTsdmdruvHwcjNhQDyUxgAfA9Gbh7SNK0jm7HajdcfmAMjN18CUJjCW+gwcvNArc/TlsnY7M7rDxwOIzeXAUhlAGQ9jBno99X6PM2ZjM3udF2fASM3lwMoS+GcthHGDPd7NE1rymasduP1B6bBKOa+EkMsmzSEzQD+CuBuFm9nltcfOBBGbr6C1JZN2g4jN3+r9XlYvJ1Buq5PgrEU3NUAhj6ZDWwXgFoAd2matiuTsdmd1x8YD2MihBfA2BTeYi+MCSl/rfV5tmUyNrvz+gNjYOTlqwAmpPAWDTC60dxZ6/Nks1Ox7ei6XgPjfHYtgMlA0gUoTTC6RN2haRo7OmaQ1x/wwLgOuA7AQSm8RQuMZd/9tT7PukzGNtKwAIUsiwUoNBAWoBARjUy6rlcCmA1gTvRnNoBqfHYjqgtGR4D3ALwL4B0AqzVN46Bslnn9gXLsn5tRMGYMOGDMnG0CsAZGbt4F8G6tz7PXjHjtRNf1UhhdHY7CZ/kZBeO4ieWmGcD7MI6ZdwG8q2lanSkB20i009MsGDmJ5WcMjOPGCeOc1gzgA3x2TnuXA+bZp+t6EYAjP2koOPvfH3l+PNRrF2mNd072dP8XRm64BFKWRbtwHYHPzmdzYAymF8IotuuEsfTRh+j/ecNONFnm9QfyYaydfg6Anw3z8r8BeB5GbngzI8uiHdIO21Bf8Pnn1nluGuq1iw9r/Pukyu7nYZzT2CUoy7z+gBvGUhbnAPjFMC+/F9HjBsAntT6PpcZERxqvP+CCsQTMOQD+Z5iX3w/gBRi52VDr80SyHJ6tRbvXHYr+32+mwrgWyIPRGagTxtKxvd9vAKzXNI25yaJo97rp6P/9ZhqM3OQD6IGRm43o8/0GwLpan4eThbIomptp+OyYOQrAIQCK0D83m/DZMfMOgI9qfZ5sLktie7quCxjnsDnbmvJPf/LDqiuHev2Z0wM/nzaq61kAuqZpnMiVRdGJdwfCOF5OB3DVML9yE4B/Afiw1ufhRK4EsACFKEFPP/30TBgzq2K0RYsWrTUrHruK5YEFKERERERElCqvPxD//W4gWq3Pw+98RFE8bqyLubEu5sa6mBsiIsoVfuZYF3OTHZlYV4+IiIiIiIiIiIiIiIiIiIiIbIwFKERERERERERERERERERERESUFhagEBEREREREREREREREREREVFaWIBCRERERERERERERERERERERGlhAQoRERERERERERERERERERERpYUFKERERERERERERERERERERESUFhagEBEREREREREREREREREREVFaWIBCRERERERERERERERERERERGlhAQoRERERERERERERERERERERpYUFKERERERERERERERERERERESUFhagEBEREREREREREREREREREVFaWIBCRERERERERERERERERERERGlhAQoRERERERERERERERERERERpYUFKERERERERERERERERERERESUFhagEBEREREREREREREREREREVFaWIBCRERERERERERERERERERERGlhAQoRERERERERERERERERERERpYUFKERERERERERERERERERERESUFhagEBEREREREREREREREREREVFaWIBCRERERERERERERERERERERGlhAQoRERERERERERERERERERERpYUFKERERERERERERERERERERESUFhagEBEREREREREREREREREREVFaWIBCRERERERERERERERERERERGlhAQoRERERERERERERERERERERpYUFKERERERERERERERERERERESUFhagEBEREREREREREREREREREVFaWIBCRERERERERERERERERERERGlhAQoRERERERERERERERERERERpYUFKERERERERERERERERERERESUFhagEBEREREREREREREREREREVFahJTS7BgoDR0dHUxgjrS1tWHVqlW9j+fOnYuSkhITI7KnWB4WLlxodihERERERKSo3U0R3Px0z5Cv+eGiPIyt5LwdohgeN9bF3FgXc2NdzA0REeUKP3Osa6TnpqioSJixXTX/axERERERERERERERERERERGRZbAAhYiIiIiIiIiIiIiIiIiIiIjSwgIUIiIiIiIiIiIiIiIiIiIiIkoLC1CIiIiIiIiIiIiIiIiIiIiIKC0sQCEiIiIiIiIiIiIiIiIiIiKitLAAhYiIiIiIiIiIiIiIiIiIiIjSwgIUIiIiIiIiIiIiIiIiIiIiIkoLC1CIiIiIiIiIiIiIiIiIiIiIKC0sQCEiIiIiIiIiIiIiIiIiIiKitLAAhYiIiIiIiIiIiIiIiIiIiIjSwgIUIiIiIiIiIiIiIiIiIiIiIkoLC1CIiIiIiIiIiIiIiIiIiIiIKC0uswMgIiIiIuorHJGo2yfR3i0RDBnPuZxAcb7AmAoBl1OYG6CNSSkRDAYRDochpQQACCHgcDiQl5cHIZgbswyVG7fbDYeDcw/MEp8bKWW/44a5IdqflBKhUAihUIjHDRERkU2FQiEEg8H9rgXcbjecTqfZ4dla7DotEon05kYIAbfbDZeLtx3NFA6HEQwGmRsiMpWIDU6Smrz+ABOYIyWudpw0enXv46V7ZqMtVGxiRPYUy8PChQvNDoWIiDKko1vig21hbGuQ2NEYwa4miWB44Nc6HcDYSoEDqhyYWC1w+AFOlBSw6CFbIpEI2tvb0d3dje7ubvT09GCo7w95eXnIz89Hfn4+ioqKOLiRRankJpaf4uJi5iaLIpEIOjo60NXVhZ6eHnR3dw+ZG7fb3e+4cbvdOYzWXoIhCX1HBFvqI9hUF8b2xqFfX1UCHDjagQlVDmgTHaguZdFDtkgpe4+b2DktEokM+vrYcZOXl4eioiLk5eXlMFp7CUckPtoRwea9EXxSF8HWhqGHoSqLgSmjHJhY5cCMCQ6MqeBxky2RiMS6XRF8uieCTXURbK4fOjcVRZ/lZvp4B8Z7mJtsiUiJj6O5+aQugk/3Dp2bskLgwFHG58308UaOKDuklNiwO4JNeyLYWBfBp3uGz83kGgcmVjswbawDk2uYm2zq7OzsvRbo7u5GODzIwAAAp9PZew1dWFiIgoKCHEZqP11dXejs7Ew6NwUFBSgsLMxhpPbTNzc9PT0IhUKDvjaWm7y8vN7jhhOJsmd7QwTrd0WwvdG4lm7pHPr1B44SOHiMAweNdmDaOAcczE3W7AxEsH5nBNuiuWnuGPr1U2oEDhrjwIGjHTh0nAMOhzq5KSoqMiVYFqAojgUoucMCFGtgAQoR0cixvTGC19eHsfrT8KAFJ8NxOoAjJzuwYLoLU0ZxMDBTuru70dLSgra2tiFvnA+nuLgYZWVlHHDKoJ6eHrS0tKC1tTWt3BQVFfXmhgNOmRHLTVtb25A3zofD3GReQ2sEK9aH8eYnYbR3p/YeAsD08Q7Mn+7EjAkcDMyUUCjUe04b6kbGcAoLC1FWVoaioiIeNxmyr11i5YYQVm0IDztYPpSDRgvMn+7CEZMccCo0UGtlLR0SqzaGsfLjEPYNM1g+lCmjBOYf4sKRkx3sMJghbV0SqzaEsXJDGIG21K/TDqgWmH+IE7OnOOF2MTeZ0N4t8ebGMFZ8HEZDa+q5meARmD/diTkHOpHH3GREJBJBa2srWlpaEAwGU36fvLw8lJWVoaSkhJ3SMiRTuXG73SgrK0NpaSlzkyGRSARtbW1oaWlBT09Pyu/jdrtRWlqK0tJSdhXKkJ6QxOrNYSxfH8b2xtQ/b6pKBOYd4sRxUznxLlNCYYn3tkSwfH0IW4Yp3B5KRTEwb5oLc6c5UVZo/dywAIVSwgKU3GEBijWwAIWISH2f1EXwzDvBYWfQJmt8pcA5c1w4dAK/NKeqq6sLjY2N6O5O8Q7tINxuNzweD4qLee2Uqu7ubjQ2NqKrqyuj7+t2u1FZWYmSkpKMvq+d9PT0oLGxEZ2dadyhHYDL5UJlZSVKS0sz+r52sqc5gqfeDmHdjggy+YnjKQZOP8KFudPYSShVwWAQjY2N6OhI4+75AJxOJyoqKlBWVsZClBQ1tUs8/XYQ72+NIJLBA6esEDh5pgsnzXAqNWPQSpo7JJ5+J4g1WyIIp17nuJ+SAuCkGS6cojlZJJSiti6JZ94J4d1PwwhlMDdF+cAJh7qw8DAni4RS1N4t8a93Q3h7U+qTHgZSmAfMn+7E5w53sUgoRZFIBIFAIO3C+nhCCJSVlaGyspLFDimKRCJoampCS0tLxnNTWloKj8fD3KQoEolg3759aGlpSWvSQzwhBEpKSuDxeFiIkqJQWOLFD0JYtj6MjgwOqbkcwJyDnPjCHBcLUVIUjki8rIfx2kchtGVwSC02KXLRUW6Um1PjkRAWoJhMCDETwJEAagDkA6gDsAPACillZkd5M4gFKLnDAhRrYAEKEZG6ekISz74bwuvrwhm9ERjv2IOdOPcYFwrzrHvxbzWxAabm5uasbqekpARVVVUc0EiClBJNTU3Yt29fVrdTXFyM6upq5iYJUkrs27cPTU1NWd1OUVERqquruWxSEiJSYunaMP7zXiijN5viHTLOgYvnueEp4edNoqSUaGlpQSAQyOgNjXgFBQWoqanhklZJWrkhhKffDqEr9UnOw5pcI3DJ8W6M5tI8SXl7UxhPvBlER+qTnIc1oUrg0vlujKtkbpLx3uYwHnsjmHKHrUSMrRS49Hg3JlYzN8n4cFsYS1YF0+riNJxRZQKXzHezG2eSOjo6UF9fn1b3s+G4XC7U1NSwG2eSOjs7UV9fP+QyLulyOp2oqalBUVFR1rYxEnV1daG+vj6tbjTDcTqdqK6u5uShJG1riOAfy4Oo25e97zclBcAFx7lx5GSO2SRjZ8DIzc4s3kovygPOO9aNow+yZm5YgBJHCHEggKMBHBX939kA+k792iqlnJzmNkoBXA/AB2DcIC9rBfA0gJuklJuSfP+bAPw8jRDvk1JeOdQLWICSOyxAsQYWoBARqemTuggeXhFMq91xMsqLgIvnuTGD3VCGlYtBjL44oJG47u5u1NfXp9VSNxkOhwPV1dXshpKAnp4e7N27N6e5qaqqYjeUBOxpjuCh5cG0WuomI98NLDrKheMPYYHQcILBIOrr6zPeyWkwQgh4PB52Q0lAoE3ikZVBfLwrg60bhuB2Amce6cLJmpPLWQ2juUNiyaog9O25yY3TAXzuCBdOO4zdUIbT1iXx2Kog1mzNTW4cAjj1MCfOOMLFbijDaO+W+OebQbz7aW5yIwRw4gwnPj+L3VCGE4lE0NjYiNbW1pxts6ysjB03EhDrSNPS0pKzbZaWlqKqqoq5GUauJgz1xclDiQmFJZ5bE8IrejijnQOHcuQkBy6Y62Y3lGGEIxIvfBDGix+EMto5cCjaRAcunGu9bigsQAEghDgJwI9gFJ14hnl5WgUoQohjATwJYGyCv9IB4HtSyjuS2MZNYAHKiMECFGtgAQoRkXre2BjCoytDOfsyFiMALDrahZNn8qbgYNra2rB3715Ttl1ZWYnKykpTtq2C9vZ27N27N6sdAgZTUVEBj2e4r2P21dHRgT179piSm7KyMlRVVfFm+iA+qYug9uWerHZvGMy8aU5cMNfFm+mD6OrqQl1dXUZbhSeqpKQENTU1PG4GsaMxgjte7MloO+pEHTHJgStOcPNm+iDq9kXgf6EHzZldqSohMyY48JWT3MjjzfQB1bdE4H8hiEBb7q8Fpo114JpT3Mh3MzcDCbRJ+F/oQX1L7nMzZZTAV0/NQ1E+czOQUCiE3bt352ziQ195eXkYO3Ysb6YPIhwOY/fu3Tkrru8rLy8PY8aMYbfHQYTDYdTV1WV8meREuN1ujB07lrkZRHdQovblIDbW5f77TVWJgO90N6rLWLw1kJ6QxN9fDWLdztznprwI8J2ehzEW6vZoVgGKdf4LGI4EcDqGLz5JixDiNACvYf/ik60AngXwCIDlAPpeDRUB8Ashvp7N2IiIiIhGkmXrQnhkRe6LTwBAAnjq7RCefz97rWNV1tLSYlrxCQA0NTWhsbHRtO1bWVtbm2kFDgCwb98+NDQ0mLJtq2tvb0ddXZ1puWlpaUFDQ4Np27eydTvCuPNFc4pPAGDlhjAeWBZExIwPPIvr7OzE7t27TSk+Acw/p1rZlvoI/vJfc4pPAOD9rRHUvhxEKMzcxNvRGMGfnjOn+AQAPtoRwZ0v9qA7yNzEq9tn5MaM4hMA2LA7gtuf70FXD3MTr6Elgj8+121K8QkAbN4r8Zfne9DezdzEC4VC2LVrlynFJ4DRvXDXrl1ZXVZGVbHcmFF8AjA3Q4kVBplRfAIY3QvNPG6trLNH4vbne0wpPgGAxjaJPz7Xgz37zNm+lXUHJe58sceU4hMAaO4A/vRcD3YGmBurFaAMphtAUsvfDEYIMRnAowDy+zy9CcDpUsrJUsovSCm/JKVcAGA0gL/EvcWfhBCptl74EoApSfx8L8XtEBEREZnujY0hPPFmCGYPv/3nvRBeXcvBjL7a2tosUWDQ3NyMpqYms8OwlFjnE7O1tLSwQChOrPOJ2VpbW5mbOJv2RHD3q0EEw+bGsXpzBI+sDLHQoY9Y5xOz/5t0dHSY1lXKqnYGIvjriz3oNPmewvpdEdy7NIgwi7d67Wk2utK0m3O/qdemPcbsURYIfaax1ehK09JpbhxbGyTuerkHPSHmJmZfu8TtLwSxr93cOHYGZLQglrmJid1EN7vAIBgMoq6uDuGwyReMFhLLjdkFBrHuOMzNZyKRCOrq6kwrDIqJ5cbs49dKekISd73Ug60N5p7nWzqB21/oQWMrCx1iQmGJv70SxKY95uamvRvwv9CDvS32zo0VC1CCANYA+BuAawHMAVAK4JoMvf+v0b/DyicA5kkpX4x/oZSySUr5TQA/6PO0A8BtQohU+rXVSSm3JPFj/l0BIiIiohRs2hPBoyvNLz6JeertEPTtHMwAgO7ubksUOMQ0NTWhra3N7DAsoaenx1K5aW5uzuka4FYWDAYtUXwS09LSktM1wK2sqV2i9uUe04tPYt78JIyXPrRIMCYLhUKWKD6JaW9vZ9FjVEe3xF9f6kGHufc0en24PYKn3+aNDQDoCkrc+WLQtK408dbviuDxN5gbAAiGJP76UtC0rjTxNu2ReHgFZ6UDQDhiFOSY1ZUm3rYGiQeWMTcAIKVEXV2d6QUOMbHvW1a5NjGTlBJ79uyxTG5iBULMjWHv3r2mdT6JZ7VrerM9tDyIT/da479Fcwfw15eCCLIgFQCw5I0QNuy2RtFHWxdw54tBW3cTtFoByn0AyqSUs6SUXinlXVLK1VLKjHwKCiEOBHBh3NNfkVIOOcorpfwtgFf7PDUDwJczERMREZHqNm/ejMcffxw//vGPccYZZ2DMmDEoLi7u/Tn00ENTet8HHnig3/uk83PcccdleK9pKD0hiYeWB01Zdmcoj64MosPm7ZCllJYqcIhpaGiw/YyaWG6sNqjT2NjI3EiJ+vp6y+UmEAhYZsDYTI+sCKLTIjfR/397dx4mR3Xm+f53cq19L0mlDYEAoQWE2IUEzWrANovBC8u4DaKR3T1ue9rje33bPXeM5/G4p2977m33bd+5Y4OBxsbgxoDHbTfYZtw2SAJkFmMMEhIgoV2oVItqze3MH1lVlFJVqszKJeJUfD/PowciKyLPG/lmZkSeeOOcUf/ySkp7u/zR8eWlQ4cOeTbtzmS6u7t905nvpR8975+L6KN+80Za2z0axtxPfrw55ZuL6KM2bUvrjT0U1v305ZQO9PgrNy+9k9HvdpKbp36X0p7D/srNa7sy2vwWuenp6fHdcXdwcFBHjhzxOgzP9fb2amjIJ9WOI4aHhymyV3bEy4EBf52oJRIJdXd3ex2G517ZkdbLO/x1vnqgx+pnrwS7z0aS/rA7ree3+eu423nE6se/DW5ufFWAMjLiSDmPeh/S0fv8nLX22Ty3/UbO8h2lCQkAAPf85je/0XXXXacFCxZoxYoV+tSnPqVvfvObeuaZZ/ghD/3kxZQOHfFXB6CUHZ7yR88H+2JtV1eXLy9YZzIZX0wJ5KXu7m7Ph9edyGjxRZD5sXNW8m9hTCVtejOlLXv91QEoSelM9s64IE8p0tfX57uO81F+LParpN+/m9Zv3/bf58ZK+sGGZKCnFNm6N62Nb/qr43zUwxuTGkoENzfvHMzoX1/3Z25+uCmp/qHg5mZ3Z0a/eNWfuXns+aR6BoKbm0Qi4duRxzo7O335u7hSksmkDh8+7HUYE+rq6vLl7+JKSaVSvp1utaury3cFZZXUN2T1T8/583vjV39Ia8dB/53fV8rAsNUjG/2Zm41b09q2z5/nKeXmqwKUCrg4Z/mpArZ9WtL4I9+FxpiO4kMCAMA9r776qp5++mnf/mCFd7bvz+iZN/x7Yv3btzOBnYpneHjY13esDAwMBHYqHj93zkrZuwSDOhWPnztnJWloaCiwuenqt3rCx1N27Oq0evq1YB5vUqmUr4sKk8mkr79zy2lg2OqHm/zZOStJh45Y/eRF/36uy2koafWwj6dT6e6XHvfxd245JUdGd/Rr3VrfkPRoQIvs0xmr7/tw5M1RAwn5+ju3nPxeKO33+MrJ7/vu9/jK7b333vPdCILjBTk3//Scf6ZIzGWt9NCG4E7F8/jmlO9GdxxlJT20IRXIqXgiXgdQYfNzll/Ld0Nr7bAxZruy0+9I2eKdayR9t0SxAQDgvHg8rnnz5untt98u+XOfe+65euCBB6a1bSwWK3E0mMxPXkzK76fUP96c0ooFYa/DqDg/X0Qf1dnZqdraWhljvA6lolzITVdXl+rr6wOXm66uLt93sI3mJhQK1v0lT/0upSGfX9P5xasprV0SVk08WJ+b7u5uX3ecS9kYGxoaFIkEq1vsV39IqXfQ6yiO75ktaV2yLKzW+mB9pz3zRlqH+72O4vie25bWpcvDmtMUrNxs2pbWwV5/nwu89E5Gly3PaEFbsHKz+a209nb5Ozev7cpo+/6MTp4TrNz09/f7fqSEoaEhDQ4OqqamxutQKmpwcNCXozuONzw8rP7+ftXV1XkdSkUNDg5qcNDfJ2qJREJ9fX2qr6/3OpSK2nkoo1d8NvVOrgM9Vs9tS+uipcH6fbOvK6MXtvv7xo/DfVbPbEnritODlZtg7a3UkrPcXeD2ueufPu1IAABwXDQa1dKlS3XWWWfp7LPP1qpVq7RixQpt2rRJ11xzTcnbq6qq0gknnFDy50Xp7OrMaMd7/u4AlKSDvVZb96a1ZG5wilASiYTvOzIkKZ1Oa2BgQLW1tV6HUjGpVMq301SMl06nA9cJmE6nnRiVJ5PJqK+vTw0NDV6HUjGDCasX3/Z3J5MkJVLSC9vTumR5cLpeRt+PLjhy5Iiam5u9DqNi0hmrTT6d3mU8a6WNb6Z17dnBuVibsVYbt7oxusiGrWnddH5wciNJz27x/+dGkp7ZmtatAStAecaR3Dy7JaWT5wTrphhXRujr7e0NXAFKT0+P1yHkpbe3N1C/PSW3PjdBK0B59g03ztOe3Rq8ApRnt7pxLrBxa1qXrQgrFKCbuoJ1Vnr0FDqSFC9w+9z1l0241uQ+bYz5pTFmjzFmyBhzxBizwxjza2PMfzbGXFTg8wEA4InbbrtN+/fv16ZNm/Stb31L69at06pVqxSNRr0ODR5ypXNWcucHSqm40pEhuRVrKbi0v650VpaKS7lxKdZSeH57Wgk3+gC1YWva96PolFJfX5/vRz8Z1dvbG6jc/G5HRkf8fcPzmOe2pZVKByc3r+/O+H70k1Gbt6cDNYT4m/vSOtDjxv6+9HZaA8NuxFoKO97LaHenG/v76rsZ9Q64EWspJBIJ34+wMWpgYEDJpM+H1CuhZDLpxI0pUnaEmkQi93LezJVKpdTf78bJwPDwsO9HOCql/mGrl30++smo/d1W2/e7EWspDCetNr/lRv9uZ5/VG7uDkxspeAUonTnLHQVun7v+kgK3v1nS5ZLmKlvMUifpBEkXS/qypN8YYzYbY64o8HkBAKio5uZmVVVVeR0GfGRg2Oqld9w46Zek197NqLs/GJ2ALt2NLmWHnQ1KJ6C1VkeOHPE6jLwFqaPJtdy41NFfChscKng82Gv15r7gdDS5VAw1OupWUDzryAgbktQ3JN8Pc15KLhVxDyblxAhUpeJSbpLpbIFmUDy7xZ3vtHQmO5VTULh0LiC5F28xXNtX1+Ithku/PaVg3Zzy/La0kg59hbt0fCzW5rfSGnao+zBoN0MGrQDljZzlC/Ld0BizUNnCkfEai47oWOdI+vnIiCjBGYsHAACfymQyeuGFF/TII4/o7//+7/W3f/u3euSRR7wOy3de25Vx5m50ScpY6eUdwTjxHxgYcOZu9FEuFcwUY3BwUOm0W+/DoORmaGhIqZRDX2oKTm52dWZ0sNetAsIX33brO3i6EomEc3eqBuVz091v9dYBxz43DhU2F6N/2GrLHre+I4JSgJJIWf3+XXLjR+mMda5ILSi5sdY6d2x1Ld5iuLavrsVbDNf2tb+/PzAjCbp2TvrquxklU8HIjUs3QkrSG3sygRqtLmgFKL/OWb7JGJPvJH9/PMFj+U50tkfSdyTdJWmtslP3nCZpjaQ/l/RUzvpG2RFRvp7n8wMAgGl68MEHVVtbO/bvwQcflJS9MPyVr3xFp556qi699FKtW7dOf/mXf6m7775bf/EXfyFJ+vznP3/Utt/73vemFcPatWuPep7XX3+9ZPtXKe8ecqsDUMpexAwCF0escDHm6XBxP127uDxdLubGxZinw8Xjzbscb3zLxZinw8nPjYMxT8euzoxc64beddgG4qLTnsNWGcd2c2+XDcT0Vfu7rVN3o0vSwR6roQBMX5VKpZy7+SGdTjt3U8B0pFIp5/Yzk8kEYnRUF/fTWutczNORSlvt63LruzudkfY4FvN0ZKzVLkem4htlbXD6oqXgFaD8VFL3uOUmSXdPtZExZoGkL07wp7Axpvo4m74g6SpJC6y1662191hrN1hr37DWbrXWbrTW/oO19mpJ50ralrP9/2GMuX6q+AAAQGlt2bJFa9as0Te+8Q3t27dv0vXWr19/1PK9995bcFsvv/yyXn755bHlNWvWaNmyZQU/j9dcPIHedcitHyrT5WLBQFAuCLq4ny7GPB0u7mcikQjEBUHXOpkk6UC3VSIAd6G5+Llx8WLMdLh4ntY3pEBMl+ji+ehwMnsxfaZzsQgqnZFzF8qmw8XvNCtpt4PnMIVy8VxAcjfuQri6j67GXQhX99HVuAuxp8sq7d4hR7scPIcp1MEe69RI3KOCcC4wKlAFKNbaI5K+mfPwF40xn59sG2PMfElPavLpdiZ9t1hrf2at/bnNoxfQWvtbZacEejPnT//FGBOeansAAFAaXV1d+uhHP6qtW7dKkmKxmFavXq2bbrpJ1157rVasWKHRWfKWL1+utWvXjm37wgsv6NVXXy2ove985ztHLd95551F7kHlZTJWew67dwL9Xq/VUMK9uAvlYqdAOp12bvqT6XAxNy7enTUdLhZuWWudjLtQLl50ylg5eZwslKvvPxe/iwvlYuGW5ObnvVCu7qOr76lCuJsbN+MuhKvvvyDkxtVjqqtxF4LzNP9ydR9djbsQrhZyuHqcLISr+xiEc4FRgSpAGfF1ZUcmGWUk/Z0x5hljzO3GmDONMUuMMZcaY/4vSW8oO2WOJO3Oea4ha+1QqQKz1h6WdIuOLmo5TdKlpWoDAAAc39e//nW98847qqqq0t13361du3bpl7/8pf7xH/9RDz/8sJ5//nlt2LBhbP3cUVC++93v5t1Wb2+vHn300bHltrY23XDDDUXvQ6Ud6HFvCGRp5C60GX5BMJlMOjcE8ihXO8jy5fJQzzO9o8nlIpsZ/7nJuDcE8qjdAehocvW7YaZ/biR3339B6KB19Vx012Fy41euXpAphKvfaa7GXQhXj6munsMUwtV9dPU9VQhX99HV91QhXL2JIAjHG1f3MQjnaaMiXgdQadbahDHmRkk/k3TGuD+tHfk3mU5Jd0p6atxj3WWI7yVjzM+Vnbpn1NWSflnqtgAAcMnQ0JB27tw5rW07OjoUi8XyWvfIkSOKxWJ6/PHHdfHFF0+4zqJFi8b+/7rrrtOcOXO0f/9+SdLDDz+sr33ta6qrq5uyrYceekj9/f1jy5/85CcVj8fzitNP+h3+zdk/PLNP/F0tPpHkbHFGvlzeP5ffV/lwef9cfl/lYygpJ4dAltw+VubDWuvsFFAz/XMjufv+G3A07kL0D7n5uRlwNO5COJubGf77RnL3O83VuAvh6jHV5fP/fLmaG1fjLoSr+xiEz02fo8fUmd7XKbm7j0E4TxsVuAIUSbLW7jHGXCjpv0paJyk6xSa/GllvXs7j+8sQnpSd8md8AcoZk60IAEBQbN68WcuWLZt6xQls3LhRK1euzHv9L33pS5MWn+SKRqO644479Nd//deSsgUsP/zhD7Vu3bopt7333nvH/t8Y4+T0O5KUTLl78uziyC2FcLlDwNULmflyef9cjj0ffG78K+nwzFzJ9MzODZ8b/0pnrDKO7mJihp+nSe6ei7oadyFSju5jEHLj6u/PIOTG1WOqq3EXwtV9dDXuQri6j67GXQhXf38G4XhDbvwviFPwSJKstf3W2s9IWiLpr5QtMtktaVDSEWWn3nlA0pWSLrfW7pC0NOdpflum8HbkLLeXqR0AAJCjpqZGf/qnf1rQNnfeeacikffrescXlkxm48aNev3118eWL7/8cp144okFtQsAAAAAwKiZfzkQAAAAfhfYApRR1tp3rLVft9ZeZq1dYK2tsdY2WGuXWWtvt9b+0r5fyrc6Z/PnyxTWYM5ydZnaAQAAOS6++GI1NjYWtE1HR4euvfbaseVXXnlFL7744nG3ueeee45avuuuuwpq00+iEeN1CNMWDXsdQXmFQu6e7hvj7vsqHy7vn8ux54PPjX9FHR7DNRqe2bnhc+Nf4ZBRyNFdjM3w8zTJ3XNRV+MuRMTRfQzE58bR359B+Ny4ekx1Ne5CuLqPrsZdCFf30dW4C+Hq788gHG/Ijf+520NQYSb7bXpZzsO/LlNzbTnLh8rUDgAAzrjooovU398/rX+FTL9TyLrjrV+//qjl3AKT8To7O/XEE0+MLc+bN0/XXHPNtNr1g5q41xFMX03M6wjKy+ULguHwzP5V5nJuXI49Hy7vn8ux56MqKmcvpLt8rMyHMcbZTuiZfryR3H3/Vc/w8zRJqom7+bmpdjTuQpAb/3L1N5yr38WFcPVc1NW4C+Hq+Y6rcRfC1fefq3EXojbm5jE1GOcCbu5jEHIzauZ/Q5TOZZIWjVv+tbV2W5naOj9neW+Z2gEAADna26c3893FF1+spUvfn63v0UcfVU9Pz4TrPvjggxoeHh5bvuOOO5z+UT270Sji4FmlkTSvxcHACxCJRJy9IBiLOdqznKdIJOLs5z4en9m956FQ6Khp1Vwy03MTDhl1NLn5nTbTjzeSu9/brsZdCFfff/Nb3Yy7EPNa3PxOm+/oe6oQ7ubGzbgL4ex3mqNxF8LVc1FX4y6Eq+c7rsZdCFfff67GXQjOBfyL3PjfzD/rKZ0v5Sz/93I0YoypknRjzsP/Wo62AADAserq6qa97fhpdAYGBvSDH/zgmHWstbrvvvvGliORiG6//fZpt+kH4ZDRXAdPoFvrjbN3NubLGONkp0A4HHa2AKAQLubGGENufMoYE4gO2vlt7nVjGBOMjiYXPzeSu3EXYkGrm++/BQEoQFno6D4ubHPzPVUIV3OzwMHjZKEWOPr+c/W7uBCuHlODcA7tam5cjbsQru5jED43rp6LLgzEuYCb++jqe2o6grOnRTDGfErSleMeekXSP5WpuS9JmjduOS3pp2VqCwAAlNCtt96q+vr6seV77733mHV+9atfafv27WPLH/rQh9TR0VGR+MrJxRPoIHQASm52ZrgY83S42GETj8edHVWnEC6+B2OxWCBy4+J39+xGo3jUvbgL5eLnxuXRqArh4nlabVxqqZv5nxsXv9NiEWlWo3txF8rFCxvhkDSvOQC5cfA7zSgYozq5+PtGcvMcplCu7qOrcReCz41/zW0xTk4B6+JxslBzGo2iDv6Mc/Hcf7pm/rtwAsaYvG/ZM8bcKOk74x5KSVpnrU1Nsd0njTGzC4zrLklfyXn4fmvtzkKeBwAAeKO+vl633HLL2PLrr7+ujRs3HrVOblHKnXfeWZHYys3FE+gg3BEgudkp4GoHTKFczI2LMU+Hi/vpYszT4eId6S4eI6fDxfdgUI43Lp7zBKHjXHKzyGF+i1EoAAWP8x286NTRZBQJOxb0NMxtdm8K2LYGo+rYzM9NNBp1riA6KKNvulh06/LUqIVw8T0YlNE3YxGjOY5NARsy7k5PU4hQyDi3n0bB+Y0j+bAAxRgz3xizKPefpDk5q0YmWm/kX9sUzfzeGPMNY8xqY8yEr4ExZoUx5vuSfiQpOu5PX7bWvpzHrtwp6R1jzAPGmA8ZY2onW9EYc44x5jFJ31b2PThqj6T/kEdbAADAJ8ZPwyNJ99xzz9j/79+/Xz/96fsDmy1evFiXXXZZxWIrpzMWhp2qPDdGOnORQwEXoaamxrlOwGKmwnJJdXW1QiHf/SQ7rqDkpqqqyrkO2traSX9yzigL24xa6936Tlt1olvvpemKxWKKRqNTr+gjQflOa6kzOsGxKStWnejW8XG66qqMTulwa1+D8p0Wjxotm09u/CgcMjrjBMdys8iteKfLGOPcsdW1eIvh2u+F2tpa5/oypsu192GQcuPasXX5gpBiEXLjR6d0hFRbFYzcSD4sQJH0rKR3Jvj3g5z15k2y3juSvjFFG+2S/r2kjZJ6jDEbjTE/MsZ83xjzc2PMDkm/l3RrznZfs9b+bQH7Ui3pjyX9s6ReY8wWY8yTxphHjDEPGWOeMsbsl7RZ0kdytj0s6Wpr7f4C2gMAAB5btmyZLrroorHlJ554Qp2dnZKkBx54QMlkcuxv69atmzE/2GqrjM50qFNt2bxQIIZ1l7J3DbnUmVFVVRWIO2mkbG7GT9vld/F43MkRDqbDGONUbqLRqKqrq70OoyKMMVqzxJ2OptZ6o6Xz3Dk+FquhocHrEPIWDoeduxBTjLWnuXNnbU1cOsuxDuVirHXoOy0ekc5b7E68xXIpN5GQdMEp7sRbLJe+00JGWrPEnXiL5dK5gORevMVwbV9di7cYru2ra/EWY/UpYYUd+jm39rTgnAucf3JYMYcOr0HKjeTPApRKq5O0WtKNyhacXCnphJx1uiTdYq39P4toJyRpiaSrJH1c0i2SPiBpoml6npa00lr7WhHtAQAAj6xfv37s/4eHh/W9731PmUxG999//9jj8Xhcn/zkJz2IrnzWOtSpFrST/sbGRq9DyFuQOjIkt/bXpVhLwaX9dSnWUrjgZHdG3VpzajgQU1WMqq+vd6a41qVYS+GsE0OqdaSG8LyTw4G5c1OSTl8YUmON11Hk5+yTwqoKwDQio06bF1KbI6NunbkopLoA3VW7eHZIHc1u7O+KBSE11boRaym4VLReXV3t3OhtxYjFYs4Urbv0PiqFSCSimho3TgZisZiqqqq8DqNi6quNVjoy6tasBqMljo2sV4zqmNHZjhStN9VIpy8ITm6k4Bag/J2klyVlplhvl6T/JGmxtfbhAtv4pqSHJO3Mc/1+SY9LusJae4W1dneB7QEAAJ+47rrr1NHRMbZ833336cknn9S777479thHPvIRtba2ehFe2SyaFdL8Vv93rAXtbnTJnQ6CoN2NLrkzckUoFApcbiKRiBP77NpoLaXgyqhb0XCw7kaX3BrZKWiFW5Gw0fkOvB+N3Bp1ohTCIaPVp7pRyB20Im6XRt1yaUSQUnHluyJonxvJnWOsK3GWkiv77EqcpeTKPrsSZym5coy9cEk4UAX2kjvH2AuXRBQKBSs3vuuxsdYustaaIv/dPkUbX7PWniWpWdIlku6Q9L9L+o+S/jdlR0JZbq1daK39irW2axr78bi19jZr7aKRdtYqO+rJv5P0ZUn/QdJnJd0m6SxJjdbaG621TxfaFgAA8JdIJKJ169aNLW/btk1f+MIXjlrnrrvuqnRYFXHt2f7/UXbtWZHA/SCTpJaWFq9DmFJzczO58anm5maFQr77+Vh2Lrwng5qbq1dGfD/c7qXLw4Ga43lUU1OT79+TDQ0NikR8/gYqg8tXRHw/CsoFp4bV3uDv9085/NHSsO9HQTn7pJDmtQQvN2uWhNXq86k7T18Q0omzgpeb808Oa3ajv3OzZG5IS+a6cXGslOrq6nw/rWo8HndmxIlSqqmp8f3IIrFYzKlphEulurra9zcORaNRZ4rNS2nx7JBW+Hz0itZ6owtPDd7xZn5rSKt8fnNKY410kSOFMqUUvF/b41hreyX9euRfOdvplrShnG0AAFBpe/bsUSqVOubxAwcOHLWcSqW0c+fEA4LV1taqra0tr/aGhoYmfZ58dHR0VLQD5I477tDf/M3fjL1Gu3btGvvb8uXLdcEFF1Qslko6bW5Yq0/NaNObaa9DmdCZJ4S0ypHhGUutqqpKDQ0N6u3t9TqUCVVXVwfyThop2/nZ1NSk7u5ur0OZ0Oh7J4hisZiamprU1VXwPQkVEY/HnZpiq5TaGkK69uyIfvT8seciftDRbHTVymB2uUQiEbW0tOjQoUNehzKhaDTqROFfOdRVGX30gqge+HXS61Am1Fwr3XBuMD83NXGjj6+O6jtP+zM3DdXSTecHZ5qK8eJRo1vWRPStp5KyXgczgZq49PHVwcxNNGJ065qo/u5fErI+TE48Kt18YTBzY4xRe3u79uzZ43UoEzLGaNasWb4vNC+H8bmxfvzgSIHPze7du32bm/b29kDmRsoea98+MKyBhNeRHMtIunVNVPFoMHPz0Qui2rZ/WH1DXkcysZsvjKomHrzcBPNXHQAAKNoVV1xx1JQyk9m7d6+WLVs24d9uu+02ffvb386rvc2bN0/6PPnYuHGjVq5cOe3tC9XR0aHrrrtOjz322DF/m6mjn4y64dyItuxJq6vf60iOVhvP/igJspaWFg0ODiqZ9NfFjVAopPb2dq/D8FRzc7MGBgaUSPirN2O0EyyonUxSdjSHgYEBDQ8Pex3KUchN9i6i3+1Ia/sBf3XQhox029qoIuHg5qahoUH9/f0aHBz0OpRjtLe3+36ElnI668SwXtmR1u92TjUrdeXdvCaqqoB2nEvSigVhnbs4rc1v+S83H18dVW0AO85HndIR1prTMnp2i/+K7G86L6qGmuDmZtGskC5dHtb/fM1/ubnhnIhafD56TjnF43E1Nzf7spC7ublZ0Whw+wZisZiam5t1+PBhr0M5RnNzs+9HzymnaDSq1tZWXxZyNzY2+n6ElnJqrDG68fyovveMv/rTpOw0NCfPCe7vm7qqbCH3d3/lv9ycf3JYy+YH80bI4L4jAQAAymz9+vXHPFZXV6ebb77Zg2gqpypqdPOaqPzW1faxC6Kqr/ZbVJXl10KP1tbWQE6FMN5oMYHftLS0BLpzVvJvoUfQO2elbG5uWRtV3GdfH1ecHtaCVrpb/FjoEfSO81EfuyCqOp+9DBeeGtZpAZymIteN50V9NxXP2SeFdPpCcnPd2RG11vvrXOD0hSGds5jcfPDMiO+m4lkyN6QLl/jsBMUDTU1NvjtfraqqCuwIguM1Njb6biqe0dEng66+vl7V1dVeh3GUII8gON65i8O+m4qnrd44MR16ua08IayzTvRXbppqpI+cF9zc+CsbAAAAM8hFF110zKgtn/jEJwIxX+ppc8O68Xz/nGRfc2YksFPv5KqqqvJVoUNjY2MgPhP5iMfjmjVrltdhjGloaKBzdkQsFvNVburq6sjNiLb6kNZdGlXYJ70bqxaFdM0q/xz/vBSJRDR79mzfFG/V1NTQcT6ivtpo/RUxxX1SX3ja3JBu8tF5o5dq4kafviKmap9cr1082wR2CpFc8ajRp6/wT/HWwjajf3MRuZGyU/F8+gr/FG/NbTa6/Y/IjZQtFp4zZ45vbjaIRqO+Ojfx0mhu/HKzQSQS0Zw5c8iN3p8iyi+5CYfD5GacT14c1YJWf7wWdVXSp68I7tQ7uW5ZE9WJs/zxWtTEpU9fGVN1zB/xeMH4dS4x5Oeu/+8wCayQuki/Lpn90tjyvx44S32pWg8jCqbRPFx55ZVehwIAebn88sv13HPPjS1Xeiogr/3i1ZT++aWUpzFctiKs68/xxw93P+np6VFnZ6enMTQ0NKitrc3TGPyot7fX8yF36+rqfDnqh9f6+vp08OBBT2Oora0N7Lzox/O7nWk98Ouk0h7OXLFiwWgxDLkZb2BgQAcOHPB0Lvvq6mo6ziewbV9a3346qYSHp2qLZ2cLLug4P9qOgxn9t18kNOThSOIL24z+7APB7jifyO7OjL7184QGPJyZb26z0Weviqm2ityMt787o394MqEjQ97FMLvR6LNXx9QQ8JE3cyWTSe3du1fptHdTJUUiEc2dO9c3xTB+kUqltHfvXqVS3p0MhMNhzZ071zcFF36RSqW0b98+T6dQDofD6ujo8N1IRl7rH7L6f59KaF+Xd79vauPSn30gpvmMvHmUwYTVt55KaFenh789o9JnPhDTonZ/5Kamxpu5Gv2x9wAAADPQG2+8cVTxyXnnnReo4hNJuvKMiG46P+LZdDwfXBWh+GQSjY2NnhZ/NDU1UXwyiYaGBk9H22hoaKD4ZBJ1dXWe3jVZX19P8ckkVp4Q1l2XRRXz6JrC2SdRfDKZmpoaT4s/vG7fz07pCOvPPhBTjUfXFJbOC+kzV1J8MpFFs0L67NUxz0bbOGVOSP/2KopPJjK/NaTPXR3zbLSNE2cZ/fnVFJ9MZE5TSJ/7YEzNHt0vOL/V6HPXUHwykWg06mnxh9ft+9loYY5XxR/RaFTz5s2j+GQCo7nxqvjD6/b9rLbK6HNXx7So3Zvv+8Ya6XPXUHwykepYthD05Nne5KauSvrs1f4pPvESrwAAAECZ3HPPPUct/8mf/IlHkXjr4qURra/wkMh1VdLtl0R11Uo6mI6noaFBHR0dFe2IC4VCam9vZxqEKdTV1VW8k9QYo7a2NrW1tXGh9jhqa2vV0dFR0U5SY4xaW1spDJrC0vlhff6amOY1V+41ioal68+J6N9cRPHJ8VRXV2vevHmKx+MVbbe5uZmh9qdw4qyQ/uLDsYoOVx0y0lUrw7rr8qhiEXIzmQWtIX3hQzGdMqdy3bchI12+IqzPXBlVFYVBk+poDukLH4pr6bzK5cZIunjpSNFYnNxMZlZDSF/4cFynL6jsZY8LTw3rc1fHVEdh0KRGCw1qaytbIeTF7yrXjBYa1NXVVbTd2tpacjOF0dFhKj1tcU1NDaPSTKEmbvRvr4rp4qXhit50t3Re9hxkThOX9ydTFTX6zJUxXbY8rEr+DDylI6R//+E4hUEjmILHcUzBUzlMweMPTMEDwBWHDh3SsmXL1N/fL0lqa2vTm2++WfELL34yMGz1+OaUXthe3mF3zzwhpI+tjtL5V4BMJqPOzk4dOXKkrO3U1NSora2NDqYCZDIZHT58WL29vWVtp7q6Wu3t7eSmANZaHT58WD09PWVtp6qqSu3t7XT+FSCdsXrqdyn94tW0MmX8xbyo3ei2tVHNaqSDKV/WWnV3d6urq6us7cRiMc2aNYs7NguQsVa/fj2tn76UUrKMp2odzdnPzQI6ZvNmrdWzW9P6H79NlXW6pNmNRreujXLHZoE2vZnSE5tTZZ0uqa0+m5vFs8lNIX77Vlo/eiFZ1umSmmulW9ZEtWRuuHyNzEB9fX06dOiQMpnyzZ0YDofV3t6umhqPhityVH9/vw4dOlTW6ZLC4bDa2toqXozkuoGBAb333ntlzU0oFFJbW1vFi5Fct31/Rg9tSKrzSPl+fFZHpRvOi+iCU+izKcQ7BzN66NmkDvaWLzfxiHTdORGtWRL25Y0PXk3BQwGK4yhAqRwKUPyBAhQArvjMZz6jBx98cGz5r/7qr/TlL3/Zw4j84w+70/rx5pQO9JT2NKat3ujDZ0e0ahGdf9M1ODiozs5OJRKJkj5vJBJRc3Nzxe/amUnKlZtwOKzm5mY1NDSU9HmDZGhoSJ2dnRoeLu3VjXA4rKamJjU0NPiyE8MFuzszeuyFpN46UNrjTV2VdMXpEf3RsrBC5GZaEomEDh06pKGhoZI+bygUUmNjo5qamvjcTNPBnoweeyGlLXsyKuUnpzom/dHSsK48I6JImNxMR+eRbG7+sDujUnbnVkWltaeFdfXKiKKMSDMtXf1Wj7+Q1O/fzZS08DEWkS5cEtaHVkUYLWiaegesHt+c1Cs7SpubaFi64JSwPnx2hNGCpimdTquzs1N9fX0lfV5jjOrq6tTS0qJwmL6B6Uin0zp8+LD6+vpU6uuHdXV1am1tJTfTNHqDypEjR8qSm5aWFm5KmabhpNXPXk5p45vpkhYMh4x0xsKQPnJeVE21HG+mI5my+pdXUnp2a1rDJSwYNkZaPj+kG8+LqLXev0XCFKBgWihAqRwKUPyBAhQAfrR//34NDw8rlUpp586duu+++/TYY4+N/b21tVWvvfYaF3hzbNuX1rNb0nq1iI7a0ZP9tUvCOm1eiItNJTI0NKSenp6xEXymq7q6Wg0NDaqpqSE3JTI0NKTe3l719/cX1eFEbkpveHhYvb29RXfUVlVVqaGhQbW1teSmRPYczujZLWm9+HZaw0V0Bp44y2jtaRGdeUKIC+glkkgk1NvbW3QnejweH/vchEL+7fxzycHejDZsSeuF7WkNFFH7OL/FaO1pYZ19UpgL6CVy6EhGG7am9fy2tPqLqH3saDZauySscxeHFecCekkc7rPa+GZKm95Mq6+I+rrZjdnPzXmLw6qKkZtS6O5/Pze9g9N/nvYGozVLwjr/5DBTIZVIKpXSkSNH1NvbW9TIDpFIRA0NDaqvr6e4oUTS6fRYblKp6Z9Eh8PhsdxQ3FAa5Ma/BhNWL2xPa8PWdFE33tVXSatPDevCJRE1U3hSEkNJq81vpbVhS1r7uqefm9p4tgh1zZKwrwtPRlGAgmmhAKVyKEDxBwpQAPjR1VdfrWeeeWbSv9977726+eabKxiRW3oGrF7ZkdauzozePWR1sNdOelenUbbTb36r0cK2kFaeEFZLHT/EyiWdTquvr0/Dw8MaHh5WMnn8WwUikYji8bji8bhqa2uZMqSM0um0+vv7NTQ0pEQiMeXIKONzU1NTw7QUZTSam9HPTT65icViY58bclM+QwmrV3amtfM9q3c7M9rXZZU+zsjvTbXSgtaQFrSGtGJBSPNa/N+55KpMJnPMd9rx+qvC4fBR32lBnuKw3BIpq1d3ZvTOexntOpTR3i573Cl6GqpHPzdGS+eHmc6ljJIpq9+/m9HbBzPa1ZnRnsPHz01d1bjczAvrJKZzKZtU2uq1XRm9deD93Bzvbuja+Ehu2oyWdIR0SgcXz8slncnm5u2R3Ow+bI97N3RN/P3PzakdIZ3awU0P5WKt1cDAgIaGhsbOo493LhAKhRSPxxWLxVRdXa3q6mpyUybWWg0ODmpwcHDs983xpk8yxoydp1VVVXHTQxmNz00ikdDw8DC58ZFt+9Laui+jXYesdnVmjls4HItkC7cXtIZ00uyQTl8YUjhEbsrlrQMZbdmT1q7ObG6OVzgci0jzRnJz4qyQzljo1g0pFKBgWgYGBkhghfT19WnTpk1jy6tXr2YuPA+M5oECFAB+crwClC9+8Yv66le/WuGI3DactNrbZdU39H4nejQs1cSN5jUb7gL0UCaTUSKRUDqdHusMNMYoFAopFotxp5mHyI1/WWs1PDxMbnwolbba12XVM5g93mQy2eNNPCrNawmprorjjVestUokEkqlUkd9bowxisVi3KHpoXTGan+3VVe/VSotpTNSZORz09EUUqM3/ZuQlMlY7e+x6urLfqeN5SYizWkKMWy7hzLW6mCPVeeRo3MTi0izG0MU1HsoY63e67E61GeVTI3LTVia1WicuLN5prLWKpVKKZlMjl1QHz0XiEaj3OzgofG5sdaOnauFQiFFo1FFIhGKGjyUTCYnzE0kElE0GiU3HjrcZ3WgJ6NESkqlpXAo+/uztd5oVqNhelcPdfdb7e/OaDgnN811RnMajUIOFwN5VYDCL3YAAIASikQiamtr0/nnn6/169frkksu8Tok58SjRifOcvfEfiYLhUKqqqryOgxMgNz4lzGG3PhUJGy0oM1ogdeB4Bjj786Ev4RDRvNajOa1eB0JcoVCRnObjeY2ex0JcoWM0ZwmozlNXkeCXCFjNLvJaHaT15EgF4Um/kVu/I3c+FdLnVFLHTeg+FFTrVFTLbkpJQpQAAAAivTkk096HQIAAAAAAAAAAICnGEMOAAAAAAAAAAAAAAAARaEABQAAAAAAAAAAAAAAAEWhAAUAAAAAAAAAAAAAAABFoQAFAAAAAAAAAAAAAAAARaEABQAAAAAAAAAAAAAAAEWhAAUAAAAAAAAAAAAAAABFoQAFAAAAAAAAAAAAAAAARaEABQAAAAAAAAAAAAAAAEWhAAUAAAAAAAAAAAAAAABFoQAFAAAAAAAAAAAAAAAARaEABQAAAAAAAAAAAAAAAEWJeB0AilNTU2O8jiEofvGLXyyX9Nro8qZNm1Zcf/31f/AwpEAazQPvfQAAAAAAAAAAAADwD0ZAAQAAAAAAAAAAAAAAQFEoQAEAAAAAAAAAAAAAAEBRKEABAAAAAAAAAAAAAABAUShAAQAAAAAAAAAAAAAAQFEoQAEAAAAAAAAAAAAAAEBRKEABAAAAAAAAAAAAAABAUShAAQAAAAAAAAAAAAAAQFEoQAEAAAAAAAAAAAAAAEBRKEABAAAAAAAAAAAAAABAUShAAQAAAAAAAAAAAAAAQFEoQAEAAAAAAAAAAAAAAEBRKEABAAAAAAAAAAAAAABAUShAAQAAAAAAAAAAAAAAQFEoQAEAAAAAAAAAAAAAAEBRIl4HgOkxxlRJWux1HEFy/fXXL7788svHlp9++unFN9xwg3cBBdRoHowxy0ceestaO+RpUAAAAAAAAAAAAAAQcMZa63UMmIaRi++veR0H4AMrrLV/8DoIAAAAAAAAAAAAAAgypuAB4LoWrwMAAAAAAAAAAAAAgKCjAAWA65q9DgAAAAAAAAAAAAAAgi7idQCYtrckrfA6iIBZLOnH45avVzYPqKzcPOzyKhAAAAAAAAAAAAAAQBYFKI6y1g5J+oPXcQSJMSb3obesteSgwibIQ8KLOAAAAAAAAAAAAAAA72MKHgAAAAAAAAAAAAAAABSFAhQAAAAAAAAAAAAAAAAUhQIUAAAAAAAAAAAAAAAAFIUCFAAAAAAAAAAAAAAAABSFAhQAAAAAAAAAAAAAAAAUhQIUAAAAAAAAAAAAAAAAFIUCFAAAAAAAAAAAAAAAABSFAhQAAAAAAAAAAAAAAAAUhQIUAAAAAAAAAAAAAAAAFIUCFAAAAAAAAAAAAAAAABSFAhQAAAAAAAAAAAAAAAAUJeJ1AIBD3pP01ZxlVB55AAAAAAAAAAAAAACfMdZar2MAAAAAAAAAAAAAAACAw5iCBwAAAAAAAAAAAAAAAEWhAAUAAAAAAAAAAAAAAABFoQAFAAAAAAAAAAAAAAAARaEABQAAAAAAAAAAAAAAAEWhAAUAAAAAAAAAAAAAAABFoQAFAAAAAAAAAAAAAAAARaEABQAAAAAAAAAAAAAAAEWhAAUAAAAAAAAAAAAAAABFoQAFAAAAAAAAAAAAAAAARaEABQAAAAAAAAAAAAAAAEWhAAUAAAAAAAAAAAAAAABFoQAFAAAAAAAAAAAAAAAARYl4HQDgZ8aYqKQ1khZK6pDUJ2mvpJettTtK3NaJks6UNFdSnaR9knZK2mitTZayLVfxGgEAAAAAAAAAAACAPxlrrdcxAHkzxpwk6VxJ54z89yxJ9eNW2WmtXVSCdtolfVXSJyS1TLLaRkn/t7X2R0W29VFJX5C0epJVDkt6RNJ/tNYeKqYtV/EaAQAAAAAAAAAAAIC/UYAC3zPGXCLpL5UtOpmsGGRU0QUoxphrJN0vaVaem3xf0qettf0FtlMn6TuSbs5zkwOSPmWtfaqQdlzGawQAAAAAAAAAAAAAbqAABb5njPl3kv6fPFcvqgBlpNjlKUmxcQ9bSS9JeltSk6RVktpyNv2JpBustZk82wlL+h+SPpjzp/ckvSypR9LikbbMuL8PS7rCWvtsPu24jNcIAAAAAAAAAAAAANwR8joAoAjDkt4q1ZMZY+ZLekxHF59skLTcWnuOtfbj1toPSJov6fOSkuPWu1bS1wpo7r/o6MKKpKQ/lzTfWnvVSFtnS1ohadO49eKSnjDGdBTQlqt4jQAAAAAAAAAAAADAERSgwBVJSa9IukfSpyWdLale0p+UsI2vSmoet7xR2ZE03hi/krV22Fr795I+nrP9F4wxJ0zViDHmJGULWMb7mLX2H6y1iZy2Xpd0uY4usGiV9JWp2nEZrxEAAAAAAAAAAAAAuIUpeOB7xphmSYPW2qEJ/naJpF+Ne2haU/AYY06R9Iak8MhDCUkrrLXbptjufkmfGvfQfdbadVNs84CkPx730P3W2jum2OZUSb/X+6OzpCQtsda+fbztXMVrBAAAAAAAAAAAAABuYQQU+J61tmui4pMSu1XvF59I0mNTFZ+M+Juc5Y8bY6omW9kYUy3po1M8xzGstW9KemLcQxFlY55xeI0AAAAAAAAAAAAAwD0UoABZH8lZvi+fjUam53l+3EO1kj5wnE2uklQzbnmTtXZLXhEeG9ONeW7nGl4jAAAAAAAAAAAAAHAMBSgIPGPMHEkrxz2UkrShgKf415zla46z7tVTbHs8zygb26hVxpjZBWzvCl4jAAAAAAAAAAAAAHAMBSiAtCJn+VVrbX8B22/MWV5eQFub8m1kJKbfF9CWq3iNAAAAAAAAAAAAAMAxFKAA0rKc5e0Fbv/WFM833tIKtuUqXiMAAAAAAAAAAAAAcAwFKIB0cs7yuwVuvzNnudUY05y7kjGmRVJLkW3lrn9Kgdv7Gq8RAAAAAAAAAAAAALiJAhRAaspZPljIxtbaPklDOQ835tHOQIFT/UjHxjZROy5rylnmNQIAAAAAAAAAAAAAB1CAAkh1OcuD03iO3G3qPWzHZbxGAAAAAAAAAAAAAOAgClCAY4seckczyUdu0UPuc1ayHZfxGgEAAAAAAAAAAACAgyhAAY5lZ9g2LuM1AgAAAAAAAAAAAAAHUIACSH05y9XTeI7cbXKfs5LtuIzXCAAAAAAAAAAAAAAcRAEKQAGKn/AaAQAAAAAAAAAAAICDKEABpJ6c5fZCNjbG1OnYoofuPNqpMcbUFtKWpFl5tOMyXiMAAAAAAAAAAAAAcBAFKIC0LWf5hAK3z13/sLW2K3cla22npNzHFxbZVm7sTuM1AgAAAAAAAAAAAAA3UYACSG/kLJ9c4PYn5Sy/XsG2cp9vJuA1AgAAAAAAAAAAAADHUIACSK/lLJ9hjKkpYPs1Uzzf8f62Ot9GRqaiOaOAtlzFawQAAAAAAAAAAAAAjqEABYFnrd0n6dVxD0UkrS3gKS7JWf6X46z75BTbHs9FysY26mVr7YECtncFrxEAAAAAAAAAAAAAOIYCFCDr8ZzlO/LZyBhzmqTzxz3UL+nnx9nkKUmD45ZXjzxHPm7PWc6NeabgNQIAAAAAAAAAAAAAx1CAAmR9X1J63PKNxphT8tjuSznLP7TWDk22srV2QNKjUzzHMYwxp0r6yLiHUpIeyiM+5/AaAQAAAAAAAAAAAIB7KEABJFlrt0l6YNxDMUn3G2OqJtvGGHO9jh5xIyHpq3k0d7ek5Ljl240x1x2nnSpJ943ENOpea+1bebTlqrvFawQAAAAAAAAAAAAAzqAABU4wxsw3xizK/SdpTs6qkYnWG/nXNkUzX5HUNW75Qkm/zJ3+xRgTN8b8uaR/ytn+v1prd061L9batyV9M+fhR40xnzXGjC+gkDFmqaSnR2IZ1an8Cl2cxWsEAAAAAAAAAAAAAG4x1lqvYwCmZIzZIemEIp/mAWvt7VO0c4mkp3T0SBpW0ouS3pbUKOksSe05m/6zpBustWnlwRgTlvQTSdfk/OmgpJckHZF00khbZtzfE5KusNY+k087LuM1AgAAAAAAAAAAAAB3UIACJ1SqAGWkrQ9Kul/HFplM5geS7rLW9hcSjDGmTtI9kj6R5yYHJX3KWvtkIe24jNcIAAAAAAAAAAAAANzAFDxADmvtzyStkPT/6+gpeXI9J+mj1tpbCy0+GWmnz1p7s6SPjTzXZA5L+m+SVgStsILXCAAAAAAAAAAAAADcwAgowHEYY2KS1ig7+socSf2S9kh62Vr7TonbOlHZ6WTmSqqVtF/STkkbrLWJUrblKl4jAAAAAAAAAAAAAPAnClAAAAAAAAAAAAAAAABQFKbgAQAAAAAAAAAAAAAAQFEoQAEAAAAAAAAAAAAAAEBRKEABAAAAAAAAAAAAAABAUShAAQAAAAAAAAAAAAAAQFEoQAEAAAAAAAAAAAAAAEBRKEABAAAAAAAAAAAAAABAUShAAQAAAAAAAAAAAAAAQFEoQAEAAAAAAAAAAAAAAEBRKEABAAAAAAAAAAAAAABAUShAAQAAAAAAAAAAAAAAQFEoQAEAAAAAAAAAAAAAAEBRKEABAAAAAAAAAAAAAABAUShAAQAAAAAAAAAAAAAAQFEoQAEAAAAAAAAAAAAAAEBRKEABAAAAAAAAAAAAAABAUShAAQAAAAAAAAAAAAAAQFEoQAEAAAAAAAAAAAAAAEBRKEABAAAAAAAAAAAAAABAUShAAQAAAAAAAAAAAAAAQFEoQAEAAAAAAAAAAAAAAEBRKEABAAAAAAAAAAAAAABAUShAAQAAAAAAAAAAAAAAQFEoQAEAAAAAAAAAAAAAAEBRKEABAAAAAAAAAAAAAABAUShAAQAAAAAAAAAAAAAAQFEoQAEAAAAAAAAAAAAAAEBRKEABAAAAAAAAAAAAAABAUShAAQAAAAAAAAAAAAAAQFEoQAEAAAAAAAAAAAAAAEBRKEABAAAAAAAAAAAAAABAUShAAQAAAAAAAAAAAAAAQFEoQAEAAAAAAAAAAAAAAEBRKEABAAAAAAAAAAAAAABAUShAAQAAAAAAAAAAAAAAQFEoQAEAAAAAAAAAAAAAAEBRKEABAAAAAAAAAAAAAABAUShAAQAAAAAAAAAAAAAAQFH+F7m7qKK25fXlAAAAAElFTkSuQmCC\n", "text/plain": [ "<Figure size 2666.67x1333.33 with 4 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "shared_pathways(adata, clusters=[\"9GMP\", \"1Ery\", \"17Neu\", \"4Ery\"])" ] }, { "cell_type": "code", "execution_count": 14, "id": "d9507ade", "metadata": {}, "outputs": [], "source": [ "from descartes_rpa import get_shared" ] }, { "cell_type": "code", "execution_count": 15, "id": "f2f2e597", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>stId</th>\n", " <th>name</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>R-HSA-9037628</td>\n", " <td>Rhesus blood group biosynthesis</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>R-HSA-189445</td>\n", " <td>Metabolism of porphyrins</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>R-HSA-917937</td>\n", " <td>Iron uptake and transport</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>R-HSA-189451</td>\n", " <td>Heme biosynthesis</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>R-HSA-1247673</td>\n", " <td>Erythrocytes take up oxygen and release carbon...</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>R-HSA-1237044</td>\n", " <td>Erythrocytes take up carbon dioxide and releas...</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>R-HSA-1480926</td>\n", " <td>O2/CO2 exchange in erythrocytes</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>R-HSA-9711123</td>\n", " <td>Cellular response to chemical stress</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>R-HSA-382551</td>\n", " <td>Transport of small molecules</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>R-HSA-189483</td>\n", " <td>Heme degradation</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td>R-HSA-9707564</td>\n", " <td>Cytoprotection by HMOX1</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <td>R-HSA-9033658</td>\n", " <td>Blood group systems biosynthesis</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td>R-HSA-8936459</td>\n", " <td>RUNX1 regulates genes involved in megakaryocyt...</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>R-HSA-6798695</td>\n", " <td>Neutrophil degranulation</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>R-HSA-432047</td>\n", " <td>Passive transport by Aquaporins</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td>R-HSA-2173782</td>\n", " <td>Binding and Uptake of Ligands by Scavenger Rec...</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>R-HSA-3000480</td>\n", " <td>Scavenging by Class A Receptors</td>\n", " </tr>\n", " <tr>\n", " <th>17</th>\n", " <td>R-HSA-1362409</td>\n", " <td>Mitochondrial iron-sulfur cluster biogenesis</td>\n", " </tr>\n", " <tr>\n", " <th>18</th>\n", " <td>R-HSA-445717</td>\n", " <td>Aquaporin-mediated transport</td>\n", " </tr>\n", " <tr>\n", " <th>19</th>\n", " <td>R-HSA-8964539</td>\n", " <td>Glutamate and glutamine metabolism</td>\n", " </tr>\n", " <tr>\n", " <th>20</th>\n", " <td>R-HSA-432722</td>\n", " <td>Golgi Associated Vesicle Biogenesis</td>\n", " </tr>\n", " <tr>\n", " <th>21</th>\n", " <td>R-HSA-432040</td>\n", " <td>Vasopressin regulates renal water homeostasis ...</td>\n", " </tr>\n", " <tr>\n", " <th>22</th>\n", " <td>R-HSA-8878171</td>\n", " <td>Transcriptional regulation by RUNX1</td>\n", " </tr>\n", " <tr>\n", " <th>23</th>\n", " <td>R-HSA-199992</td>\n", " <td>trans-Golgi Network Vesicle Budding</td>\n", " </tr>\n", " <tr>\n", " <th>24</th>\n", " <td>R-HSA-3299685</td>\n", " <td>Detoxification of Reactive Oxygen Species</td>\n", " </tr>\n", " <tr>\n", " <th>25</th>\n", " <td>R-HSA-2262752</td>\n", " <td>Cellular responses to stress</td>\n", " </tr>\n", " <tr>\n", " <th>26</th>\n", " <td>R-HSA-71387</td>\n", " <td>Metabolism of carbohydrates</td>\n", " </tr>\n", " <tr>\n", " <th>27</th>\n", " <td>R-HSA-1430728</td>\n", " <td>Metabolism</td>\n", " </tr>\n", " <tr>\n", " <th>28</th>\n", " <td>R-HSA-8953897</td>\n", " <td>Cellular responses to stimuli</td>\n", " </tr>\n", " <tr>\n", " <th>29</th>\n", " <td>R-HSA-8939236</td>\n", " <td>RUNX1 regulates transcription of genes involve...</td>\n", " </tr>\n", " <tr>\n", " <th>30</th>\n", " <td>R-HSA-5628897</td>\n", " <td>TP53 Regulates Metabolic Genes</td>\n", " </tr>\n", " <tr>\n", " <th>31</th>\n", " <td>R-HSA-212436</td>\n", " <td>Generic Transcription Pathway</td>\n", " </tr>\n", " <tr>\n", " <th>32</th>\n", " <td>R-HSA-73857</td>\n", " <td>RNA Polymerase II Transcription</td>\n", " </tr>\n", " <tr>\n", " <th>33</th>\n", " <td>R-HSA-983231</td>\n", " <td>Factors involved in megakaryocyte development ...</td>\n", " </tr>\n", " <tr>\n", " <th>34</th>\n", " <td>R-HSA-168249</td>\n", " <td>Innate Immune System</td>\n", " </tr>\n", " <tr>\n", " <th>35</th>\n", " <td>R-HSA-74160</td>\n", " <td>Gene expression (Transcription)</td>\n", " </tr>\n", " <tr>\n", " <th>36</th>\n", " <td>R-HSA-71291</td>\n", " <td>Metabolism of amino acids and derivatives</td>\n", " </tr>\n", " <tr>\n", " <th>37</th>\n", " <td>R-HSA-109582</td>\n", " <td>Hemostasis</td>\n", " </tr>\n", " <tr>\n", " <th>38</th>\n", " <td>R-HSA-5653656</td>\n", " <td>Vesicle-mediated transport</td>\n", " </tr>\n", " <tr>\n", " <th>39</th>\n", " <td>R-HSA-3700989</td>\n", " <td>Transcriptional Regulation by TP53</td>\n", " </tr>\n", " <tr>\n", " <th>40</th>\n", " <td>R-HSA-168256</td>\n", " <td>Immune System</td>\n", " </tr>\n", " <tr>\n", " <th>41</th>\n", " <td>R-HSA-449147</td>\n", " <td>Signaling by Interleukins</td>\n", " </tr>\n", " <tr>\n", " <th>42</th>\n", " <td>R-HSA-199991</td>\n", " <td>Membrane Trafficking</td>\n", " </tr>\n", " <tr>\n", " <th>43</th>\n", " <td>R-HSA-8953854</td>\n", " <td>Metabolism of RNA</td>\n", " </tr>\n", " <tr>\n", " <th>44</th>\n", " <td>R-HSA-1280215</td>\n", " <td>Cytokine Signaling in Immune system</td>\n", " </tr>\n", " <tr>\n", " <th>45</th>\n", " <td>R-HSA-556833</td>\n", " <td>Metabolism of lipids</td>\n", " </tr>\n", " <tr>\n", " <th>46</th>\n", " <td>R-HSA-162582</td>\n", " <td>Signal Transduction</td>\n", " </tr>\n", " <tr>\n", " <th>47</th>\n", " <td>R-HSA-392499</td>\n", " <td>Metabolism of proteins</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " stId name\n", "0 R-HSA-9037628 Rhesus blood group biosynthesis\n", "1 R-HSA-189445 Metabolism of porphyrins\n", "2 R-HSA-917937 Iron uptake and transport\n", "3 R-HSA-189451 Heme biosynthesis\n", "4 R-HSA-1247673 Erythrocytes take up oxygen and release carbon...\n", "5 R-HSA-1237044 Erythrocytes take up carbon dioxide and releas...\n", "6 R-HSA-1480926 O2/CO2 exchange in erythrocytes\n", "7 R-HSA-9711123 Cellular response to chemical stress\n", "8 R-HSA-382551 Transport of small molecules\n", "9 R-HSA-189483 Heme degradation\n", "10 R-HSA-9707564 Cytoprotection by HMOX1\n", "11 R-HSA-9033658 Blood group systems biosynthesis\n", "12 R-HSA-8936459 RUNX1 regulates genes involved in megakaryocyt...\n", "13 R-HSA-6798695 Neutrophil degranulation\n", "14 R-HSA-432047 Passive transport by Aquaporins\n", "15 R-HSA-2173782 Binding and Uptake of Ligands by Scavenger Rec...\n", "16 R-HSA-3000480 Scavenging by Class A Receptors\n", "17 R-HSA-1362409 Mitochondrial iron-sulfur cluster biogenesis\n", "18 R-HSA-445717 Aquaporin-mediated transport\n", "19 R-HSA-8964539 Glutamate and glutamine metabolism\n", "20 R-HSA-432722 Golgi Associated Vesicle Biogenesis\n", "21 R-HSA-432040 Vasopressin regulates renal water homeostasis ...\n", "22 R-HSA-8878171 Transcriptional regulation by RUNX1\n", "23 R-HSA-199992 trans-Golgi Network Vesicle Budding\n", "24 R-HSA-3299685 Detoxification of Reactive Oxygen Species\n", "25 R-HSA-2262752 Cellular responses to stress\n", "26 R-HSA-71387 Metabolism of carbohydrates\n", "27 R-HSA-1430728 Metabolism\n", "28 R-HSA-8953897 Cellular responses to stimuli\n", "29 R-HSA-8939236 RUNX1 regulates transcription of genes involve...\n", "30 R-HSA-5628897 TP53 Regulates Metabolic Genes\n", "31 R-HSA-212436 Generic Transcription Pathway\n", "32 R-HSA-73857 RNA Polymerase II Transcription\n", "33 R-HSA-983231 Factors involved in megakaryocyte development ...\n", "34 R-HSA-168249 Innate Immune System\n", "35 R-HSA-74160 Gene expression (Transcription)\n", "36 R-HSA-71291 Metabolism of amino acids and derivatives\n", "37 R-HSA-109582 Hemostasis\n", "38 R-HSA-5653656 Vesicle-mediated transport\n", "39 R-HSA-3700989 Transcriptional Regulation by TP53\n", "40 R-HSA-168256 Immune System\n", "41 R-HSA-449147 Signaling by Interleukins\n", "42 R-HSA-199991 Membrane Trafficking\n", "43 R-HSA-8953854 Metabolism of RNA\n", "44 R-HSA-1280215 Cytokine Signaling in Immune system\n", "45 R-HSA-556833 Metabolism of lipids\n", "46 R-HSA-162582 Signal Transduction\n", "47 R-HSA-392499 Metabolism of proteins" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "get_shared(adata, clusters=[\"1Ery\", \"4Ery\"])" ] }, { "cell_type": "code", "execution_count": 16, "id": "dcbbea19", "metadata": {}, "outputs": [], "source": [ "from descartes_rpa.pl import pathways" ] }, { "cell_type": "code", "execution_count": 17, "id": "8a7ae808", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "odict_keys(['7MEP', '15Mo', '3Ery', '4Ery', '2Ery', '17Neu', '14Mo', '13Baso', '8Mk', '9GMP', '10GMP', '16Neu', '5Ery', '1Ery', '6Ery', '19Lymph', '12Baso', '18Eos', '11DC'])" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "adata.uns[\"pathways\"].keys()" ] }, { "cell_type": "code", "execution_count": 18, "id": "4d1a6dc8", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>stId</th>\n", " <th>dbId</th>\n", " <th>name</th>\n", " <th>species</th>\n", " <th>llp</th>\n", " <th>entities</th>\n", " <th>reactions</th>\n", " <th>inDisease</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>R-HSA-6798695</td>\n", " <td>6798695</td>\n", " <td>Neutrophil degranulation</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 480, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 10, 'found': 7,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>R-HSA-168256</td>\n", " <td>168256</td>\n", " <td>Immune System</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 2681, 'found': ...</td>\n", " <td>{'resource': 'TOTAL', 'total': 1623, 'found': ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>R-HSA-168249</td>\n", " <td>168249</td>\n", " <td>Innate Immune System</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 1334, 'found': ...</td>\n", " <td>{'resource': 'TOTAL', 'total': 710, 'found': 1...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>R-HSA-8941413</td>\n", " <td>8941413</td>\n", " <td>Events associated with phagocytolytic activity...</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 19, 'found': 2,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 14, 'found': 5,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>R-HSA-381183</td>\n", " <td>381183</td>\n", " <td>ATF6 (ATF6-alpha) activates chaperone genes</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 15, 'found': 2,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 5, 'found': 1, ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>R-HSA-419408</td>\n", " <td>419408</td>\n", " <td>Lysosphingolipid and LPA receptors</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 19, 'found': 2,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 5, 'found': 1, ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>R-HSA-381033</td>\n", " <td>381033</td>\n", " <td>ATF6 (ATF6-alpha) activates chaperones</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 17, 'found': 2,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 10, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>R-HSA-6803204</td>\n", " <td>6803204</td>\n", " <td>TP53 Regulates Transcription of Genes Involved...</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 33, 'found': 2,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 25, 'found': 2,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>R-HSA-114608</td>\n", " <td>114608</td>\n", " <td>Platelet degranulation</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 139, 'found': 3...</td>\n", " <td>{'resource': 'TOTAL', 'total': 11, 'found': 3,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>R-HSA-76005</td>\n", " <td>76005</td>\n", " <td>Response to elevated platelet cytosolic Ca2+</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 146, 'found': 3...</td>\n", " <td>{'resource': 'TOTAL', 'total': 14, 'found': 3,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td>R-HSA-1474244</td>\n", " <td>1474244</td>\n", " <td>Extracellular matrix organization</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 329, 'found': 4...</td>\n", " <td>{'resource': 'TOTAL', 'total': 319, 'found': 1...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <td>R-HSA-8936459</td>\n", " <td>8936459</td>\n", " <td>RUNX1 regulates genes involved in megakaryocyt...</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 78, 'found': 2,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 33, 'found': 5,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td>R-HSA-9616222</td>\n", " <td>9616222</td>\n", " <td>Transcriptional regulation of granulopoiesis</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 71, 'found': 2,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 27, 'found': 4,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>R-HSA-1222556</td>\n", " <td>1222556</td>\n", " <td>ROS and RNS production in phagocytes</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 82, 'found': 2,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 45, 'found': 5,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>R-HSA-3000178</td>\n", " <td>3000178</td>\n", " <td>ECM proteoglycans</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 79, 'found': 2,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 23, 'found': 2,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td>R-HSA-5633008</td>\n", " <td>5633008</td>\n", " <td>TP53 Regulates Transcription of Cell Death Genes</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 83, 'found': 2,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 68, 'found': 2,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>R-HSA-8866423</td>\n", " <td>8866423</td>\n", " <td>VLDL assembly</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 9, 'found': 1, ...</td>\n", " <td>{'resource': 'TOTAL', 'total': 5, 'found': 1, ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>17</th>\n", " <td>R-HSA-3000484</td>\n", " <td>3000484</td>\n", " <td>Scavenging by Class F Receptors</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 16, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 2, 'found': 2, ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>18</th>\n", " <td>R-HSA-354194</td>\n", " <td>354194</td>\n", " <td>GRB2:SOS provides linkage to MAPK signaling fo...</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 20, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 2, 'found': 2, ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>19</th>\n", " <td>R-HSA-372708</td>\n", " <td>372708</td>\n", " <td>p130Cas linkage to MAPK signaling for integrins</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 22, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 3, 'found': 3, ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>20</th>\n", " <td>R-HSA-8957275</td>\n", " <td>8957275</td>\n", " <td>Post-translational protein phosphorylation</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 109, 'found': 2...</td>\n", " <td>{'resource': 'TOTAL', 'total': 1, 'found': 1, ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>21</th>\n", " <td>R-HSA-388844</td>\n", " <td>388844</td>\n", " <td>Receptor-type tyrosine-protein phosphatases</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 20, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 6, 'found': 3, ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>22</th>\n", " <td>R-HSA-8963888</td>\n", " <td>8963888</td>\n", " <td>Chylomicron assembly</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 14, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 5, 'found': 2, ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>23</th>\n", " <td>R-HSA-5627117</td>\n", " <td>5627117</td>\n", " <td>RHO GTPases Activate ROCKs</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 24, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 7, 'found': 2, ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>24</th>\n", " <td>R-HSA-3928663</td>\n", " <td>3928663</td>\n", " <td>EPHA-mediated growth cone collapse</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 33, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 4, 'found': 1, ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>25</th>\n", " <td>R-HSA-8853383</td>\n", " <td>8853383</td>\n", " <td>Lysosomal oligosaccharide catabolism</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 12, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 5, 'found': 1, ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>26</th>\n", " <td>R-HSA-5627123</td>\n", " <td>5627123</td>\n", " <td>RHO GTPases activate PAKs</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 27, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 15, 'found': 3,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>27</th>\n", " <td>R-HSA-76002</td>\n", " <td>76002</td>\n", " <td>Platelet activation, signaling and aggregation</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 291, 'found': 3...</td>\n", " <td>{'resource': 'TOTAL', 'total': 116, 'found': 2...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>28</th>\n", " <td>R-HSA-5625900</td>\n", " <td>5625900</td>\n", " <td>RHO GTPases activate CIT</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 23, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 6, 'found': 1, ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>29</th>\n", " <td>R-HSA-8963898</td>\n", " <td>8963898</td>\n", " <td>Plasma lipoprotein assembly</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 30, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 19, 'found': 3,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>30</th>\n", " <td>R-HSA-416572</td>\n", " <td>416572</td>\n", " <td>Sema4D induced cell migration and growth-cone ...</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 24, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 7, 'found': 1, ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>31</th>\n", " <td>R-HSA-8849932</td>\n", " <td>8849932</td>\n", " <td>Synaptic adhesion-like molecules</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 23, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 8, 'found': 1, ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>32</th>\n", " <td>R-HSA-70921</td>\n", " <td>70921</td>\n", " <td>Histidine catabolism</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 30, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 8, 'found': 1, ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>33</th>\n", " <td>R-HSA-445144</td>\n", " <td>445144</td>\n", " <td>Signal transduction by L1</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 25, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 11, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>34</th>\n", " <td>R-HSA-909733</td>\n", " <td>909733</td>\n", " <td>Interferon alpha/beta signaling</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 186, 'found': 2...</td>\n", " <td>{'resource': 'TOTAL', 'total': 22, 'found': 2,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>35</th>\n", " <td>R-HSA-9020933</td>\n", " <td>9020933</td>\n", " <td>Interleukin-23 signaling</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 11, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 12, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>36</th>\n", " <td>R-HSA-2243919</td>\n", " <td>2243919</td>\n", " <td>Crosslinking of collagen fibrils</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 24, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 13, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>37</th>\n", " <td>R-HSA-400685</td>\n", " <td>400685</td>\n", " <td>Sema4D in semaphorin signaling</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 30, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 13, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>38</th>\n", " <td>R-HSA-381426</td>\n", " <td>381426</td>\n", " <td>Regulation of Insulin-like Growth Factor (IGF)...</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 127, 'found': 2...</td>\n", " <td>{'resource': 'TOTAL', 'total': 14, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>39</th>\n", " <td>R-HSA-9034015</td>\n", " <td>9034015</td>\n", " <td>Signaling by NTRK3 (TRKC)</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 27, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 19, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>40</th>\n", " <td>R-HSA-1474290</td>\n", " <td>1474290</td>\n", " <td>Collagen formation</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 104, 'found': 2...</td>\n", " <td>{'resource': 'TOTAL', 'total': 77, 'found': 4,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>41</th>\n", " <td>R-HSA-428157</td>\n", " <td>428157</td>\n", " <td>Sphingolipid metabolism</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 158, 'found': 2...</td>\n", " <td>{'resource': 'TOTAL', 'total': 64, 'found': 3,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>42</th>\n", " <td>R-HSA-381119</td>\n", " <td>381119</td>\n", " <td>Unfolded Protein Response (UPR)</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 155, 'found': 2...</td>\n", " <td>{'resource': 'TOTAL', 'total': 94, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>43</th>\n", " <td>R-HSA-354192</td>\n", " <td>354192</td>\n", " <td>Integrin signaling</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 39, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 24, 'found': 20...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>44</th>\n", " <td>R-HSA-76009</td>\n", " <td>76009</td>\n", " <td>Platelet Aggregation (Plug Formation)</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 53, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 27, 'found': 20...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>45</th>\n", " <td>R-HSA-5674135</td>\n", " <td>5674135</td>\n", " <td>MAP2K and MAPK activation</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 49, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 12, 'found': 8,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>46</th>\n", " <td>R-HSA-445355</td>\n", " <td>445355</td>\n", " <td>Smooth Muscle Contraction</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 49, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 11, 'found': 5,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>47</th>\n", " <td>R-HSA-8873719</td>\n", " <td>8873719</td>\n", " <td>RAB geranylgeranylation</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 68, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 5, 'found': 2, ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>48</th>\n", " <td>R-HSA-901042</td>\n", " <td>901042</td>\n", " <td>Calnexin/calreticulin cycle</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 41, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 13, 'found': 3,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>49</th>\n", " <td>R-HSA-3000480</td>\n", " <td>3000480</td>\n", " <td>Scavenging by Class A Receptors</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 48, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 10, 'found': 2,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>50</th>\n", " <td>R-HSA-532668</td>\n", " <td>532668</td>\n", " <td>N-glycan trimming in the ER and Calnexin/Calre...</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 57, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 18, 'found': 3,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>51</th>\n", " <td>R-HSA-432722</td>\n", " <td>432722</td>\n", " <td>Golgi Associated Vesicle Biogenesis</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 61, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 7, 'found': 1, ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>52</th>\n", " <td>R-HSA-5358346</td>\n", " <td>5358346</td>\n", " <td>Hedgehog ligand biogenesis</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 72, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 15, 'found': 2,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>53</th>\n", " <td>R-HSA-5683826</td>\n", " <td>5683826</td>\n", " <td>Surfactant metabolism</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 52, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 29, 'found': 2,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>54</th>\n", " <td>R-HSA-913709</td>\n", " <td>913709</td>\n", " <td>O-linked glycosylation of mucins</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 73, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 17, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>55</th>\n", " <td>R-HSA-2022090</td>\n", " <td>2022090</td>\n", " <td>Assembly of collagen fibrils and other multime...</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 67, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 26, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>56</th>\n", " <td>R-HSA-8878171</td>\n", " <td>8878171</td>\n", " <td>Transcriptional regulation by RUNX1</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 261, 'found': 2...</td>\n", " <td>{'resource': 'TOTAL', 'total': 132, 'found': 5...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>57</th>\n", " <td>R-HSA-3299685</td>\n", " <td>3299685</td>\n", " <td>Detoxification of Reactive Oxygen Species</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 65, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 34, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>58</th>\n", " <td>R-HSA-373755</td>\n", " <td>373755</td>\n", " <td>Semaphorin interactions</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 70, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 41, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>59</th>\n", " <td>R-HSA-1650814</td>\n", " <td>1650814</td>\n", " <td>Collagen biosynthesis and modifying enzymes</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 76, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 51, 'found': 3,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>60</th>\n", " <td>R-HSA-199992</td>\n", " <td>199992</td>\n", " <td>trans-Golgi Network Vesicle Budding</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 80, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 19, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>61</th>\n", " <td>R-HSA-5625740</td>\n", " <td>5625740</td>\n", " <td>RHO GTPases activate PKNs</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 80, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 20, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>62</th>\n", " <td>R-HSA-1660661</td>\n", " <td>1660661</td>\n", " <td>Sphingolipid de novo biosynthesis</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 80, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 32, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>63</th>\n", " <td>R-HSA-9020591</td>\n", " <td>9020591</td>\n", " <td>Interleukin-12 signaling</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 84, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 56, 'found': 2,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>64</th>\n", " <td>R-HSA-216083</td>\n", " <td>216083</td>\n", " <td>Integrin cell surface interactions</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 86, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 55, 'found': 4,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>65</th>\n", " <td>R-HSA-1660662</td>\n", " <td>1660662</td>\n", " <td>Glycosphingolipid metabolism</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 86, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 32, 'found': 2,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>66</th>\n", " <td>R-HSA-6794362</td>\n", " <td>6794362</td>\n", " <td>Protein-protein interactions at synapses</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 93, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 33, 'found': 4,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>67</th>\n", " <td>R-HSA-447115</td>\n", " <td>447115</td>\n", " <td>Interleukin-12 family signaling</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 96, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 114, 'found': 3...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>68</th>\n", " <td>R-HSA-174824</td>\n", " <td>174824</td>\n", " <td>Plasma lipoprotein assembly, remodeling, and c...</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 98, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 84, 'found': 3,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>69</th>\n", " <td>R-HSA-2682334</td>\n", " <td>2682334</td>\n", " <td>EPH-Ephrin signaling</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 101, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 56, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>70</th>\n", " <td>R-HSA-983170</td>\n", " <td>983170</td>\n", " <td>Antigen Presentation: Folding, assembly and pe...</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 102, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 16, 'found': 3,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>71</th>\n", " <td>R-HSA-983695</td>\n", " <td>983695</td>\n", " <td>Antigen activates B Cell Receptor (BCR) leadin...</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 103, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 25, 'found': 2,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>72</th>\n", " <td>R-HSA-1280218</td>\n", " <td>1280218</td>\n", " <td>Adaptive Immune System</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 1004, 'found': ...</td>\n", " <td>{'resource': 'TOTAL', 'total': 264, 'found': 1...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>73</th>\n", " <td>R-HSA-913531</td>\n", " <td>913531</td>\n", " <td>Interferon Signaling</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 394, 'found': 2...</td>\n", " <td>{'resource': 'TOTAL', 'total': 69, 'found': 2,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>74</th>\n", " <td>R-HSA-6803157</td>\n", " <td>6803157</td>\n", " <td>Antimicrobial peptides</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 123, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 58, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>75</th>\n", " <td>R-HSA-373076</td>\n", " <td>373076</td>\n", " <td>Class A/1 (Rhodopsin-like receptors)</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 412, 'found': 2...</td>\n", " <td>{'resource': 'TOTAL', 'total': 159, 'found': 1...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>76</th>\n", " <td>R-HSA-373760</td>\n", " <td>373760</td>\n", " <td>L1CAM interactions</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 130, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 54, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>77</th>\n", " <td>R-HSA-5173105</td>\n", " <td>5173105</td>\n", " <td>O-linked glycosylation</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 132, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 28, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>78</th>\n", " <td>R-HSA-2132295</td>\n", " <td>2132295</td>\n", " <td>MHC class II antigen presentation</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 148, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 26, 'found': 3,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>79</th>\n", " <td>R-HSA-109582</td>\n", " <td>109582</td>\n", " <td>Hemostasis</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 801, 'found': 3...</td>\n", " <td>{'resource': 'TOTAL', 'total': 334, 'found': 2...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>80</th>\n", " <td>R-HSA-166520</td>\n", " <td>166520</td>\n", " <td>Signaling by NTRKs</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 166, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 164, 'found': 1...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>81</th>\n", " <td>R-HSA-2173782</td>\n", " <td>2173782</td>\n", " <td>Binding and Uptake of Ligands by Scavenger Rec...</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 167, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 33, 'found': 4,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>82</th>\n", " <td>R-HSA-3700989</td>\n", " <td>3700989</td>\n", " <td>Transcriptional Regulation by TP53</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 487, 'found': 2...</td>\n", " <td>{'resource': 'TOTAL', 'total': 259, 'found': 2...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>83</th>\n", " <td>R-HSA-5358351</td>\n", " <td>5358351</td>\n", " <td>Signaling by Hedgehog</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 168, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 82, 'found': 2,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>84</th>\n", " <td>R-HSA-1236974</td>\n", " <td>1236974</td>\n", " <td>ER-Phagosome pathway</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 173, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 10, 'found': 3,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>85</th>\n", " <td>R-HSA-597592</td>\n", " <td>597592</td>\n", " <td>Post-translational protein modification</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 1598, 'found': ...</td>\n", " <td>{'resource': 'TOTAL', 'total': 526, 'found': 7...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>86</th>\n", " <td>R-HSA-983705</td>\n", " <td>983705</td>\n", " <td>Signaling by the B Cell Receptor (BCR)</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 189, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 44, 'found': 2,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>87</th>\n", " <td>R-HSA-1266738</td>\n", " <td>1266738</td>\n", " <td>Developmental Biology</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 1262, 'found': ...</td>\n", " <td>{'resource': 'TOTAL', 'total': 556, 'found': 7...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>88</th>\n", " <td>R-HSA-1236975</td>\n", " <td>1236975</td>\n", " <td>Antigen processing-Cross presentation</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 195, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 23, 'found': 3,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>89</th>\n", " <td>R-HSA-9711123</td>\n", " <td>9711123</td>\n", " <td>Cellular response to chemical stress</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 208, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 71, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>90</th>\n", " <td>R-HSA-397014</td>\n", " <td>397014</td>\n", " <td>Muscle contraction</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 213, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 42, 'found': 5,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>91</th>\n", " <td>R-HSA-2262752</td>\n", " <td>2262752</td>\n", " <td>Cellular responses to stress</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 948, 'found': 3...</td>\n", " <td>{'resource': 'TOTAL', 'total': 381, 'found': 2...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>92</th>\n", " <td>R-HSA-422475</td>\n", " <td>422475</td>\n", " <td>Axon guidance</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 584, 'found': 2...</td>\n", " <td>{'resource': 'TOTAL', 'total': 298, 'found': 3...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>93</th>\n", " <td>R-HSA-8953897</td>\n", " <td>8953897</td>\n", " <td>Cellular responses to stimuli</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 966, 'found': 3...</td>\n", " <td>{'resource': 'TOTAL', 'total': 412, 'found': 2...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>94</th>\n", " <td>R-HSA-500792</td>\n", " <td>500792</td>\n", " <td>GPCR ligand binding</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 606, 'found': 2...</td>\n", " <td>{'resource': 'TOTAL', 'total': 186, 'found': 1...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>95</th>\n", " <td>R-HSA-9675108</td>\n", " <td>9675108</td>\n", " <td>Nervous system development</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 620, 'found': 2...</td>\n", " <td>{'resource': 'TOTAL', 'total': 324, 'found': 3...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>96</th>\n", " <td>R-HSA-392499</td>\n", " <td>392499</td>\n", " <td>Metabolism of proteins</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 2205, 'found': ...</td>\n", " <td>{'resource': 'TOTAL', 'total': 798, 'found': 9...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>97</th>\n", " <td>R-HSA-1280215</td>\n", " <td>1280215</td>\n", " <td>Cytokine Signaling in Immune system</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 1092, 'found': ...</td>\n", " <td>{'resource': 'TOTAL', 'total': 708, 'found': 5...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>98</th>\n", " <td>R-HSA-212436</td>\n", " <td>212436</td>\n", " <td>Generic Transcription Pathway</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 1555, 'found': ...</td>\n", " <td>{'resource': 'TOTAL', 'total': 824, 'found': 7...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>99</th>\n", " <td>R-HSA-198933</td>\n", " <td>198933</td>\n", " <td>Immunoregulatory interactions between a Lympho...</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 316, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 44, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>100</th>\n", " <td>R-HSA-5673001</td>\n", " <td>5673001</td>\n", " <td>RAF/MAP kinase cascade</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 322, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 75, 'found': 8,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>101</th>\n", " <td>R-HSA-195258</td>\n", " <td>195258</td>\n", " <td>RHO GTPase Effectors</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 326, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 113, 'found': 5...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>102</th>\n", " <td>R-HSA-5684996</td>\n", " <td>5684996</td>\n", " <td>MAPK1/MAPK3 signaling</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 329, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 82, 'found': 8,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>103</th>\n", " <td>R-HSA-5653656</td>\n", " <td>5653656</td>\n", " <td>Vesicle-mediated transport</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 824, 'found': 2...</td>\n", " <td>{'resource': 'TOTAL', 'total': 252, 'found': 5...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>104</th>\n", " <td>R-HSA-5683057</td>\n", " <td>5683057</td>\n", " <td>MAPK family signaling cascades</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 380, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 122, 'found': 8...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>105</th>\n", " <td>R-HSA-73857</td>\n", " <td>73857</td>\n", " <td>RNA Polymerase II Transcription</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 1694, 'found': ...</td>\n", " <td>{'resource': 'TOTAL', 'total': 885, 'found': 7...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>106</th>\n", " <td>R-HSA-372790</td>\n", " <td>372790</td>\n", " <td>Signaling by GPCR</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 864, 'found': 2...</td>\n", " <td>{'resource': 'TOTAL', 'total': 354, 'found': 1...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>107</th>\n", " <td>R-HSA-446203</td>\n", " <td>446203</td>\n", " <td>Asparagine N-linked glycosylation</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 421, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 144, 'found': 3...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>108</th>\n", " <td>R-HSA-71387</td>\n", " <td>71387</td>\n", " <td>Metabolism of carbohydrates</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 456, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 243, 'found': 1...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>109</th>\n", " <td>R-HSA-74160</td>\n", " <td>74160</td>\n", " <td>Gene expression (Transcription)</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 1855, 'found': ...</td>\n", " <td>{'resource': 'TOTAL', 'total': 1000, 'found': ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>110</th>\n", " <td>R-HSA-983169</td>\n", " <td>983169</td>\n", " <td>Class I MHC mediated antigen processing & pres...</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 473, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 48, 'found': 6,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>111</th>\n", " <td>R-HSA-112316</td>\n", " <td>112316</td>\n", " <td>Neuronal System</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 487, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 216, 'found': 4...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>112</th>\n", " <td>R-HSA-162582</td>\n", " <td>162582</td>\n", " <td>Signal Transduction</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 2993, 'found': ...</td>\n", " <td>{'resource': 'TOTAL', 'total': 2445, 'found': ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>113</th>\n", " <td>R-HSA-9006934</td>\n", " <td>9006934</td>\n", " <td>Signaling by Receptor Tyrosine Kinases</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 617, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 744, 'found': 1...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>114</th>\n", " <td>R-HSA-449147</td>\n", " <td>449147</td>\n", " <td>Signaling by Interleukins</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 643, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 493, 'found': 3...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>115</th>\n", " <td>R-HSA-71291</td>\n", " <td>71291</td>\n", " <td>Metabolism of amino acids and derivatives</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 661, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 285, 'found': 1...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>116</th>\n", " <td>R-HSA-199991</td>\n", " <td>199991</td>\n", " <td>Membrane Trafficking</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 665, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 219, 'found': 1...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>117</th>\n", " <td>R-HSA-194315</td>\n", " <td>194315</td>\n", " <td>Signaling by Rho GTPases</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 709, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 203, 'found': 5...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>118</th>\n", " <td>R-HSA-9716542</td>\n", " <td>9716542</td>\n", " <td>Signaling by Rho GTPases, Miro GTPases and RHO...</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 725, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 212, 'found': 5...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>119</th>\n", " <td>R-HSA-556833</td>\n", " <td>556833</td>\n", " <td>Metabolism of lipids</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 1437, 'found': ...</td>\n", " <td>{'resource': 'TOTAL', 'total': 949, 'found': 3...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>120</th>\n", " <td>R-HSA-382551</td>\n", " <td>382551</td>\n", " <td>Transport of small molecules</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 958, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 442, 'found': 3...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>121</th>\n", " <td>R-HSA-1430728</td>\n", " <td>1430728</td>\n", " <td>Metabolism</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 3633, 'found': ...</td>\n", " <td>{'resource': 'TOTAL', 'total': 2250, 'found': ...</td>\n", " <td>False</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " stId dbId \\\n", "0 R-HSA-6798695 6798695 \n", "1 R-HSA-168256 168256 \n", "2 R-HSA-168249 168249 \n", "3 R-HSA-8941413 8941413 \n", "4 R-HSA-381183 381183 \n", "5 R-HSA-419408 419408 \n", "6 R-HSA-381033 381033 \n", "7 R-HSA-6803204 6803204 \n", "8 R-HSA-114608 114608 \n", "9 R-HSA-76005 76005 \n", "10 R-HSA-1474244 1474244 \n", "11 R-HSA-8936459 8936459 \n", "12 R-HSA-9616222 9616222 \n", "13 R-HSA-1222556 1222556 \n", "14 R-HSA-3000178 3000178 \n", "15 R-HSA-5633008 5633008 \n", "16 R-HSA-8866423 8866423 \n", "17 R-HSA-3000484 3000484 \n", "18 R-HSA-354194 354194 \n", "19 R-HSA-372708 372708 \n", "20 R-HSA-8957275 8957275 \n", "21 R-HSA-388844 388844 \n", "22 R-HSA-8963888 8963888 \n", "23 R-HSA-5627117 5627117 \n", "24 R-HSA-3928663 3928663 \n", "25 R-HSA-8853383 8853383 \n", "26 R-HSA-5627123 5627123 \n", "27 R-HSA-76002 76002 \n", "28 R-HSA-5625900 5625900 \n", "29 R-HSA-8963898 8963898 \n", "30 R-HSA-416572 416572 \n", "31 R-HSA-8849932 8849932 \n", "32 R-HSA-70921 70921 \n", "33 R-HSA-445144 445144 \n", "34 R-HSA-909733 909733 \n", "35 R-HSA-9020933 9020933 \n", "36 R-HSA-2243919 2243919 \n", "37 R-HSA-400685 400685 \n", "38 R-HSA-381426 381426 \n", "39 R-HSA-9034015 9034015 \n", "40 R-HSA-1474290 1474290 \n", "41 R-HSA-428157 428157 \n", "42 R-HSA-381119 381119 \n", "43 R-HSA-354192 354192 \n", "44 R-HSA-76009 76009 \n", "45 R-HSA-5674135 5674135 \n", "46 R-HSA-445355 445355 \n", "47 R-HSA-8873719 8873719 \n", "48 R-HSA-901042 901042 \n", "49 R-HSA-3000480 3000480 \n", "50 R-HSA-532668 532668 \n", "51 R-HSA-432722 432722 \n", "52 R-HSA-5358346 5358346 \n", "53 R-HSA-5683826 5683826 \n", "54 R-HSA-913709 913709 \n", "55 R-HSA-2022090 2022090 \n", "56 R-HSA-8878171 8878171 \n", "57 R-HSA-3299685 3299685 \n", "58 R-HSA-373755 373755 \n", "59 R-HSA-1650814 1650814 \n", "60 R-HSA-199992 199992 \n", "61 R-HSA-5625740 5625740 \n", "62 R-HSA-1660661 1660661 \n", "63 R-HSA-9020591 9020591 \n", "64 R-HSA-216083 216083 \n", "65 R-HSA-1660662 1660662 \n", "66 R-HSA-6794362 6794362 \n", "67 R-HSA-447115 447115 \n", "68 R-HSA-174824 174824 \n", "69 R-HSA-2682334 2682334 \n", "70 R-HSA-983170 983170 \n", "71 R-HSA-983695 983695 \n", "72 R-HSA-1280218 1280218 \n", "73 R-HSA-913531 913531 \n", "74 R-HSA-6803157 6803157 \n", "75 R-HSA-373076 373076 \n", "76 R-HSA-373760 373760 \n", "77 R-HSA-5173105 5173105 \n", "78 R-HSA-2132295 2132295 \n", "79 R-HSA-109582 109582 \n", "80 R-HSA-166520 166520 \n", "81 R-HSA-2173782 2173782 \n", "82 R-HSA-3700989 3700989 \n", "83 R-HSA-5358351 5358351 \n", "84 R-HSA-1236974 1236974 \n", "85 R-HSA-597592 597592 \n", "86 R-HSA-983705 983705 \n", "87 R-HSA-1266738 1266738 \n", "88 R-HSA-1236975 1236975 \n", "89 R-HSA-9711123 9711123 \n", "90 R-HSA-397014 397014 \n", "91 R-HSA-2262752 2262752 \n", "92 R-HSA-422475 422475 \n", "93 R-HSA-8953897 8953897 \n", "94 R-HSA-500792 500792 \n", "95 R-HSA-9675108 9675108 \n", "96 R-HSA-392499 392499 \n", "97 R-HSA-1280215 1280215 \n", "98 R-HSA-212436 212436 \n", "99 R-HSA-198933 198933 \n", "100 R-HSA-5673001 5673001 \n", "101 R-HSA-195258 195258 \n", "102 R-HSA-5684996 5684996 \n", "103 R-HSA-5653656 5653656 \n", "104 R-HSA-5683057 5683057 \n", "105 R-HSA-73857 73857 \n", "106 R-HSA-372790 372790 \n", "107 R-HSA-446203 446203 \n", "108 R-HSA-71387 71387 \n", "109 R-HSA-74160 74160 \n", "110 R-HSA-983169 983169 \n", "111 R-HSA-112316 112316 \n", "112 R-HSA-162582 162582 \n", "113 R-HSA-9006934 9006934 \n", "114 R-HSA-449147 449147 \n", "115 R-HSA-71291 71291 \n", "116 R-HSA-199991 199991 \n", "117 R-HSA-194315 194315 \n", "118 R-HSA-9716542 9716542 \n", "119 R-HSA-556833 556833 \n", "120 R-HSA-382551 382551 \n", "121 R-HSA-1430728 1430728 \n", "\n", " name \\\n", "0 Neutrophil degranulation \n", "1 Immune System \n", "2 Innate Immune System \n", "3 Events associated with phagocytolytic activity... \n", "4 ATF6 (ATF6-alpha) activates chaperone genes \n", "5 Lysosphingolipid and LPA receptors \n", "6 ATF6 (ATF6-alpha) activates chaperones \n", "7 TP53 Regulates Transcription of Genes Involved... \n", "8 Platelet degranulation \n", "9 Response to elevated platelet cytosolic Ca2+ \n", "10 Extracellular matrix organization \n", "11 RUNX1 regulates genes involved in megakaryocyt... \n", "12 Transcriptional regulation of granulopoiesis \n", "13 ROS and RNS production in phagocytes \n", "14 ECM proteoglycans \n", "15 TP53 Regulates Transcription of Cell Death Genes \n", "16 VLDL assembly \n", "17 Scavenging by Class F Receptors \n", "18 GRB2:SOS provides linkage to MAPK signaling fo... \n", "19 p130Cas linkage to MAPK signaling for integrins \n", "20 Post-translational protein phosphorylation \n", "21 Receptor-type tyrosine-protein phosphatases \n", "22 Chylomicron assembly \n", "23 RHO GTPases Activate ROCKs \n", "24 EPHA-mediated growth cone collapse \n", "25 Lysosomal oligosaccharide catabolism \n", "26 RHO GTPases activate PAKs \n", "27 Platelet activation, signaling and aggregation \n", "28 RHO GTPases activate CIT \n", "29 Plasma lipoprotein assembly \n", "30 Sema4D induced cell migration and growth-cone ... \n", "31 Synaptic adhesion-like molecules \n", "32 Histidine catabolism \n", "33 Signal transduction by L1 \n", "34 Interferon alpha/beta signaling \n", "35 Interleukin-23 signaling \n", "36 Crosslinking of collagen fibrils \n", "37 Sema4D in semaphorin signaling \n", "38 Regulation of Insulin-like Growth Factor (IGF)... \n", "39 Signaling by NTRK3 (TRKC) \n", "40 Collagen formation \n", "41 Sphingolipid metabolism \n", "42 Unfolded Protein Response (UPR) \n", "43 Integrin signaling \n", "44 Platelet Aggregation (Plug Formation) \n", "45 MAP2K and MAPK activation \n", "46 Smooth Muscle Contraction \n", "47 RAB geranylgeranylation \n", "48 Calnexin/calreticulin cycle \n", "49 Scavenging by Class A Receptors \n", "50 N-glycan trimming in the ER and Calnexin/Calre... \n", "51 Golgi Associated Vesicle Biogenesis \n", "52 Hedgehog ligand biogenesis \n", "53 Surfactant metabolism \n", "54 O-linked glycosylation of mucins \n", "55 Assembly of collagen fibrils and other multime... \n", "56 Transcriptional regulation by RUNX1 \n", "57 Detoxification of Reactive Oxygen Species \n", "58 Semaphorin interactions \n", "59 Collagen biosynthesis and modifying enzymes \n", "60 trans-Golgi Network Vesicle Budding \n", "61 RHO GTPases activate PKNs \n", "62 Sphingolipid de novo biosynthesis \n", "63 Interleukin-12 signaling \n", "64 Integrin cell surface interactions \n", "65 Glycosphingolipid metabolism \n", "66 Protein-protein interactions at synapses \n", "67 Interleukin-12 family signaling \n", "68 Plasma lipoprotein assembly, remodeling, and c... \n", "69 EPH-Ephrin signaling \n", "70 Antigen Presentation: Folding, assembly and pe... \n", "71 Antigen activates B Cell Receptor (BCR) leadin... \n", "72 Adaptive Immune System \n", "73 Interferon Signaling \n", "74 Antimicrobial peptides \n", "75 Class A/1 (Rhodopsin-like receptors) \n", "76 L1CAM interactions \n", "77 O-linked glycosylation \n", "78 MHC class II antigen presentation \n", "79 Hemostasis \n", "80 Signaling by NTRKs \n", "81 Binding and Uptake of Ligands by Scavenger Rec... \n", "82 Transcriptional Regulation by TP53 \n", "83 Signaling by Hedgehog \n", "84 ER-Phagosome pathway \n", "85 Post-translational protein modification \n", "86 Signaling by the B Cell Receptor (BCR) \n", "87 Developmental Biology \n", "88 Antigen processing-Cross presentation \n", "89 Cellular response to chemical stress \n", "90 Muscle contraction \n", "91 Cellular responses to stress \n", "92 Axon guidance \n", "93 Cellular responses to stimuli \n", "94 GPCR ligand binding \n", "95 Nervous system development \n", "96 Metabolism of proteins \n", "97 Cytokine Signaling in Immune system \n", "98 Generic Transcription Pathway \n", "99 Immunoregulatory interactions between a Lympho... \n", "100 RAF/MAP kinase cascade \n", "101 RHO GTPase Effectors \n", "102 MAPK1/MAPK3 signaling \n", "103 Vesicle-mediated transport \n", "104 MAPK family signaling cascades \n", "105 RNA Polymerase II Transcription \n", "106 Signaling by GPCR \n", "107 Asparagine N-linked glycosylation \n", "108 Metabolism of carbohydrates \n", "109 Gene expression (Transcription) \n", "110 Class I MHC mediated antigen processing & pres... \n", "111 Neuronal System \n", "112 Signal Transduction \n", "113 Signaling by Receptor Tyrosine Kinases \n", "114 Signaling by Interleukins \n", "115 Metabolism of amino acids and derivatives \n", "116 Membrane Trafficking \n", "117 Signaling by Rho GTPases \n", "118 Signaling by Rho GTPases, Miro GTPases and RHO... \n", "119 Metabolism of lipids \n", "120 Transport of small molecules \n", "121 Metabolism \n", "\n", " species llp \\\n", "0 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "1 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "2 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "3 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "4 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "5 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "6 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "7 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "8 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "9 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "10 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "11 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "12 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "13 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "14 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "15 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "16 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "17 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "18 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "19 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "20 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "21 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "22 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "23 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "24 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "25 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "26 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "27 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "28 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "29 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "30 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "31 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "32 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "33 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "34 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "35 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "36 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "37 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "38 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "39 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "40 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "41 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "42 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "43 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "44 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "45 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "46 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "47 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "48 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "49 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "50 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "51 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "52 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "53 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "54 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "55 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "56 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "57 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "58 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "59 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "60 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "61 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "62 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "63 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "64 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "65 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "66 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "67 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "68 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "69 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "70 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "71 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "72 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "73 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "74 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "75 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "76 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "77 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "78 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "79 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "80 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "81 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "82 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "83 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "84 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "85 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "86 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "87 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "88 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "89 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "90 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "91 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "92 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "93 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "94 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "95 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "96 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "97 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "98 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "99 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "100 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "101 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "102 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "103 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "104 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "105 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "106 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "107 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "108 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "109 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "110 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "111 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "112 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "113 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "114 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "115 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "116 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "117 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "118 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "119 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "120 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "121 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "\n", " entities \\\n", "0 {'resource': 'TOTAL', 'total': 480, 'found': 1... \n", "1 {'resource': 'TOTAL', 'total': 2681, 'found': ... \n", "2 {'resource': 'TOTAL', 'total': 1334, 'found': ... \n", "3 {'resource': 'TOTAL', 'total': 19, 'found': 2,... \n", "4 {'resource': 'TOTAL', 'total': 15, 'found': 2,... \n", "5 {'resource': 'TOTAL', 'total': 19, 'found': 2,... \n", "6 {'resource': 'TOTAL', 'total': 17, 'found': 2,... \n", "7 {'resource': 'TOTAL', 'total': 33, 'found': 2,... \n", "8 {'resource': 'TOTAL', 'total': 139, 'found': 3... \n", "9 {'resource': 'TOTAL', 'total': 146, 'found': 3... \n", "10 {'resource': 'TOTAL', 'total': 329, 'found': 4... \n", "11 {'resource': 'TOTAL', 'total': 78, 'found': 2,... \n", "12 {'resource': 'TOTAL', 'total': 71, 'found': 2,... \n", "13 {'resource': 'TOTAL', 'total': 82, 'found': 2,... \n", "14 {'resource': 'TOTAL', 'total': 79, 'found': 2,... \n", "15 {'resource': 'TOTAL', 'total': 83, 'found': 2,... \n", "16 {'resource': 'TOTAL', 'total': 9, 'found': 1, ... \n", "17 {'resource': 'TOTAL', 'total': 16, 'found': 1,... \n", "18 {'resource': 'TOTAL', 'total': 20, 'found': 1,... \n", "19 {'resource': 'TOTAL', 'total': 22, 'found': 1,... \n", "20 {'resource': 'TOTAL', 'total': 109, 'found': 2... \n", "21 {'resource': 'TOTAL', 'total': 20, 'found': 1,... \n", "22 {'resource': 'TOTAL', 'total': 14, 'found': 1,... \n", "23 {'resource': 'TOTAL', 'total': 24, 'found': 1,... \n", "24 {'resource': 'TOTAL', 'total': 33, 'found': 1,... \n", "25 {'resource': 'TOTAL', 'total': 12, 'found': 1,... \n", "26 {'resource': 'TOTAL', 'total': 27, 'found': 1,... \n", "27 {'resource': 'TOTAL', 'total': 291, 'found': 3... \n", "28 {'resource': 'TOTAL', 'total': 23, 'found': 1,... \n", "29 {'resource': 'TOTAL', 'total': 30, 'found': 1,... \n", "30 {'resource': 'TOTAL', 'total': 24, 'found': 1,... \n", "31 {'resource': 'TOTAL', 'total': 23, 'found': 1,... \n", "32 {'resource': 'TOTAL', 'total': 30, 'found': 1,... \n", "33 {'resource': 'TOTAL', 'total': 25, 'found': 1,... \n", "34 {'resource': 'TOTAL', 'total': 186, 'found': 2... \n", "35 {'resource': 'TOTAL', 'total': 11, 'found': 1,... \n", "36 {'resource': 'TOTAL', 'total': 24, 'found': 1,... \n", "37 {'resource': 'TOTAL', 'total': 30, 'found': 1,... \n", "38 {'resource': 'TOTAL', 'total': 127, 'found': 2... \n", "39 {'resource': 'TOTAL', 'total': 27, 'found': 1,... \n", "40 {'resource': 'TOTAL', 'total': 104, 'found': 2... \n", "41 {'resource': 'TOTAL', 'total': 158, 'found': 2... \n", "42 {'resource': 'TOTAL', 'total': 155, 'found': 2... \n", "43 {'resource': 'TOTAL', 'total': 39, 'found': 1,... \n", "44 {'resource': 'TOTAL', 'total': 53, 'found': 1,... \n", "45 {'resource': 'TOTAL', 'total': 49, 'found': 1,... \n", "46 {'resource': 'TOTAL', 'total': 49, 'found': 1,... \n", "47 {'resource': 'TOTAL', 'total': 68, 'found': 1,... \n", "48 {'resource': 'TOTAL', 'total': 41, 'found': 1,... \n", "49 {'resource': 'TOTAL', 'total': 48, 'found': 1,... \n", "50 {'resource': 'TOTAL', 'total': 57, 'found': 1,... \n", "51 {'resource': 'TOTAL', 'total': 61, 'found': 1,... \n", "52 {'resource': 'TOTAL', 'total': 72, 'found': 1,... \n", "53 {'resource': 'TOTAL', 'total': 52, 'found': 1,... \n", "54 {'resource': 'TOTAL', 'total': 73, 'found': 1,... \n", "55 {'resource': 'TOTAL', 'total': 67, 'found': 1,... \n", "56 {'resource': 'TOTAL', 'total': 261, 'found': 2... \n", "57 {'resource': 'TOTAL', 'total': 65, 'found': 1,... \n", "58 {'resource': 'TOTAL', 'total': 70, 'found': 1,... \n", "59 {'resource': 'TOTAL', 'total': 76, 'found': 1,... \n", "60 {'resource': 'TOTAL', 'total': 80, 'found': 1,... \n", "61 {'resource': 'TOTAL', 'total': 80, 'found': 1,... \n", "62 {'resource': 'TOTAL', 'total': 80, 'found': 1,... \n", "63 {'resource': 'TOTAL', 'total': 84, 'found': 1,... \n", "64 {'resource': 'TOTAL', 'total': 86, 'found': 1,... \n", "65 {'resource': 'TOTAL', 'total': 86, 'found': 1,... \n", "66 {'resource': 'TOTAL', 'total': 93, 'found': 1,... \n", "67 {'resource': 'TOTAL', 'total': 96, 'found': 1,... \n", "68 {'resource': 'TOTAL', 'total': 98, 'found': 1,... \n", "69 {'resource': 'TOTAL', 'total': 101, 'found': 1... \n", "70 {'resource': 'TOTAL', 'total': 102, 'found': 1... \n", "71 {'resource': 'TOTAL', 'total': 103, 'found': 1... \n", "72 {'resource': 'TOTAL', 'total': 1004, 'found': ... \n", "73 {'resource': 'TOTAL', 'total': 394, 'found': 2... \n", "74 {'resource': 'TOTAL', 'total': 123, 'found': 1... \n", "75 {'resource': 'TOTAL', 'total': 412, 'found': 2... \n", "76 {'resource': 'TOTAL', 'total': 130, 'found': 1... \n", "77 {'resource': 'TOTAL', 'total': 132, 'found': 1... \n", "78 {'resource': 'TOTAL', 'total': 148, 'found': 1... \n", "79 {'resource': 'TOTAL', 'total': 801, 'found': 3... \n", "80 {'resource': 'TOTAL', 'total': 166, 'found': 1... \n", "81 {'resource': 'TOTAL', 'total': 167, 'found': 1... \n", "82 {'resource': 'TOTAL', 'total': 487, 'found': 2... \n", "83 {'resource': 'TOTAL', 'total': 168, 'found': 1... \n", "84 {'resource': 'TOTAL', 'total': 173, 'found': 1... \n", "85 {'resource': 'TOTAL', 'total': 1598, 'found': ... \n", "86 {'resource': 'TOTAL', 'total': 189, 'found': 1... \n", "87 {'resource': 'TOTAL', 'total': 1262, 'found': ... \n", "88 {'resource': 'TOTAL', 'total': 195, 'found': 1... \n", "89 {'resource': 'TOTAL', 'total': 208, 'found': 1... \n", "90 {'resource': 'TOTAL', 'total': 213, 'found': 1... \n", "91 {'resource': 'TOTAL', 'total': 948, 'found': 3... \n", "92 {'resource': 'TOTAL', 'total': 584, 'found': 2... \n", "93 {'resource': 'TOTAL', 'total': 966, 'found': 3... \n", "94 {'resource': 'TOTAL', 'total': 606, 'found': 2... \n", "95 {'resource': 'TOTAL', 'total': 620, 'found': 2... \n", "96 {'resource': 'TOTAL', 'total': 2205, 'found': ... \n", "97 {'resource': 'TOTAL', 'total': 1092, 'found': ... \n", "98 {'resource': 'TOTAL', 'total': 1555, 'found': ... \n", "99 {'resource': 'TOTAL', 'total': 316, 'found': 1... \n", "100 {'resource': 'TOTAL', 'total': 322, 'found': 1... \n", "101 {'resource': 'TOTAL', 'total': 326, 'found': 1... \n", "102 {'resource': 'TOTAL', 'total': 329, 'found': 1... \n", "103 {'resource': 'TOTAL', 'total': 824, 'found': 2... \n", "104 {'resource': 'TOTAL', 'total': 380, 'found': 1... \n", "105 {'resource': 'TOTAL', 'total': 1694, 'found': ... \n", "106 {'resource': 'TOTAL', 'total': 864, 'found': 2... \n", "107 {'resource': 'TOTAL', 'total': 421, 'found': 1... \n", "108 {'resource': 'TOTAL', 'total': 456, 'found': 1... \n", "109 {'resource': 'TOTAL', 'total': 1855, 'found': ... \n", "110 {'resource': 'TOTAL', 'total': 473, 'found': 1... \n", "111 {'resource': 'TOTAL', 'total': 487, 'found': 1... \n", "112 {'resource': 'TOTAL', 'total': 2993, 'found': ... \n", "113 {'resource': 'TOTAL', 'total': 617, 'found': 1... \n", "114 {'resource': 'TOTAL', 'total': 643, 'found': 1... \n", "115 {'resource': 'TOTAL', 'total': 661, 'found': 1... \n", "116 {'resource': 'TOTAL', 'total': 665, 'found': 1... \n", "117 {'resource': 'TOTAL', 'total': 709, 'found': 1... \n", "118 {'resource': 'TOTAL', 'total': 725, 'found': 1... \n", "119 {'resource': 'TOTAL', 'total': 1437, 'found': ... \n", "120 {'resource': 'TOTAL', 'total': 958, 'found': 1... \n", "121 {'resource': 'TOTAL', 'total': 3633, 'found': ... \n", "\n", " reactions inDisease \n", "0 {'resource': 'TOTAL', 'total': 10, 'found': 7,... False \n", "1 {'resource': 'TOTAL', 'total': 1623, 'found': ... False \n", "2 {'resource': 'TOTAL', 'total': 710, 'found': 1... False \n", "3 {'resource': 'TOTAL', 'total': 14, 'found': 5,... False \n", "4 {'resource': 'TOTAL', 'total': 5, 'found': 1, ... False \n", "5 {'resource': 'TOTAL', 'total': 5, 'found': 1, ... False \n", "6 {'resource': 'TOTAL', 'total': 10, 'found': 1,... False \n", "7 {'resource': 'TOTAL', 'total': 25, 'found': 2,... False \n", "8 {'resource': 'TOTAL', 'total': 11, 'found': 3,... False \n", "9 {'resource': 'TOTAL', 'total': 14, 'found': 3,... False \n", "10 {'resource': 'TOTAL', 'total': 319, 'found': 1... False \n", "11 {'resource': 'TOTAL', 'total': 33, 'found': 5,... False \n", "12 {'resource': 'TOTAL', 'total': 27, 'found': 4,... False \n", "13 {'resource': 'TOTAL', 'total': 45, 'found': 5,... False \n", "14 {'resource': 'TOTAL', 'total': 23, 'found': 2,... False \n", "15 {'resource': 'TOTAL', 'total': 68, 'found': 2,... False \n", "16 {'resource': 'TOTAL', 'total': 5, 'found': 1, ... False \n", "17 {'resource': 'TOTAL', 'total': 2, 'found': 2, ... False \n", "18 {'resource': 'TOTAL', 'total': 2, 'found': 2, ... False \n", "19 {'resource': 'TOTAL', 'total': 3, 'found': 3, ... False \n", "20 {'resource': 'TOTAL', 'total': 1, 'found': 1, ... False \n", "21 {'resource': 'TOTAL', 'total': 6, 'found': 3, ... False \n", "22 {'resource': 'TOTAL', 'total': 5, 'found': 2, ... False \n", "23 {'resource': 'TOTAL', 'total': 7, 'found': 2, ... False \n", "24 {'resource': 'TOTAL', 'total': 4, 'found': 1, ... False \n", "25 {'resource': 'TOTAL', 'total': 5, 'found': 1, ... False \n", "26 {'resource': 'TOTAL', 'total': 15, 'found': 3,... False \n", "27 {'resource': 'TOTAL', 'total': 116, 'found': 2... False \n", "28 {'resource': 'TOTAL', 'total': 6, 'found': 1, ... False \n", "29 {'resource': 'TOTAL', 'total': 19, 'found': 3,... False \n", "30 {'resource': 'TOTAL', 'total': 7, 'found': 1, ... False \n", "31 {'resource': 'TOTAL', 'total': 8, 'found': 1, ... False \n", "32 {'resource': 'TOTAL', 'total': 8, 'found': 1, ... False \n", "33 {'resource': 'TOTAL', 'total': 11, 'found': 1,... False \n", "34 {'resource': 'TOTAL', 'total': 22, 'found': 2,... False \n", "35 {'resource': 'TOTAL', 'total': 12, 'found': 1,... False \n", "36 {'resource': 'TOTAL', 'total': 13, 'found': 1,... False \n", "37 {'resource': 'TOTAL', 'total': 13, 'found': 1,... False \n", "38 {'resource': 'TOTAL', 'total': 14, 'found': 1,... False \n", "39 {'resource': 'TOTAL', 'total': 19, 'found': 1,... False \n", "40 {'resource': 'TOTAL', 'total': 77, 'found': 4,... False \n", "41 {'resource': 'TOTAL', 'total': 64, 'found': 3,... False \n", "42 {'resource': 'TOTAL', 'total': 94, 'found': 1,... False \n", "43 {'resource': 'TOTAL', 'total': 24, 'found': 20... False \n", "44 {'resource': 'TOTAL', 'total': 27, 'found': 20... False \n", "45 {'resource': 'TOTAL', 'total': 12, 'found': 8,... False \n", "46 {'resource': 'TOTAL', 'total': 11, 'found': 5,... False \n", "47 {'resource': 'TOTAL', 'total': 5, 'found': 2, ... False \n", "48 {'resource': 'TOTAL', 'total': 13, 'found': 3,... False \n", "49 {'resource': 'TOTAL', 'total': 10, 'found': 2,... False \n", "50 {'resource': 'TOTAL', 'total': 18, 'found': 3,... False \n", "51 {'resource': 'TOTAL', 'total': 7, 'found': 1, ... False \n", "52 {'resource': 'TOTAL', 'total': 15, 'found': 2,... False \n", "53 {'resource': 'TOTAL', 'total': 29, 'found': 2,... False \n", "54 {'resource': 'TOTAL', 'total': 17, 'found': 1,... False \n", "55 {'resource': 'TOTAL', 'total': 26, 'found': 1,... False \n", "56 {'resource': 'TOTAL', 'total': 132, 'found': 5... False \n", "57 {'resource': 'TOTAL', 'total': 34, 'found': 1,... False \n", "58 {'resource': 'TOTAL', 'total': 41, 'found': 1,... False \n", "59 {'resource': 'TOTAL', 'total': 51, 'found': 3,... False \n", "60 {'resource': 'TOTAL', 'total': 19, 'found': 1,... False \n", "61 {'resource': 'TOTAL', 'total': 20, 'found': 1,... False \n", "62 {'resource': 'TOTAL', 'total': 32, 'found': 1,... False \n", "63 {'resource': 'TOTAL', 'total': 56, 'found': 2,... False \n", "64 {'resource': 'TOTAL', 'total': 55, 'found': 4,... False \n", "65 {'resource': 'TOTAL', 'total': 32, 'found': 2,... False \n", "66 {'resource': 'TOTAL', 'total': 33, 'found': 4,... False \n", "67 {'resource': 'TOTAL', 'total': 114, 'found': 3... False \n", "68 {'resource': 'TOTAL', 'total': 84, 'found': 3,... False \n", "69 {'resource': 'TOTAL', 'total': 56, 'found': 1,... False \n", "70 {'resource': 'TOTAL', 'total': 16, 'found': 3,... False \n", "71 {'resource': 'TOTAL', 'total': 25, 'found': 2,... False \n", "72 {'resource': 'TOTAL', 'total': 264, 'found': 1... False \n", "73 {'resource': 'TOTAL', 'total': 69, 'found': 2,... False \n", "74 {'resource': 'TOTAL', 'total': 58, 'found': 1,... False \n", "75 {'resource': 'TOTAL', 'total': 159, 'found': 1... False \n", "76 {'resource': 'TOTAL', 'total': 54, 'found': 1,... False \n", "77 {'resource': 'TOTAL', 'total': 28, 'found': 1,... False \n", "78 {'resource': 'TOTAL', 'total': 26, 'found': 3,... False \n", "79 {'resource': 'TOTAL', 'total': 334, 'found': 2... False \n", "80 {'resource': 'TOTAL', 'total': 164, 'found': 1... False \n", "81 {'resource': 'TOTAL', 'total': 33, 'found': 4,... False \n", "82 {'resource': 'TOTAL', 'total': 259, 'found': 2... False \n", "83 {'resource': 'TOTAL', 'total': 82, 'found': 2,... False \n", "84 {'resource': 'TOTAL', 'total': 10, 'found': 3,... False \n", "85 {'resource': 'TOTAL', 'total': 526, 'found': 7... False \n", "86 {'resource': 'TOTAL', 'total': 44, 'found': 2,... False \n", "87 {'resource': 'TOTAL', 'total': 556, 'found': 7... False \n", "88 {'resource': 'TOTAL', 'total': 23, 'found': 3,... False \n", "89 {'resource': 'TOTAL', 'total': 71, 'found': 1,... False \n", "90 {'resource': 'TOTAL', 'total': 42, 'found': 5,... False \n", "91 {'resource': 'TOTAL', 'total': 381, 'found': 2... False \n", "92 {'resource': 'TOTAL', 'total': 298, 'found': 3... False \n", "93 {'resource': 'TOTAL', 'total': 412, 'found': 2... False \n", "94 {'resource': 'TOTAL', 'total': 186, 'found': 1... False \n", "95 {'resource': 'TOTAL', 'total': 324, 'found': 3... False \n", "96 {'resource': 'TOTAL', 'total': 798, 'found': 9... False \n", "97 {'resource': 'TOTAL', 'total': 708, 'found': 5... False \n", "98 {'resource': 'TOTAL', 'total': 824, 'found': 7... False \n", "99 {'resource': 'TOTAL', 'total': 44, 'found': 1,... False \n", "100 {'resource': 'TOTAL', 'total': 75, 'found': 8,... False \n", "101 {'resource': 'TOTAL', 'total': 113, 'found': 5... False \n", "102 {'resource': 'TOTAL', 'total': 82, 'found': 8,... False \n", "103 {'resource': 'TOTAL', 'total': 252, 'found': 5... False \n", "104 {'resource': 'TOTAL', 'total': 122, 'found': 8... False \n", "105 {'resource': 'TOTAL', 'total': 885, 'found': 7... False \n", "106 {'resource': 'TOTAL', 'total': 354, 'found': 1... False \n", "107 {'resource': 'TOTAL', 'total': 144, 'found': 3... False \n", "108 {'resource': 'TOTAL', 'total': 243, 'found': 1... False \n", "109 {'resource': 'TOTAL', 'total': 1000, 'found': ... False \n", "110 {'resource': 'TOTAL', 'total': 48, 'found': 6,... False \n", "111 {'resource': 'TOTAL', 'total': 216, 'found': 4... False \n", "112 {'resource': 'TOTAL', 'total': 2445, 'found': ... False \n", "113 {'resource': 'TOTAL', 'total': 744, 'found': 1... False \n", "114 {'resource': 'TOTAL', 'total': 493, 'found': 3... False \n", "115 {'resource': 'TOTAL', 'total': 285, 'found': 1... False \n", "116 {'resource': 'TOTAL', 'total': 219, 'found': 1... False \n", "117 {'resource': 'TOTAL', 'total': 203, 'found': 5... False \n", "118 {'resource': 'TOTAL', 'total': 212, 'found': 5... False \n", "119 {'resource': 'TOTAL', 'total': 949, 'found': 3... False \n", "120 {'resource': 'TOTAL', 'total': 442, 'found': 3... False \n", "121 {'resource': 'TOTAL', 'total': 2250, 'found': ... False " ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pathways(adata, \"18Eos\")" ] }, { "cell_type": "code", "execution_count": 19, "id": "9b689e55", "metadata": {}, "outputs": [ { "data": { "text/html": [ "<div>\n", "<style scoped>\n", " .dataframe tbody tr th:only-of-type {\n", " vertical-align: middle;\n", " }\n", "\n", " .dataframe tbody tr th {\n", " vertical-align: top;\n", " }\n", "\n", " .dataframe thead th {\n", " text-align: right;\n", " }\n", "</style>\n", "<table border=\"1\" class=\"dataframe\">\n", " <thead>\n", " <tr style=\"text-align: right;\">\n", " <th></th>\n", " <th>stId</th>\n", " <th>dbId</th>\n", " <th>name</th>\n", " <th>species</th>\n", " <th>llp</th>\n", " <th>entities</th>\n", " <th>reactions</th>\n", " <th>inDisease</th>\n", " </tr>\n", " </thead>\n", " <tbody>\n", " <tr>\n", " <th>0</th>\n", " <td>R-HSA-5661231</td>\n", " <td>5661231</td>\n", " <td>Metallothioneins bind metals</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 16, 'found': 3,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 27, 'found': 10...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>1</th>\n", " <td>R-HSA-5660526</td>\n", " <td>5660526</td>\n", " <td>Response to metal ions</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 21, 'found': 3,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 31, 'found': 10...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>2</th>\n", " <td>R-HSA-9037628</td>\n", " <td>9037628</td>\n", " <td>Rhesus blood group biosynthesis</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 4, 'found': 2, ...</td>\n", " <td>{'resource': 'TOTAL', 'total': 2, 'found': 1, ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>3</th>\n", " <td>R-HSA-189445</td>\n", " <td>189445</td>\n", " <td>Metabolism of porphyrins</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 74, 'found': 3,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 42, 'found': 4,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>4</th>\n", " <td>R-HSA-210745</td>\n", " <td>210745</td>\n", " <td>Regulation of gene expression in beta cells</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 35, 'found': 2,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 12, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>5</th>\n", " <td>R-HSA-189451</td>\n", " <td>189451</td>\n", " <td>Heme biosynthesis</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 46, 'found': 2,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 20, 'found': 3,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>6</th>\n", " <td>R-HSA-9033658</td>\n", " <td>9033658</td>\n", " <td>Blood group systems biosynthesis</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 52, 'found': 2,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 22, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>7</th>\n", " <td>R-HSA-186712</td>\n", " <td>186712</td>\n", " <td>Regulation of beta-cell development</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 67, 'found': 2,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 26, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>8</th>\n", " <td>R-HSA-8936459</td>\n", " <td>8936459</td>\n", " <td>RUNX1 regulates genes involved in megakaryocyt...</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 78, 'found': 2,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 33, 'found': 12...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>9</th>\n", " <td>R-HSA-163765</td>\n", " <td>163765</td>\n", " <td>ChREBP activates metabolic gene expression</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 9, 'found': 1, ...</td>\n", " <td>{'resource': 'TOTAL', 'total': 6, 'found': 1, ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>10</th>\n", " <td>R-HSA-71387</td>\n", " <td>71387</td>\n", " <td>Metabolism of carbohydrates</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 456, 'found': 4...</td>\n", " <td>{'resource': 'TOTAL', 'total': 243, 'found': 2...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>11</th>\n", " <td>R-HSA-70171</td>\n", " <td>70171</td>\n", " <td>Glycolysis</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 110, 'found': 2...</td>\n", " <td>{'resource': 'TOTAL', 'total': 24, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>12</th>\n", " <td>R-HSA-390471</td>\n", " <td>390471</td>\n", " <td>Association of TriC/CCT with target proteins d...</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 40, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 2, 'found': 1, ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>13</th>\n", " <td>R-HSA-432047</td>\n", " <td>432047</td>\n", " <td>Passive transport by Aquaporins</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 21, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 8, 'found': 2, ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>14</th>\n", " <td>R-HSA-1247673</td>\n", " <td>1247673</td>\n", " <td>Erythrocytes take up oxygen and release carbon...</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 16, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 6, 'found': 1, ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>15</th>\n", " <td>R-HSA-1362409</td>\n", " <td>1362409</td>\n", " <td>Mitochondrial iron-sulfur cluster biogenesis</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 25, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 6, 'found': 1, ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>16</th>\n", " <td>R-HSA-5218921</td>\n", " <td>5218921</td>\n", " <td>VEGFR2 mediated cell proliferation</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 31, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 12, 'found': 2,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>17</th>\n", " <td>R-HSA-196757</td>\n", " <td>196757</td>\n", " <td>Metabolism of folate and pterines</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 44, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 30, 'found': 5,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>18</th>\n", " <td>R-HSA-1480926</td>\n", " <td>1480926</td>\n", " <td>O2/CO2 exchange in erythrocytes</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 23, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 13, 'found': 2,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>19</th>\n", " <td>R-HSA-1237044</td>\n", " <td>1237044</td>\n", " <td>Erythrocytes take up carbon dioxide and releas...</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 23, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 7, 'found': 1, ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>20</th>\n", " <td>R-HSA-8964539</td>\n", " <td>8964539</td>\n", " <td>Glutamate and glutamine metabolism</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 40, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 14, 'found': 2,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>21</th>\n", " <td>R-HSA-210991</td>\n", " <td>210991</td>\n", " <td>Basigin interactions</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 26, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 10, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>22</th>\n", " <td>R-HSA-189483</td>\n", " <td>189483</td>\n", " <td>Heme degradation</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 38, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 22, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>23</th>\n", " <td>R-HSA-8953897</td>\n", " <td>8953897</td>\n", " <td>Cellular responses to stimuli</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 966, 'found': 5...</td>\n", " <td>{'resource': 'TOTAL', 'total': 412, 'found': 1...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>24</th>\n", " <td>R-HSA-9711123</td>\n", " <td>9711123</td>\n", " <td>Cellular response to chemical stress</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 208, 'found': 2...</td>\n", " <td>{'resource': 'TOTAL', 'total': 71, 'found': 2,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>25</th>\n", " <td>R-HSA-983231</td>\n", " <td>983231</td>\n", " <td>Factors involved in megakaryocyte development ...</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 194, 'found': 2...</td>\n", " <td>{'resource': 'TOTAL', 'total': 43, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>26</th>\n", " <td>R-HSA-70326</td>\n", " <td>70326</td>\n", " <td>Glucose metabolism</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 140, 'found': 2...</td>\n", " <td>{'resource': 'TOTAL', 'total': 50, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>27</th>\n", " <td>R-HSA-445717</td>\n", " <td>445717</td>\n", " <td>Aquaporin-mediated transport</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 68, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 25, 'found': 4,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>28</th>\n", " <td>R-HSA-432040</td>\n", " <td>432040</td>\n", " <td>Vasopressin regulates renal water homeostasis ...</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 52, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 15, 'found': 2,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>29</th>\n", " <td>R-HSA-5578775</td>\n", " <td>5578775</td>\n", " <td>Ion homeostasis</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 64, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 16, 'found': 2,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>30</th>\n", " <td>R-HSA-936837</td>\n", " <td>936837</td>\n", " <td>Ion transport by P-type ATPases</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 71, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 16, 'found': 2,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>31</th>\n", " <td>R-HSA-877300</td>\n", " <td>877300</td>\n", " <td>Interferon gamma signaling</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 250, 'found': 2...</td>\n", " <td>{'resource': 'TOTAL', 'total': 16, 'found': 2,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>32</th>\n", " <td>R-HSA-8878171</td>\n", " <td>8878171</td>\n", " <td>Transcriptional regulation by RUNX1</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 261, 'found': 2...</td>\n", " <td>{'resource': 'TOTAL', 'total': 132, 'found': 1...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>33</th>\n", " <td>R-HSA-8939236</td>\n", " <td>8939236</td>\n", " <td>RUNX1 regulates transcription of genes involve...</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 106, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 15, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>34</th>\n", " <td>R-HSA-1660661</td>\n", " <td>1660661</td>\n", " <td>Sphingolipid de novo biosynthesis</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 80, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 32, 'found': 2,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>35</th>\n", " <td>R-HSA-390466</td>\n", " <td>390466</td>\n", " <td>Chaperonin-mediated protein folding</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 96, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 19, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>36</th>\n", " <td>R-HSA-391251</td>\n", " <td>391251</td>\n", " <td>Protein folding</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 102, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 28, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>37</th>\n", " <td>R-HSA-3299685</td>\n", " <td>3299685</td>\n", " <td>Detoxification of Reactive Oxygen Species</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 65, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 34, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>38</th>\n", " <td>R-HSA-917937</td>\n", " <td>917937</td>\n", " <td>Iron uptake and transport</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 83, 'found': 1,...</td>\n", " <td>{'resource': 'TOTAL', 'total': 34, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>39</th>\n", " <td>R-HSA-1430728</td>\n", " <td>1430728</td>\n", " <td>Metabolism</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 3633, 'found': ...</td>\n", " <td>{'resource': 'TOTAL', 'total': 2250, 'found': ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>40</th>\n", " <td>R-HSA-913531</td>\n", " <td>913531</td>\n", " <td>Interferon Signaling</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 394, 'found': 2...</td>\n", " <td>{'resource': 'TOTAL', 'total': 69, 'found': 2,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>41</th>\n", " <td>R-HSA-9009391</td>\n", " <td>9009391</td>\n", " <td>Extra-nuclear estrogen signaling</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 110, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 38, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>42</th>\n", " <td>R-HSA-5628897</td>\n", " <td>5628897</td>\n", " <td>TP53 Regulates Metabolic Genes</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 126, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 34, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>43</th>\n", " <td>R-HSA-4420097</td>\n", " <td>4420097</td>\n", " <td>VEGFA-VEGFR2 Pathway</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 126, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 79, 'found': 2,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>44</th>\n", " <td>R-HSA-109582</td>\n", " <td>109582</td>\n", " <td>Hemostasis</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 801, 'found': 3...</td>\n", " <td>{'resource': 'TOTAL', 'total': 334, 'found': 2...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>45</th>\n", " <td>R-HSA-194138</td>\n", " <td>194138</td>\n", " <td>Signaling by VEGF</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 137, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 86, 'found': 2,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>46</th>\n", " <td>R-HSA-5576891</td>\n", " <td>5576891</td>\n", " <td>Cardiac conduction</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 138, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 27, 'found': 2,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>47</th>\n", " <td>R-HSA-163685</td>\n", " <td>163685</td>\n", " <td>Integration of energy metabolism</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 145, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 62, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>48</th>\n", " <td>R-HSA-2132295</td>\n", " <td>2132295</td>\n", " <td>MHC class II antigen presentation</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 148, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 26, 'found': 3,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>49</th>\n", " <td>R-HSA-6798695</td>\n", " <td>6798695</td>\n", " <td>Neutrophil degranulation</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 480, 'found': 2...</td>\n", " <td>{'resource': 'TOTAL', 'total': 10, 'found': 2,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>50</th>\n", " <td>R-HSA-428157</td>\n", " <td>428157</td>\n", " <td>Sphingolipid metabolism</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 158, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 64, 'found': 2,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>51</th>\n", " <td>R-HSA-9707564</td>\n", " <td>9707564</td>\n", " <td>Cytoprotection by HMOX1</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 158, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 37, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>52</th>\n", " <td>R-HSA-6791226</td>\n", " <td>6791226</td>\n", " <td>Major pathway of rRNA processing in the nucleo...</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 189, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 7, 'found': 1, ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>53</th>\n", " <td>R-HSA-382551</td>\n", " <td>382551</td>\n", " <td>Transport of small molecules</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 958, 'found': 3...</td>\n", " <td>{'resource': 'TOTAL', 'total': 442, 'found': 9...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>54</th>\n", " <td>R-HSA-983712</td>\n", " <td>983712</td>\n", " <td>Ion channel transport</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 206, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 45, 'found': 2,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>55</th>\n", " <td>R-HSA-8868773</td>\n", " <td>8868773</td>\n", " <td>rRNA processing in the nucleus and cytosol</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 207, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 15, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>56</th>\n", " <td>R-HSA-397014</td>\n", " <td>397014</td>\n", " <td>Muscle contraction</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 213, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 42, 'found': 2,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>57</th>\n", " <td>R-HSA-72312</td>\n", " <td>72312</td>\n", " <td>rRNA processing</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 245, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 21, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>58</th>\n", " <td>R-HSA-196849</td>\n", " <td>196849</td>\n", " <td>Metabolism of water-soluble vitamins and cofac...</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 254, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 144, 'found': 5...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>59</th>\n", " <td>R-HSA-8939211</td>\n", " <td>8939211</td>\n", " <td>ESR-mediated signaling</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 256, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 111, 'found': 1...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>60</th>\n", " <td>R-HSA-202733</td>\n", " <td>202733</td>\n", " <td>Cell surface interactions at the vascular wall</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 257, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 65, 'found': 1,...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>61</th>\n", " <td>R-HSA-196854</td>\n", " <td>196854</td>\n", " <td>Metabolism of vitamins and cofactors</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 377, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 206, 'found': 5...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>62</th>\n", " <td>R-HSA-9006931</td>\n", " <td>9006931</td>\n", " <td>Signaling by Nuclear Receptors</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 384, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 192, 'found': 1...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>63</th>\n", " <td>R-HSA-2262752</td>\n", " <td>2262752</td>\n", " <td>Cellular responses to stress</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 948, 'found': 2...</td>\n", " <td>{'resource': 'TOTAL', 'total': 381, 'found': 2...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>64</th>\n", " <td>R-HSA-3700989</td>\n", " <td>3700989</td>\n", " <td>Transcriptional Regulation by TP53</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 487, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 259, 'found': 1...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>65</th>\n", " <td>R-HSA-212436</td>\n", " <td>212436</td>\n", " <td>Generic Transcription Pathway</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>True</td>\n", " <td>{'resource': 'TOTAL', 'total': 1555, 'found': ...</td>\n", " <td>{'resource': 'TOTAL', 'total': 824, 'found': 1...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>66</th>\n", " <td>R-HSA-1280215</td>\n", " <td>1280215</td>\n", " <td>Cytokine Signaling in Immune system</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 1092, 'found': ...</td>\n", " <td>{'resource': 'TOTAL', 'total': 708, 'found': 2...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>67</th>\n", " <td>R-HSA-168256</td>\n", " <td>168256</td>\n", " <td>Immune System</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 2681, 'found': ...</td>\n", " <td>{'resource': 'TOTAL', 'total': 1623, 'found': ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>68</th>\n", " <td>R-HSA-73857</td>\n", " <td>73857</td>\n", " <td>RNA Polymerase II Transcription</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 1694, 'found': ...</td>\n", " <td>{'resource': 'TOTAL', 'total': 885, 'found': 1...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>69</th>\n", " <td>R-HSA-9006934</td>\n", " <td>9006934</td>\n", " <td>Signaling by Receptor Tyrosine Kinases</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 617, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 744, 'found': 2...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>70</th>\n", " <td>R-HSA-71291</td>\n", " <td>71291</td>\n", " <td>Metabolism of amino acids and derivatives</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 661, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 285, 'found': 2...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>71</th>\n", " <td>R-HSA-1266738</td>\n", " <td>1266738</td>\n", " <td>Developmental Biology</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 1262, 'found': ...</td>\n", " <td>{'resource': 'TOTAL', 'total': 556, 'found': 1...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>72</th>\n", " <td>R-HSA-74160</td>\n", " <td>74160</td>\n", " <td>Gene expression (Transcription)</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 1855, 'found': ...</td>\n", " <td>{'resource': 'TOTAL', 'total': 1000, 'found': ...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>73</th>\n", " <td>R-HSA-168249</td>\n", " <td>168249</td>\n", " <td>Innate Immune System</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 1334, 'found': ...</td>\n", " <td>{'resource': 'TOTAL', 'total': 710, 'found': 2...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>74</th>\n", " <td>R-HSA-8953854</td>\n", " <td>8953854</td>\n", " <td>Metabolism of RNA</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 782, 'found': 1...</td>\n", " <td>{'resource': 'TOTAL', 'total': 187, 'found': 1...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>75</th>\n", " <td>R-HSA-1280218</td>\n", " <td>1280218</td>\n", " <td>Adaptive Immune System</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 1004, 'found': ...</td>\n", " <td>{'resource': 'TOTAL', 'total': 264, 'found': 3...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>76</th>\n", " <td>R-HSA-556833</td>\n", " <td>556833</td>\n", " <td>Metabolism of lipids</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 1437, 'found': ...</td>\n", " <td>{'resource': 'TOTAL', 'total': 949, 'found': 2...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>77</th>\n", " <td>R-HSA-392499</td>\n", " <td>392499</td>\n", " <td>Metabolism of proteins</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 2205, 'found': ...</td>\n", " <td>{'resource': 'TOTAL', 'total': 798, 'found': 1...</td>\n", " <td>False</td>\n", " </tr>\n", " <tr>\n", " <th>78</th>\n", " <td>R-HSA-162582</td>\n", " <td>162582</td>\n", " <td>Signal Transduction</td>\n", " <td>{'dbId': 48887, 'taxId': '9606', 'name': 'Homo...</td>\n", " <td>False</td>\n", " <td>{'resource': 'TOTAL', 'total': 2993, 'found': ...</td>\n", " <td>{'resource': 'TOTAL', 'total': 2445, 'found': ...</td>\n", " <td>False</td>\n", " </tr>\n", " </tbody>\n", "</table>\n", "</div>" ], "text/plain": [ " stId dbId name \\\n", "0 R-HSA-5661231 5661231 Metallothioneins bind metals \n", "1 R-HSA-5660526 5660526 Response to metal ions \n", "2 R-HSA-9037628 9037628 Rhesus blood group biosynthesis \n", "3 R-HSA-189445 189445 Metabolism of porphyrins \n", "4 R-HSA-210745 210745 Regulation of gene expression in beta cells \n", "5 R-HSA-189451 189451 Heme biosynthesis \n", "6 R-HSA-9033658 9033658 Blood group systems biosynthesis \n", "7 R-HSA-186712 186712 Regulation of beta-cell development \n", "8 R-HSA-8936459 8936459 RUNX1 regulates genes involved in megakaryocyt... \n", "9 R-HSA-163765 163765 ChREBP activates metabolic gene expression \n", "10 R-HSA-71387 71387 Metabolism of carbohydrates \n", "11 R-HSA-70171 70171 Glycolysis \n", "12 R-HSA-390471 390471 Association of TriC/CCT with target proteins d... \n", "13 R-HSA-432047 432047 Passive transport by Aquaporins \n", "14 R-HSA-1247673 1247673 Erythrocytes take up oxygen and release carbon... \n", "15 R-HSA-1362409 1362409 Mitochondrial iron-sulfur cluster biogenesis \n", "16 R-HSA-5218921 5218921 VEGFR2 mediated cell proliferation \n", "17 R-HSA-196757 196757 Metabolism of folate and pterines \n", "18 R-HSA-1480926 1480926 O2/CO2 exchange in erythrocytes \n", "19 R-HSA-1237044 1237044 Erythrocytes take up carbon dioxide and releas... \n", "20 R-HSA-8964539 8964539 Glutamate and glutamine metabolism \n", "21 R-HSA-210991 210991 Basigin interactions \n", "22 R-HSA-189483 189483 Heme degradation \n", "23 R-HSA-8953897 8953897 Cellular responses to stimuli \n", "24 R-HSA-9711123 9711123 Cellular response to chemical stress \n", "25 R-HSA-983231 983231 Factors involved in megakaryocyte development ... \n", "26 R-HSA-70326 70326 Glucose metabolism \n", "27 R-HSA-445717 445717 Aquaporin-mediated transport \n", "28 R-HSA-432040 432040 Vasopressin regulates renal water homeostasis ... \n", "29 R-HSA-5578775 5578775 Ion homeostasis \n", "30 R-HSA-936837 936837 Ion transport by P-type ATPases \n", "31 R-HSA-877300 877300 Interferon gamma signaling \n", "32 R-HSA-8878171 8878171 Transcriptional regulation by RUNX1 \n", "33 R-HSA-8939236 8939236 RUNX1 regulates transcription of genes involve... \n", "34 R-HSA-1660661 1660661 Sphingolipid de novo biosynthesis \n", "35 R-HSA-390466 390466 Chaperonin-mediated protein folding \n", "36 R-HSA-391251 391251 Protein folding \n", "37 R-HSA-3299685 3299685 Detoxification of Reactive Oxygen Species \n", "38 R-HSA-917937 917937 Iron uptake and transport \n", "39 R-HSA-1430728 1430728 Metabolism \n", "40 R-HSA-913531 913531 Interferon Signaling \n", "41 R-HSA-9009391 9009391 Extra-nuclear estrogen signaling \n", "42 R-HSA-5628897 5628897 TP53 Regulates Metabolic Genes \n", "43 R-HSA-4420097 4420097 VEGFA-VEGFR2 Pathway \n", "44 R-HSA-109582 109582 Hemostasis \n", "45 R-HSA-194138 194138 Signaling by VEGF \n", "46 R-HSA-5576891 5576891 Cardiac conduction \n", "47 R-HSA-163685 163685 Integration of energy metabolism \n", "48 R-HSA-2132295 2132295 MHC class II antigen presentation \n", "49 R-HSA-6798695 6798695 Neutrophil degranulation \n", "50 R-HSA-428157 428157 Sphingolipid metabolism \n", "51 R-HSA-9707564 9707564 Cytoprotection by HMOX1 \n", "52 R-HSA-6791226 6791226 Major pathway of rRNA processing in the nucleo... \n", "53 R-HSA-382551 382551 Transport of small molecules \n", "54 R-HSA-983712 983712 Ion channel transport \n", "55 R-HSA-8868773 8868773 rRNA processing in the nucleus and cytosol \n", "56 R-HSA-397014 397014 Muscle contraction \n", "57 R-HSA-72312 72312 rRNA processing \n", "58 R-HSA-196849 196849 Metabolism of water-soluble vitamins and cofac... \n", "59 R-HSA-8939211 8939211 ESR-mediated signaling \n", "60 R-HSA-202733 202733 Cell surface interactions at the vascular wall \n", "61 R-HSA-196854 196854 Metabolism of vitamins and cofactors \n", "62 R-HSA-9006931 9006931 Signaling by Nuclear Receptors \n", "63 R-HSA-2262752 2262752 Cellular responses to stress \n", "64 R-HSA-3700989 3700989 Transcriptional Regulation by TP53 \n", "65 R-HSA-212436 212436 Generic Transcription Pathway \n", "66 R-HSA-1280215 1280215 Cytokine Signaling in Immune system \n", "67 R-HSA-168256 168256 Immune System \n", "68 R-HSA-73857 73857 RNA Polymerase II Transcription \n", "69 R-HSA-9006934 9006934 Signaling by Receptor Tyrosine Kinases \n", "70 R-HSA-71291 71291 Metabolism of amino acids and derivatives \n", "71 R-HSA-1266738 1266738 Developmental Biology \n", "72 R-HSA-74160 74160 Gene expression (Transcription) \n", "73 R-HSA-168249 168249 Innate Immune System \n", "74 R-HSA-8953854 8953854 Metabolism of RNA \n", "75 R-HSA-1280218 1280218 Adaptive Immune System \n", "76 R-HSA-556833 556833 Metabolism of lipids \n", "77 R-HSA-392499 392499 Metabolism of proteins \n", "78 R-HSA-162582 162582 Signal Transduction \n", "\n", " species llp \\\n", "0 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "1 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "2 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "3 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "4 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "5 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "6 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "7 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "8 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "9 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "10 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "11 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "12 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "13 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "14 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "15 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "16 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "17 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "18 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "19 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "20 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "21 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "22 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "23 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "24 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "25 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "26 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "27 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "28 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "29 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "30 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "31 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "32 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "33 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "34 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "35 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "36 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "37 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "38 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "39 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "40 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "41 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "42 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "43 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "44 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "45 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "46 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "47 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "48 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "49 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "50 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "51 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "52 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "53 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "54 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "55 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "56 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "57 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "58 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "59 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "60 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "61 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "62 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "63 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "64 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "65 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... True \n", "66 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "67 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "68 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "69 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "70 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "71 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "72 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "73 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "74 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "75 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "76 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "77 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "78 {'dbId': 48887, 'taxId': '9606', 'name': 'Homo... False \n", "\n", " entities \\\n", "0 {'resource': 'TOTAL', 'total': 16, 'found': 3,... \n", "1 {'resource': 'TOTAL', 'total': 21, 'found': 3,... \n", "2 {'resource': 'TOTAL', 'total': 4, 'found': 2, ... \n", "3 {'resource': 'TOTAL', 'total': 74, 'found': 3,... \n", "4 {'resource': 'TOTAL', 'total': 35, 'found': 2,... \n", "5 {'resource': 'TOTAL', 'total': 46, 'found': 2,... \n", "6 {'resource': 'TOTAL', 'total': 52, 'found': 2,... \n", "7 {'resource': 'TOTAL', 'total': 67, 'found': 2,... \n", "8 {'resource': 'TOTAL', 'total': 78, 'found': 2,... \n", "9 {'resource': 'TOTAL', 'total': 9, 'found': 1, ... \n", "10 {'resource': 'TOTAL', 'total': 456, 'found': 4... \n", "11 {'resource': 'TOTAL', 'total': 110, 'found': 2... \n", "12 {'resource': 'TOTAL', 'total': 40, 'found': 1,... \n", "13 {'resource': 'TOTAL', 'total': 21, 'found': 1,... \n", "14 {'resource': 'TOTAL', 'total': 16, 'found': 1,... \n", "15 {'resource': 'TOTAL', 'total': 25, 'found': 1,... \n", "16 {'resource': 'TOTAL', 'total': 31, 'found': 1,... \n", "17 {'resource': 'TOTAL', 'total': 44, 'found': 1,... \n", "18 {'resource': 'TOTAL', 'total': 23, 'found': 1,... \n", "19 {'resource': 'TOTAL', 'total': 23, 'found': 1,... \n", "20 {'resource': 'TOTAL', 'total': 40, 'found': 1,... \n", "21 {'resource': 'TOTAL', 'total': 26, 'found': 1,... \n", "22 {'resource': 'TOTAL', 'total': 38, 'found': 1,... \n", "23 {'resource': 'TOTAL', 'total': 966, 'found': 5... \n", "24 {'resource': 'TOTAL', 'total': 208, 'found': 2... \n", "25 {'resource': 'TOTAL', 'total': 194, 'found': 2... \n", "26 {'resource': 'TOTAL', 'total': 140, 'found': 2... \n", "27 {'resource': 'TOTAL', 'total': 68, 'found': 1,... \n", "28 {'resource': 'TOTAL', 'total': 52, 'found': 1,... \n", "29 {'resource': 'TOTAL', 'total': 64, 'found': 1,... \n", "30 {'resource': 'TOTAL', 'total': 71, 'found': 1,... \n", "31 {'resource': 'TOTAL', 'total': 250, 'found': 2... \n", "32 {'resource': 'TOTAL', 'total': 261, 'found': 2... \n", "33 {'resource': 'TOTAL', 'total': 106, 'found': 1... \n", "34 {'resource': 'TOTAL', 'total': 80, 'found': 1,... \n", "35 {'resource': 'TOTAL', 'total': 96, 'found': 1,... \n", "36 {'resource': 'TOTAL', 'total': 102, 'found': 1... \n", "37 {'resource': 'TOTAL', 'total': 65, 'found': 1,... \n", "38 {'resource': 'TOTAL', 'total': 83, 'found': 1,... \n", "39 {'resource': 'TOTAL', 'total': 3633, 'found': ... \n", "40 {'resource': 'TOTAL', 'total': 394, 'found': 2... \n", "41 {'resource': 'TOTAL', 'total': 110, 'found': 1... \n", "42 {'resource': 'TOTAL', 'total': 126, 'found': 1... \n", "43 {'resource': 'TOTAL', 'total': 126, 'found': 1... \n", "44 {'resource': 'TOTAL', 'total': 801, 'found': 3... \n", "45 {'resource': 'TOTAL', 'total': 137, 'found': 1... \n", "46 {'resource': 'TOTAL', 'total': 138, 'found': 1... \n", "47 {'resource': 'TOTAL', 'total': 145, 'found': 1... \n", "48 {'resource': 'TOTAL', 'total': 148, 'found': 1... \n", "49 {'resource': 'TOTAL', 'total': 480, 'found': 2... \n", "50 {'resource': 'TOTAL', 'total': 158, 'found': 1... \n", "51 {'resource': 'TOTAL', 'total': 158, 'found': 1... \n", "52 {'resource': 'TOTAL', 'total': 189, 'found': 1... \n", "53 {'resource': 'TOTAL', 'total': 958, 'found': 3... \n", "54 {'resource': 'TOTAL', 'total': 206, 'found': 1... \n", "55 {'resource': 'TOTAL', 'total': 207, 'found': 1... \n", "56 {'resource': 'TOTAL', 'total': 213, 'found': 1... \n", "57 {'resource': 'TOTAL', 'total': 245, 'found': 1... \n", "58 {'resource': 'TOTAL', 'total': 254, 'found': 1... \n", "59 {'resource': 'TOTAL', 'total': 256, 'found': 1... \n", "60 {'resource': 'TOTAL', 'total': 257, 'found': 1... \n", "61 {'resource': 'TOTAL', 'total': 377, 'found': 1... \n", "62 {'resource': 'TOTAL', 'total': 384, 'found': 1... \n", "63 {'resource': 'TOTAL', 'total': 948, 'found': 2... \n", "64 {'resource': 'TOTAL', 'total': 487, 'found': 1... \n", "65 {'resource': 'TOTAL', 'total': 1555, 'found': ... \n", "66 {'resource': 'TOTAL', 'total': 1092, 'found': ... \n", "67 {'resource': 'TOTAL', 'total': 2681, 'found': ... \n", "68 {'resource': 'TOTAL', 'total': 1694, 'found': ... \n", "69 {'resource': 'TOTAL', 'total': 617, 'found': 1... \n", "70 {'resource': 'TOTAL', 'total': 661, 'found': 1... \n", "71 {'resource': 'TOTAL', 'total': 1262, 'found': ... \n", "72 {'resource': 'TOTAL', 'total': 1855, 'found': ... \n", "73 {'resource': 'TOTAL', 'total': 1334, 'found': ... \n", "74 {'resource': 'TOTAL', 'total': 782, 'found': 1... \n", "75 {'resource': 'TOTAL', 'total': 1004, 'found': ... \n", "76 {'resource': 'TOTAL', 'total': 1437, 'found': ... \n", "77 {'resource': 'TOTAL', 'total': 2205, 'found': ... \n", "78 {'resource': 'TOTAL', 'total': 2993, 'found': ... \n", "\n", " reactions inDisease \n", "0 {'resource': 'TOTAL', 'total': 27, 'found': 10... False \n", "1 {'resource': 'TOTAL', 'total': 31, 'found': 10... False \n", "2 {'resource': 'TOTAL', 'total': 2, 'found': 1, ... False \n", "3 {'resource': 'TOTAL', 'total': 42, 'found': 4,... False \n", "4 {'resource': 'TOTAL', 'total': 12, 'found': 1,... False \n", "5 {'resource': 'TOTAL', 'total': 20, 'found': 3,... False \n", "6 {'resource': 'TOTAL', 'total': 22, 'found': 1,... False \n", "7 {'resource': 'TOTAL', 'total': 26, 'found': 1,... False \n", "8 {'resource': 'TOTAL', 'total': 33, 'found': 12... False \n", "9 {'resource': 'TOTAL', 'total': 6, 'found': 1, ... False \n", "10 {'resource': 'TOTAL', 'total': 243, 'found': 2... False \n", "11 {'resource': 'TOTAL', 'total': 24, 'found': 1,... False \n", "12 {'resource': 'TOTAL', 'total': 2, 'found': 1, ... False \n", "13 {'resource': 'TOTAL', 'total': 8, 'found': 2, ... False \n", "14 {'resource': 'TOTAL', 'total': 6, 'found': 1, ... False \n", "15 {'resource': 'TOTAL', 'total': 6, 'found': 1, ... False \n", "16 {'resource': 'TOTAL', 'total': 12, 'found': 2,... False \n", "17 {'resource': 'TOTAL', 'total': 30, 'found': 5,... False \n", "18 {'resource': 'TOTAL', 'total': 13, 'found': 2,... False \n", "19 {'resource': 'TOTAL', 'total': 7, 'found': 1, ... False \n", "20 {'resource': 'TOTAL', 'total': 14, 'found': 2,... False \n", "21 {'resource': 'TOTAL', 'total': 10, 'found': 1,... False \n", "22 {'resource': 'TOTAL', 'total': 22, 'found': 1,... False \n", "23 {'resource': 'TOTAL', 'total': 412, 'found': 1... False \n", "24 {'resource': 'TOTAL', 'total': 71, 'found': 2,... False \n", "25 {'resource': 'TOTAL', 'total': 43, 'found': 1,... False \n", "26 {'resource': 'TOTAL', 'total': 50, 'found': 1,... False \n", "27 {'resource': 'TOTAL', 'total': 25, 'found': 4,... False \n", "28 {'resource': 'TOTAL', 'total': 15, 'found': 2,... False \n", "29 {'resource': 'TOTAL', 'total': 16, 'found': 2,... False \n", "30 {'resource': 'TOTAL', 'total': 16, 'found': 2,... False \n", "31 {'resource': 'TOTAL', 'total': 16, 'found': 2,... False \n", "32 {'resource': 'TOTAL', 'total': 132, 'found': 1... False \n", "33 {'resource': 'TOTAL', 'total': 15, 'found': 1,... False \n", "34 {'resource': 'TOTAL', 'total': 32, 'found': 2,... False \n", "35 {'resource': 'TOTAL', 'total': 19, 'found': 1,... False \n", "36 {'resource': 'TOTAL', 'total': 28, 'found': 1,... False \n", "37 {'resource': 'TOTAL', 'total': 34, 'found': 1,... False \n", "38 {'resource': 'TOTAL', 'total': 34, 'found': 1,... False \n", "39 {'resource': 'TOTAL', 'total': 2250, 'found': ... False \n", "40 {'resource': 'TOTAL', 'total': 69, 'found': 2,... False \n", "41 {'resource': 'TOTAL', 'total': 38, 'found': 1,... False \n", "42 {'resource': 'TOTAL', 'total': 34, 'found': 1,... False \n", "43 {'resource': 'TOTAL', 'total': 79, 'found': 2,... False \n", "44 {'resource': 'TOTAL', 'total': 334, 'found': 2... False \n", "45 {'resource': 'TOTAL', 'total': 86, 'found': 2,... False \n", "46 {'resource': 'TOTAL', 'total': 27, 'found': 2,... False \n", "47 {'resource': 'TOTAL', 'total': 62, 'found': 1,... False \n", "48 {'resource': 'TOTAL', 'total': 26, 'found': 3,... False \n", "49 {'resource': 'TOTAL', 'total': 10, 'found': 2,... False \n", "50 {'resource': 'TOTAL', 'total': 64, 'found': 2,... False \n", "51 {'resource': 'TOTAL', 'total': 37, 'found': 1,... False \n", "52 {'resource': 'TOTAL', 'total': 7, 'found': 1, ... False \n", "53 {'resource': 'TOTAL', 'total': 442, 'found': 9... False \n", "54 {'resource': 'TOTAL', 'total': 45, 'found': 2,... False \n", "55 {'resource': 'TOTAL', 'total': 15, 'found': 1,... False \n", "56 {'resource': 'TOTAL', 'total': 42, 'found': 2,... False \n", "57 {'resource': 'TOTAL', 'total': 21, 'found': 1,... False \n", "58 {'resource': 'TOTAL', 'total': 144, 'found': 5... False \n", "59 {'resource': 'TOTAL', 'total': 111, 'found': 1... False \n", "60 {'resource': 'TOTAL', 'total': 65, 'found': 1,... False \n", "61 {'resource': 'TOTAL', 'total': 206, 'found': 5... False \n", "62 {'resource': 'TOTAL', 'total': 192, 'found': 1... False \n", "63 {'resource': 'TOTAL', 'total': 381, 'found': 2... False \n", "64 {'resource': 'TOTAL', 'total': 259, 'found': 1... False \n", "65 {'resource': 'TOTAL', 'total': 824, 'found': 1... False \n", "66 {'resource': 'TOTAL', 'total': 708, 'found': 2... False \n", "67 {'resource': 'TOTAL', 'total': 1623, 'found': ... False \n", "68 {'resource': 'TOTAL', 'total': 885, 'found': 1... False \n", "69 {'resource': 'TOTAL', 'total': 744, 'found': 2... False \n", "70 {'resource': 'TOTAL', 'total': 285, 'found': 2... False \n", "71 {'resource': 'TOTAL', 'total': 556, 'found': 1... False \n", "72 {'resource': 'TOTAL', 'total': 1000, 'found': ... False \n", "73 {'resource': 'TOTAL', 'total': 710, 'found': 2... False \n", "74 {'resource': 'TOTAL', 'total': 187, 'found': 1... False \n", "75 {'resource': 'TOTAL', 'total': 264, 'found': 3... False \n", "76 {'resource': 'TOTAL', 'total': 949, 'found': 2... False \n", "77 {'resource': 'TOTAL', 'total': 798, 'found': 1... False \n", "78 {'resource': 'TOTAL', 'total': 2445, 'found': ... False " ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pathways(adata, \"3Ery\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.4" } }, "nbformat": 4, "nbformat_minor": 5 }