{"nbformat":4,"nbformat_minor":0,"metadata":{"colab":{"name":"2022-01-19-prod2vec-beh.ipynb","provenance":[{"file_id":"https://github.com/recohut/nbs/blob/main/raw/T061971%20%7C%20Behavioral%20testing%20and%20evaluation%20of%20the%20Prod2vec%20model%20on%20Coveo%20dataset.ipynb","timestamp":1644651036429}],"collapsed_sections":[],"toc_visible":true,"mount_file_id":"1uBu1EqYzY7kxrZSQvH6GvMNHs6tT_LT3","authorship_tag":"ABX9TyP6ReEOr8rqdFhNOgErwCM0"},"kernelspec":{"name":"python3","display_name":"Python 3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"markdown","metadata":{"id":"3rq9HpuMhtIR"},"source":["# Behavioral testing and evaluation of the Prod2vec model on Coveo dataset"]},{"cell_type":"markdown","metadata":{"id":"XQ37oedJhL1c"},"source":["Metrics like Hit Rate provide only a partial picture of the expected behavior of recommenders in the wild: two models with very similar accuracy can have very different behavior on, say, the long-tail, or model A can be better than model B overall, but at the expense of providing disastrous performance on a set of inputs that are particularly important in production. Metrics such as coverage, serendipity, and bias have been therefore proposed to capture other aspects of the behaviors of RSs, but they still fall short of what is needed to debug RSs in production, or provide any guarantee that a model will be reliable when released.\n","\n","**Dataset** - This tutorial shows how easy it is to run behavioral tests on a target dataset, in this case a wrapper around a large e-commerce dataset (theΒ [Coveo Data Challenge dataset](https://github.com/coveooss/SIGIR-ecom-data-challenge)).\n","\n","**Use case** - Complementary items. We are targeting a \"complementary items\" use cases, such as for example a cart recommender. *if a shopper added item X to the cart, what is she likely to add next?*\n","\n","**Model** - We train a simple, yet effective prod2vec baselineΒ [model](https://arxiv.org/abs/2007.14906), re-using for convenience a \"training embedding\" function. Word2vec algorithm is used for embedding over product SKU sequences."]},{"cell_type":"markdown","metadata":{"id":"3dhtPqgRhPLC"},"source":["### Flow diagram\n","![]()\n","\n","*Sample workflow for behavioral tests. Starting with shopping data (left), the dataset split and model training mimic the usual training loop. We also create a latent space, which is used to measure the relationships between inputs, ground truths and predictions, such as how far misses are from ground truths. Since a session can be viewed as a sequence of items or features (brands), we can use the same method to create embeddings for different tests.*"]},{"cell_type":"markdown","metadata":{"id":"O8ZUJHMrho_A"},"source":["### Inputs and outputs\n","\n","**Inputs:**\n","\n","1. Model `RecModel`\n","2. Dataset `RecDataset`\n"," - Public datasets - Coveo, MSD, MovieLens\n","3. Use Case `RecTask`\n"," - Similar items - {GT:πŸ‘ž} β†’ {Pred:πŸ‘Ÿ} is βœ…, but {GT:πŸ‘ž} β†’ {Pred:🩳} is πŸŸ₯\n"," - Complementary items - {GT:πŸ’»} β†’ {Pred:⌨️} is βœ…, but {GT:⌨️} β†’ {Pred:πŸ’»} is πŸŸ₯\n"," - Session-based recommendations\n","4. Behavioral Tests `RecTest`\n","5. List of behavioral tests `RecList`\n","\n","**Outputs:**\n","\n","- Results of behavioral tests.\n","\n","### Modules\n","\n","- **P2VRecModel**: is a very basic recommender that builds a space of products and use Knn to run predictions\n","- **CoveoDataset**: is the dataset we are going to play with\n","- **train_embeddings**: is a function that allows us to train prod2vec embeddings\n","- **CoveoCartRecList**: is the RecList! this is a pre-made RecList for you to evaluate your models (or our P2VRecModel, in this tutorial) on the Coveo Dataset."]},{"cell_type":"markdown","metadata":{"id":"-NfELzGNIo2U"},"source":["## Setup"]},{"cell_type":"code","metadata":{"id":"7pTDbLiLPu_w"},"source":["!pip install gensim==4.0.1\n","!pip install jinja2==3.0.2\n","!pip install algoliasearch==2.6.0\n","!pip install appdirs==1.4.4\n","!pip install wget==3.2\n","!pip install pytest==6.2.5\n","!pip install requests==2.22.0\n","!pip install tqdm==4.62.3\n","!pip install matplotlib==3.4.3\n","!pip install numpy==1.21.2\n","!pip install pathos==0.2.8\n","!pip install flask==2.0.2\n","!pip install networkx==2.6.3\n","!pip install python-Levenshtein==0.12.2"],"execution_count":null,"outputs":[]},{"cell_type":"code","metadata":{"id":"4kCfrlxSIpU1"},"source":["import gensim\n","from abc import ABC, abstractmethod\n","import ast\n","from datetime import datetime\n","import inspect\n","import os\n","from abc import ABC, abstractmethod\n","from functools import wraps\n","from pathlib import Path\n","import time\n","import json\n","import tempfile\n","import zipfile\n","import random\n","import requests\n","from tqdm import tqdm\n","from enum import Enum\n","from typing import List\n","import itertools\n","import numpy as np\n","import collections\n","from scipy.spatial.distance import cosine\n","import matplotlib.pyplot as plt\n","from statistics import mean\n","import json\n","import networkx as nx\n","from networkx.algorithms.shortest_paths.generic import shortest_path\n","from collections import Counter, defaultdict\n","import math"],"execution_count":null,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"fKz7N6DDKSAD"},"source":["## Dataset"]},{"cell_type":"code","metadata":{"id":"EXtGJMySIpXi"},"source":["COVEO_INTERACTION_DATASET_S3_URL = 'https://reclist-datasets-6d3c836d-6djh887d.s3.us-west-2.amazonaws.com/coveo_sigir.zip'"],"execution_count":null,"outputs":[]},{"cell_type":"code","metadata":{"id":"qo2bINDhKE2o"},"source":["def download_with_progress(url, destination):\n"," \"\"\"\n"," Downloads a file with a progress bar\n"," :param url: url from which to download from\n"," :destination: file path for saving data\n"," \"\"\"\n"," try:\n"," response = requests.get(url, stream=True)\n"," response.raise_for_status()\n"," except requests.exceptions.RequestException as e:\n"," raise SystemExit(e)\n"," with tqdm.wrapattr(open(destination, \"wb\"), \"write\",\n"," miniters=1, desc=url.split('/')[-1],\n"," total=int(response.headers.get('content-length', 0))) as fout:\n"," for chunk in response.iter_content(chunk_size=4096):\n"," fout.write(chunk)\n","\n","\n","def get_cache_directory():\n"," \"\"\"\n"," Returns the cache directory on the system\n"," \"\"\"\n"," cache_dir = '/content/coveo_reclist'\n","\n"," Path(cache_dir).mkdir(parents=True, exist_ok=True)\n","\n"," return cache_dir\n","\n","\n","class Dataset(Enum):\n"," COVEO = 'coveo'\n"," COVEO_INTERNAL = 'coveo-internal'"],"execution_count":null,"outputs":[]},{"cell_type":"code","metadata":{"id":"uteUWIghIpcg"},"source":["class RecDataset(ABC):\n"," \"\"\"\n"," Implements an abstract class for the dataset\n"," \"\"\"\n"," def __init__(self, force_download=False):\n"," \"\"\"\n"," :param force_download: allows to force the download of the dataset in case it is needed.\n"," :type: force_download: bool, optional\n"," \"\"\"\n"," self._x_train = None\n"," self._y_train = None\n"," self._x_test = None\n"," self._y_test = None\n"," self._catalog = None\n"," self.force_download = force_download\n"," self.load()\n","\n"," @abstractmethod\n"," def load(self):\n"," \"\"\"\n"," Abstract method that should implement dataset loading\n"," @return:\n"," \"\"\"\n"," return\n","\n"," @property\n"," def x_train(self):\n"," return self._x_train\n","\n"," @property\n"," def y_train(self):\n"," return self._y_train\n","\n"," @property\n"," def x_test(self):\n"," return self._x_test\n","\n"," @property\n"," def y_test(self):\n"," return self._y_test\n","\n"," @property\n"," def catalog(self):\n"," return self._catalog"],"execution_count":null,"outputs":[]},{"cell_type":"code","metadata":{"id":"iPzJOfxPIpg4"},"source":["class CoveoDataset(RecDataset):\n"," \"\"\"\n"," Coveo SIGIR data challenge dataset\n"," \"\"\"\n"," def __init__(self, **kwargs):\n"," super().__init__(**kwargs)\n","\n"," def load(self):\n"," cache_directory = get_cache_directory()\n"," filename = os.path.join(cache_directory, \"coveo_sigir.zip\") # TODO: make var somewhere\n","\n"," if not os.path.exists(filename) or self.force_download:\n"," download_with_progress(COVEO_INTERACTION_DATASET_S3_URL, filename)\n","\n"," with tempfile.TemporaryDirectory() as temp_dir:\n"," with zipfile.ZipFile(filename, 'r') as zip_ref:\n"," zip_ref.extractall(temp_dir)\n"," with open(os.path.join(temp_dir, 'dataset.json')) as f:\n"," data = json.load(f)\n","\n"," self._x_train = data[\"x_train\"]\n"," self._y_train = None\n"," self._x_test = data[\"x_test\"]\n"," self._y_test = data[\"y_test\"]\n"," self._catalog = data[\"catalog\"]"],"execution_count":null,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"yp337k5NKXr8"},"source":["## Model"]},{"cell_type":"code","metadata":{"id":"WxUtXx9YIpaF"},"source":["def train_embeddings(\n"," sessions: list,\n"," min_c: int = 3,\n"," size: int = 48,\n"," window: int = 5,\n"," iterations: int = 15,\n"," ns_exponent: float = 0.75,\n"," is_debug: bool = True):\n"," \"\"\"\n"," Train CBOW to get product embeddings with sensible defaults (https://arxiv.org/abs/2007.14906).\n"," :param sessions: list of lists, as user sessions are list of interactions\n"," :param min_c: minimum frequency of an event for it to be calculated for product embeddings\n"," :param size: output dimension\n"," :param window: window parameter for gensim word2vec\n"," :param iterations: number of training iterations\n"," :param ns_exponent: ns_exponent parameter for gensim word2vec\n"," :param is_debug: if true, be more verbose when training\n"," :return: trained product embedding model\n"," \"\"\"\n"," model = gensim.models.Word2Vec(sentences=sessions,\n"," min_count=min_c,\n"," vector_size=size,\n"," window=window,\n"," epochs=iterations,\n"," ns_exponent=ns_exponent)\n","\n"," if is_debug:\n"," print(\"# products in the space: {}\".format(len(model.wv.index_to_key)))\n","\n"," return model.wv"],"execution_count":null,"outputs":[]},{"cell_type":"code","metadata":{"id":"DpKCy3pkJKdS"},"source":["class RecModel(ABC):\n"," \"\"\"\n"," Abstract class for recommendation model\n"," \"\"\"\n","\n"," def __init__(self, model=None):\n"," \"\"\"\n"," :param model: a model that can be used in the predict function\n"," \"\"\"\n"," self._model = model\n","\n"," @abstractmethod\n"," def predict(self, prediction_input: list, *args, **kwargs):\n"," \"\"\"\n"," The predict function should implement the behaviour of the model at inference time.\n"," :param prediction_input: the input that is used to to do the prediction\n"," :param args:\n"," :param kwargs:\n"," :return:\n"," \"\"\"\n"," return NotImplementedError\n","\n"," @property\n"," def model(self):\n"," return self._model"],"execution_count":null,"outputs":[]},{"cell_type":"code","metadata":{"id":"2d4nsWPtK5_e"},"source":["class P2VRecModel(RecModel):\n"," \"\"\"\n"," Implement of the prod2vec model through the standard RecModel interface.\n"," Since init is ok, we just need to overwrite the prediction methods to get predictions\n"," out of it.\n"," \"\"\"\n"," def __init__(self, **kwargs):\n"," super().__init__(**kwargs)\n","\n"," model_name = \"prod2vec\"\n"," def predict(self, prediction_input: list, *args, **kwargs):\n"," \"\"\"\n"," Implement the abstract method, accepting a list of lists, each list being\n"," the content of a cart: the predictions returned by the model are the top K\n"," items suggested to complete the cart.\n"," \"\"\"\n"," predictions = []\n"," for _x in prediction_input:\n"," # we assume here that every X is a list of one-element, the product already in the cart\n"," # i.e. our prediction_input list is [[sku_1], [sku_3], ...]\n"," key_item = _x[0]['product_sku']\n"," nn_products = self._model.most_similar(key_item, topn=10) if key_item in self._model else None\n"," if nn_products:\n"," predictions.append([{'product_sku':_[0]} for _ in nn_products])\n"," else:\n"," predictions.append([])\n","\n"," return predictions\n","\n"," def get_vector(self, product_sku):\n"," try:\n"," return list(self._model.get_vector(product_sku))\n"," except Exception as e:\n"," return []"],"execution_count":null,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"1PdrG6g5LON2"},"source":["## Metrics"]},{"cell_type":"markdown","metadata":{"id":"a4jTjpDbVPxJ"},"source":["### Standard Metrics"]},{"cell_type":"code","metadata":{"id":"mY8Fb_W4LN9x"},"source":["def statistics(x_train, y_train, x_test, y_test, y_pred):\n"," train_size = len(x_train)\n"," test_size = len(x_test)\n"," # num non-zero preds\n"," num_preds = len([p for p in y_pred if p])\n"," return {\n"," 'training_set__size': train_size,\n"," 'test_set_size': test_size,\n"," 'num_non_null_predictions': num_preds\n"," }\n","\n","\n","def sample_hits_at_k(y_preds, y_test, x_test=None, k=3, size=3):\n"," hits = []\n"," for idx, (_p, _y) in enumerate(zip(y_preds, y_test)):\n"," if _y[0] in _p[:k]:\n"," hit_info = {\n"," 'Y_TEST': [_y[0]],\n"," 'Y_PRED': _p[:k],\n"," }\n"," if x_test:\n"," hit_info['X_TEST'] = [x_test[idx][0]]\n"," hits.append(hit_info)\n","\n"," if len(hits) < size or size == -1:\n"," return hits\n"," return random.sample(hits, k=size)\n","\n","\n","def sample_misses_at_k(y_preds, y_test, x_test=None, k=3, size=3):\n"," misses = []\n"," for idx, (_p, _y) in enumerate(zip(y_preds, y_test)):\n"," if _y[0] not in _p[:k]:\n"," miss_info = {\n"," 'Y_TEST': [_y[0]],\n"," 'Y_PRED': _p[:k],\n"," }\n"," if x_test:\n"," miss_info['X_TEST'] = [x_test[idx][0]]\n"," misses.append(miss_info)\n","\n"," if len(misses) < size or size == -1:\n"," return misses\n"," return random.sample(misses, k=size)\n","\n","\n","def hit_rate_at_k(y_preds, y_test, k=3):\n"," hits = 0\n"," for _p, _y in zip(y_preds, y_test):\n"," if _y[0] in _p[:k]:\n"," hits += 1\n"," return hits / len(y_test)\n","\n","\n","def mrr_at_k(y_preds, y_test, k=3):\n"," \"\"\"\n"," Computes MRR\n"," :param y_preds: predictions, as lists of lists\n"," :param y_test: target data, as lists of lists (eventually [[sku1], [sku2],...]\n"," :param k: top-k\n"," \"\"\"\n"," rr = []\n"," y_test = [k[0] for k in y_test]\n"," for _p, _y in zip(y_preds, y_test):\n"," if _y in _p[:k+1]:\n"," rank = _p[:k+1].index(_y) + 1\n"," rr.append(1/rank)\n"," else:\n"," rr.append(0)\n"," return np.mean(rr)\n","\n","\n","def coverage_at_k(y_preds, product_data, k=3):\n"," pred_skus = set(itertools.chain.from_iterable(y_preds[:k]))\n"," all_skus = set(product_data.keys())\n"," nb_overlap_skus = len(pred_skus.intersection(all_skus))\n","\n"," return nb_overlap_skus / len(all_skus)\n","\n","\n","def popularity_bias_at_k(y_preds, x_train, k=3):\n"," # estimate popularity from training data\n"," pop_map = collections.defaultdict(lambda : 0)\n"," num_interactions = 0\n"," for session in x_train:\n"," for event in session:\n"," pop_map[event] += 1\n"," num_interactions += 1\n"," # normalize popularity\n"," pop_map = {k:v/num_interactions for k,v in pop_map.items()}\n"," all_popularity = []\n"," for p in y_preds:\n"," average_pop = sum(pop_map.get(_, 0.0) for _ in p[:k]) / len(p) if len(p) > 0 else 0\n"," all_popularity.append(average_pop)\n"," return sum(all_popularity) / len(y_preds)"],"execution_count":null,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"Ydqnq1OIVUIF"},"source":["### Cosine Distance Metrics"]},{"cell_type":"code","metadata":{"id":"yaCxpR7bLlWf"},"source":["def error_by_cosine_distance(model, y_test, y_preds, k=3, bins=25, debug=False):\n"," if not(hasattr(model.__class__, 'get_vector') and callable(getattr(model.__class__, 'get_vector'))):\n"," error_msg = \"Error : Model {} does not support retrieval of vector embeddings\".format(model.__class__)\n"," print(error_msg)\n"," return error_msg\n"," misses = sample_misses_at_k(y_preds, y_test, k=k, size=-1)\n"," cos_distances = []\n"," for m in misses:\n"," if m['Y_PRED']:\n"," vector_test = model.get_vector(m['Y_TEST'][0])\n"," vector_pred = model.get_vector(m['Y_PRED'][0])\n"," if vector_pred and vector_test:\n"," cos_dist = cosine(vector_pred, vector_test)\n"," cos_distances.append(cos_dist)\n","\n"," histogram = np.histogram(cos_distances, bins=bins, density=False)\n"," # cast to list\n"," histogram = (histogram[0].tolist(), histogram[1].tolist())\n"," # debug / viz\n"," if debug:\n"," plt.hist(cos_distances, bins=bins)\n"," plt.title('dist over cosine distance prod space')\n"," plt.show()\n","\n"," return {'mean': np.mean(cos_distances), 'histogram': histogram}\n","\n","def distance_to_query(model, x_test, y_test, y_preds, k=3, bins=25, debug=False):\n"," if not(hasattr(model.__class__, 'get_vector') and callable(getattr(model.__class__, 'get_vector'))):\n"," error_msg = \"Error : Model {} does not support retrieval of vector embeddings\".format(model.__class__)\n"," print(error_msg)\n"," return error_msg\n"," misses = sample_misses_at_k(y_preds, y_test, x_test=x_test, k=k, size=-1)\n"," x_to_y_cos = []\n"," x_to_p_cos = []\n"," for m in misses:\n"," if m['Y_PRED']:\n"," vector_x = model.get_vector(m['X_TEST'][0])\n"," vector_y = model.get_vector(m['Y_TEST'][0])\n"," vectors_p = [model.get_vector(_) for _ in m['Y_PRED']]\n"," c_dists =[]\n"," if not vector_x or not vector_y:\n"," continue\n"," x_to_y_cos.append(cosine(vector_x, vector_y))\n"," for v_p in vectors_p:\n"," if not v_p:\n"," continue\n"," cos_dist = cosine(v_p, vector_x)\n"," if cos_dist:\n"," c_dists.append(cos_dist)\n"," if c_dists:\n"," x_to_p_cos.append(mean(c_dists))\n","\n"," h_xy = np.histogram(x_to_y_cos, bins=bins, density=False)\n"," h_xp = np.histogram(x_to_p_cos, bins=bins, density=False)\n","\n"," h_xy = (h_xy[0].tolist(), h_xy[1].tolist())\n"," h_xp = (h_xp[0].tolist(), h_xp[1].tolist())\n","\n"," # debug / viz\n"," if debug:\n"," plt.hist(x_to_y_cos, bins=bins, alpha=0.5)\n"," plt.hist(x_to_p_cos, bins=bins, alpha=0.5)\n"," plt.title('distribution of distance to input')\n"," plt.legend(['Distance from Input to Label',\n"," 'Distance from Input to Label'],\n"," loc='upper right')\n"," plt.show()\n","\n"," return {\n"," 'histogram_x_to_y': h_xy,\n"," 'histogram_x_to_p': h_xp,\n"," 'raw_distances_x_to_y': x_to_y_cos,\n"," 'raw_distances_x_to_p': x_to_p_cos,\n"," }"],"execution_count":null,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"GhZatSAhVWq_"},"source":["### Generic Cosine Distance"]},{"cell_type":"code","metadata":{"id":"5DOZxRQyLqRk"},"source":["def generic_cosine_distance(embeddings: dict,\n"," type_fn,\n"," y_test,\n"," y_preds,\n"," k=10,\n"," bins=25,\n"," debug=False):\n","\n"," misses = sample_misses_at_k(y_preds, y_test, k=k, size=-1)\n"," cos_distances = []\n"," for m in misses:\n"," if m['Y_TEST'] and m['Y_PRED'] and type_fn(m['Y_TEST'][0]) and type_fn(m['Y_PRED'][0]):\n"," vector_test = embeddings.get(type_fn(m['Y_TEST'][0]), None)\n"," vector_pred = embeddings.get(type_fn(m['Y_PRED'][0]), None)\n"," if vector_pred and vector_test:\n"," cos_dist = cosine(vector_pred, vector_test)\n"," cos_distances.append(cos_dist)\n","\n"," # TODO: Maybe sample some examples from the bins\n"," histogram = np.histogram(cos_distances, bins=bins, density=False)\n"," # cast to list\n"," histogram = (histogram[0].tolist(), histogram[1].tolist())\n"," # debug / viz\n"," if debug:\n"," plt.hist(cos_distances, bins=bins)\n"," plt.title('cosine distance misses')\n"," plt.show()\n"," return {'mean': np.mean(cos_distances), 'histogram': histogram}"],"execution_count":null,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"ujXEtRR9VddC"},"source":["### Graph Distance Test"]},{"cell_type":"code","metadata":{"id":"6evcPhDjLzBL"},"source":["def shortest_path_length():\n"," pass\n","\n","\n","get_nodes = lambda nodes, ancestors=\"\": [] if not nodes else ['_'.join([ancestors, nodes[0]])] + \\\n"," get_nodes(nodes[1:], '_'.join([ancestors, nodes[0]]))\n","\n","\n","def graph_distance_test(y_test, y_preds, product_data, k=3):\n"," path_lengths = []\n"," misses = sample_misses_at_k(y_preds, y_test, k=k, size=-1)\n"," for _y, _y_p in zip([_['Y_TEST'] for _ in misses],\n"," [_['Y_PRED'] for _ in misses]):\n"," if not _y_p:\n"," continue\n"," _y_sku = _y[0]\n"," _y_p_sku = _y_p[0]\n","\n"," if _y_sku not in product_data or _y_p_sku not in product_data:\n"," continue\n"," if not product_data[_y_sku]['CATEGORIES'] or not product_data[_y_p_sku]['CATEGORIES']:\n"," continue\n"," # extract graph information\n"," catA = json.loads(product_data[_y_sku]['CATEGORIES'])\n"," catB = json.loads(product_data[_y_p_sku]['CATEGORIES'])\n"," catA_nodes = [get_nodes(c) for c in catA]\n"," catB_nodes = [get_nodes(c) for c in catB]\n"," all_nodes = list(set([n for c in catA_nodes + catB_nodes for n in c]))\n"," all_edges = [(n1, n2) for c in catA_nodes + catB_nodes for n1, n2 in zip(c[:-1], c[1:])]\n"," all_edges = list(set(all_edges))\n","\n"," # build graph\n"," G = nx.Graph()\n"," G.add_nodes_from(all_nodes)\n"," G.add_edges_from(all_edges)\n","\n"," # get leaves\n"," cat1_leaves = [c[-1] for c in catA_nodes]\n"," cat2_leaves = [c[-1] for c in catB_nodes]\n","\n"," all_paths = [shortest_path(G, c1_l, c2_l) for c1_l in cat1_leaves for c2_l in cat2_leaves]\n"," s_path = min(all_paths, key=len)\n"," s_path_len = len(s_path) - 1\n"," path_lengths.append(s_path_len)\n","\n"," histogram = np.histogram(path_lengths, bins=np.arange(0, max(path_lengths)))\n"," histogram = (histogram[0].tolist(), histogram[1].tolist())\n"," return {'mean': mean(path_lengths), 'hist': histogram}"],"execution_count":null,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"ScJfIPh6VfsX"},"source":["### Hits Distribution"]},{"cell_type":"code","metadata":{"id":"jzUPryhgLy_E"},"source":["def roundup(x: int):\n"," div = 10.0 ** (len(str(x)))\n"," return int(math.ceil(x / div)) * div\n","\n","\n","def hits_distribution(x_train, x_test, y_test, y_preds, k=3, debug=False):\n"," # get product interaction frequency\n"," prod_interaction_cnt = Counter([_ for x in x_train for _ in x])\n"," hit_per_interaction_cnt = defaultdict(list)\n"," for _x, _y_test, _y_pred in zip(x_test, y_test, y_preds):\n"," _x_cnt = prod_interaction_cnt[_x[0]]\n"," # TODO: allow for generic metric\n"," hit_per_interaction_cnt[_x_cnt].append(hit_rate_at_k([_y_pred], [_y_test], k=k))\n"," # get max product frequency\n"," max_cnt = prod_interaction_cnt.most_common(1)[0][1]\n"," # round up to nearest place\n"," max_cnt = int(roundup(max_cnt))\n"," # generate log-bins\n"," indices = np.logspace(1, np.log10(max_cnt), num=int(np.log10(max_cnt))).astype(np.int64)\n"," indices = np.concatenate(([0], indices))\n"," counts_per_bin = [[_ for i in range(low, high) for _ in hit_per_interaction_cnt[i]]\n"," for low, high in zip(indices[:-1], indices[1:])]\n","\n"," histogram = [np.mean(counts) if counts else 0 for counts in counts_per_bin]\n"," count = [len(counts) for counts in counts_per_bin]\n","\n"," if debug:\n"," # debug / visualization\n"," plt.bar(indices[1:], histogram, width=-np.diff(indices)/1.05, align='edge')\n"," plt.xscale('log', base=10)\n"," plt.title('HIT Distribution Across Product Frequency')\n"," plt.show()\n","\n"," return {\n"," 'histogram': {int(k): v for k, v in zip(indices[1:], histogram)},\n"," 'counts': {int(k): v for k, v in zip(indices[1:], count)}\n"," }"],"execution_count":null,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"mKFUHI6rVj11"},"source":["### Hits Distribution by Data slice"]},{"cell_type":"code","metadata":{"id":"uXAIa7lkLy82"},"source":["def hits_distribution_by_slice(slice_fns: dict,\n"," y_test,\n"," y_preds,\n"," product_data,\n"," k=3,\n"," sample_size=3,\n"," debug=False):\n","\n"," hit_rate_per_slice = defaultdict(dict)\n"," for slice_name, filter_fn in slice_fns.items():\n"," # get indices for slice\n"," slice_idx = [idx for idx,_y in enumerate(y_test) if _y[0] in product_data and filter_fn(product_data[_y[0]])]\n"," # get predictions for slice\n"," slice_y_preds = [y_preds[_] for _ in slice_idx]\n"," # get labels for slice\n"," slice_y_test = [y_test[_] for _ in slice_idx]\n"," # TODO: We may want to allow for generic metric to be used here\n"," slice_hr = hit_rate_at_k(slice_y_preds, slice_y_test,k=3)\n"," # store results\n"," hit_rate_per_slice[slice_name]['hit_rate'] = slice_hr\n"," hit_rate_per_slice[slice_name]['hits'] = sample_hits_at_k(slice_y_preds, slice_y_test, k=k, size=sample_size)\n"," hit_rate_per_slice[slice_name]['misses'] = sample_misses_at_k(slice_y_preds, slice_y_test, k=k, size=sample_size)\n","\n"," # debug / visualization\n"," if debug:\n"," x_tick_names = list(hit_rate_per_slice.keys())\n"," x_tick_idx = list(range(len(x_tick_names)))\n"," plt.bar(x_tick_idx, hit_rate_per_slice.values(), align='center')\n"," plt.xticks(list(range(len(hit_rate_per_slice))), x_tick_names)\n"," plt.show()\n","\n"," # cast to normal dict\n"," return dict(hit_rate_per_slice)"],"execution_count":null,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"_DX1-DeLVqoJ"},"source":["### Perturbations"]},{"cell_type":"code","metadata":{"id":"55hBX3UkL_ZI"},"source":["# TODO: We might need to enforce some standardization of how CATEGORY is represented\n","def get_item_with_category(product_data: dict, category: set, to_ignore=None):\n"," to_ignore = [] if to_ignore is None else to_ignore\n"," skus = [_ for _ in product_data if product_data[_]['category_hash'] == category and _ not in to_ignore]\n"," if skus:\n"," return random.choice(skus)\n"," return []\n","\n","\n","def perturb_session(session, product_data):\n"," last_item = session[-1]\n"," if last_item not in product_data:\n"," return []\n"," last_item_category = product_data[last_item]['category_hash']\n"," similar_item = get_item_with_category(product_data, last_item_category, to_ignore=[last_item])\n"," if similar_item:\n"," new_session = session[:-1] + [similar_item]\n"," return new_session\n"," return []\n","\n","\n","def session_perturbation_test(model, x_test, y_preds, product_data):\n"," overlap_ratios = []\n"," # print(product_data)\n"," y_p = []\n"," s_perturbs = []\n","\n"," # generate a batch of perturbations\n"," for idx, (s, _y_p) in enumerate(tqdm(zip(x_test,y_preds))):\n"," # perturb last item in session\n"," s = [ _.split('_')[0] for _ in s]\n"," s_perturb = perturb_session(s, product_data)\n"," if not s_perturb:\n"," continue\n","\n"," s_perturb = ['_'.join([_,'add']) for _ in s_perturb]\n","\n"," s_perturbs.append(s_perturb)\n"," y_p.append(_y_p)\n","\n"," y_perturbs = model.predict(s_perturbs)\n","\n"," for _y_p, _y_perturb in zip(y_p, y_perturbs):\n"," if _y_p and _y_perturb:\n"," # compute prediction intersection\n"," intersection = set(_y_perturb).intersection(_y_p)\n"," overlap_ratio = len(intersection)/len(_y_p)\n"," overlap_ratios.append(overlap_ratio)\n","\n"," return np.mean(overlap_ratios)"],"execution_count":null,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"_FM1vcOUVu4I"},"source":["### Price Homogeneity"]},{"cell_type":"code","metadata":{"id":"yg06OFvWL_Wk"},"source":["def price_homogeneity_test(y_test, y_preds, product_data, bins=25, debug=True, key='PRICE'):\n"," abs_log_price_diff = []\n"," for idx, (_y, _y_pred) in enumerate(zip(y_test, y_preds)):\n"," # need >=1 predictions\n"," if not _y_pred:\n"," continue\n"," # item must be in product data\n"," if _y[0] not in product_data or _y_pred[0] not in product_data:\n"," continue\n"," if product_data[_y[0]][key] and product_data[_y_pred[0]][key]:\n"," pred_item_price = float(product_data[_y_pred[0]][key])\n"," y_item_price = float(product_data[_y[0]][key])\n"," if pred_item_price and y_item_price:\n"," abs_log_price_diff.append(np.abs(np.log10(pred_item_price)-(np.log10(y_item_price))))\n","\n"," histogram = np.histogram(abs_log_price_diff, bins=bins, density=False)\n"," histogram = (histogram[0].tolist(), histogram[1].tolist())\n"," if debug:\n"," # debug / viz\n"," plt.hist(abs_log_price_diff, bins=25)\n"," plt.show()\n"," return {\n"," 'mean': np.mean(abs_log_price_diff),\n"," 'histogram': histogram\n"," }"],"execution_count":null,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"uG7H_aLoK0eA"},"source":["## RecList"]},{"cell_type":"code","metadata":{"id":"BcSsb7gEJJUO"},"source":["def rec_test(test_type: str):\n"," \"\"\"\n"," Rec test decorator\n"," \"\"\"\n"," def decorator(f):\n"," @wraps(f)\n"," def w(*args, **kwargs):\n"," return f(*args, **kwargs)\n","\n"," # add attributes to f\n"," w.is_test = True\n"," w.test_type = test_type\n"," try:\n"," w.test_desc = f.__doc__.lstrip().rstrip()\n"," except:\n"," w.test_desc = \"\"\n"," try:\n"," # python 3\n"," w.name = w.__name__\n"," except:\n"," # python 2\n"," w.name = w.__func__.func_name\n"," return w\n","\n"," return decorator"],"execution_count":null,"outputs":[]},{"cell_type":"code","metadata":{"id":"DrtqbN0XJGA8"},"source":["class RecList(ABC):\n"," \n"," META_DATA_FOLDER = '.reclist'\n","\n"," def __init__(self, model: RecModel, dataset: RecDataset, y_preds: list = None):\n"," \"\"\"\n"," :param model:\n"," :param dataset:\n"," :param y_preds:\n"," \"\"\"\n"," self.name = self.__class__.__name__\n"," self._rec_tests = self.get_tests()\n"," self._x_train = dataset.x_train\n"," self._y_train = dataset.y_train\n"," self._x_test = dataset.x_test\n"," self._y_test = dataset.y_test\n"," self._y_preds = y_preds if y_preds else model.predict(dataset.x_test)\n"," self.rec_model = model\n"," self.product_data = dataset.catalog\n"," self._test_results = []\n"," self._test_data = {}\n"," self._dense_repr = {}\n","\n"," assert len(self._y_test) == len(self._y_preds)\n","\n"," def train_dense_repr(self, type_name: str, type_fn):\n"," \"\"\"\n"," Train a dense representation over a type of meta-data & store into object\n"," \"\"\"\n"," # type_fn: given a SKU returns some type i.e. brand\n"," x_train_transformed = [[type_fn(e) for e in session if type_fn(e)] for session in self._x_train]\n"," wv = train_embeddings(x_train_transformed)\n"," # store a dict\n"," self._dense_repr[type_name] = {word: list(wv.get_vector(word)) for word in wv.key_to_index}\n","\n"," def get_tests(self):\n"," \"\"\"\n"," Helper to extract methods decorated with rec_test\n"," \"\"\"\n","\n"," nodes = {}\n"," for _ in self.__dir__():\n"," if not hasattr(self,_):\n"," continue\n"," func = getattr(self, _)\n"," if hasattr(func, 'is_test'):\n"," nodes[func.name] = func\n","\n"," return nodes\n","\n"," def __call__(self, verbose=True, *args, **kwargs):\n"," run_epoch_time_ms = round(time.time() * 1000)\n"," # iterate through tests\n"," for test_func_name, test in self._rec_tests.items():\n"," test_result = test(*args, **kwargs)\n"," # we could store the results in the test function itself\n"," # test.__func__.test_result = test_result\n"," self._test_results.append({\n"," 'test_name': test.test_type,\n"," 'description': test.test_desc,\n"," 'test_result': test_result}\n"," )\n"," if verbose:\n"," print(\"============= TEST RESULTS ===============\")\n"," print(\"Test Type : {}\".format(test.test_type))\n"," print(\"Test Description : {}\".format(test.test_desc))\n"," print(\"Test Result : {}\\n\".format(test_result))\n"," # at the end, we dump it locally\n"," if verbose:\n"," print(\"Generating reports at {}\".format(datetime.utcnow()))\n"," self.generate_report(run_epoch_time_ms)\n","\n"," def generate_report(self, epoch_time_ms: int):\n"," # create path first: META_DATA_FOLDER / RecList / Model / Run Time\n"," report_path = os.path.join(\n"," self.META_DATA_FOLDER,\n"," self.name,\n"," self.rec_model.__class__.__name__,\n"," str(epoch_time_ms)\n"," )\n"," # now, dump results\n"," self.dump_results_to_json(self._test_results, report_path, epoch_time_ms)\n"," # now, store artifacts\n"," self.store_artifacts(report_path)\n","\n"," def store_artifacts(self, report_path: str):\n"," target_path = os.path.join(report_path, 'artifacts')\n"," # make sure the folder is there, with all intermediate parents\n"," Path(target_path).mkdir(parents=True, exist_ok=True)\n"," # store predictions\n"," with open(os.path.join(target_path, 'model_predictions.json'), 'w') as f:\n"," json.dump({\n"," 'x_test': self._x_test,\n"," 'y_test': self._y_test,\n"," 'y_preds': self._y_preds\n"," }, f)\n","\n"," def dump_results_to_json(self, test_results: list, report_path: str, epoch_time_ms: int):\n"," target_path = os.path.join(report_path, 'results')\n"," # make sure the folder is there, with all intermediate parents\n"," Path(target_path).mkdir(parents=True, exist_ok=True)\n"," report = {\n"," 'metadata': {\n"," 'run_time': epoch_time_ms,\n"," 'model_name': self.rec_model.__class__.__name__,\n"," 'reclist': self.name,\n"," 'tests': list(self._rec_tests.keys())\n"," },\n"," 'data': test_results\n"," }\n"," with open(os.path.join(target_path, 'report.json'), 'w') as f:\n"," json.dump(report, f)\n","\n"," @property\n"," def test_results(self):\n"," return self._test_results\n","\n"," @property\n"," def test_data(self):\n"," return self._test_data\n","\n"," @property\n"," def rec_tests(self):\n"," return self._rec_tests"],"execution_count":null,"outputs":[]},{"cell_type":"code","metadata":{"id":"lmIgV9TgIpjb"},"source":["class CoveoCartRecList(RecList):\n","\n"," @rec_test(test_type='stats')\n"," def basic_stats(self):\n"," \"\"\"\n"," Basic statistics on training, test and prediction data\n"," \"\"\"\n"," return statistics(self._x_train,\n"," self._y_train,\n"," self._x_test,\n"," self._y_test,\n"," self._y_preds)\n","\n"," @rec_test(test_type='Coverage@10')\n"," def coverage_at_k(self):\n"," \"\"\"\n"," Coverage is the proportion of all possible products which the RS\n"," recommends based on a set of sessions\n"," \"\"\"\n"," return coverage_at_k(self.sku_only(self._y_preds),\n"," self.product_data,\n"," k=10)\n","\n"," @rec_test(test_type='HR@10')\n"," def hit_rate_at_k(self):\n"," \"\"\"\n"," Compute the rate in which the top-k predictions contain the item to be predicted\n"," \"\"\"\n"," return hit_rate_at_k(self.sku_only(self._y_preds),\n"," self.sku_only(self._y_test),\n"," k=10)\n","\n"," @rec_test(test_type='hits_distribution')\n"," def hits_distribution(self):\n"," \"\"\"\n"," Compute the distribution of hit-rate across product frequency in training data\n"," \"\"\"\n"," return hits_distribution(self.sku_only(self._x_train),\n"," self.sku_only(self._x_test),\n"," self.sku_only(self._y_test),\n"," self.sku_only(self._y_preds),\n"," k=10,\n"," debug=True)\n","\n"," @rec_test(test_type='distance_to_query')\n"," def dist_to_query(self):\n"," \"\"\"\n"," Compute the distribution of distance from query to label and query to prediction\n"," \"\"\"\n"," return distance_to_query(self.rec_model,\n"," self.sku_only(self._x_test),\n"," self.sku_only(self._y_test),\n"," self.sku_only(self._y_preds), k=10, bins=25, debug=True)\n","\n"," def sku_only(self, l:List[List]):\n"," return [[e['product_sku'] for e in s] for s in l]"],"execution_count":null,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"3InDare_Ipl_"},"source":["## Runs"]},{"cell_type":"markdown","metadata":{"id":"pYAZTgU3Ti5N"},"source":["Let's download the data, and load it. If dataset is already downloaded, it will automatically skip the downloading."]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"oFAH7Bm-Ipoq","executionInfo":{"status":"ok","timestamp":1637594039574,"user_tz":-330,"elapsed":165506,"user":{"displayName":"Sparsh Agarwal","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"13037694610922482904"}},"outputId":"070269cb-e712-474e-8736-638cac5732a3"},"source":["coveo_dataset = CoveoDataset()"],"execution_count":null,"outputs":[{"output_type":"stream","name":"stderr","text":["coveo_sigir.zip: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1.91G/1.91G [02:04<00:00, 16.5MB/s]\n"]}]},{"cell_type":"markdown","metadata":{"id":"PHUhFcAJT4p_"},"source":["Let's see what's inside the dataset, there is a lot of information here. We are seeing list of sessions; each element in the list is a user session, we know what the user was doing (e.g., \"detail\") and which product he/she/they were looking at."]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"e-co-IK3Ipq-","executionInfo":{"status":"ok","timestamp":1637594845203,"user_tz":-330,"elapsed":20,"user":{"displayName":"Sparsh Agarwal","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"13037694610922482904"}},"outputId":"c27cb12c-fc83-47e2-df06-76461e8c5ee7"},"source":["coveo_dataset.x_train[0]"],"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["[{'event_type': 'event_product',\n"," 'hashed_url': '803f6c2d4202e39d6d7fdb232d69366b86bc843869c809f1e1954465bfc6e17f',\n"," 'product_action': 'detail',\n"," 'product_sku': '624bc145579b67b608e6a7b0d0516cc75e0ec4cbe44ec42c6ac53cc83925bc3e',\n"," 'server_timestamp_epoch_ms': '1547528580651',\n"," 'session_id': '0f1416c8c68bb9209c1bbc4576386df5480e9757f55ce9cb0d4d4017cf14fc1c'},\n"," {'event_type': 'event_product',\n"," 'hashed_url': '80ee4de500233dc623dde6a2730d4bb61e651e5ae3fe33abd985598551de253e',\n"," 'product_action': 'detail',\n"," 'product_sku': '3b59c7591dd71a2ade8df707e4b1d4e65ef6d1b165aabf54191feccf056b93df',\n"," 'server_timestamp_epoch_ms': '1547528590750',\n"," 'session_id': '0f1416c8c68bb9209c1bbc4576386df5480e9757f55ce9cb0d4d4017cf14fc1c'},\n"," {'event_type': 'event_product',\n"," 'hashed_url': 'ca21b70cf35319e289af06659c222a0fa24b6e9414f1d3d32a3ec86a1ecc0a44',\n"," 'product_action': 'detail',\n"," 'product_sku': '983d92391f7db7d45005e0d0c61387dea6a05116ae5c5260b90c82a55dc15121',\n"," 'server_timestamp_epoch_ms': '1547528595759',\n"," 'session_id': '0f1416c8c68bb9209c1bbc4576386df5480e9757f55ce9cb0d4d4017cf14fc1c'}]"]},"metadata":{},"execution_count":10}]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"HfUmzC40Ipte","executionInfo":{"status":"ok","timestamp":1637595735164,"user_tz":-330,"elapsed":637,"user":{"displayName":"Sparsh Agarwal","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"13037694610922482904"}},"outputId":"82b62cd6-e874-4aad-ebd9-9fff49da81fd"},"source":["x_train_skus = [[e['product_sku'] for e in s] for s in coveo_dataset.x_train]\n","x_train_skus[0:3]"],"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["[['624bc145579b67b608e6a7b0d0516cc75e0ec4cbe44ec42c6ac53cc83925bc3e',\n"," '3b59c7591dd71a2ade8df707e4b1d4e65ef6d1b165aabf54191feccf056b93df',\n"," '983d92391f7db7d45005e0d0c61387dea6a05116ae5c5260b90c82a55dc15121'],\n"," ['d6392b60c1bc118a06cdb12caacbc45513cd5d9d9d4aef0826c4b9015cf70d1d',\n"," '605d79343281f976747693e6bbb5757947d9842e02d21bcaa6a02edee3ecd9a9',\n"," 'd6392b60c1bc118a06cdb12caacbc45513cd5d9d9d4aef0826c4b9015cf70d1d'],\n"," ['c3b0916415e119da78c0746cfaeaa6dc806f3076718c9c703337d75d9d61eb4f',\n"," 'c17daa37dc5a0199940118e7edb402526fbca70929086f2e7ba042c5af2299b3',\n"," '859e3db8924990d6fb811e67a2f88f4711b6b9407b271c39f6a16838dcf22dcf']]"]},"metadata":{},"execution_count":29}]},{"cell_type":"markdown","metadata":{"id":"arJE3tvJUGKS"},"source":["Let's build a vanilla recommender with a KNN product based model!"]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"Mfl5t16eOUo0","executionInfo":{"status":"ok","timestamp":1637594975286,"user_tz":-330,"elapsed":115592,"user":{"displayName":"Sparsh Agarwal","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"13037694610922482904"}},"outputId":"51f7a225-c139-4fda-e228-2055439e4f56"},"source":["embeddings = train_embeddings(sessions=x_train_skus)"],"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["# products in the space: 27562\n"]}]},{"cell_type":"code","metadata":{"id":"mYJ6YEolPEBh"},"source":["model = P2VRecModel(model=embeddings)"],"execution_count":null,"outputs":[]},{"cell_type":"markdown","metadata":{"id":"vIkT1nQPUJHh"},"source":["Let's see if our model is working, we will try to do a simple prediction starting from a single product."]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"mF1O-aF-Q2HU","executionInfo":{"status":"ok","timestamp":1637595138472,"user_tz":-330,"elapsed":643,"user":{"displayName":"Sparsh Agarwal","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"13037694610922482904"}},"outputId":"621102b7-6f29-4940-be18-320c453d6efe"},"source":["test = [[{'event_type': 'event_product',\n"," 'hashed_url': '803f6c2d4202e39d6d7fdb232d69366b86bc843869c809f1e1954465bfc6e17f',\n"," 'product_action': 'detail',\n"," 'product_sku': '624bc145579b67b608e6a7b0d0516cc75e0ec4cbe44ec42c6ac53cc83925bc3e',\n"," 'server_timestamp_epoch_ms': '1547528580651',\n"," 'session_id': '0f1416c8c68bb9209c1bbc4576386df5480e9757f55ce9cb0d4d4017cf14fc1c'}]]\n","\n","\n","model.predict(test)"],"execution_count":null,"outputs":[{"output_type":"execute_result","data":{"text/plain":["[[{'product_sku': '064ccca34647e8c65f7421a22cc520e40646657322b2196218a99b9dc54417d9'},\n"," {'product_sku': '52c7818bf0ce31793a43319fac4136404c7df939152f3d91e9b193e86d20ef64'},\n"," {'product_sku': '39cd17df8567532b9db06983e6d5312c70f61b1d9276deef0343514cd83809ab'},\n"," {'product_sku': '2a112f0436d6d8b8cbecb61acca3fa88383ff76b05053d975caa40482e9736ed'},\n"," {'product_sku': '704aac67713b93c893912c3d10d9751af53de51c5f05f24afb702080545212b5'},\n"," {'product_sku': '1e7a9c74d8769294783c0198d649ecba4caea98c53de129c51a38f7566d1b09c'},\n"," {'product_sku': 'b42787bd0decd82b42906b2488a8dfb99ba9bbd717113c3c5d808eeb0265bec2'},\n"," {'product_sku': 'e5a80ede4427db027b53a73ed6943c1e9f378ddbbfe49e523dfaefaca660785e'},\n"," {'product_sku': 'eb083190e2fd4e8ea272786338092674430d8e4b51621e102816ad757aecee5f'},\n"," {'product_sku': '962122e7a9ded48c578e7f0f167d61c94d5bfc7e077c32ee533b42b7b4fb5833'}]]"]},"metadata":{},"execution_count":14}]},{"cell_type":"markdown","metadata":{"id":"CRQF4bYLUNDX"},"source":["Instantiate rec_list object, prepared with standard quantitative tests and sensible behavioral tests. Then, invoke rec_list to run tests."]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"id":"t_6fqcguSEUG","executionInfo":{"status":"ok","timestamp":1637595329897,"user_tz":-330,"elapsed":10310,"user":{"displayName":"Sparsh Agarwal","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"13037694610922482904"}},"outputId":"31e53315-0364-4f41-8759-db41e6a4ecc1"},"source":["# instantiate rec_list object\n","rec_list = CoveoCartRecList(\n"," model=model,\n"," dataset=coveo_dataset\n",")\n","# invoke rec_list to run tests\n","rec_list(verbose=True)"],"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["============= TEST RESULTS ===============\n","Test Type : stats\n","Test Description : Basic statistics on training, test and prediction data\n","Test Result : {'training_set__size': 927357, 'test_set_size': 790, 'num_non_null_predictions': 762}\n","\n","============= TEST RESULTS ===============\n","Test Type : Coverage@10\n","Test Description : Coverage is the proportion of all possible products which the RS\n"," recommends based on a set of sessions\n","Test Result : 0.0015063416985508992\n","\n","============= TEST RESULTS ===============\n","Test Type : HR@10\n","Test Description : Compute the rate in which the top-k predictions contain the item to be predicted\n","Test Result : 0.12151898734177215\n","\n"]},{"output_type":"display_data","data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAXoAAAEMCAYAAADK231MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAbHklEQVR4nO3df5xcdX3v8debxEQECQpbrvkBCQ22BlHEJdjbitxSIREklAZMQCGWa6Q2aq+KhnofSKPca6yKIvGWWCgRxCRNUaPEi1x5WCsiZqH8cMXoEgJJgLIkIRpoTEI+94/zjZwMsztnd2d3st+8n4/HPjLne77nzOd7ZvY9Z75nZ6KIwMzM8nVAqwswM7PB5aA3M8ucg97MLHMOejOzzDnozcwy56A3M8ucg36Yk9Qp6ZQm7esCSd8rLYekyc3Yd9rfNklHN2t/tjdJN0j6VKvrsH2Pg34AJK2T9Gc1bXMk/ai2j6S/TUG3TdJ2Sc+Xljvr7HtiCto9ff5D0nckvbXcLyKOjYgfNKhzz75G9tYvIr4WEadVGnwDkn4g6b/X7P/giFjbjP33cp9bJI0erPsYqFTj9vSYPi3pFkmvanVde1R5rki6QtLO0nNzm6SPDmWd1jcO+iESEf8rBd3BwCXAXXuWI+LYXjY9NG3zeuB24BuS5jS7vkYvAvs6SROBNwMBnNXPfQzVMZiXHtNXA4cCV7Wwlv5aVnr+HhwRn6ntIGlEKwqzF3PQDxMR8WREfBG4Algo6QDY+12FpKmSOiT9Or0D+Hza/Ifp32fS2dcfpXced0q6StIm4IradyPJ2yStTWeff1+63ysk3bSnU/lMUNKVFKF7Tbq/a1Kf300FSRoj6auSuiU9Kul/lvY9R9KPJH02naE/Iml6g0N0IfAT4AbgovIKSRPSmXO3pE2leuodg97qmizpXyVtTcdjWWpX2sdT6dg/KOm1FR7TzcC/AK8tPZYfk/QA8Gw6lmepmJ57Jr0beE1pXG+QdK+k36RaXlpa96LHsub4Hyjpc2mMW9PxPpA6z5VG4yjt/wZJ/0fSKknPAv9N0lhJ/5KO5yOSPlDqf2DaZoukn0u6VNKGevWW9v+p0vKZku5Lx+bHkl5XWrdO0kckPZDGt0xS+fjMSNv+WtLDkqZJOlfSPTVj+pCkb1U9BvsqB/3wcwvwe8Af1Fn3ReCLEXEI8PvA8tR+cvr30HT2dVdaPglYCxwBXNnD/f050A6cAMwA/rJRgRHxceDfSGeuETGvTrcvAWOAo4G3UAT1u0vrTwLWAIcDnwGuk6Re7vZC4Gvp53RJR8Dvziq/AzwKTATGAUtr7qd8DHqr65PA94BXAONTX4DTKI7xq9O25wGbeqmVVNvhwF8A/15qng2cQXGmfzTwdeBvgDZgFfBtSaMkjQK+CdwIvBL457Svqj4LvBH4r2n7jwK76fm5UtX5FMfx5cCPgW8D91Mc91OBv5F0eur7CYrn6e8Dp1PzAt0bSW8ArgfeCxwGXAus1N7TducB04BJwOuAOWnbqcBXgUspjvPJwDpgJTCp/GIKvCv1HdYc9AP3zXRG8YykZ4AvD/L9PZ7+fWWddTuByZIOj4htEfGTRvuKiC9FxK6I+M8e+iyMiM0R8RjwBYogGpAUvrOAyyLiNxGxDvgcxS/VHo9GxFci4nlgCfAqijCut78/AY4ClkfEPcDDFIEDMBUYC1waEc9GxPaIKJ/p/u4YADsa1LUz3c/Ymv3spAi2PwQUEQ9FxBO9HIKr03PlfuAJ4EPldRGxPj0e7wBujYjbI2InRTgfSBHObwJeAnwhInZGxApgdS/3WT5eB1C8YH8wIjZGxPMR8eOI+G2V7ZPzys97SWNT+7ci4s6I2A0cB7RFxIKI2JGuz3yF4hhDEcRXpufXeuDqPtz/XODaiLg71b8E+C3Fcdnj6oh4PL1z+jZwfGq/GLg+Hdfd6Rj8Io1/GfDOdJyOpTg5+E4f6tonOegH7uyIOHTPD/C+Qb6/cenfzXXWXUxxVvkLSaslndlgX+sr3F+5z6MUoTlQh1OE1KM1+x5XWn5yz42IeC7dPLiH/V0EfC8ink7LN/PC2eEEiheNXT1sWx5fo7o+Cgj4aZpO+ctU3x3ANcAi4ClJiyUd0sP9AXwgPV/GRcQFEdHdQz1jy7Wk8Fyf6hkLbIy9v5WwXHdvDqeY5nm4Yv96lpef9xGx5wSkXP9RwNiaE6G/5YUX7LG8+PlV1VHAh2v2PYG9n59Plm4/xwvPnwn0PPYlwPnp3eO70jj78gK4T3LQDz9/DjxFMa2xl4j4VUTMppjaWQiskHQQxQXKeqp8demE0u0jeeEdxbPAy0rr/ksf9v00L5wdl/e9sUI9e0nzyucBb5H0pKQngf8BvF7S6ymC5Ej1fHGzXGevdaXrJO+JiLEUUwZf3jOHHBFXR8QbgSkUL7aX9nUsdep5vFxLCp8JqZ4ngHE101lHlm7v9fhIKj8+TwPbKaZMerv//ihvvx54pOYF4eUR8ba0/gle/Pwqe46en2PrKd4NlPf9soj4eoUa11N/7KR3wTsorjGdTzE1Nuw56IcJSUdImkcxr3lZOrur7fNOSW1p3TOpeTfQnf7tz9+wXyrpFZImAB+keGsLcB9wsqQjJY0BLqvZ7j96ur80HbMcuFLSyyUdRTF9cVO9/g2cDTxPEbDHp5/XUFwjuBD4KUWgfFrSQZJeKumP+1NXulg3PnXfQhFquyWdKOkkSS+hCNjtFMd7oJYDZ0g6Ne37wxTTEz8G7gJ2AR+Q9BJJ51BMU+1xP3CspOPTRcgrSuPcTTG//fl0sXSEigv0oxnYc6XWT4HfqLjAfGC6n9dKOrE0vsvS82s88P6a7e+jOLseIWkaxTWTPb4CXJKOu9Jje4akl1eo6zrg3em4HiBpnKQ/LK3/KsU7tJ0103zDloN+3/eMir9geBB4G3BuRFzfQ99pQKekbRQXZmdFxH+mqY8rgTvT29w39bB9Pd8C7qH4pbuV4peEiLidIvQfSOtr5zG/CMxU8RcV9eZe308RimuBH1FMt/Q0rt5cBPxTRDyWzrifjIgnKX5RL6CYank7MBl4DNhAMffdk97qOhG4Ox3flRRz3GuBQyiCZwvF9MMm4O/7MZa9RMQaivniL1Gchb8deHua794BnENxgXFzGtMtpW1/CSwA/h/wqzSWso9QPKdWp+0XAgcM8LlSW//zwJkUL76PpDH8I8UFa4C/ozhej1Bc5K49e/5gGvMzFI/lN0v77gDeQ/E4bwG6SBdbK9T1U4oL7FcBW4F/Ze93cTdS/CVUf0489kkK/8cjZrYPUPEJ75siYnyDroNdx4EU06MnRMSvWllLs/iM3sxsb38FrM4l5AH29U/fmZkNGUnrKKb7zm5tJc3lqRszs8x56sbMLHMOejOzzO1zc/SHH354TJw4sdVlmJkNK/fcc8/TEdFWb90+F/QTJ06ko6Oj1WWYmQ0rknr8CglP3ZiZZc5Bb2aWOQe9mVnmHPRmZplz0JuZZc5Bb2aWOQe9mVnmHPRmZpnb5z4wZfuWifNvbXUJA7Lu02e0ugSzlvMZvZlZ5ioFvaRpktZI6pI0v876kyXdK2mXpJl11h8iaYOka5pRtJmZVdcw6CWNABYB0yn+A+bZkqbUdHuM4v9rvLmH3XwS+GH/yzQzs/6qckY/FeiKiLXpPyReCswod4iIdRHxAMX/Hr8XSW8EjqD4z3/NzGyIVQn6ccD60vKG1NaQpAOAz1H8j/NmZtYCg30x9n3AqojY0FsnSXMldUjq6O7uHuSSzMz2L1X+vHIjMKG0PD61VfFHwJslvQ84GBglaVtE7HVBNyIWA4sB2tvb/Z/Ympk1UZWgXw0cI2kSRcDPAs6vsvOIuGDPbUlzgPbakDczs8HVcOomInYB84DbgIeA5RHRKWmBpLMAJJ0oaQNwLnCtpM7BLNrMzKqr9MnYiFgFrKppu7x0ezXFlE5v+7gBuKHPFZqZ2YD4k7FmZplz0JuZZc5Bb2aWOQe9mVnmHPRmZplz0JuZZc5Bb2aWOQe9mVnmHPRmZplz0JuZZc5Bb2aWOQe9mVnmHPRmZplz0JuZZc5Bb2aWOQe9mVnmKv3HI2Y5mzj/1laXMGDrPn1Gwz7DfZxVxmj1+YzezCxzDnozs8w56M3MMlcp6CVNk7RGUpek+XXWnyzpXkm7JM0stR8v6S5JnZIekPSOZhZvZmaNNQx6SSOARcB0YAowW9KUmm6PAXOAm2vanwMujIhjgWnAFyQdOsCazcysD6r81c1UoCsi1gJIWgrMAH6+p0NErEvrdpc3jIhflm4/LukpoA14ZqCFm5lZNVWmbsYB60vLG1Jbn0iaCowCHu7rtmZm1n9DcjFW0quAG4F3R8TuOuvnSuqQ1NHd3T0UJZmZ7TeqBP1GYEJpeXxqq0TSIcCtwMcj4if1+kTE4ohoj4j2tra2qrs2M7MKqgT9auAYSZMkjQJmASur7Dz1/wbw1YhY0f8yzcysvxoGfUTsAuYBtwEPAcsjolPSAklnAUg6UdIG4FzgWkmdafPzgJOBOZLuSz/HD8ZAzMysvkrfdRMRq4BVNW2Xl26vppjSqd3uJuCmAdZoZmYD4E/GmpllzkFvZpY5B72ZWeYc9GZmmXPQm5llzkFvZpY5B72ZWeYc9GZmmXPQm5llzkFvZpY5B72ZWeYc9GZmmXPQm5llzkFvZpY5B72ZWeYc9GZmmXPQm5llzkFvZpY5B72ZWeYc9GZmmasU9JKmSVojqUvS/DrrT5Z0r6RdkmbWrLtI0q/Sz0XNKtzMzKppGPSSRgCLgOnAFGC2pCk13R4D5gA312z7SuATwEnAVOATkl4x8LLNzKyqKmf0U4GuiFgbETuApcCMcoeIWBcRDwC7a7Y9Hbg9IjZHxBbgdmBaE+o2M7OKqgT9OGB9aXlDaqui0raS5krqkNTR3d1dcddmZlbFPnExNiIWR0R7RLS3tbW1uhwzs6xUCfqNwITS8vjUVsVAtjUzsyaoEvSrgWMkTZI0CpgFrKy4/9uA0yS9Il2EPS21mZnZEGkY9BGxC5hHEdAPAcsjolPSAklnAUg6UdIG4FzgWkmdadvNwCcpXixWAwtSm5mZDZGRVTpFxCpgVU3b5aXbqymmZeptez1w/QBqNDOzAdgnLsaamdngcdCbmWXOQW9mljkHvZlZ5hz0ZmaZc9CbmWXOQW9mljkHvZlZ5hz0ZmaZc9CbmWXOQW9mljkHvZlZ5hz0ZmaZc9CbmWXOQW9mljkHvZlZ5hz0ZmaZc9CbmWXOQW9mljkHvZlZ5ioFvaRpktZI6pI0v8760ZKWpfV3S5qY2l8iaYmkByU9JOmyJtdvZmYNNAx6SSOARcB0YAowW9KUmm4XA1siYjJwFbAwtZ8LjI6I44A3Au/d8yJgZmZDo8oZ/VSgKyLWRsQOYCkwo6bPDGBJur0COFWSgAAOkjQSOBDYAfy6KZWbmVklVYJ+HLC+tLwhtdXtExG7gK3AYRSh/yzwBPAY8NmI2Fx7B5LmSuqQ1NHd3d3nQZiZWc8G+2LsVOB5YCwwCfiwpKNrO0XE4ohoj4j2tra2QS7JzGz/UiXoNwITSsvjU1vdPmmaZgywCTgf+L8RsTMingLuBNoHWrSZmVVXJehXA8dImiRpFDALWFnTZyVwUbo9E7gjIoJiuuZPASQdBLwJ+EUzCjczs2oaBn2ac58H3AY8BCyPiE5JCySdlbpdBxwmqQv4ELDnTzAXAQdL6qR4wfiniHig2YMwM7OejazSKSJWAatq2i4v3d5O8aeUtdttq9duZmZDx5+MNTPLnIPezCxzDnozs8w56M3MMuegNzPLnIPezCxzDnozs8w56M3MMuegNzPLnIPezCxzDnozs8w56M3MMuegNzPLnIPezCxzDnozs8w56M3MMuegNzPLnIPezCxzDnozs8xVCnpJ0yStkdQlaX6d9aMlLUvr75Y0sbTudZLuktQp6UFJL21i/WZm1kDDoJc0AlgETAemALMlTanpdjGwJSImA1cBC9O2I4GbgEsi4ljgFGBn06o3M7OGqpzRTwW6ImJtROwAlgIzavrMAJak2yuAUyUJOA14ICLuB4iITRHxfHNKNzOzKqoE/ThgfWl5Q2qr2ycidgFbgcOAVwMh6TZJ90r66MBLNjOzvhg5BPv/E+BE4Dng+5LuiYjvlztJmgvMBTjyyCMHuSQzs/1LlTP6jcCE0vL41Fa3T5qXHwNsojj7/2FEPB0RzwGrgBNq7yAiFkdEe0S0t7W19X0UZmbWoypBvxo4RtIkSaOAWcDKmj4rgYvS7ZnAHRERwG3AcZJell4A3gL8vDmlm5lZFQ2nbiJil6R5FKE9Arg+IjolLQA6ImIlcB1wo6QuYDPFiwERsUXS5yleLAJYFRG3DtJYzMysjkpz9BGximLapdx2een2duDcHra9ieJPLM3MrAX8yVgzs8w56M3MMuegNzPLnIPezCxzDnozs8w56M3MMuegNzPLnIPezCxzDnozs8w56M3MMuegNzPLnIPezCxzDnozs8w56M3MMuegNzPLnIPezCxzDnozs8w56M3MMuegNzPLnIPezCxzlYJe0jRJayR1SZpfZ/1oScvS+rslTaxZf6SkbZI+0qS6zcysooZBL2kEsAiYDkwBZkuaUtPtYmBLREwGrgIW1qz/PPDdgZdrZmZ9VeWMfirQFRFrI2IHsBSYUdNnBrAk3V4BnCpJAJLOBh4BOptSsZmZ9UmVoB8HrC8tb0htdftExC5gK3CYpIOBjwF/N/BSzcysPwb7YuwVwFURsa23TpLmSuqQ1NHd3T3IJZmZ7V9GVuizEZhQWh6f2ur12SBpJDAG2AScBMyU9BngUGC3pO0RcU1544hYDCwGaG9vj36Mw8zMelAl6FcDx0iaRBHos4Dza/qsBC4C7gJmAndERABv3tNB0hXAttqQNzOzwdUw6CNil6R5wG3ACOD6iOiUtADoiIiVwHXAjZK6gM0ULwZmZrYPqHJGT0SsAlbVtF1eur0dOLfBPq7oR31mZjZA/mSsmVnmHPRmZplz0JuZZc5Bb2aWOQe9mVnmHPRmZplz0JuZZc5Bb2aWOQe9mVnmHPRmZplz0JuZZc5Bb2aWOQe9mVnmKn175XAycf6trS5h2Fj36TNaXYKZDQGf0ZuZZc5Bb2aWOQe9mVnmHPRmZplz0JuZZc5Bb2aWuUpBL2mapDWSuiTNr7N+tKRlaf3dkiam9rdKukfSg+nfP21y/WZm1kDDoJc0AlgETAemALMlTanpdjGwJSImA1cBC1P708DbI+I44CLgxmYVbmZm1VQ5o58KdEXE2ojYASwFZtT0mQEsSbdXAKdKUkT8e0Q8nto7gQMljW5G4WZmVk2VoB8HrC8tb0htdftExC5gK3BYTZ+/AO6NiN/W3oGkuZI6JHV0d3dXrd3MzCoYkouxko6lmM55b731EbE4Itojor2trW0oSjIz229UCfqNwITS8vjUVrePpJHAGGBTWh4PfAO4MCIeHmjBZmbWN1WCfjVwjKRJkkYBs4CVNX1WUlxsBZgJ3BERIelQ4FZgfkTc2aSazcysDxoGfZpznwfcBjwELI+ITkkLJJ2Vul0HHCapC/gQsOdPMOcBk4HLJd2Xfn6v6aMwM7MeVfqa4ohYBayqabu8dHs7cG6d7T4FfGqANZqZ2QD4k7FmZplz0JuZZc5Bb2aWOQe9mVnmHPRmZplz0JuZZc5Bb2aWOQe9mVnmHPRmZplz0JuZZc5Bb2aWOQe9mVnmHPRmZplz0JuZZc5Bb2aWOQe9mVnmHPRmZplz0JuZZc5Bb2aWOQe9mVnmKgW9pGmS1kjqkjS/zvrRkpal9XdLmlhad1lqXyPp9CbWbmZmFTQMekkjgEXAdGAKMFvSlJpuFwNbImIycBWwMG07BZgFHAtMA76c9mdmZkOkyhn9VKArItZGxA5gKTCjps8MYEm6vQI4VZJS+9KI+G1EPAJ0pf2ZmdkQGVmhzzhgfWl5A3BST30iYpekrcBhqf0nNduOq70DSXOBuWlxm6Q1pdVjgK091NbTutr2qsvl9sOBp3u436p6q70v/eqtb9TW25jHAFu1cEjH2Khvf8ZYuzxYY+yplr72G5QxAgzxYznYv5P77RgZWO4c1eOaiOj1B5gJ/GNp+V3ANTV9fgaMLy0/nAq+Bnhnqf06YGaj+6zZ9+K+rqttr7pcbgc6+lJnX2vvS7966xu19Tbm0niHbIz9eSyrtPU05maOsVmP5WCNcagfy8H+nfQYB/58rf2pMnWzEZhQWh6f2ur2kTSS4hVqU8VtG/l2P9bVtldd7u2++qPq/hr1q7e+UVtvY27mOPuyr74+llXaehrXvvhY7q9jrNfuMfa9pn5TehXpuUMR3L8ETqUI6dXA+RHRWerz18BxEXGJpFnAORFxnqRjgZsp5uXHAt8HjomI5wdlNE0kqSMi2ltdx2DyGPOxP4zTY+y/hnP0Ucy5zwNuA0YA10dEp6QFFG8zVlJMydwoqQvYTPGXNqR+y4GfA7uAvx4OIZ8sbnUBQ8BjzMf+ME6PsZ8antGbmdnw5k/GmpllzkFvZpY5B72ZWeYc9BVJOkjSEklfkXRBq+sZDJKOlnSdpBWtrmWwSDo7PYbLJJ3W6noGg6TXSPoHSSsk/VWr6xks6XeyQ9KZra5lsEg6RdK/pcfzlP7uZ78OeknXS3pK0s9q2ut9ids5wIqIeA9w1pAX2099GWMUX3NxcWsq7b8+jvGb6TG8BHhHK+rtjz6O8aGIuAQ4D/jjVtTbH338fQT4GLB8aKscuD6OM4BtwEspvlmgfwbjU1jD5Qc4GTgB+FmpbQTFJ3uPBkYB91N8mdtlwPGpz82trn0wxlhav6LVdQ/BGD8HnNDq2gdrjBQnI9+l+MxLy+tv9hiBt1L8Gfcc4MxW1z6I4zwgrT8C+Fp/73O/PqOPiB9S/N1/WU9f4raB4pO9MIzeCfVxjMNSX8aowkLguxFx71DX2l99fRwjYmVETAeGzTRjH8d4CvAm4HzgPZKy/J2MiN1p/RZgdH/vs8qXmu1vevoSt6uBaySdwRB8ZHmQ1R2jpMOAK4E3SLosIv53S6prjp4ex/cDfwaMkTQ5Iv6hFcU1SU+P4ykUU42jgVVDX1ZT1R1jRMwDkDQHeLoUiMNVT4/lOcDpwKEU3x3WLw76iiLiWeDdra5jMEXEJoq562xFxNUUL9rZiogfAD9ocRlDIiJuaHUNgykibgFuGeh+hs3bnSHUjC9i29d5jHnwGPMxqON00L/YauAYSZMkjaK44LOyxTU1m8eYB48xH4M7zlZfgW7x1e+vA08AOynmxC5O7W+j+MbOh4GPt7pOj9Fj9BjzGGOrxukvNTMzy5ynbszMMuegNzPLnIPezCxzDnozs8w56M3MMuegNzPLnIPezCxzDnozs8w56M3MMvf/ATBwZzWKFG2DAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{"needs_background":"light"}},{"output_type":"stream","name":"stdout","text":["============= TEST RESULTS ===============\n","Test Type : hits_distribution\n","Test Description : Compute the distribution of hit-rate across product frequency in training data\n","Test Result : {'histogram': {10: 0.02702702702702703, 100: 0.14410480349344978, 1000: 0.12534818941504178, 10000: 0.125, 100000: 0}, 'counts': {10: 74, 100: 229, 1000: 359, 10000: 128, 100000: 0}}\n","\n"]},{"output_type":"display_data","data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAXAAAAEICAYAAABGaK+TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAes0lEQVR4nO3de3wV5b3v8c8vIQjba4XARjBGWkBQINCYg1DcKPVCxUuVjW2RBqub0m61G9tabE9fx7qt4qtW8EK1WCt4R7Eip9pdg4dURG5BAhZRkDRKLAoCUkSsQH7nj5nERUhYs5KVrEz4vl+v9crMmmdmfs+stX551rNmnjF3R0RE4icr0wGIiEjjKIGLiMSUEriISEwpgYuIxJQSuIhITCmBi4jElBJ4K2dms8zslnB6uJm9lcZt/8nMisPpCWb2Shq3Pc7MXkzX9lLY7zAz22BmH5vZJRHKN9vxjZvwmPXMdBwSnRJ4jLj7Infvk6ycmd1kZo9G2N4od5/d1LjMLN/M3MzaJWz7MXc/t6nbboSbgXvd/Sh3n5fKiuk+vi3NzCrN7KuNXT88ZhXpjKk+ZlZqZlc3934OB0rghyELtNXX/iRgbaaDEGkJbfVDHFtmNsjMXjOzXWY2B+iQsGyEmVUlzP/EzN4Ly75lZiPN7Hzgp8Dl4Vfi1WHZUjP7pZktBj4BetbTEjIzu9fMdprZm2Y2MmHBAa27Oq3Ql8O/H4X7PKNul4yZDTWzFeG2V5jZ0IRlpWb232a2OKzLi2bW+RDH6D/M7G0z225m883shPD5jUBP4P+GcRzRgsf3SjNbF5atMLPv1t2umf3QzLaY2WYzuzJheUcz+7WZvRMen1fMrGO4bIiZvWpmH5nZajMb0cAxeQTIS6j7DeHzF5nZ2nD9UjPre4jj6mb2pXB6lpnNMLPnwzotM7Mv1il7XVjXD83sVzWNgrrfUCzhG5qZ/RIYDtwbxnlvQ/FIBO6uRyt5AO2Bd4DJQA4wBtgL3BIuHwFUhdN9gE3ACeF8PvDFcPom4NE62y4F3gVOBdqF2y8Frg6XTwD2Jez7cmAncHy4vBL4asL2avcR7tuBdgnLJwCvhNPHAzuA8eG+vxnOd0qIbSPQG+gYzk9t4BidDXwIDAaOAO4BXk5YfkCcLXh8LwC+CBjwbwT/JAcnbHcfQfdODvC1cPkXwuUzwjp3B7KBoWHdugPbwvJZwDnhfG4D9av7GvUGdofr5QA3AG8D7RtY34EvhdOzwn0Vha/ZY8CTdcouDF/bPGA9n7+XDjg+dd8fJLzv9GjaQy3w1mUIwQdturvvdfe5wIoGyu4n+JD3M7Mcd690941Jtj/L3de6+z5331vP8i0J+54DvEWQmJrqAmCDuz8S7vsJ4E3gwoQyD7n7enffAzwFFDSwrXHA7939NXf/J3AjcIaZ5UeIo9mOr7s/7+4bPfAX4EWClmaNvcDN4X5fAD4G+oSt1u8AP3D399x9v7u/GtbtCuAFd3/B3avdvQQoI0joUVwOPO/uJeHrfQfBP8ihh16t1rPuvtzd9xEk8II6y2939+3u/i4wneAfs7QgJfDW5QTgPQ+bKaF36ivo7m8D/0XQ2tliZk/WdCUcwqYky+vbd7JtRnECB9fjHYIWZo33E6Y/AY6Ksi13/5igpdi9gfJ1122W42tmo8xsadit8xFBkk3sBtoWJsIaNXXsTNCNU98/h5OAfw+7Pz4Kt/sVoNsha/m5useqmuA9EOVYQfLXJPH9lK73iqRACbx12Qx0NzNLeC6vocLu/ri7f4Xgg+7A7TWLGlolyf7r2/ffw+ndwL8kLPvXFLb79zDGRHnAe0nWS7otMzsS6BRxW81yfMO+9mcIWrhd3f044AWC7pRkPgQ+Jeh+qWsT8Ii7H5fwONLdpzYUcp35usfKgBNp3HGvz4kJ01HfK5D8/SIRKYG3LksI+kqvM7McM7uUoA/yIGbWx8zODpPHp8AeoDpc/AGQb6mfadIlYd//DvQlSEQA5cA3wmWFBP3HNbaG+27oHOIXgN5m9q3wh6zLgX7AH1OMD+AJ4EozKwjrfiuwzN0rI6zbXMe3PUF3y1Zgn5mNAiKdQhm2in8P3GlmJ5hZtgU/Ah8BPApcaGbnhc93CH8Q7dHA5j7gwNfgKeCC8MfXHOCHwD+BV6PEFsGPzewLZnYi8ANgTvh8OXCmmeWZ2bEE3VyHilMaSQm8FXH3z4BLCX4A3E7Qh/mHBoofAUwlaMG9T5B8az4oT4d/t5nZaymEsAzoFW7zl8AYd98WLvs5QStxB/AL4PGEuD8Jyy8Ov+oPqVOvbcBoggSyjeDHtNHu/mEKsdVsa0EYyzMELeovAt+IuG6zHF933wVcR5AwdwDfAuanUK0fAa8T9MdvJ2jpZ7n7JuBigrNethK0yH9Mw5/b24D/Hb4GP3L3twj60e8J63EhcGF4HNLhOWAlQcJ+HngQIOyrnwOsCZfX/Ud9FzDGzHaY2d1piuWwZAd2B4qIJGdmDvQKfyuQDFELXEQkppTARURiSl0oIiIxpRa4iEhMtUteJH06d+7s+fn5LblLEZHYW7ly5Yfunlv3+RZN4Pn5+ZSVlbXkLkVEYs/M6r1iWF0oIiIxpQQuIhJTSuAiIjHVon3gIs1p7969VFVV8emnn2Y6FJFG6dChAz169CAnJydSeSVwaTOqqqo4+uijyc/P58ABB0VaP3dn27ZtVFVVcfLJJ0daR10o0mZ8+umndOrUSclbYsnM6NSpU0rfIJXApU1R8pY4S/X9qwQuIhJT6gOXNmtayfq0bm/yOb2TlsnOzqZ///7s3buXdu3a8e1vf5vJkyeTlZVFWVkZDz/8MHffXf8Q2JWVlbz66qt861vfSmvcUd19993cd999DB48mMcee6zZ9jNixAjuuOMOCgsL07rdW2+9lZ/+9KcpL2tIzYWHnTt3Tlp21qxZlJWVce+99zbL9hsSqQVuZseZ2Vwze9PM1oV3DDnezErMbEP49wuNjkIOtvC2zx8SGx07dqS8vJy1a9dSUlLCn/70J37xi18AUFhY2GDyhiCBP/744w0ub26/+c1vKCkpOSh579u3r4E1Wpdbb721UcviLGoXyl3A/7j7KcBAYB0wBXjJ3XsBL4XzIhLq0qULM2fO5N5778XdKS0tZfTo0QD85S9/oaCggIKCAgYNGsSuXbuYMmUKixYtoqCggGnTplFZWcnw4cMZPHgwgwcP5tVXgzuhlZaWMmLECMaMGcMpp5zCuHHjqBlVdMWKFQwdOpSBAwdSVFTErl272L9/Pz/+8Y85/fTTGTBgAL/97W8PinXSpElUVFQwatQopk2bxk033cT48eMZNmwY48ePp7KykrPPPpsBAwYwcuRI3n33XQAmTJjA9773PYYMGULPnj0pLS3lO9/5Dn379mXChAlJj9FRRx3Fz372MwYOHMiQIUP44IMParc7adIkCgsL6d27N3/8Y3BTn1mzZnHNNdfUrj969GhKS0uZMmUKe/bsoaCggHHjxh2wj/qW3XnnnZx22mmcdtppTJ8+PfJrunz5cs444wwGDRrE0KFDeeutt2qXbdq0iREjRtCrV6/af9oAjz76KEVFRRQUFPDd736X/fv3R95fMkkTeHhPuzP5/HZJn7n7RwS3epodFpsNXJK2qETaiJ49e7J//362bNlywPN33HEHM2bMoLy8nEWLFtGxY0emTp3K8OHDKS8vZ/LkyXTp0oWSkhJee+015syZw3XXXVe7/qpVq5g+fTpvvPEGFRUVLF68mM8++4zLL7+cu+66i9WrV7NgwQI6duzIgw8+yLHHHsuKFStYsWIFDzzwAH/7298OiOf+++/nhBNOYOHChUyePBmAN954gwULFvDEE09w7bXXUlxczJo1axg3btwBsezYsYMlS5Ywbdo0LrroIiZPnszatWt5/fXXKS8vP+Tx2b17N0OGDGH16tWceeaZPPDAA7XLKisrWb58Oc8//zyTJk065NkZU6dOrf32U/cbRN1lK1eu5KGHHmLZsmUsXbqUBx54gFWrVh0yzhqnnHIKixYtYtWqVdx8880HdMssX76cZ555hjVr1vD0009TVlbGunXrmDNnDosXL6a8vJzs7Oy0dk9F6QM/meB+fA+Z2UCCe9z9gODu25vDMu8DXetb2cwmAhMB8vIavAG4yGFl2LBhXH/99YwbN45LL72UHj0Ovk/x3r17ueaaa2o/+OvXf96nX1RUVLtOQUEBlZWVHHvssXTr1o3TTz8dgGOOOQaAF198kTVr1jB37lwAdu7cyYYNG5Kea3zRRRfRsWNHAJYsWcIf/hDcPnT8+PHccMMNteUuvPBCzIz+/fvTtWtX+vfvD8Cpp55KZWUlBQUFDe6jffv2td9KvvzlL1NSUlK7bOzYsWRlZdGrVy969uzJm2++ech4o3rllVf4+te/zpFHHgnApZdeyqJFixg0aFDSdXfu3ElxcTEbNmzAzNi7d2/tsnPOOYdOnTrVbvOVV16hXbt2rFy5svY12bNnD126dElLPSBaAm8HDAaudfdlZnYXdbpL3N3De+QdxN1nAjMBCgsLdfcIOaxUVFSQnZ1Nly5dWLduXe3zU6ZM4YILLuCFF15g2LBh/PnPfz5o3WnTptG1a1dWr15NdXU1HTp0qF12xBFH1E5nZ2cfsp/a3bnnnns477zzUoq9JsElUxNLVlbWAXFlZWUl7T/PycmpPXWubj3qnlJnZrRr147q6ura51r6qtuf//znnHXWWTz77LNUVlYyYsSIA+JLZGa4O8XFxdx2W/P8lhWlD7wKqHL3ZeH8XIKE/oGZdQsD7QZsaWB9kcPS1q1bmTRpEtdcc81BH+6NGzfSv39/fvKTn3D66afz5ptvcvTRR7Nr167aMjt37qRbt25kZWXxyCOPJO077dOnD5s3b2bFihUA7Nq1i3379nHeeedx33331bYW169fz+7du1Oqy9ChQ3nyyScBeOyxxxg+fHhK6zfG008/TXV1NRs3bqSiooI+ffqQn59PeXk51dXVbNq0ieXLl9eWz8nJOaBFnChx2fDhw5k3bx6ffPIJu3fv5tlnn41cn507d9K9e3cg6I9PVFJSwvbt29mzZw/z5s1j2LBhjBw5krlz59Z2oW3fvp133ql3ZNhGSdoCd/f3zWyTmfVx97eAkcAb4aMYmBr+fS5tUYmkQZTT/tKt5seymtMIx48fz/XXX39QuenTp7Nw4UKysrI49dRTGTVqFFlZWWRnZzNw4EAmTJjA97//fS677DIefvhhzj///KQt4vbt2zNnzhyuvfZa9uzZQ8eOHVmwYAFXX301lZWVDB48GHcnNzeXefPmpVSve+65hyuvvJJf/epX5Obm8tBDD6W0fmPk5eVRVFTEP/7xD+6//346dOjAsGHDOPnkk+nXrx99+/Zl8ODBteUnTpzIgAED6j0Nsu6yCRMmUFRUBMDVV1/dYPfJgAEDyMoK2rljx47lhhtuoLi4mFtuuYULLrjggLJFRUVcdtllVFVVccUVV9SeJnnLLbdw7rnnUl1dTU5ODjNmzOCkk05KyzGKdE9MMysAfge0ByqAKwla708BecA7wFh3336o7RQWFrpu6BBR4umDZ92YuThiZN26dfTt2zfTYUgaTJgwgdGjRzNmzJhMh9Li6nsfm9lKdz/oxPlIF/K4ezlQ31n3IxsToIiINJ2uxBSRVqdu/7LUTwlcWkSql7Vnov9aJG40mJWISEwpgYuIxJQSuIhITKkPXNqudI/kGOF0Tg0nm5yGk019+w1RC1wkjTScbOZoOFkRSRsNJzsh6THScLJNowQu0ow0nGz5IY+PhpNtGvWBi2SAhpMNaDjZplECF2lGGk5Ww8lmejhZEWkEDSfbNBpONjm1wKXtysAojhpONn00nGxykYaTTRcNJ5uCNjacbEuMhaLhZNsODScbbThZdaGIiMSUulBEpNXRcLLRqAUubUpLdgmKpFuq718lcGkzOnTowLZt25TEJZbcnW3bth1wumgy6kKRNmFayXpyrJq+x3zMUe/+PWn5YzrmtEBUIqnp0KFDvRd1NUQJXNqMvZ7Fmp1HJC+I7vgjbYO6UEREYkoJXEQkppTARURiSglcRCSmlMBFRGIq0lkoZlYJ7AL2A/vcvdDMjgfmAPlAJTDW3Xc0T5giIlJXKi3ws9y9IGFAlSnAS+7eC3gpnBcRkRbSlC6Ui4HZ4fRs4JImRyMiIpFFTeAOvGhmK81sYvhcV3ffHE6/D3Stb0Uzm2hmZWZWtnXr1iaGKyIiNaJeifkVd3/PzLoAJWZ2wM3p3N3NrN4BKNx9JjATgvHAmxStiIjUitQCd/f3wr9bgGeBIuADM+sGEP7d0vAWREQk3ZImcDM70syOrpkGzgX+CswHisNixcBzzRWkiIgcLEoXSlfg2fCmrO2Ax939f8xsBfCUmV0FvAOMbb4wRUSkrqQJ3N0rgIH1PL8NGNkcQYmISHK6ElNEJKaUwEVEYkoJXEQkppTARURiSglcRCSmlMBFRGJKCVxEJKaUwEVEYkoJXEQkppTARURiSglcRCSmlMBFRGJKCVxEJKaUwEVEYkoJXEQkppTARURiSglcRCSmlMBFRGJKCVxEJKaUwEVEYkoJXEQkppTARURiSglcRCSmlMBFRGJKCVxEJKbaRS1oZtlAGfCeu482s5OBJ4FOwEpgvLt/1jxhiqTXtJL1KZWffE7vZopEpPFSaYH/AFiXMH87MM3dvwTsAK5KZ2AiInJokRK4mfUALgB+F84bcDYwNywyG7ikGeITEZEGRG2BTwduAKrD+U7AR+6+L5yvArrXt6KZTTSzMjMr27p1a1NiFRGRBEkTuJmNBra4+8rG7MDdZ7p7obsX5ubmNmYTIiJSjyg/Yg4DLjKzrwEdgGOAu4DjzKxd2ArvAbzXfGGKiEhdSRO4u98I3AhgZiOAH7n7ODN7GhhDcCZKMfBc84UpqUr1LItUNfdZGc0dv0hb0JTzwH8CXG9mbxP0iT+YnpBERCSKyOeBA7h7KVAaTlcARekPSUREotCVmCIiMaUELiISU0rgIiIxpQQuIhJTKf2IKUksvO3z6bNuzFwcInJYUAtcRCSmlMBFRGJKCVxEJKbUBx4TurRcROpSC1xEJKaUwEVEYurw7ELR6X5Ndrh16cR9dEdpm9QCFxGJKSVwEZGYOjy7UKJorm4Wdd+ISJqoBS4iElNK4CIiMaUELiISU+oDj9InnVjmUOVaYrsiIiG1wEVEYkoJXEQkptSF0hLqdpWIiKSBWuAiIjGlBC4iElNK4CIiMZW0D9zMOgAvA0eE5ee6+/8xs5OBJ4FOwEpgvLt/1pzBikgg1dERNdph2xSlBf5P4Gx3HwgUAOeb2RDgdmCau38J2AFc1WxRiojIQZImcA98HM7mhA8Hzgbmhs/PBi5pjgBFRKR+kU4jNLNsgm6SLwEzgI3AR+6+LyxSBXRvYN2JwESAvLy8psbbOmhEQRFpBSL9iOnu+929AOgBFAGnRN2Bu89090J3L8zNzW1clCIicpCUzkJx94+AhcAZwHFmVtOC7wG8l97QRETkUKKchZIL7HX3j8ysI3AOwQ+YC4ExBGeiFAPPNWegjaKuDhFpw6L0gXcDZof94FnAU+7+RzN7A3jSzG4BVgEPNmOcIiJSR9IE7u5rgEH1PF9B0B8uIiIZoCsxRURi6vAZjbC5RgTUSIMikiFqgYuIxJQSuIhITCmBi4jElBK4iEhMKYGLiMSUEriISEwdPqcRihzGdAOItkktcBGRmFICFxGJKSVwEZGYUgIXEYkpJXARkZjSWSiJNDCViMSIWuAiIjGlBC4iElNK4CIiMaU+cBE5iK7cjAe1wEVEYkoJXEQkptSFkiZLKrY1eRtL933+tXXIu9vqfV5EpIZa4CIiMaUELiISU0rgIiIxlbQP3MxOBB4GugIOzHT3u8zseGAOkA9UAmPdfUfzhdqAxMvfz7qxwWKp9lGf0bNTYyMSSVmqp+2JQLQW+D7gh+7eDxgC/KeZ9QOmAC+5ey/gpXBeRERaSNIE7u6b3f21cHoXsA7oDlwMzA6LzQYuaaYYRUSkHimdRmhm+cAgYBnQ1d03h4veJ+hiqW+dicBEgLy8vEYHGkkaRxNMx2mBqRry7syUyizNm9ic4YhIKxf5R0wzOwp4Bvgvd/9H4jJ3d4L+8YO4+0x3L3T3wtzc3CYFKyIin4uUwM0shyB5P+bufwif/sDMuoXLuwFbmidEERGpT9IEbmYGPAisc/c7ExbNB4rD6WLgufSHJyIiDYnSBz4MGA+8bmbl4XM/BaYCT5nZVcA7wNhmiVBEROqVNIG7+yuANbB4ZHrDERGRqHQlpohITCmBi4jElBK4iEhMKYGLiMSUbugQA1Gu0BSRw49a4CIiMaUELiISU0rgIiIxpQQuIhJTSuAiIjGlBC4iElNK4CIiMaUELiISU0rgIiIxpQQuIhJTSuAiIjGlBC4iElNK4CIiMaXRCGMscZTCpXkTMxiJiGSCWuAiIjGlBC4iElPqQhGRJptWsj6l8pPP6d1MkRxe1AIXEYkpJXARkZiKZxfKwtsyHYGISMYlbYGb2e/NbIuZ/TXhuePNrMTMNoR/v9C8YYqISF1RulBmAefXeW4K8JK79wJeCudFRKQFJU3g7v4ysL3O0xcDs8Pp2cAl6Q1LRESSaWwfeFd33xxOvw90baigmU0EJgLk5eU1cncHW1KxLW3bEhGJoyafheLuDvghls9090J3L8zNzW3q7kREJNTYBP6BmXUDCP9uSV9IIiISRWMT+HygOJwuBp5LTzgiIhJVlNMInwCWAH3MrMrMrgKmAueY2Qbgq+G8iIi0oKQ/Yrr7NxtYNDLNsYiISAp0Kb2ISEwpgYuIxJQSuIhITCmBi4jEVDxHIxSRw4puGFE/tcBFRGJKCVxEJKbUhSIiLS7VLhGpn1rgIiIxpQQuIhJTSuAiIjGlPvA2aMi7Mw+YX5o3MUORiEhzUgtcRCSmlMBFRGIqPl0oC2/LdAStWt1uExGJLq5XeqoFLiISU0rgIiIxpQQuIhJT8ekDFxGJ6HC5VF8tcBGRmFICFxGJKSVwEZGYUgIXEYkpJXARkZjSWSgiIilqLVduNqkFbmbnm9lbZva2mU1JV1AiIpJcoxO4mWUDM4BRQD/gm2bWL12BiYjIoTWlBV4EvO3uFe7+GfAkcHF6whIRkWSa0gfeHdiUMF8F/K+6hcxsIlBzR4GPzeytFPbRGfiw0RG2Dq2gDr9u6gZaQR2aTHVoHQ7LOlzf9H2eVN+Tzf4jprvPBBo11qmZlbl7YZpDalGqQ+ugOrQOqkN6NaUL5T3gxIT5HuFzIiLSApqSwFcAvczsZDNrD3wDmJ+esEREJJlGd6G4+z4zuwb4M5AN/N7d16YtskBbuM2M6tA6qA6tg+qQRubumY5BREQaQZfSi4jElBK4iEhMtYoEnuySfDM7wszmhMuXmVl+BsI8pAh1uN7M3jCzNWb2kpnVe15nJkUdGsHMLjMzN7NWcSpVoih1MLOx4Wux1sweb+kYk4nwXsozs4Vmtip8P30tE3E2xMx+b2ZbzOyvDSw3M7s7rN8aMxvc0jEmE6EO48LYXzezV81sYEvHCIC7Z/RB8APoRqAn0B5YDfSrU+b7wP3h9DeAOZmOuxF1OAv4l3D6e3GsQ1juaOBlYClQmOm4G/E69AJWAV8I57tkOu5G1GEm8L1wuh9Qmem468R3JjAY+GsDy78G/AkwYAiwLNMxN6IOQxPeQ6MyVYfW0AKPckn+xcDscHouMNLMrAVjTCZpHdx9obt/Es4uJThvvjWJOjTCfwO3A5+2ZHARRanDfwAz3H0HgLtvaeEYk4lSBweOCaePBf7egvEl5e4vA9sPUeRi4GEPLAWOM7NuLRNdNMnq4O6v1ryHyODnuTUk8Pouye/eUBl33wfsBDq1SHTRRKlDoqsIWiCtSdI6hF91T3T351sysBREeR16A73NbLGZLTWz81ssumii1OEm4AozqwJeAK5tmdDSJtXPS2uXsc+zxgNvYWZ2BVAI/FumY0mFmWUBdwITMhxKU7Uj6EYZQdBqetnM+rv7R5kMKkXfBGa5+6/N7AzgETM7zd2rMx3Y4cbMziJI4F/JxP5bQws8yiX5tWXMrB3B18ZtLRJdNJGGFTCzrwI/Ay5y93+2UGxRJavD0cBpQKmZVRL0Xc5vZT9kRnkdqoD57r7X3f8GrCdI6K1FlDpcBTwF4O5LgA4EAyzFRZsYhsPMBgC/Ay5294zko9aQwKNckj8fKA6nxwD/z8NfD1qJpHUws0HAbwmSd2vrd4UkdXD3ne7e2d3z3T2foN/vIncvy0y49YryXppH0PrGzDoTdKlUtGCMyUSpw7vASAAz60uQwLe2aJRNMx/4dng2yhBgp7tvznRQqTCzPOAPwHh3T+32POmU6V97/fNfpdcT/Pr+s/C5mwkSBARv0KeBt4HlQM9Mx9yIOiwAPgDKw8f8TMecah3qlC2llZ2FEvF1MIKuoDeA14FvZDrmRtShH7CY4AyVcuDcTMdcJ/4ngM3AXoJvPFcBk4BJCa/BjLB+r7fS91GyOvwO2JHweS7LRJy6lF5EJKZaQxeKiIg0ghK4iEhMKYGLiMSUEriISEwpgYuIxJQSuIhITCmBi4jE1P8HXMtnAXDgb+UAAAAASUVORK5CYII=\n","text/plain":["
"]},"metadata":{"needs_background":"light"}},{"output_type":"stream","name":"stdout","text":["============= TEST RESULTS ===============\n","Test Type : distance_to_query\n","Test Description : Compute the distribution of distance from query to label and query to prediction\n","Test Result : {'histogram_x_to_y': ([10, 21, 20, 22, 22, 36, 39, 39, 35, 58, 39, 53, 41, 35, 35, 21, 31, 26, 23, 12, 6, 7, 3, 4, 1], [0.027085185050964355, 0.07621452689170838, 0.1253438687324524, 0.1744732105731964, 0.22360255241394042, 0.27273189425468447, 0.32186123609542844, 0.37099057793617246, 0.4201199197769165, 0.4692492616176605, 0.5183786034584046, 0.5675079452991485, 0.6166372871398925, 0.6657666289806365, 0.7148959708213806, 0.7640253126621246, 0.8131546545028686, 0.8622839963436126, 0.9114133381843567, 0.9605426800251007, 1.0096720218658448, 1.0588013637065887, 1.1079307055473326, 1.1570600473880768, 1.2061893892288207, 1.2553187310695648]), 'histogram_x_to_p': ([4, 11, 21, 20, 29, 28, 35, 33, 24, 34, 33, 30, 28, 37, 33, 32, 34, 33, 20, 61, 17, 20, 13, 4, 5], [0.012268495559692384, 0.025094011306762698, 0.03791952705383301, 0.05074504280090332, 0.06357055854797364, 0.07639607429504394, 0.08922159004211426, 0.10204710578918456, 0.11487262153625488, 0.1276981372833252, 0.14052365303039552, 0.15334916877746582, 0.16617468452453615, 0.17900020027160646, 0.19182571601867676, 0.2046512317657471, 0.2174767475128174, 0.2303022632598877, 0.24312777900695803, 0.25595329475402834, 0.26877881050109864, 0.28160432624816895, 0.29442984199523925, 0.3072553577423096, 0.3200808734893799, 0.3329063892364502]), 'raw_distances_x_to_y': [0.9254719093441963, 0.462533175945282, 0.21085858345031738, 0.47345417737960815, 0.8189148157835007, 0.6212723255157471, 0.1114012598991394, 0.4277552366256714, 0.5421712100505829, 0.3438114523887634, 0.6834848821163177, 0.12182509899139404, 0.5115478038787842, 0.2190667986869812, 0.7817028611898422, 0.7468498349189758, 0.49416977167129517, 0.2725176215171814, 0.5640368163585663, 0.10806989669799805, 0.5597535669803619, 0.26346278190612793, 0.2727212905883789, 0.31810325384140015, 0.7297700345516205, 0.5911677479743958, 0.5790992975234985, 1.0076064178720117, 0.430014431476593, 0.2532806396484375, 0.4981846809387207, 0.6517561078071594, 0.08466029167175293, 0.15237146615982056, 0.781215712428093, 1.0076064178720117, 0.23168128728866577, 0.2835843563079834, 0.34047961235046387, 0.7128640711307526, 0.6921305954456329, 0.4090891480445862, 0.45411020517349243, 0.308832049369812, 0.8578503280878067, 0.8280059248209, 0.09990346431732178, 0.36499106884002686, 0.47029995918273926, 0.9402659200131893, 0.26203757524490356, 0.6552892327308655, 0.40001380443573, 0.27151793241500854, 0.8445519506931305, 0.28339993953704834, 0.17017924785614014, 0.38485950231552124, 0.9698969088494778, 0.2542409896850586, 0.30253440141677856, 0.5792183578014374, 0.5336647927761078, 0.6775735020637512, 0.6186142265796661, 0.7454920709133148, 0.076199471950531, 0.2535223960876465, 0.5798035562038422, 0.6477236449718475, 0.7253351509571075, 0.36245912313461304, 0.5802899301052094, 0.6831025183200836, 0.3974495530128479, 0.4377900958061218, 0.874511793255806, 0.09468638896942139, 0.30603235960006714, 0.6420265138149261, 0.8917598351836205, 0.8514892011880875, 0.28252047300338745, 0.3410959243774414, 0.7218420505523682, 0.49533963203430176, 0.7329410910606384, 0.4549601674079895, 0.8185496628284454, 0.5602165162563324, 0.935164324939251, 0.6192016303539276, 0.6965530812740326, 0.506960391998291, 0.6797125935554504, 0.972739702090621, 0.5587949752807617, 0.9648317396640778, 0.7918451577425003, 0.10904902219772339, 0.26039278507232666, 0.48779743909835815, 0.32050520181655884, 0.9108971506357193, 0.17316967248916626, 0.1562144160270691, 0.5707772672176361, 0.7172189950942993, 0.4743512272834778, 0.5884027183055878, 0.39823293685913086, 0.37635380029678345, 0.48903268575668335, 0.2427654266357422, 0.740830808877945, 0.3790507912635803, 0.48203784227371216, 0.26257091760635376, 0.714726060628891, 0.3886526823043823, 0.506866067647934, 0.38689154386520386, 0.8665386885404587, 0.4252302050590515, 0.3790507912635803, 0.2864288091659546, 0.5251165926456451, 0.2038726806640625, 0.6813859939575195, 0.6797683835029602, 0.13988149166107178, 0.4257371425628662, 0.6832488477230072, 0.4939197897911072, 0.7525335550308228, 0.6219100654125214, 0.15661191940307617, 0.639555811882019, 0.6219100654125214, 0.6514264643192291, 0.35110509395599365, 0.6271197497844696, 0.462327778339386, 0.6513311266899109, 0.10752040147781372, 0.5508485436439514, 0.3116947412490845, 0.7269882261753082, 0.6206513047218323, 0.5326894521713257, 0.8309376835823059, 0.2881903052330017, 0.3581002354621887, 0.16245216131210327, 0.5602153539657593, 0.5890812277793884, 0.1208798885345459, 0.4772169589996338, 0.44260478019714355, 0.6125787794589996, 0.09781920909881592, 0.7173270881175995, 0.9057733789086342, 0.21883291006088257, 0.2283496856689453, 0.3400246500968933, 0.6160574853420258, 0.46860283613204956, 0.4285128712654114, 0.4254186749458313, 0.4115585684776306, 0.8667544275522232, 0.06605154275894165, 0.44577592611312866, 0.4536110758781433, 1.0924406200647354, 0.5168035328388214, 0.5836308300495148, 0.4283052682876587, 0.22816848754882812, 0.3787039518356323, 0.07026445865631104, 0.8491666465997696, 0.3641747832298279, 1.1299540549516678, 0.44231313467025757, 1.167671948671341, 0.918891005218029, 0.7797763794660568, 0.8064161539077759, 0.7030901312828064, 0.1738971471786499, 0.11099112033843994, 0.4285128712654114, 0.6690216064453125, 0.5043551623821259, 0.5595879852771759, 0.40289217233657837, 0.06950515508651733, 0.46268099546432495, 0.39849114418029785, 0.4093968868255615, 0.7422437965869904, 0.5640649199485779, 0.5044651627540588, 0.3718870282173157, 0.4949328303337097, 0.3384582996368408, 0.9164132475852966, 0.8826794549822807, 0.4781320095062256, 0.39250558614730835, 0.47071176767349243, 0.2293713092803955, 0.6476076543331146, 0.8838279992341995, 0.27570104598999023, 0.19004637002944946, 0.6612381637096405, 0.6677241921424866, 0.19149482250213623, 0.7657949030399323, 0.5640649199485779, 0.3024331331253052, 0.1256752610206604, 0.36499106884002686, 0.4845578074455261, 0.5405918657779694, 0.5955899655818939, 0.9245310798287392, 0.9297516494989395, 0.21759074926376343, 0.3373871445655823, 0.3699283003807068, 0.6013206541538239, 0.9102961793541908, 0.843553215265274, 0.5168035328388214, 0.3229179382324219, 0.8645953387022018, 0.572632223367691, 0.4692692160606384, 0.9606809169054031, 0.5453396439552307, 0.5945159792900085, 0.6038006544113159, 0.85569629073143, 0.565295547246933, 0.9472744166851044, 0.49883782863616943, 0.32196158170700073, 0.6548276245594025, 0.38367241621017456, 0.3617027997970581, 0.6122760474681854, 1.0495793037116528, 0.12808352708816528, 0.7142658829689026, 0.8562994003295898, 0.2721226215362549, 0.3397049307823181, 0.027085185050964355, 0.6539434194564819, 0.5633589923381805, 0.3535528779029846, 0.18204158544540405, 0.2661483883857727, 0.8781896978616714, 0.6539434194564819, 0.3516688942909241, 0.9167362451553345, 0.12582182884216309, 0.19273149967193604, 0.6312002241611481, 0.49662697315216064, 0.7021820545196533, 0.2805701494216919, 0.39922797679901123, 0.6158891320228577, 0.07739633321762085, 0.617974579334259, 0.32775402069091797, 0.5247384607791901, 0.2149120569229126, 0.4774479866027832, 0.5334309637546539, 0.7717662453651428, 0.6299411654472351, 0.9769610203802586, 0.3056491017341614, 0.5658897757530212, 0.4421624541282654, 0.5553690791130066, 0.9007061719894409, 0.4115585684776306, 0.6690648198127747, 0.3697749972343445, 0.17395007610321045, 0.4646461009979248, 1.0299112629145384, 0.600534588098526, 0.4646461009979248, 0.9810393769294024, 0.8647336810827255, 0.34212249517440796, 0.5590666830539703, 0.3464195132255554, 0.05532979965209961, 0.20188939571380615, 0.4105381965637207, 0.4939197897911072, 0.2629045248031616, 0.28857362270355225, 0.29965150356292725, 0.4188130497932434, 0.2244529128074646, 0.7472360134124756, 0.6975664496421814, 0.49244630336761475, 0.08120405673980713, 0.48203784227371216, 0.4968187212944031, 0.6568638682365417, 0.5499407947063446, 0.4152105450630188, 0.8767637833952904, 0.6606419384479523, 0.5982445478439331, 0.8854007720947266, 0.451798677444458, 0.7668242305517197, 0.29245537519454956, 0.5700768232345581, 0.27996474504470825, 0.39198386669158936, 0.2561491131782532, 0.2906454801559448, 0.8172992914915085, 0.36499106884002686, 0.839078962802887, 0.871750995516777, 0.7232131659984589, 0.3438114523887634, 0.3022156357765198, 0.6184073686599731, 0.5854481160640717, 1.01153430249542, 0.7308022677898407, 0.21456676721572876, 0.7636695057153702, 0.8693548738956451, 0.42182499170303345, 0.7092864513397217, 1.2553187310695648, 0.5536989271640778, 0.8955832570791245, 0.4093968868255615, 0.5419392883777618, 0.505172461271286, 0.3697749972343445, 0.9452919512987137, 0.763588935136795, 0.6174618601799011, 0.5677748918533325, 0.5108366012573242, 0.2942226529121399, 0.8166680783033371, 0.6539860665798187, 0.6094558238983154, 0.3326358199119568, 0.30736833810806274, 0.4509674310684204, 0.40113013982772827, 0.5168035328388214, 0.20486664772033691, 0.4109269976615906, 0.03789621591567993, 0.7438116669654846, 0.7488087117671967, 1.0868622660636902, 0.7574658691883087, 0.5947867333889008, 0.20400893688201904, 0.5677686929702759, 0.49960315227508545, 0.4939197897911072, 0.6324397325515747, 0.4222393035888672, 0.8293663859367371, 0.9296053647994995, 0.5602153539657593, 0.11834901571273804, 0.7321200668811798, 1.1602952182292938, 0.5965181291103363, 0.9149350449442863, 0.506960391998291, 0.5186827778816223, 0.6399234533309937, 0.4691590666770935, 0.7098327279090881, 0.1822097897529602, 0.5572097897529602, 0.40265655517578125, 0.5968579947948456, 0.48597395420074463, 0.8904133811593056, 0.13772159814834595, 0.7772166877985001, 0.40333008766174316, 0.08821582794189453, 0.21322739124298096, 0.8235199153423309, 0.3984646201133728, 0.46459639072418213, 0.5436182022094727, 0.9407618939876556, 0.5690764486789703, 0.8153036832809448, 0.5076813995838165, 0.8492564111948013, 0.15788805484771729, 0.11221820116043091, 0.5724060535430908, 0.7176460325717926, 0.8440407365560532, 0.7636695057153702, 0.5076813995838165, 0.6323907971382141, 1.0598904006183147, 0.6086966693401337, 0.5732938051223755, 0.6028461754322052, 0.4580917954444885, 0.7809314131736755, 0.7321200668811798, 0.7066938281059265, 0.36259204149246216, 0.9492336809635162, 1.0921175256371498, 0.6050473153591156, 0.3663545846939087, 0.4949040412902832, 0.15298473834991455, 0.9291635751724243, 0.6140021979808807, 0.2852240204811096, 0.4260064363479614, 0.1934911012649536, 0.7881776839494705, 0.35110509395599365, 0.3110712170600891, 0.9965950401965529, 0.5273209810256958, 0.08015191555023193, 0.4719691276550293, 0.9257553964853287, 0.08657711744308472, 1.061875719577074, 0.7328509390354156, 0.41553622484207153, 0.4125799536705017, 0.6805701553821564, 0.4923962950706482, 0.06813162565231323, 0.5629296898841858, 0.4759763479232788, 0.5833230018615723, 0.36499106884002686, 0.9472270794212818, 0.5061180889606476, 0.9592425897717476, 0.5083636045455933, 0.14995676279067993, 0.5998384058475494, 1.0139076802879572, 0.49391037225723267, 0.7350744903087616, 0.8142646700143814, 0.6496772468090057, 0.7049342393875122, 0.7604426890611649, 0.7480517625808716, 0.7623411267995834, 0.6347159445285797, 0.5602153539657593, 0.1489863395690918, 0.18149614334106445, 0.3795756697654724, 0.6545434892177582, 0.5564406514167786, 0.6680121421813965, 0.9342424422502518, 0.657894492149353, 0.7992750257253647, 0.09565281867980957, 0.8649559319019318, 0.6687523424625397, 0.2839009165763855, 0.6356145441532135, 0.5763238072395325, 0.41780197620391846, 0.33846670389175415, 0.8244993835687637, 0.2919861078262329, 0.5979242324829102, 0.16055721044540405, 0.44577592611312866, 0.43739110231399536, 0.8500117361545563, 0.8017996996641159, 0.22006440162658691, 0.8103550374507904, 0.2716165781021118, 0.4894411563873291, 0.4743186831474304, 1.1532704830169678, 0.6796385049819946, 0.5788311660289764, 0.5738734304904938, 1.0360383354127407, 0.8758786469697952, 0.7802753150463104, 0.6680121421813965, 0.32175880670547485, 0.7403334379196167, 0.1184920072555542, 0.985954599454999, 0.5621178150177002, 0.05862969160079956, 0.9962523609865457, 0.3015354871749878, 0.6796385049819946, 0.8925864547491074, 0.28270334005355835, 0.6035843193531036, 0.5169978737831116, 0.2768561840057373, 0.4702553153038025, 0.5790992975234985, 1.1766748428344727, 0.47123968601226807, 0.5027961134910583, 0.8790005818009377, 0.7171919941902161, 0.6880250871181488, 0.8500117361545563, 1.069704793393612, 0.49865972995758057, 0.6096971333026886, 0.8759694769978523, 0.44577592611312866, 0.2793188691139221, 0.715606302022934, 0.3277524709701538, 0.8630160391330719, 0.6029638350009918, 0.672376275062561, 0.7672243714332581, 0.6264006495475769, 0.477161705493927, 0.8390759825706482, 0.41296738386154175, 1.1259145587682724, 0.595622718334198, 0.41994398832321167, 0.8203410059213638, 0.5836825668811798, 0.9287489503622055, 0.6963227391242981, 0.5261703729629517, 0.5353045463562012, 0.5869246125221252, 0.5790992975234985, 0.5850421190261841, 0.36374711990356445, 0.5985998511314392, 0.6088151931762695, 0.747675210237503, 0.06854182481765747, 0.6931126117706299, 0.645240068435669, 0.7922555953264236, 0.5883113443851471, 1.0752593576908112, 0.285663902759552, 0.6201569736003876, 0.56195929646492, 0.4090891480445862, 0.8667544275522232, 0.2510431408882141, 0.5058979690074921, 0.4431813359260559, 0.8103550374507904, 0.3243250250816345, 0.30453455448150635, 0.8527398705482483, 0.3313218951225281, 0.19052201509475708, 0.5382198095321655, 0.7340660691261292, 0.20157545804977417, 0.8104113787412643, 0.39328664541244507, 0.4090891480445862, 0.8347247093915939, 1.1893530488014221, 0.4659144878387451, 0.3405866026878357, 0.504460483789444, 0.3602169156074524, 0.6858391165733337, 1.0038859038613737, 0.5214316546916962, 0.8468800038099289, 0.47100013494491577, 0.8355625718832016, 0.9142830222845078, 0.7842075973749161, 0.48353803157806396, 0.6460709273815155, 0.9214013367891312, 0.16748452186584473, 0.7851828187704086, 0.9456217810511589, 1.0546553991734982, 0.6465227603912354, 0.7309760749340057, 0.7143962383270264, 0.6868995428085327, 0.29914140701293945, 0.8468800038099289, 0.1323196291923523, 0.6218132972717285, 0.36877548694610596, 0.8355625718832016, 0.29121387004852295, 0.22311073541641235, 0.10930991172790527], 'raw_distances_x_to_p': [0.07491215467453002, 0.1258436381816864, 0.07867926359176636, 0.2686879813671112, 0.2801799297332764, 0.0717882513999939, 0.0725929856300354, 0.23633030652999878, 0.10049613714218139, 0.2687165439128876, 0.21981453895568848, 0.060776901245117185, 0.20193864703178405, 0.17324100732803344, 0.2267237663269043, 0.2679001986980438, 0.2943339288234711, 0.09887873530387878, 0.18990106582641603, 0.013069415092468261, 0.22808496952056884, 0.177504962682724, 0.19701056480407714, 0.10048171281814575, 0.22985101938247682, 0.18766284584999085, 0.2594358205795288, 0.22143737077713013, 0.09927035570144653, 0.06417487263679504, 0.2943339288234711, 0.1856810450553894, 0.048224085569381715, 0.07560800909996032, 0.1954294800758362, 0.22143737077713013, 0.11648967862129211, 0.1531326115131378, 0.2031690001487732, 0.14105207920074464, 0.20138368010520935, 0.26318231225013733, 0.09289433360099793, 0.16757089495658875, 0.18792030811309815, 0.20214383006095887, 0.054546850919723514, 0.21114518642425537, 0.10422782301902771, 0.1210227906703949, 0.1002508282661438, 0.19361129999160767, 0.3329063892364502, 0.17842383980751036, 0.26788932681083677, 0.20689859390258789, 0.1385556697845459, 0.09504943490028381, 0.0713767647743225, 0.09155805706977845, 0.20662015676498413, 0.09082162380218506, 0.2263636529445648, 0.2943339288234711, 0.12961583137512206, 0.32856560349464414, 0.049546295404434205, 0.09032933712005616, 0.30195106863975524, 0.24248597025871277, 0.25832881331443786, 0.15774248242378236, 0.26330329179763795, 0.10972844958305358, 0.2620315611362457, 0.12930552363395692, 0.23038687109947203, 0.026624709367752075, 0.14155877828598024, 0.20760102868080138, 0.18119154572486879, 0.09862520694732665, 0.18418713212013244, 0.031426644325256346, 0.1537289261817932, 0.23018404245376586, 0.1488548696041107, 0.14751260876655578, 0.24583064913749694, 0.2943339288234711, 0.21902262568473815, 0.14626285433769226, 0.15618699193000793, 0.21385310888290404, 0.07923253774642944, 0.05288533568382263, 0.1357314705848694, 0.08316851258277894, 0.17194377779960632, 0.051333832740783694, 0.16315961480140687, 0.11301332712173462, 0.13821958899497985, 0.04227041006088257, 0.13023970127105713, 0.04402931928634644, 0.0550550639629364, 0.30488539934158326, 0.12046017050743103, 0.20294120907783508, 0.2607896029949188, 0.24519628882408143, 0.2092129111289978, 0.14207690358161926, 0.2014531373977661, 0.1417696475982666, 0.23628079891204834, 0.15885791778564454, 0.05424953699111938, 0.15618699193000793, 0.026917821168899535, 0.12801412343978882, 0.19133716821670532, 0.19039098024368287, 0.12497220635414123, 0.08388009071350097, 0.2687165439128876, 0.15618699193000793, 0.1058310627937317, 0.18474913239479065, 0.06041879653930664, 0.2943339288234711, 0.13736398816108703, 0.2687165439128876, 0.050558412075042726, 0.17581526637077333, 0.09195072650909424, 0.19391862154006959, 0.17581526637077333, 0.2424494206905365, 0.30195106863975524, 0.14327287077903747, 0.22033972144126893, 0.14627864956855774, 0.028694087266922, 0.31550863981246946, 0.18408670425415039, 0.2152866005897522, 0.10920886993408203, 0.1462748944759369, 0.265926456451416, 0.041348469257354734, 0.18667010664939881, 0.05466875433921814, 0.06425246000289916, 0.26812600493431094, 0.09431666135787964, 0.1754552900791168, 0.19701056480407714, 0.27325833439826963, 0.0812505841255188, 0.08923358917236328, 0.08142293095588685, 0.08049794435501098, 0.08388690948486328, 0.11004357933998107, 0.16105413436889648, 0.20935619473457337, 0.2286216974258423, 0.2687165439128876, 0.2943339288234711, 0.29934104084968566, 0.04505055546760559, 0.2687165439128876, 0.2687165439128876, 0.165482234954834, 0.2505683660507202, 0.2572839021682739, 0.13336470127105712, 0.10528640747070313, 0.18572738766670227, 0.02762399911880493, 0.28054004311561587, 0.2687165439128876, 0.2402168333530426, 0.21964013576507568, 0.20647518634796141, 0.12037063241004944, 0.23799507617950438, 0.18990106582641603, 0.23378283381462098, 0.0682909369468689, 0.09713414311408997, 0.2286216974258423, 0.313013356924057, 0.2574847638607025, 0.09879412055015564, 0.16634994745254517, 0.051359379291534425, 0.2650827825069427, 0.19282710552215576, 0.2687165439128876, 0.22142802476882933, 0.27086228132247925, 0.10801171064376831, 0.1440779447555542, 0.20884934067726135, 0.13752301335334777, 0.2809159100055695, 0.07321414351463318, 0.12935298681259155, 0.09392074346542359, 0.09345549941062928, 0.1448982834815979, 0.2368825912475586, 0.20223453640937805, 0.1077257513999939, 0.06970394849777221, 0.24059501886367798, 0.1531326115131378, 0.07047860026359558, 0.05411232113838196, 0.21195716857910157, 0.1774573504924774, 0.07035811543464661, 0.21114518642425537, 0.2943339288234711, 0.24689266681671143, 0.13023970127105713, 0.1622855007648468, 0.18095166683197023, 0.12736454010009765, 0.2687165439128876, 0.11606188416481018, 0.07301830649375915, 0.20024213194847107, 0.1914510667324066, 0.2687165439128876, 0.14800957441329957, 0.07394496202468873, 0.2943339288234711, 0.3224632441997528, 0.10174304246902466, 0.24306625127792358, 0.06830078363418579, 0.2943339288234711, 0.10397533774375915, 0.09609824419021606, 0.2799139261245728, 0.30195106863975524, 0.24489012360572815, 0.2943339288234711, 0.2669981956481934, 0.19226622581481934, 0.23796676993370056, 0.12403554916381836, 0.07518824338912963, 0.24027977585792543, 0.2129749596118927, 0.19538822770118713, 0.07956457734107972, 0.021501171588897704, 0.2117869734764099, 0.1697279155254364, 0.13646966218948364, 0.04563586115837097, 0.13630935549736023, 0.2325596272945404, 0.27604236602783205, 0.0848526418209076, 0.12355437874794006, 0.08359813094139099, 0.07769800424575805, 0.19930691719055177, 0.017387312650680543, 0.25326520800590513, 0.14934924840927125, 0.05194996595382691, 0.22447794675827026, 0.050048929452896115, 0.1993529200553894, 0.10217436552047729, 0.11040244102478028, 0.13426822423934937, 0.24725902676582337, 0.0681905210018158, 0.22447794675827026, 0.2687165439128876, 0.1155886709690094, 0.2221108555793762, 0.29718998670578, 0.14218377470970153, 0.14780757427215577, 0.24868152141571045, 0.15012385249137877, 0.2957450091838837, 0.23570191264152526, 0.07039734721183777, 0.20243200063705444, 0.2450391411781311, 0.2610181331634521, 0.2943339288234711, 0.21168712973594667, 0.23322834372520446, 0.22336766123771667, 0.14155877828598024, 0.03834769129753113, 0.04359009861946106, 0.17089332342147828, 0.23494293093681334, 0.22307827472686767, 0.10335022807121277, 0.0901472270488739, 0.1275405168533325, 0.2651544511318207, 0.10194430351257325, 0.0823241114616394, 0.2671786665916443, 0.05228369235992432, 0.05673014521598816, 0.23628079891204834, 0.137525075674057, 0.13061318397521973, 0.24059501886367798, 0.1940344214439392, 0.18790475130081177, 0.0804525375366211, 0.1972542643547058, 0.13630935549736023, 0.04387810826301575, 0.12807478308677672, 0.16763864159584047, 0.27681214213371275, 0.16889337301254273, 0.10969911217689514, 0.1264793336391449, 0.2058880627155304, 0.13305887579917908, 0.21114518642425537, 0.11689011454582214, 0.13438963890075684, 0.25695239901542666, 0.1478006660938263, 0.10499387383460998, 0.18095166683197023, 0.07256574034690857, 0.2998500466346741, 0.0661353349685669, 0.15724987983703614, 0.16255935430526733, 0.10478451251983642, 0.16101192235946654, 0.2666783809661865, 0.20674362182617187, 0.2074684500694275, 0.2637452960014343, 0.2687165439128876, 0.2943339288234711, 0.10662007927894593, 0.15771008729934693, 0.2045162320137024, 0.13224366307258606, 0.2799139261245728, 0.15469701290130616, 0.05253932476043701, 0.08710484504699707, 0.15890161395072938, 0.2323542058467865, 0.14316514134407043, 0.16188710927963257, 0.2687165439128876, 0.05047763586044311, 0.16098361611366271, 0.2687165439128876, 0.11001648306846619, 0.03917397260665893, 0.012268495559692384, 0.16453346014022827, 0.21224514842033387, 0.22161090970039368, 0.14690780639648438, 0.10857421159744263, 0.08916388154029846, 0.2687165439128876, 0.20792827010154724, 0.22307827472686767, 0.14967355728149415, 0.25636852383613584, 0.13464637994766235, 0.10542458891868592, 0.06425246000289916, 0.0630178153514862, 0.19448707699775697, 0.2340227782726288, 0.2687165439128876, 0.24868152141571045, 0.21385310888290404, 0.25854902267456054, 0.1818527340888977, 0.05183754563331604, 0.28751025199890134, 0.12577881813049316, 0.05676699876785278, 0.1897931694984436, 0.17065418362617493, 0.182553231716156, 0.028694087266922, 0.041348469257354734, 0.25440205335617067, 0.07136039137840271, 0.032577937841415404, 0.12833439707756042, 0.11628175973892212, 0.16251060962677003, 0.2943339288234711, 0.2687165439128876, 0.2554169952869415, 0.2056412637233734, 0.16429876685142517, 0.18444325923919677, 0.13646966218948364, 0.11304506659507751, 0.04368300437927246, 0.13392633199691772, 0.29578139781951907, 0.16492363810539246, 0.16255935430526733, 0.18444325923919677, 0.2693161189556122, 0.1712073028087616, 0.20294120907783508, 0.19065025448799133, 0.17955344915390015, 0.2943339288234711, 0.18558666110038757, 0.20904414653778075, 0.13144407868385316, 0.1312577486038208, 0.20102456212043762, 0.22140125632286073, 0.2943339288234711, 0.2687165439128876, 0.2687165439128876, 0.05089426636695862, 0.2081002414226532, 0.09939942359924317, 0.17711467146873475, 0.2813377916812897, 0.1275405168533325, 0.044525742530822754, 0.30195106863975524, 0.04257720708847046, 0.14626285433769226, 0.21185248494148254, 0.026778030395507812, 0.21441231966018676, 0.1540526568889618, 0.03564638495445251, 0.13489956259727479, 0.19494746923446654, 0.1498823344707489, 0.1713216245174408, 0.2957450091838837, 0.1910253345966339, 0.047457408905029294, 0.2687165439128876, 0.0846400499343872, 0.24712690114974975, 0.21114518642425537, 0.22140125632286073, 0.18413348197937013, 0.17220293879508972, 0.08344451785087585, 0.10791766047477722, 0.2943339288234711, 0.11980748176574707, 0.17051582932472228, 0.29050675630569456, 0.07664370536804199, 0.14097718000411988, 0.1090990126132965, 0.20662015676498413, 0.1486163854598999, 0.24198567271232604, 0.22140125632286073, 0.06425246000289916, 0.06679590940475463, 0.08926873207092285, 0.20193864703178405, 0.165316379070282, 0.2243583619594574, 0.23749199509620667, 0.10233506560325623, 0.22188621163368225, 0.24299496412277222, 0.07004004716873169, 0.11663140654563904, 0.2263636529445648, 0.11847202777862549, 0.27681214213371275, 0.2652188241481781, 0.1246204912662506, 0.24221355319023133, 0.18734511733055115, 0.0993520438671112, 0.18324695229530336, 0.08314414024353027, 0.2687165439128876, 0.3097450017929077, 0.17438538670539855, 0.15710639357566833, 0.16711366772651673, 0.2575950860977173, 0.1641591429710388, 0.2686879813671112, 0.2435591459274292, 0.30788477063179015, 0.2328833520412445, 0.2943339288234711, 0.20351722836494446, 0.1339774787425995, 0.1500688910484314, 0.1537289261817932, 0.2687165439128876, 0.19867417812347413, 0.24798166155815124, 0.03163349628448486, 0.1450836956501007, 0.2454463243484497, 0.043240517377853394, 0.27681214213371275, 0.07196561098098755, 0.2328833520412445, 0.2183497130870819, 0.2235489785671234, 0.0924670159816742, 0.18189479112625123, 0.09548647999763489, 0.27252782583236695, 0.2687165439128876, 0.17735087275505065, 0.17673290371894837, 0.23877571821212767, 0.22149975895881652, 0.06357990503311158, 0.2586200892925262, 0.17438538670539855, 0.12340834140777587, 0.19728720784187317, 0.09735530018806457, 0.2269219696521759, 0.2687165439128876, 0.15445377230644225, 0.22122191190719603, 0.07904585003852845, 0.265926456451416, 0.10367761254310608, 0.07003435492515564, 0.20137229561805725, 0.1289765179157257, 0.111567223072052, 0.0603985071182251, 0.2092129111289978, 0.25832881331443786, 0.2558863937854767, 0.10555083751678467, 0.2173720419406891, 0.0378653347492218, 0.11084820032119751, 0.20214383006095887, 0.08438714146614075, 0.2687165439128876, 0.11780235171318054, 0.2687165439128876, 0.19899271726608275, 0.09077228307723999, 0.1399840772151947, 0.14687377214431763, 0.105167555809021, 0.04305406212806702, 0.1743747115135193, 0.09195072650909424, 0.24299496412277222, 0.10525094270706177, 0.2801799297332764, 0.09630033373832703, 0.29934104084968566, 0.22234933376312255, 0.2687165439128876, 0.29934104084968566, 0.11002368330955506, 0.13696004152297975, 0.2943339288234711, 0.2575950860977173, 0.10142452120780945, 0.18189479112625123, 0.3224554419517517, 0.17229073643684387, 0.0851608693599701, 0.19139978289604187, 0.25695239901542666, 0.1909913182258606, 0.3245618581771851, 0.17286092638969422, 0.2687165439128876, 0.12159132361412048, 0.23253061175346373, 0.24027977585792543, 0.06982409954071045, 0.09837161302566529, 0.08640698194503785, 0.24048447608947754, 0.13646966218948364, 0.08163856863975524, 0.2243583619594574, 0.2687165439128876, 0.2476891040802002, 0.25287011861801145, 0.15283629298210144, 0.18016136884689332, 0.27681214213371275, 0.1574077844619751, 0.09922032356262207, 0.18095166683197023, 0.09856984615325928, 0.1839461386203766, 0.07881054282188416, 0.08569443821907044, 0.1804223418235779, 0.2763674437999725, 0.20935619473457337, 0.15054181814193726, 0.10751851201057434, 0.05906050801277161, 0.2687165439128876, 0.2476891040802002, 0.23040683269500734, 0.10335022807121277, 0.07769800424575805]}\n","\n","Generating reports at 2021-11-22 15:35:29.586247\n"]}]},{"cell_type":"markdown","metadata":{"id":"kelwzaKBfxcg"},"source":["---"]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"olY--uGRV-uy","executionInfo":{"status":"ok","timestamp":1637596476870,"user_tz":-330,"elapsed":13,"user":{"displayName":"Sparsh Agarwal","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"13037694610922482904"}},"outputId":"9b61ad4c-ea52-4dd1-cf4b-530c15b29ecc"},"source":["!apt-get install tree\n","!tree -a --du -h . -L 3"],"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":[".\n","β”œβ”€β”€ [ 16K] .config\n","β”‚Β Β  β”œβ”€β”€ [ 7] active_config\n","β”‚Β Β  β”œβ”€β”€ [ 0] config_sentinel\n","β”‚Β Β  β”œβ”€β”€ [4.1K] configurations\n","β”‚Β Β  β”‚Β Β  └── [ 94] config_default\n","β”‚Β Β  β”œβ”€β”€ [ 5] gce\n","β”‚Β Β  β”œβ”€β”€ [ 3] .last_opt_in_prompt.yaml\n","β”‚Β Β  β”œβ”€β”€ [ 37] .last_survey_prompt.yaml\n","β”‚Β Β  β”œβ”€β”€ [ 135] .last_update_check.json\n","β”‚Β Β  └── [8.0K] logs\n","β”‚Β Β  └── [4.0K] 2021.11.18\n","β”œβ”€β”€ [1.9G] coveo_reclist\n","β”‚Β Β  └── [1.9G] coveo_sigir.zip\n","β”œβ”€β”€ [ 19M] coveo_sigir.zip\n","└── [ 12K] .reclist\n"," └── [8.0K] CoveoCartRecList\n"," └── [4.0K] P2VRecModel\n","\n"," 1.9G used in 8 directories, 9 files\n"]}]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"DvXBahfQfxch","executionInfo":{"status":"ok","timestamp":1637598908502,"user_tz":-330,"elapsed":2859,"user":{"displayName":"Sparsh Agarwal","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"13037694610922482904"}},"outputId":"46b34c4c-3c15-4846-965c-9cec16e7f277"},"source":["!pip install -q watermark\n","%reload_ext watermark\n","%watermark -a \"Sparsh A.\" -m -iv -u -t -d"],"execution_count":null,"outputs":[{"output_type":"stream","name":"stdout","text":["Author: Sparsh A.\n","\n","Last updated: 2021-11-22 16:35:08\n","\n","Compiler : GCC 7.5.0\n","OS : Linux\n","Release : 5.4.104+\n","Machine : x86_64\n","Processor : x86_64\n","CPU cores : 2\n","Architecture: 64bit\n","\n","json : 2.0.9\n","numpy : 1.21.2\n","IPython : 5.5.0\n","gensim : 4.0.1\n","matplotlib: 3.4.3\n","networkx : 2.6.3\n","requests : 2.22.0\n","\n"]}]},{"cell_type":"markdown","metadata":{"id":"5XlMYZkxfxci"},"source":["---"]},{"cell_type":"markdown","metadata":{"id":"4JwYKmJ5fxci"},"source":["**END**"]}]}