{"nbformat":4,"nbformat_minor":0,"metadata":{"accelerator":"GPU","colab":{"name":"2022-01-23-nicf.ipynb","provenance":[{"file_id":"https://github.com/recohut/nbs/blob/main/raw/T239645%20%7C%20Neural%20Interactive%20Collaborative%20Filtering.ipynb","timestamp":1644662653422}],"collapsed_sections":[],"toc_visible":true,"authorship_tag":"ABX9TyOmSeMlThFE6aQCq0mGQxxi"},"kernelspec":{"display_name":"Python 3","name":"python3"},"language_info":{"name":"python"}},"cells":[{"cell_type":"markdown","metadata":{"id":"j_iezICyf5Mw"},"source":["# Neural Interactive Collaborative Filtering"]},{"cell_type":"code","metadata":{"id":"X1j5UFHN0da9"},"source":["!pip install ipdb"],"execution_count":null,"outputs":[]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"vdCkSXqAzkJ6","executionInfo":{"elapsed":822,"status":"ok","timestamp":1634836205473,"user":{"displayName":"Sparsh Agarwal","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"13037694610922482904"},"user_tz":-330},"outputId":"9d662b24-fe49-42e8-a155-06c36190dbea"},"source":["!git clone https://github.com/guyulongcs/SIGIR2020_NICF.git"],"execution_count":null,"outputs":[{"name":"stdout","output_type":"stream","text":["Cloning into 'SIGIR2020_NICF'...\n","remote: Enumerating objects: 45, done.\u001b[K\n","remote: Counting objects: 100% (45/45), done.\u001b[K\n","remote: Compressing objects: 100% (35/35), done.\u001b[K\n","remote: Total 45 (delta 7), reused 41 (delta 3), pack-reused 0\u001b[K\n","Unpacking objects: 100% (45/45), done.\n"]}]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"Z5RoYOnq0pJV","executionInfo":{"elapsed":646,"status":"ok","timestamp":1634836206116,"user":{"displayName":"Sparsh Agarwal","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"13037694610922482904"},"user_tz":-330},"outputId":"f4c028e6-661d-4856-aebf-71ae42bada87"},"source":["%cd SIGIR2020_NICF/NICF_code"],"execution_count":null,"outputs":[{"name":"stdout","output_type":"stream","text":["/content/SIGIR2020_NICF/NICF_code\n"]}]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"Z3wu_uqMv6vT","executionInfo":{"elapsed":7,"status":"ok","timestamp":1634836449818,"user":{"displayName":"Sparsh Agarwal","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"13037694610922482904"},"user_tz":-330},"outputId":"27d41e80-5a65-430d-e6ea-0caa7fad5ee3"},"source":["!head data/data/env.dat"],"execution_count":null,"outputs":[{"name":"stdout","output_type":"stream","text":["1\t3:1\t415:3\t445:5\t329:4\t47:3\t158:5\t619:5\t157:4\t895:1\t539:4\t254:4\t480:3\t322:5\t732:1\t894:1\t418:4\t308:5\t103:5\t96:1\t469:1\t15:1\t141:4\t579:1\t83:5\t975:4\t924:4\t623:5\t404:3\t312:5\t13:4\t369:5\t460:1\t529:4\t522:1\t106:4\t24:4\t439:4\t608:3\t759:4\t330:5\t198:1\t333:3\t996:1\t159:5\t1024:5\t97:5\t162:4\t475:4\t814:1\t837:1\t222:5\t89:4\t35:5\t113:4\t657:1\t368:5\t248:5\t1078:3\t630:4\t438:1\t360:5\t528:3\t59:5\t592:5\t938:1\t9:4\t770:4\t847:1\t818:3\t1252:1\t556:1\t355:4\t147:2\t227:1\t459:1\t180:5\t167:4\t900:1\t374:5\t479:1\t343:3\t364:3\t289:4\t901:3\t614:5\t802:3\t77:2\t26:3\t304:1\t199:4\t562:5\t107:4\t1133:1\t45:4\t202:4\t53:5\t325:4\t917:3\t477:3\t23:5\t148:2\t457:4\t188:1\t363:4\t56:3\t708:5\t259:4\t348:3\t218:5\t183:4\t367:4\t48:5\t190:5\t526:1\t297:4\t306:5\t137:1\t358:5\t94:4\t63:4\t102:5\t1259:1\t309:3\t115:4\t7:3\t505:3\t587:4\t209:4\n","2\t4:2\t125:4\t132:2\t161:3\t308:3\t7:4\t325:2\t378:4\t450:4\t369:1\t257:4\t512:3\t162:4\t194:4\t528:3\t89:5\t265:3\t578:2\t435:4\t218:5\t574:4\t818:3\t823:5\t527:3\t210:4\t167:4\t865:4\t177:2\t330:5\t644:4\t50:4\t321:2\t769:5\t850:4\t78:5\t27:4\t461:5\t741:4\t349:3\t650:4\t433:4\t341:4\t1090:2\t363:3\t797:5\t288:4\t498:4\t493:5\t759:1\t561:3\t80:2\t591:4\t97:5\t184:5\t1120:2\t779:4\t366:3\t66:4\t60:4\t676:5\t409:4\t488:3\t511:4\t297:2\t243:4\t414:3\t657:4\t572:4\t255:5\t1246:5\t368:5\t617:4\t151:3\t158:5\t715:2\t96:4\t248:4\t419:4\t54:5\t1055:4\t53:4\t701:5\t356:4\t141:2\t339:5\t668:3\t119:4\t708:3\t550:4\t94:4\t198:3\t316:4\t192:4\t227:1\t258:4\t337:2\t589:1\t359:2\t135:4\t104:5\t143:4\t526:2\t683:4\t457:4\t1211:3\t178:2\t894:3\t888:5\t750:4\t173:4\t735:5\t446:5\t474:4\t98:2\t646:3\t405:2\t216:3\t477:4\t14:2\t436:3\t863:4\t1057:5\t286:4\t121:1\t268:4\t9:4\t39:2\t500:4\t10:4\t711:4\t292:4\t114:5\t84:4\t1139:5\t152:3\t1019:3\t719:5\t1050:4\t384:5\t466:4\t469:4\t245:4\t367:1\t889:4\t397:4\t168:2\t556:2\t208:3\t322:4\t1077:3\t935:4\t541:4\t432:5\t31:5\t240:5\t102:3\t201:5\t756:4\t352:4\t140:5\t234:5\t690:4\t206:3\t317:3\t1172:4\t228:1\t733:4\t358:5\t241:5\t232:3\t274:4\t658:5\t529:3\t278:5\t615:4\t13:2\t112:5\t853:4\t798:4\t310:4\t665:4\t611:4\t182:1\t1093:4\t329:3\t480:5\t209:5\t424:4\t47:4\t388:4\t65:5\t25:4\t1144:3\t946:3\t1078:3\t655:5\t775:2\t443:3\t795:3\t23:1\t503:5\t199:4\t948:4\t24:2\t634:4\t588:4\t962:2\t597:4\t222:4\t613:4\t196:5\t1620:5\t383:4\t30:3\t303:3\t197:3\t391:3\t200:5\t630:4\t696:5\t755:3\t472:4\t401:3\t204:4\t299:2\t1035:4\t516:4\t318:4\t33:4\t645:2\t217:5\t1101:3\t34:4\t1017:5\t404:1\t159:2\t835:4\t819:3\n","3\t6:4\t112:4\t152:3\t22:3\t53:4\t85:4\t654:3\t351:4\t504:3\t530:2\t390:5\t203:4\t531:4\t1003:4\t51:4\t104:3\t32:4\t545:4\t8:4\t662:4\t466:3\t823:3\t162:4\t92:5\t23:4\t113:4\t100:5\t78:5\t114:3\t782:3\t290:4\t924:5\t808:3\t630:5\t936:4\t192:4\t310:5\t274:4\t568:3\t472:4\t226:4\t18:3\t180:3\t362:3\t1152:4\t186:5\t507:3\t341:3\t481:3\t539:4\t121:4\t257:3\t410:3\t175:5\t239:4\t658:5\t35:5\t96:3\t391:4\t259:5\t261:5\t95:4\t201:5\t25:5\t157:5\t11:4\t221:3\t24:4\t321:4\t109:4\t434:4\t754:5\t37:5\t190:5\t308:4\t623:5\t273:4\t409:4\t446:3\t726:5\t529:4\t57:5\t368:5\t1050:3\t320:5\t222:3\t242:4\t343:5\t58:5\t97:5\t562:4\t34:5\t54:4\t407:4\t138:3\t33:5\t7:4\t245:5\t696:2\t136:5\t465:4\t101:5\t126:5\t348:5\t281:5\t63:5\t276:4\t102:5\t358:5\t404:4\t67:5\t26:3\t303:3\t553:3\t974:4\t248:4\t503:4\t241:5\t360:5\t784:3\t365:3\t90:3\t111:3\t294:3\t648:4\t55:3\t695:5\n","4\t7:2\t60:3\t267:4\t390:5\t190:5\t500:4\t183:4\t30:5\t230:4\t366:4\t192:1\t754:5\t300:4\t162:4\t139:5\t539:5\t402:5\t615:2\t39:5\t155:4\t525:2\t232:4\t356:5\t218:5\t512:3\t298:5\t747:2\t121:2\t360:5\t817:1\t100:1\t535:3\t1124:5\t53:4\t809:5\t1207:5\t503:5\t355:4\t358:5\t186:5\t173:2\t492:3\t409:3\t78:2\t341:1\t210:5\t404:3\t257:5\t48:4\t241:5\t250:4\t379:3\t103:3\t217:5\t142:4\t146:5\t95:5\t102:5\t161:3\t32:3\t598:4\t661:3\t433:5\t414:5\t874:5\t149:5\t497:5\t126:5\t312:5\t112:5\t790:4\t77:3\t328:3\t648:4\t171:5\t407:2\t393:3\t802:3\t733:4\t157:4\t536:3\t362:5\t731:5\t212:3\t2:4\t863:5\t694:3\t50:5\t491:4\t141:4\t291:5\t243:5\n","5\t8:5\t340:2\t321:4\t208:3\t619:5\t167:4\t358:4\t257:5\t507:4\t591:3\t175:5\t348:4\t236:5\t202:4\t96:4\t477:4\t78:4\t318:4\t190:5\t698:3\t322:5\t289:2\t658:5\t648:4\t365:4\t154:3\t141:5\t495:4\t27:4\t395:2\t694:4\t548:5\t239:5\t486:4\t669:2\t240:5\t100:5\t218:4\t157:5\t281:2\t32:5\t142:3\t99:4\t352:3\t367:4\t562:4\t357:3\t217:3\t434:5\t409:5\t609:3\t88:3\t730:5\t298:5\t180:5\t653:4\t390:4\t50:4\t253:4\t98:2\t69:4\t205:3\t891:5\t111:5\t55:3\t882:4\t177:4\t483:5\t103:5\t553:3\t406:4\t13:4\t1456:3\t695:5\t222:3\t480:3\t1302:3\t489:5\t25:5\t731:1\t419:4\t929:3\t67:5\t432:4\t30:4\t868:5\t404:5\t319:4\t232:3\t101:5\t368:3\t82:5\t114:4\t262:3\t48:4\t1025:5\t201:5\n","6\t9:3\t67:5\t141:2\t121:4\t196:2\t285:4\t310:3\t497:4\t68:4\t175:5\t157:3\t230:1\t358:5\t237:5\t360:4\t170:4\t342:1\t509:5\t768:5\t308:4\t185:3\t507:4\t69:1\t548:1\t330:3\t94:5\t55:3\t217:1\t547:3\t167:5\t134:4\t83:2\t2:4\t348:3\t902:3\t278:5\t950:3\t11:2\t1010:1\t1067:3\t916:4\t678:4\t86:3\t263:3\t154:4\t731:2\t104:4\t495:3\t387:2\t241:5\t990:5\t474:2\t352:4\t118:1\t383:3\t466:4\t602:3\t89:4\t558:3\t1084:4\t186:4\t695:2\t318:2\t539:4\t248:2\t50:3\t102:3\t115:1\t754:5\t483:3\t261:5\t347:3\t406:3\t502:3\t140:3\t158:4\t131:3\t671:4\t1345:4\t432:4\t694:3\t361:4\t691:5\t734:5\t369:3\t210:4\t289:4\t137:3\t45:3\t31:3\t58:4\t32:4\t1057:5\t658:5\t78:2\t257:4\t1112:4\t570:4\t103:3\t863:4\t298:5\t681:4\t670:4\t114:3\t176:3\t73:4\t304:3\t34:2\t368:4\t1444:2\t126:3\t403:1\t222:3\t316:3\t803:4\t44:3\t240:5\t404:3\t572:4\t857:4\t113:3\t290:4\t587:4\t40:3\t624:4\t245:2\t112:4\t809:1\t1017:4\t79:5\t424:4\t397:2\t786:5\t119:3\t523:5\t1429:3\t53:4\t276:4\t471:3\t374:3\t180:3\t262:3\t530:2\t326:5\t1109:2\t735:4\t200:5\t493:1\t350:3\t648:3\t1289:3\t54:4\t72:4\t303:3\t171:5\t57:3\t480:2\t23:2\t162:4\t492:4\t588:3\t25:5\t653:3\t802:3\t93:5\t1115:4\t236:4\t488:3\t255:3\t277:5\t181:5\t1055:2\t218:3\t755:4\t187:3\t513:5\t355:4\t246:2\t211:5\t148:2\t279:2\t251:4\t639:4\t22:5\t781:4\t274:2\t473:3\t312:4\t250:3\t6:5\t90:2\t201:3\t861:2\t356:4\t10:4\t650:3\t845:3\t433:3\t448:3\t327:3\t300:5\t331:3\t183:2\t575:3\t736:2\t292:3\t551:3\t1146:3\t819:4\t943:5\t412:3\t13:2\t808:5\t111:2\t192:3\t1:5\t190:5\t321:4\t322:3\t477:3\t242:3\t534:5\n","7\t10:3\t134:5\t32:5\t510:4\t405:2\t158:2\t192:3\t600:4\t95:4\t455:5\t187:4\t243:3\t736:5\t241:4\t57:2\t90:4\t96:2\t596:4\t922:3\t343:5\t572:4\t531:1\t970:3\t949:4\t27:2\t356:5\t461:4\t261:5\t751:5\t94:4\t1070:4\t174:1\t89:3\t289:4\t562:5\t92:4\t318:3\t568:4\t51:4\t59:4\t352:3\t726:3\t221:4\t424:3\t921:5\t104:3\t126:5\t486:5\t547:5\t755:4\t472:2\t980:4\t937:5\t141:2\t39:4\t69:3\t119:5\t290:2\t542:4\t553:3\t242:5\t1077:1\t276:4\t257:4\t688:4\t274:5\t113:4\t612:5\t139:4\t33:3\t175:5\t63:3\t1295:2\t330:5\t406:4\t97:4\t58:3\t22:4\t575:5\t874:5\t217:4\t889:4\t747:3\t248:3\t360:4\t82:3\t121:2\t74:3\t539:5\t407:2\t41:4\t237:3\t476:4\t492:4\t548:4\t201:4\t696:2\t1326:4\t582:3\t50:5\t79:4\t849:4\t107:3\t114:3\t730:4\t72:5\t409:3\t136:4\t358:4\t231:4\t278:4\t31:3\t428:3\t1152:3\t8:1\t501:4\t268:4\t138:3\t252:3\t296:5\t338:3\t695:4\t768:4\t619:4\t724:5\t906:4\t507:3\t233:5\t340:1\t754:4\t111:5\t149:5\t227:2\t240:4\t102:4\t327:4\t226:4\t593:4\t433:2\t512:2\t308:4\t68:4\t255:4\t18:4\t186:4\t782:2\t181:4\t1168:2\t67:4\t623:4\t131:4\t137:1\t639:4\t35:4\t109:5\t146:4\t298:4\t2:4\t692:2\t310:4\t368:4\t244:3\t532:1\t362:5\t157:3\t322:5\t140:3\t924:4\t672:3\t222:4\t218:4\t210:2\t731:4\t658:4\t983:5\t538:4\t112:3\t897:5\t11:2\t190:5\t285:3\t25:4\t323:2\t1:4\t154:3\t746:2\t101:5\t300:5\t429:4\t6:5\t857:4\t624:4\t752:2\t503:4\t1003:3\t334:4\t228:3\t845:2\t381:4\t513:3\t100:4\t903:4\t167:5\t84:2\t357:4\t390:4\t78:2\t716:2\t1139:4\t868:5\t180:3\n","8\t11:2\t92:4\t93:3\t107:3\t204:4\t363:4\t298:4\t88:4\t209:1\t438:2\t357:5\t10:2\t2:3\t575:4\t480:5\t61:2\t101:5\t84:3\t613:4\t158:5\t809:4\t614:4\t359:2\t845:4\t599:1\t206:3\t155:3\t48:4\t948:3\t143:3\t472:3\t741:3\t119:4\t152:3\t914:2\t98:2\t317:4\t782:4\t519:5\t103:4\t715:1\t658:4\t873:2\t390:5\t218:5\t1057:4\t222:4\t96:1\t154:4\t345:1\t1144:3\t381:4\t50:4\t135:4\t478:1\t257:4\t322:5\t314:2\t1147:2\t250:1\t453:3\t493:4\t404:4\t94:4\t527:1\t182:4\t24:2\t66:3\t444:3\t798:4\t356:4\t243:4\t201:5\t568:4\t303:3\t312:5\t125:3\t572:4\t383:2\t1109:4\t992:3\t1055:4\t254:1\t553:4\t365:2\t466:4\t290:3\t58:3\t395:2\t53:4\t60:4\t1238:3\t99:3\t645:3\t151:5\t234:3\t109:3\t167:4\t300:2\t77:3\t961:2\t183:3\t368:5\t615:1\t134:4\t541:4\t734:2\t400:5\t338:4\t795:3\t503:4\t306:5\t318:3\t446:2\t475:2\t142:4\t355:2\t351:3\t217:5\t764:3\t401:3\t47:1\t198:1\t424:3\t432:3\t571:4\t358:5\t68:4\t25:2\t978:4\t315:3\t530:4\t324:2\t473:3\t330:5\t102:4\t532:2\t129:2\t195:3\t601:4\t13:5\t470:3\t694:5\t113:5\t32:4\t935:2\t630:4\t83:4\t211:3\t321:2\t286:4\t708:3\t857:3\t528:2\t54:4\t502:3\t202:3\t17:2\t896:3\t297:3\t175:4\t137:3\t241:4\t276:4\t670:4\t574:5\t510:4\t445:2\t668:2\t889:5\t279:2\t605:1\t294:3\t1177:3\t723:5\t611:4\t23:3\t118:2\t319:4\t190:4\t433:4\t1009:2\t644:3\t406:4\t310:4\t348:4\t6:4\t823:4\t192:4\t232:4\t588:3\t1617:4\t1207:3\t270:1\t813:2\t200:4\t197:1\t483:5\t159:3\t139:3\t539:4\t261:4\t9:3\t162:5\t436:2\t248:3\t78:3\t339:2\t691:3\t818:2\t409:4\t550:3\t552:4\t26:4\t161:2\t416:1\t461:4\t666:3\t1010:4\t210:4\t90:4\t141:4\t591:3\t513:4\t696:5\t255:5\t755:5\t69:2\t245:3\t104:5\t1035:1\t240:4\n","9\t12:5\t97:4\t124:5\t200:4\t57:4\t78:2\t61:5\t222:5\t481:4\t241:4\t208:4\t154:4\t289:5\t557:5\t470:3\t592:5\t89:4\t762:5\t147:3\t776:5\t384:3\t277:4\t158:4\t863:4\t221:4\t210:4\t891:5\t104:5\t758:2\t946:3\t694:5\t432:3\t419:5\t977:5\t285:2\t492:5\t50:3\t1016:5\t8:5\t131:5\t156:3\t74:5\t151:3\t51:3\t433:2\t386:4\t402:3\t54:4\t183:3\t136:5\t217:2\t103:4\t813:2\t125:3\t30:3\t579:5\t255:4\t194:1\t195:4\t143:4\t230:5\t332:1\t60:4\t137:3\t218:4\t1119:3\t29:4\t567:1\t68:2\t988:3\t358:4\t692:5\t750:5\t555:4\t531:3\t77:1\t793:2\t1207:2\t1269:3\t844:4\t341:3\t902:2\t400:4\t368:4\t15:2\t936:2\t880:1\t361:5\t283:2\t198:4\t346:5\t173:3\t25:4\t901:3\t380:5\t113:4\t1230:5\t337:1\t528:2\t34:4\t534:5\t948:1\t457:2\t87:3\t140:4\t892:4\t987:4\t671:5\t795:4\t708:3\t1164:3\t295:5\t527:4\t787:3\t367:5\t587:3\t26:1\t190:4\t292:4\t389:1\t519:1\t90:4\t611:4\t58:4\t530:4\t196:1\t1407:4\t532:3\t529:4\t818:5\t28:3\t378:5\t1422:5\t553:4\t308:5\t338:4\t657:2\t279:3\t973:5\t513:1\t523:5\t122:5\t686:3\t1059:5\t425:3\t356:4\t839:5\t312:4\t53:3\t84:5\t1390:5\t779:4\t1035:4\t607:2\t453:5\t1023:5\t94:4\t23:3\t167:4\t404:3\t134:4\t1102:3\t581:4\t434:5\t450:5\t615:2\t263:1\t339:3\t982:3\t1120:2\t905:3\t166:2\t1166:1\t501:2\t343:4\t493:5\t817:5\t232:3\t679:4\t207:5\t14:4\t482:4\t746:5\t956:5\t533:4\t682:4\t174:4\t162:4\t650:5\t658:4\t480:5\t27:5\t1406:5\t1339:5\t326:5\t832:3\t348:5\t101:5\t246:3\t102:4\t1193:5\t175:5\t436:3\t149:4\t1534:2\t605:4\t374:3\t631:5\t311:4\t424:5\t1050:3\t236:4\t405:5\t365:5\t258:3\t9:5\t1105:3\t608:3\t325:4\t393:4\t752:4\t620:4\t48:5\t1000:5\t1055:4\t655:3\t300:5\t366:2\t890:3\t248:3\t180:4\t93:5\t1068:4\t135:5\t355:5\t349:5\t591:4\t409:4\t141:2\t11:3\t717:4\t678:5\t416:4\t666:5\t900:3\t1049:2\t168:3\t926:5\t735:4\t66:4\t954:2\t206:1\t632:4\t278:3\t859:3\t321:4\t237:3\t159:1\t306:4\t18:2\t862:5\t179:4\t40:3\t406:3\t960:4\t345:5\t181:4\t234:2\t782:3\t797:5\t182:4\t853:5\t745:5\t322:4\t257:4\t552:4\t294:3\t1057:2\t245:3\t843:4\t962:4\t1224:5\t414:3\t227:5\t1139:4\t823:4\t550:4\t83:5\n","10\t13:5\t161:5\t201:5\t41:5\t103:5\t359:5\t230:5\t336:4\t434:5\t187:5\t299:3\t614:2\t47:4\t438:4\t294:4\t254:5\t550:4\t435:2\t7:5\t451:4\t777:2\t77:5\t255:5\t465:3\t444:4\t355:5\t290:4\t755:4\t524:4\t210:4\t212:5\t404:5\t241:5\t87:4\t57:5\t232:5\t15:4\t250:4\t726:4\t96:4\t875:4\t943:3\t104:3\t544:3\t699:5\t69:4\t322:5\t720:5\t102:5\t98:4\t769:3\t782:4\t147:4\t97:5\t1114:4\t888:4\t54:4\t842:4\t979:4\t148:4\t345:3\t28:4\t770:4\t632:4\t927:4\t257:5\t390:4\t245:4\t1191:3\t573:2\t578:4\t143:4\t774:4\t417:4\t183:5\t902:3\t348:5\t656:4\t633:2\t696:5\t358:5\t823:2\t453:5\t220:4\t466:3\t279:4\t710:3\t862:4\t652:3\t51:5\t439:3\t119:4\t70:3\t158:4\t758:4\t34:4\t739:3\t217:4\t553:5\t160:5\t878:5\t123:4\t529:4\t436:4\t136:4\t391:4\t481:5\t318:4\t55:4\t25:5\t59:5\t906:3\t912:3\t179:4\t26:3\t705:4\t9:4\t1045:5\t1266:3\t648:4\t508:3\t192:5\t278:5\t146:4\t759:4\t266:3\t472:5\t567:3\t21:5\t537:2\t493:4\t218:5\t113:5\t80:4\t32:5\t332:5\t657:3\t974:4\t446:4\t1024:5\t206:2\t209:5\t772:4\t302:3\t821:4\t233:4\t1258:4\t658:4\t202:5\t686:4\t132:3\t195:4\t532:4\t616:3\t58:5\t219:4\t141:5\t182:2\t100:5\t171:2\t457:4\t33:4\t175:5\t24:4\t101:5\t115:5\t176:3\t530:4\t461:4\t300:4\t1035:5\t155:5\t297:5\t268:3\t670:4\t920:3\t180:5\t159:3\t137:3\t27:5\t145:3\t341:4\t310:4\t30:4\t669:3\t364:4\t365:4\t118:3\t809:3\t157:5\t443:3\t163:4\t284:5\t273:5\t459:5\t475:5\t503:4\t376:4\t574:5\t162:5\t312:5\t413:4\t747:4\t416:3\t248:5\t61:5\t636:5\t166:3\t409:4\t1105:2\t558:3\t197:2\t8:4\t832:3\t514:4\t562:4\n"]}]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"USDF36ZN0mHu","executionInfo":{"elapsed":8,"status":"ok","timestamp":1634836206117,"user":{"displayName":"Sparsh Agarwal","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"13037694610922482904"},"user_tz":-330},"outputId":"7dfb109a-b77e-417d-e664-96bf4cd61332"},"source":["%tensorflow_version 1.x"],"execution_count":null,"outputs":[{"name":"stdout","output_type":"stream","text":["TensorFlow 1.x selected.\n"]}]},{"cell_type":"code","metadata":{"colab":{"base_uri":"https://localhost:8080/"},"id":"qOyGG3QizpVa","executionInfo":{"elapsed":9,"status":"ok","timestamp":1634836349342,"user":{"displayName":"Sparsh Agarwal","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"13037694610922482904"},"user_tz":-330},"outputId":"731c140d-6da1-4a1d-f07f-616677311957"},"source":["%%writefile run.sh\n","\n","python ./launch.py -data_path ./data/data/ -environment env -T 40 -ST [5,10,20,40] -agent Train -FA FA -latent_factor 50 \\\n","-learning_rate 0.001 -training_epoch 10 -seed 145 -gpu_no 0 -inner_epoch 50 -rnn_layer 2 -gamma 0.8 -batch 50 -restore_model False"],"execution_count":null,"outputs":[{"name":"stdout","output_type":"stream","text":["Overwriting run.sh\n"]}]},{"cell_type":"code","metadata":{"colab":{"background_save":true,"base_uri":"https://localhost:8080/"},"id":"OPJKaTAVzpRz","executionInfo":{"elapsed":74579,"status":"ok","timestamp":1634836424365,"user":{"displayName":"Sparsh Agarwal","photoUrl":"https://lh3.googleusercontent.com/a/default-user=s64","userId":"13037694610922482904"},"user_tz":-330},"outputId":"0d4bc991-21c0-4781-96ff-a1a5223c0f49"},"source":["#collapse-hide\n","!sh run.sh"],"execution_count":null,"outputs":[{"name":"stdout","output_type":"stream","text":["\u001b[1;30;43mStreaming output truncated to the last 5000 lines.\u001b[0m\n","| 40recall | 0.0772 |\n","| 5precision | 2.38 |\n","| 5recall | 0.0132 |\n","| epoch | 760 |\n","| loss | 0.178 |\n","| type | training |\n","--------------------------\n","761\n","5 precision: 2.36\n","10 precision: 4.16\n","20 precision: 7.86\n","40 precision: 14.76\n","--------------------------\n","| 10precision | 4.16 |\n","| 10recall | 0.0214 |\n","| 20precision | 7.86 |\n","| 20recall | 0.0398 |\n","| 40precision | 14.8 |\n","| 40recall | 0.0732 |\n","| 5precision | 2.36 |\n","| 5recall | 0.0122 |\n","| epoch | 761 |\n","| loss | 0.1647 |\n","| type | training |\n","--------------------------\n","762\n","5 precision: 2.58\n","10 precision: 4.88\n","20 precision: 9.06\n","40 precision: 15.82\n","--------------------------\n","| 10precision | 4.88 |\n","| 10recall | 0.0284 |\n","| 20precision | 9.06 |\n","| 20recall | 0.0522 |\n","| 40precision | 15.8 |\n","| 40recall | 0.0881 |\n","| 5precision | 2.58 |\n","| 5recall | 0.0145 |\n","| epoch | 762 |\n","| loss | 0.1675 |\n","| type | training |\n","--------------------------\n","763\n","5 precision: 2.56\n","10 precision: 4.74\n","20 precision: 8.56\n","40 precision: 15.56\n","--------------------------\n","| 10precision | 4.74 |\n","| 10recall | 0.026 |\n","| 20precision | 8.56 |\n","| 20recall | 0.0459 |\n","| 40precision | 15.6 |\n","| 40recall | 0.0828 |\n","| 5precision | 2.56 |\n","| 5recall | 0.0143 |\n","| epoch | 763 |\n","| loss | 0.1586 |\n","| type | training |\n","--------------------------\n","764\n","5 precision: 2.26\n","10 precision: 4.36\n","20 precision: 7.86\n","40 precision: 14.22\n","--------------------------\n","| 10precision | 4.36 |\n","| 10recall | 0.0252 |\n","| 20precision | 7.86 |\n","| 20recall | 0.0459 |\n","| 40precision | 14.2 |\n","| 40recall | 0.0825 |\n","| 5precision | 2.26 |\n","| 5recall | 0.0134 |\n","| epoch | 764 |\n","| loss | 0.1789 |\n","| type | training |\n","--------------------------\n","765\n","5 precision: 2.02\n","10 precision: 4.28\n","20 precision: 8.0\n","40 precision: 14.62\n","--------------------------\n","| 10precision | 4.28 |\n","| 10recall | 0.0228 |\n","| 20precision | 8 |\n","| 20recall | 0.0436 |\n","| 40precision | 14.6 |\n","| 40recall | 0.0789 |\n","| 5precision | 2.02 |\n","| 5recall | 0.0108 |\n","| epoch | 765 |\n","| loss | 0.169 |\n","| type | training |\n","--------------------------\n","766\n","5 precision: 2.58\n","10 precision: 4.68\n","20 precision: 7.96\n","40 precision: 15.1\n","--------------------------\n","| 10precision | 4.68 |\n","| 10recall | 0.0273 |\n","| 20precision | 7.96 |\n","| 20recall | 0.0466 |\n","| 40precision | 15.1 |\n","| 40recall | 0.087 |\n","| 5precision | 2.58 |\n","| 5recall | 0.0153 |\n","| epoch | 766 |\n","| loss | 0.1627 |\n","| type | training |\n","--------------------------\n","767\n","5 precision: 2.56\n","10 precision: 4.88\n","20 precision: 8.64\n","40 precision: 15.24\n","--------------------------\n","| 10precision | 4.88 |\n","| 10recall | 0.0268 |\n","| 20precision | 8.64 |\n","| 20recall | 0.0477 |\n","| 40precision | 15.2 |\n","| 40recall | 0.083 |\n","| 5precision | 2.56 |\n","| 5recall | 0.014 |\n","| epoch | 767 |\n","| loss | 0.1658 |\n","| type | training |\n","--------------------------\n","768\n","5 precision: 2.5\n","10 precision: 4.72\n","20 precision: 8.74\n","40 precision: 15.42\n","--------------------------\n","| 10precision | 4.72 |\n","| 10recall | 0.025 |\n","| 20precision | 8.74 |\n","| 20recall | 0.0438 |\n","| 40precision | 15.4 |\n","| 40recall | 0.0757 |\n","| 5precision | 2.5 |\n","| 5recall | 0.0131 |\n","| epoch | 768 |\n","| loss | 0.1912 |\n","| type | training |\n","--------------------------\n","769\n","5 precision: 2.42\n","10 precision: 4.36\n","20 precision: 7.9\n","40 precision: 14.26\n","--------------------------\n","| 10precision | 4.36 |\n","| 10recall | 0.0278 |\n","| 20precision | 7.9 |\n","| 20recall | 0.0498 |\n","| 40precision | 14.3 |\n","| 40recall | 0.0882 |\n","| 5precision | 2.42 |\n","| 5recall | 0.0153 |\n","| epoch | 769 |\n","| loss | 0.1785 |\n","| type | training |\n","--------------------------\n","770\n","5 precision: 2.62\n","10 precision: 4.58\n","20 precision: 8.52\n","40 precision: 15.22\n","--------------------------\n","| 10precision | 4.58 |\n","| 10recall | 0.0247 |\n","| 20precision | 8.52 |\n","| 20recall | 0.0468 |\n","| 40precision | 15.2 |\n","| 40recall | 0.0811 |\n","| 5precision | 2.62 |\n","| 5recall | 0.0144 |\n","| epoch | 770 |\n","| loss | 0.2177 |\n","| type | training |\n","--------------------------\n","771\n","5 precision: 2.52\n","10 precision: 4.66\n","20 precision: 8.52\n","40 precision: 14.78\n","--------------------------\n","| 10precision | 4.66 |\n","| 10recall | 0.0248 |\n","| 20precision | 8.52 |\n","| 20recall | 0.0437 |\n","| 40precision | 14.8 |\n","| 40recall | 0.0757 |\n","| 5precision | 2.52 |\n","| 5recall | 0.0137 |\n","| epoch | 771 |\n","| loss | 0.1864 |\n","| type | training |\n","--------------------------\n","772\n","5 precision: 2.5\n","10 precision: 4.44\n","20 precision: 7.94\n","40 precision: 13.94\n","--------------------------\n","| 10precision | 4.44 |\n","| 10recall | 0.0248 |\n","| 20precision | 7.94 |\n","| 20recall | 0.0435 |\n","| 40precision | 13.9 |\n","| 40recall | 0.0758 |\n","| 5precision | 2.5 |\n","| 5recall | 0.014 |\n","| epoch | 772 |\n","| loss | 0.1929 |\n","| type | training |\n","--------------------------\n","773\n","5 precision: 2.06\n","10 precision: 4.08\n","20 precision: 7.42\n","40 precision: 13.54\n","--------------------------\n","| 10precision | 4.08 |\n","| 10recall | 0.0282 |\n","| 20precision | 7.42 |\n","| 20recall | 0.0508 |\n","| 40precision | 13.5 |\n","| 40recall | 0.0915 |\n","| 5precision | 2.06 |\n","| 5recall | 0.0138 |\n","| epoch | 773 |\n","| loss | 0.1863 |\n","| type | training |\n","--------------------------\n","774\n","5 precision: 2.2\n","10 precision: 4.06\n","20 precision: 7.06\n","40 precision: 12.74\n","--------------------------\n","| 10precision | 4.06 |\n","| 10recall | 0.0263 |\n","| 20precision | 7.06 |\n","| 20recall | 0.0459 |\n","| 40precision | 12.7 |\n","| 40recall | 0.0823 |\n","| 5precision | 2.2 |\n","| 5recall | 0.0142 |\n","| epoch | 774 |\n","| loss | 0.1922 |\n","| type | training |\n","--------------------------\n","775\n","5 precision: 2.42\n","10 precision: 4.38\n","20 precision: 8.16\n","40 precision: 14.58\n","--------------------------\n","| 10precision | 4.38 |\n","| 10recall | 0.0247 |\n","| 20precision | 8.16 |\n","| 20recall | 0.0457 |\n","| 40precision | 14.6 |\n","| 40recall | 0.0811 |\n","| 5precision | 2.42 |\n","| 5recall | 0.0144 |\n","| epoch | 775 |\n","| loss | 0.1432 |\n","| type | training |\n","--------------------------\n","776\n","5 precision: 2.8\n","10 precision: 5.02\n","20 precision: 8.84\n","40 precision: 15.52\n","--------------------------\n","| 10precision | 5.02 |\n","| 10recall | 0.0267 |\n","| 20precision | 8.84 |\n","| 20recall | 0.0457 |\n","| 40precision | 15.5 |\n","| 40recall | 0.0786 |\n","| 5precision | 2.8 |\n","| 5recall | 0.0156 |\n","| epoch | 776 |\n","| loss | 0.1489 |\n","| type | training |\n","--------------------------\n","777\n","5 precision: 2.46\n","10 precision: 4.66\n","20 precision: 8.26\n","40 precision: 14.76\n","--------------------------\n","| 10precision | 4.66 |\n","| 10recall | 0.0306 |\n","| 20precision | 8.26 |\n","| 20recall | 0.0524 |\n","| 40precision | 14.8 |\n","| 40recall | 0.0927 |\n","| 5precision | 2.46 |\n","| 5recall | 0.0163 |\n","| epoch | 777 |\n","| loss | 0.1542 |\n","| type | training |\n","--------------------------\n","778\n","5 precision: 2.2\n","10 precision: 4.22\n","20 precision: 7.92\n","40 precision: 14.56\n","--------------------------\n","| 10precision | 4.22 |\n","| 10recall | 0.0253 |\n","| 20precision | 7.92 |\n","| 20recall | 0.0465 |\n","| 40precision | 14.6 |\n","| 40recall | 0.0844 |\n","| 5precision | 2.2 |\n","| 5recall | 0.0137 |\n","| epoch | 778 |\n","| loss | 0.1666 |\n","| type | training |\n","--------------------------\n","779\n","5 precision: 2.54\n","10 precision: 4.34\n","20 precision: 8.02\n","40 precision: 14.76\n","--------------------------\n","| 10precision | 4.34 |\n","| 10recall | 0.0241 |\n","| 20precision | 8.02 |\n","| 20recall | 0.043 |\n","| 40precision | 14.8 |\n","| 40recall | 0.078 |\n","| 5precision | 2.54 |\n","| 5recall | 0.0148 |\n","| epoch | 779 |\n","| loss | 0.1552 |\n","| type | training |\n","--------------------------\n","780\n","5 precision: 2.54\n","10 precision: 4.3\n","20 precision: 7.58\n","40 precision: 13.62\n","--------------------------\n","| 10precision | 4.3 |\n","| 10recall | 0.0261 |\n","| 20precision | 7.58 |\n","| 20recall | 0.0449 |\n","| 40precision | 13.6 |\n","| 40recall | 0.0794 |\n","| 5precision | 2.54 |\n","| 5recall | 0.0159 |\n","| epoch | 780 |\n","| loss | 0.1574 |\n","| type | training |\n","--------------------------\n","781\n","5 precision: 2.5\n","10 precision: 4.56\n","20 precision: 8.16\n","40 precision: 14.58\n","--------------------------\n","| 10precision | 4.56 |\n","| 10recall | 0.0257 |\n","| 20precision | 8.16 |\n","| 20recall | 0.0451 |\n","| 40precision | 14.6 |\n","| 40recall | 0.0798 |\n","| 5precision | 2.5 |\n","| 5recall | 0.0145 |\n","| epoch | 781 |\n","| loss | 0.1778 |\n","| type | training |\n","--------------------------\n","782\n","5 precision: 2.54\n","10 precision: 4.92\n","20 precision: 8.84\n","40 precision: 15.18\n","--------------------------\n","| 10precision | 4.92 |\n","| 10recall | 0.0316 |\n","| 20precision | 8.84 |\n","| 20recall | 0.0554 |\n","| 40precision | 15.2 |\n","| 40recall | 0.0953 |\n","| 5precision | 2.54 |\n","| 5recall | 0.0166 |\n","| epoch | 782 |\n","| loss | 0.1609 |\n","| type | training |\n","--------------------------\n","783\n","5 precision: 2.64\n","10 precision: 5.12\n","20 precision: 9.2\n","40 precision: 15.94\n","--------------------------\n","| 10precision | 5.12 |\n","| 10recall | 0.0258 |\n","| 20precision | 9.2 |\n","| 20recall | 0.0462 |\n","| 40precision | 15.9 |\n","| 40recall | 0.0803 |\n","| 5precision | 2.64 |\n","| 5recall | 0.0134 |\n","| epoch | 783 |\n","| loss | 0.1823 |\n","| type | training |\n","--------------------------\n","784\n","5 precision: 2.3\n","10 precision: 4.34\n","20 precision: 7.92\n","40 precision: 13.62\n","--------------------------\n","| 10precision | 4.34 |\n","| 10recall | 0.0287 |\n","| 20precision | 7.92 |\n","| 20recall | 0.0526 |\n","| 40precision | 13.6 |\n","| 40recall | 0.0872 |\n","| 5precision | 2.3 |\n","| 5recall | 0.0156 |\n","| epoch | 784 |\n","| loss | 0.1696 |\n","| type | training |\n","--------------------------\n","785\n","5 precision: 2.74\n","10 precision: 4.84\n","20 precision: 8.8\n","40 precision: 15.78\n","--------------------------\n","| 10precision | 4.84 |\n","| 10recall | 0.0257 |\n","| 20precision | 8.8 |\n","| 20recall | 0.0472 |\n","| 40precision | 15.8 |\n","| 40recall | 0.084 |\n","| 5precision | 2.74 |\n","| 5recall | 0.0151 |\n","| epoch | 785 |\n","| loss | 0.1604 |\n","| type | training |\n","--------------------------\n","786\n","5 precision: 2.62\n","10 precision: 4.76\n","20 precision: 8.74\n","40 precision: 15.2\n","--------------------------\n","| 10precision | 4.76 |\n","| 10recall | 0.0274 |\n","| 20precision | 8.74 |\n","| 20recall | 0.0497 |\n","| 40precision | 15.2 |\n","| 40recall | 0.0852 |\n","| 5precision | 2.62 |\n","| 5recall | 0.0148 |\n","| epoch | 786 |\n","| loss | 0.1716 |\n","| type | training |\n","--------------------------\n","787\n","5 precision: 2.52\n","10 precision: 4.58\n","20 precision: 8.5\n","40 precision: 15.78\n","--------------------------\n","| 10precision | 4.58 |\n","| 10recall | 0.0283 |\n","| 20precision | 8.5 |\n","| 20recall | 0.0518 |\n","| 40precision | 15.8 |\n","| 40recall | 0.0927 |\n","| 5precision | 2.52 |\n","| 5recall | 0.0154 |\n","| epoch | 787 |\n","| loss | 0.166 |\n","| type | training |\n","--------------------------\n","788\n","5 precision: 2.48\n","10 precision: 4.6\n","20 precision: 8.32\n","40 precision: 14.62\n","--------------------------\n","| 10precision | 4.6 |\n","| 10recall | 0.029 |\n","| 20precision | 8.32 |\n","| 20recall | 0.0525 |\n","| 40precision | 14.6 |\n","| 40recall | 0.0931 |\n","| 5precision | 2.48 |\n","| 5recall | 0.0152 |\n","| epoch | 788 |\n","| loss | 0.1705 |\n","| type | training |\n","--------------------------\n","789\n","5 precision: 2.6\n","10 precision: 4.72\n","20 precision: 8.6\n","40 precision: 14.68\n","--------------------------\n","| 10precision | 4.72 |\n","| 10recall | 0.0267 |\n","| 20precision | 8.6 |\n","| 20recall | 0.0477 |\n","| 40precision | 14.7 |\n","| 40recall | 0.0818 |\n","| 5precision | 2.6 |\n","| 5recall | 0.0144 |\n","| epoch | 789 |\n","| loss | 0.1879 |\n","| type | training |\n","--------------------------\n","790\n","5 precision: 2.46\n","10 precision: 4.38\n","20 precision: 8.1\n","40 precision: 14.04\n","--------------------------\n","| 10precision | 4.38 |\n","| 10recall | 0.0289 |\n","| 20precision | 8.1 |\n","| 20recall | 0.0524 |\n","| 40precision | 14 |\n","| 40recall | 0.0894 |\n","| 5precision | 2.46 |\n","| 5recall | 0.0166 |\n","| epoch | 790 |\n","| loss | 0.1757 |\n","| type | training |\n","--------------------------\n","791\n","5 precision: 2.28\n","10 precision: 4.38\n","20 precision: 8.1\n","40 precision: 14.54\n","--------------------------\n","| 10precision | 4.38 |\n","| 10recall | 0.0285 |\n","| 20precision | 8.1 |\n","| 20recall | 0.0518 |\n","| 40precision | 14.5 |\n","| 40recall | 0.092 |\n","| 5precision | 2.28 |\n","| 5recall | 0.0143 |\n","| epoch | 791 |\n","| loss | 0.2024 |\n","| type | training |\n","--------------------------\n","792\n","5 precision: 2.4\n","10 precision: 4.52\n","20 precision: 8.34\n","40 precision: 15.18\n","--------------------------\n","| 10precision | 4.52 |\n","| 10recall | 0.0259 |\n","| 20precision | 8.34 |\n","| 20recall | 0.0479 |\n","| 40precision | 15.2 |\n","| 40recall | 0.086 |\n","| 5precision | 2.4 |\n","| 5recall | 0.0137 |\n","| epoch | 792 |\n","| loss | 0.1871 |\n","| type | training |\n","--------------------------\n","793\n","5 precision: 2.16\n","10 precision: 4.32\n","20 precision: 8.0\n","40 precision: 13.88\n","--------------------------\n","| 10precision | 4.32 |\n","| 10recall | 0.0279 |\n","| 20precision | 8 |\n","| 20recall | 0.0493 |\n","| 40precision | 13.9 |\n","| 40recall | 0.0824 |\n","| 5precision | 2.16 |\n","| 5recall | 0.0145 |\n","| epoch | 793 |\n","| loss | 0.1527 |\n","| type | training |\n","--------------------------\n","794\n","5 precision: 2.38\n","10 precision: 4.32\n","20 precision: 7.7\n","40 precision: 13.9\n","--------------------------\n","| 10precision | 4.32 |\n","| 10recall | 0.0259 |\n","| 20precision | 7.7 |\n","| 20recall | 0.0453 |\n","| 40precision | 13.9 |\n","| 40recall | 0.0807 |\n","| 5precision | 2.38 |\n","| 5recall | 0.0146 |\n","| epoch | 794 |\n","| loss | 0.155 |\n","| type | training |\n","--------------------------\n","795\n","5 precision: 2.46\n","10 precision: 4.52\n","20 precision: 8.14\n","40 precision: 14.52\n","--------------------------\n","| 10precision | 4.52 |\n","| 10recall | 0.0283 |\n","| 20precision | 8.14 |\n","| 20recall | 0.049 |\n","| 40precision | 14.5 |\n","| 40recall | 0.0865 |\n","| 5precision | 2.46 |\n","| 5recall | 0.0157 |\n","| epoch | 795 |\n","| loss | 0.1576 |\n","| type | training |\n","--------------------------\n","796\n","5 precision: 2.64\n","10 precision: 4.88\n","20 precision: 8.82\n","40 precision: 15.88\n","--------------------------\n","| 10precision | 4.88 |\n","| 10recall | 0.0285 |\n","| 20precision | 8.82 |\n","| 20recall | 0.0512 |\n","| 40precision | 15.9 |\n","| 40recall | 0.0914 |\n","| 5precision | 2.64 |\n","| 5recall | 0.0156 |\n","| epoch | 796 |\n","| loss | 0.1791 |\n","| type | training |\n","--------------------------\n","797\n","5 precision: 2.74\n","10 precision: 5.08\n","20 precision: 9.9\n","40 precision: 17.78\n","--------------------------\n","| 10precision | 5.08 |\n","| 10recall | 0.0253 |\n","| 20precision | 9.9 |\n","| 20recall | 0.0494 |\n","| 40precision | 17.8 |\n","| 40recall | 0.0886 |\n","| 5precision | 2.74 |\n","| 5recall | 0.0142 |\n","| epoch | 797 |\n","| loss | 0.1573 |\n","| type | training |\n","--------------------------\n","798\n","5 precision: 2.52\n","10 precision: 4.76\n","20 precision: 9.12\n","40 precision: 15.9\n","--------------------------\n","| 10precision | 4.76 |\n","| 10recall | 0.0269 |\n","| 20precision | 9.12 |\n","| 20recall | 0.0513 |\n","| 40precision | 15.9 |\n","| 40recall | 0.0879 |\n","| 5precision | 2.52 |\n","| 5recall | 0.014 |\n","| epoch | 798 |\n","| loss | 0.1716 |\n","| type | training |\n","--------------------------\n","799\n","5 precision: 2.54\n","10 precision: 4.46\n","20 precision: 8.06\n","40 precision: 14.96\n","--------------------------\n","| 10precision | 4.46 |\n","| 10recall | 0.0277 |\n","| 20precision | 8.06 |\n","| 20recall | 0.0492 |\n","| 40precision | 15 |\n","| 40recall | 0.0909 |\n","| 5precision | 2.54 |\n","| 5recall | 0.0163 |\n","| epoch | 799 |\n","| loss | 0.1422 |\n","| type | training |\n","--------------------------\n","800\n","5 precision: 2.44\n","10 precision: 4.44\n","20 precision: 8.34\n","40 precision: 15.3\n","--------------------------\n","| 10precision | 4.44 |\n","| 10recall | 0.0275 |\n","| 20precision | 8.34 |\n","| 20recall | 0.0507 |\n","| 40precision | 15.3 |\n","| 40recall | 0.0915 |\n","| 5precision | 2.44 |\n","| 5recall | 0.0152 |\n","| epoch | 800 |\n","| loss | 0.1686 |\n","| type | training |\n","--------------------------\n","5 precision: 3.5\n","10 precision: 6.0556\n","20 precision: 11.3333\n","40 precision: 18.0556\n","----------------------------\n","| 10precision | 6.06 |\n","| 10recall | 0.0349 |\n","| 20precision | 11.3 |\n","| 20recall | 0.0631 |\n","| 40precision | 18.1 |\n","| 40recall | 0.0983 |\n","| 5precision | 3.5 |\n","| 5recall | 0.0211 |\n","| epoch | 800 |\n","| type | validation |\n","----------------------------\n","5 precision: 3.3421\n","10 precision: 6.0526\n","20 precision: 10.7632\n","40 precision: 17.2895\n","----------------------------\n","| 10precision | 6.05 |\n","| 10recall | 0.0353 |\n","| 20precision | 10.8 |\n","| 20recall | 0.0623 |\n","| 40precision | 17.3 |\n","| 40recall | 0.099 |\n","| 5precision | 3.34 |\n","| 5recall | 0.0201 |\n","| epoch | 800 |\n","| type | evaluation |\n","----------------------------\n","801\n","5 precision: 2.52\n","10 precision: 4.4\n","20 precision: 8.18\n","40 precision: 14.3\n","--------------------------\n","| 10precision | 4.4 |\n","| 10recall | 0.0275 |\n","| 20precision | 8.18 |\n","| 20recall | 0.0503 |\n","| 40precision | 14.3 |\n","| 40recall | 0.0876 |\n","| 5precision | 2.52 |\n","| 5recall | 0.0152 |\n","| epoch | 801 |\n","| loss | 0.1573 |\n","| type | training |\n","--------------------------\n","802\n","5 precision: 2.58\n","10 precision: 4.74\n","20 precision: 8.34\n","40 precision: 14.58\n","--------------------------\n","| 10precision | 4.74 |\n","| 10recall | 0.0291 |\n","| 20precision | 8.34 |\n","| 20recall | 0.0495 |\n","| 40precision | 14.6 |\n","| 40recall | 0.0849 |\n","| 5precision | 2.58 |\n","| 5recall | 0.0156 |\n","| epoch | 802 |\n","| loss | 0.1782 |\n","| type | training |\n","--------------------------\n","803\n","5 precision: 2.44\n","10 precision: 4.28\n","20 precision: 8.08\n","40 precision: 15.24\n","--------------------------\n","| 10precision | 4.28 |\n","| 10recall | 0.0234 |\n","| 20precision | 8.08 |\n","| 20recall | 0.0434 |\n","| 40precision | 15.2 |\n","| 40recall | 0.0822 |\n","| 5precision | 2.44 |\n","| 5recall | 0.014 |\n","| epoch | 803 |\n","| loss | 0.1513 |\n","| type | training |\n","--------------------------\n","804\n","5 precision: 2.38\n","10 precision: 4.6\n","20 precision: 8.5\n","40 precision: 15.3\n","--------------------------\n","| 10precision | 4.6 |\n","| 10recall | 0.0277 |\n","| 20precision | 8.5 |\n","| 20recall | 0.0494 |\n","| 40precision | 15.3 |\n","| 40recall | 0.0888 |\n","| 5precision | 2.38 |\n","| 5recall | 0.0146 |\n","| epoch | 804 |\n","| loss | 0.1524 |\n","| type | training |\n","--------------------------\n","805\n","5 precision: 2.22\n","10 precision: 4.08\n","20 precision: 7.74\n","40 precision: 13.48\n","--------------------------\n","| 10precision | 4.08 |\n","| 10recall | 0.0253 |\n","| 20precision | 7.74 |\n","| 20recall | 0.0475 |\n","| 40precision | 13.5 |\n","| 40recall | 0.0809 |\n","| 5precision | 2.22 |\n","| 5recall | 0.0141 |\n","| epoch | 805 |\n","| loss | 0.1667 |\n","| type | training |\n","--------------------------\n","806\n","5 precision: 2.52\n","10 precision: 4.56\n","20 precision: 8.4\n","40 precision: 14.2\n","--------------------------\n","| 10precision | 4.56 |\n","| 10recall | 0.0307 |\n","| 20precision | 8.4 |\n","| 20recall | 0.055 |\n","| 40precision | 14.2 |\n","| 40recall | 0.0902 |\n","| 5precision | 2.52 |\n","| 5recall | 0.0163 |\n","| epoch | 806 |\n","| loss | 0.1905 |\n","| type | training |\n","--------------------------\n","807\n","5 precision: 2.54\n","10 precision: 4.36\n","20 precision: 8.1\n","40 precision: 14.56\n","--------------------------\n","| 10precision | 4.36 |\n","| 10recall | 0.0271 |\n","| 20precision | 8.1 |\n","| 20recall | 0.0501 |\n","| 40precision | 14.6 |\n","| 40recall | 0.0899 |\n","| 5precision | 2.54 |\n","| 5recall | 0.0161 |\n","| epoch | 807 |\n","| loss | 0.1988 |\n","| type | training |\n","--------------------------\n","808\n","5 precision: 2.32\n","10 precision: 4.1\n","20 precision: 7.66\n","40 precision: 13.24\n","--------------------------\n","| 10precision | 4.1 |\n","| 10recall | 0.025 |\n","| 20precision | 7.66 |\n","| 20recall | 0.0477 |\n","| 40precision | 13.2 |\n","| 40recall | 0.0812 |\n","| 5precision | 2.32 |\n","| 5recall | 0.014 |\n","| epoch | 808 |\n","| loss | 0.1537 |\n","| type | training |\n","--------------------------\n","809\n","5 precision: 2.36\n","10 precision: 4.5\n","20 precision: 8.18\n","40 precision: 13.84\n","--------------------------\n","| 10precision | 4.5 |\n","| 10recall | 0.0297 |\n","| 20precision | 8.18 |\n","| 20recall | 0.0536 |\n","| 40precision | 13.8 |\n","| 40recall | 0.0891 |\n","| 5precision | 2.36 |\n","| 5recall | 0.0158 |\n","| epoch | 809 |\n","| loss | 0.1735 |\n","| type | training |\n","--------------------------\n","810\n","5 precision: 2.66\n","10 precision: 4.54\n","20 precision: 8.36\n","40 precision: 15.06\n","--------------------------\n","| 10precision | 4.54 |\n","| 10recall | 0.0269 |\n","| 20precision | 8.36 |\n","| 20recall | 0.0475 |\n","| 40precision | 15.1 |\n","| 40recall | 0.0845 |\n","| 5precision | 2.66 |\n","| 5recall | 0.0158 |\n","| epoch | 810 |\n","| loss | 0.1764 |\n","| type | training |\n","--------------------------\n","811\n","5 precision: 2.4\n","10 precision: 4.4\n","20 precision: 7.98\n","40 precision: 14.34\n","--------------------------\n","| 10precision | 4.4 |\n","| 10recall | 0.0304 |\n","| 20precision | 7.98 |\n","| 20recall | 0.0529 |\n","| 40precision | 14.3 |\n","| 40recall | 0.0938 |\n","| 5precision | 2.4 |\n","| 5recall | 0.0165 |\n","| epoch | 811 |\n","| loss | 0.1721 |\n","| type | training |\n","--------------------------\n","812\n","5 precision: 2.54\n","10 precision: 4.52\n","20 precision: 8.32\n","40 precision: 14.9\n","--------------------------\n","| 10precision | 4.52 |\n","| 10recall | 0.0259 |\n","| 20precision | 8.32 |\n","| 20recall | 0.0474 |\n","| 40precision | 14.9 |\n","| 40recall | 0.0835 |\n","| 5precision | 2.54 |\n","| 5recall | 0.0149 |\n","| epoch | 812 |\n","| loss | 0.1635 |\n","| type | training |\n","--------------------------\n","813\n","5 precision: 2.36\n","10 precision: 4.6\n","20 precision: 8.9\n","40 precision: 15.46\n","--------------------------\n","| 10precision | 4.6 |\n","| 10recall | 0.0276 |\n","| 20precision | 8.9 |\n","| 20recall | 0.052 |\n","| 40precision | 15.5 |\n","| 40recall | 0.0905 |\n","| 5precision | 2.36 |\n","| 5recall | 0.0139 |\n","| epoch | 813 |\n","| loss | 0.1593 |\n","| type | training |\n","--------------------------\n","814\n","5 precision: 2.52\n","10 precision: 4.44\n","20 precision: 8.0\n","40 precision: 14.1\n","--------------------------\n","| 10precision | 4.44 |\n","| 10recall | 0.0255 |\n","| 20precision | 8 |\n","| 20recall | 0.044 |\n","| 40precision | 14.1 |\n","| 40recall | 0.079 |\n","| 5precision | 2.52 |\n","| 5recall | 0.0149 |\n","| epoch | 814 |\n","| loss | 0.1859 |\n","| type | training |\n","--------------------------\n","815\n","5 precision: 2.52\n","10 precision: 4.6\n","20 precision: 8.28\n","40 precision: 14.38\n","--------------------------\n","| 10precision | 4.6 |\n","| 10recall | 0.0267 |\n","| 20precision | 8.28 |\n","| 20recall | 0.0474 |\n","| 40precision | 14.4 |\n","| 40recall | 0.0812 |\n","| 5precision | 2.52 |\n","| 5recall | 0.015 |\n","| epoch | 815 |\n","| loss | 0.1897 |\n","| type | training |\n","--------------------------\n","816\n","5 precision: 2.28\n","10 precision: 4.3\n","20 precision: 7.64\n","40 precision: 13.66\n","--------------------------\n","| 10precision | 4.3 |\n","| 10recall | 0.0293 |\n","| 20precision | 7.64 |\n","| 20recall | 0.0505 |\n","| 40precision | 13.7 |\n","| 40recall | 0.0888 |\n","| 5precision | 2.28 |\n","| 5recall | 0.0156 |\n","| epoch | 816 |\n","| loss | 0.1706 |\n","| type | training |\n","--------------------------\n","817\n","5 precision: 2.8\n","10 precision: 4.88\n","20 precision: 8.76\n","40 precision: 14.56\n","--------------------------\n","| 10precision | 4.88 |\n","| 10recall | 0.03 |\n","| 20precision | 8.76 |\n","| 20recall | 0.0519 |\n","| 40precision | 14.6 |\n","| 40recall | 0.0863 |\n","| 5precision | 2.8 |\n","| 5recall | 0.0182 |\n","| epoch | 817 |\n","| loss | 0.1592 |\n","| type | training |\n","--------------------------\n","818\n","5 precision: 3.0\n","10 precision: 5.16\n","20 precision: 9.0\n","40 precision: 16.24\n","--------------------------\n","| 10precision | 5.16 |\n","| 10recall | 0.0276 |\n","| 20precision | 9 |\n","| 20recall | 0.0472 |\n","| 40precision | 16.2 |\n","| 40recall | 0.0841 |\n","| 5precision | 3 |\n","| 5recall | 0.0165 |\n","| epoch | 818 |\n","| loss | 0.1516 |\n","| type | training |\n","--------------------------\n","819\n","5 precision: 2.36\n","10 precision: 4.38\n","20 precision: 8.0\n","40 precision: 14.52\n","--------------------------\n","| 10precision | 4.38 |\n","| 10recall | 0.0282 |\n","| 20precision | 8 |\n","| 20recall | 0.05 |\n","| 40precision | 14.5 |\n","| 40recall | 0.089 |\n","| 5precision | 2.36 |\n","| 5recall | 0.0151 |\n","| epoch | 819 |\n","| loss | 0.173 |\n","| type | training |\n","--------------------------\n","820\n","5 precision: 3.02\n","10 precision: 5.08\n","20 precision: 8.94\n","40 precision: 16.02\n","--------------------------\n","| 10precision | 5.08 |\n","| 10recall | 0.0277 |\n","| 20precision | 8.94 |\n","| 20recall | 0.047 |\n","| 40precision | 16 |\n","| 40recall | 0.0834 |\n","| 5precision | 3.02 |\n","| 5recall | 0.0164 |\n","| epoch | 820 |\n","| loss | 0.1478 |\n","| type | training |\n","--------------------------\n","821\n","5 precision: 2.38\n","10 precision: 4.5\n","20 precision: 8.08\n","40 precision: 14.1\n","--------------------------\n","| 10precision | 4.5 |\n","| 10recall | 0.0268 |\n","| 20precision | 8.08 |\n","| 20recall | 0.048 |\n","| 40precision | 14.1 |\n","| 40recall | 0.0837 |\n","| 5precision | 2.38 |\n","| 5recall | 0.0141 |\n","| epoch | 821 |\n","| loss | 0.1465 |\n","| type | training |\n","--------------------------\n","822\n","5 precision: 2.3\n","10 precision: 4.22\n","20 precision: 7.74\n","40 precision: 13.8\n","--------------------------\n","| 10precision | 4.22 |\n","| 10recall | 0.0278 |\n","| 20precision | 7.74 |\n","| 20recall | 0.0501 |\n","| 40precision | 13.8 |\n","| 40recall | 0.0891 |\n","| 5precision | 2.3 |\n","| 5recall | 0.0158 |\n","| epoch | 822 |\n","| loss | 0.1773 |\n","| type | training |\n","--------------------------\n","823\n","5 precision: 2.36\n","10 precision: 4.54\n","20 precision: 8.28\n","40 precision: 14.94\n","--------------------------\n","| 10precision | 4.54 |\n","| 10recall | 0.0285 |\n","| 20precision | 8.28 |\n","| 20recall | 0.0508 |\n","| 40precision | 14.9 |\n","| 40recall | 0.0897 |\n","| 5precision | 2.36 |\n","| 5recall | 0.0148 |\n","| epoch | 823 |\n","| loss | 0.1489 |\n","| type | training |\n","--------------------------\n","824\n","5 precision: 2.48\n","10 precision: 4.58\n","20 precision: 7.94\n","40 precision: 13.94\n","--------------------------\n","| 10precision | 4.58 |\n","| 10recall | 0.0291 |\n","| 20precision | 7.94 |\n","| 20recall | 0.0488 |\n","| 40precision | 13.9 |\n","| 40recall | 0.0864 |\n","| 5precision | 2.48 |\n","| 5recall | 0.0161 |\n","| epoch | 824 |\n","| loss | 0.1608 |\n","| type | training |\n","--------------------------\n","825\n","5 precision: 2.4\n","10 precision: 4.7\n","20 precision: 8.54\n","40 precision: 14.74\n","--------------------------\n","| 10precision | 4.7 |\n","| 10recall | 0.0273 |\n","| 20precision | 8.54 |\n","| 20recall | 0.0493 |\n","| 40precision | 14.7 |\n","| 40recall | 0.0826 |\n","| 5precision | 2.4 |\n","| 5recall | 0.0138 |\n","| epoch | 825 |\n","| loss | 0.1422 |\n","| type | training |\n","--------------------------\n","826\n","5 precision: 2.4\n","10 precision: 4.42\n","20 precision: 8.58\n","40 precision: 14.82\n","--------------------------\n","| 10precision | 4.42 |\n","| 10recall | 0.0267 |\n","| 20precision | 8.58 |\n","| 20recall | 0.0508 |\n","| 40precision | 14.8 |\n","| 40recall | 0.0868 |\n","| 5precision | 2.4 |\n","| 5recall | 0.0143 |\n","| epoch | 826 |\n","| loss | 0.1515 |\n","| type | training |\n","--------------------------\n","827\n","5 precision: 2.36\n","10 precision: 4.26\n","20 precision: 7.38\n","40 precision: 13.52\n","--------------------------\n","| 10precision | 4.26 |\n","| 10recall | 0.0269 |\n","| 20precision | 7.38 |\n","| 20recall | 0.047 |\n","| 40precision | 13.5 |\n","| 40recall | 0.0846 |\n","| 5precision | 2.36 |\n","| 5recall | 0.0149 |\n","| epoch | 827 |\n","| loss | 0.1606 |\n","| type | training |\n","--------------------------\n","828\n","5 precision: 2.34\n","10 precision: 4.28\n","20 precision: 7.8\n","40 precision: 14.72\n","--------------------------\n","| 10precision | 4.28 |\n","| 10recall | 0.0251 |\n","| 20precision | 7.8 |\n","| 20recall | 0.0448 |\n","| 40precision | 14.7 |\n","| 40recall | 0.0838 |\n","| 5precision | 2.34 |\n","| 5recall | 0.0141 |\n","| epoch | 828 |\n","| loss | 0.1663 |\n","| type | training |\n","--------------------------\n","829\n","5 precision: 2.4\n","10 precision: 4.28\n","20 precision: 8.4\n","40 precision: 14.76\n","--------------------------\n","| 10precision | 4.28 |\n","| 10recall | 0.0247 |\n","| 20precision | 8.4 |\n","| 20recall | 0.0467 |\n","| 40precision | 14.8 |\n","| 40recall | 0.0833 |\n","| 5precision | 2.4 |\n","| 5recall | 0.0137 |\n","| epoch | 829 |\n","| loss | 0.188 |\n","| type | training |\n","--------------------------\n","830\n","5 precision: 2.72\n","10 precision: 4.92\n","20 precision: 8.96\n","40 precision: 16.84\n","--------------------------\n","| 10precision | 4.92 |\n","| 10recall | 0.0283 |\n","| 20precision | 8.96 |\n","| 20recall | 0.0514 |\n","| 40precision | 16.8 |\n","| 40recall | 0.0957 |\n","| 5precision | 2.72 |\n","| 5recall | 0.0156 |\n","| epoch | 830 |\n","| loss | 0.139 |\n","| type | training |\n","--------------------------\n","831\n","5 precision: 2.52\n","10 precision: 5.08\n","20 precision: 8.92\n","40 precision: 15.52\n","--------------------------\n","| 10precision | 5.08 |\n","| 10recall | 0.027 |\n","| 20precision | 8.92 |\n","| 20recall | 0.0459 |\n","| 40precision | 15.5 |\n","| 40recall | 0.0793 |\n","| 5precision | 2.52 |\n","| 5recall | 0.0132 |\n","| epoch | 831 |\n","| loss | 0.1697 |\n","| type | training |\n","--------------------------\n","832\n","5 precision: 2.42\n","10 precision: 4.6\n","20 precision: 8.92\n","40 precision: 15.9\n","--------------------------\n","| 10precision | 4.6 |\n","| 10recall | 0.028 |\n","| 20precision | 8.92 |\n","| 20recall | 0.0524 |\n","| 40precision | 15.9 |\n","| 40recall | 0.0926 |\n","| 5precision | 2.42 |\n","| 5recall | 0.0148 |\n","| epoch | 832 |\n","| loss | 0.193 |\n","| type | training |\n","--------------------------\n","833\n","5 precision: 2.58\n","10 precision: 4.74\n","20 precision: 8.4\n","40 precision: 14.84\n","--------------------------\n","| 10precision | 4.74 |\n","| 10recall | 0.0321 |\n","| 20precision | 8.4 |\n","| 20recall | 0.0569 |\n","| 40precision | 14.8 |\n","| 40recall | 0.0981 |\n","| 5precision | 2.58 |\n","| 5recall | 0.0176 |\n","| epoch | 833 |\n","| loss | 0.1757 |\n","| type | training |\n","--------------------------\n","834\n","5 precision: 2.68\n","10 precision: 4.88\n","20 precision: 8.68\n","40 precision: 15.58\n","--------------------------\n","| 10precision | 4.88 |\n","| 10recall | 0.0277 |\n","| 20precision | 8.68 |\n","| 20recall | 0.0492 |\n","| 40precision | 15.6 |\n","| 40recall | 0.0875 |\n","| 5precision | 2.68 |\n","| 5recall | 0.0155 |\n","| epoch | 834 |\n","| loss | 0.1659 |\n","| type | training |\n","--------------------------\n","835\n","5 precision: 2.62\n","10 precision: 4.74\n","20 precision: 8.72\n","40 precision: 15.48\n","--------------------------\n","| 10precision | 4.74 |\n","| 10recall | 0.0268 |\n","| 20precision | 8.72 |\n","| 20recall | 0.0478 |\n","| 40precision | 15.5 |\n","| 40recall | 0.0846 |\n","| 5precision | 2.62 |\n","| 5recall | 0.0148 |\n","| epoch | 835 |\n","| loss | 0.1582 |\n","| type | training |\n","--------------------------\n","836\n","5 precision: 2.62\n","10 precision: 4.64\n","20 precision: 8.26\n","40 precision: 14.14\n","--------------------------\n","| 10precision | 4.64 |\n","| 10recall | 0.0268 |\n","| 20precision | 8.26 |\n","| 20recall | 0.0472 |\n","| 40precision | 14.1 |\n","| 40recall | 0.0802 |\n","| 5precision | 2.62 |\n","| 5recall | 0.0154 |\n","| epoch | 836 |\n","| loss | 0.1797 |\n","| type | training |\n","--------------------------\n","837\n","5 precision: 2.58\n","10 precision: 4.72\n","20 precision: 8.78\n","40 precision: 15.66\n","--------------------------\n","| 10precision | 4.72 |\n","| 10recall | 0.0274 |\n","| 20precision | 8.78 |\n","| 20recall | 0.051 |\n","| 40precision | 15.7 |\n","| 40recall | 0.0907 |\n","| 5precision | 2.58 |\n","| 5recall | 0.0148 |\n","| epoch | 837 |\n","| loss | 0.1636 |\n","| type | training |\n","--------------------------\n","838\n","5 precision: 2.4\n","10 precision: 4.62\n","20 precision: 8.7\n","40 precision: 15.7\n","--------------------------\n","| 10precision | 4.62 |\n","| 10recall | 0.0276 |\n","| 20precision | 8.7 |\n","| 20recall | 0.0511 |\n","| 40precision | 15.7 |\n","| 40recall | 0.0894 |\n","| 5precision | 2.4 |\n","| 5recall | 0.0135 |\n","| epoch | 838 |\n","| loss | 0.1674 |\n","| type | training |\n","--------------------------\n","839\n","5 precision: 2.42\n","10 precision: 4.72\n","20 precision: 8.86\n","40 precision: 15.5\n","--------------------------\n","| 10precision | 4.72 |\n","| 10recall | 0.0249 |\n","| 20precision | 8.86 |\n","| 20recall | 0.0463 |\n","| 40precision | 15.5 |\n","| 40recall | 0.0804 |\n","| 5precision | 2.42 |\n","| 5recall | 0.0131 |\n","| epoch | 839 |\n","| loss | 0.1694 |\n","| type | training |\n","--------------------------\n","840\n","5 precision: 2.36\n","10 precision: 4.3\n","20 precision: 7.86\n","40 precision: 14.46\n","--------------------------\n","| 10precision | 4.3 |\n","| 10recall | 0.0237 |\n","| 20precision | 7.86 |\n","| 20recall | 0.0435 |\n","| 40precision | 14.5 |\n","| 40recall | 0.0812 |\n","| 5precision | 2.36 |\n","| 5recall | 0.0133 |\n","| epoch | 840 |\n","| loss | 0.1743 |\n","| type | training |\n","--------------------------\n","841\n","5 precision: 2.58\n","10 precision: 4.34\n","20 precision: 8.46\n","40 precision: 15.06\n","--------------------------\n","| 10precision | 4.34 |\n","| 10recall | 0.0252 |\n","| 20precision | 8.46 |\n","| 20recall | 0.0488 |\n","| 40precision | 15.1 |\n","| 40recall | 0.0856 |\n","| 5precision | 2.58 |\n","| 5recall | 0.015 |\n","| epoch | 841 |\n","| loss | 0.1855 |\n","| type | training |\n","--------------------------\n","842\n","5 precision: 2.5\n","10 precision: 4.5\n","20 precision: 8.1\n","40 precision: 13.78\n","--------------------------\n","| 10precision | 4.5 |\n","| 10recall | 0.029 |\n","| 20precision | 8.1 |\n","| 20recall | 0.0511 |\n","| 40precision | 13.8 |\n","| 40recall | 0.088 |\n","| 5precision | 2.5 |\n","| 5recall | 0.0165 |\n","| epoch | 842 |\n","| loss | 0.1917 |\n","| type | training |\n","--------------------------\n","843\n","5 precision: 2.6\n","10 precision: 4.7\n","20 precision: 8.28\n","40 precision: 14.48\n","--------------------------\n","| 10precision | 4.7 |\n","| 10recall | 0.0295 |\n","| 20precision | 8.28 |\n","| 20recall | 0.0505 |\n","| 40precision | 14.5 |\n","| 40recall | 0.0882 |\n","| 5precision | 2.6 |\n","| 5recall | 0.0166 |\n","| epoch | 843 |\n","| loss | 0.1765 |\n","| type | training |\n","--------------------------\n","844\n","5 precision: 2.68\n","10 precision: 4.62\n","20 precision: 8.54\n","40 precision: 15.58\n","--------------------------\n","| 10precision | 4.62 |\n","| 10recall | 0.0276 |\n","| 20precision | 8.54 |\n","| 20recall | 0.0518 |\n","| 40precision | 15.6 |\n","| 40recall | 0.0922 |\n","| 5precision | 2.68 |\n","| 5recall | 0.0169 |\n","| epoch | 844 |\n","| loss | 0.1496 |\n","| type | training |\n","--------------------------\n","845\n","5 precision: 2.38\n","10 precision: 4.3\n","20 precision: 7.58\n","40 precision: 13.94\n","--------------------------\n","| 10precision | 4.3 |\n","| 10recall | 0.0275 |\n","| 20precision | 7.58 |\n","| 20recall | 0.0483 |\n","| 40precision | 13.9 |\n","| 40recall | 0.0882 |\n","| 5precision | 2.38 |\n","| 5recall | 0.0148 |\n","| epoch | 845 |\n","| loss | 0.2253 |\n","| type | training |\n","--------------------------\n","846\n","5 precision: 2.78\n","10 precision: 4.6\n","20 precision: 8.84\n","40 precision: 15.38\n","--------------------------\n","| 10precision | 4.6 |\n","| 10recall | 0.0259 |\n","| 20precision | 8.84 |\n","| 20recall | 0.0487 |\n","| 40precision | 15.4 |\n","| 40recall | 0.083 |\n","| 5precision | 2.78 |\n","| 5recall | 0.0161 |\n","| epoch | 846 |\n","| loss | 0.1757 |\n","| type | training |\n","--------------------------\n","847\n","5 precision: 2.66\n","10 precision: 4.76\n","20 precision: 8.76\n","40 precision: 15.28\n","--------------------------\n","| 10precision | 4.76 |\n","| 10recall | 0.0223 |\n","| 20precision | 8.76 |\n","| 20recall | 0.0412 |\n","| 40precision | 15.3 |\n","| 40recall | 0.0699 |\n","| 5precision | 2.66 |\n","| 5recall | 0.0131 |\n","| epoch | 847 |\n","| loss | 0.2013 |\n","| type | training |\n","--------------------------\n","848\n","5 precision: 2.66\n","10 precision: 4.54\n","20 precision: 8.3\n","40 precision: 14.44\n","--------------------------\n","| 10precision | 4.54 |\n","| 10recall | 0.0271 |\n","| 20precision | 8.3 |\n","| 20recall | 0.0487 |\n","| 40precision | 14.4 |\n","| 40recall | 0.0842 |\n","| 5precision | 2.66 |\n","| 5recall | 0.0158 |\n","| epoch | 848 |\n","| loss | 0.1646 |\n","| type | training |\n","--------------------------\n","849\n","5 precision: 2.8\n","10 precision: 4.86\n","20 precision: 9.06\n","40 precision: 16.32\n","--------------------------\n","| 10precision | 4.86 |\n","| 10recall | 0.0264 |\n","| 20precision | 9.06 |\n","| 20recall | 0.0488 |\n","| 40precision | 16.3 |\n","| 40recall | 0.0862 |\n","| 5precision | 2.8 |\n","| 5recall | 0.0155 |\n","| epoch | 849 |\n","| loss | 0.1713 |\n","| type | training |\n","--------------------------\n","850\n","5 precision: 2.48\n","10 precision: 4.46\n","20 precision: 8.52\n","40 precision: 15.46\n","--------------------------\n","| 10precision | 4.46 |\n","| 10recall | 0.0242 |\n","| 20precision | 8.52 |\n","| 20recall | 0.0451 |\n","| 40precision | 15.5 |\n","| 40recall | 0.0817 |\n","| 5precision | 2.48 |\n","| 5recall | 0.0134 |\n","| epoch | 850 |\n","| loss | 0.163 |\n","| type | training |\n","--------------------------\n","851\n","5 precision: 2.58\n","10 precision: 4.64\n","20 precision: 8.66\n","40 precision: 16.38\n","--------------------------\n","| 10precision | 4.64 |\n","| 10recall | 0.0234 |\n","| 20precision | 8.66 |\n","| 20recall | 0.0445 |\n","| 40precision | 16.4 |\n","| 40recall | 0.0827 |\n","| 5precision | 2.58 |\n","| 5recall | 0.0137 |\n","| epoch | 851 |\n","| loss | 0.1858 |\n","| type | training |\n","--------------------------\n","852\n","5 precision: 2.66\n","10 precision: 4.62\n","20 precision: 7.78\n","40 precision: 13.9\n","--------------------------\n","| 10precision | 4.62 |\n","| 10recall | 0.0299 |\n","| 20precision | 7.78 |\n","| 20recall | 0.0504 |\n","| 40precision | 13.9 |\n","| 40recall | 0.0885 |\n","| 5precision | 2.66 |\n","| 5recall | 0.0172 |\n","| epoch | 852 |\n","| loss | 0.189 |\n","| type | training |\n","--------------------------\n","853\n","5 precision: 2.52\n","10 precision: 4.68\n","20 precision: 8.48\n","40 precision: 14.64\n","--------------------------\n","| 10precision | 4.68 |\n","| 10recall | 0.0273 |\n","| 20precision | 8.48 |\n","| 20recall | 0.0479 |\n","| 40precision | 14.6 |\n","| 40recall | 0.0822 |\n","| 5precision | 2.52 |\n","| 5recall | 0.0141 |\n","| epoch | 853 |\n","| loss | 0.1861 |\n","| type | training |\n","--------------------------\n","854\n","5 precision: 2.68\n","10 precision: 4.7\n","20 precision: 8.6\n","40 precision: 15.68\n","--------------------------\n","| 10precision | 4.7 |\n","| 10recall | 0.031 |\n","| 20precision | 8.6 |\n","| 20recall | 0.0564 |\n","| 40precision | 15.7 |\n","| 40recall | 0.1 |\n","| 5precision | 2.68 |\n","| 5recall | 0.0178 |\n","| epoch | 854 |\n","| loss | 0.1799 |\n","| type | training |\n","--------------------------\n","855\n","5 precision: 2.04\n","10 precision: 4.14\n","20 precision: 7.96\n","40 precision: 14.64\n","--------------------------\n","| 10precision | 4.14 |\n","| 10recall | 0.0225 |\n","| 20precision | 7.96 |\n","| 20recall | 0.0424 |\n","| 40precision | 14.6 |\n","| 40recall | 0.0766 |\n","| 5precision | 2.04 |\n","| 5recall | 0.0115 |\n","| epoch | 855 |\n","| loss | 0.1604 |\n","| type | training |\n","--------------------------\n","856\n","5 precision: 2.38\n","10 precision: 4.38\n","20 precision: 8.28\n","40 precision: 14.9\n","--------------------------\n","| 10precision | 4.38 |\n","| 10recall | 0.0257 |\n","| 20precision | 8.28 |\n","| 20recall | 0.048 |\n","| 40precision | 14.9 |\n","| 40recall | 0.086 |\n","| 5precision | 2.38 |\n","| 5recall | 0.0139 |\n","| epoch | 856 |\n","| loss | 0.1636 |\n","| type | training |\n","--------------------------\n","857\n","5 precision: 2.7\n","10 precision: 5.04\n","20 precision: 9.1\n","40 precision: 16.16\n","--------------------------\n","| 10precision | 5.04 |\n","| 10recall | 0.0272 |\n","| 20precision | 9.1 |\n","| 20recall | 0.0489 |\n","| 40precision | 16.2 |\n","| 40recall | 0.0863 |\n","| 5precision | 2.7 |\n","| 5recall | 0.015 |\n","| epoch | 857 |\n","| loss | 0.1466 |\n","| type | training |\n","--------------------------\n","858\n","5 precision: 2.44\n","10 precision: 4.72\n","20 precision: 8.12\n","40 precision: 14.92\n","--------------------------\n","| 10precision | 4.72 |\n","| 10recall | 0.0245 |\n","| 20precision | 8.12 |\n","| 20recall | 0.0428 |\n","| 40precision | 14.9 |\n","| 40recall | 0.0791 |\n","| 5precision | 2.44 |\n","| 5recall | 0.0126 |\n","| epoch | 858 |\n","| loss | 0.1733 |\n","| type | training |\n","--------------------------\n","859\n","5 precision: 2.74\n","10 precision: 5.0\n","20 precision: 9.02\n","40 precision: 15.72\n","--------------------------\n","| 10precision | 5 |\n","| 10recall | 0.0288 |\n","| 20precision | 9.02 |\n","| 20recall | 0.0518 |\n","| 40precision | 15.7 |\n","| 40recall | 0.0889 |\n","| 5precision | 2.74 |\n","| 5recall | 0.0162 |\n","| epoch | 859 |\n","| loss | 0.1781 |\n","| type | training |\n","--------------------------\n","860\n","5 precision: 2.4\n","10 precision: 4.5\n","20 precision: 8.72\n","40 precision: 15.04\n","--------------------------\n","| 10precision | 4.5 |\n","| 10recall | 0.0263 |\n","| 20precision | 8.72 |\n","| 20recall | 0.0512 |\n","| 40precision | 15 |\n","| 40recall | 0.088 |\n","| 5precision | 2.4 |\n","| 5recall | 0.0138 |\n","| epoch | 860 |\n","| loss | 0.174 |\n","| type | training |\n","--------------------------\n","861\n","5 precision: 2.86\n","10 precision: 4.8\n","20 precision: 8.5\n","40 precision: 15.56\n","--------------------------\n","| 10precision | 4.8 |\n","| 10recall | 0.028 |\n","| 20precision | 8.5 |\n","| 20recall | 0.0493 |\n","| 40precision | 15.6 |\n","| 40recall | 0.0883 |\n","| 5precision | 2.86 |\n","| 5recall | 0.017 |\n","| epoch | 861 |\n","| loss | 0.1594 |\n","| type | training |\n","--------------------------\n","862\n","5 precision: 2.36\n","10 precision: 4.16\n","20 precision: 7.4\n","40 precision: 12.9\n","--------------------------\n","| 10precision | 4.16 |\n","| 10recall | 0.0277 |\n","| 20precision | 7.4 |\n","| 20recall | 0.0484 |\n","| 40precision | 12.9 |\n","| 40recall | 0.0836 |\n","| 5precision | 2.36 |\n","| 5recall | 0.0159 |\n","| epoch | 862 |\n","| loss | 0.1673 |\n","| type | training |\n","--------------------------\n","863\n","5 precision: 2.34\n","10 precision: 4.18\n","20 precision: 7.64\n","40 precision: 14.6\n","--------------------------\n","| 10precision | 4.18 |\n","| 10recall | 0.026 |\n","| 20precision | 7.64 |\n","| 20recall | 0.0464 |\n","| 40precision | 14.6 |\n","| 40recall | 0.0868 |\n","| 5precision | 2.34 |\n","| 5recall | 0.0145 |\n","| epoch | 863 |\n","| loss | 0.1442 |\n","| type | training |\n","--------------------------\n","864\n","5 precision: 2.54\n","10 precision: 4.78\n","20 precision: 8.46\n","40 precision: 15.18\n","--------------------------\n","| 10precision | 4.78 |\n","| 10recall | 0.0272 |\n","| 20precision | 8.46 |\n","| 20recall | 0.0476 |\n","| 40precision | 15.2 |\n","| 40recall | 0.0855 |\n","| 5precision | 2.54 |\n","| 5recall | 0.0146 |\n","| epoch | 864 |\n","| loss | 0.1733 |\n","| type | training |\n","--------------------------\n","865\n","5 precision: 2.48\n","10 precision: 4.2\n","20 precision: 7.7\n","40 precision: 13.64\n","--------------------------\n","| 10precision | 4.2 |\n","| 10recall | 0.0283 |\n","| 20precision | 7.7 |\n","| 20recall | 0.0504 |\n","| 40precision | 13.6 |\n","| 40recall | 0.089 |\n","| 5precision | 2.48 |\n","| 5recall | 0.0167 |\n","| epoch | 865 |\n","| loss | 0.1701 |\n","| type | training |\n","--------------------------\n","866\n","5 precision: 2.26\n","10 precision: 4.34\n","20 precision: 8.54\n","40 precision: 15.96\n","--------------------------\n","| 10precision | 4.34 |\n","| 10recall | 0.024 |\n","| 20precision | 8.54 |\n","| 20recall | 0.0479 |\n","| 40precision | 16 |\n","| 40recall | 0.0877 |\n","| 5precision | 2.26 |\n","| 5recall | 0.0123 |\n","| epoch | 866 |\n","| loss | 0.1559 |\n","| type | training |\n","--------------------------\n","867\n","5 precision: 2.46\n","10 precision: 4.54\n","20 precision: 8.18\n","40 precision: 14.32\n","--------------------------\n","| 10precision | 4.54 |\n","| 10recall | 0.0279 |\n","| 20precision | 8.18 |\n","| 20recall | 0.0515 |\n","| 40precision | 14.3 |\n","| 40recall | 0.0882 |\n","| 5precision | 2.46 |\n","| 5recall | 0.0159 |\n","| epoch | 867 |\n","| loss | 0.176 |\n","| type | training |\n","--------------------------\n","868\n","5 precision: 2.7\n","10 precision: 4.64\n","20 precision: 8.54\n","40 precision: 15.52\n","--------------------------\n","| 10precision | 4.64 |\n","| 10recall | 0.0265 |\n","| 20precision | 8.54 |\n","| 20recall | 0.049 |\n","| 40precision | 15.5 |\n","| 40recall | 0.0865 |\n","| 5precision | 2.7 |\n","| 5recall | 0.0158 |\n","| epoch | 868 |\n","| loss | 0.1806 |\n","| type | training |\n","--------------------------\n","869\n","5 precision: 2.16\n","10 precision: 4.46\n","20 precision: 8.6\n","40 precision: 15.0\n","--------------------------\n","| 10precision | 4.46 |\n","| 10recall | 0.0243 |\n","| 20precision | 8.6 |\n","| 20recall | 0.046 |\n","| 40precision | 15 |\n","| 40recall | 0.0797 |\n","| 5precision | 2.16 |\n","| 5recall | 0.0116 |\n","| epoch | 869 |\n","| loss | 0.1909 |\n","| type | training |\n","--------------------------\n","870\n","5 precision: 2.6\n","10 precision: 4.74\n","20 precision: 8.42\n","40 precision: 14.98\n","--------------------------\n","| 10precision | 4.74 |\n","| 10recall | 0.0301 |\n","| 20precision | 8.42 |\n","| 20recall | 0.0518 |\n","| 40precision | 15 |\n","| 40recall | 0.0902 |\n","| 5precision | 2.6 |\n","| 5recall | 0.0168 |\n","| epoch | 870 |\n","| loss | 0.181 |\n","| type | training |\n","--------------------------\n","871\n","5 precision: 2.78\n","10 precision: 5.2\n","20 precision: 9.66\n","40 precision: 17.08\n","--------------------------\n","| 10precision | 5.2 |\n","| 10recall | 0.0268 |\n","| 20precision | 9.66 |\n","| 20recall | 0.0503 |\n","| 40precision | 17.1 |\n","| 40recall | 0.0877 |\n","| 5precision | 2.78 |\n","| 5recall | 0.0149 |\n","| epoch | 871 |\n","| loss | 0.1739 |\n","| type | training |\n","--------------------------\n","872\n","5 precision: 2.84\n","10 precision: 5.22\n","20 precision: 9.16\n","40 precision: 16.86\n","--------------------------\n","| 10precision | 5.22 |\n","| 10recall | 0.0295 |\n","| 20precision | 9.16 |\n","| 20recall | 0.0509 |\n","| 40precision | 16.9 |\n","| 40recall | 0.0927 |\n","| 5precision | 2.84 |\n","| 5recall | 0.0165 |\n","| epoch | 872 |\n","| loss | 0.1598 |\n","| type | training |\n","--------------------------\n","873\n","5 precision: 2.68\n","10 precision: 4.92\n","20 precision: 8.98\n","40 precision: 15.62\n","--------------------------\n","| 10precision | 4.92 |\n","| 10recall | 0.0271 |\n","| 20precision | 8.98 |\n","| 20recall | 0.0486 |\n","| 40precision | 15.6 |\n","| 40recall | 0.0835 |\n","| 5precision | 2.68 |\n","| 5recall | 0.0148 |\n","| epoch | 873 |\n","| loss | 0.1752 |\n","| type | training |\n","--------------------------\n","874\n","5 precision: 2.66\n","10 precision: 4.86\n","20 precision: 8.86\n","40 precision: 15.88\n","--------------------------\n","| 10precision | 4.86 |\n","| 10recall | 0.0256 |\n","| 20precision | 8.86 |\n","| 20recall | 0.0475 |\n","| 40precision | 15.9 |\n","| 40recall | 0.0844 |\n","| 5precision | 2.66 |\n","| 5recall | 0.0136 |\n","| epoch | 874 |\n","| loss | 0.171 |\n","| type | training |\n","--------------------------\n","875\n","5 precision: 2.26\n","10 precision: 4.66\n","20 precision: 8.58\n","40 precision: 15.42\n","--------------------------\n","| 10precision | 4.66 |\n","| 10recall | 0.029 |\n","| 20precision | 8.58 |\n","| 20recall | 0.051 |\n","| 40precision | 15.4 |\n","| 40recall | 0.0909 |\n","| 5precision | 2.26 |\n","| 5recall | 0.0139 |\n","| epoch | 875 |\n","| loss | 0.1823 |\n","| type | training |\n","--------------------------\n","876\n","5 precision: 2.62\n","10 precision: 4.96\n","20 precision: 9.18\n","40 precision: 16.46\n","--------------------------\n","| 10precision | 4.96 |\n","| 10recall | 0.0302 |\n","| 20precision | 9.18 |\n","| 20recall | 0.0562 |\n","| 40precision | 16.5 |\n","| 40recall | 0.1 |\n","| 5precision | 2.62 |\n","| 5recall | 0.0159 |\n","| epoch | 876 |\n","| loss | 0.162 |\n","| type | training |\n","--------------------------\n","877\n","5 precision: 2.54\n","10 precision: 4.78\n","20 precision: 8.34\n","40 precision: 14.9\n","--------------------------\n","| 10precision | 4.78 |\n","| 10recall | 0.028 |\n","| 20precision | 8.34 |\n","| 20recall | 0.0484 |\n","| 40precision | 14.9 |\n","| 40recall | 0.0865 |\n","| 5precision | 2.54 |\n","| 5recall | 0.0148 |\n","| epoch | 877 |\n","| loss | 0.1547 |\n","| type | training |\n","--------------------------\n","878\n","5 precision: 2.58\n","10 precision: 4.96\n","20 precision: 9.36\n","40 precision: 16.36\n","--------------------------\n","| 10precision | 4.96 |\n","| 10recall | 0.0271 |\n","| 20precision | 9.36 |\n","| 20recall | 0.0503 |\n","| 40precision | 16.4 |\n","| 40recall | 0.0868 |\n","| 5precision | 2.58 |\n","| 5recall | 0.0145 |\n","| epoch | 878 |\n","| loss | 0.1744 |\n","| type | training |\n","--------------------------\n","879\n","5 precision: 2.7\n","10 precision: 5.2\n","20 precision: 9.38\n","40 precision: 17.46\n","--------------------------\n","| 10precision | 5.2 |\n","| 10recall | 0.0271 |\n","| 20precision | 9.38 |\n","| 20recall | 0.0484 |\n","| 40precision | 17.5 |\n","| 40recall | 0.0888 |\n","| 5precision | 2.7 |\n","| 5recall | 0.0141 |\n","| epoch | 879 |\n","| loss | 0.1879 |\n","| type | training |\n","--------------------------\n","880\n","5 precision: 2.62\n","10 precision: 4.56\n","20 precision: 8.5\n","40 precision: 15.08\n","--------------------------\n","| 10precision | 4.56 |\n","| 10recall | 0.0263 |\n","| 20precision | 8.5 |\n","| 20recall | 0.0492 |\n","| 40precision | 15.1 |\n","| 40recall | 0.0873 |\n","| 5precision | 2.62 |\n","| 5recall | 0.0154 |\n","| epoch | 880 |\n","| loss | 0.1882 |\n","| type | training |\n","--------------------------\n","881\n","5 precision: 2.5\n","10 precision: 4.6\n","20 precision: 7.9\n","40 precision: 14.58\n","--------------------------\n","| 10precision | 4.6 |\n","| 10recall | 0.0268 |\n","| 20precision | 7.9 |\n","| 20recall | 0.0443 |\n","| 40precision | 14.6 |\n","| 40recall | 0.0817 |\n","| 5precision | 2.5 |\n","| 5recall | 0.0143 |\n","| epoch | 881 |\n","| loss | 0.1844 |\n","| type | training |\n","--------------------------\n","882\n","5 precision: 2.38\n","10 precision: 4.64\n","20 precision: 8.86\n","40 precision: 15.86\n","--------------------------\n","| 10precision | 4.64 |\n","| 10recall | 0.0254 |\n","| 20precision | 8.86 |\n","| 20recall | 0.0475 |\n","| 40precision | 15.9 |\n","| 40recall | 0.0847 |\n","| 5precision | 2.38 |\n","| 5recall | 0.0129 |\n","| epoch | 882 |\n","| loss | 0.1845 |\n","| type | training |\n","--------------------------\n","883\n","5 precision: 2.7\n","10 precision: 4.7\n","20 precision: 9.02\n","40 precision: 14.9\n","--------------------------\n","| 10precision | 4.7 |\n","| 10recall | 0.028 |\n","| 20precision | 9.02 |\n","| 20recall | 0.0536 |\n","| 40precision | 14.9 |\n","| 40recall | 0.0888 |\n","| 5precision | 2.7 |\n","| 5recall | 0.0166 |\n","| epoch | 883 |\n","| loss | 0.1534 |\n","| type | training |\n","--------------------------\n","884\n","5 precision: 2.48\n","10 precision: 4.74\n","20 precision: 8.8\n","40 precision: 15.06\n","--------------------------\n","| 10precision | 4.74 |\n","| 10recall | 0.029 |\n","| 20precision | 8.8 |\n","| 20recall | 0.0537 |\n","| 40precision | 15.1 |\n","| 40recall | 0.0907 |\n","| 5precision | 2.48 |\n","| 5recall | 0.0159 |\n","| epoch | 884 |\n","| loss | 0.1612 |\n","| type | training |\n","--------------------------\n","885\n","5 precision: 2.48\n","10 precision: 4.78\n","20 precision: 8.38\n","40 precision: 15.04\n","--------------------------\n","| 10precision | 4.78 |\n","| 10recall | 0.0287 |\n","| 20precision | 8.38 |\n","| 20recall | 0.0508 |\n","| 40precision | 15 |\n","| 40recall | 0.0899 |\n","| 5precision | 2.48 |\n","| 5recall | 0.0147 |\n","| epoch | 885 |\n","| loss | 0.1912 |\n","| type | training |\n","--------------------------\n","886\n","5 precision: 2.82\n","10 precision: 4.98\n","20 precision: 8.98\n","40 precision: 15.84\n","--------------------------\n","| 10precision | 4.98 |\n","| 10recall | 0.0277 |\n","| 20precision | 8.98 |\n","| 20recall | 0.0494 |\n","| 40precision | 15.8 |\n","| 40recall | 0.0876 |\n","| 5precision | 2.82 |\n","| 5recall | 0.0161 |\n","| epoch | 886 |\n","| loss | 0.187 |\n","| type | training |\n","--------------------------\n","887\n","5 precision: 2.68\n","10 precision: 4.86\n","20 precision: 9.26\n","40 precision: 16.04\n","--------------------------\n","| 10precision | 4.86 |\n","| 10recall | 0.0284 |\n","| 20precision | 9.26 |\n","| 20recall | 0.0531 |\n","| 40precision | 16 |\n","| 40recall | 0.0916 |\n","| 5precision | 2.68 |\n","| 5recall | 0.0162 |\n","| epoch | 887 |\n","| loss | 0.1698 |\n","| type | training |\n","--------------------------\n","888\n","5 precision: 2.62\n","10 precision: 4.62\n","20 precision: 8.32\n","40 precision: 14.7\n","--------------------------\n","| 10precision | 4.62 |\n","| 10recall | 0.027 |\n","| 20precision | 8.32 |\n","| 20recall | 0.0476 |\n","| 40precision | 14.7 |\n","| 40recall | 0.0837 |\n","| 5precision | 2.62 |\n","| 5recall | 0.0154 |\n","| epoch | 888 |\n","| loss | 0.1685 |\n","| type | training |\n","--------------------------\n","889\n","5 precision: 2.74\n","10 precision: 4.82\n","20 precision: 8.86\n","40 precision: 15.16\n","--------------------------\n","| 10precision | 4.82 |\n","| 10recall | 0.0293 |\n","| 20precision | 8.86 |\n","| 20recall | 0.0526 |\n","| 40precision | 15.2 |\n","| 40recall | 0.0895 |\n","| 5precision | 2.74 |\n","| 5recall | 0.0164 |\n","| epoch | 889 |\n","| loss | 0.1514 |\n","| type | training |\n","--------------------------\n","890\n","5 precision: 2.62\n","10 precision: 4.72\n","20 precision: 8.4\n","40 precision: 14.6\n","--------------------------\n","| 10precision | 4.72 |\n","| 10recall | 0.0298 |\n","| 20precision | 8.4 |\n","| 20recall | 0.0518 |\n","| 40precision | 14.6 |\n","| 40recall | 0.0882 |\n","| 5precision | 2.62 |\n","| 5recall | 0.017 |\n","| epoch | 890 |\n","| loss | 0.1529 |\n","| type | training |\n","--------------------------\n","891\n","5 precision: 2.36\n","10 precision: 4.28\n","20 precision: 7.68\n","40 precision: 13.88\n","--------------------------\n","| 10precision | 4.28 |\n","| 10recall | 0.0292 |\n","| 20precision | 7.68 |\n","| 20recall | 0.0527 |\n","| 40precision | 13.9 |\n","| 40recall | 0.0958 |\n","| 5precision | 2.36 |\n","| 5recall | 0.0167 |\n","| epoch | 891 |\n","| loss | 0.1654 |\n","| type | training |\n","--------------------------\n","892\n","5 precision: 2.52\n","10 precision: 4.46\n","20 precision: 8.12\n","40 precision: 14.48\n","--------------------------\n","| 10precision | 4.46 |\n","| 10recall | 0.0265 |\n","| 20precision | 8.12 |\n","| 20recall | 0.0474 |\n","| 40precision | 14.5 |\n","| 40recall | 0.0849 |\n","| 5precision | 2.52 |\n","| 5recall | 0.0153 |\n","| epoch | 892 |\n","| loss | 0.1656 |\n","| type | training |\n","--------------------------\n","893\n","5 precision: 2.26\n","10 precision: 4.06\n","20 precision: 7.28\n","40 precision: 13.1\n","--------------------------\n","| 10precision | 4.06 |\n","| 10recall | 0.0291 |\n","| 20precision | 7.28 |\n","| 20recall | 0.052 |\n","| 40precision | 13.1 |\n","| 40recall | 0.0926 |\n","| 5precision | 2.26 |\n","| 5recall | 0.0163 |\n","| epoch | 893 |\n","| loss | 0.1608 |\n","| type | training |\n","--------------------------\n","894\n","5 precision: 2.5\n","10 precision: 4.52\n","20 precision: 8.32\n","40 precision: 15.54\n","--------------------------\n","| 10precision | 4.52 |\n","| 10recall | 0.0244 |\n","| 20precision | 8.32 |\n","| 20recall | 0.044 |\n","| 40precision | 15.5 |\n","| 40recall | 0.0821 |\n","| 5precision | 2.5 |\n","| 5recall | 0.0138 |\n","| epoch | 894 |\n","| loss | 0.1714 |\n","| type | training |\n","--------------------------\n","895\n","5 precision: 2.38\n","10 precision: 4.44\n","20 precision: 7.92\n","40 precision: 14.16\n","--------------------------\n","| 10precision | 4.44 |\n","| 10recall | 0.0289 |\n","| 20precision | 7.92 |\n","| 20recall | 0.0506 |\n","| 40precision | 14.2 |\n","| 40recall | 0.0893 |\n","| 5precision | 2.38 |\n","| 5recall | 0.0152 |\n","| epoch | 895 |\n","| loss | 0.1863 |\n","| type | training |\n","--------------------------\n","896\n","5 precision: 2.8\n","10 precision: 5.1\n","20 precision: 9.04\n","40 precision: 16.5\n","--------------------------\n","| 10precision | 5.1 |\n","| 10recall | 0.0294 |\n","| 20precision | 9.04 |\n","| 20recall | 0.0521 |\n","| 40precision | 16.5 |\n","| 40recall | 0.0933 |\n","| 5precision | 2.8 |\n","| 5recall | 0.016 |\n","| epoch | 896 |\n","| loss | 0.1794 |\n","| type | training |\n","--------------------------\n","897\n","5 precision: 2.54\n","10 precision: 4.6\n","20 precision: 8.64\n","40 precision: 15.4\n","--------------------------\n","| 10precision | 4.6 |\n","| 10recall | 0.0278 |\n","| 20precision | 8.64 |\n","| 20recall | 0.0526 |\n","| 40precision | 15.4 |\n","| 40recall | 0.0923 |\n","| 5precision | 2.54 |\n","| 5recall | 0.0158 |\n","| epoch | 897 |\n","| loss | 0.1836 |\n","| type | training |\n","--------------------------\n","898\n","5 precision: 2.46\n","10 precision: 4.7\n","20 precision: 8.46\n","40 precision: 15.68\n","--------------------------\n","| 10precision | 4.7 |\n","| 10recall | 0.0263 |\n","| 20precision | 8.46 |\n","| 20recall | 0.0471 |\n","| 40precision | 15.7 |\n","| 40recall | 0.0856 |\n","| 5precision | 2.46 |\n","| 5recall | 0.0141 |\n","| epoch | 898 |\n","| loss | 0.1868 |\n","| type | training |\n","--------------------------\n","899\n","5 precision: 2.7\n","10 precision: 4.62\n","20 precision: 8.96\n","40 precision: 15.72\n","--------------------------\n","| 10precision | 4.62 |\n","| 10recall | 0.03 |\n","| 20precision | 8.96 |\n","| 20recall | 0.0572 |\n","| 40precision | 15.7 |\n","| 40recall | 0.0998 |\n","| 5precision | 2.7 |\n","| 5recall | 0.0184 |\n","| epoch | 899 |\n","| loss | 0.1926 |\n","| type | training |\n","--------------------------\n","900\n","5 precision: 2.7\n","10 precision: 5.08\n","20 precision: 9.06\n","40 precision: 16.18\n","--------------------------\n","| 10precision | 5.08 |\n","| 10recall | 0.0298 |\n","| 20precision | 9.06 |\n","| 20recall | 0.0528 |\n","| 40precision | 16.2 |\n","| 40recall | 0.0914 |\n","| 5precision | 2.7 |\n","| 5recall | 0.0158 |\n","| epoch | 900 |\n","| loss | 0.1587 |\n","| type | training |\n","--------------------------\n","5 precision: 3.2222\n","10 precision: 5.8889\n","20 precision: 11.5\n","40 precision: 19.2778\n","----------------------------\n","| 10precision | 5.89 |\n","| 10recall | 0.0335 |\n","| 20precision | 11.5 |\n","| 20recall | 0.0634 |\n","| 40precision | 19.3 |\n","| 40recall | 0.105 |\n","| 5precision | 3.22 |\n","| 5recall | 0.0183 |\n","| epoch | 900 |\n","| type | validation |\n","----------------------------\n","5 precision: 3.3158\n","10 precision: 5.9474\n","20 precision: 11.0263\n","40 precision: 17.9211\n","----------------------------\n","| 10precision | 5.95 |\n","| 10recall | 0.0352 |\n","| 20precision | 11 |\n","| 20recall | 0.0636 |\n","| 40precision | 17.9 |\n","| 40recall | 0.101 |\n","| 5precision | 3.32 |\n","| 5recall | 0.0202 |\n","| epoch | 900 |\n","| type | evaluation |\n","----------------------------\n","901\n","5 precision: 2.72\n","10 precision: 4.82\n","20 precision: 8.7\n","40 precision: 15.18\n","--------------------------\n","| 10precision | 4.82 |\n","| 10recall | 0.0307 |\n","| 20precision | 8.7 |\n","| 20recall | 0.0541 |\n","| 40precision | 15.2 |\n","| 40recall | 0.0925 |\n","| 5precision | 2.72 |\n","| 5recall | 0.0172 |\n","| epoch | 901 |\n","| loss | 0.1814 |\n","| type | training |\n","--------------------------\n","902\n","5 precision: 2.52\n","10 precision: 4.58\n","20 precision: 8.14\n","40 precision: 15.44\n","--------------------------\n","| 10precision | 4.58 |\n","| 10recall | 0.0274 |\n","| 20precision | 8.14 |\n","| 20recall | 0.0478 |\n","| 40precision | 15.4 |\n","| 40recall | 0.09 |\n","| 5precision | 2.52 |\n","| 5recall | 0.015 |\n","| epoch | 902 |\n","| loss | 0.1854 |\n","| type | training |\n","--------------------------\n","903\n","5 precision: 2.6\n","10 precision: 4.26\n","20 precision: 8.66\n","40 precision: 15.66\n","--------------------------\n","| 10precision | 4.26 |\n","| 10recall | 0.0229 |\n","| 20precision | 8.66 |\n","| 20recall | 0.0465 |\n","| 40precision | 15.7 |\n","| 40recall | 0.0812 |\n","| 5precision | 2.6 |\n","| 5recall | 0.0137 |\n","| epoch | 903 |\n","| loss | 0.1301 |\n","| type | training |\n","--------------------------\n","904\n","5 precision: 2.54\n","10 precision: 4.92\n","20 precision: 9.4\n","40 precision: 17.34\n","--------------------------\n","| 10precision | 4.92 |\n","| 10recall | 0.0256 |\n","| 20precision | 9.4 |\n","| 20recall | 0.0491 |\n","| 40precision | 17.3 |\n","| 40recall | 0.0912 |\n","| 5precision | 2.54 |\n","| 5recall | 0.0132 |\n","| epoch | 904 |\n","| loss | 0.1691 |\n","| type | training |\n","--------------------------\n","905\n","5 precision: 2.66\n","10 precision: 5.04\n","20 precision: 9.32\n","40 precision: 16.62\n","--------------------------\n","| 10precision | 5.04 |\n","| 10recall | 0.0291 |\n","| 20precision | 9.32 |\n","| 20recall | 0.0526 |\n","| 40precision | 16.6 |\n","| 40recall | 0.0928 |\n","| 5precision | 2.66 |\n","| 5recall | 0.0152 |\n","| epoch | 905 |\n","| loss | 0.1831 |\n","| type | training |\n","--------------------------\n","906\n","5 precision: 2.52\n","10 precision: 4.56\n","20 precision: 8.36\n","40 precision: 15.04\n","--------------------------\n","| 10precision | 4.56 |\n","| 10recall | 0.0288 |\n","| 20precision | 8.36 |\n","| 20recall | 0.0531 |\n","| 40precision | 15 |\n","| 40recall | 0.0937 |\n","| 5precision | 2.52 |\n","| 5recall | 0.016 |\n","| epoch | 906 |\n","| loss | 0.202 |\n","| type | training |\n","--------------------------\n","907\n","5 precision: 2.52\n","10 precision: 4.62\n","20 precision: 8.64\n","40 precision: 15.3\n","--------------------------\n","| 10precision | 4.62 |\n","| 10recall | 0.0274 |\n","| 20precision | 8.64 |\n","| 20recall | 0.0513 |\n","| 40precision | 15.3 |\n","| 40recall | 0.0884 |\n","| 5precision | 2.52 |\n","| 5recall | 0.0151 |\n","| epoch | 907 |\n","| loss | 0.1684 |\n","| type | training |\n","--------------------------\n","908\n","5 precision: 2.56\n","10 precision: 4.34\n","20 precision: 8.2\n","40 precision: 14.88\n","--------------------------\n","| 10precision | 4.34 |\n","| 10recall | 0.0266 |\n","| 20precision | 8.2 |\n","| 20recall | 0.05 |\n","| 40precision | 14.9 |\n","| 40recall | 0.0893 |\n","| 5precision | 2.56 |\n","| 5recall | 0.0157 |\n","| epoch | 908 |\n","| loss | 0.1602 |\n","| type | training |\n","--------------------------\n","909\n","5 precision: 2.6\n","10 precision: 4.7\n","20 precision: 8.54\n","40 precision: 14.78\n","--------------------------\n","| 10precision | 4.7 |\n","| 10recall | 0.0284 |\n","| 20precision | 8.54 |\n","| 20recall | 0.0517 |\n","| 40precision | 14.8 |\n","| 40recall | 0.0876 |\n","| 5precision | 2.6 |\n","| 5recall | 0.0163 |\n","| epoch | 909 |\n","| loss | 0.1935 |\n","| type | training |\n","--------------------------\n","910\n","5 precision: 2.2\n","10 precision: 4.66\n","20 precision: 8.7\n","40 precision: 15.64\n","--------------------------\n","| 10precision | 4.66 |\n","| 10recall | 0.0276 |\n","| 20precision | 8.7 |\n","| 20recall | 0.0511 |\n","| 40precision | 15.6 |\n","| 40recall | 0.0905 |\n","| 5precision | 2.2 |\n","| 5recall | 0.0132 |\n","| epoch | 910 |\n","| loss | 0.1604 |\n","| type | training |\n","--------------------------\n","911\n","5 precision: 2.76\n","10 precision: 5.1\n","20 precision: 9.6\n","40 precision: 16.78\n","--------------------------\n","| 10precision | 5.1 |\n","| 10recall | 0.0291 |\n","| 20precision | 9.6 |\n","| 20recall | 0.0542 |\n","| 40precision | 16.8 |\n","| 40recall | 0.0923 |\n","| 5precision | 2.76 |\n","| 5recall | 0.0158 |\n","| epoch | 911 |\n","| loss | 0.1824 |\n","| type | training |\n","--------------------------\n","912\n","5 precision: 2.66\n","10 precision: 4.9\n","20 precision: 8.6\n","40 precision: 15.84\n","--------------------------\n","| 10precision | 4.9 |\n","| 10recall | 0.026 |\n","| 20precision | 8.6 |\n","| 20recall | 0.0454 |\n","| 40precision | 15.8 |\n","| 40recall | 0.0834 |\n","| 5precision | 2.66 |\n","| 5recall | 0.014 |\n","| epoch | 912 |\n","| loss | 0.1919 |\n","| type | training |\n","--------------------------\n","913\n","5 precision: 2.74\n","10 precision: 4.62\n","20 precision: 8.94\n","40 precision: 16.02\n","--------------------------\n","| 10precision | 4.62 |\n","| 10recall | 0.0258 |\n","| 20precision | 8.94 |\n","| 20recall | 0.0496 |\n","| 40precision | 16 |\n","| 40recall | 0.0867 |\n","| 5precision | 2.74 |\n","| 5recall | 0.0156 |\n","| epoch | 913 |\n","| loss | 0.1858 |\n","| type | training |\n","--------------------------\n","914\n","5 precision: 2.76\n","10 precision: 4.56\n","20 precision: 8.64\n","40 precision: 15.4\n","--------------------------\n","| 10precision | 4.56 |\n","| 10recall | 0.0284 |\n","| 20precision | 8.64 |\n","| 20recall | 0.0532 |\n","| 40precision | 15.4 |\n","| 40recall | 0.0945 |\n","| 5precision | 2.76 |\n","| 5recall | 0.0175 |\n","| epoch | 914 |\n","| loss | 0.1779 |\n","| type | training |\n","--------------------------\n","915\n","5 precision: 2.68\n","10 precision: 4.74\n","20 precision: 8.76\n","40 precision: 15.22\n","--------------------------\n","| 10precision | 4.74 |\n","| 10recall | 0.0301 |\n","| 20precision | 8.76 |\n","| 20recall | 0.0537 |\n","| 40precision | 15.2 |\n","| 40recall | 0.0921 |\n","| 5precision | 2.68 |\n","| 5recall | 0.0168 |\n","| epoch | 915 |\n","| loss | 0.1812 |\n","| type | training |\n","--------------------------\n","916\n","5 precision: 2.72\n","10 precision: 5.0\n","20 precision: 9.16\n","40 precision: 16.52\n","--------------------------\n","| 10precision | 5 |\n","| 10recall | 0.0291 |\n","| 20precision | 9.16 |\n","| 20recall | 0.0541 |\n","| 40precision | 16.5 |\n","| 40recall | 0.0951 |\n","| 5precision | 2.72 |\n","| 5recall | 0.0166 |\n","| epoch | 916 |\n","| loss | 0.1854 |\n","| type | training |\n","--------------------------\n","917\n","5 precision: 2.8\n","10 precision: 5.02\n","20 precision: 9.06\n","40 precision: 16.1\n","--------------------------\n","| 10precision | 5.02 |\n","| 10recall | 0.0327 |\n","| 20precision | 9.06 |\n","| 20recall | 0.0574 |\n","| 40precision | 16.1 |\n","| 40recall | 0.1 |\n","| 5precision | 2.8 |\n","| 5recall | 0.0184 |\n","| epoch | 917 |\n","| loss | 0.2053 |\n","| type | training |\n","--------------------------\n","918\n","5 precision: 2.8\n","10 precision: 5.22\n","20 precision: 9.54\n","40 precision: 16.18\n","--------------------------\n","| 10precision | 5.22 |\n","| 10recall | 0.0323 |\n","| 20precision | 9.54 |\n","| 20recall | 0.0587 |\n","| 40precision | 16.2 |\n","| 40recall | 0.0985 |\n","| 5precision | 2.8 |\n","| 5recall | 0.0176 |\n","| epoch | 918 |\n","| loss | 0.1566 |\n","| type | training |\n","--------------------------\n","919\n","5 precision: 2.82\n","10 precision: 4.96\n","20 precision: 9.32\n","40 precision: 15.8\n","--------------------------\n","| 10precision | 4.96 |\n","| 10recall | 0.0287 |\n","| 20precision | 9.32 |\n","| 20recall | 0.0541 |\n","| 40precision | 15.8 |\n","| 40recall | 0.0912 |\n","| 5precision | 2.82 |\n","| 5recall | 0.0169 |\n","| epoch | 919 |\n","| loss | 0.183 |\n","| type | training |\n","--------------------------\n","920\n","5 precision: 2.42\n","10 precision: 4.7\n","20 precision: 8.96\n","40 precision: 15.8\n","--------------------------\n","| 10precision | 4.7 |\n","| 10recall | 0.0291 |\n","| 20precision | 8.96 |\n","| 20recall | 0.0565 |\n","| 40precision | 15.8 |\n","| 40recall | 0.0993 |\n","| 5precision | 2.42 |\n","| 5recall | 0.0153 |\n","| epoch | 920 |\n","| loss | 0.1779 |\n","| type | training |\n","--------------------------\n","921\n","5 precision: 2.5\n","10 precision: 4.58\n","20 precision: 8.42\n","40 precision: 14.56\n","--------------------------\n","| 10precision | 4.58 |\n","| 10recall | 0.0283 |\n","| 20precision | 8.42 |\n","| 20recall | 0.0514 |\n","| 40precision | 14.6 |\n","| 40recall | 0.0884 |\n","| 5precision | 2.5 |\n","| 5recall | 0.0156 |\n","| epoch | 921 |\n","| loss | 0.1625 |\n","| type | training |\n","--------------------------\n","922\n","5 precision: 2.78\n","10 precision: 5.06\n","20 precision: 9.16\n","40 precision: 16.18\n","--------------------------\n","| 10precision | 5.06 |\n","| 10recall | 0.0294 |\n","| 20precision | 9.16 |\n","| 20recall | 0.0519 |\n","| 40precision | 16.2 |\n","| 40recall | 0.0899 |\n","| 5precision | 2.78 |\n","| 5recall | 0.0164 |\n","| epoch | 922 |\n","| loss | 0.1804 |\n","| type | training |\n","--------------------------\n","923\n","5 precision: 2.76\n","10 precision: 5.1\n","20 precision: 9.48\n","40 precision: 16.74\n","--------------------------\n","| 10precision | 5.1 |\n","| 10recall | 0.028 |\n","| 20precision | 9.48 |\n","| 20recall | 0.051 |\n","| 40precision | 16.7 |\n","| 40recall | 0.0902 |\n","| 5precision | 2.76 |\n","| 5recall | 0.0158 |\n","| epoch | 923 |\n","| loss | 0.1715 |\n","| type | training |\n","--------------------------\n","924\n","5 precision: 2.84\n","10 precision: 5.16\n","20 precision: 9.16\n","40 precision: 16.48\n","--------------------------\n","| 10precision | 5.16 |\n","| 10recall | 0.0318 |\n","| 20precision | 9.16 |\n","| 20recall | 0.0565 |\n","| 40precision | 16.5 |\n","| 40recall | 0.0998 |\n","| 5precision | 2.84 |\n","| 5recall | 0.0176 |\n","| epoch | 924 |\n","| loss | 0.1884 |\n","| type | training |\n","--------------------------\n","925\n","5 precision: 2.86\n","10 precision: 5.24\n","20 precision: 9.12\n","40 precision: 16.42\n","--------------------------\n","| 10precision | 5.24 |\n","| 10recall | 0.0303 |\n","| 20precision | 9.12 |\n","| 20recall | 0.052 |\n","| 40precision | 16.4 |\n","| 40recall | 0.0912 |\n","| 5precision | 2.86 |\n","| 5recall | 0.0165 |\n","| epoch | 925 |\n","| loss | 0.1853 |\n","| type | training |\n","--------------------------\n","926\n","5 precision: 2.68\n","10 precision: 4.72\n","20 precision: 8.92\n","40 precision: 15.86\n","--------------------------\n","| 10precision | 4.72 |\n","| 10recall | 0.0281 |\n","| 20precision | 8.92 |\n","| 20recall | 0.0516 |\n","| 40precision | 15.9 |\n","| 40recall | 0.0905 |\n","| 5precision | 2.68 |\n","| 5recall | 0.0162 |\n","| epoch | 926 |\n","| loss | 0.1794 |\n","| type | training |\n","--------------------------\n","927\n","5 precision: 2.62\n","10 precision: 4.66\n","20 precision: 8.42\n","40 precision: 15.24\n","--------------------------\n","| 10precision | 4.66 |\n","| 10recall | 0.0283 |\n","| 20precision | 8.42 |\n","| 20recall | 0.0506 |\n","| 40precision | 15.2 |\n","| 40recall | 0.0906 |\n","| 5precision | 2.62 |\n","| 5recall | 0.0162 |\n","| epoch | 927 |\n","| loss | 0.174 |\n","| type | training |\n","--------------------------\n","928\n","5 precision: 2.44\n","10 precision: 4.5\n","20 precision: 8.58\n","40 precision: 15.48\n","--------------------------\n","| 10precision | 4.5 |\n","| 10recall | 0.0279 |\n","| 20precision | 8.58 |\n","| 20recall | 0.0524 |\n","| 40precision | 15.5 |\n","| 40recall | 0.0941 |\n","| 5precision | 2.44 |\n","| 5recall | 0.0151 |\n","| epoch | 928 |\n","| loss | 0.1572 |\n","| type | training |\n","--------------------------\n","929\n","5 precision: 2.48\n","10 precision: 4.54\n","20 precision: 8.86\n","40 precision: 14.92\n","--------------------------\n","| 10precision | 4.54 |\n","| 10recall | 0.0281 |\n","| 20precision | 8.86 |\n","| 20recall | 0.0541 |\n","| 40precision | 14.9 |\n","| 40recall | 0.0897 |\n","| 5precision | 2.48 |\n","| 5recall | 0.0157 |\n","| epoch | 929 |\n","| loss | 0.173 |\n","| type | training |\n","--------------------------\n","930\n","5 precision: 2.92\n","10 precision: 5.14\n","20 precision: 9.42\n","40 precision: 16.7\n","--------------------------\n","| 10precision | 5.14 |\n","| 10recall | 0.0329 |\n","| 20precision | 9.42 |\n","| 20recall | 0.0603 |\n","| 40precision | 16.7 |\n","| 40recall | 0.105 |\n","| 5precision | 2.92 |\n","| 5recall | 0.018 |\n","| epoch | 930 |\n","| loss | 0.1883 |\n","| type | training |\n","--------------------------\n","931\n","5 precision: 2.4\n","10 precision: 4.54\n","20 precision: 8.48\n","40 precision: 15.32\n","--------------------------\n","| 10precision | 4.54 |\n","| 10recall | 0.0241 |\n","| 20precision | 8.48 |\n","| 20recall | 0.0444 |\n","| 40precision | 15.3 |\n","| 40recall | 0.0797 |\n","| 5precision | 2.4 |\n","| 5recall | 0.013 |\n","| epoch | 931 |\n","| loss | 0.1748 |\n","| type | training |\n","--------------------------\n","932\n","5 precision: 2.34\n","10 precision: 4.6\n","20 precision: 8.62\n","40 precision: 15.34\n","--------------------------\n","| 10precision | 4.6 |\n","| 10recall | 0.0267 |\n","| 20precision | 8.62 |\n","| 20recall | 0.0491 |\n","| 40precision | 15.3 |\n","| 40recall | 0.0874 |\n","| 5precision | 2.34 |\n","| 5recall | 0.0135 |\n","| epoch | 932 |\n","| loss | 0.168 |\n","| type | training |\n","--------------------------\n","933\n","5 precision: 2.4\n","10 precision: 4.6\n","20 precision: 8.52\n","40 precision: 14.58\n","--------------------------\n","| 10precision | 4.6 |\n","| 10recall | 0.0286 |\n","| 20precision | 8.52 |\n","| 20recall | 0.0513 |\n","| 40precision | 14.6 |\n","| 40recall | 0.085 |\n","| 5precision | 2.4 |\n","| 5recall | 0.0152 |\n","| epoch | 933 |\n","| loss | 0.187 |\n","| type | training |\n","--------------------------\n","934\n","5 precision: 2.56\n","10 precision: 4.62\n","20 precision: 8.14\n","40 precision: 14.82\n","--------------------------\n","| 10precision | 4.62 |\n","| 10recall | 0.0285 |\n","| 20precision | 8.14 |\n","| 20recall | 0.0499 |\n","| 40precision | 14.8 |\n","| 40recall | 0.0912 |\n","| 5precision | 2.56 |\n","| 5recall | 0.0157 |\n","| epoch | 934 |\n","| loss | 0.1833 |\n","| type | training |\n","--------------------------\n","935\n","5 precision: 2.66\n","10 precision: 4.8\n","20 precision: 8.74\n","40 precision: 15.42\n","--------------------------\n","| 10precision | 4.8 |\n","| 10recall | 0.0305 |\n","| 20precision | 8.74 |\n","| 20recall | 0.0544 |\n","| 40precision | 15.4 |\n","| 40recall | 0.0944 |\n","| 5precision | 2.66 |\n","| 5recall | 0.0175 |\n","| epoch | 935 |\n","| loss | 0.1598 |\n","| type | training |\n","--------------------------\n","936\n","5 precision: 2.82\n","10 precision: 5.12\n","20 precision: 9.0\n","40 precision: 16.16\n","--------------------------\n","| 10precision | 5.12 |\n","| 10recall | 0.0277 |\n","| 20precision | 9 |\n","| 20recall | 0.0477 |\n","| 40precision | 16.2 |\n","| 40recall | 0.0854 |\n","| 5precision | 2.82 |\n","| 5recall | 0.0155 |\n","| epoch | 936 |\n","| loss | 0.1691 |\n","| type | training |\n","--------------------------\n","937\n","5 precision: 2.54\n","10 precision: 4.8\n","20 precision: 8.2\n","40 precision: 15.0\n","--------------------------\n","| 10precision | 4.8 |\n","| 10recall | 0.0266 |\n","| 20precision | 8.2 |\n","| 20recall | 0.0442 |\n","| 40precision | 15 |\n","| 40recall | 0.08 |\n","| 5precision | 2.54 |\n","| 5recall | 0.0143 |\n","| epoch | 937 |\n","| loss | 0.1788 |\n","| type | training |\n","--------------------------\n","938\n","5 precision: 2.62\n","10 precision: 4.74\n","20 precision: 8.44\n","40 precision: 15.46\n","--------------------------\n","| 10precision | 4.74 |\n","| 10recall | 0.0279 |\n","| 20precision | 8.44 |\n","| 20recall | 0.0478 |\n","| 40precision | 15.5 |\n","| 40recall | 0.0868 |\n","| 5precision | 2.62 |\n","| 5recall | 0.0156 |\n","| epoch | 938 |\n","| loss | 0.1889 |\n","| type | training |\n","--------------------------\n","939\n","5 precision: 2.68\n","10 precision: 4.9\n","20 precision: 9.04\n","40 precision: 16.6\n","--------------------------\n","| 10precision | 4.9 |\n","| 10recall | 0.026 |\n","| 20precision | 9.04 |\n","| 20recall | 0.0471 |\n","| 40precision | 16.6 |\n","| 40recall | 0.0847 |\n","| 5precision | 2.68 |\n","| 5recall | 0.0143 |\n","| epoch | 939 |\n","| loss | 0.1781 |\n","| type | training |\n","--------------------------\n","940\n","5 precision: 2.76\n","10 precision: 5.04\n","20 precision: 9.18\n","40 precision: 15.5\n","--------------------------\n","| 10precision | 5.04 |\n","| 10recall | 0.0294 |\n","| 20precision | 9.18 |\n","| 20recall | 0.0517 |\n","| 40precision | 15.5 |\n","| 40recall | 0.0859 |\n","| 5precision | 2.76 |\n","| 5recall | 0.016 |\n","| epoch | 940 |\n","| loss | 0.1807 |\n","| type | training |\n","--------------------------\n","941\n","5 precision: 2.82\n","10 precision: 5.08\n","20 precision: 9.32\n","40 precision: 15.88\n","--------------------------\n","| 10precision | 5.08 |\n","| 10recall | 0.0306 |\n","| 20precision | 9.32 |\n","| 20recall | 0.0526 |\n","| 40precision | 15.9 |\n","| 40recall | 0.0862 |\n","| 5precision | 2.82 |\n","| 5recall | 0.017 |\n","| epoch | 941 |\n","| loss | 0.1722 |\n","| type | training |\n","--------------------------\n","942\n","5 precision: 2.7\n","10 precision: 5.12\n","20 precision: 9.22\n","40 precision: 16.98\n","--------------------------\n","| 10precision | 5.12 |\n","| 10recall | 0.0304 |\n","| 20precision | 9.22 |\n","| 20recall | 0.0532 |\n","| 40precision | 17 |\n","| 40recall | 0.097 |\n","| 5precision | 2.7 |\n","| 5recall | 0.0158 |\n","| epoch | 942 |\n","| loss | 0.1517 |\n","| type | training |\n","--------------------------\n","943\n","5 precision: 2.46\n","10 precision: 4.54\n","20 precision: 8.28\n","40 precision: 14.56\n","--------------------------\n","| 10precision | 4.54 |\n","| 10recall | 0.0284 |\n","| 20precision | 8.28 |\n","| 20recall | 0.0512 |\n","| 40precision | 14.6 |\n","| 40recall | 0.0886 |\n","| 5precision | 2.46 |\n","| 5recall | 0.0157 |\n","| epoch | 943 |\n","| loss | 0.1416 |\n","| type | training |\n","--------------------------\n","944\n","5 precision: 2.58\n","10 precision: 4.78\n","20 precision: 8.5\n","40 precision: 14.96\n","--------------------------\n","| 10precision | 4.78 |\n","| 10recall | 0.0276 |\n","| 20precision | 8.5 |\n","| 20recall | 0.0482 |\n","| 40precision | 15 |\n","| 40recall | 0.0848 |\n","| 5precision | 2.58 |\n","| 5recall | 0.0152 |\n","| epoch | 944 |\n","| loss | 0.187 |\n","| type | training |\n","--------------------------\n","945\n","5 precision: 2.46\n","10 precision: 4.56\n","20 precision: 8.72\n","40 precision: 15.26\n","--------------------------\n","| 10precision | 4.56 |\n","| 10recall | 0.0282 |\n","| 20precision | 8.72 |\n","| 20recall | 0.0549 |\n","| 40precision | 15.3 |\n","| 40recall | 0.0951 |\n","| 5precision | 2.46 |\n","| 5recall | 0.0154 |\n","| epoch | 945 |\n","| loss | 0.1509 |\n","| type | training |\n","--------------------------\n","946\n","5 precision: 2.7\n","10 precision: 4.96\n","20 precision: 9.06\n","40 precision: 16.16\n","--------------------------\n","| 10precision | 4.96 |\n","| 10recall | 0.026 |\n","| 20precision | 9.06 |\n","| 20recall | 0.0474 |\n","| 40precision | 16.2 |\n","| 40recall | 0.0841 |\n","| 5precision | 2.7 |\n","| 5recall | 0.0143 |\n","| epoch | 946 |\n","| loss | 0.1801 |\n","| type | training |\n","--------------------------\n","947\n","5 precision: 2.54\n","10 precision: 4.66\n","20 precision: 8.7\n","40 precision: 15.14\n","--------------------------\n","| 10precision | 4.66 |\n","| 10recall | 0.0316 |\n","| 20precision | 8.7 |\n","| 20recall | 0.0573 |\n","| 40precision | 15.1 |\n","| 40recall | 0.0958 |\n","| 5precision | 2.54 |\n","| 5recall | 0.0173 |\n","| epoch | 947 |\n","| loss | 0.1643 |\n","| type | training |\n","--------------------------\n","948\n","5 precision: 2.92\n","10 precision: 5.3\n","20 precision: 9.64\n","40 precision: 16.42\n","--------------------------\n","| 10precision | 5.3 |\n","| 10recall | 0.0317 |\n","| 20precision | 9.64 |\n","| 20recall | 0.0573 |\n","| 40precision | 16.4 |\n","| 40recall | 0.0948 |\n","| 5precision | 2.92 |\n","| 5recall | 0.0178 |\n","| epoch | 948 |\n","| loss | 0.1763 |\n","| type | training |\n","--------------------------\n","949\n","5 precision: 2.52\n","10 precision: 4.64\n","20 precision: 8.76\n","40 precision: 15.96\n","--------------------------\n","| 10precision | 4.64 |\n","| 10recall | 0.0268 |\n","| 20precision | 8.76 |\n","| 20recall | 0.0508 |\n","| 40precision | 16 |\n","| 40recall | 0.09 |\n","| 5precision | 2.52 |\n","| 5recall | 0.0151 |\n","| epoch | 949 |\n","| loss | 0.1597 |\n","| type | training |\n","--------------------------\n","950\n","5 precision: 2.78\n","10 precision: 5.28\n","20 precision: 9.6\n","40 precision: 17.16\n","--------------------------\n","| 10precision | 5.28 |\n","| 10recall | 0.0299 |\n","| 20precision | 9.6 |\n","| 20recall | 0.0526 |\n","| 40precision | 17.2 |\n","| 40recall | 0.0937 |\n","| 5precision | 2.78 |\n","| 5recall | 0.0155 |\n","| epoch | 950 |\n","| loss | 0.1691 |\n","| type | training |\n","--------------------------\n","951\n","5 precision: 2.74\n","10 precision: 4.92\n","20 precision: 8.82\n","40 precision: 15.5\n","--------------------------\n","| 10precision | 4.92 |\n","| 10recall | 0.0283 |\n","| 20precision | 8.82 |\n","| 20recall | 0.0488 |\n","| 40precision | 15.5 |\n","| 40recall | 0.086 |\n","| 5precision | 2.74 |\n","| 5recall | 0.0161 |\n","| epoch | 951 |\n","| loss | 0.1973 |\n","| type | training |\n","--------------------------\n","952\n","5 precision: 2.56\n","10 precision: 4.92\n","20 precision: 9.38\n","40 precision: 15.9\n","--------------------------\n","| 10precision | 4.92 |\n","| 10recall | 0.0288 |\n","| 20precision | 9.38 |\n","| 20recall | 0.0547 |\n","| 40precision | 15.9 |\n","| 40recall | 0.0919 |\n","| 5precision | 2.56 |\n","| 5recall | 0.0148 |\n","| epoch | 952 |\n","| loss | 0.1952 |\n","| type | training |\n","--------------------------\n","953\n","5 precision: 2.32\n","10 precision: 4.48\n","20 precision: 8.04\n","40 precision: 14.58\n","--------------------------\n","| 10precision | 4.48 |\n","| 10recall | 0.0254 |\n","| 20precision | 8.04 |\n","| 20recall | 0.0462 |\n","| 40precision | 14.6 |\n","| 40recall | 0.0821 |\n","| 5precision | 2.32 |\n","| 5recall | 0.0135 |\n","| epoch | 953 |\n","| loss | 0.1705 |\n","| type | training |\n","--------------------------\n","954\n","5 precision: 2.72\n","10 precision: 4.84\n","20 precision: 8.74\n","40 precision: 14.88\n","--------------------------\n","| 10precision | 4.84 |\n","| 10recall | 0.0293 |\n","| 20precision | 8.74 |\n","| 20recall | 0.0522 |\n","| 40precision | 14.9 |\n","| 40recall | 0.0874 |\n","| 5precision | 2.72 |\n","| 5recall | 0.0166 |\n","| epoch | 954 |\n","| loss | 0.1784 |\n","| type | training |\n","--------------------------\n","955\n","5 precision: 2.4\n","10 precision: 4.5\n","20 precision: 8.24\n","40 precision: 14.86\n","--------------------------\n","| 10precision | 4.5 |\n","| 10recall | 0.0277 |\n","| 20precision | 8.24 |\n","| 20recall | 0.0507 |\n","| 40precision | 14.9 |\n","| 40recall | 0.0898 |\n","| 5precision | 2.4 |\n","| 5recall | 0.0148 |\n","| epoch | 955 |\n","| loss | 0.156 |\n","| type | training |\n","--------------------------\n","956\n","5 precision: 2.72\n","10 precision: 5.36\n","20 precision: 9.7\n","40 precision: 17.24\n","--------------------------\n","| 10precision | 5.36 |\n","| 10recall | 0.0291 |\n","| 20precision | 9.7 |\n","| 20recall | 0.0526 |\n","| 40precision | 17.2 |\n","| 40recall | 0.0908 |\n","| 5precision | 2.72 |\n","| 5recall | 0.0146 |\n","| epoch | 956 |\n","| loss | 0.1799 |\n","| type | training |\n","--------------------------\n","957\n","5 precision: 2.42\n","10 precision: 4.64\n","20 precision: 8.5\n","40 precision: 15.34\n","--------------------------\n","| 10precision | 4.64 |\n","| 10recall | 0.0267 |\n","| 20precision | 8.5 |\n","| 20recall | 0.0478 |\n","| 40precision | 15.3 |\n","| 40recall | 0.0849 |\n","| 5precision | 2.42 |\n","| 5recall | 0.0137 |\n","| epoch | 957 |\n","| loss | 0.1789 |\n","| type | training |\n","--------------------------\n","958\n","5 precision: 2.72\n","10 precision: 5.12\n","20 precision: 9.52\n","40 precision: 16.3\n","--------------------------\n","| 10precision | 5.12 |\n","| 10recall | 0.0321 |\n","| 20precision | 9.52 |\n","| 20recall | 0.0574 |\n","| 40precision | 16.3 |\n","| 40recall | 0.0969 |\n","| 5precision | 2.72 |\n","| 5recall | 0.0177 |\n","| epoch | 958 |\n","| loss | 0.1636 |\n","| type | training |\n","--------------------------\n","959\n","5 precision: 2.76\n","10 precision: 4.9\n","20 precision: 8.92\n","40 precision: 16.1\n","--------------------------\n","| 10precision | 4.9 |\n","| 10recall | 0.0299 |\n","| 20precision | 8.92 |\n","| 20recall | 0.0532 |\n","| 40precision | 16.1 |\n","| 40recall | 0.0931 |\n","| 5precision | 2.76 |\n","| 5recall | 0.0171 |\n","| epoch | 959 |\n","| loss | 0.1542 |\n","| type | training |\n","--------------------------\n","960\n","5 precision: 2.66\n","10 precision: 4.9\n","20 precision: 8.92\n","40 precision: 15.6\n","--------------------------\n","| 10precision | 4.9 |\n","| 10recall | 0.0288 |\n","| 20precision | 8.92 |\n","| 20recall | 0.052 |\n","| 40precision | 15.6 |\n","| 40recall | 0.0893 |\n","| 5precision | 2.66 |\n","| 5recall | 0.0161 |\n","| epoch | 960 |\n","| loss | 0.1769 |\n","| type | training |\n","--------------------------\n","961\n","5 precision: 2.82\n","10 precision: 5.02\n","20 precision: 8.9\n","40 precision: 15.12\n","--------------------------\n","| 10precision | 5.02 |\n","| 10recall | 0.0323 |\n","| 20precision | 8.9 |\n","| 20recall | 0.0567 |\n","| 40precision | 15.1 |\n","| 40recall | 0.0932 |\n","| 5precision | 2.82 |\n","| 5recall | 0.0187 |\n","| epoch | 961 |\n","| loss | 0.1762 |\n","| type | training |\n","--------------------------\n","962\n","5 precision: 2.8\n","10 precision: 5.2\n","20 precision: 9.2\n","40 precision: 16.02\n","--------------------------\n","| 10precision | 5.2 |\n","| 10recall | 0.0298 |\n","| 20precision | 9.2 |\n","| 20recall | 0.0529 |\n","| 40precision | 16 |\n","| 40recall | 0.0902 |\n","| 5precision | 2.8 |\n","| 5recall | 0.0158 |\n","| epoch | 962 |\n","| loss | 0.1706 |\n","| type | training |\n","--------------------------\n","963\n","5 precision: 2.58\n","10 precision: 4.58\n","20 precision: 8.2\n","40 precision: 15.18\n","--------------------------\n","| 10precision | 4.58 |\n","| 10recall | 0.0278 |\n","| 20precision | 8.2 |\n","| 20recall | 0.0504 |\n","| 40precision | 15.2 |\n","| 40recall | 0.0929 |\n","| 5precision | 2.58 |\n","| 5recall | 0.0156 |\n","| epoch | 963 |\n","| loss | 0.1693 |\n","| type | training |\n","--------------------------\n","964\n","5 precision: 2.7\n","10 precision: 4.84\n","20 precision: 9.12\n","40 precision: 17.06\n","--------------------------\n","| 10precision | 4.84 |\n","| 10recall | 0.0275 |\n","| 20precision | 9.12 |\n","| 20recall | 0.0513 |\n","| 40precision | 17.1 |\n","| 40recall | 0.0942 |\n","| 5precision | 2.7 |\n","| 5recall | 0.0155 |\n","| epoch | 964 |\n","| loss | 0.169 |\n","| type | training |\n","--------------------------\n","965\n","5 precision: 2.8\n","10 precision: 4.98\n","20 precision: 9.06\n","40 precision: 16.56\n","--------------------------\n","| 10precision | 4.98 |\n","| 10recall | 0.0297 |\n","| 20precision | 9.06 |\n","| 20recall | 0.0536 |\n","| 40precision | 16.6 |\n","| 40recall | 0.0962 |\n","| 5precision | 2.8 |\n","| 5recall | 0.017 |\n","| epoch | 965 |\n","| loss | 0.192 |\n","| type | training |\n","--------------------------\n","966\n","5 precision: 2.54\n","10 precision: 4.46\n","20 precision: 8.4\n","40 precision: 15.16\n","--------------------------\n","| 10precision | 4.46 |\n","| 10recall | 0.0272 |\n","| 20precision | 8.4 |\n","| 20recall | 0.051 |\n","| 40precision | 15.2 |\n","| 40recall | 0.0925 |\n","| 5precision | 2.54 |\n","| 5recall | 0.0156 |\n","| epoch | 966 |\n","| loss | 0.1817 |\n","| type | training |\n","--------------------------\n","967\n","5 precision: 2.6\n","10 precision: 4.96\n","20 precision: 9.5\n","40 precision: 16.66\n","--------------------------\n","| 10precision | 4.96 |\n","| 10recall | 0.0282 |\n","| 20precision | 9.5 |\n","| 20recall | 0.0534 |\n","| 40precision | 16.7 |\n","| 40recall | 0.0919 |\n","| 5precision | 2.6 |\n","| 5recall | 0.0152 |\n","| epoch | 967 |\n","| loss | 0.1853 |\n","| type | training |\n","--------------------------\n","968\n","5 precision: 3.14\n","10 precision: 5.4\n","20 precision: 10.16\n","40 precision: 17.68\n","--------------------------\n","| 10precision | 5.4 |\n","| 10recall | 0.0334 |\n","| 20precision | 10.2 |\n","| 20recall | 0.0613 |\n","| 40precision | 17.7 |\n","| 40recall | 0.103 |\n","| 5precision | 3.14 |\n","| 5recall | 0.0196 |\n","| epoch | 968 |\n","| loss | 0.1688 |\n","| type | training |\n","--------------------------\n","969\n","5 precision: 2.84\n","10 precision: 5.2\n","20 precision: 9.72\n","40 precision: 16.68\n","--------------------------\n","| 10precision | 5.2 |\n","| 10recall | 0.0281 |\n","| 20precision | 9.72 |\n","| 20recall | 0.0525 |\n","| 40precision | 16.7 |\n","| 40recall | 0.0885 |\n","| 5precision | 2.84 |\n","| 5recall | 0.0153 |\n","| epoch | 969 |\n","| loss | 0.2065 |\n","| type | training |\n","--------------------------\n","970\n","5 precision: 2.58\n","10 precision: 4.74\n","20 precision: 8.8\n","40 precision: 16.3\n","--------------------------\n","| 10precision | 4.74 |\n","| 10recall | 0.029 |\n","| 20precision | 8.8 |\n","| 20recall | 0.0536 |\n","| 40precision | 16.3 |\n","| 40recall | 0.0976 |\n","| 5precision | 2.58 |\n","| 5recall | 0.0157 |\n","| epoch | 970 |\n","| loss | 0.1693 |\n","| type | training |\n","--------------------------\n","971\n","5 precision: 2.56\n","10 precision: 4.72\n","20 precision: 8.66\n","40 precision: 15.3\n","--------------------------\n","| 10precision | 4.72 |\n","| 10recall | 0.0314 |\n","| 20precision | 8.66 |\n","| 20recall | 0.0577 |\n","| 40precision | 15.3 |\n","| 40recall | 0.102 |\n","| 5precision | 2.56 |\n","| 5recall | 0.0174 |\n","| epoch | 971 |\n","| loss | 0.1899 |\n","| type | training |\n","--------------------------\n","972\n","5 precision: 2.94\n","10 precision: 5.2\n","20 precision: 9.08\n","40 precision: 16.16\n","--------------------------\n","| 10precision | 5.2 |\n","| 10recall | 0.0326 |\n","| 20precision | 9.08 |\n","| 20recall | 0.0552 |\n","| 40precision | 16.2 |\n","| 40recall | 0.0974 |\n","| 5precision | 2.94 |\n","| 5recall | 0.0186 |\n","| epoch | 972 |\n","| loss | 0.1929 |\n","| type | training |\n","--------------------------\n","973\n","5 precision: 2.9\n","10 precision: 5.16\n","20 precision: 9.14\n","40 precision: 16.34\n","--------------------------\n","| 10precision | 5.16 |\n","| 10recall | 0.0293 |\n","| 20precision | 9.14 |\n","| 20recall | 0.0525 |\n","| 40precision | 16.3 |\n","| 40recall | 0.0924 |\n","| 5precision | 2.9 |\n","| 5recall | 0.0169 |\n","| epoch | 973 |\n","| loss | 0.1863 |\n","| type | training |\n","--------------------------\n","974\n","5 precision: 3.0\n","10 precision: 5.52\n","20 precision: 9.7\n","40 precision: 16.5\n","--------------------------\n","| 10precision | 5.52 |\n","| 10recall | 0.034 |\n","| 20precision | 9.7 |\n","| 20recall | 0.0579 |\n","| 40precision | 16.5 |\n","| 40recall | 0.0957 |\n","| 5precision | 3 |\n","| 5recall | 0.0188 |\n","| epoch | 974 |\n","| loss | 0.1491 |\n","| type | training |\n","--------------------------\n","975\n","5 precision: 2.8\n","10 precision: 4.84\n","20 precision: 8.6\n","40 precision: 15.86\n","--------------------------\n","| 10precision | 4.84 |\n","| 10recall | 0.0285 |\n","| 20precision | 8.6 |\n","| 20recall | 0.0506 |\n","| 40precision | 15.9 |\n","| 40recall | 0.0931 |\n","| 5precision | 2.8 |\n","| 5recall | 0.0163 |\n","| epoch | 975 |\n","| loss | 0.1875 |\n","| type | training |\n","--------------------------\n","976\n","5 precision: 2.7\n","10 precision: 4.88\n","20 precision: 8.62\n","40 precision: 14.7\n","--------------------------\n","| 10precision | 4.88 |\n","| 10recall | 0.0277 |\n","| 20precision | 8.62 |\n","| 20recall | 0.0481 |\n","| 40precision | 14.7 |\n","| 40recall | 0.0823 |\n","| 5precision | 2.7 |\n","| 5recall | 0.0158 |\n","| epoch | 976 |\n","| loss | 0.1657 |\n","| type | training |\n","--------------------------\n","977\n","5 precision: 2.7\n","10 precision: 5.04\n","20 precision: 9.36\n","40 precision: 16.5\n","--------------------------\n","| 10precision | 5.04 |\n","| 10recall | 0.0278 |\n","| 20precision | 9.36 |\n","| 20recall | 0.053 |\n","| 40precision | 16.5 |\n","| 40recall | 0.092 |\n","| 5precision | 2.7 |\n","| 5recall | 0.0151 |\n","| epoch | 977 |\n","| loss | 0.2266 |\n","| type | training |\n","--------------------------\n","978\n","5 precision: 3.0\n","10 precision: 5.3\n","20 precision: 9.38\n","40 precision: 16.98\n","--------------------------\n","| 10precision | 5.3 |\n","| 10recall | 0.0318 |\n","| 20precision | 9.38 |\n","| 20recall | 0.0563 |\n","| 40precision | 17 |\n","| 40recall | 0.102 |\n","| 5precision | 3 |\n","| 5recall | 0.0181 |\n","| epoch | 978 |\n","| loss | 0.1616 |\n","| type | training |\n","--------------------------\n","979\n","5 precision: 2.6\n","10 precision: 4.56\n","20 precision: 8.16\n","40 precision: 15.06\n","--------------------------\n","| 10precision | 4.56 |\n","| 10recall | 0.0286 |\n","| 20precision | 8.16 |\n","| 20recall | 0.0502 |\n","| 40precision | 15.1 |\n","| 40recall | 0.0909 |\n","| 5precision | 2.6 |\n","| 5recall | 0.0164 |\n","| epoch | 979 |\n","| loss | 0.177 |\n","| type | training |\n","--------------------------\n","980\n","5 precision: 2.72\n","10 precision: 4.96\n","20 precision: 8.74\n","40 precision: 15.7\n","--------------------------\n","| 10precision | 4.96 |\n","| 10recall | 0.0269 |\n","| 20precision | 8.74 |\n","| 20recall | 0.0461 |\n","| 40precision | 15.7 |\n","| 40recall | 0.0817 |\n","| 5precision | 2.72 |\n","| 5recall | 0.0155 |\n","| epoch | 980 |\n","| loss | 0.1796 |\n","| type | training |\n","--------------------------\n","981\n","5 precision: 2.8\n","10 precision: 5.32\n","20 precision: 9.68\n","40 precision: 17.76\n","--------------------------\n","| 10precision | 5.32 |\n","| 10recall | 0.0286 |\n","| 20precision | 9.68 |\n","| 20recall | 0.0514 |\n","| 40precision | 17.8 |\n","| 40recall | 0.0931 |\n","| 5precision | 2.8 |\n","| 5recall | 0.0155 |\n","| epoch | 981 |\n","| loss | 0.1749 |\n","| type | training |\n","--------------------------\n","982\n","5 precision: 2.44\n","10 precision: 4.62\n","20 precision: 8.66\n","40 precision: 15.74\n","--------------------------\n","| 10precision | 4.62 |\n","| 10recall | 0.0283 |\n","| 20precision | 8.66 |\n","| 20recall | 0.0528 |\n","| 40precision | 15.7 |\n","| 40recall | 0.0949 |\n","| 5precision | 2.44 |\n","| 5recall | 0.0148 |\n","| epoch | 982 |\n","| loss | 0.1836 |\n","| type | training |\n","--------------------------\n","983\n","5 precision: 2.46\n","10 precision: 4.9\n","20 precision: 8.74\n","40 precision: 15.12\n","--------------------------\n","| 10precision | 4.9 |\n","| 10recall | 0.0317 |\n","| 20precision | 8.74 |\n","| 20recall | 0.0558 |\n","| 40precision | 15.1 |\n","| 40recall | 0.0948 |\n","| 5precision | 2.46 |\n","| 5recall | 0.0157 |\n","| epoch | 983 |\n","| loss | 0.1808 |\n","| type | training |\n","--------------------------\n","984\n","5 precision: 2.58\n","10 precision: 4.82\n","20 precision: 8.62\n","40 precision: 16.06\n","--------------------------\n","| 10precision | 4.82 |\n","| 10recall | 0.0317 |\n","| 20precision | 8.62 |\n","| 20recall | 0.0543 |\n","| 40precision | 16.1 |\n","| 40recall | 0.101 |\n","| 5precision | 2.58 |\n","| 5recall | 0.0173 |\n","| epoch | 984 |\n","| loss | 0.2161 |\n","| type | training |\n","--------------------------\n","985\n","5 precision: 2.7\n","10 precision: 4.98\n","20 precision: 9.32\n","40 precision: 17.42\n","--------------------------\n","| 10precision | 4.98 |\n","| 10recall | 0.0284 |\n","| 20precision | 9.32 |\n","| 20recall | 0.0521 |\n","| 40precision | 17.4 |\n","| 40recall | 0.0953 |\n","| 5precision | 2.7 |\n","| 5recall | 0.0157 |\n","| epoch | 985 |\n","| loss | 0.161 |\n","| type | training |\n","--------------------------\n","986\n","5 precision: 2.52\n","10 precision: 4.44\n","20 precision: 8.3\n","40 precision: 15.14\n","--------------------------\n","| 10precision | 4.44 |\n","| 10recall | 0.0272 |\n","| 20precision | 8.3 |\n","| 20recall | 0.0507 |\n","| 40precision | 15.1 |\n","| 40recall | 0.0911 |\n","| 5precision | 2.52 |\n","| 5recall | 0.0154 |\n","| epoch | 986 |\n","| loss | 0.202 |\n","| type | training |\n","--------------------------\n","987\n","5 precision: 2.8\n","10 precision: 5.24\n","20 precision: 9.54\n","40 precision: 16.38\n","--------------------------\n","| 10precision | 5.24 |\n","| 10recall | 0.0327 |\n","| 20precision | 9.54 |\n","| 20recall | 0.0588 |\n","| 40precision | 16.4 |\n","| 40recall | 0.098 |\n","| 5precision | 2.8 |\n","| 5recall | 0.0176 |\n","| epoch | 987 |\n","| loss | 0.168 |\n","| type | training |\n","--------------------------\n","988\n","5 precision: 2.56\n","10 precision: 4.4\n","20 precision: 8.08\n","40 precision: 14.56\n","--------------------------\n","| 10precision | 4.4 |\n","| 10recall | 0.0311 |\n","| 20precision | 8.08 |\n","| 20recall | 0.0561 |\n","| 40precision | 14.6 |\n","| 40recall | 0.1 |\n","| 5precision | 2.56 |\n","| 5recall | 0.0179 |\n","| epoch | 988 |\n","| loss | 0.1856 |\n","| type | training |\n","--------------------------\n","989\n","5 precision: 2.58\n","10 precision: 5.38\n","20 precision: 9.64\n","40 precision: 17.1\n","--------------------------\n","| 10precision | 5.38 |\n","| 10recall | 0.0318 |\n","| 20precision | 9.64 |\n","| 20recall | 0.0562 |\n","| 40precision | 17.1 |\n","| 40recall | 0.0987 |\n","| 5precision | 2.58 |\n","| 5recall | 0.0148 |\n","| epoch | 989 |\n","| loss | 0.178 |\n","| type | training |\n","--------------------------\n","990\n","5 precision: 2.66\n","10 precision: 4.8\n","20 precision: 8.84\n","40 precision: 16.24\n","--------------------------\n","| 10precision | 4.8 |\n","| 10recall | 0.0274 |\n","| 20precision | 8.84 |\n","| 20recall | 0.0513 |\n","| 40precision | 16.2 |\n","| 40recall | 0.0926 |\n","| 5precision | 2.66 |\n","| 5recall | 0.0156 |\n","| epoch | 990 |\n","| loss | 0.1806 |\n","| type | training |\n","--------------------------\n","991\n","5 precision: 2.44\n","10 precision: 4.64\n","20 precision: 8.54\n","40 precision: 15.38\n","--------------------------\n","| 10precision | 4.64 |\n","| 10recall | 0.0286 |\n","| 20precision | 8.54 |\n","| 20recall | 0.0519 |\n","| 40precision | 15.4 |\n","| 40recall | 0.0929 |\n","| 5precision | 2.44 |\n","| 5recall | 0.0145 |\n","| epoch | 991 |\n","| loss | 0.1894 |\n","| type | training |\n","--------------------------\n","992\n","5 precision: 2.52\n","10 precision: 4.52\n","20 precision: 8.54\n","40 precision: 15.04\n","--------------------------\n","| 10precision | 4.52 |\n","| 10recall | 0.0265 |\n","| 20precision | 8.54 |\n","| 20recall | 0.0489 |\n","| 40precision | 15 |\n","| 40recall | 0.0858 |\n","| 5precision | 2.52 |\n","| 5recall | 0.0148 |\n","| epoch | 992 |\n","| loss | 0.1685 |\n","| type | training |\n","--------------------------\n","993\n","5 precision: 2.8\n","10 precision: 5.12\n","20 precision: 9.28\n","40 precision: 16.5\n","--------------------------\n","| 10precision | 5.12 |\n","| 10recall | 0.0303 |\n","| 20precision | 9.28 |\n","| 20recall | 0.0534 |\n","| 40precision | 16.5 |\n","| 40recall | 0.093 |\n","| 5precision | 2.8 |\n","| 5recall | 0.0169 |\n","| epoch | 993 |\n","| loss | 0.2223 |\n","| type | training |\n","--------------------------\n","994\n","5 precision: 2.8\n","10 precision: 5.06\n","20 precision: 8.9\n","40 precision: 15.48\n","--------------------------\n","| 10precision | 5.06 |\n","| 10recall | 0.0338 |\n","| 20precision | 8.9 |\n","| 20recall | 0.0581 |\n","| 40precision | 15.5 |\n","| 40recall | 0.0982 |\n","| 5precision | 2.8 |\n","| 5recall | 0.0181 |\n","| epoch | 994 |\n","| loss | 0.173 |\n","| type | training |\n","--------------------------\n","995\n","5 precision: 2.46\n","10 precision: 4.9\n","20 precision: 8.26\n","40 precision: 15.02\n","--------------------------\n","| 10precision | 4.9 |\n","| 10recall | 0.0305 |\n","| 20precision | 8.26 |\n","| 20recall | 0.0522 |\n","| 40precision | 15 |\n","| 40recall | 0.0944 |\n","| 5precision | 2.46 |\n","| 5recall | 0.0155 |\n","| epoch | 995 |\n","| loss | 0.1721 |\n","| type | training |\n","--------------------------\n","996\n","5 precision: 2.78\n","10 precision: 5.34\n","20 precision: 9.62\n","40 precision: 17.24\n","--------------------------\n","| 10precision | 5.34 |\n","| 10recall | 0.0299 |\n","| 20precision | 9.62 |\n","| 20recall | 0.0532 |\n","| 40precision | 17.2 |\n","| 40recall | 0.0949 |\n","| 5precision | 2.78 |\n","| 5recall | 0.0157 |\n","| epoch | 996 |\n","| loss | 0.188 |\n","| type | training |\n","--------------------------\n","997\n","5 precision: 2.6\n","10 precision: 5.0\n","20 precision: 9.02\n","40 precision: 17.12\n","--------------------------\n","| 10precision | 5 |\n","| 10recall | 0.0291 |\n","| 20precision | 9.02 |\n","| 20recall | 0.0511 |\n","| 40precision | 17.1 |\n","| 40recall | 0.0952 |\n","| 5precision | 2.6 |\n","| 5recall | 0.0155 |\n","| epoch | 997 |\n","| loss | 0.1929 |\n","| type | training |\n","--------------------------\n","998\n","5 precision: 2.5\n","10 precision: 4.74\n","20 precision: 8.88\n","40 precision: 16.3\n","--------------------------\n","| 10precision | 4.74 |\n","| 10recall | 0.0252 |\n","| 20precision | 8.88 |\n","| 20recall | 0.0479 |\n","| 40precision | 16.3 |\n","| 40recall | 0.0858 |\n","| 5precision | 2.5 |\n","| 5recall | 0.0133 |\n","| epoch | 998 |\n","| loss | 0.1787 |\n","| type | training |\n","--------------------------\n","999\n","5 precision: 2.84\n","10 precision: 5.3\n","20 precision: 9.3\n","40 precision: 16.48\n","--------------------------\n","| 10precision | 5.3 |\n","| 10recall | 0.0324 |\n","| 20precision | 9.3 |\n","| 20recall | 0.0566 |\n","| 40precision | 16.5 |\n","| 40recall | 0.0992 |\n","| 5precision | 2.84 |\n","| 5recall | 0.0178 |\n","| epoch | 999 |\n","| loss | 0.1832 |\n","| type | training |\n","--------------------------\n","1000\n","5 precision: 3.04\n","10 precision: 5.4\n","20 precision: 9.66\n","40 precision: 16.72\n","--------------------------\n","| 10precision | 5.4 |\n","| 10recall | 0.0312 |\n","| 20precision | 9.66 |\n","| 20recall | 0.0538 |\n","| 40precision | 16.7 |\n","| 40recall | 0.0929 |\n","| 5precision | 3.04 |\n","| 5recall | 0.0177 |\n","| epoch | 1e+03 |\n","| loss | 0.1809 |\n","| type | training |\n","--------------------------\n","5 precision: 3.5556\n","10 precision: 6.0556\n","20 precision: 11.5556\n","40 precision: 20.5\n","----------------------------\n","| 10precision | 6.06 |\n","| 10recall | 0.0345 |\n","| 20precision | 11.6 |\n","| 20recall | 0.0646 |\n","| 40precision | 20.5 |\n","| 40recall | 0.112 |\n","| 5precision | 3.56 |\n","| 5recall | 0.0205 |\n","| epoch | 1e+03 |\n","| type | validation |\n","----------------------------\n","5 precision: 3.5526\n","10 precision: 6.1316\n","20 precision: 10.9211\n","40 precision: 18.0526\n","----------------------------\n","| 10precision | 6.13 |\n","| 10recall | 0.0367 |\n","| 20precision | 10.9 |\n","| 20recall | 0.0631 |\n","| 40precision | 18.1 |\n","| 40recall | 0.103 |\n","| 5precision | 3.55 |\n","| 5recall | 0.0222 |\n","| epoch | 1e+03 |\n","| type | evaluation |\n","----------------------------\n","1001\n","5 precision: 2.52\n","10 precision: 4.7\n","20 precision: 8.62\n","40 precision: 15.64\n","--------------------------\n","| 10precision | 4.7 |\n","| 10recall | 0.0293 |\n","| 20precision | 8.62 |\n","| 20recall | 0.0521 |\n","| 40precision | 15.6 |\n","| 40recall | 0.0907 |\n","| 5precision | 2.52 |\n","| 5recall | 0.0147 |\n","| epoch | 1e+03 |\n","| loss | 0.1702 |\n","| type | training |\n","--------------------------\n","1002\n","5 precision: 2.54\n","10 precision: 4.86\n","20 precision: 8.38\n","40 precision: 15.34\n","--------------------------\n","| 10precision | 4.86 |\n","| 10recall | 0.0301 |\n","| 20precision | 8.38 |\n","| 20recall | 0.0515 |\n","| 40precision | 15.3 |\n","| 40recall | 0.0921 |\n","| 5precision | 2.54 |\n","| 5recall | 0.0159 |\n","| epoch | 1e+03 |\n","| loss | 0.1782 |\n","| type | training |\n","--------------------------\n","1003\n","5 precision: 2.74\n","10 precision: 4.68\n","20 precision: 8.48\n","40 precision: 15.68\n","--------------------------\n","| 10precision | 4.68 |\n","| 10recall | 0.0271 |\n","| 20precision | 8.48 |\n","| 20recall | 0.0479 |\n","| 40precision | 15.7 |\n","| 40recall | 0.0894 |\n","| 5precision | 2.74 |\n","| 5recall | 0.0164 |\n","| epoch | 1e+03 |\n","| loss | 0.1585 |\n","| type | training |\n","--------------------------\n","1004\n","5 precision: 2.52\n","10 precision: 4.74\n","20 precision: 8.72\n","40 precision: 15.44\n","--------------------------\n","| 10precision | 4.74 |\n","| 10recall | 0.0269 |\n","| 20precision | 8.72 |\n","| 20recall | 0.0493 |\n","| 40precision | 15.4 |\n","| 40recall | 0.086 |\n","| 5precision | 2.52 |\n","| 5recall | 0.0145 |\n","| epoch | 1e+03 |\n","| loss | 0.175 |\n","| type | training |\n","--------------------------\n","1005\n","5 precision: 2.8\n","10 precision: 5.34\n","20 precision: 9.38\n","40 precision: 16.66\n","--------------------------\n","| 10precision | 5.34 |\n","| 10recall | 0.0331 |\n","| 20precision | 9.38 |\n","| 20recall | 0.0573 |\n","| 40precision | 16.7 |\n","| 40recall | 0.1 |\n","| 5precision | 2.8 |\n","| 5recall | 0.0173 |\n","| epoch | 1.00e+03 |\n","| loss | 0.1704 |\n","| type | training |\n","--------------------------\n","1006\n","5 precision: 2.6\n","10 precision: 4.78\n","20 precision: 8.8\n","40 precision: 15.8\n","--------------------------\n","| 10precision | 4.78 |\n","| 10recall | 0.0297 |\n","| 20precision | 8.8 |\n","| 20recall | 0.053 |\n","| 40precision | 15.8 |\n","| 40recall | 0.0941 |\n","| 5precision | 2.6 |\n","| 5recall | 0.0165 |\n","| epoch | 1.01e+03 |\n","| loss | 0.1794 |\n","| type | training |\n","--------------------------\n","1007\n","5 precision: 2.76\n","10 precision: 5.0\n","20 precision: 8.28\n","40 precision: 15.02\n","--------------------------\n","| 10precision | 5 |\n","| 10recall | 0.0338 |\n","| 20precision | 8.28 |\n","| 20recall | 0.0557 |\n","| 40precision | 15 |\n","| 40recall | 0.0997 |\n","| 5precision | 2.76 |\n","| 5recall | 0.0188 |\n","| epoch | 1.01e+03 |\n","| loss | 0.1754 |\n","| type | training |\n","--------------------------\n","1008\n","5 precision: 2.64\n","10 precision: 4.94\n","20 precision: 9.36\n","40 precision: 16.7\n","--------------------------\n","| 10precision | 4.94 |\n","| 10recall | 0.0292 |\n","| 20precision | 9.36 |\n","| 20recall | 0.0552 |\n","| 40precision | 16.7 |\n","| 40recall | 0.0951 |\n","| 5precision | 2.64 |\n","| 5recall | 0.0153 |\n","| epoch | 1.01e+03 |\n","| loss | 0.1752 |\n","| type | training |\n","--------------------------\n","1009\n","5 precision: 3.0\n","10 precision: 5.46\n","20 precision: 9.54\n","40 precision: 17.38\n","--------------------------\n","| 10precision | 5.46 |\n","| 10recall | 0.0298 |\n","| 20precision | 9.54 |\n","| 20recall | 0.0504 |\n","| 40precision | 17.4 |\n","| 40recall | 0.091 |\n","| 5precision | 3 |\n","| 5recall | 0.0162 |\n","| epoch | 1.01e+03 |\n","| loss | 0.166 |\n","| type | training |\n","--------------------------\n","1010\n","5 precision: 2.38\n","10 precision: 4.86\n","20 precision: 8.4\n","40 precision: 15.48\n","--------------------------\n","| 10precision | 4.86 |\n","| 10recall | 0.0296 |\n","| 20precision | 8.4 |\n","| 20recall | 0.0509 |\n","| 40precision | 15.5 |\n","| 40recall | 0.0935 |\n","| 5precision | 2.38 |\n","| 5recall | 0.0146 |\n","| epoch | 1.01e+03 |\n","| loss | 0.1868 |\n","| type | training |\n","--------------------------\n","1011\n","5 precision: 2.9\n","10 precision: 5.3\n","20 precision: 9.38\n","40 precision: 16.76\n","--------------------------\n","| 10precision | 5.3 |\n","| 10recall | 0.0336 |\n","| 20precision | 9.38 |\n","| 20recall | 0.0572 |\n","| 40precision | 16.8 |\n","| 40recall | 0.101 |\n","| 5precision | 2.9 |\n","| 5recall | 0.0192 |\n","| epoch | 1.01e+03 |\n","| loss | 0.1915 |\n","| type | training |\n","--------------------------\n","1012\n","5 precision: 2.84\n","10 precision: 5.16\n","20 precision: 9.46\n","40 precision: 16.74\n","--------------------------\n","| 10precision | 5.16 |\n","| 10recall | 0.0322 |\n","| 20precision | 9.46 |\n","| 20recall | 0.0581 |\n","| 40precision | 16.7 |\n","| 40recall | 0.0996 |\n","| 5precision | 2.84 |\n","| 5recall | 0.0178 |\n","| epoch | 1.01e+03 |\n","| loss | 0.2022 |\n","| type | training |\n","--------------------------\n","1013\n","5 precision: 2.68\n","10 precision: 4.86\n","20 precision: 8.5\n","40 precision: 15.44\n","--------------------------\n","| 10precision | 4.86 |\n","| 10recall | 0.0268 |\n","| 20precision | 8.5 |\n","| 20recall | 0.0455 |\n","| 40precision | 15.4 |\n","| 40recall | 0.0813 |\n","| 5precision | 2.68 |\n","| 5recall | 0.0144 |\n","| epoch | 1.01e+03 |\n","| loss | 0.1692 |\n","| type | training |\n","--------------------------\n","1014\n","5 precision: 2.58\n","10 precision: 5.02\n","20 precision: 9.0\n","40 precision: 15.94\n","--------------------------\n","| 10precision | 5.02 |\n","| 10recall | 0.0308 |\n","| 20precision | 9 |\n","| 20recall | 0.0539 |\n","| 40precision | 15.9 |\n","| 40recall | 0.0914 |\n","| 5precision | 2.58 |\n","| 5recall | 0.0163 |\n","| epoch | 1.01e+03 |\n","| loss | 0.1685 |\n","| type | training |\n","--------------------------\n","1015\n","5 precision: 2.72\n","10 precision: 4.94\n","20 precision: 8.68\n","40 precision: 15.18\n","--------------------------\n","| 10precision | 4.94 |\n","| 10recall | 0.0338 |\n","| 20precision | 8.68 |\n","| 20recall | 0.0572 |\n","| 40precision | 15.2 |\n","| 40recall | 0.0959 |\n","| 5precision | 2.72 |\n","| 5recall | 0.0184 |\n","| epoch | 1.02e+03 |\n","| loss | 0.2037 |\n","| type | training |\n","--------------------------\n","1016\n","5 precision: 2.66\n","10 precision: 4.78\n","20 precision: 9.02\n","40 precision: 15.14\n","--------------------------\n","| 10precision | 4.78 |\n","| 10recall | 0.0277 |\n","| 20precision | 9.02 |\n","| 20recall | 0.0507 |\n","| 40precision | 15.1 |\n","| 40recall | 0.0842 |\n","| 5precision | 2.66 |\n","| 5recall | 0.0159 |\n","| epoch | 1.02e+03 |\n","| loss | 0.1821 |\n","| type | training |\n","--------------------------\n","1017\n","5 precision: 2.74\n","10 precision: 5.14\n","20 precision: 9.1\n","40 precision: 16.12\n","--------------------------\n","| 10precision | 5.14 |\n","| 10recall | 0.0304 |\n","| 20precision | 9.1 |\n","| 20recall | 0.0526 |\n","| 40precision | 16.1 |\n","| 40recall | 0.0924 |\n","| 5precision | 2.74 |\n","| 5recall | 0.0167 |\n","| epoch | 1.02e+03 |\n","| loss | 0.213 |\n","| type | training |\n","--------------------------\n","1018\n","5 precision: 2.68\n","10 precision: 4.82\n","20 precision: 8.44\n","40 precision: 15.68\n","--------------------------\n","| 10precision | 4.82 |\n","| 10recall | 0.0316 |\n","| 20precision | 8.44 |\n","| 20recall | 0.0549 |\n","| 40precision | 15.7 |\n","| 40recall | 0.0994 |\n","| 5precision | 2.68 |\n","| 5recall | 0.0176 |\n","| epoch | 1.02e+03 |\n","| loss | 0.1976 |\n","| type | training |\n","--------------------------\n","1019\n","5 precision: 2.92\n","10 precision: 5.48\n","20 precision: 9.7\n","40 precision: 16.56\n","--------------------------\n","| 10precision | 5.48 |\n","| 10recall | 0.0318 |\n","| 20precision | 9.7 |\n","| 20recall | 0.0553 |\n","| 40precision | 16.6 |\n","| 40recall | 0.0931 |\n","| 5precision | 2.92 |\n","| 5recall | 0.0174 |\n","| epoch | 1.02e+03 |\n","| loss | 0.1908 |\n","| type | training |\n","--------------------------\n","1020\n","5 precision: 2.68\n","10 precision: 4.8\n","20 precision: 8.52\n","40 precision: 14.9\n","--------------------------\n","| 10precision | 4.8 |\n","| 10recall | 0.0321 |\n","| 20precision | 8.52 |\n","| 20recall | 0.0558 |\n","| 40precision | 14.9 |\n","| 40recall | 0.0988 |\n","| 5precision | 2.68 |\n","| 5recall | 0.0187 |\n","| epoch | 1.02e+03 |\n","| loss | 0.1706 |\n","| type | training |\n","--------------------------\n","1021\n","5 precision: 2.56\n","10 precision: 4.96\n","20 precision: 8.82\n","40 precision: 15.38\n","--------------------------\n","| 10precision | 4.96 |\n","| 10recall | 0.032 |\n","| 20precision | 8.82 |\n","| 20recall | 0.055 |\n","| 40precision | 15.4 |\n","| 40recall | 0.0936 |\n","| 5precision | 2.56 |\n","| 5recall | 0.0162 |\n","| epoch | 1.02e+03 |\n","| loss | 0.2 |\n","| type | training |\n","--------------------------\n","1022\n","5 precision: 2.74\n","10 precision: 5.22\n","20 precision: 9.22\n","40 precision: 15.98\n","--------------------------\n","| 10precision | 5.22 |\n","| 10recall | 0.0366 |\n","| 20precision | 9.22 |\n","| 20recall | 0.0631 |\n","| 40precision | 16 |\n","| 40recall | 0.106 |\n","| 5precision | 2.74 |\n","| 5recall | 0.0195 |\n","| epoch | 1.02e+03 |\n","| loss | 0.1706 |\n","| type | training |\n","--------------------------\n","1023\n","5 precision: 2.46\n","10 precision: 4.8\n","20 precision: 8.72\n","40 precision: 15.46\n","--------------------------\n","| 10precision | 4.8 |\n","| 10recall | 0.0301 |\n","| 20precision | 8.72 |\n","| 20recall | 0.0526 |\n","| 40precision | 15.5 |\n","| 40recall | 0.0919 |\n","| 5precision | 2.46 |\n","| 5recall | 0.0156 |\n","| epoch | 1.02e+03 |\n","| loss | 0.2011 |\n","| type | training |\n","--------------------------\n","1024\n","5 precision: 2.72\n","10 precision: 5.12\n","20 precision: 9.02\n","40 precision: 15.9\n","--------------------------\n","| 10precision | 5.12 |\n","| 10recall | 0.0303 |\n","| 20precision | 9.02 |\n","| 20recall | 0.0525 |\n","| 40precision | 15.9 |\n","| 40recall | 0.0922 |\n","| 5precision | 2.72 |\n","| 5recall | 0.0159 |\n","| epoch | 1.02e+03 |\n","| loss | 0.2031 |\n","| type | training |\n","--------------------------\n","1025\n","5 precision: 2.52\n","10 precision: 4.62\n","20 precision: 8.36\n","40 precision: 15.44\n","--------------------------\n","| 10precision | 4.62 |\n","| 10recall | 0.0305 |\n","| 20precision | 8.36 |\n","| 20recall | 0.0542 |\n","| 40precision | 15.4 |\n","| 40recall | 0.0976 |\n","| 5precision | 2.52 |\n","| 5recall | 0.0171 |\n","| epoch | 1.02e+03 |\n","| loss | 0.1721 |\n","| type | training |\n","--------------------------\n","1026\n","5 precision: 2.9\n","10 precision: 5.04\n","20 precision: 9.42\n","40 precision: 17.16\n","--------------------------\n","| 10precision | 5.04 |\n","| 10recall | 0.0299 |\n","| 20precision | 9.42 |\n","| 20recall | 0.0548 |\n","| 40precision | 17.2 |\n","| 40recall | 0.0983 |\n","| 5precision | 2.9 |\n","| 5recall | 0.0176 |\n","| epoch | 1.03e+03 |\n","| loss | 0.1729 |\n","| type | training |\n","--------------------------\n","1027\n","5 precision: 2.82\n","10 precision: 5.06\n","20 precision: 9.24\n","40 precision: 16.4\n","--------------------------\n","| 10precision | 5.06 |\n","| 10recall | 0.0311 |\n","| 20precision | 9.24 |\n","| 20recall | 0.0559 |\n","| 40precision | 16.4 |\n","| 40recall | 0.097 |\n","| 5precision | 2.82 |\n","| 5recall | 0.0173 |\n","| epoch | 1.03e+03 |\n","| loss | 0.1751 |\n","| type | training |\n","--------------------------\n","1028\n","5 precision: 2.8\n","10 precision: 4.92\n","20 precision: 9.18\n","40 precision: 15.82\n","--------------------------\n","| 10precision | 4.92 |\n","| 10recall | 0.029 |\n","| 20precision | 9.18 |\n","| 20recall | 0.0531 |\n","| 40precision | 15.8 |\n","| 40recall | 0.0897 |\n","| 5precision | 2.8 |\n","| 5recall | 0.0173 |\n","| epoch | 1.03e+03 |\n","| loss | 0.1816 |\n","| type | training |\n","--------------------------\n","1029\n","5 precision: 2.62\n","10 precision: 4.22\n","20 precision: 7.92\n","40 precision: 14.28\n","--------------------------\n","| 10precision | 4.22 |\n","| 10recall | 0.0284 |\n","| 20precision | 7.92 |\n","| 20recall | 0.0538 |\n","| 40precision | 14.3 |\n","| 40recall | 0.0963 |\n","| 5precision | 2.62 |\n","| 5recall | 0.0181 |\n","| epoch | 1.03e+03 |\n","| loss | 0.1753 |\n","| type | training |\n","--------------------------\n","1030\n","5 precision: 2.66\n","10 precision: 5.14\n","20 precision: 9.38\n","40 precision: 16.42\n","--------------------------\n","| 10precision | 5.14 |\n","| 10recall | 0.0302 |\n","| 20precision | 9.38 |\n","| 20recall | 0.0538 |\n","| 40precision | 16.4 |\n","| 40recall | 0.0919 |\n","| 5precision | 2.66 |\n","| 5recall | 0.0159 |\n","| epoch | 1.03e+03 |\n","| loss | 0.1814 |\n","| type | training |\n","--------------------------\n","1031\n","5 precision: 2.84\n","10 precision: 5.32\n","20 precision: 9.72\n","40 precision: 17.34\n","--------------------------\n","| 10precision | 5.32 |\n","| 10recall | 0.031 |\n","| 20precision | 9.72 |\n","| 20recall | 0.0548 |\n","| 40precision | 17.3 |\n","| 40recall | 0.0942 |\n","| 5precision | 2.84 |\n","| 5recall | 0.0169 |\n","| epoch | 1.03e+03 |\n","| loss | 0.1907 |\n","| type | training |\n","--------------------------\n","1032\n","5 precision: 2.98\n","10 precision: 5.06\n","20 precision: 9.16\n","40 precision: 16.8\n","--------------------------\n","| 10precision | 5.06 |\n","| 10recall | 0.0281 |\n","| 20precision | 9.16 |\n","| 20recall | 0.0503 |\n","| 40precision | 16.8 |\n","| 40recall | 0.09 |\n","| 5precision | 2.98 |\n","| 5recall | 0.0164 |\n","| epoch | 1.03e+03 |\n","| loss | 0.194 |\n","| type | training |\n","--------------------------\n","1033\n"]}]}]}