

Rai: A Low Volatility, Trust Minimized

Collateral for the DeFi Ecosystem

Stefan C. Ionescu, Ameen Soleimani

May 2020

Abstract. We present a governance minimized, decentralized protocol that

automatically reacts to market forces in order to modify the target value

of its native collateralized asset. The protocol allows anyone to leverage

their crypto assets and issue a “reflex index” which is a dampened version

of its underlying collateral. We outline how indexes can be useful as

universal, low volatility collateral which can protect its holders, as well as

other decentralized finance protocols, from sudden market shifts. We

present our plans to help other teams launch their own synthetics by

leveraging our infrastructure. Finally, we offer alternatives to current

oracle and governance structures that are often found in many DeFi

protocols.

Contents

1. Introduction

2. Overview of Reflex Indexes

3. Design Philosophy and Go-to-market Strategy

4. Monetary Policy Mechanisms

4.1. Introduction to Control Theory

4.2. Redemption Rate Feedback Mechanism

4.2.1. Components

4.2.2. Scenarios

4.2.3. Algorithm

4.2.4. Tuning

4.3. Money Market Setter

4.4. Global Settlement

5. Governance

5.1. Time Bounded Governance

5.2. Action Bounded Governance

5.3. Governance Ice Age

5.4. Core Areas Where Governance Is Needed

5.4.1. Restricted Migration Module

6. Automatic System Shutdown

7. Oracles

7.1. Governance Led Oracles

7.2. Oracle Network Medianizer

7.2.1. Oracle Network Backup

8. Safes

8.1. SAFE Lifecycle

9. SAFE Liquidation

9.1. Collateral Auction

9.1.1. Liquidation Insurance

9.1.2. Collateral Auction Parameters

9.1.3. Collateral Auction Mechanism

9.2. Debt Auction

9.2.1. Autonomous Debt Auction Parameter Setting

9.2.2. Debt Auction Parameters

9.2.3. Debt Auction Mechanism

10. Protocol Tokens

10.1. Surplus Auctions

10.1.1. Surplus Auction Parameters

10.1.2. Surplus Auction Mechanism

11. Surplus Indexes Management

12. External Actors

13. Addressable Market

14. Future Research

15. Risks and Mitigation

16. Summary

17. References

18. Glossary

Introduction

Money is one of the most powerful coordination mechanisms humanity leverages in

order to thrive. The privilege of managing the money supply has historically been

kept in the hands of sovereign leadership and the financial elite while being imposed

upon an unwitting general public. Where Bitcoin has demonstrated the potential for

a grassroots protest to manifest a store-of-value commodity asset, Ethereum gives us

a platform to build asset-backed synthetic instruments that can be protected from

volatility and used as collateral, or pegged to a reference price and used as a

medium-of-exchange for daily transactions, all enforced by the same principles of

decentralized consensus.

Permissionless access to Bitcoin for storing wealth and properly decentralized

synthetic instruments on Ethereum will lay the foundation for the upcoming financial

revolution, providing those at the fringes of the modern financial system the means

to coordinate around building the new one.

In this paper, we introduce a framework for building reflex indexes, a new asset type

which will help other synthetics flourish and will establish a key building block for the

entire decentralized finance industry.

Overview of Reflex Indexes

A reflex index’s purpose is not to maintain a specific peg, but to dampen the volatility

of its collateral. Indexes allow anyone to gain exposure to the cryptocurrency market

without the same scale of risk as holding actual crypto assets. We believe RAI, our

first reflex index, will have immediate utility for other teams issuing synthetics on

Ethereum (e.g MakerDAO’s Multi-Collateral DAI [1], UMA [2], Synthetix [3]) because

it gives their systems a lower exposure to volatile assets such as ETH and offers users

more time to exit their positions in case of a significant market shift.

In order to understand reflex indexes, we can compare the behaviour of their

redemption price to that of a stablecoin’s price.

The redemption price is the value of one debt unit (or coin) in the system. It is meant

to be used only as an internal accounting tool and it is different from the market price

(the value that the market is trading the coin at). In the case of fiat-backed

stablecoins such as USDC, the system operators declare that anyone can redeem one

coin for one US dollar and thus the redemption price for these coins is always one.

There are also cases of crypto-backed stablecoins such as MakerDAO’s Multi

Collateral DAI (MCD) where the system targets a fixed peg of one US dollar and thus

the redemption price is also fixed at one.

In most cases, there will be a difference between the market price of a stablecoin and

its redemption price. These scenarios create arbitrage opportunities where traders

will create more coins if the market price is higher than redemption and they will

redeem their stablecoins for collateral (e.g US dollars in the case of USDC) in case the

market price is lower than the redemption price.

Reflex indexes are similar to stablecoins because they also have a redemption price

that the system targets. The main difference in their case is that their redemption will

not remain fixed, but is designed to change while being influenced by market forces.

In Section 4 we explain how an index’s redemption price floats and creates new

arbitrage opportunities for its users.

Design Philosophy and Go-to-market Strategy

Our design philosophy is to prioritize security, stability and speed of delivery.

Multi-Collateral DAI was the natural place to start iterating on RAI’s design. The

system has been heavily audited and formally verified, it has minimal external

dependencies and it gathered an active community of experts. To minimize

development and communications effort, we want to make only the simplest

changes to the original MCD codebase in order to achieve our implementation.

Our most important modifications include the addition of an autonomous rate setter,

an Oracle Network Medianizer which is integrated with many independent price

feeds and a governance minimization layer meant to isolate the system as much as

possible from human intervention.

The very first version of the protocol (Stage 1) will only include the rate setter and

other minor improvements in the core architecture. Once we prove that the setter

works as expected, we can more safely add the oracle medianizer (Stage 2) and the

governance minimization layer (Stage 3).

Monetary Policy Mechanisms

Introduction to Control Theory

One common control system that most people are familiar with is the shower. When

someone starts a shower, they have a desired water temperature in mind which, in

control theory, is called the reference set point. The person, acting as the controller,

continuously measures the water flow temperature (which is called the system

output) and modifies the speed at which they turn the shower’s knob based on the

deviation (or error) between the desired and the current temperature. The speed at

which the knob is turned is called the system input. The objective is to turn the knob

fast enough as to reach the reference set point quickly, but not so fast that the

temperature overshoots. If there are system shocks where the water flow

temperature suddenly changes, the person should be able to maintain the current

temperature by knowing how fast to turn the knob in response to the disturbance.

The scientific discipline of maintaining stability in dynamic systems is called control

theory and it has found broad application in cruise control for cars, flight navigation,

chemical reactors, robotic arms, and industrial processes of all kinds. The Bitcoin

difficulty adjustment algorithm which maintains the ten minute average block time,

despite a variable hashrate, is an example of a mission critical control system.

In most modern control systems an algorithmic controller is typically embedded in

the process and it is given control over a system input (e.g. a car’s gas pedal) in order

to automatically update it based on deviations between the system output (e.g. a

car’s speed) and the setpoint (e.g. the cruise control speed).

The most common type of algorithmic controller is the PID controller. Over 95% of

industrial applications and a wide range of biological systems employ elements of PID

control [4]. A PID controller uses a mathematical formula with three parts to

determine its output:

Controller Output = Proportional Term + Integral Term + Derivative Term

The Proportional Term is the part of the controller which is directly proportional to

the deviation. If the deviation is large and positive (e.g. the cruise control speed

setpoint is far higher than the car’s current speed) the proportional response will be

large and positive (e.g. floor the gas pedal).

The Integral Term is the part of the controller which takes into account how long a

deviation has persisted. It is determined by taking the integral of the deviation over

time and it is primarily used to eliminate steady state error. It accumulates in order

to respond to small, albeit persistent deviations from the setpoint (e.g. the cruise

control setpoint has been 1 mph higher than the car’s speed for a few minutes).

The Derivative Term is the part of the controller which takes into account how fast

the deviation is growing or shrinking. It is determined by taking the derivative of the

deviation and serves to accelerate the controller response when the deviation is

growing (e.g. speed up if the cruise control setpoint is higher than the car’s speed

and the car starts to slow down). It also helps reduce overshoot by decelerating the

controller response when the deviation is shrinking (e.g. ease up on the gas as the

car’s speed starts to approach the cruise control setpoint).

The combination of these three parts, each of which can be independently tuned,

gives PID controllers great flexibility at managing a wide variety of control system

applications.

PID controllers work best in systems that allow some degree of lag in the response

time as well as the possibility of overshoot and oscillation around the setpoint as the

system attempts to stabilize itself. Reflex index systems like RAI are well suited for

this type of scenario where their redemption prices can be changed by PID

controllers.

More generally, it has recently been discovered that many of the current central

bank monetary policy rules (e.g. the Taylor Rule) are actually approximations of PID

controllers [5].

Redemption Rate Feedback Mechanism

The Redemption Rate Feedback Mechanism is the system component in charge of

changing a reflex index’s redemption price. In order to understand how it works, we

first need to describe why the system needs a feedback mechanism as opposed to

using manual control and what the mechanism’s output is.

Feedback Mechanism Components

In theory, it would be possible to directly manipulate the reflex index’s redemption

price (described in Section 2) in order to influence index users and ultimately change

the index’s market price. In practice, this method would not have the desired effect

on system participants. From the perspective of a SAFE holder, if the redemption

price is increased only once, they might accept a higher price per debt unit, absorb

the loss from a decreased collateralization ratio and maintain their position. If,

however, they expect the redemption price to continue to increase over time, they

would likely be more inclined to avoid expected future loss and thus choose to pay

back their debt and close their positions.

We expect reflex index system participants not to respond directly to changes in the

redemption price, but instead respond to the rate of change of the redemption price

which we call the redemption rate. The redemption rate is set by a feedback

mechanism that governance can fine-tune or allow to be fully automated.

Feedback Mechanism Scenarios

Recall that the feedback mechanism aims to maintain equilibrium between the

redemption price and the market price by using the redemption rate to counter

shifts in market forces. To achieve this, the redemption rate is calculated so that it

opposes the deviation between market and redemption prices.

In the first scenario below, if the index’s market price is higher than its redemption

price, the mechanism will calculate a negative rate which will start to decrease the

redemption price, thus making the system’s debt cheaper.

The expectation of a decreasing redemption price will likely discourage people from

holding indexes and encourage SAFE holders to generate more debt (even if the

collateral price does not change) which is then sold on the market, thus balancing

out supply and demand. Note that this is the ideal scenario where index holders

react quickly in response to the feedback mechanism. In practice (and especially in

the early days post launch) we expect a lag between the mechanism’s kickoff and

actual results seen in the amount of debt issued and subsequently in the market

price.

On the other hand, in scenario two, if the index’s market price is lower than the

redemption price, the rate becomes positive and starts to reprice all the debt so that

it becomes more expensive.

As debt becomes more expensive, the collateralization ratios of all SAFEs go down

(thus SAFE creators are incentivized to pay back their debt) and users start to hoard

indexes with the expectation that they will increase in value.

Feedback Mechanism Algorithm

In the following scenario, we assume that the protocol uses a proportional-integral

controller to calculate the redemption rate:

● The reflex index is launched with an arbitrary redemption price ‘rand’

● At some point, the index’s market price rises from ‘rand’ to ’rand’ + x. After

the feedback mechanism reads the new market price, it calculates a

proportional term p, which in this case is -1 * ((‘rand’ + x) / ‘rand’). The

proportional is negative in order to decrease the redemption price and in turn

reprice the indexes so that they become cheaper

● After calculating the proportional, the mechanism will determine the integral

term i by adding all the past deviations from the last deviationInterval seconds

● The mechanism sums the proportional and the integral and calculates a

per-second redemption rate r that slowly starts to decrease the redemption

price. As SAFE creators realize they can generate more debt, they will flood

the market with more indexes

● After n seconds, the mechanism detects that the deviation between the

market and redemption prices is negligible (under a specified parameter

noise). At this point, the algorithm sets r to zero and keeps the redemption

price where it is

In practice, the algorithm will be more robust and we will either make some variables

immutable (e.g the noise parameter, deviationInterval) or there will be strict bounds

over what governance can change.

Feedback Mechanism Tuning

Of the utmost importance to the proper functioning of the reflex index system is the

tuning of the algorithmic controller parameters. Improper parameterization could

result in the system being too slow to achieve stability, massively overshooting, or

being generally unstable in the face of external shocks.

The tuning process for a PID controller typically involves running the live system,

tweaking the tuning parameters, and observing the system’s response, often

purposefully introducing shocks along the way. Given the difficulty and financial risk

of tweaking the parameters of a live reflex index system, we plan to leverage

computer modeling and simulation as much as possible to set the initial parameters,

but will also allow governance to update the tuning parameters if additional data

from production shows them to be sub-optimal.

Money Market Setter

In RAI, we plan to keep the borrowing rate (interest rate applied when generating

indexes) fixed or capped and only modify the redemption price, thus minimizing the

complexity involved in modelling the feedback mechanism. The borrowing rate in our

case is equal to the spread between the stability fee and DSR in Multi-Collateral DAI.

Even though we plan to keep the borrowing rate fixed, it is possible to change it

alongside the redemption price using a money market setter. The money market

changes the borrowing rate and the redemption price in a way that incentivizes SAFE

creators to generate more or less debt. If an index’s market price is above

redemption, both rates will start to decrease, whereas if it is below redemption, the

rates will increase.

Global Settlement

Global settlement is a method of last resort used to guarantee the redemption price

to all reflex index holders. It is meant to allow both reflex index holders and SAFE

creators to redeem system collateral at its net value (amount of indexes per each

collateral type, according to the latest redemption price). Anyone can trigger

settlement after burning a certain amount of protocol tokens.

Settlement has three main phases:

● Trigger: settlement is triggered, users cannot create SAFEs anymore, all

collateral price feeds and the redemption price are frozen and recorded

● Process: process all outstanding auctions

● Claim: every reflex index holder and SAFE creator can claim a fixed amount of

any system collateral based on the index’s last recorded redemption price

Governance

The vast majority of parameters will be immutable and the inner smart contract

mechanics will not be upgradeable unless governance token holders deploy an

entirely new system. We chose this strategy because we can eliminate the

meta-game where people try to influence the governance process for their own

benefit, thus damaging trust in the system. We establish the proper operation of the

protocol without putting too much faith in humans (the “bitcoin effect”) so that we

maximize social scalability and minimize the risks for other developers who will want

to use RAI as core infrastructure in their own projects.

For the few parameters that can be changed, we propose the addition of a Restricted

Governance Module meant to delay or bound all possible system modifications.

Moreover, we present Governance Ice Age, a permissions registry that can lock some

parts of the system from outside control after certain deadlines have passed.

Time Bounded Governance

Time Bounded Governance is the first component of the Restricted Governance

Module. It imposes time delays between changes applied to the same parameter. An

example is the possibility to change the addresses of the oracles used in the Oracle

Network Medianizer (Section 6.2) after at least T seconds have passed since the last

oracle modification.

Action Bounded Governance

The second component in the Restricted Governance Module is Action Bounded

Governance. Every governable parameter has limits on what values it can be set to

and how much it can change over a certain period of time. Notable examples are the

initial versions of the Redemption Rate Feedback Mechanism (Section 4.2) which

governance token holders will be able fine-tune.

Governance Ice Age

The Ice Age is an immutable smart contract that imposes deadlines on changing

specific system parameters and on upgrading the protocol. It can be used in the case

where governance wants to make sure they can fix bugs before the protocol locks

itself and denies outside intervention. Ice Age will verify if a change is permitted by

checking the parameter’s name and the affected contract’s address against a registry

of deadlines. If the deadline has passed, the call will revert.

Governance may be able to delay Ice Age a fixed number of times if bugs are found

close to the date when the protocol should start to lock itself. For example, Ice Age

can only be delayed three times, each time for one month, so that the newly

implemented bug fixes are tested properly.

Core Areas Where Governance Is Needed

We envision four areas where governance might be needed, especially in the early

versions of this framework:

● Adding new collateral types: RAI will be backed only by ETH, but other

indexes will be backed by multiple collateral types and governance will be able

to diversify risk over time

● Changing external dependencies: oracles and DEXs that the system depends

on can be upgraded. Governance can point the system to newer dependencies

in order for it to continue functioning properly

● Fine-tuning rate setters: early monetary policy controllers will have

parameters that can be changed within reasonable bounds (as described by

Action and Time Bounded Governance)

● Migrating between system versions: in some cases, governance can deploy a

new system, give it permission to print protocol tokens and withdraw this

permission from an old system. This migration is performed with the help of

the Restricted Migration Module outlined below

Restricted Migration Module

The following is a simple mechanism for migrating between system versions:

● There is a migration registry that keeps track of how many different systems

the same protocol token covers and which systems can be denied the

permission to print protocol tokens in a debt auction

● Every time governance deploys a new system version, they submit the address

of the system’s debt auction contract in the migration registry. Governance

also needs to specify if they will ever be able to stop the system from printing

protocol tokens. Also, governance can, at any time, say that one system will

always be able to print tokens and thus it will never be migrated from

● There is a cooldown period between proposing a new system and

withdrawing permissions from an old one

● An optional contract can be set up so that it automatically shuts down an old

system after it is denied printing permissions

The migration module can be combined with an Ice Age that automatically gives

specific systems the permission to always be able to print tokens.

Automatic System Shutdown

There are cases that the system can automatically detect and as a result trigger

settlement by itself, without the need to burn protocol tokens:

● Severe Price Feed Delays: the system detects that one or more of the

collateral or index price feeds have not been updated in a long time

● System Migration: this is an optional contract that can shut down the protocol

after a cooldown period passes from the moment when governance

withdraws the ability of the debt auction mechanism to print protocol tokens

(Restricted Migration Module, Section 5.4.1)

● Consistent Market Price Deviation: the system detects that the index’s

market price has been x% deviated for a long time compared to the

redemption price

Governance will be able to upgrade these autonomous shutdown modules while still
being bounded or until the Ice Age starts to lock some parts of the system.

Oracles

There are three main asset types that the system needs to read price feeds for: the

index, the protocol token and every whitelisted collateral type. The price feeds can

be provided by governance led oracles or by already established oracle networks.

Governance Led Oracles

Governance token holders or the core team that launched the protocol can partner

with other entities who gather multiple price feeds off-chain and then submit a single

transaction to a smart contract that medianizes all data points.

This approach allows for more flexibility on upgrading and changing the oracle

infrastructure although it comes at the expense of trustlessness.

Oracle Network Medianizer

An oracle network medianizer is a smart contract that reads prices from multiple

sources which are not directly controlled by governance (e.g Uniswap V2 pool

between an index collateral type and other stablecoins) and then medianizes all the

results. ONM works as follows:

● Our contract keeps track of whitelisted oracle networks it can call in order to

request collateral prices. The contract is funded by part of the surplus the

system accrues (using the Surplus Treasury, Section 11). Each oracle network

accepts specific tokens as payment so our contract also keeps track of the

minimum amount and the type of tokens needed for each request

● In order to push a new price feed in the system, all the oracles need to be

called beforehand. When calling an oracle, the contract first swaps some

stability fees with one of the oracle’s accepted tokens. After an oracle is

called, the contract tags the call as “valid” or “invalid”. If a call is invalid, the

specific faulty oracle cannot be called again until all the other ones are called

and the contract checks if there is a valid majority. A valid oracle call must not

revert and it must retrieve a price that has been posted on-chain sometime in

the last m seconds. “Retrieve” means different things depending on each

oracle type:

○ For pull based oracles, from which we can get a result right away, our

contract needs to pay a fee and directly fetch the price

○ For push based oracles, our contract pays the fee, calls the oracle and

needs to wait a specific period of time n before calling the oracle again

in order to get the requested price

● Every oracle result is saved in an array. After every whitelisted oracle is called

and if the array has enough valid data points to form a majority (e.g the

contract received valid data from 3/5 oracles), the results are sorted and the

contract chooses the median

● Whether the contract finds a majority or not, the array with oracle results is

cleared and the contract will need to wait p seconds before starting the entire

process all over again

Oracle Network Backup

Governance can add a backup oracle option that starts to push prices in the system if

the medianizer cannot find a majority of valid oracle networks several times in a row.

The backup option must be set when the medianizer is deployed as it cannot be

changed afterwards. Furthermore, a separate contract can monitor if the backup has

been replacing the medianization mechanism for too long and automatically shut

down the protocol.

Safes

In order to generate indexes, anyone can deposit and leverage their crypto collateral

inside Safes. While a SAFE is opened, it will continue accruing debt according to the

deposited collateral’s borrowing rate. As the SAFE creator pays back their debt, they

will be able to withdraw more and more of their locked collateral.

SAFE Lifecycle

There are four main steps needed for creating reflex indexes and subsequently

paying back a SAFE’s debt:

● Deposit collateral in the SAFE

The user first needs to create a new SAFE and deposit collateral in it.

● Generate indexes backed by the SAFE’s collateral

The user specifies how many indexes they want to generate. The system

creates an equal amount of debt that starts to accrue according to the

collateral’s borrowing rate.

● Pay back the SAFE debt

When the SAFE creator wants to withdraw their collateral, they have to pay

back their initial debt plus the accrued interest.

● Withdraw collateral

After the user pays back some or all of their debt, they are allowed to

withdraw their collateral.

SAFE Liquidation

In order to keep the system solvent and cover the value of the entire outstanding

debt, each SAFE can be liquidated in case its collateralization ratio falls under a

certain threshold. Anyone can trigger a liquidation, in which case the system will

confiscate the SAFE’s collateral and sell it off in a collateral auction.

Liquidation Insurance

In one version of the system, SAFE creators can have the option to choose a trigger

for when their SAFEs get liquidated. Triggers are smart contracts that automatically

add more collateral in a SAFE and potentially save it from liquidation. Examples of

triggers are contracts that sell short positions or contracts that communicate with

insurance protocols such as Nexus Mutual [6].

Another method to protect SAFEs is the addition of two different collateralization

thresholds: safe and risk. SAFE users can generate debt until they hit the safe

threshold (which is higher than risk) and they only get liquidated when the SAFE’s

collateralization goes below the risk threshold.

Collateral Auctions

To start a collateral auction, the system needs to use a variable called

liquidationQuantity in order to determine the amount of debt to be covered by every

auction and the corresponding amount of collateral to be sold. A liquidation penalty

will be applied to every auctioned SAFE.

Collateral Auction Parameters

Parameter Name Description

minimumBid
Minimum amount of coins that need to

be offered in one bid

discount Discount at which collateral is being sold

lowerCollateralMedianDeviation

Max lower bound deviation that the
collateral median can have compared to

the oracle price

upperCollateralMedianDeviation
Max upper bound deviation that the

collateral median can have compared to
the oracle price

lowerSystemCoinMedianDeviation

Max lower bound deviation that the
system coin oracle price feed can have

compared to the system coin oracle
price

upperSystemCoinMedianDeviation
Max upper bound deviation that the

collateral median can have compared to
the system coin oracle price

minSystemCoinMedianDeviation

Min deviation for the system coin
median result compared to the

redemption price in order to take the
median into account

Collateral Auction Mechanism

The fixed discount auction is a straightforward way (compared to English auctions) to

put collateral up for sale in exchange for system coins used to settle bad debt.

Bidders are only required to allow the auction house to transfer their

safeEngine.coinBalance and can then call buyCollateral in order to exchange their

system coins for collateral which is sold at a discount compared to its latest recorded

market price.

Bidders can also review the amount of collateral they can get from a specific auction

by calling getCollateralBought or getApproximateCollateralBought. Note that

getCollateralBought is not marked as view because it reads (and also updates) the

redemptionPrice from the oracle relayer whereas getApproximateCollateralBought

uses the lastReadRedemptionPrice.

Debt Auctions

In the scenario where a collateral auction cannot cover all the bad debt in a SAFE and

if the system does not have any surplus reserves, anyone can trigger a debt auction.

Debt auctions are meant to mint more protocol tokens (Section 10) and sell them for

indexes that can nullify the system’s remaining bad debt.

In order to start a debt auction, the system needs to use two parameters:

● initialDebtAuctionAmount: the initial amount of protocol tokens to mint
post-auction

● debtAuctionBidSize: the initial bid size (how many indexes must be offered in

exchange for initialDebtAuctionAmount protocol tokens)

Autonomous Debt Auction Parameter Setting

The initial amount of protocol tokens minted in a debt auction can either be set

through a governance vote or it can be automatically adjusted by the system. An

automated version would need to be integrated with oracles (Section 6) from which

the system would read the protocol token and reflex index market prices. The system

would then set the initial amount of protocol tokens (initialDebtAuctionAmount) that

will be minted for debtAuctionBidSize indexes. initialDebtAuctionAmount can be set

at a discount compared to the actual PROTOCOL/INDEX market price in order to

incentivize bidding.

Debt Auction Parameters

Parameter Name Description

amountSoldIncrease
Increase in the amount of protocol
tokens to be minted for the same

amount of indexes

bidDecrease
Next bid’s minimum decrease in the

accepted amount of protocol tokens for
the same amount of indexes

bidDuration
How long the bidding lasts after a new

bid is submitted (in seconds)

totalAuctionLength Total length of the auction (in seconds)

auctionsStarted
How many auctions have started until

now

Debt Auction Mechanism

As opposed to collateral auctions, debt auctions only have one stage:

decreaseSoldAmount(uint id, uint amountToBuy, uint bid): decrease the amount of

protocol tokens accepted in exchange for a fixed amount of indexes.

The auction will be restarted if it has no bids placed. Every time it restarts, the

system will offer more protocol tokens for the same amount of indexes. The new

protocol token amount is calculated as lastTokenAmount * amountSoldIncrease /

100. After the auction settles, the system will mint tokens for the highest bidder.

Protocol Tokens

As described in earlier sections, each protocol will need to be protected by a token

that is minted through debt auctions. Apart from protection, the token will be used

to govern a few system components. Also, the protocol token supply will gradually

be reduced with the use of surplus auctions. The amount of surplus that needs to

accrue in the system before extra funds are auctioned is called the surplusBuffer and

it is automatically adjusted as a percentage of the total debt issued.

Insurance Fund

Apart from the protocol token, governance can create an insurance fund that holds a

wide array of uncorrelated assets and which can be used as a backstop for debt

auctions.

Surplus Auctions

Surplus auctions sell stability fees accrued in the system for protocol tokens that are

then burned.

Surplus Auction Parameters

Parameter Name Description

bidIncrease Minimum increase in the next bid

bidDuration
How long the auction lasts after a new

bid is submitted (in seconds)

totalAuctionLength Total length of the auction (in seconds)

auctionsStarted
How many auctions have started until

now

Surplus Auction Mechanism

Surplus auctions have a single stage:

increaseBidSize(uint id, uint amountToBuy, uint bid): anyone can bid a higher amount

of protocol tokens for the same amount of indexes (surplus). Every new bid needs to

be higher than or equal to lastBid * bidIncrease / 100. The auction will end after

maximum totalAuctionLength seconds or after bidDuration seconds have passed

since the latest bid and no new bids have been submitted in the meantime.

An auction will restart if it has no bids. On the other hand, if the auction has at least

one bid, the system will offer the surplus to the highest bidder and will then burn all

the gathered protocol tokens.

Surplus Indexes Management

Every time a user generates indexes and implicitly creates debt, the system starts

applying a borrowing rate to the user’s SAFE. The accrued interest is pooled in two

different smart contracts:

● The accounting engine used to trigger debt (Section 9.2) and surplus (Section

10.1) auctions

● The surplus treasury used to fund core infrastructure components and

incentivize external actors to maintain the system

The surplus treasury is in charge of funding three core system components:

● Oracle module (Section 6). Depending on how an oracle is structured, the

treasury either pays governance whitelisted, off-chain oracles or it pays for

calls toward oracle networks. The treasury can also be set up to pay the

addresses that spent gas to call an oracle and update it

● In some cases, independent teams that maintain the system. Examples are

teams who whitelist new collateral types or fine tune the system’s rate setter

(Section 4.2)

The treasury can be set up so that some surplus recipients will automatically be

denied funding in the future and others can take their place.

External Actors

The system depends on external actors in order to function properly. These actors

are economically incentivized to participate in areas such as auctions, global

settlement processing, market making and updating price feeds in order to maintain

the system’s health.

We will provide initial user interfaces and automated scripts to enable as many

people as possible to keep the protocol secure.

Addressable Market

We see RAI as being useful in two main areas:

● Portfolio diversification: investors use RAI to get dampened exposure to an

asset like ETH without the whole risk of actually holding ether

● Collateral for synthetic assets: RAI can offer protocols such as UMA,

MakerDAO and Synthetix a lower exposure to the crypto market and give

users more time to exit their positions in the case of scenarios such as Black

Thursday from March 2020 when millions of dollars worth of crypto assets

were liquidated

Future Research

To push the boundaries of decentralized money and bring further innovation in

decentralized finance, we will continue to look for alternatives in core areas such as

governance minimization and liquidation mechanisms.

We first want to lay the groundwork for future standards around protocols that lock

themselves from outside control and for true “money robots” which adapt in

response to market forces. Afterwards, we invite the Ethereum community to debate

and design improvements around our proposals with a specific focus on collateral

and debt auctions.

Risks and Mitigation

There are several risks involved in developing and launching a reflex index, as well as

subsequent systems that are built on top:

● Smart contract bugs: the greatest risk posed to the system is the possibility of

a bug that allows anyone to extract all the collateral or locks the protocol in a

state it cannot recover from. We plan to have our code reviewed by multiple

security researchers and launch the system on a testnet before we commit to

deploying it in production

● Oracle failure: we will aggregate feeds from multiple oracle networks and

there will be strict rules in place for upgrading only one oracle at a time so

that malicious governance cannot easily introduce false prices

● Collateral black swan events: there is the risk of a black swan event in the

underlying collateral which can result in a high amount of liquidated SAFEs.

Liquidations may not be able to cover the entire outstanding bad debt and so

the system will continuously change its surplus buffer in order to cover a

decent amount of issued debt and withstand market shocks

● Improper rate setter parameters: autonomous feedback mechanisms are

highly experimental and may not behave exactly like we predict during

simulations. We plan to allow governance to fine-tune this component (while

still being bounded) in order to avoid unexpected scenarios

● Failure to bootstrap a healthy liquidator market: liquidators are vital actors

that make sure all issued debt is covered by collateral. We plan to create

interfaces and automated scripts so that as many people as possible can

participate in keeping the system secure.

Summary

We have proposed a protocol that progressively locks itself from human control and

issues a low volatility, collateralized asset called a reflex index. We first presented the

autonomous mechanism meant to influence the index’s market price and then

described how several smart contracts can limit the power that token holders have

over the system. We outlined a self-sustaining scheme for medianizing price feeds

from multiple independent oracle networks and then finished by presenting the

general mechanism for minting indexes and liquidating SAFEs.

References

[1] “The Maker Protocol: MakerDAO’s Multi Collateral Dai (MCD) System”,

https://bit.ly/2YL5S6j

[2] “UMA: A Decentralized Financial Contract Platform”, https://bit.ly/2Wgx7E1

[3] Synthetix Litepaper, https://bit.ly/2SNHxZO

[4] K.J. Åström, R.M. Murray, “Feedback Systems: An Introduction for Scientists and

Engineers”, https://bit.ly/3bHwnMC

[5] R.J. Hawkins, J.K. Speakes, D.E. Hamilton, “Monetary Policy and PID Control”,

https://bit.ly/2TeQZFO

[6] H. Karp, R. Melbardis, “A peer-to-peer discretionary mutual on the Ethereum

blockchain”, https://bit.ly/3du8TMy

[7] H. Adams, N. Zinsmeister, D. Robinson, “Uniswap V2 Core”,

https://bit.ly/3dqzNEU

https://bit.ly/2YL5S6j
https://bit.ly/2Wgx7E1
https://bit.ly/2SNHxZO
https://www.cds.caltech.edu/~murray/amwiki/index.php?title=Karl_J._%C3%85str%C3%B6m
https://bit.ly/3bHwnMC
https://bit.ly/2TeQZFO
https://bit.ly/3du8TMy
https://bit.ly/3dqzNEU

Glossary

Reflex index: a collateralized asset that dampens the volatility of its underlying

RAI: our first reflex index

Redemption Price: the price that the system wants the index to have. It changes,

influenced by a redemption rate (computed by RRFM), in case the market price is not

close to it. Meant to influence SAFE creators to generate more or pay back some of

their debt

Borrowing Rate: annual interest rate applied to all SAFEs that have outstanding debt

Redemption Rate Feedback Mechanism (RRFM): an autonomous mechanism which

compares the market and redemption prices of a reflex index and then computes a

redemption rate that slowly influences SAFE creators to generate more or less debt

(and implicitly tries to minimize the market/redemption price deviation)

Money Market Setter (MMS): a mechanism similar to RRFM which pulls multiple

monetary levers at once. In the case of reflex indexes, it modifies both the borrowing

rate and the redemption price

Oracle Network Medianizer (ONM): a smart contract that pulls prices from multiple

oracle networks (which are not controlled by governance) and medianizes them if a

majority (e.g 3 out of 5) returned a result without throwing

Restricted Governance Module (RGM): a set of smart contracts that bound the

power that governance tokens holders have over the system. It either enforces time

delays or limits the possibilities that governance has to set certain parameters

Governance Ice Age: immutable contract that locks most components of a protocol

from outside intervention after a certain deadline has passed

Accounting Engine: system component which triggers debt and surplus auctions. It

also keeps track of the amount of currently auctioned debt, unactioned bad debt and

the surplus buffer

Surplus Buffer: amount of interest to accrue and keep in the system. Any interest

accrued above this threshold gets sold in surplus auctions that burn protocol tokens

Surplus Treasury: contract that gives permission to different system modules to

withdraw accrued interest (e.g ONM for oracle calls)

