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Abstract

The runtime verification tool MonPoly with its extensive temporal spec-
ification language MFODL provides a broad set of features, including
real-time monitoring, global quantification, regular expressions matching
over program traces, and computing SQL-like aggregations. While JSON-
formatted application logs have become ubiquitous, allowing systems to
output events as arbitrary complex data structures, both MonPoly and
MFODL lack support for custom event data types.

To rectify this, we present an extension of MFODL that allows users to
formulate policies over events of custom product types. A type-checking
algorithm accompanies the extension with full type-inference support.
Moreover, we provide an extension of MonPoly that supports monitor-
ing JSON-formatted application logs with no or minimal preprocessing.
We accomplish this with a formula compiler and a generalized log stream
preprocessor.

Our case study on two real-world scenarios shows that our extension not
only simplifies the monitoring process of complex-typed event streams
but it allows users to formulate specifications over complex data struc-
tures more naturally, increasing the readability and comprehensibility of
monitoring policies.
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Chapter 1

Introduction

Validating software applications and systems for correct behavior can be done
in many ways. Automated or manual testing, formal verification, and model
checking are well-known techniques that ensure the correctness of software
and are usually part of the development process. Runtime verification is a
lightweight formal verification technique mainly concerned with checking the
behavior of a system during its runtime. Runtime verification generally vali-
date that a given program trace adheres to predefined properties.

In the heart of runtime verification lies the monitor. It accepts one or many
properties formulated in a specification language, a program trace to monitor,
and returns a verdict indicating if the given trace satisfies the formulated
properties. The process of gathering a program trace may differ based on the
architecture of an application: if runtime verification is part of the monitored
system itself, a stream of internal events can be monitored directly. In other
cases, application logs may approximate the actual program trace.

Similarly, there is a variety of specification languages for defining the set of
desired and undesired program traces. While we focus on temporal logic-
based languages, others may be based on regular expressions, streams, or a
combination of these families [3]. Early iterations of temporal logic-based
specification languages, such as CARET [1], regard events of a program trace
as atomic symbols, for instance, openFile or closeFile. Later, languages were
established that support the formalization of properties on streams of events
that carry additional data [17].

Depending on the syntax and semantics of the specification language and the
capabilities of the underlying monitor, the domain of event data may be lim-
ited. While some runtime verification tools such as HLola [12], ParTraP [9],
and LogScope [2] provide support for custom event data types, many avail-
able tools limit the domain to primitive types, namely boolean, numerical,
and string types. In contrast, JSON formatted logs have become ubiquitous,
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allowing applications to output events as arbitrarily complex data structures.
To monitor complex typed event streams using a runtime verification tool
with limited type support, the event stream must first be transformed into
a supported format. We distinguish two possible approaches: First, a gen-
eral preprocessor transforms the event stream, independent of the application-
specific semantics of the data structures carried by events. The preprocessor
can thus be reused, but the transformation increases the complexity of the ex-
pressed properties in the given specification language. Second, an application-
and property-specific preprocessor extracts only relevant event data into a sup-
ported format. In this case, the formalization of properties in the specification
language is generally less complex, but the preprocessor must be potentially
adjusted or even rewritten whenever the desired properties or application log
formats change. Both approaches increase the risk of introducing subtle bugs
into the monitoring process.

To improve the runtime verification of complex typed event streams, we ex-
tend the existing monitor system MonPoly [7] and its specification language
metric first-order dynamic logic (MFODL) [4]. The goal is to support moni-
toring MFODL properties over JSON-formatted application logs as an event
source, without or only minimal preprocessing. At the same time, specifica-
tions should be expressible naturally, hence improving the development expe-
rience and readability of formulas. We achieve this by the following contribu-
tions:

• Language extension: We introduce complex-typed MFODL (CMFODL)
by extending the syntax and semantics of MFODL. CMFODL supports
variables and constants of custom product types. Projections on vari-
ables can be used to access values of nested fields.

• CMFODL compiler: We implement a formula compiler, translating CM-
FODL properties to semantically equivalent MFODL formulas, which
can be consumed and monitored by MonPoly.

• JSON log parser: A dedicated log parser for JSON logs that acts as
a generalized event stream preprocessor: The stream of complex-typed
event data is transformed into a stream of finite relations, as expected
by MonPoly and the compiler.

Compared to existing temporal specification languages with support for cus-
tom typed event data, CMFODL inherits MFODL features such as global
quantification, referencing past event data and support for real-time monitor-
ing, providing a unique combination of features.

Writing formulas is hard, especially those that belong to a monitorable frag-
ment supported by MonPoly. We improve the usability of CMFODL with
the following contributions:

• A static type-checking algorithm with type inference support, helping
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users in writing correct formulas while keeping the additional effort min-
imal.

• An extended monitorability check that helps users to better understand
why a given CMFODL formula is not monitorable by MonPoly.

The structure of this thesis is as follows: Chapters 10 and 2 present related
work and give an overview of the background to this work. Chapters 3 and
4 describe the language extension CMFODL and formalize its type system.
Chapters 5 and 6 introduce the preprocessing of event streams and compi-
lation of CMFODL formulas. Chapter 7 gives an overview of the changes
introduced to the monitoring tool MonPoly. Finally, Chapter 8 presents a
case study on existing approaches of generalized and specialized preprocessing,
and demonstrates the added value of this work in real-world scenarios.
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Chapter 2

Background

This chapter provides the background knowledge helpful for comprehending
the following chapters. We first give an overview of runtime verification in
general and afterward describe the specification language MFODL and the
runtime monitoring system MonPoly in more detail.

2.1 Runtime verification
Runtime verification (RV) is pursued as a complementary verification strategy
besides other approaches such as testing or formal verification. Compared to
other strategies, runtime verification can be used to verify the correct behavior
of a system during its runtime [20]. In general, we want to detect deviations in
the behavior of a system from its specification. On the detection of divergence,
a runtime verification tool may solely act as a reporter or influence the run of
the system under monitoring, where the latter is known as enforcement [20].
Formally, a run of a system can be modeled as a possibly infinite sequence
of program states [20], from now on called program trace. A correctness
property is equal to a subset of program traces that adhere to a given system
specification.

A monitor is an algorithm that, in its simplest form, produces a boolean
verdict, indicating if the current program trace of a monitored system is an
element of a given correctness property. We further differentiate between
online and offline monitoring: In the former, the monitor checks the execution
of a system in real time by incrementally processing new system states from
an ongoing program trace. In the latter, a monitor analyses a (finite) program
trace of a previous system run. During online monitoring of an infinite trace,
some properties may not always be verifiable in finite time. For example, if
a liveness property is not satisfied by an infinite trace, there exists no finite
prefix of the trace acting as a witness for refutation [16].
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2.2. MFODL

Usually, a monitor is automatically generated based on a higher-level specifica-
tion [20]. When we use the term specification language, we imply a language to
formulate the specification for generating a monitor. MFODL and the exten-
sion CMFODL, presented in this work, are specification languages. In contrast,
MonPoly is an implementation of a monitor generator from MFODL specifi-
cations [7]. From now on, we call specifications written in MFODL formulas
and MonPoly the monitoring system.

2.2 MFODL
MFODL [4] is the result of combining Metric Dynamic Logic (MDL) [11] and
Metric First-Order Temporal Logic (MFOTL) [10] with additional features
[23]. While it inherits the temporal operators from MFOTL, it also supports
regular expression over program traces introduced by MDL. Further features
include aggregation operators introduced to MFOTL by Basin et al. [6].

MFODL formulas are interpreted over a temporal structure consisting of a
sequence of tuples, each consisting of a timestamp and a finite set of relations.
Values of relations are elements of a possibly infinite domain |D|. The formula
r(a1,a2, . . . ,ak) for a k-ary predicate r is evaluated as true at a time point i
for values a1,a2, . . . ,ak ∈ |D|, whenever the tuple (a1,a2, . . . ,ak) is an element of
the relation r at the i-th element of the temporal structure. While the domain
|D| is not fixed, one important limitation of MFODL is the fact that each
value in |D| is regarded to be atomic: neither the syntax nor the semantics of
MFODL allows accessing fields of compound values. The extension CMFODL
presented in this work improves upon this. Section 3.1 provides an overview of
the supported syntax, and Section 3.2 formalizes the semantics of CMFODL
formulas.

2.3 MonPoly
MonPoly is a runtime verification tool accepting specifications in MFODL.
To effectively monitor policies, MonPoly only handles a syntactic fragment
of MFODL [7]. For once, all intervals of future temporal operators must be
bounded. Furthermore, all intermediate results must be finite when evaluating
a formula bottom-up. Finally, the domain of values accepted as part of a rela-
tion in a temporal structure is limited to the primitive types string, int, float,
and regexp [7].

Besides a program trace, MonPoly requires a signature file and a formula
file as input. The signature file describes the first-order signature used by the
formula. The formula file contains the specification written in MFODL [7].
The accepted grammar of these files is described in Sections 7.1.1 and 7.1.2.
The log to monitor can either be provided as a file for offline monitoring or as
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2.3. MonPoly

a stream to standard input for online monitoring. The log represents a finite
temporal structure by enumerating the relations tuple by tuple for each time
point in increasing order. This work extends MonPoly such that it accepts
specifications written in CMFODL and can parse JSON formatted log files.
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Chapter 3

Complex-Typed MFODL

As outlined in the introduction, MonPoly makes use of MOFDL as its policy
specification language [7]. To support monitoring complex-structured appli-
cation logs using MFODL policies, we propose the extension CMFODL of
MFODL with support for complex data types. Section 3.1 describes the ab-
stract syntax of CMFODL, whereas Section 3.2 presents the semantics of the
newly introduced syntax.

3.1 Abstract syntax
We first introduce the syntax of complex-typed metric first-order dynamic
logic (CMFODL). Here we diverge from the commonly used, minimalistic
single-sorted definition [5] and opt to cover additional details as specified in
the monitoring tool MonPoly [7].

A sorted first-order signature defines constant, function, and predicate sym-
bols by enumerating their names and respective sorts. Intuitively, a sort
describes a subset of domain values that will be used to interpret the symbols
in the semantics. The signature assigns a single sort to each constant symbol.
Predicate and function symbols require a sequence of sorts that characterize
their arguments; function symbols have an additional sort for their result.
Here we opt not to include function symbols in the signature. We incorporate
them into the syntax and define their sorts indirectly using a type system
later.

We fix an infinite set of names N and a set PS = {Z,F,Str,RE,B,Null} of six
primitive sorts: integers (Z), floats (F), strings (Str), regular expressions (RE)
booleans (B) and the singleton sort Null consisting of the single constant value
null. We assume that N and PS are disjoint. A sorted first-order signature
∆ is a tuple (S,Sdef,C,P), where S is a finite subset of N∪PS, presenting
the sorts used by the signature. The partial mapping Sdef defines the non-
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3.1. Abstract syntax

primitive sorts; we will explain it below. The partial mapping C ∈ N ⇀ S
assigns a sort to each constant symbol. The available constant symbols are
implicitly given by dom(C), the domain of C. Finally, P ∈ N ⇀ PS∗ assigns
a list of (primitive) sorts to each predicate symbol in dom(P). For example,
∆ = (PS, /0,{r 7→ Z},{publish 7→ (Z),approve 7→ (Z)}) defines the signature for
a simple reporting system, where relevant predicate symbols correspond to
publishing and approving reports with integer IDs, and we have an integer
constant r. There is no custom sort; hence we specified the empty mapping /0
for Sdef.

We allow the definition of custom-named sorts in the signature. In particular,
named products of sorts with named fields can be defined as a custom sort.
The set of names N can be used for custom sort names and their field names.
The structure of a custom sort is described by a sort schema. The set Sch
of all sort schemas is the smallest set such that if f is a function from a
finite (possibly empty) subset of N to N∪PS, then Π f ∈ S. Note that Π is
just a symbol that marks the schema as a product. We usually write product
schemas by enumerating the pairs of field names and their sorts, e.g. {n1 : s1,n2 :
s2, . . . ,nk : sk} is a product schema with k fields. If s is a sort schema, we write
ran(s) for the set of sort names occurring in s. For example, ran(Π f ) = ran( f ),
the range of f . The sort definition Sdef is now a partial mapping CS ⇀ Sch
with CS= S−PS, subject to a well-formedness constraint. It ensures that all
sorts used in sort definitions are defined and that there is no recursion between
sorts. More precisely, there must be a sequence S1 ⊂ S2 ⊂ ·· · ⊂ Sk such that

• S1 ⊆ PS,
• Sk = dom(Sdef), and
• Si+1 \Si = {si} for all i < k and some si, where ran(Sdef(si)) ⊆ Si.

Since we allow custom products of sorts, one can easily encode predicate sym-
bols using this more general mechanism. We therefore simplify the signature to
the triple (S,Sdef,C). For the reporting system example above, the new signa-
ture is (PS∪{publish,approve},{publish 7→ {_1 : Z},approve 7→ {_1 : Z}},{r 7→
Z}). It has two custom sorts, one for each predicate symbol, that are defined
as products with a single field _1. In the following, we assume that N contains
a name of the form _k for every natural number k ≥ 1. Thus we can perform
the encoding for predicates of any arity. A sort s such that Sdef(s) is a product
(exclusively) over fields _1 to _k is called a tuple sort. The particular case of
an empty product is also a tuple sort. We define the arity ι(s) of a tuple sort
s to be n and leave it undefined for all other sorts.

To define the syntax of formulas, we further fix a countably infinite set V of
variables and the set I of nonempty intervals [a,b) := {x∈N | a≤ x< b}, where
a ∈N, b ∈N∪{∞}, and a < b. Given a signature (S,Sdef,C), formulas φ are
defined inductively, where s, c, v, n, v̄, n̄v, and I range over S, dom(C), V,
N, V∗,(N×V)∗, and I, respectively. Figure 3.1 formalizes syntax of MFODL,
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3.2. Semantics

t ::= c | v | f2i(t) | i2f(t) | r2s(t) | s2r(t) | i2s(t) | s2i(t) | f2s(t) | s2f(t)

−t | t + t | t− t | t ∗ t | t/t | t%t | t.n | s
=Sdef(s)︷ ︸︸ ︷

{n : t, . . . ,n : t}
φ ::= s(t) |↓ s(t) |

⊥ | > | s(
ι(s)︷ ︸︸ ︷

t, . . . , t) | t ≈ t | t ≺ t | t � t | t S⇐= t | t RE⇐= t(t, . . . , t) |
¬φ | φ ∧φ | φ ∨φ | φ → φ | φ ↔ φ | ∃v̄. φ | ∀v̄. φ |
 I φ |#I φ | ♦I φ | ♢I φ |■I φ |□I φ | φ SI φ | φ UI φ | I r | I r |

v←Ω v; v̄ φ | let s

=Sdef(s)︷ ︸︸ ︷
{n : v, . . . ,n : v}= φ inφ | let n(v̄) = φ inφ

r ::= · | φ? | r r | r+ r | r∗

Figure 3.1: MFODL syntax definition

where Ω ∈ {CNT,SUM,AVG,MED,MIN,MAX} stands for an aggregation op-
erator. t relates to terms, φ to formulas, and r to regular expressions over
program traces. Sort s in a subformula of the form let s{n : t, . . . ,n : t}= φ inψ
or let n(v̄) = φ in φ cannot occur in φ or outside of the subformula. Let
fv(φ) denote a set of free variables of an MFODL formula φ, defined as usual,
whereas the set Terms represents the set of all MFODL terms.

3.2 Semantics
MFODL formulas are interpreted over temporal structures (TS), which model
timestamped and totally ordered sequences of observations.

Given a signature ∆, each observation in TS consists of a timestamp and a
finite first-order ∆-structure D, which interprets (i.e., associates appropriate
values to) the elements of the signature. In D each sort s ∈ S is interpreted
with a nonempty domain d of values each tagged with its sort, i.e., sD = d ‘
λe. (s,e). In particular, primitive sorts have the expected domains: the sort of
integers is interpreted as the set of tagged integers (ZD = Z). Similar holds for
floats (FD = F), strings (StrD = S), and regular expressions (RED = RE). The
interpretation function ·D is lifted for set operations like unions and products.
To define the interpretation of a custom product sort s ∈ S−PS, we define
Sdef(s) = Π f as

[
∏n∈dom( f ) f (n)D

]
‘ λe. (s,e).

Given a signature ∆ = (S,Sde f ,C), the finite first-order ∆−structure is the
triple D = (D,C,O) where D =

⋃
s∈S sD is union of values of all domains. For

every (c,s) ∈C we have cD ∈ sD in C and we have a finite set of objects O⊆D.
We denote a closure of O with respect to the projection operator (.) as the
smallest set O ↓ such that:
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3.2. Semantics

• O ⊆O ↓
• if (e, f ) ∈O ↓ then o ∈O ↓ for all (_,o) ∈ f

A temporal structure ρ is then an infinite sequence (or a stream) (τi,Di)i∈N of
finite first-order ∆-structures Di with associated time-stamps τi. We refer to a
component of a structure at a specific time-point i using a subscript (e.g., Di).
All finite first-order ∆-structures Di agree on their sorts (∀i. ∀s∈ S. sDi = sDi+1)
and constant interpretations (∀i. Ci = Ci+1). Since they agree on their sorts,
they also agree on their domains (∀i. Di = Di+1), When referring to these
common components in a TS, we omit the reference to a particular time-point
(e.g., we write just D).

Time-stamps are discrete, modeled as natural numbers τi ∈N. We allow the
event source to use finitely precise clocks: structures at different time-points
i 6= j may have the same time-stamp τi = τ j. The sequence of time-stamps
must be non-strictly increasing (∀i. τi ≤ τi+1) and always eventually strictly
increasing (∀τ . ∃i. τ < τi).

The valuation v is a mapping V→D, assigning domain elements to variables.
Overloading notation, v can be applied to terms:

• v(c) ∈D;
• v(f2i(t)) = int_of_float(v(t)); v(i2f(t)) = float_of_int(v(t));
• v(r2s(t)) = str_of_regex(v(t)); v(s2r(t)) = regex_of_str(v(t));
• v(i2s(t)) = int_to_str(v(t)); v(s2i(t)) = str_to_int(v(t));
• v(f2s(t)) = float_to_str(v(t)); v(s2f(t)) = str_to_float(v(t));
• v(−t) = −v(t);
• v(t ▷◁ t ′) = v(t) ▷◁ v(t ′) for ▷◁∈ {+,−,∗,/,%};
• v(t. f ) = d if v(t) = (n,o) and ( f ,d) ∈ o.
• v(s{n1 : t1, . . . ,nk : tk}) = (s,{(ni,v(ti)) | i = 1, . . . ,k})

We write v[x 7→ y] for the function equal to v, except that the argument x is
mapped to y. For a vector of free variables ū = [u1, . . . ,uk], we write v(ū) for
the tuple (v(u1), . . .v(uk)). We also define a let mapping δ as a partial function
δ : N⇀ (N→ 2D).

Figure 3.2 describes the semantics of the operators defined in the MFODL
syntax. The relation δ ,v, i |=ρ φ defines the satisfaction of the formula φ for
a let mapping δ , valuation v, and a time-point i with respect to the temporal
structure ρ. Whenever ρ is fixed and clear from the context, we omit the
subscript on |=. We focus only on the core subset of the operators, while
the rest of the operators are shorthands. Temporal operators with no interval
have [0,∞) instead.
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3.2. Semantics

δ , v, i |= s(t) iff v(t) = (s,_) and if δ (s)(i) 6= ⊥ then
v(t) ∈ δ (s)(i) else v(t) ∈ODi

δ , v, i |= ↓ s(t) iff v(t) = (s,_) and if δ (s)(i) 6= ⊥ then
v(t) ∈ δ (s)(i) ↓ else v(t) ∈ODi ↓

δ , v, i |= t ≈ t ′ iff v(t) = v(t ′)
δ , v, i |= t � t ′ iff v(t) ≤ v(t ′)

δ , v, i |= t RE⇐= t ′(t1, . . . , tn) iff v(t) matches v(t ′)with capture group i valued as v(ti)

δ , v, i |= ¬φ iff δ , v, i 6|= φ
δ , v, i |= φ ∧ψ iff δ , v, i |= φ and δ , v, i |= ψ
δ , v, i |= ∃x. φ iff δ , v[x 7→ z], i |= φ for some z ∈D

δ , v, i |=  I φ iff i > 0, τi− τi−1 ∈ I, and δ , v, i−1 |= φ
δ , v, i |= #I φ iff τi+1− τi ∈ I and δ , v, i+ 1 |= φ
δ , v, i |= φ SI ψ iff δ , v, j |= ψ for some j ≤ i, τi− τ j ∈ I,

and δ , v, k |= φ for all k with j < k ≤ i
δ , v, i |= φ UI ψ iff δ , v, j |= ψ for some j ≥ i, τ j− τi ∈ I,

and δ , v, k |= φ for all k with i≤ k < j
δ , v, i |= let s{n̄u}= φ inψ iff δ [s→ f ], v, i |= ψ where

f = λ i.{(s,{n1 : w(u1), . . . ,nk : w(uk)}) | δ , w, i |= φ}
δ , v, i |= I r iff τ j− τi ∈ I and (i, j) ∈R(r) for some j ≥ i
δ , v, i |= I r iff τi− τ j ∈ I and ( j, i) ∈R(r) for some j ≤ i

R(⋆) = {(i, i+ 1) | i ∈N}
R(φ?) = {(i, i) | δ , v, i |= φ}
R(r+ s) =R(r)∪R(s)
R(r · s) = {(i,k) | ∃ j. (i, j) ∈R(r) and ( j,k) ∈R(s)}
R(r∗) = {(i, i) | i ∈N}∪

{
(i0, ik) | ∃i1, . . . , ik. (i j, i j+1) ∈R(r) for all 0≤ j < k

}
x ≺ y := x � y∧¬x ≈ y, ⊥ := 0 ≈ 1, > := ¬⊥, s(t1, . . . , tn) = s(s{_1 : t1, . . . ,_n :

tn}), t S⇐= t ′ := t RE⇐= t ′(), φ ∨ψ := ¬φ ∧¬ψ, φ → ψ := ¬φ ∨ψ, φ ↔ ψ := φ →
ψ ∧ψ → φ, ∀x.φ := ¬∃x.¬φ, ♦I φ := >SI φ, ♢I φ := >UI φ, □I φ := ¬♢I¬φ,
■I φ := ¬♦I¬φ, and let p(t1, . . . , tn) = φ inψ := let p({_1 : t1, . . . ,_n : tn}) =
φ inψ.

Figure 3.2: MFODL operator semantics

11



Chapter 4

Type Checking

This chapter specifies the concept of well-formed CMFODL formulas and ex-
plains in more detail how type checking and type inference are implemented
in MonPoly.

4.1 Well-typed terms and well-formed formulas
Notice that the current definition of the CMFODL syntax described in Section
3.1 allows for writing formulas that do not have well-defined semantics. For
example, x≈ y∧ (x≺ 3)∧ (y≈ ”two”). Ideally, we would like to recognize such
formulas as malformed and reject them.

Well-formed CMFODL formulas have well-typed terms. Here type and sort
are synonymous. We use the following type-language for the CMFODL terms:

T ::= Z | F | Str | RE | B | Null | N { FS } | { FS }
FS ::= N : T | N : T , FS

The case N{ FS } corresponds to named product types, while { FS } corre-
sponds to unnamed product types. We further establish a partial order over
unnamed product types as f1≤ f2 iff f2⊆ f1 and between named and unnamed
product types as (e, f ) ≤ f .

The set Num= {Z,F} is the numeric type class, Ord= {Z,F,Str,RE} the type
class of all totally-ordered types, while Any is the type class of all types. Fur-
thermore, let Γ be the symbol table, i.e., the set of bindings xi : τi representing
a partial map from variables to types. Given a symbol table Γ, an CMFODL
term t and a type τ, type judgement Γ ` t :: τ means that t is well-typed in con-
text of Γ and has type τ. Figure 4.1 lists all type inference rules for CMFODL
terms.

12



4.1. Well-typed terms and well-formed formulas

Γ,x : τ ` x :: τ
Var

c ∈ Z

Γ ` c :: Z
Int

c ∈ F

Γ ` c :: F
Flt

c ∈ RE

Γ ` c :: RE
Regex

c = True

Γ ` c :: B
True

c = False

Γ ` c :: B
False

c = null

Γ ` c :: Null
Null

Γ ` t :: τ τ ∈ Num

Γ ` −t :: τ
UnOp

Γ ` t :: τ ′ τ ′ ≤ {n : τ}
Γ ` t.n :: τ

Proj

Γ ` t :: F
Γ ` f2i(t) :: Z

f2i
Γ ` t :: Z

Γ ` i2f(t) :: F
i2f

Γ ` t :: F
Γ ` f2s(t) :: Str

f2s

Γ ` t :: Str
Γ ` s2f(t) :: F

s2f
Γ ` t :: Z

Γ ` i2s(t) :: Str
i2s

Γ ` t :: Str
Γ ` s2i(t) :: Z

s2i

Γ ` t :: RE
Γ ` r2s(t) :: Str

r2s
Γ ` t :: Str

Γ ` s2r(t) :: RE
s2r

Γ ` t :: τ Γ ` t ′ :: τ τ ∈ Num

Γ ` t⊕ t ′ :: τ
BinOp ⊕ ∈ {+,−,∗,/,%}

Figure 4.1: Typing rules for MFODL terms

Similarly, given a predicate schema ∆ and a formula φ (or temporal regular
expression r), judgement ∆; Γ ` φ (or ∆; Γ ` r) means that φ (or r) is a
well-formed formula (or temporal regular expression) in context of ∆ and Γ.
Given fresh (i.e. not in Γ) types τ ,τ1, . . . ,τn ∈ Any, and a list of fresh types
σ̄ ∈ Any∗, typing rules for CMFODL are listed in Figure 4.2. Expression z̄s : σ̄
is a shorthand for {(z̄s[i] : σ̄ [i]) | i ∈ {1, . . . , |z̄s|}} assuming |z̄s|= |σ̄ |.

When we write Γ, x : t, it means that we pattern match on the current sym-
bol table to assert that it contains the binding x : t. If we similarly use the
signature, we either assert the existence of a predicate symbol (e.g., as in the
Pred rule) or the existence of a custom sort (e.g., as in the Sort rule).

13



4.1. Well-typed terms and well-formed formulas

Γ ` t :: s{ f}
∆,s{ f}; Γ ` s(t)

Sort

Γ ` t :: Str Γ ` t ′ :: Str

∆; Γ ` t S⇐= t ′
Substring

Γ ` t :: τ Γ ` t ′ :: τ
∆; Γ ` t = t ′

Equal
Γ ` t :: τ Γ ` t ′ :: τ τ ∈ Ord

∆; Γ ` t ▷◁ t ′
OrdRel ▷◁ ∈ {<,≤}

Γ ` t :: Str Γ ` t ′ :: RE ∀i. Γ ` ti :: Str

∆; Γ ` t RE⇐= t ′ (t1, . . . , tn)
Match ∀i. Γ ` ti :: τi

∆, (p, (τ1, . . . ,τn)); Γ ` p(t1, . . . , tn)
Pred

∆; Γ ` φ
∆; Γ ` ⋆φ

UnFma ⋆ ∈ {¬, I ,#I ,♦I ,♢I ,■I ,□I , I , I }
∆; Γ ` φ1 ∆; Γ ` φ2

∆; Γ ` φ1 ⋆φ2
BinFma ⋆ ∈ {∧,∨,→,↔,SI ,UI}

∆; Γ ` ·
Wild

∆; Γ ` r
∆; Γ ` ⋆r

UnRex ⋆ ∈ {?,∗}
∆; Γ ` r1 ∆; Γ ` r2

∆; Γ ` r1 ⋆ r2
BinRex ⋆ ∈ {+, }

∆; Γ,v1 : τ1, . . . ,vn : τn ` φ
∆; Γ ` ∃v1, . . . ,vn. φ

Exists
∆; Γ,v1 : τ1, . . . ,vn : τn ` φ

∆; Γ ` ∀v1, . . . ,vn. φ
Forall

∆; v1 : τ1, . . . ,vn : τn ` φ1 ∆, (p, (τ1, . . . ,τn)); Γ ` φ2

∆; Γ ` let p(v1, . . . ,vn) = φ1 inφ2
Let ... in

Γ ` v1 :: τ Γ, z̄s : σ̄ ` v2 :: τ ∆; Γ, z̄s : σ̄ ` φ τ ∈ Num z̄s = fv(φ)− v̄s
∆; Γ ` v1← SUM v2; v̄s φ

Sum

Γ ` v1 :: Z Γ, z̄s : σ̄ ` v2 : τ ∆; Γ, z̄s : σ̄ ` φ z̄s = fv(φ)− v̄s
∆; Γ ` v1← CNT v2; v̄s φ

Cnt

Γ ` v1 :: F Γ, z̄s : σ̄ ` v2 : τ ∆; Γ, z̄s : σ̄ ` φ τ ∈ Num z̄s = fv(φ)− v̄s
∆; Γ ` v1← A v2; v̄s φ

AvgMed A ∈ {AVG,MED}

Γ ` v1 :: τ Γ, z̄s : σ̄ ` v2 : τ ∆; Γ, z̄s : σ̄ ` φ τ ∈ Ord z̄s = fv(φ)− v̄s
∆; Γ ` v1← A v2; v̄s φ

MinMax A ∈ {MIN,MAX}

Figure 4.2: Well-formed rules for MFODL formulas
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4.2. Type inference

4.2 Type inference
One important feature of CMFODL’s type system is its type inference capa-
bility. It allows users to write formulas without needing to annotate types of
variables and predicate arguments. For example, let us look at the formula
x.f > a∧ S(x) and the type inference rules of Figure 4.1 and 4.2. The type
checker may first learn from the sub-formula x.f > a that x is of an instance
of some product type τ1, declaring a field named f of type τ2 ∈Ord. This can
be derived by applying the rules Proj from Figure 4.1 and OrdRel from
Figure 4.2. It further learns that the variable a is of type τ2 too, based on
the rule OrdRel. The type checker eventually encounters the sub-formula
S(x). Using inference rule Sort, it learns that x is in fact of type S { FS }
and therefore τ1 = S { FS }. Finally, the formula is well-typed as long as FS
declares a field f of type τ2.

The example above should provide an intuition about the problem that CM-
FODL’s type inference tries to solve. We now formalize this process. First,
we need to introduce some new definitions:

Definition 4.1 Constant types

We formalize a constant type τ as the set of constant values associated with
τ. Therefore, the type Str represents the infinite set of all string constants,
whereas the type ⊥ represents the empty set. We call a a subtype of b
whenever a ⊆ b holds. The set of all constant types is defined as TCst :=
{Z,F,Str,RE,B,⊥}∪N { FS }, where N { FS } ranges over all custom product
types. Additionally, we declare all constant types in TCst as pairwise disjunct:
∀(o,s) ∈D, t, t ′ ∈ TCst. s ∈ t ∧ s ∈ t ′ =⇒ t = t ′.

Definition 4.2 Type classes

We redefine a type class as a non-empty set of types with the additional
constraint, that whenever a ∈ A holds for some type a and some type class
A, ∀ b ⊆ a. b ∈ A holds. Next, we declare the set of all type classes as
Cls := {Any,Num,Ord,Prod[C]}. The newly introduced type class Prod[C] is
parametric on a set C of constraints on the fields of its product types. We
define the elements of this type class in more detail below.

Definition 4.3 Symbolic types

We define a symbolic type TSymb[C]⊆ {(C, i) | i∈N,C∈ Cls} as a set of tuples
consisting of a type class and a unique index: ∀(A, i), (B, j)∈TSymb : i = j =⇒
A = B. The set TSymb :=

⋃
C∈ClsTSymb[C] represents the set of all symbolic

types. Based on these definitions, we declare the set Ty := TCst∪TSymb,
which consists of all constant and symbolic types.

Definition 4.4 The more precise type relation �

15



4.2. Type inference

We define the relation a � b. It is read as ”type a is more or equally precise
than type b”. It is defined on constant types a,b as a⊆ b and can be lifted to
symbolic types as (A, i) � (B, j) ⇐⇒ A ⊂ B∨A = B∧ i≤ j, and to a relation
between a constant type a and a symbolic type (C, i) as a� (C, i) ⇐⇒ a ∈ C.

Proposition 4.5 � is a partial order relation.

Proof In the case of both operands being constant types, � is equivalent to
⊆ and therefore, the statement holds. Furthermore, ∀(A, i) ∈ TSymb. (A, i) �
(A, i) ≡ A ⊂ A∨A = A∧ i ≤ i holds, and therefore, � is reflexive. In a similar
manner, we prove that � is anti-symmetric by showing that (A, i) � (B, j)∧
(B, j) � (A, i) =⇒ (A, i) = (B, j) holds for all A,B ∈ TSymb:

(A, i) � (B, j)∧ (B, j) � (A, i)

⇐⇒ (A⊂ B∨A = B∧ i≤ j)∧ (B⊂ A∨B = A∧ j ≤ j) (def. �)
⇐⇒ (A⊂ B∧B⊂ A)∨ (A⊂ B∧B = A∧ j ≤ i)∨

(A = B∧ i≤ j∧B⊂ A)∨
(A = B∧ i≤ j∧B = A∧ i≤ j) (distrib. of ∨)

=⇒ (A = B∧ i≤ j∧B = A∧ i≤ j)

⇐⇒ (A = B∧ i = j) ⇐⇒ (A, i) = (B, j)

For both reflexivity and anti-symmetry, we do not need to cover mixed operands:
By definition, a symbolic type is never more precise than a constant type.
To show that � is transitive, we therefore need to cover following cases for
a,b ∈ TCst, (A, i), (B, j), (C,k) ∈ TSymb:

case a� b� (A, i)

⇐⇒ a⊆ b∧b ∈ A

=⇒ a ∈ A (def. type class)
⇐⇒ a� (A, i) (def. �)

case a� (A, i) � (B, j)

⇐⇒ a ∈ A∧ (A⊂ B∨A = B∧ i≤ j)

=⇒ a ∈ B

⇐⇒ a� B (def. �)
case (A, i) � (B, j) � (C,k)

⇐⇒ (A⊂ B∨A = B∧ i≤ j)∧ (B⊂C∨B =C∧ j ≤ k)

⇐⇒ (A⊂ B∧B⊂C)∨ (A⊂ B∧B =C∧ j ≤ k)∨
(A = B∧ i≤ j∧B⊂C)∨
(A = B∧ i≤ j∧B =C∧ j ≤ k) (distrib. of ∨)

=⇒ A⊂C∨A =C∧ i≤ k

⇐⇒ (A, i) ≤ (C,k) (def. �) □
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4.2. Type inference

The proof above implies that the set of all types Ty, together with the relation
�, forms a partially ordered set. Using the relation �, we can now declare the
type class Prod[C] more precisely: Prod[C] := {N{ FS } | ∀( fc : tc) ∈ C : ∃{ f :
t} ∈ FS. f = fc∧ t � tc} for a set of constraints C ⊆N×Ty. Intuitively, C is the
minimal set of fields and their symbolic or constant types, which a product
type must consist of to be an element of Prod[C].

Proposition 4.6 Ty together with � forms a meet-semilattice.

Proof We first prove the existence of a unique greatest and smallest element
in the partially ordered set Ty: We recall that Ty contains the constant type
⊥ representing the empty set, and the symbolic type (Any, imax), with Any
representing the type class containing all types, and imax equal the largest
index of all symbolic types of class Any: ∀(A, j) ∈ TSymb : A = Any =⇒ j ≤ i.
To prove the existence of a unique greatest and smallest element in Ty, it is
sufficient to show that t � (Any, imax) and ⊥� t hold for all t ∈ Ty:

In case of t ∈ TCst, then t � TSymb[Any] ≡ t ∈ Any holds by definition of Any.
⊥� t ≡⊥⊆ t is also true by definition of ⊥.

In case of t = (A, i) ∈ TSymb, (A, i)� (Any, imax) is equivalent to A⊂ Any∨A =
Any∧ i≤ imax, proving the existence of a greatest element. Finally, ⊥� t = (A, i)
is equivalent to ⊥∈ A and holds based on the fact that the type class A is non-
empty and contains the transitive closure over all its members, including the
empty set. The uniqueness of both the greatest and smallest element can be
proven by contradiction: Assume there exist two greatest elements t1, t2 of Ty:
By definition we have t1 � t2 and t2 � t1, which – by definition of � – can only
hold if and only if t1 = t2. We can similarly prove that the smallest element is
unique.

We now show that for every subset {t1, t2} ⊆ Ty of size two, there exists a
unique greatest lower bound, representing the meet of t1 and t2: Because
all types in TCst are defined as pairwise disjunct, the definition of � infers
that the only type more precise than any constant type is the bottom type:
∀t, t ′ ∈ TCst. t � t ′ =⇒ t = t ′∨ t = ⊥. Therefore, if t1, t2 ∈ TCst, their meet is
uniquely represented by ⊥.
In case of ti ∈ TCst, t j ∈ TSymb for i ∈ {0,1}, j = 2− i: If ti � t j, their meet is
clearly ti. In any other case, the only existing lower bound of ti and t j is ⊥,
and therefore equal to their meet.
For the last case where t1, t2 ∈ TSymb, we distinguish between the following
cases: If t1, t2 ∈ TSymb−Prod[C] for some C, we can derive the existence of a
meet by the fact that (P(TCst),⊆) forms a complete lattice. If exactly one of
t1, t2 is part of Prod[C] for some C, then their common meet is⊥, because Prod is
the only type class containing any product types. Finally, if t1 ∈ Prod[C1], t2 ∈
Prod[C2], we derive their meet Prod[Cmeet ] by merging the constraints C1 and C2
the following way: Prod[C1\2] = {( f , t) ∈ C1 | ∄( f ′, t ′) ∈ C2. f ′ = f}, Prod[C2\1] =
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4.2. Type inference

⊥

Str RE Z F B Null S1{FSS1} … S2{FSS2}

Num . . . . . . . . .

Ord Prod[{}]

Any

Figure 4.3: Simplifed Hasse diagram of MonPoly ’s type system

{( f , t) ∈ C2 | ∄( f ′, t ′) ∈ C1. f ′ = f}, Ccommon = { f ∈ N | ( f ,_) ∈ C1∧ ( f ,_) ∈ C2}
and C1u2 = {( f ,C1[ f ]uC2[ f ]) | f ∈ Ccommon}, where u is the meet operator. We
can then define Cmeet = C1\2∪C2\1∪C1u2. □

Using our definitions above, we can visualize the type lattice used by Mon-
Poly by a simplified Hasse diagram in Figure 4.2. Symbolic types are repre-
sented by their type class. The symbolic type represented by Prod[{}] stands
for all product types because the set of constraints C is empty.

Algorithm 1 shows the conceptual structure of MonPoly ’s type inference
algorithm. The key part of the algorithm is in line 18, where it computes the
meet of the actual and expected type of a term. Because Ty together with �
forms a lattice, the meet is guaranteed to exist. Whenever the meet is equal to
⊥, the type inference algorithm throws an error. We do not regard variables
of type ⊥ as semantically valid: There exists no value assignable to ⊥, as it
represents the empty type set. Finally, after type checking an input formula
f , all variables are expected to have a constant type assigned: if a variable
is of a symbolic type after type checking, the formula is polymorphic as the
inference algorithm was unable to derive its type.

Intuitively, every new variable gets assigned a type at the top of the Hasse
diagram. With every new constraint propagated through the symbol table, the
type of a variable may move downwards along the lines of the Hasse diagram.
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4.2. Type inference

Algorithm 1: MonPoly ’s type inference algorithm
Data: input formula f , predicate schema ∆, custom sorts T, symbol

table Γ
/* initialize all variables of the current symbol table

with Any: */
1 foreach v ∈ Γ do
2 i← unique index;
3 v← (Any, i);
4 end
/* recurse over input formula: */

5 foreach f ′ ∈ walk( f ) do
6 foreach t ∈ terms( f ′) do

/* Apply the rules from Figure 4.2: */
7 τexpt ← expected type for term t to make f ′ well-formed;
8 typecheck_term(t,τexp);
9 end

10 end
/* Verify that the type of all variables has been resolved

to a constant type: */
11 foreach v ∈ Γ do
12 if type of v ∈ TSymb then
13 throw type error: unresolved type
14 end
15 end
16 Function typecheck_term(t,τexp) is

/* Apply the rules from Figure 4.1: */
17 tcurr← type of t based on current Γ;
18 τnew← meet of {τcurr,τexp};
19 if τnew = ⊥ then
20 throw type error: incompatible types
21 else
22 update every occurence of {tcurr, texp} with tnew in Γ;
23 end
24 end
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Chapter 5

Compiling CMFODL

The complex-typed syntax extensions described in Chapter 3 are not yet sup-
ported by MonPoly ’s monitoring algorithm. It has no support for custom
sorts, and instead only supports predicate symbols over the primitive sorts
PS = {Z,F,Str,RE}. For MonPoly to support the full CMFODL syntax de-
scribed in Chapter 3, the extension presented in this work performs the follow-
ing two steps, which preserve the semantics of the original formula: We first
transform the temporal structure ρ to a new temporal structure ρP over fi-
nite relations, which domains range over primitive sorts. This transformation
is described in Section 5.1 and 5.2. We then replace unsupported syntactic
elements by compiling CMFODL formulas to MFODL formulas. This is de-
scribed in Section 5.3. These steps are implemented in MonPoly itself and
are carried out before and during the actual monitoring, allowing users to
write MFODL formulas against complex typed temporal structures without
any manual transformations.

5.1 Transforming signatures
A signature SP = (CP,RP, ι), known to MonPoly ’s monitoring algorithm,
consists of a finite set of constant symbols CP, a finite set of predicates RP

disjoint from CP, and a function ι : RP→N assigning each predicate r ∈ RP an
arity ι(r) [5].

We map a signature ∆ = (S,Sde f ,C) described in Section 3.2 to a predicate sig-
nature SP = (CP,RP, ι) with RP = CS, ι := r 7→ |Sde f (r)|+1 and CP =C, where
|Sde f (r)| corresponds to the number of fields of the custom sort r and making
the assumption that C contains only values of primitive sorts. In other words,
we create a predicate for each custom sort with an arity equal to the number
of fields, plus an additional argument used as an object identifier introduced
below in Section 5.2. We further create a relation schema RS := r 7→ PSι(r)

from ∆, mapping each predicate in RP to the sorts of its arguments. This
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5.2. Transforming complex-typed temporal structures

process is described by Algorithm 2. The sorts of the arguments correspond
to the sort of each field of the custom sort r. Fields whose values are of cus-
tom sorts themselves represent nested objects and are encoded as a reference
pointer to a tuple of another relation.

Example 5.1 We define the signature ∆ = (PS∪{User,Request,Report},
{User 7→ {name : Str},Request 7→ {url : Str,user : User},Report 7→ {reason : Str,
user :User}}, /0). The corresponding predicate schema is SP = ( /0,{User,Request,
Report},{User 7→ 2,Request 7→ 3,Report 7→ 3}). From ∆, Algorithm 2 will gener-
ate the relation schema RS = {User 7→ (Z,Str),Request 7→ (Z,Str,Z),Report 7→
(Z,Str,Z)}.

Algorithm 2: Generate relation schema from ∆
Data: signature ∆ = (S,Sde f ,C)
Result: relation schema RS= r 7→ PSι(r)

1 foreach r ∈ S\PS do
/* loop over all fields of custom sort r: */

2 foreach (i, f ) ∈ enumerate(ran(Sde f (r))) do
3 if Sde f (r, f ) ∈ PS then
4 ti← Sde f (r, f );
5 else
6 ti← Z;
7 end
8 end

/* first entry corresponds to identifier: */
9 RS

[
r 7→

(
Z, t1, . . . , t| ran(Sde f (r))|

)]
;

10 end

5.2 Transforming complex-typed temporal structures
A temporal structure ρ of the form (τi,Di)i∈N with Di = (D,C,Oi), as de-
scribed in Section 3.2, is not processable by MonPoly ’s monitoring algorithm.
It must be transformed to a temporal structure ρP of the form (τi,DP

i )i∈N,
where DP

i is a structure over a signature SP = (CP,RP, ι) as defined in Section
5.1. It consists of a domain |DP|= {d | (s,d) ∈D∧ s ∈ PS} and interpretations
cD

P ∈ |DP| and rD
P
i ⊆ |DP|ι(r) for each c ∈ CP and r ∈ RP [5]. The set rD

P
i is

constructed as described in Algorithm 3: Values of custom sorts are stored
in their dedicated relations, while unique identifiers act as a reference from a
tuple entry of a custom sort to its value stored as a tuple in another relation.

One important distinction must be made regarding the uniqueness of the
identifiers assigned to objects in Algorithm 3, line 5: In this implementation,
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5.2. Transforming complex-typed temporal structures

identifiers are unique per time point, meaning that unrelated objects of two
different time points may share the same identifier. This has a major impact
on how formulas must be preprocessed before compilation, to retain their
original semantics. Section 9.1 provides a rationale for this decision.

Example 5.2 Let us again consider signatures ∆, SP and RS from example
5.1 on page 21. We additionally define the following temporal structure ρ,
where @10 refers to the timestamp of the time point, and the right-hand side
refers to Oi:

@10 : (Request,{url : (Str,secr.et),user : (User,{name : (Str,Eve)})}),
(Request,{url : (Str,ethz.ch),user : (User,{name : (Str,Alice)})})

@20 : (Report,{reason : (Str,NoAuth),user : (User,{name : (Str,Alice)})})

Using Algorithm 3 we can generate the temporal structure ρP:

@10 : {User(1,Eve),Request(2,secr.et,1),User(3,Alice),Request(4,ethz.ch,3)}
@20 : {User(1,Alice),Report(2,NoAuth,1)}

Note that in ρP, two tuples exist in the relation User with the same identifier
1, referring to two unrelated users Alice and Eve. Because they appear at
different time points, they can share the same identifier.
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5.3. Compiling MFODL formulas

Algorithm 3: Generate tuples for time point i
Data: objects Oi of time point i
Result: rD

P
i for all r ∈ {s | (s,_) ∈O ↓}

1 foreach o = (s, f ) ∈O with s ∈ CS do
2 call add_tuple(o);
3 end
4 Function add_tuple(o) is

Data: an object o ∈O ↓
Result: a unique identifier assigned to the tuple of o

5 id← unique identifier;
6 if o = (s,Π f ), for some s ∈ CS then
7 foreach (i,n) ∈ enumerate(dom( f )) do
8 (sn,vn)← f (n);

9 ti =

{
vn if sn ∈ PS

add_tuple(vn) else
;

10 end
/* Add new tuple to relation s: */

11 sD
P
i = sD

P
i ∪

{(
id, t1, . . . , t|dom( f )|

)}
;

12 end
13 else if o = (s,v) for some s ∈ PS then
14 sD

P
i = sD

P
i ∪{(id,v)}

15 end
16 return id;
17 end

5.3 Compiling MFODL formulas
This section discusses the compilation of a CMFODL formula evaluated over
a temporal structure ρ, to an MFODL formula evaluated under ρP. We dis-
tinguish two separate steps: A preprocessing step described in Section 5.3.1
and a subsequent compilation step described in Section 5.3.2. The purpose
of the preprocessing is to prepare the formula for the compilation step, such
that the compiled formula retains the semantics of the input formula in the
context of the predicate signature SP and structure DP described in previous
sections 5.1 and 5.2. Technically, a complex-typed MFODL formula may be
compiled without prior preprocessing, but it may change its semantics. The
preprocessing therefore depends strongly on the transformation of the tempo-
ral structure described in Section 5.2, primarily how identifiers are assigned
to objects.

We declare the function typeofΓ : Terms→Ty, mapping a given term to its type
under the current symbol table Γ, as inferred by the type inference algorithm
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5.3. Compiling MFODL formulas

described in Chapter 4. Next, we define the set of field terms Ft for some term
t. Because MFODL only allows assigning terms to variables, we can assume
that t is a variable or projection term without loss of generality. Furthermore,
custom sorts are constrained to be non-recursive, as introduced in Section 3.1.
Therefore, the following sets Ft and Lt are guaranteed to be well defined and
of finite size for any given term t.

Fv =

{
{v} if type_ofΓ(v) ∈ PS{

v.n | (n, t) ∈ Sde f (t)
}
∪
{

v. f | f ∈
⋃
(n,t)∈Sde f (t)Fv.n

}
else

Similarly, we define the set of leaf terms Lt for some term t:

Lv =

{
{v} if type_ofΓ(v) ∈ PS{

v. f | f ∈
⋃
(n,t)∈Sde f (t)Lv.n

}
else

Example 5.3 Given custom sorts Request{url : Str,user :User} and User{name :
Str}, and a variable t with type_ofΓ(t) = Request, the set Ft is equal to
{r.url,r.user,r.user.name}, while Lt is equal to {r.url,r.user.name}.

We overload the definition of Lc for some constant value c, such that Lc consists
of the leaf values of c instead:
Given a constant c = Request{url : ”url.tld”,user : {name : ”alice”}}, Lc is equal
to {”url.tld”,”alice”}.

5.3.1 Semantic-preserving preprocessing
This section introduces transformations that preserve the semantics of an in-
put formula after compilation. Because Algorithm 3 assigns locally unique
identifiers to objects, certain formula structures must be rewritten before com-
pilation. In general, we must not pass an identifier referencing an object over
a temporal operator: The same identifier may reference another unrelated
object in a future or past time point. Similarly, we must expand structural
equality between two values of complex sorts: Comparing the values of two
identifiers themselves may lead to unexpected behavior whenever the identi-
fiers have been assigned at two different time points.

To illustrate this problem, we refer to Example 5.2 on page 22 and declare the
formula φ = Request(u)∧ r.url= secr.et→ ♢[0,50]∃u. Report(u)∧u.user= r.user.
When interpreting the formula φ over the temporal structure ρP of Example
5.2 without preprocessing, the formula will evaluate as true. However, by
examining the example more carefully, one may realize that the Report at
timestamp @20 is addressed to Alice instead of Eve, who sent the malicious
request. The issue arises because the user Alice of the Report at timestamp
@20 shares the same identifier with the unrelated user Eve from timestamp
@10.
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5.3. Compiling MFODL formulas

The following paragraphs describe each transformation applied during the
preprocessing.

Preprocessing of equalities We interpret MFODL’s equality operator on
operands of custom sorts as structural equivalence. Section 9.1 discusses this
decision in more detail. Hence, a formula of the form φ ≡ a = b, where both a
and b are terms of the same custom sort s, can be transformed to a semantically
equivalent formula ψ, where all fields on both values are compared separately:
ψ ≡

∧
( f1, f2)∈(La,Lb) f1 = f2. Notice that the rule Equal, introduced in Figure

4.2, does enforce the same sort on both sides of an assignment, which implies
that La and Lb contain the same projections, but with different prefixes.

Referring to Example 5.3 on page 24, comparing two values a,b of custom sort
Request translates to the formula ψ ≡ a.url = b.url∧a.user.name = b.user.name.

Preprocessing of let-statements The domain of predicates introduced by a
let-statement may range over complex sorts. We introduce a transformation
that flattens all predicate arguments a of a complex sort by replacing a with
a subset of its leaves La. To formalize this process, we first define the set
of usages U f [v] ⊆ Terms as a set of variables and projections that make use
of a given variable v in the formula f . To transform a formula of the form
let n(⃗v) = ψ in φ for some formulas φ and ψ, we first define the usage Uψ [ai]
for every argument ai ∈ v⃗. Next, we define a mapping nv : Terms→V, mapping
each usage u ∈ Uψ [ai] to a unique new variable vu /∈ fv(ψ). We make use of
nv to construct the formula ψ ′ by replacing each usage u in ψ with nv(u).
Finally, we construct φ ′ by transforming each usage of predicate n in φ: Each
argument term ti in n(t1, . . . , tk) is replaced by t⃗i =

{
l. f ∈ Lti | ai. f ∈Uψ [ai]

}
.

The resulting formula of the transformation is let n
(⋃

i∈[1,k]⃗ ti
)
= ψ ′ in φ ′.

Example 5.4 Reaching back to the signatures defined in Example 5.3 on
page 24, transforming the formula φ ≡ let p(r) = r.url= ”url.tld”∧ r.user.name=
”alice” in Request(r)∧p(r) results in a semantically equivalent formula ψ ≡
let p(a,b) = a= ”url.tld”∧b= ”alice” in Request(r)∧p(r.url, r.user.name).

5.3.2 Compilation to MFODL
This section describes the compilation process to form an MFODL formula
from a complex typed formula, such that the compiled formula retains its
semantics according to the temporal structure DP. We look at each affected
type of formula separately:

Compilation of custom sorts and projections We first realize that certain
MFODL operators defined in Figure 3.2, such as quantifiers, aggregations, and
let-statements, create a new variable scope by introducing mappings to the
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5.3. Compiling MFODL formulas

valuation v for new variables. If a newly introduced mapping overwrites an
existing mapping, we denote the original mapping as shadowed. We call the
formula f ′ the scope of a variable a whenever the mapping for a in v is initially
introduced in f ′. The scope of a free variable of an input formula f ranges
over the whole formula f . We also declare Λφ

f to be the set of all subformulas
of φ of the form f .

Referring to the operational semantics of MFODL declared in Figure 3.2, the
formula s(t) for some custom sort s is satisfied at time point i of temporal
structure ρ = (τi,Di)i∈N whenever v(t) ∈ ODi is satisfied. For every scope
φ of variable t, consisting of one or multiple subformulas of the form s(t)
and s equal to the sort of t, we propose a semantically equivalent formula
ψ ≡ ∃⃗v. χ such that δ ,v, i |=ρ φ ⇐⇒ δ ,v, i |=ρP ψ is satisfied, where ρP refers
to the transformed temporal structure from Section 5.2, v⃗ refers to a vector
of variables, and χ to a new formula defined below. We only consider cases
where t refers to a variable term. Any other type of term can be assigned to
a variable first.

To define v⃗, we declare a function path : Terms→ V that maps a projection
term to a variable by the following rules, where · is used as concatenation
operator such that the resulting variable for a given tuple (o, f ) is unique in
V:

path(o. f ) = path(o) · f for some projection term o. f

path(v) = v for some variable term v

v⃗ can then be described as
[⋃

s(t)∈Λφ
s(t)

Ft

]
‘ λ p. path(p), where we first gather

the projections of the recursive fields of each variable t of all subformulas of the
form s(t) in φ, and finally map them to a set of variables using the mapping
path defined above.

For the definition of χ, we first define a mapping g from (V×CS) to a predi-
cate formula: (v,s) 7→ s (v, path(v. f1), . . . , path(v. fk)) for field names f1, . . . fk ∈
dom(Sde f (s)), where s ∈ RP and the number of arguments of s corresponds
to ι(s). In other words, given a custom sort S{ f1 : Str, f2 : Z} and a vari-
able a, the resulting formula of g(S,a) is S(a,a · f1,a · f2). We also define
the set of predicate formulas Ps[v] of a custom sort s and variable v, as
Ps[v] = {g(v,s)} ∪

⋃
(n,t)∈Sde f (s) where t∈CSPt [v · n]. To construct χ, we replace

every occurrence of subformulas of the form s(t) for a custom sort s in φ with
the formula ∧

p∈Ps[t] p, and every occurrence of a projection term p in φ with
the variable term path(p).

Example 5.5 Given custom sorts Request{url : Str,user :User}, Report{reason :
Str,user : User} and User{name : Str}, the formula
Request(r)⇒ ♢I ∃u. Report(u)∧ r.user = u.user is compiled to:
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5.3. Compiling MFODL formulas

∃r_url,r_user,r_user_name. Request(r,r_url,r_user)⇒
♢I ∃u,u_reason,u_user. Reason(u,u_reason,u_user)∧
User(u_user,u_user_name)∧ r_user_name = u_user_name.

Compilation of aggregations We currently do not allow grouping by or ag-
gregating over terms of complex sorts. Hence, aggregations do not need to be
compiled. To group by terms of complex sorts, users may assign individual
fields of primitive sorts to distinct variables instead, as shown in Example 5.6.

Example 5.6 Assuming the custom sorts from example 5.5 on page 26, we
want to count the number of requests per user. To do so, we group requests
by their users’ properties and count the occurrences of request events per user:
c← CNT i; name (♦[0,∗]Request(r)∧name= r.user.name∧ tp(i)).

Compilation of booleans and null Unlike CMFODL, MFODL has no sup-
port for boolean-valued terms or the constant null. We instead regard booleans
in MFODL as integers and compile the constant term false to the integer
value 0 and true to the value 1: compbool : B→ Z := c 7→ 0 if c = False, else 1.
Based on the derivation rules for terms in Figure 4.1, the only operation ap-
plicable on terms of sort B is equality (rule Eq). And indeed, ∀c1,c2 ∈ B. c1 =
c2↔ compbool(c1) = compbool(c2). Similarly, we compile every null constant to
the integer 0 and apply the same proof idea for correctness.
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Chapter 6

Monitorability

This chapter elaborates on monitorable formulas and lifting the monitorability
property from MFODL to CMFODL.

As mentioned in Section 2.3, MonPoly only supports monitoring a syntactic
fragment of MFODL formulas. The formulas in the fragment are referred to
as safe. Therefore, MonPoly needs to initially verify the monitorability of
a given input formula. Besides validating the well-formedness of a formula,
as presented in Chapter 4, and ensuring that all future intervals of temporal
operators are finitely bounded, the monitorability check must verify that all
intermediate results are finite when evaluating the input formula bottom-up.
In other words, all relation operations corresponding to the semantics of the
involved subformulas must result in finite relations.

Technically, the existing monitorability checks for MFODL formulas can still
be run on formulas compiled from CMFODL formulas. By doing so, the
user-facing error messages are related to the compiled formula instead of the
original CMFODL formula. To improve the user experience, we lift the mon-
itorability rules to CMFODL formulas as a stricter approximation of the ex-
isting rules for MFODL formulas. This way, whenever a compiled CMFODL
formula is considered safe, the monitoring process continues independently of
the monitorability verdict on the CMFODL formula. Otherwise, the mon-
itorability check on the CMFODL input formula is also guaranteed to fais,
providing improved user feedback.

To implement a stricter approximation of the monitorability rules for CM-
FODL formulas, we generalize the function tvars : term → var list, that re-
turns the set of free variables for a given term, with the function ctvars: for
every free variable of some complex sort, all leaves of the variable are consid-
ered to be free variables too.

Proposition 6.1 Given a function m : (term→ var list)→ formula→ bool,
which returns a monitorability verdict for a given formula and a function
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returning the free variables of a term, m(ctvars, f) =⇒ m(tvars, f ′) is satisfied
for any formula f and its compiled counterpart f ′.

In this work, we only provide a proof idea for Proposition 6.1: we can prove
it by structural induction over the structure of formulas. Base cases cover all
non-recursive variants, such as binary arithmetic and equality, where we show
that each case satisfies Proposition 6.1. Subsequently, we assume Proposition
6.1 to hold for any formula f , and show that this implies the satisfaction of
the proposition for each recursive formula on f .

One disadvantage of our approach is that the monitorability check on a complex-
typed formula might fail for a different reason than the monitorability check
of the compiled formula. Because we only output the first of possibly many
issues, the user experience may degrade in these cases. This effect is inher-
ited from the existing monitorability check on MFODL formulas, which only
reports on the first issue, disregarding the total number of errors.
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Chapter 7

Extending MonPoly

This chapter gives an overview of the MonPoly extensions providing support
for monitoring complex data types. We first present the extended grammar
of signatures, formulas, and log files accepted as valid inputs by MonPoly.
Next, we describe the internal monitoring pipeline and the implementation of
specific algorithms described in previous chapters. All extensions mentioned in
this chapter are implicitly backward compatible with inputs for earlier versions
of MonPoly.

7.1 Input format
To monitor an application log stream, MonPoly requires additional inputs
besides the log stream under monitoring [7]: The formula file contains the
property under monitoring, written as a CMFODL formula. Its concrete syn-
tax is explained in Section 7.1.1. The signature file describes all custom sorts
used by the input formula. The accepted syntax of signature files is described
in Section 7.1.2. At last, 7.1.3 describes the expected format of log streams.

7.1.1 Policy format
Monitoring policies in MonPoly are formulated in a syntax corresponding
to complex-typed MFODL introduced in Chapter 3. Figure 7.1 describes the
concrete syntax of a well-formed formula file. The functions f2i, i2f, f2s,
s2f, i2s, s2i may be used to convert terms between floats, integers and
strings. Table 7.1 maps the mathematical notation of MFODL formulas to
their corresponding notation in the concrete formula syntax.

7.1.2 Signatures format
Signature files describe the signature ∆ = (PS,Sde f ,{}) used by a formula [7].
Specifically, signature files allow users to declare all custom sorts s ∈ Sde f .
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7.1. Input format

formula ::=
| TRUE | FALSE
| (, formula ,) | NOT, formula
| term , (= | > | < | <= | <=), term
| formula , (EQUIV | IMPLIES | AND | OR), formula
| (EXISTS | FORALL), var-list ,., formula
| var ,<-, aggreg , var , [;, var-list ], formula
| unopi , [ interval ], formula
| formula , (SINCE | UNTIL), [ interval ], formula
| term ,SUBSTRING, term
| term ,MATCHES, term , [(, (_ | term ),{,(_ | term )})]
| pred
| (|> | MATCHF | FORWARD), [ interval ], fregex
| (<| | MATCHP | BACKWARD), [ interval ], pregex
| (LET | LETPAST), pred ,IN, formula

pred ::= ident ,(, [ term ,{,, term }],)
unopi ::= NEXT | PREV | EVENTUALLY | ONCE | ALWAYS | PAST_ALWAYS
aggreg ::= CNT | SUM | AVG | MED | MIN | MAX
interval ::= (( | [), bound ,,, ( bound | *), () | ])
bound ::= integer , [s | m | h | d]
var-list ::= var ,{,, var }
term ::=

| term , (+ | - | * | / | MOD), term
| -, term | (, term ,)
| (f2i | i2f | i2s | s2i | f2s | s2f | r2s | s2r),(, term ,)
| (DAY_OF_MONTH | MONTH | YEAR | FORMAT_DATE),(, term ,)
| var | cst | term ,., ident

fregex ::=
| (, fregex ,) | . | fregex , formula ,?, | fregex , fregex
| fregex ,+, fregex | fregex ,*, fregex

pregex ::=
| (, pregex ,) | . | pregex , formula ,?, | pregex , pregex
| pregex ,+, pregex | pregex ,*, pregex

cst ::=
| integer | rational | ", string ," | true | false
| ident ,{,{ ident ,:, cst },}

var ::= ident
ident ::= ( letter | digit | _),{ letter | digit | _}

Figure 7.1: EBNF-form of well-formed formula files
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7.1. Input format

symbol MonPoly terminal assoc.
¬ NOT none
∧ AND left
∨ OR left
→ IMPLIES right
↔ EQUIV left
∃ ∀ EXISTS FORALL none
S U SINCE UNTIL none
 #♦♢■□ PREV NEXT ONCE EVENTUALLY PAST_ALWAYS ALWAYS right

Table 7.1: Mapping between mathematical and MonPoly notation

The predicate-based signatures used by earlier versions of MonPoly are still
supported. Figure 7.2 shows the syntax of extended signature files. What
now follows is a set of rules and definitions related to declaring well-formed
signatures:

Definition 7.1 (Top-level sorts) We define the set of custom sorts declared
in a signature file and prefixed with the keyword event as TopLevel. For every
time point i, {s | (_,s) ∈O} ⊆ TopLevel is satisfied.

Definition 7.2 (Inline sorts) The syntax declared in Figure 7.2 allows the
declaration of inline product sorts. This syntactic feature improves the read-
ability of deeply nested data structures by inlining the declaration of a nested
sort. Inline sorts are automatically extracted to separate product sort defini-
tions during parsing and have no further semantic interpretation.

Example 7.3 Using inline sorts, we can describe a custom sort Request as
Request {url : string, user : {name : string}}. This signature is equivalent to
Request {url : string, user : Request_user}; Request_user {name : string}.

Rule 7.4 (No recursive sorts) As declared in Section 3.1, there exists a
well-formedness constraint prohibiting recursion between sorts. Therefore, the
sort of a declared product sort field must not reference its parent sort directly
or indirectly.

Rule 7.5 (Unique top-level sorts) Top-level sorts as defined in Definition
7.1 must be pairwise structurally distinct. This is required by the sort match-
ing algorithm introduced in Section 7.2.2.

As described in Figure 7.2, the type null can only be used to declare the
sort of a field because it is a JSON-specific data type. It is still helpful to
pattern-match against nullable fields, as shown in Example 7.6.

Example 7.6 Assume a JSON log stream of events, where each event has a
type and an optional occurrence count, declared either as an integer value or
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signature ::= { product-sort | predicate-symbol }
predicate-symbol ::= ident ,(, pred-arg ,{,, pred-arg },)
pred-arg ::= [ ident :], primitive-sort
primitive-sort ::= string | int | float | bool
product-sort ::= [event], ident , product-body
product-body ::= {, product-field ,{,, product-field }}
product-field ::= ident : field-type
field-type ::= primitive-sort | ident | record-body | null
ident ::= ( letter | digit | _),{ letter | digit | _}

Figure 7.2: EBNF-form of well-formed signature files

by the default value null. We want to aggregate the sum of the number of
occurrences, grouped by the event type, where null counts as 1. The following
listings present a signature and formula of a possible solution, making use of
the null type as field sort:

1 event Event {
2 type: string,
3 count: int
4 }
5 event DefaultEvent {
6 type: string,
7 count: null
8 }
9

Listing 7.1: Signature describing variants of events

1 s <- SUM count; type (ONCE [0,*]
2 (EXISTS e. ( Event (e) AND type = e.type AND count = e.count)) OR
3 (EXISTS e. ( DefaultEvent (e) AND type = e.type AND count = 1))
4 )
5

Listing 7.2: A formula aggregating over variants of events

7.1.3 JSON log format
One of the main benefits of this work is the possibility of monitoring JSON-
based logs without fundamental transformations. Nevertheless, the newly
introduced JSON log parser of MonPoly only supports a subset of log file
formats. Despite the introduction of standards for event-driven application
logs, such as XES [19] or XOC [21], applications may use their own custom
file formats to output streams of logged events. To accommodate this fact,
the JSON log parser of MonPoly keeps the number of requirements regarding
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log ::= { time-point | command }, [ ts ]
time-point ::= ts , json-record ,{ newline , json-record }
command ::= >, command-name , [ string {,, string }],<
command-name ::=

| print | terminate | print_and_exit | get_pos
| save_state | save_and_exit | set_slicer
| split_save

ts ::= @, integer

Figure 7.3: EBNF-form of the supported JSON log format

the format of the log input as small as possible to allow monitoring large sets
of application logs with minimal transformation.

Figure 7.3 describes the supported log stream format. Every top-level JSON
structure in the input log stream must be a JSON record value, while other
JSON document types are not supported yet. Every top-level JSON record
must either directly follow a timestamp token or appear on a separate line.
Each timestamp token declares the beginning of a new time point and defines
the assigned timestamp on all JSON records occurring after it. Finally, the
newly introduced log parser maintains support for MonPoly commands.

7.2 Monitoring pipeline
This chapter describes the internal data flow of a monitoring process between
the components of MonPoly. Figure 7.4 provides an overview of all involved
components. While solid lines represent the single passing of data, dashed
lines describe data streams. *.mfotl, *.sig and *.log describe input files for
formulas, signatures and log streams. We further introduce some declarations
related to JSON: The set JsonValue describes the set of all well-formed JSON
documents of type object, array, string, number, boolean and null [22]. The
set JsonObject := P (Str×JsonValue) ⊂ JsonValue consists of all JSON object
values, where each element is represented as a set of tuples mapping a field
name to a JSON value.

Steps 1 and 2 represent the parsing and type checking of a CMFODL formula.
Section 7.2.1 describes the data structure cplx_formula in more detail. The
type checker, implementing the algorithms described in Chapter 4, annotates
the parsed formula with the derived type information, stored in a data struc-
ture tctxt: It consists of the symbol table, predicate schema, and custom
sorts of the current formula. The type-checked formula is then forwarded to
the preprocessing and compilation (Steps 3 and 4), described in Chapter 5.
Before the compiled formula is passed to the MonPoly monitor, its moni-
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torability properties from Chapter 6 are validated in Step 5. If the validation
fails, the monitoring process is halted.

Based on the presence of the command line flag --json, the content of the
log stream is either passed to the existing parser of MonPoly or the newly
implemented JSON log parser (Steps 8 and 9). In the case of a JSON log
stream, the parsed JSON objects are matched against custom signatures in
Step 10. This process is explained in Section 7.2.2. Step 7: Create Relation
Schema represents the implementation of Algorithm 2, described in Section 5.1.
Similarly, the tuples output by Steps 9 and 10 and generated based on Section
5.2, describing the transformation of complex-typed temporal structures.

Finally, the compiled formula, the relation schema, and the stream of tuples
from the log input are passed to MonPoly ’s monitoring component in Step
11.

7.2.1 Formula annotations
Type information of formula terms is not only relevant during type checking
of an input formula, but also useful for succeeding tasks such as compilation
and monitorability checks. MFODL constructs such as quantifiers, let state-
ments, and aggregations introduce nested scopes, where variables from outer
scopes may be shadowed. To retain the type information of variables in nested
scopes, a single global symbol table and predicate schema will not suffice. We
instead extend the data structure describing a formula with an additional field
storing some polymorphic formula annotation: type 'a cplx_formula = ('a
* formula_ast), where formula_ast references the data structure described
in Figure 7.1. This allows the type checker to store formula- and scope-specific
type information, which subsequent formula transformations can access.

7.2.2 Matching custom sorts
Chapter 3 introduces the sets of domain values D and objects O ⊆D, where
each element is tagged with its corresponding sort. On the other hand, a
JSON object read from a log entry is not tagged. To derive the custom
product sort of a JSON object, we need to match the structure of the JSON
object against every sort s∈TopLevel declared in the signature. We require the
partial mapping from JSON objects to sorts to be well defined. Therefore, all
sorts s∈TopLevel must be pairwise structurally distinct. We further allow the
mapping from JSON objects to signatures to be partial: Whenever a JSON
object is encountered whose structure does not match that of any custom sort,
a warning is printed to the application output, but no error is raised. This
allows the monitoring of application logs where the set of all custom sorts
{s | (_,s) ∈D} is not known in advance. Finally, all JSON fields of list types
are ignored when matching their structure. This allows the monitoring of log
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streams containing list structures without the explicit support of describing
them as part of a custom sort.

Algorithm 4 describes the mapping as a recursive function: For each field
of a given JSON object, we distinguish three cases: If the field’s value is
of a list type, we ignore it and continue. Whenever the field’s value is
a nested object, we call find_sort recursively, only matching against the
sort of the corresponding field. In any other case, we compare the type of
the field value with the corresponding sort using the relation operator ≈ :=
{(string,Str), (int,Z), (float,F), (boolean,B), (null,Null)}. For a given JSON ob-
ject, find_sort is then initially called on line 23 to match against all custom
sorts in TopLevel.

Algorithm 4: Match JSON objects against custom sorts
Data: JSON object o ∈ JsonObject

1 Function find_sort(S) is
Data: Set of custom sorts S⊆ Sde f .
Result: Custom sort s ∈ S of o, or ⊥.

2 foreach sort s ∈ S do
3 foreach field f ∈ o do
4 τ json← typeof o[ f ];

/* ignore fields of list types: */
5 if τ json = array then
6 continue
7 end
8 if τ json = object then

/* recursively match sort: */
9 if f ind_sort(o[ f ],{(s′,_) ∈ Sde f | s′ = s( f )}) = ⊥ then

10 return ⊥;
11 else
12 continue
13 end
14 end
15 τsort ← s( f );
16 if τ json 6≈ s( f ) then
17 return ⊥;
18 end
19 end

/* All fields have matched: */
20 return s;
21 end
22 end
23 call find_sort({(s,_) ∈ Sde f | s ∈ TopLevel});
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After deriving the custom sort of a JSON object, the object is transformed
to a set of tuples, as described by Algorithm 3 in Section 5.2. Similarly to
the compilation of constant boolean values in MFODL formulas explained in
Section 5.3.2, JSON values true and false and registered as integer values 1
and 0.

The current implementation of the JSON log parser generates object identifiers
by assigning an incrementing counter to each tuple on registration. The parser
resets the counter at the beginning of a new time point. This guarantees that
every tuple of the same time point has a unique identifier, enabling unique
references between tuples of the same time point. On the other hand, local
uniqueness implies that unrelated tuples registered at different time points
may share the same identifier, as mentioned previously in Section 5.2.
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2. Typecheck Formula
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Figure 7.4: Data flow of the monitoring pipeline
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Chapter 8

Case Study

In the following two sections, we present both a generalized and a special-
ized preprocessor for monitoring complex-typed event streams with MFODL
and MonPoly. Both cases are related to Dfinity. They use MFOTL and
MonPoly to verify policies against JSON-formatted application logs collected
during system tests [18]. We then show how CMFODL can be used to simplify
preprocessing and improve the readability and maintainability of the formulas.

8.1 Generalized preprocessing
Using this approach, we monitor any MFODL formulas against arbitrary
JSON logs without adapting the preprocessing and the signatures to the par-
ticular use case. To achieve this, the generalized preprocessor transforms a
stream of JSON objects to a temporal structure over the signature described
in Listing 8.1. For every encountered JSON document at time point i in the
input log, the preprocessor proceeds as follows: For every (possibly nested)
JSON object, it generates a unique identifier id and outputs the tuple (id)
on the relation root. It then continues by traversing the fields of the object:
for each field named f of type int, float, string, bool or null, a new identifier
idval is generated for the field value v and written as the tuple (idval ,v) (or
(idval) for constant values true, false and null) to the corresponding relations
int, float, string, true, false or null. Finally, the tuple (id, f , idval) is written to
the relation key, introducing a reference from the value to its object under the
field f . In the case of a field value being an object, the procedure is repeated
recursively. JSON arrays are processed similarly to objects: Instead of writing
a tuple to the key relation, we generate a tuple (id, index, idval) in the relation
idx, establishing a reference between the array with identifier id and the value
with identifier idval of the element at index index. To generate the correct
timestamp for each time point, the preprocessor accepts a JSON path to the
(possibly nested) field containing the timestamp of each JSON log entry.
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When providing the JSON log described in Listing 8.2 as input to the pre-
processor, together with the timestamp path event.log_entry.time, the trans-
formed log in Listing 8.3 is produced.

We formulate the following specification in MFODL over the representation
of the temporal structure in Listing 8.3: “Refute every program trace contain-
ing an event of type Log where event.log_entry.level is equal to ERROR or
CRITICAL.” Listing 8.4 presents a possible MFODL formula for this specifica-
tion.

We now solve the same task by formulating the specification in CMFODL
instead and applying the extensions of MonPoly presented in this thesis. We
additionally make use of a minimal log preprocessor described in Appendix
A.1 that extracts the timestamp of each log entry, such that the input log
stream to MonPoly conforms to the grammar described in Listing 7.3. The
CMFODL signature is described in Listing 8.5, while the CMFODL formula
is shown in Listing 8.6. First, the CMFODL signature describes the structure
of the input log exactly, making it easier for users to understand the involved
data structures. Comparing the MFODL formulas in Listing 8.4 with the
CMFODL formula in Figure 8.6 shows that the same specification can be
formulated much more naturally in CMFODL and therefore reduces the risk
of introducing subtle bugs while formulating specifications.
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1 root(id:int) (* object *)
2 int(id:int, value:int) (* int value *)
3 float(id:int, value:float) (* float value *)
4 str(id:int, value:string) (* string value *)
5 true(id:int) (* constant true *)
6 false(id:int) (* constant false *)
7 null(id:int) (* constant null *)
8 key(object:int, field:string, value:int) (* object field *)
9 idx(array:int,index:int,value:int) (* array element *)

Listing 8.1: Generalized MFODL signature

1 {
2 'type':"Log",
3 'event':{
4 'src':{'a':0},
5 'log_entry':{
6 'level':"INFO",'time':1648053358,
7 'message':"Configuration upated",'module':"auth",'line':17,
8 'host':"127.0.0.1"
9 }

10 }
11 }
12 {
13 'type':"Log",
14 'event':{
15 'src':{'a':0},
16 'log_entry':{
17 'level':"ERROR",'time':1648053380,
18 'message':"Power loss",'module':"power",'line':567,
19 'host':"127.0.0.1"
20 }
21 }
22 }

Listing 8.2: Input JSON log

1 @1648053358 root(0); key(0,"type",1)(3,"a",4)(2,"src",3)(5,"level",6)
(5,"time",7)(5,"message",8)(5,"module",9)(5,"line",10)(5,"host"
,11)(2,"log_entry",5)(0,"event",2); int(4,0)(7,1648053358)
(10,234); str(1,"Log")(6,"INFO")(8,"Configuration updated")(9,"
auth")(11,"127.0.0.1")

2 @1648053380 root(12); key(12,"type",13)(15,"a",16)(14,"src",15)(17,"
level",18)(17,"time",19)(17,"message",20)(17,"module",21)(17,"
line",22)(17,"host",23)(14,"log_entry",17)(12,"event",14); int(
16,0)(19,1648053380)(22,567); str(13,"Log")(18,"ERROR")(20,"Power
loss")(21,"power")(23,"127.0.0.1")

Listing 8.3: Output of the generalized preprocessor
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1 LET Log(level, message, host) = EXISTS r. root (r) AND
2 (EXISTS t. key(r, "type", t) AND str(t, "Log")) AND
3 (EXISTS e, le, lvl, msg, id. key(r, "event", e) AND
4 key(e, "log_entry", le) AND
5 key(le, "level", lvl) AND str(lvl, level) AND
6 key(le, "message", msg) AND str(msg, message) AND
7 key(le, "host", id) AND str(id, host))
8 IN
9 Log(level, message, host) IMPLIES

10 (NOT level = "CRITICAL" AND NOT level = "ERROR")
11

Listing 8.4: MFODL formula

1 LogEvent {
2 src: {a: int},
3 log_entry: {
4 level: string,
5 time: int,
6 message: string,
7 module: string,
8 line: int,
9 host: string

10 }
11 }
12
13 event Log {
14 type: string, event: LogEvent
15 }

Listing 8.5: CMFODL signature

1 LET is_error (event) =
2 event.log_entry.level = "ERROR" OR
3 event.log_entry.level = "CRITICAL"
4 IN
5 Log(l) AND l.type = "Log" IMPLIES NOT is_error (l.event)

Listing 8.6: CMFODL formula
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8.2 Specialized preprocessing
We now look at the current approach of Dfinity, which utilizes a special-
ized preprocessor [18]. In this case, we do not intend to entirely replace the
log preprocessing with CMFOTL since the preprocessing is needed to enrich
the application logs with additional information required to verify the desired
properties. Instead, we want to show that even in cases where log prepro-
cessing is necessary, CMFODL still provides a benefit by allowing users to
formulate specifications so that the resulting formulas naturally correspond to
the underlying structure of the event data. This increases the readability and
maintainability of formulas.

To clarify this argument, we look at the abstract application event reboot, re-
ferred to in multiple policies including reboot_count [18]. Dfinity’s current
Python-based preprocessor generates a tuple (host_addr,data_center_pre f ix)
of the relation reboot whenever the abstract event reboot occurs, namely when-
ever a JSON log entry is encountered with the following properties: The
field _source.host.ip is equal to host_addr, the field _source.syslog.identifier
is equal to the string ”systemd”, and the message of the log entry under
_source.message is equal to the string “Starting IC replica...”. In a correspond-
ing MFODL formula, the occurrence of a reboot can therefore be verified by
the predicate formula reboot(host_addr,data_center_prefix).

With CMFODL, we achieve the same result by introducing a custom predicate
as shown in Listing 8.7. The advantage of the latter approach is that we can
formalize the same abstractions of events by using a single language in a single
place without the need for synchronization. This improves the readability and
comprehensibility of the formulas. While the CMFODL formula in Listing 8.7
may look more complex than the original MFODL formula, it is comparable
to the corresponding Python-code of the preprocessor [18]. In addition, the
concept of CMFODL modules could be introduced to improve the reusability
of policies.

1 LET reboot (event, host_addr , data_center_prefix) =
2 event._source.host.ip = host_addr AND
3 event._source.host.data_center_prefix = data_center_prefix AND
4 event._source.syslog.identifier = "systemd" AND
5 event._source.message = "Starting IC replica..."
6 IN
7 Event (e) AND reboot (e, addr, prefix)

Listing 8.7: CMFODL formula abstracting a reboot event
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Chapter 9

Considerations

In this chapter, we elaborate on different considerations regarding the specifi-
cation and implementation of complex data types.

9.1 Scope of unique object identifiers
As described in Algorithm 3 of Section 5.2, we assign unique identifiers to tu-
ples generated from complex JSON object values. The current implementation
uses a simple integer-based counter, which the monitor resets at the beginning
of each time point – therefore assigning only locally unique identifiers. The
greatest advantage of this implementation is its simplicity, while it still allows
unique referencing between tuples of the same time point. On the other hand,
non-global uniqueness implies that unrelated objects of different time points
share the same identifier. Therefore, we cannot use the value of an identifier
in different temporal scopes (such as in UNTIL or EVENTUALLY) without risking
an unintended change of semantics of the input formula. Furthermore, we can-
not define the more efficient referential equality between objects observed at
different time points. Instead, we must rely on structural equality by prepro-
cessing complex-typed formulas before compilation. The example in Section
5.3.1 illuminates possible issues when dealing with locally unique identifiers.

An alternative implementation may depend on globally unique identifiers in-
stead. Assigning every observed object a unique identifier may not be helpful:
every referential equality between two objects would evaluate as false. Instead,
objects with equal structure should be assigned the same identifier. Referring
back to the example of Section 5.3.1, every object instance related to the
same user would share the same identifier, allowing to pass identifiers over
temporal operators and enabling referential equality. This would significantly
simplify the structure of compiled formulas by skipping the transformations
during preprocessing explained in Section 5.3.1. The downside of globally
unique identifiers is the complexity of the implementation: Assigning shared
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identifiers to structurally equal objects at different time points requires the
monitoring system to keep track of a mapping from object structures to their
assigned identifiers. To limit the space complexity of this map, obsolete en-
tries must be garbage collected regularly, based on the temporal reach of the
formula under monitoring.

To keep the scope of this work limited, we have chosen an implementation
with locally unique identifiers instead.

9.2 Orderable custom sorts and boolean sorts
As declared by the type derivation rules in Figure 4.2, values of custom product
and boolean sorts are not (totally) ordered. For both kinds of sorts, the
ordering of values may be interpreted differently based on the application.
Introducing an order in this work and changing it later would not guarantee
backward compatibility with formulas written for older versions of MonPoly.
Moreover, authors of formulas may always declare a particular order relation
on custom sorts using let bindings. For these reasons, we do not introduce a
fixed order for custom and boolean sorts.

9.3 Reporting values of nested fields
Whenever MonPoly encounters a prefix of a trace satisfying a given MFODL
formula, it prints the corresponding interpretation of the formula, i.e. the
values assigned to all free variables at the evaluated time point. Whenever
a free variable is of a complex sort, the variable’s value points to the com-
pound value’s identifier, as described in Chapter 5. While the compilation
process does generate new variables for each projection in the original CM-
FODL formula, each of these variables is bound by an existential quantifier
and is therefore not a free variable of the input formula. A possible solution
is to avoid binding variables representing nested fields of free variables. This
approach changes the set of free variables during compilation as a side effect.
We instead delegate the decision on which values to report to the author of the
formula, by allowing assignments of nested values to arbitrary free variables.
Referring to Example 5.5 on page 26, if the URL of a violating request should
be reported, one can extend the formula in conjunction with the assignment
url = r.url, introducing a new free variable url.
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Chapter 10

Related Work

This chapter looks at other approaches with expressive specification languages
for runtime verification. We focus on languages that provide support for
complex-structured event data, as they are pursuing a similar goal as CM-
FODL.

10.1 LOGSCOPE
LogScope is a runtime verification tool initially developed for NASA’s Jet
Propulsion Laboratory [2]. It provides a temporal specification language that
is translated into an automata-based monitor. Specifications can be formu-
lated in either temporal logic formulas or a parameterized ∀-automaton that
supports event parameters and universal quantification. Constraints on events,
called event predicates, can be specified in general Python expressions over
arbitrary data structures carried by the events. Furthermore, LogScope al-
lows formulating custom side effects in Python code, called event actions, trig-
gered on the successful evaluation of an event predicate. Side effects may man-
age global state referenced in event predicates. LogScope may therefore be
regarded as a mix of declarative and operational language. However, compared
to CMFODL, neither LogScope’s temporal logic pattern, nor its automaton
language allows referencing data of past events in an event predicate. Certain
properties formulated in CMFODL, such as A(x)→ ♦[0,∗] (B(y)∧ y = x), can
therefore not be represented in LogScope. Furthermore, side effects may
introduce additional complexity to a specification, reducing its comprehensi-
bility. Finally, the LogScope framework is not suitable for online runtime
verification: a program trace is consumed as a Python list of arbitrary event
objects and can not be streamed in real-time.
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10.2 LTL-FO+

LTL-FO+ [14] is the runtime verification counterpart to CTL-FO+ [15] devel-
oped for model checking. LTL-FO+ supports online runtime monitoring over
program traces consisting of arbitrary XML-based messages. Where specifi-
cations formulated in CTL-FO+ describe properties of all possible execution
paths, specifications written in LTL-FO+ focus on a single program trace. A
program trace is modeled as a stream of messages, each representing a rela-
tion from parameters to values, where values can be of arbitrarily nested data
structures. The specification language LTL-FO+ is an extension of LTL [8].
Compared to CMFODL, LTL-FO+ introduces quantifiers over parameters in
a message, but it lacks support for global quantification over an infinite do-
main of the variables in a program trace. Similarly to LogScope, it provides
no support for referencing past events in a specification, which is CMFODL
supports.

10.3 PARTRAP
ParTraP has been developed for the runtime verification of medical devices
[9]. In this context, a trace consists of inputs captured by device sensors and
their interaction with a surgeon. One of the core objectives of ParTraP is
to enable software engineers without training in formal methods to formulate
trace properties and make them readable by domain experts simultaneously.
In ParTraP a program trace is seen as a sequence of events, each repre-
sented by an arbitrary nested JSON object. Each event must at least carry
its event type and time in a hardcoded format. In contrast, event data is
not required to be tagged with their event type when monitored by Mon-
Poly. ParTraP’s atomic building blocks are unary scopes, such as before A
or after first B for some events A,B. By nesting scopes, higher-arity scopes
can be constructed. Because events may carry list structures as event data,
ParTraP provides local quantification over values in lists. For instance, the
specification forall a in L, P requires the property P to be satisfied for all val-
ues a in the finite list L. However, compared to CMFODL, support for global
quantification over the infinite domain of the variables on a whole trace is
missing.

10.4 HLOLA
Unlike MonPoly , HLola [12] is a stream runtime verification tool. Stream
runtime verification (SRV) can be seen as a generalization of monitoring tem-
poral logic formulas. Instead of generating a single Boolean verdict, or a
stream of Boolean verdicts produced by MonPoly , SRV describes the depen-
dencies between output streams (results) and input streams (observations)
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[13]. HLola uses Lola as its core language but adds support for arbitrary
data types. Input streams acting as the program trace under monitoring can
be provided in JSON or CSV format. HLola allows imports of arbitrary library
code written in Haskell, from which it inherits all available data types to
describe the structure of input and output streams. As SRV is a generaliza-
tion of runtime verification, HLola allows the implementation of general LTL
operators, including past operators.
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Chapter 11

Conclusion

MonPoly and MFODL provide a broad set of features, including real-time
monitoring, global quantification, regular expressions over program traces, and
SQL-like aggregation operators. While JSON-formatted application logs have
become ubiquitous, allowing systems to output events as arbitrary complex
data structures, both MonPoly and MFODL lack support for custom event
data types.

In this work, we extended MonPoly ’s specification language MFODL to
support compound domain values of custom product sorts. Most importantly,
the extension is backward compatible, so all MFODL formulas are valid CM-
FODL formulas. The extension allows projection on nested fields and adds
support for Boolean constants. Therefore, CMFODL can be used to formulate
specifications on parametrized program traces, where the domain of supported
event data covers all possible JSON documents, except for lists. Combined
with transforming temporal structures and compiling of CMFODL to MFODL
formulas implemented as an extension to MonPoly , this allows users to mon-
itor arbitrary JSON logs without or only minimal preprocessing involved. By
avoiding complex log preprocessing, an additional possible source of errors in
the monitoring pipeline can be avoided. Finally, the extension to MonPoly is
backward compatible with signature files and log files written for earlier ver-
sions of MonPoly.

In conclusion, the fact that we can compile CMFODL formulas and complex-
typed temporal structures such that MonPoly can monitor them implies that
CMFODL is generally not more expressive than MFODL. Instead, it offers a
more comprehensible interface for users to formulate specifications over JSON
logs, therefore reducing the risk of introducing errors in the specifications.
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11.1 Future work
This section discusses open questions and extensions of the work presented in
this thesis.

11.1.1 Temporal invariant object references
A large part of the current compilation process of CMFODL formulas, namely
the preprocessing, is only required because identifiers assigned to objects are
only locally unique. Section 9.1 compares this approach with other strategies,
namely globally unique identifiers. More generally, making references between
objects invariant to time would allow us to simplify the compilation process
and the complexity of output formulas. Future projects may research suitable
data structures for storing mappings between object identifiers and object
instances that can be garbage-collected based on the temporal scope of an
input formula.

11.1.2 Sum Types
Example 7.6 on page 32 shows how we can make use of the sort match al-
gorithm described in Section 7.2.2 to pattern-match against field values of
different sorts. Nevertheless, this approach is limited to top-level sorts and
may decrease the readability of signatures as soon as deeply nested data struc-
tures are involved. The concept of sum types may improve on this by allowing
users to declare a custom sort as an untagged or tagged (disjoined) union. As
an example, one could declare the sort of a field as string | null (untagged) or
Ok of Result | Err of Error for some custom sorts Result, Error (tagged). This
extension would need to be accompanied by a syntax extension of CMFODL,
allowing users to match against different variants in formulas to extract the
actual value during runtime. Possible challenges may arise for matching un-
tagged JSON values against variants of sum types and the compilation to a
safe MFODL formula, such that it is monitorable by the current implementa-
tion of MonPoly.

11.1.3 Support for list sorts
The extension of MFODL and MonPoly presented in this thesis does not
support list-like sorts. Therefore, JSON arrays part of an input log file are
ignored during parsing and cannot be accessed in a CMFODL formula. Rep-
resenting elements of lists as tuples of relations can be solved similarly to the
solution presented for product sorts in Section 5.2, namely by normalizing the
relations. In the case of lists, elements of a list can be stored in a separate
relation, where each tuple represents an element and contains an additional
reference pointing to the tuple owning the list. Exposing the content of a
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list in formulas might be more challenging. Local quantification over the do-
main of elements in a list, as introduced by ParTraP [9] and others, would
be useful but requires significant changes to the underlying monitor system.
Another approach may provide a generalized fold function over the domain
of a list. Eventually, lists of unbounded size introduce separate challenges to
normalizing relations.
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Appendix A

Utilities

A.1 Minimal JSON log preprocessor
1 #!/usr/bin/env sh
2
3 # Usage: extract-ts.sh <TIMESTAMP_PATH >
4 #
5 # Formats the content of a JSON log file to be passed to MonPoly.
6 # The passed JSON path to the timestamp of each log entry follows
7 # the syntactic rules described at:
8 # https://stedolan.github.io/jq/manual/#Basicfilters
9 #

10 # Example:
11 # cat json.log | extract-ts.sh ".path.to.timestamp" | monpoly
12 #
13 # Dependencies:
14 # jq : JSON CLI utility
15
16 # exit on error, undefined var, pipefail
17 set -euo pipefail
18
19 json_path="$1"
20 while read line; do
21 ts=$(printf '%s\n' "$line" | jq "$json_path")
22 printf '@%s %s\n' "$ts" "$line"
23 done

Listing A.1: minimal JSON log preprocessor shell script
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