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Introduction

Fairness - the quality of treating people
equally or in a way that is right or reasonable

https://dictionary.cambridge.org/dictionary/english/fairness



Introduction

Why is it difficult to build/define a fair A
mroncnes. vet - SYSHEERN P merice londs | 10

manipulation, gamlng, a myopic focus on short-term goals, and

other unexpected negative consequences.” (Thomas and
Uminsky, arXiv, 2020)



Measures of fairness

« Disparate treatment
System vyields different outputs for different subgroups of

O

people with the same features except the sensitive

attribute

/. Sensitive attribute = 1

" Sensitive attribute = 2

1 Beneficial/better

\‘ Hurtful/worse

~

J
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Measures of fairness

« Disparate impact

O

System provides outputs that benefit / hurt people sharing
a sensitive attribute more frequently than others

/. Sensitive attribute = 1

" Sensitive attribute = 2

1 Beneficial/better

\‘ Hurtful/worse

~

J
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Measures of fairness

. Disparate mistreatment

o Failure of a system to achieve the same classification
accuracy (or error rate) for subgroups of people with

different values of a sensitive attribute

/. Sensitive attribute = 1
" Sensitive attribute = 2

1 Beneficial/better

d Hurtful/worse

\

J

t
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Fairness in medical imaging I @E G {70

Uncovering algorithmic bias

Balanced Imbalanced



Fairness in medical imaging Iriireeyzden
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Fairness in medical imaging

Ricci Lara, Echeveste, and Ferrante,
Nature Communications (2022)

Introduction

Table 1| Databases commonly used in fairness in MIC studies

Image modality Database
Chest X-ray CheXpert™
NIH Chest X-Ray™
MIMIC Chest X-Ray™
Emory University Hospital Chest X-Ray*”
Mammography Digital Mammographic Imaging Screening Trial
(DMIST)™
Emory University Hospital Mammography*”
Dermoscopy ISIC Challenge 2017/18/207°
Dermatological clinical image  Fitzpatrick 17k
SD-198*
Fundus image AREDS™
Kaggle EyePACS™
Cardiac MRI UK Biobank™

Pulmonary angiography CT

Stanford University Medical Center™®
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Introduction

What about graphs?



Deﬁnitions Introduction

‘ Node/vertex

@i8® Edge/connection
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Graphs in neuroimaging Introduction

Anatomical projections Neural activity ;
Structural Functional

connectivity connectivity

o Structural connectome: The pattern of material EAGEFEL

connections between every pair of distinct brain  ;Fdgm 5
regions Ff o
Fy L
« Functional connectome: The pattern of statistical =& =g
dependencies (or functional connections) -
between every pair of distinct brain regions Trends in Cognitive Sciences

. . . S tal., 2020
. Population graphs: nodes are associated with uarez et a

imaging-based feature vectors from patients, | X
while other phenotypic information (such as sex) & -
is integrated as edge weights (Parisot, Ktena et |
al., 2018)

o Cortical surfaces: discrete triangulated meshes;
sparse graphs
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Analogies between Euclidean & irregular domains

Euclidean data

Irregular data

4 . . N
e Regular pixel/voxel grid e Graph structure
e Fixed number of neighbours per - Variable number of neighbours per
: structure
pixel/voxel node
e Intrinsic node ordering e No node ordering
g J
[ e Image intensities - o Node feature vector

e Image classification
e Image segmentation

task

Graph classification
Node classification
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Analogies between Euclidean & irregular domains

Euclidean data

Irregular data

4 . . N
e Regular pixel/voxel grid e Graph structure
e Fixed number of neighbours per - Variable number of neighbours per
: structure
pixel/voxel node
e Intrinsic node ordering e No node ordering
g J
[ e Image intensities - o Node feature vector

e Image classification
e Image segmentation

task

Graph classification
Node classification
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Case study

Parisot, S., Ktena, S. I., et al.
Medical Image Analysis (2018)

Motivation
Transductive learning

Study population Population graph Semi-supervised Fully labelled graph

2
ACCo = ACCy

() Neurodiverse individual @ neurotypical individual

Predicting Autism Spectrum Disorder using Graph
Convolutional Neural Networks

17



Motivation

Findings

SEX + SITE + Sim

SEX + SITE

SEX + Sim ¢

SEX

SEX + SITE + Sim + AGE
SEX + SITE + AGE

SITE

SEX + AGE

SEX 4+ Sim + AGE

HE—
HIT—
SITE + Sim H1T H
|
—TH

Graph structure

SITE + AGE
SITE 4+ Sim + AGE

0.725 0.730 0.735 0.740 0.745 0.750 0.755
Area Under Curve

Parisot, S., Ktena, S. I., et al. Medical
Image Analysis (2018)
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Motivation

Did the use of sensitive attribute to define the
population graph affect subgroup prediction
accuracy?

Ribeiro, F., Shumovskaia, V., Davies, T., Ktena, |., ML4Healthcare (2022)
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Females are underrepresented
in the dataset

Motivation

20 sites

144 females

|

ABIDE

Autism Brain Imaging
Data Exchange

403 neurodiverse (ND)
473 neurotypical (NT)
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Females are underrepresented

in the dataset

8 largest acquisition sites

Male participants Female participants
Acquisition site || Neurodiverse Neurotypical | Neurodiverse Neurotypical | Total
NYU 64 72 10 26 172
UM 26 35 8 17 86
USM 43 24 0 0 67
UCLA 31 24 6 3 64
PITT 21 22 3 4 50
MAX_MUN 16 26 3 1 46
TRINITY 19 25 0 0 44
YALE 14 11 8 8 41

Motivation
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Investigation 1

Algorithmic bias - Is the improvement in
prediction accuracy due to algorithmic bias
against the underrepresented group?

. Training data (stratification);
« Graph structure;

22



Metric of fairness

Difference of True Positive Rates (TPR)

- TPRfemaIe |

Moritz Hardt, Eric Price, and Nati Srebro.
Advances in neural information processing
systems, 2016.

> True Positive Bias: |TPR

male

4 )

TP

TPR =
FN+TP

Methods

* Accuracy
 AUC-ROC
* Sensitivity/Specificity
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Stratification Methods

Training Validation Test

Test - Included 2 male and 2
female participants, one
neurotypical and one neurodiverse,
from each collection site whenever
possible

50% P /50% N

Proportion of target labels
in training / validation
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The impact of stratification in a transductive

setting

/‘ Neurotyplcal\

Diagnosis

Methods

Sex * Diagnosis
Site * Diagnosis

Sex * Site
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The impact of graph structure Methods

* Sex
e Sex * Site
* Site
* Complete

/‘ Neurotypical\
‘ Neurodiverse

=== Female

K— Male /




Our findings

| Difference in TPRs|
5
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Results

Performance of
10 seeds * 10-folds = 100 models
SexGraph

Model
Baseline
CompleteGraph
SexSiteGraph
SiteGraph

b

Diagnosis

oo i i

SexDiagnosis SiteDiagnosis SexSite
Stratification
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: : Bias mitigation - Can we mitigate model
Investlgatlon 2 bias without using sensitive attributes?

28



Mitigation techniques i

~

Post-processing

Pre-processing

Sampling strategies In-processing Classifier calibration
Graph structure

Under- Regularization,
sampling/Oversampling fairness constraints
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Fine-tuning

Pre-trained

On labeled female sample

On labeled male sample

Methods

/. Neurotypical\
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Fine-tuning

| Difference in TPRs|
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Fine-tuning

1.0
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&
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1

Specificity
o
I

0.2

i

~ 0.0 T .
Baseline 50 100 150 50 100 150 Baseline
CG FT - male FT - female SSG
TNR = —
FP+ TN Model
,

Results

Fine-tuned on:

-

Female

Male

~

J

32



Take-home message Conclusion

. Stratification strategy did not have a significant impact on fairness metrics

o Surprising, but might be due to the transductive setting
> Higher performance with GNNs did not come at the cost of higher TPR
difference

« Fairness through awareness

o Discarding the sensitive attributes does not solve the problem

Graph structure is more important than the composition of the training set
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Future directions / Limitations Conclusion

 Expanding these analyses to models with better performance (Traut et al.,
Neurolmage, 2022)

* Reducing “identity” to binary or categorical attributes

* Elements of identity that we are often concerned with are social constructs
that vary depending on the context

34



What is a fair Al system?
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