{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
| \n", " | dataset | \n", "classifier | \n", "parameters | \n", "accuracy | \n", "macrof1 | \n", "bal_accuracy | \n", "
|---|---|---|---|---|---|---|
| 0 | \n", "led24 | \n", "BernoulliNB | \n", "preprocessor=Binarizer,alpha=0.0,fit_prior=Tru... | \n", "0.722812 | \n", "0.721038 | \n", "0.84569 | \n", "
| 1 | \n", "led24 | \n", "BernoulliNB | \n", "preprocessor=Binarizer,alpha=0.0,fit_prior=Tru... | \n", "0.722812 | \n", "0.721038 | \n", "0.84569 | \n", "
| 2 | \n", "led24 | \n", "BernoulliNB | \n", "preprocessor=Binarizer,alpha=0.0,fit_prior=Tru... | \n", "0.722812 | \n", "0.721038 | \n", "0.84569 | \n", "
| 3 | \n", "led24 | \n", "BernoulliNB | \n", "preprocessor=Binarizer,alpha=0.0,fit_prior=Tru... | \n", "0.722812 | \n", "0.721038 | \n", "0.84569 | \n", "
| 4 | \n", "led24 | \n", "BernoulliNB | \n", "preprocessor=Binarizer,alpha=0.0,fit_prior=Tru... | \n", "0.722812 | \n", "0.721038 | \n", "0.84569 | \n", "