{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Equilibrium Properties and Partial Ordering (Al-Fe and Al-Ni)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Only needed in a Jupyter Notebook\n", "%matplotlib inline\n", "# Optional plot styling\n", "import matplotlib\n", "matplotlib.style.use('bmh')" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "from pycalphad import equilibrium\n", "from pycalphad import Database, Model\n", "import pycalphad.variables as v\n", "import numpy as np" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Al-Fe (Heat Capacity and Degree of Ordering)\n", "Here we compute equilibrium thermodynamic properties in the Al-Fe system. We know that only B2 and liquid are stable in the temperature range of interest, but we just as easily could have included all the phases in the calculation using `my_phases = list(db.phases.keys())`. Notice that the syntax for specifying a range is `(min, max, step)`. We can also directly specify a list of temperatures using the list syntax, e.g., `[300, 400, 500, 1400]`.\n", "\n", "We explicitly indicate that we want to compute equilibrium values of the `heat_capacity` and `degree_of_ordering` properties. These are both defined in the default `Model` class. For a complete list, see the documentation. `equilibrium` will always return the Gibbs energy, chemical potentials, phase fractions and site fractions, regardless of the value of `output`." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "scrolled": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Dimensions: (P: 1, T: 34, X_AL: 1, component: 2, internal_dof: 5, vertex: 2)\n", "Coordinates:\n", " * P (P) float64 1.013e+05\n", " * T (T) float64 300.0 350.0 400.0 450.0 500.0 550.0 ...\n", " * X_AL (X_AL) float64 0.25\n", " * vertex (vertex) int64 0 1\n", " * component (component) \n", "Dimensions: (P: 1, T: 1, X_AL: 100, component: 2, internal_dof: 5, vertex: 2)\n", "Coordinates:\n", " * P (P) float64 1.013e+05\n", " * T (T) float64 700.0\n", " * X_AL (X_AL) float64 1e-09 0.01 0.02 0.03 0.04 0.05 0.06 ...\n", " * vertex (vertex) int64 0 1\n", " * component (component) " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.gca().set_title('Al-Fe: Degree of bcc ordering vs T [X(AL)=0.25]')\n", "plt.gca().set_xlabel('Temperature (K)')\n", "plt.gca().set_ylabel('Degree of ordering')\n", "plt.gca().set_ylim((-0.1,1.1))\n", "# Generate a list of all indices where B2 is stable\n", "phase_indices = np.nonzero(eq.Phase.values == 'B2_BCC')\n", "# phase_indices[1] refers to all temperature indices\n", "# We know this because pycalphad always returns indices in order like P, T, X's\n", "plt.plot(np.take(eq['T'].values, phase_indices[1]), eq['degree_of_ordering'].values[phase_indices])\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For the heat capacity curve shown below we notice a sharp increase in the heat capacity around 750 K. This is indicative of a magnetic phase transition and, indeed, the temperature at the peak of the curve coincides with 75% of 1043 K, the Curie temperature of pure Fe. (Pure bcc Al is paramagnetic so it has an effective Curie temperature of 0 K.)\n", "\n", "We also observe a sharp jump in the heat capacity near 1800 K, corresponding to the melting of the bcc phase." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEXCAYAAABCjVgAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXd4HNd5qP9+WGCBRSUaAfYqiuoi1Xuh4hZZdhTr+kaW\nHDv0dRIrjrtjJ45bHF/Hidu99rXjJsm9yFWy/JOrOi1ZogolUo0FrOjAomOBxff7Y2bBJQhgZxez\nZ2bk8z7PPtjdmZ155+DsfnO6qCoWi8VisQCUBC1gsVgslvBgg4LFYrFYprFBwWKxWCzT2KBgsVgs\nlmlsULBYLBbLNDYoWCwWi2UaGxQWiIjcLSJfDdrD4g8islpEVEQuDtqlWGRdo4pI9wKOc7uIvNtn\ntxoRaReRM/w8rmlE5OqsNP5N0D75YINCDkRkmYiMi8hhESkt8BhvyMog2Y8vFcFXReSGORwmi3C+\n34jILX4fN0AOAEuAhwBEZLmbppcHajULIrJvjnw1/chxiFcBJ2cd769FZExETp1xnmtFZEJEzs16\nbwtwDvD5WbzOF5G0iDw8j/cHZtumqoPAp4FP5XDPiYhsEJG7RGRERLpF5EsiUpXjM+8RkW0i0ici\n/SJyv4i8bMY+c32fr8ra7dc4+egHC70O09igkJutwB1AH/DKBRwnjZNJsh/vXbCdxVdUNa2q7ao6\nEbSLB87haF7K/GC/imPz2Hz0qmpn5oWq3gr8HPi2iJQDiMhS4MvAv6lq9o/8O4FvqOrYLMd9M/BF\nYL2IbMr7quAW4LKZwSkfRKQa+C0wCVwI/A/gZcDXcnz0SuDrwBU4afogcIeIXDRjv9m+z/dmNqrq\nuKq2A6OFXkNgqKp9zPHACZptOMHgn4BfzrLP3cBXcxznDcBkjn3OAn4FDAFdwI+BVQU4K3CDF4dc\n5wTWuO8dBkaAHcCNWdtvcc+X/bh8HrergPvcYyWBe4B17rbNwC+BTtfnj8DLZnx+H/DvwFeBAaAb\n+DhQkrXP9Th3+Ul3+y+ADTOOsxi4GegAxoBngb9xt612r+PirPTMfuwD1gJTwIUzjnsZzo/Fcf83\noNa97utnvL/U/cxV7utXAY+5+/YDDwObPPzfj/EudF+gATgE/Bcgbv7YBsSy9ml0nS+c4zqHgdNw\nAsMXZ9lnH/CBHI73AJ9YwHf3zTg/yHVZ7/25e91r8jzWk8Cn8vk+z/iO/KbQ6wjiYUsK8/NyoBzn\nx+qbwBYRWe33SUTkZJwvwTbgbJy7lTTwaxGpcPfJ1AO/wdQ5gWrgdzjpcBrOHePNInKFu/1tOD/y\nP+Do3dKDc5zvKuAu4FHgAuA84BtAmbtLLfB9nDu0ze6+PxeRDTMO9VacIHUO8A7X4a1Z28uBj7nH\n+DP3mn4hInHXI+Fe9xnA63CqT96K8yM8G5vdv3/pXt85qroHp3rgf83Y903Ar1S1beZBVHUA+Blw\n44xNN7jX8zsRaQV+CHwXOAUnnT6Lc7drBFXtxfnReztOnr8Q50YgnbXbxTg/rttnOcSNwDOqugPn\nB/F1uaps5uAhnLwAgIhcIiJDOR6/zPr8RcA2VU1mvfcrnGA+865/TkSkBCdvzmx7iYnIHhE54rYr\nXp33FYaVoKNSmB84X+LsO4T/D/jYjH3uxltJQXHugLMfa/Xo3cT3ZnymHOeH6tXu62XAM8Bf5DiX\n4tz9zjzXGFl3N17OOU+afCXr9W+AWzyk5X3AHXmm/xPAv2S93gfcN2OfjwMH5jlGg5smF7mvt7pp\nsXyO/VdzbElhObOUgIBrce6I69zXi9y0m/P/g1N9MQm0Zr23A/jf7vNN7rlWF5BXj/Fe6L7At919\n/mGWbW8HOub43OPAW7NePwO8acY++8hdUvhHoCvrdQJYn+OxLGv/XwHfmeW4XcB78kjXD+CU2JZn\nvXcB8EacG4YLcNpAFNg6y+dvIWIlhYIaTv8UEJFlOMXN7DrRW4FPiciHVfW4uzcRuQSnVJHh46r6\ncfd5GjhzxkcOuH/Pwal/HZqxvQI4AUBVDwEbPer/C86PdzbX4vyAZsh5ThGpBD6IU322BIjjBI7f\ne/TI5izgfXNtFJFm4CM4JZZWoNR1WTVj120zXj8AvF9EalV1QETOBD6Ek9ZNOFUguMd5wPXYqaoH\nC7iGbH6OU0V1PU41yQ3u69vn+cyvcarHrgc+LSKbgVNx6rvBqaa4C3hKRH6Nc8PxY1U9MMuxioaI\nLMcpHQ7jVInNbExO4ATWmZ87HzgJ+E7W27fiVOXk20NvzD0PAKo6CryQ5zHmwtMsoCLyFuCfgWuy\n84uqbuPYfLhNRBpxqphztVmEHhsU5mYrEAMeE5Hs92M4P5I/meUzj3DsD39v9kZVnStTl+AU1T8x\ny7Yej77ZdMw8l4h0ztjHyzn/E6eO+5049e7DOL1C6gpwgvm/jLcAK3Ea3/fi1Ad/DycQzcf0P8cN\nYr8C7se5k+twNz094zgLnhpYVSdF5Gs4VUhfxKk6unm2m4Wsz6RF5NvA63HuLl8P/FFVd2VtfzlO\nwL4Kp8rqEyJynaresVBnL4iT2W/FSbN3AQ+IyA2q+q2s3bpwSmAzeTNOOndkfWcEKBGRTar6WB4q\nDe55Ml4zb7hm4z5Vfbn7/AiwInujiJS5x23PdXJxutp+BCcgeOlS+iDwVx72Cz02KMyCW4+4FefO\n+rszNv8zTuY/Ligs4G7mEeB0YLe6ZU4DeDnnpcC3VfUHMJ0uGzj6YwuQwgmUuXgUeCnwf+c513tV\n9efuuapwGnSfmrHf+TNeXwAccksJZwHNOFVOu9zjXEhW4HA9/kZElnssLaTcv7Nd41eAfxaRv8NJ\ny2s9HO9W4N1uKeGvgI9mb3T/Fw+7j4+LyP+HE+CMBAWcG4BzgNNVdZ+IfBT4vIjck1Vi2Q5Ui8hK\nVd0PICK1wGuBm8jqhePyBZzvzN/n4XEaTh7NMPOGazaye/o8AHwuU4J03/sznJuhB+Y7iHvN7wBe\noar3ePTdzNGSf7QJuv4qjA+caqMpYOUs216CUxW02n19NwvsfYRT5B7Eqcc9F6fXzxXA5zja7pBP\nm0LO3kcez3mbe85zcRpkv4pTRXJ31nG+AOwE1uFU15TN4ZVJt8/i/ICe6Dqd6G5/BOcO/zScL3+m\neuaWrGPsw+l19GGc4HQ9TnvJO9ztTTjVDv/P9dmC04tpCniDu08lTqlnO87d+Bp3v9e621dzbJtC\niZtO/4FTrVU/47p+AYwDv84jf23H6WGUAhqz3r8Q+FecRviVrtdhnO6guY55jHch+7ppPwb8ddZ7\nMZyqkt8AkpUmhzm2J9pNbjolZjnfm93/W1XW//Hz7v85+7Hc3S44P7BvWMB3uNo9xh04nQquwCmB\nzmxHe4asdhM3f44Cr3b/35lHdi+mDwOvwGnHOAWnujIN3DSLxy1ErE0hcIEwPnDq47fNsa0Up1j7\nMff13fjTJfU097x9bqZ8Aae3T4O7PfNFfkOO43gKCh7PuQKnjnsYpzj+EZw607uzjrEW585wiNxd\nUl/q/sCM4vzg/56jAeg0nCL4qPuj8RZmNGJztEvqze6PTA9O9Vd2l9TXAM/j/Lg9hlMnPpmdbu6X\n/Bs4PUrG3B+GN8xI54uz9n89zg/KJLBvxjW9yt3/ujzy19vcz/xkxvunAHfiVG+M43SH/k8g7uGY\nx3nnsy9OW9GTwI9m2X+9+/99W9Z7H8LpaZV5/Tjw3TnO1whM4DY4u/9HneXxJXf7FW6erFzg9/hE\nnOrEETev/DduYJrxffnwjNezPbLz4ac5WsXZ6+bbv5zD4RYiFhQykd9iCT0isg8nAH8saJcMbmPk\nh4AVqprKtX8YcLtV7wUuUdX7CzzGIuA5nLEks3VNLRgRuRO4R1X/w8/jBoE4o/2Xq+pVufYNC3ac\ngsVSACJS7Y7WfS/whagEhBn8yg20eaOq/Tg9rnKNms4LEanBKU1+1s/jmkZEXub27Htd0C75YksK\nlsgQppKCewd4PU4309eo08kgEogzh9dq92VaVfcGqPOixO0Jt9R9OaKqh4P0yQcbFCwWi8Uyja0+\nslgsFss0NihYLBaLZZrQD167++67tby8PGgNi8ViiRQjIyPdW7Zsac73c6EPCuXl5WzcePyUP21t\nbaxaNXNanGgQVXfrbRbrbZYXm/f27duPm63XC5GtPiorK8u9U0iJqrv1Nov1Nov1dohsUKirK3RO\ntuCJqrv1Nov1Nov1dohsUOjuLni98cCJqrv1Nov1Nov1dohsUIhqVIfoultvs1hvs1hvh8gGhVQq\nirMKOETV3XqbxXqbxXo7RDYojI5GZlaB44iqu/U2i/U2i/V2iGxQaG1tDVqhYMLknp5SDiaPW1lx\nVsLknQ/W2yzW2yx+e0c2KLS351xRL7SEyf3nO7v4mx/u4ncv9ObcN0ze+WC9zWK9zeK3d2SDQjye\na+ne8BIm9+2HBgG4Z09/zn3D5J0P1tss1tssfntHNijU1NQErVAwYXLf2+fURz5xZJDJqflnzA2T\ndz5Yb7NYb7P47R3ZoNDT0xO0QsGExX1ofJLOoQkARiameLZzeN79w+KdL9bbLNbbLH57RzYo1NfX\nB61QMGFx39d3bAPzo25V0lyExTtfrLdZrLdZ/PaObFCIavcxCI/7nl7Ho6HSmRdxe46gEBbvfLHe\nZrHeZrFdUl3Gxrx1owwjYXHf6waFqzc2USLwTNcww6n0nPuHxTtfrLdZrLdZ/PaObFCIap9iCI/7\n3l4nM53SUs3Ji6uYUnj88NylhbB454v1Nov1Nosdp+AS1T7FEA73KVX2uT2P1jRUsHmZ04Nhviqk\nMHgXgvU2i/U2ix2n4FJRURG0QsGEwb1jKMXIxBQNiVIWJcrYvKwWmD8ohMG7EKy3Way3Wfz2jmxQ\nSCQSQSsUTBjcM+0JqxsclxObK6mKxzg0ME7H4OwTbIXBuxCst1mst1n89o5sUOjr6wtaoWDC4L7H\nbU9Y6waFWIlwxpJqALYfGpj1M2HwLgTrbRbrbRa/vSMbFBobG4NWKJgwuO/rPdqekCFXu0IYvAvB\nepvFepvFb2/PQUFEqkVkuYhU+2pQIIOD8/epDzNhcM+MUciUFADOcoPCY4cHmdLjp7wIg3chWG+z\nWG+z+O09b1AQkVNF5P+KyB4gCewHkiKyW0Q+LyKn+WqTB1FdEAOCdx+fnOLwwDglAisWHS0pLK0t\np6U6zsB4mhd6jh8QE7R3oVhvs1hvsxhbZEdEvgt8BzgC3AA0AXH3743AIeDbIvI9X408EtU+xRC8\ne1v/GFMKK+oqiMeOZgERyapCOr5dIWjvQrHeZrHeZjE5TuE7qnq6qn5cVR9U1T5VnXT/Pqiq/1tV\nTwe+5fVkIhITkcdE5A739S0isldEHncfZ3o9VlT7FEPw7ntnaU/IMF+7QtDehWK9zWK9zeK3d+lc\nG1T1dhFZoqpH5tpHRP5cVe/I43xvA3YBtVnvvUdVb8vjGEB0u49B8O57poPC8R6bltYgwNPtw4xN\nTlFRevS+IWjvQrHeZrHeZjHdJfW3ItI02wYR+Uvgu15PJCLLgT8Hvupdb26iuiAGBO++d56gUFtR\nyvqmBBNTylPtQ8dsC9q7UKy3Way3Wfz2nrOk4PJbnMBwmapOL80lIn8F/DfwP/M412eB9wIzV4T4\ndxH5oHuu96nqePbGzs5Otm7dSmlpKel0mmuvvZabbrqJ/fv3Mzk5SSwWY2BggObmZnp7e1FVmpub\n6ejooLra6Sg1NDRES0sLXV1diAgNDQ10dXVRW1tLOp1meHiY1tZW2tvbKSsro66uju7uburq6kil\nUoyOjk5vj8fj1NTU0NPTQ319PaOjo4yNjU1vr6ioIJFI0NfXR2NjI4ODg6RSqentmW3JZJKmpiaS\nySQTExPT26uqqop6TbW1tezuHgFgWXWMtra2467pxEUxnu+Gh/f30Zzum76m/fv3U1paOus1xePx\nwK4p1/9pfHyc8fHxvP9PQV/T4cOHSSaTvuY9E9d0+PBhEomEse+TX9c0OTnJ4OBgKH4j8rmmAwcO\nMDg4eNw1FYroLF0Pj9lB5MvAZuAKVR0UkTfi/MD/par+xtNJRK4GXqGqbxGRy4F3q+rVIrIEaMdp\nwP4ysFtVP5r92W3btunGjRuPO+bw8DBVVVVeTh86gnTvHZngf37nKariMX5842mIyHH7PHZ4kH+6\n8wXWNlTwpWtPmn4/qmluvc1ivc0yl/f27dsf3bJly9n5Hi/nOAVVfTPwNPArEXkHTkB4pdeA4HIR\ncI2I7AO+B1wpIt9S1SPqMA7cDJzr9YDJZDKP04eLIN2n2xPqK2YNCACntFRRHhP29I7ROzIx/X5U\n09x6m8V6m8Vv71zjFEpEpAR4E3AQ+BBOu8D9WdtyoqrvV9Xlqroap8rpd6p6g1tSQJxfp1cDT3kV\nn5iYyL1TSAnSfd887QkZ4rESTpue8uJoL6Soprn1Nov1Novf3rl+1CeBCWAM+EucXkP3uO9lti2E\nb4vIDmAHzviHj3n9YFT7FEOw7nvcJTjnCwoAm5e6XVOz1leIappbb7NYb7OYXk9hDbDWfayZ5fXa\nfE+oqner6tXu8ytV9TRVPVVVb1DVoVyfzxDVPsUQrPveWaa3mI2jU2kPkGl3imqaW2+zWG+zGBun\nAKCqbTPfE5HlqnrQV4sCiGKDUIag3CenlP1uSWF1/fxzsK9pqKA+UUrvyCRt/WOsrk9ENs2tt1ms\nt1n89i5kltSdvhoUSCwWC1qhYIJyP5QcY2JKaa2JUxmf30FE2LT02NHNUU1z620W620Wv70jO3X2\nwMDsc/5HgaDcM2so5GpPyDBzyouoprn1Nov1Novf3oUEhdn7MRqmubk5aIWCCcrda3tChkxQePLI\nEBPpqcimufU2i/U2i9/eeQcFVZ05IjkQent7g1YomKDc92aNUfBCU1WcVYsqGJucYlfncGTT3Hqb\nxXqbxW/vXNNcTCMiq4HTgWPGUKvqd3w18kiukdhhJij3vX25xyjMZPOyGtr6x3j00CBXtUQzzaOa\nV6y3Way3g6egICLvBz6IM7I5e/UVxVlzwThRLepBMO5D45N0Dk0QjwlLa8s9f+6s5TX85Okuth8a\n5K9OXVVEw+IR1bxivc1ivR28Vh+9CzhLVc9W1UuyHpf6apMHHR0dQZ16wQThvne6K2qCWIn3ZqHT\nWqspLRGe7x5hz8E5Z1EPNVHNK9bbLNbbwWtQ6AH2+XrmBbLQmQCDJAj3+RbWmY9EWYyTF1cxpbBv\nxHNtY6iIal6x3max3g5eg8LbgS+LyNkisjL74auNpWjMt4ZCLjK9kHZ0jvnqZLFYwofXoBAHXgI8\njFNiyDz2FkPKC0NDnmfECB1BuO/Nc4xCNmcsde5EnukezbFnOIlqXrHeZrHeDl6Dwv8D/hlnQryy\nrEdgSxW1tLQEdeoFY9p9SvVozyOP3VGzWd9YSUzg8FCakVTab72iE9W8Yr3NYr0dvAaFUuBmVR1S\n1XT2w1ebPOjq6grq1AvGtHvHUIrRiSkaEqUsSpTl/fny0hLWNVaiwLPuqm1RIqp5xXqbxXo7eA0K\n/wW8T+ZalSUAQqSSN6bdF9KekOGkxZUAPNM57IuTSaKaV6y3Way3g9eg8I/Ah4EhEdmf/fDVJg8a\nGhqCOvWCMe2e75xHs7FxsTMT464IBoWo5hXrbRbr7eA1KNwAXAW8ArhxxiMQolrUA/Pu+c55NBsn\nuUHhmc6RyI38jGpesd5msd4Onjqeq+o9vp7VB2pra4NWKBjT7oWOUchmSU2cmngJ/WOTtA+lWFLj\nfVR00EQ1r1hvs/jlPT45RXrKvxunRFnJvFVEfqe312kuyoAP4JQMlgKHgW8C/66qKV+NPJJOR68X\nTAaT7mOTUxweGKdEYMWiwoOCiLC+Ps5jHWM80zkcqaAQ1bxivc1SiLeqcmhgnKc7htnpPtr6/R3P\nc8cbziBeOndQ8Du9vQ5R/SRwLvB3QBuwCvhXnC6q7/DVyCPDw8M0NTUFceoFY9J9f98YUwqr6iuI\nxxa2fMbKauGxDtjVOcIV66JT/xrVvGK9zeLFe3xyiue7R44Ggc5hkmOTx+wTE4iXmluqxu/09hoU\nrgPOUNUe9/WzIrIdeIKAgkJUF9kGs+6Z8QkLaU/IcPaaZn62e3/keiBFNa9Yb7Pk8v7Vcz187v4D\nTMyoGqpPlHJKSxUnL67i5JZq1jclFnwDlg9+p7fXoDBX2SWwPlzt7e2sWhXNWTtNuu9x2xNyrcns\nhdrJAQTY3TNKKj1lNOMvhKjmFettllzev3imm4kpZeWiCk5vrebklipOaamitSYeaHdWv9Pba1D4\nIXC7iHwE2I9TffQB4Ae+meRJWVn+g7DCgkl3P3oeZairLGflogra+sfY3TM63SMp7EQ1r1hvs8zn\nPTY5xXNdI5QIfO6aDVTlWOPcJH6nt9dbvfcCvwG+ADwK/F/g98A/+WqTB3V1dUGdesGYclfVBc15\nNJO6ujo2uoPYojReIap5xXqbZT7vXZ3DpBXWNSZCFRDA//T2GhQaVPWDqrpeVStV9QRV/Veg3leb\nPOju7g7q1AvGlHvf6CTJsUmq4jGaqxZ+N9Hd3Z01XiE6QSGqecV6m2U+7x1HnEnnTm0N3/Tafqe3\n16Dw3Bzv7/RLJF+iejcC5tz3ZI1P8KPOs66ubjoo7OqMzhxIUc0r1tss83nvaHeCwmkhDApBlRSO\n+0URkVpgylebPEilAhke4Qum3P1sTwDHe+WiChJlJXQMpegdmfDluMUmqnnFeptlLu+J9NR0yfjU\nlvC1o/md3vMGBRE54M5vlJhlzqMjwE99tcmD0dFozu0P5twzS3D60Z4AjnesRNjQ5E6O1xWNKqSo\n5hXrbZa5vJ/vHmU8raxaVFHQLMPFxu/0ztX76AacUsKdHDvPkQIdqvqsrzZ5ENW+0GDO/bkup4rH\nr5JCxvukxVU8cWSIXZ0jXLhqkS/HLiZRzSvW2yxzeWeqjk5tDV8pAfxP73lLCqp6j6reDTS5zzOP\ne4MMCOD0zY0qJtx7RibY3z9GRWkJJ7h39gsl4x21xuao5hXrbZa5vMPcngD+p7fXCfFGRORM4BKg\niaw2BlX9oK9GHonHA1v0bcGYcH/yyCDg3N2UlvgzsCbjvbHZCTLPdo2QnlJiPh2/WEQ1r1hvs8zm\nnZ5Snu5w2xNCGhT8Tm9PDc0i8mbgAeBKnLEJpwHvAtb7apMHNTU1QZ16wZhwf/ywc3dz5lL/zpXx\nrq8so6U6ztjkFG19/k7+VQyimlest1lm897XN8pwKk1LdZzF1eEMdn6ndz6D116mqn8BjLp/XwME\n1v2kp6cn904hxYT744edkoKfQSHbO7MS264INDZHNa9Yb7PM5v2kOz7htCXhLCWA/+ntNSgsVtX7\n3OdTIlKiqr8EXumrTR7U1wc2bm7BFNu9YzDFkcEU1fEY63xqZIZjvaPUrhDVvGK9zTKb9452J3+H\ntT0B/E9vr0HhoIisdp8/B7xKRC4BAuuQHNVub1B89yfc9oTTllT7Wt+f7b0xayW2sBPVvGK9zTLT\nW1V5ym1kPj2kPY/AfJfUDJ8ETgL2AR8FbgPiOGs3B8LYWPjrsuei2O7TVUc+F3mzvdc1JigrEdr6\nxxgan6S63GtWMk9U84r1NstM74PJcfrHJqlPlLK0NryLSvmd3l57H92S9fyXIlIPxFV1yFebPIhq\nX2gorruqFqWRGY71jsdKWNeY4JmuEZ7tGuGs5eFdgjGqecV6m2Wmd3ZX1CCnxs6F0XEKsyEi71PV\nVJABAaLbFxqK6354YJzukQnqKkpZ5cMaCtnM9J5uV+gKdxVSVPOK9TbLTO+wj0/I4Hd6F7JKyj8X\nejIRiYnIYyJyh/t6jYg8JCLPi8j3RcRzn6+KCn9/8ExSTPfHMqWEJdWU+Hx3M9N7Y0Qam6OaV6y3\nWWZ6P9WeGZ8Q3vYE8D+9CwkKC/mleRuwK+v1fwCfUdUTgD5gq9cDJRL+9aoxTTHdn3DbE87wueoI\njvc+KWttBVWd7SOhIKp5xXqbJdu7YzBFx5DTg291fbivx+/0LiQofKuQE4nIcuDPga+6rwVnMNxt\n7i63Aq/2ery+vr5CNEJBsdxVlcePZNoT/C/yzvRuqY6zqKKUgfE0hwfCOzNmVPOK9TZLtnem6uiU\nlqrQj9j3O73z7jKiqn9f4Lk+izMILnML2wj0q+qk+/ogsGzmhzo7O9m6dSulpaWk02muvfZabrrp\nJlKpFN3d3cRiMQYGBmhubqa3txdVpbm5mY6ODqqrnR/GoaEhWlpa6OrqQkRoaGigq6uL2tpa0uk0\nw8PDtLa20t7eTllZGXV1dXR3d1NXV0cqlWJ0dHR6ezwep6amhp6eHurr6xkdHWVsbGx6e0VFBYlE\ngr6+PhobGxkcHCSVSk1vTyQSxONx2traaGpqIplMMjExMb29qqqq4Gt6fO8RkmOTNFTEmOxrZ7xi\nia/XlEqlGBoaOuaaVtUI/WOwva2Lybq079fkx/+poqKCjo6Ogv5PyWQysGsqKSmhra3N97xX7GtK\npVKMj48b/T75cU3V1dUcOHAAEeGxg85Nzvq6GN3d3YH8Rni9pnQ6zYEDB467pkKRuYr9IvJNnNlQ\n50VVX5/zJCJXA69Q1beIyOXAu4E3AttUdb27zwrgTlU9Lfuz27Zt040bNx53zCNHjrBkyZJcpw4l\nxXL/yVOdfPEPh7hqfT3vvXy178efzfu7j7dz8yNHeNXJTdx04Qrfz+kHUc0r1tss2d5bf7iTA8lx\nPnfNhtCvRT5Xem/fvv3RLVu2nJ3v8eYrKbyQ78Hm4SLgGhF5BVAB1OKUHBaJSKlbWlgOHPZ6wKgu\n5AHFc89UHRWjPQFm947CSmxRzSvW2ywZ777RCQ4kxykvLWF9Y7jbE8D/9J4zKKjqR/w6iaq+H3g/\nQKakoKqvE5Ef4syh9D3gr4GfeT1mVPtCQ3Hc01M6PU/LmUuKExRm897QVIkAu3tGGJ+cory0kGaq\n4hLVvGK9zZLxzvQ6OnlxJWWx8OXnmQQ2TkFErhCRr4vIXe7fK304/z8B7xSRF3DaGL7m9YNR7QsN\nxXHf3evs3QyxAAAgAElEQVTM5rikJk5LTXFmc5zNuzIeY3V9BWmFF7rDWVqIal6x3mbJeB9dVCfc\n4xMyBDJOQUTeBHwfaAd+jLMU53dE5H/le0JVvVtVr3af71HVc1V1vapep6rjXo8T1W5vUBz3zNQW\nZxSplABze2fGK+wK6SC2qOYV622WjPdTERm0lsHv9Pba++i9wJ+p6hOZN0Tk+8CPgK/4auSRqC7k\nAcVxPzpVdvEy8lzeJy2u4pfP9oR2EFtU84r1Nks8Hmc4lWZ3zyilJTJ9sxN2AllkB6dqZ+eM954F\nGny1yYNkMhnUqReM3+6TUzpdD1qsRmaY2zt7EFsYiWpesd5mSSaTPN0xhOK0lVWEsH1sNvxOb69X\nfT/waRGpBBCRKuA/gQd9tcmDpqamoE69YPx2f7ZrmLHJKVYuqqCxsszXY2czl/eKRRVUlpXQNTxB\nz3Bg6y7NSVTzivU2S1NTEzsyi+qEfGqLbPxOb69B4e+A04GkiHQA/cAZwN/6apMHUb0bAf/dM7Oi\nnlHk1aHm8i4R4cTmTLtC+EoLUc0r1tssyWTy6KI6IV5pbSaBlBRU9YiqXgasxVltbY2qXqaqnscV\n+M3ERPjuSL3it3sxlt6cjfm8M1VIYWxXiGpesd5mGRpL8Vz3CAKc0hKdoOB3euc7zUUSSAOIyFKA\noAJDVPtCg7/uqckpdro/xMUuKcznnRnEtjOEQSGqecV6myUZq2Vyqo91jQmq4rGgdTwTyDgFEblK\nRPbgzGR6MOtxwFebPIhqX2jw131n5zATaWVtQ4LaiuKufjaf90mLq4gJ7OwYZn9fuFbeimpesd5m\n+cPuTiA6XVEzBLWewteAjwN1QFnWI7C+Z1VV0WkImomf7ia6omaYz7u2opSXn9jElMI3th8puks+\nRDWvWG+z7BmcAqIXFPxOb69BoQK4WVWHVDWd/fDVJg9isegU72bip/sTR4qz9OZs5PK+flML8Zhw\n797+UI1ujmpesd7mmEhP8XyvM4dQ2BfVmYnf6e01KHwGeK+EaKHSgYGBoBUKxi/30Yk0z3QOUyJm\n7m5yeTdVxXnlSU73uFsfDU9pIap5xXqb44WeUVJpZXldOfWJ4nXrLgZ+p7fXoPAj4H/hdEndk/3w\n1SYPmpubgzr1gvHL/an2YdIKJzRVGmkY8+L9P85ooaK0hIcODLCzIxyNzlHNK9bbHEfHJ0Sr6gj8\nT2+vQeE24D7gepzgkP0IhN7e3qBOvWD8cjfVFTWDF+/6RBl/caqTSW9+JLAey8cQ1bxivYuPqrK7\nZ4R79jqrl0UxKPid3l67q6wBNqnqlK9nXwBhXhM4F365T7cnGBpo49X7utMWc/vObp44MsRjhwbZ\ntMxM0JqLqOYV6108jgyM8/vdffxudx/7+53eciUCZxjosOE3fqe316DwM5z1lH/j69kXQBSLqBn8\ncB8cn+SFnhFKS4RTDN3dePWuLi/lutMXc/MjR7jl0cOcuXQDQTZHRTWvWG9/6Rud4N49/fx+d98x\n42lqy2NctraeK1ZX01wVvcn8/E5vr0GhHPi5iNwHdGRv8LIcZzHo6Ohg1apVQZx6wfjhvqN9iCmF\nk1vMTdyVj/erT2nmJ091satzhIcODHD+yroi281NVPOK9V44I6k0D7Yl+d3uXrYfGmTKvakuLy3h\nwlV1bFlfz+ZltZSWCG1tbUB9oL6F4Hd6ew0KT7uP0LDQxamDxA/3zHxHxVplbTby8U6UxfifZ7bw\npT8c4pZHjnDuilpKAiotRDWvWO/CSE1O8fDBAe7e3ccf9idJpZ1IEBM4b0UtV66v5/yVdSTKju2c\nEbR3ofjtPW9QEJGrgHv8XJrT4g9PGBy0VihXb2zitic72dM7yn17+7lsbfTuwizRID2lPHZ4kLt3\n93H/vn5GJo42f57aWsUVa+u5dG09dUUe9f9iIFcKvQf4rog8APwCuFNVDxVfKzdDQ0M0NjYGrVEQ\nC3VvHxxnb98Y5aUlRhcCydc7XlrC9Zta+T8PHODWR49w8epFxErMlxaimles9/yoKjs7h7l7dx/3\n7Omnf2xyetv6xgSXr6vn8rX1LK721k5g09th3qCgqi9111DYArwC+BcRSeIGCODBoHoktbS0BHFa\nX1io+717+gE4f2UtcYMLixfi/bITG/nhkx0cTI7z2xd6eckG81+6qOYV6308qsrzPaPcvbuPe/f2\n0Tl0dIbQ5XXlXL62nivW1bNiUUXex7bp7ZDzF0VVR1T1dlX9e1VdDbwOZz2FfweOiMj3ROQ8X608\n0NXVZfqUvrFQ97v3OH2qTVfHFOJdWiLcuHkJAN/c3s5E2vw9RFTzivV2UFX29o5y8yOHeeMPd/IP\nP32W23Z00jk0QVNVGa85bTGff/WJfO01J/H6s5YUFBCK4W0Kv73zrmBT1aeAp4BPikgt8FKg1lcr\nD4Roxo28WYj7oeQ4L/SMUllWwrnLzSZ7od5XrKvn+0900NY/xi+f7eGak812WYxqXvlT9z7QP8Y9\ne5yqobb+ozPv1idKuXTNIi5bW8/JLVW+dWD4U0/vDLkamtfm+LwCd6mq8clOGhoCWx56wSzE/R63\nlHDhqjrihteQLdQ7ViK8/qwl/Ntv9/Kdx9t5yYZGo+vfRjWv/Cl6H0yOce+efu7d28+e3tHp92vK\nY1ziBoLTW6uL0jb1p5jes5GrpPACzg//fP8BFZHdwFZVvc83sxx0dXWFpi90vizE/Z6Aqo5gYd4X\nra5jfWOCF3pGuX1nF9edbq7+Nqp55U/F+1ByjHv39nPPnmMDQWVZCRetXsTla+vZtKyG0iJ3UvhT\nSe9c5Gpoznk751YhvRb4InCqT145qa01XmPlG4W6t/WNsrdvjJryGJsDmDpiIWleIsIbzl7CB+7a\nw/ee6ODcFbWsqk/4aDc3Uc0rL2bvTCC4d28/u3uODQQXrl7EpWsWsXlZjdGOFC/m9M6HBXfadauO\nviIib1i4jnfS6cCWclgwhbrf4/Y6unBVHWUGvywZFprm5yyv5axlNTx6aJC3/fw5/nXLGs4y0C4S\n1bzyYvNu6xvlvn1J7t97fIngwlV1XLKmnrOWmw0E2bzY0rtQ5gwKIvJp4JOqOudabyLSCrxXVd+p\nqhf5apaD4eFhmpqaTJ7SNwpxV9XAeh1lWGiaiwgf+rO1/Oc9bdy3t59/uWs3/3DhCq4+qbj/x6jm\nlah7q+r0wMX79yWnJ54DJxBcsKqOSwMOBNlEPb39Yr6SwrPAwyKyC7jHfT0I1AAbgMuBE4GP+WaT\nB1FdHBwKc9/TO8rB5Dh1FaVsMjRV9kz8SPOK0hL+5crV3PrIEb77RAf/54EDHEqO8aZzlxVtYFtU\n80oUvVWVgdI6vvrwIe7f18/hgdT0tpryGBesrOPiNYvYvLTGeEeJXEQxvcF/7zmDgqr+t4h8HXgV\n8HLg1cAioA94EvgScLuqTs51jGLS3t4eyUYhKMw9U3V0SUCjgsG/NC8R4Y3nLGVZXTmfvf8AP3qq\ni8MDKd53xarj5qPxg6jmlah4T04pO44M8WBbPw+0JekePjqgbFFFKReuruOS1Ys4Y2nxG4sXQlTS\neyZ+e+dqaJ7AWWDnNt/O6BNlZdFaMi+bfN2PrTpaVAwlT/id5i/Z0EhrTZyP/GYv2/Yneecdz/PR\nl6z1ffriqOaVMHuPTqR59OAgD7b189CBAQbHj9ZrLyov4bJ1jVyypo5TWorTfbQYhDm958Nv78jO\nDlVXF9xUzAslX/fnukdoH0zRkCjl1ABXhipGmp++pIbPXbOBf71rD7t7RvnHnz3HR16ylg1Nlb6d\nI6p5JWze/aMTPHRggAf29bP90OD07KMAK+rKuWj1Ii5cVceySqUmgjOOhi29veK3d2SDQnd3N1VV\n5iaD85N83aerjtbUB3rXVaw0X15Xweeu2cBHfrOXHe1DvOuO53nf5au4aLU/paKo5pWgvVWVtv4x\n/rA/yR/aBtjVOUz2Gl8nLa7kwlWLuGBVHSuzppZoa2uLZFAIOr0LxW/vyAaFqEZ1yM99SnV6wNrl\nAVYdQXHTvLailE+8fB2fu/8Av3q+l4/8Zi+XrFnEDZtaWdOwsPEMUc0rQXin0lPsODLEH/YP8NCB\nJO2DRxuKS0uEM5ZUc9HqRVywso7GqtmrLWx6m8WWFFxSqVTunUJKPu67OofpGp6guaqMk1qCvYsp\ndpqXxUp416UrWbGogm88eoT79vZz395+Ll5dx+s2tbKusbAqpajmFVPevSMTPHJwgD/sH+DRQwOM\nZq1FUFdRynkrajlvZR1nLauhMp67I4BNb7P47e0pKIjIj4FvAL9wG58DZ3R0NPdOISUf97t3O1VH\nl62tD2zlsgwm0lxEeO0ZLWxZX88PnuzkF890c/++JPfvS3LBqjpu2NTKCXm2N0Q1rxTLe3JK2dkx\nxB8PDvLIwYFjRhQDrG2o4LwVdZy/qo4NTZV5V1na9DaL395eSwoPAB8EviYiPwC+qaoP+mqSJ1Ht\nUwze3dNTyn17g+91lMFkmjdVxXnLBct57Rkt/ODJDn6xq5ttbUm2tSU5b0UtN25ewoZmb8EhqnnF\nT++OwRR/PDjAIwcHePzw4DErk5XHhNOX1HDeylrOW1FHS83Cen/Z9DaLsXEK2ajqp4BPicgpwA04\nq7FN4JQevq2qu3218kBU+xSDd/en2ofoHZ1kSU3c1944hRJEmjdWlvH35y/ntae3cNuOTm7f1c1D\nBwZ46MAA566o5cbNrZzYPH+1WlTzykK8B8YmebJ9iCcOD7H90AAHkuPHbF+1qIKzl9dw9vJaTmut\n9nUg2Z9iegeJ0XEKM1HVp4H3i8idwOeBDwHvEpE/Au9S1Sdm+5yIVAD3AuXuOW9T1Q+JyC3AZUDS\n3fUNqvq4F5d43N++7Cbx6p7pdXTp2vpQzPUeZJo3VJbx5vOWcd3pi/nRjk5+vrObhw8M8PCBAc5f\nWctfn7VkzjaHqOaVfLxHUmme6hji8cNDPH54kN09o8f0FKosK2HzMicInL281vMSlYXwp5DeYcJv\nb89BQUROxCklXA+kgG8CVwNdwFuAnwJr5vj4OHClqg6JSBlwv4j80t32HlXNe3BcTU0wUz34gRf3\n9JRy3z4nKATd6yhDGNK8PlHGm85dxnWnt3Dbkx38dGc3f9jvNJJevHoRrz+rldUzZl8Ng3chzOc9\nnErzTOcwO9qdQPBs1zBZwwYoKxFOWlzFmUurOXNpDRsXVxkbTfxiTO8w47e314bmR4DVwPeB61X1\noRm7fFpE3jrX51VVgSH3ZZn70Ln290JPTw/VEewLDd7cHzs8SHJskuV15axdYJdMvwhTmtdVlLL1\n3GVce+pivv9kB7fv6ub+ff08sK+fy9fVc+PmVpbXOX3nw+SdDxlvVeXIYIqdHcPOo3OIvb1jx3yB\nSgQ2Nldy5tIazlxazckt1UYXMprNO2pYbwevJYVPAD9X1Tn7PqnqXKUEAEQkBjwKrAe+oKoPicjf\nA/8uIh8Efgu8T1XH5ztOhvr6YGYK9QMv7kfHJoSj6gjCmeb1lWX83fnLue60Fr77RDt3PtPD73f3\ncc+ePrasb+CGTa2h9J6P4VSaPb2jPN4Bu5/bw86OYfrHjp1iLCawvqmSU1qqOHNpDae1VlPlobuo\nCaKW3hmst4PXoPAvs1XxiMgjqnq2lwOoaho4U0QWAT8RkVOB9wPtQBz4MvBPwEezP9fZ2cnWrVsp\nLS0lnU5z7bXXctNNN3Hw4EEWL15MLBZjYGCA5uZment7UVWam5vp6OiYjp5DQ0O0tLTQ1dWFiNDQ\n0EBXVxe1tbWk02mGh4dpbW2lvb2dsrIy6urq6O7upq6ujlQqxejo6PT2eDxOTU0NPT091NfXMzo6\nytjY2PT2iooKEokEfX19NDY2Mjg4SCqVmt6eSCQYHh6mr6+PpqYmkskkExMT09urqqpQKeE+Nyic\nWDXOgQMHQnFNBw8eZOXKlbNeUzweJ5lMznlNxf4/pVMpXrlsileduI5bHj7AA4fH+fXzvfzuhV5O\naSzj5OYEa2rg3BOW0d3Z4en/VOxrmpicZH/3IEOlNew40M3BYeXQUJrO4ePnmKwpE05oiHNKazVL\nylKcsbKJqYlx5//UUkH7kYMMheCa0uk0nZ2drFu3ztj3ya9risViJJPJUPxG5HNNhw8fJplMHndN\nhSJOzU6OnUQGVLV2xnsC9Khq3guEisiHgGFV/a+s9y4H3q2qV2fvu23bNt24ceNxx2hra4tkTwHI\n7f7Q/iT/+qs9rK6v4Mt/eZJBs/mJUpofHhjnW4+187sXepnKyuLlpSWcvLiK05ZUc3prFSc2V1Fe\nxGoWVWVwPE37UIr2wXE6BlMcGUyxt3eUvb2jx3QNzVAWE1bXV7CkfIrz1rdw8uJqltbGQ1NizEWU\n8kk2Lzbv7du3P7plyxZPN+3ZzFtSEJFvuE/Ls55nWA087eUkItIMTKhqv4gkgKuA/xCRJap6xA0w\nrwae8ioe1T7FkNs9yHWY5yNKab60tpz3XraKN569hEf29/FM9zg72oc4mBznscODPHZ4EHAaZDc0\nV7KmIUFteYzq8lL3b4ya8lKq4zFqy0upLo8Rjwljk1OMTUwxOjnF6ESasYkpRiamGJ10ng+l0nQM\npmgfStExOE77YGrWH/4MDYlS1jYmWNuQYJ37d3ldBbESYXx8nPLyclNJ5htRyifZWG+HXNVHu+d4\nrjgD2n7o8TxLgFvddoUS4AeqeoeI/M4NGAI8Dvydx+NFtk8xzO+empziwTanh25Yeh1liGKaN1fF\nOblyjJdf4nj3jUywo2OIHUecnjt7e0d5umOYpzuGi+aQKCuhtTpOa005LTVxWmvirFxUwbqGBPWV\nc097HMX0ButtGtPrKXwEQET+oKp3FXoSVX0S2DTL+1cWesyKiorcO4WU+dzv29fPyMQU6xsTLKsL\n1zVGNc2zvesry7h0TT2XrnFKYUPjkzzdMUz7YIrB8UkGx9MMptIMjk0ylEozOJ5myH1/YkopjwkV\nZTESZSUkSktIZJ6XlVBRFqOyrITFVc4PfyYI1JbHCqr6eTGkd5Sw3g7zrdF8qare676cEJFZf8BV\n9Xe+GnkkkQhHN81CmM/9Z093AfDnRV63uBCimubzeVeXl3LeytyzTKoqU4rRqctfjOkdZqy3w3wl\nhf8HnOo+/9oc+yiw1lcjj/T19VFbW5t7xxAyl/uzXcM80zVCdTzGlevC1Z4A0U1zP7xFhJjhdt4/\n5fQOAuvtMN8azadmPZ93DEIQNDY2Bq1QMHO5Z0oJLzuxsShrFS+UqKa59TaL9TaL396e+uKJyJki\nsmLGeytE5AxfbfJgcHAwqFMvmNnc+0YnuGdPPwK8MoRVRxDdNLfeZrHeZvHb22sH7W/hTE2RTRxn\n/qNAiOqCGDC7+53P9DAxpZy3spYlteHshhjVNLfeZrHeZvHb22tQWKmqe7LfcKfLXu2rTR5EtU8x\nHO8+OaXcsasbgFed3ByEkieimubW2yzW2yx+e3sNCgdFZHP2G+7rw77a5EF7e3tQp14wM90f2NdP\nz8gEK+rK2bwsvDM1RjXNrbdZrLdZ/Pb2OvfRZ4CficgncQaxrQPeDfy7rzZ5ENXuY3C8e6aB+VWn\nNId6KoOoprn1Nov1NovJLqnTqOpXRKQf2AqsAA7gLKqT9zoIfhHVBTHgWPfdPSM81TFMZVkJV63P\nexopo0Q1za23Way3Wfz29jwTmKr+UFVfpqqnuH8DCwgAyWQy904hJdv9p24p4SUbGqkMydTHcxHV\nNLfeZrHeZvHbO5+V11qAc4EmnLmKAFDVr/tq5JGmpnB22/RCxn1gbJLf73Ymv7vm5PBfT1TT3Hqb\nxXqbxW9vr+MUXo3TlvBR4L+Bt7p/b/TVJg+iGtXhqPsvn+0hlVbOXl4zvUpYmIlqmltvs1hvs/jt\n7bX66GPAG1V1E846CJuAN+OspBYIExMTQZ16wUxMTJCeUn6+06k6evUp4e2Gmk1U09x6m8V6m8Vv\n73zGKcycJvtW4PW+2uRBVPsUg+O+rS1J1/AES2vLOXt5NOZbiWqaW2+zWG+zBDVOodNtUwDYJyIX\n4HRLDaxlNKp9isFx/5lbSrjm5CZKQtwNNZuoprn1Nov1Novf3l6DwleAi93nnwF+DzyBM5NqIFRV\nVQV16gXTM1nGE0eGqCgt4aUbojMJV1TT3HqbxXqbxW9vr+MU/iPr+TdE5G6gSlV3+WqTB7FYuLtv\nzsev9zmrfF11QgNVIe+Gmk1U09x6m8V6m8Vvb8/jFEQkJiIXich1OAPYnvPVJE8GBgaCPH3BDI5P\ncl/bEACvikA31GyimubW2yzW2yx+e3sqKYjI6cBPgQrgILAcGBORv1DVJ3w18khzczR67Mzkrmd7\nSE3BpqXVrKqP1rD6qKa59TaL9TaL395eSwpfB74ALFPVc4FlwOfd9wOht7c3qFMXTHpK+XlmNtSI\ndEPNJoppDtbbNNbbLH57ew0KG4DPqqoCuH8/B5zgq00euCqR4uEDA7QPpmhKlHDeitzrAoeNKKY5\nWG/TWG+z+O3tNSjcCVwz471XAr/w1SYPolbUU1W+9dgRAK45qcnoAvB+EbU0z2C9zWK9zRJU9VEM\n+J6IPCgi3xeRB4HvAzER+Ubm4atZDjo6OkyebsFs25/k+e5RGhKlbF4UzZGTUUvzDNbbLNbbLH57\ne50Q7yn3kWEncJevJnlSXV0d5OnzYkqVbzzqlBJee0YLjXXR7PoWpTTPxnqbxXqbxW9vr+MUPuLr\nWf/EuH9fP3t6x2iqLOPPNzYxmOwLWslisVhmJZ9xCnEROU1ErhCRKzOPYsrNx9DQUFCnzov0lPLN\nR51h6H91Zgvx0pLIuM/EepvFepvFejt4HadwMfBDoByoBQaAGpwV2Nb6auSRlpaW3DuFgHv29NHW\nP8bi6jJeeqIzpUVU3Gdivc1ivc1ivR28lhQ+A3xSVRuAQffvvxHg3EddXV1Bndoz6SnlW485pYTX\nndlKPOYkdxTcZ8N6m8V6m8V6O+QzTuFzM977BPAOX23yIMwL3Gf47Qu9HEyOs6Qmzp9lTXwXBffZ\nsN5msd5msd4OXoNCEqfaCOCIiJwM1AOBNdc3NIR7kfvJKeXbmVLCplZKs8YlhN19Lqy3Way3Way3\ng9eg8GPgFe7zr+FMnf0oTjtDIIS9qPfr53o4MphieV05W9Yf+08Lu/tcWG+zWG+zWG8Hr11S3571\n/FMi8hBOQ3NgYxVqa8O7WlkqPcW3H3dKCTdubj1u9HKY3efDepvFepvFejvMW1IQkYSInDrzfVW9\nH6fnUdxXmzxIp9NBnTondz3bQ+fQBKsWVXDpmvrjtofZfT6st1mst1mst0Ou6qP3Alvn2PZG4D2+\n2uTB8PBwUKeel9TkFN993Bl2fuNZx5cSILzuubDeZrHeZrHeDrmCwmuB/5pj26eBv/LVJg/Cusj2\nL57ppntkgrUNCS5evWjWfcLqngvrbRbrbRbr7ZArKCxT1UOzbXDfX+arTR6EcZHtsckpvveEU0p4\n/VmtlMzRVSyM7l6w3max3max3g65gsKwiKyYbYOIrARGfLXJg7KysqBOPSe37+yib3SSDU2VXLBy\n7vUSwujuBettFuttFuvtkCso3Al8fI5t/4bH9RREpEJEHhaRJ0TkaRH5iPv+GhF5SESed6fk9txw\nXVcXrkVqRifS/ODJTsApJcw3oCRs7l6x3max3max3g65gsIHgIvdH/MPicib3b+PA5e4270wDlyp\nqmcAZwIvE5Hzgf8APqOqJwB9zN2ofRzd3d1edzXCT5/uIjk2yUmLKzln+fxdxMLm7hXrbRbrbRbr\n7TBvUFDVdmAzcDvwMuDd7t/bgbPc7TlRh8xUfmXuQ4Ergdvc928FXu1VPExRvWd4Yrot4Q1nLc05\n7DxM7vlgvc1ivc1ivR1yDl5T1T6cEoHXUsGsiEgMZxT0euALwG6gX1Un3V0OkkfDdSqVWoiOr3zl\n4UOMTkxx4ao6Ni2rybl/mNzzwXqbxXqbxXo7eF15bcGoaho4U0QWAT8BTpptt5lvdHZ2snXrVkpL\nS0mn01x77bXcdNNNtLe3U1JSQiwWY2BggObmZnp7e1FVmpub6ejomF6RaGhoiJaWFrq6uhARGhoa\n6Orqora2lnQ6zfDwMK2trbS3t1NWVkZdXR3d3d3U1dWRSqUYHR2d3h6Px6mpqaGnp4f6+noeP9jP\n73b3EY8JV69wlsZLJBL09fXR2NjI4OAgqVRq+vOZbaOjozQ1NZFMJpmYmJjeXlVVFfg1jY6OMjY2\nNr29oqKCRCJBe3s7lZWVs15TPB4nmUyG8prGx8dR1Vmvab7/U9DX1N3dXdD/Kehram9vp66uzte8\nZ+KaJicnGR8fN/Z98uuaOjo6GB8fP+6aCkVUj/sdLjoi8iGcnkv/BLSq6qSIXAB8WFVfmr3vtm3b\ndOPGjccdY3x8nPLyciO+c5GeUm766bPs6R3lhk2tvP6sJZ4+Fwb3QrDeZrHeZnmxeW/fvv3RLVu2\nnJ3v8TyvvLYQRKTZLSEgIgngKmAXzsR6r3F3+2vgZ16PGYY+xb94pps9vaMsri7jf5zhfaGLMLgX\ngvU2i/U2i/V28BQUROS6Od5/zWzvz8IS4Pci8iTwR+DXqnoHTknhnSLyAtCIMwOrJ+LxwKZdAiA5\nNsmtjx4B4G/PW05Fqff4GrR7oVhvs1hvs1hvB69tCl9j9mmyv8zR3kNzoqpPAptmeX8PcK5Hh2Oo\nqcndoFtMbnnkMIPjaTYtrebi1fm1/gftXijW2yzW2yzW2yHXLKlrRWQtUOIONFub9bgKGPPVJg96\nenqCOjXPd49w5zM9xATecsHyvFc+CtJ9IVhvs1hvs1hvh1wlhRdwegQJThfSbNqBD/tqkwf19cdP\nSW0CVeULDx5EgVed0syq+kTexwjKfaFYb7NYb7NYb4dcg9dKVDUG3Oc+z34sVdUv+2qTB6Ojo4Gc\n96pcwLoAABI/SURBVLcv9LGzc5j6RCk3bvbW22gmQbkvFOttFuttFuvt4Kl1VFUv8/WsPjA2Zr7m\najiV5qsPO5PGbj1nKVXxWEHHCcLdD6y3Way3Way3g6eGZhEpBd4CXAY04VQnAaCql/pq5JEg5j7/\n9mPt9I468xtddULhi2XbedvNYr3NYr3NYno9hQyfAf4WuBc4C/gRsBj4na82eWC6T/H+/jF+8lQn\nAtx0wYo510rwgu0PbRbrbRbrbZZAxikA1wIvV9XPAZPu31cDV/hqkwcVFRXGzqWqfHHbQdIKLzux\nkQ3NlQs6nkl3P7HeZrHeZrHeDl6DQiVwwH0+KiKVqvoMs4w9MEUikX+vn0J5sC3Jo4cGqY7HeOPZ\nhTUuZ2PS3U+st1mst1mst4PXoLALOMd9/gjwYRH5ADDrUp0m6OvrM3Ke0Yk0X/qDc5mvP2sJixIL\nX+XIlLvfWG+zWG+zWG8HryOa3wak3efvBL4I1ABv9tUmDxobG42c5+t/PEzHUIr1jQleeVKTL8c0\n5e431tss1tss1tvBa5fUP6rqdvf586p6laqep6r3+WqTB4ODg0U/x472IX62s5uYwLsuXUmspPDG\n5WxMuBcD620W620W6+3geRY3EfkzEfmaiNzuvj5bRK701SYPir0gxvjkFJ++dz8Arz2jhXWNC2tc\nzsYu5mEW620W620Wv729zpL6Vpwqo+eBzLiEUeBjvtrkQbH7FH9z+xEODYyzalEF12/y91y2P7RZ\nrLdZrLdZghqn8HbgKlX9BDDlvvcMcKKvNnlQzD7Fz3YNc9uOTkoE3nnpSuIxf5edsP2hzWK9zWK9\nzRLUOIUajnZJzSzVVgYEVt4qVvexifQUn7p3P1MK1566mJMWV/l+Dtv1zSzW2yzW2yxBdUm9F3jf\njPf+EWfltEAo1oIY3328g319YyytLfe8vGa+2MU8zGK9zWK9zeK3t9eg8FbgL0RkH1AjIs8C1+F0\nTw2EZDLp+zH39Izy3cedotg7L1mR12pq+VAMdxNYb7NYb7NYbwdP4xRU9YiInIOzStpKnKqkh1V1\nav5PFo+mJn/GDGRITymfuq+NtMLVJzVx+pLircLkt7sprLdZrLdZrLeD51thdXhIVX+oqn8IMiCA\n/9HxRzs6eb57lMXVZbzpnKW+Hnsm9o7ELNbbLNbbLEZLCiJyH0cblmclqKmzJyYmfDvWgf4xbt1+\nBIC3X7ySygLXSfCKn+4msd5msd5msd4OuaqPvpr1XIAv4KyrEDh+9c2dUuXT9+1nIq285IQGzl5e\n68tx58P2hzaL9TaL9TaL0XEKqnpr1uMWYHzGe7f6apMHfvXN/fnObp7uGKYhUcrfnr/Ml2PmwvaH\nNov1Nov1NktQ4xRCR1XVwscPHB4Y5+t/PAzAWy9aQU251/kBF4Yf7kFgvc1ivc1ivR0iGxRisYXV\n+6enlP+6t42xySkuW7uIi1Yv8sksNwt1DwrrbRbrbRbr7TBvUBCRK7MfQKmIXDHjvUAYGBhY0Od/\n8nQXT7UPU58o5a0XrvDJyhsLdQ8K620W620W6+2Qq77kazNe9wBfz3qtwFpfjTzS3Nxc8Gf3941x\n8yNOtdHbL15JbYWZaqMMC3EPEuttFuttFuvtMO+voaqu8fVsPtLb20tlZf7TWaenlE/e08ZEWnnp\nhgYuWFVXBLv5KdQ9aKy3Way3Way3Q2TbFFTnHT4xJ997ooPnukdorirj785f7rOVNwp1DxrrbRbr\nbRbr7RDZoFBIkWl3zwjfcgepvevSlVQVeZDaXNhiqlmst1mst1n89o5sUOjo6Mhr/1R6ik/e7cxt\ndM3JTWxeVvxBanORr3tYsN5msd5msd4OkQ0K1dXVee3/re3t7O0bY2ltnK1FntsoF/m6hwXrbRbr\nbRbr7RDZoJAPuzqH+cGTHQjwnktXkSiLZn9ki8ViKTaRDQpDQ0Oe9hubnOI/72ljSuE1py3mlNbg\n7wa8uocN620W620W6+0Q2aDQ0tLiab+b/3iYg8lxVi2q4K+LtJJavnh1DxvW2yzW2yzW2yGyQaGr\nqyvnPo8fHuQnT3dRIvCey1cRL9JKavnixT2MWG+zWG+zWG+HcPxKFoCIzLt9JJXmU/fuB+D6M1vZ\n0BSeQSm53MOK9TaL9TaL9XaIbFBoaGiYd/uPn+qkYyjF+sYE128K1zzpudzDivU2i/U2i/V2MBIU\nRGSFiPxeRHaJyNMi8jb3/Q+LyCERedx9vMLrMXMVmV57Rguv29TKey5bRWlJuO4AbDHVLNbbLNbb\nLH57m5oJbhJ4l6puF5Ea4FER+bW77TOq+l/5HrC2dv7BZ2WxktA0LM8kl3tYsd5msd5msd4ORoKC\nqh4BjrjPB0VkF7CgZc7S6bQfaoEQVXfrbRbrbRbr7WC8TUFEVgObgIfct/5BRJ4Uka+LSL3X4wwP\nDxfBzgxRdbfeZrHeZrHeDkYXEhCRauBHwNtVdUBEvgj8G866DP8GfAr4m+zPdHZ2snXrVkpLS0mn\n01x77bXcdNNNpNNpuru7icViDAwM0NzcTG9vL6pKc3MzHR0d08O/h4aGaGlpoaurCxGhoaGBrq4u\namtrSafTDA8P09raSnt7O2VlZdTV1dHd3U1dXR2pVIrR0dHp7fF4nJqaGnp6eqivr2d0dJSxsbHp\n7RUVFSQSCfr6+mhsbGRwcJBUKjW9PZFIUFlZSVtbG01NTSSTSSYmJqa3V1VVhfaa0uk0Q0NDs15T\nPB4nmUyG8pqqqqro6OjI+/8U9DWVlZXR1tbma94zcU3pdJrx8XFj3ye/rqm+vp4DBw6E4jcin2sC\nOHDgwHHXVPDvtKnpYkWkDLgDuEtVPz3L9tXAHap6avb727Zt040bNx53vLa2NlatWlUc2SITVXfr\nbRbrbZYXm/f27dsf3bJly9n5Hs9U7yPBWcVtV3ZAEJHsluC/AJ7yesyf/vSn/gkaJqru1tss1tss\n1tvBVJvCRcCNwJUzup9+UkR2iMiTwBXAO7we8Mc//nGRVItPVN2tt1mst1mst4Op3kf3A7MNFriz\n0GNOTk4WLhQwUXW33max3max3g7G2hQK5be//W0X0Dbz/d7e3qaGhobuAJQWTFTdrbdZrLdZXoTe\nq7Zs2ZL3smyhDwoWi8ViMUdk5z6yWCwWi//YoGCxWCyWaUIbFAqZRE9E3i8iL/z/7Z1rsFVlGcd/\nf2DERJBbmhdQKNSYLCUjDKSZZLhYYmUWjiVDNsmMThfHJmYoS2ecQRzHIjUcvgQNBuMoRQ0kJJN+\nMLqAiJQIByIh4HANQTFInj68z9qss9nnss+Zs/fi8Pxm1ux1nvWutZ71nHe/73ov+/9KekPShDr6\nvs1nVa2T9De39Ze0UtJm/+zndkma436vlzSiTj5fkYvpOklvSfpOEePtv37fI2lDzlZ1fCVN9fSb\nJU2tk9+PSNrovi2R1Nftl0k6mov73Nw5H/f81eDP1umKj834XnXekDTRbQ2SZtTJ78U5n7dJWuf2\nQsS8hbKvNnnczAq5ARcCI3y/N7AJGA78GLivQvrhwKtAT2AIsAXoXifftwEDy2yzgRm+PwN42Pdv\nBJaTZmeNAv5cgNh3B3YDlxYx3sBYYASwob3xBfoDW/2zn+/3q4Pf44Eevv9wzu/L8unKrvMX4Dp/\npuXApDrFvKq84dsWYChwlqcZXmu/y44/CtxfpJi3UPbVJI8XtqVgZrvMbK3vHwZaE9G7GVhkZv81\ns38CDcDIzve0zdwMzPf9+cDnc/YFllgN9FXTH/XVgxuALWZ2yqyvHHWLt5m9BByo4E818Z0ArDSz\nA2Z2EFgJTKy132a2wsyyOYWrgUtauob73sfM/mTpm7+Ak8/aaTQT8+ZoLm+MBBrMbKuZHQMWedpO\noyW//W3/y8CvWrpGrWPeQtlXkzxe2Eohj9omoncxsD132g46qMTaAQxYIWmNpG+67QJLarH45/lu\nL5LfGVNo+kUperyh+vgWzX9Iul/Lc38PkfSKpBclXe+2i0m+ZtTb72ryRtFifj3QaGabc7ZCxbys\n7KtJHi98paAyET3g58AHgatJctyPZkkrnF6v+bajzWwEMAm4W9LYFtIWyW8knQVMBp5x0+kQ75Zo\nzs9C+S9pJmndkYVu2gUMNrNrgHuBpyX1oVh+V5s3iuQ7wG00ffkpVMwrlH3NJq1ga3e8C10pKIno\nPQssNLPnAMys0czeM7MTwDxOdlnsAAblTr8E2FlLfzPMbKd/7gGWkHxszLqF/HOPJy+M384kYK2Z\nNcLpEW+n2vgWxn8fAPwccLt3T+BdL/t9fw2pL/5ykt/5LqZ65vNq80aRYt4D+CKwOLMVKeaVyj5q\nlMcLWyl4f181InpLgSmSekoaAgwjDQ7VFEm9lFaXQ1Iv0kDiBvcvG/2fCvzG95cCd/gMglHAoayJ\nWCeavD0VPd45qo3v88B4Sf2822O822qKpInA94HJZvZOzv5+Sd19fygpvlvd98OSRvl35A5OPmtN\naUfe+CswTNIQb5FO8bT1YByw0cxK3UJFiXlzZR+1yuOdNYLe0Q0YQ2rqrAfW+XYj8EvgNbcvBS7M\nnTOTVLu/QQ1mZDTj91DSrIpXgb8DM90+AHgB2Oyf/d0u4An3+zXg2jrG/BxgP3Bezla4eJMqrV3A\ncdLb0J3tiS+pD7/Bt2l18ruB1O+b5fG5nvYWzz+vAmuBm3LXuZZUAG8BHseVCerge9V5w7/Dm/zY\nzHr47fZfANPL0hYi5jRf9tUkj4fMRRAEQVCisN1HQRAEQe2JSiEIgiAoEZVCEARBUCIqhSAIgqBE\nVApBEARBiagUgqALIOkcJbXVgW1IK5dyGFYL34LTi6gUgrog6UhuO6EkWZz9fXu9/esIknZLGlPj\n294N/N7M9rkPiyT9IOfT1UoS0vdYmof+GEnlNAiaEJVCUBfM7NxsA94k/VAosy1s7fx64fIIRbzH\nXaQfk1W63ieAP5B+LPa4m58DPitpQPu8DLoqUSkEhURSd0k/lLRV0j5JC3VyAZorJf1P0p1Ki7zs\nl/R1SddJ2iDpP5Ly0ijTJa2S9JTS4kH/yIsUKi1essDf8LdL+pGkbmXnPiHpIDDD7/9HSQck7ZU0\nPydt8gxJvXKFt3q+pbSwTEPZ85VaE5JmSXpaafGXwySJiGafv0KsLvd7rq1wbDRJ2uC7ZjYvs5vZ\nEdKvX8e15/8TdF2iUgiKyvdIWi1jSEJex0ldHhndgY+SZEWmAT8D7gM+7fZpkj6ZSz+WJF8wAJgF\n/FpJAROSMukhv9ZIkk7918rOXQcM5KQS6IPAB4CrgCtIsg6Y2a0kobLx3uqZ08bnvYWkkX8eSQit\ntefPcxWw2U6VJxgN/I4k51CpFfE68LE2+hecIUSlEBSVu0irTO00s3eBB4CvuFhYxoOWlC0zUbUF\nZrbfzN4EXibp0GdsN7Mnzey4mS0g6eBMkHQpqdC/18zesSQkNock1pax1czmWVIEPWpmG81slZkd\nM7PdwE9IlVFHeNHMlpnZCTM72sbnz+gLHK5gHw3sJS2uUonDfm4QlOj0/tEgqBYv+AYByyTl3367\nkd70Ad4zlzl2jgKNZX+fm/s7v0gKwL+Ai0hLjp4N7M2Vt91IAmIZ+YVKkHQR8FPgU6TlEruRRNc6\nQukebXj+fWXnHnQ/ynmMtNbB85LG2ama/L0rXCs4w4mWQlA4vBvk38BnzKxvbjs7m13TDsqXuRxM\n0pbfDhwhrV2b3aePpUWSSi6VnfsI8DbwETPrA3yDpgualKd/m6RAC5S08vuXpSmd047nXw98qEIr\n4jhwK0n5dpmSlHueD5O61IKgRFQKQVGZC8ySNAhA0vmSburA9Qb5oHEPSV8lVQorLK0hvBqYLam3\npG6ShrUypbQ3qSJ5S9Jg0ipdeRpJ4xMZrwP9Jd3gFcIDtP7da/Pzm1mD3/OaCseOkdY6eBf4raT3\n+fV6kcYiXmjFj+AMIyqFoKjMJk2jXOUzcl4GRrR8Sou8RCo0D5AGhb9gZof82G2kvvWNfnwxcEEL\n17qfNAB8iLSy3rNlxx8CHvJZUPf42/23SQPaO4DdtN5tU+3zP0XTwfESPiYxmTQ4v0RST9KqY8s6\n0PIKuiixnkLQ5ZE0HfiSmXXZ6ZfeAngFGNNaQe/dTGuAKWa2qRb+BacPMdAcBF0An7F0ZRvTGh1r\ndQVdmOg+CoIgCEpE91EQBEFQIloKQRAEQYmoFIIgCIISUSkEQRAEJaJSCIIgCEpEpRAEQRCUiEoh\nCIIgKPF/pRJp45VtpzYAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.gca().set_title('Al-Fe: Heat capacity vs T [X(AL)=0.25]')\n", "plt.gca().set_xlabel('Temperature (K)')\n", "plt.gca().set_ylabel('Heat Capacity (J/mol-atom-K)')\n", "# np.squeeze is used to remove all dimensions of size 1\n", "# For a 1-D/\"step\" calculation, this aligns the temperature and heat capacity arrays\n", "# In 2-D/\"map\" calculations, we'd have to explicitly select the composition of interest\n", "plt.plot(eq['T'].values, np.squeeze(eq['heat_capacity'].values))\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To understand more about what's happening around 700 K, we plot the degree of ordering versus composition. Note that this plot excludes all other phases except `B2_BCC`. We observe the presence of disordered bcc (A2) until around 13% Al or Fe, when the phase begins to order." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEXCAYAAABcRGizAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4HNW9sN+fVlpp1dZqlo17N6aE3kOJwWBqcCqXFHKd\nchOThEu+EEiBBEKAJCSQQEivkJBySXDoPSZgjAuhGdwtW7bVZdWVdrU63x8zK6+XlbSSpq3OvM+j\nR7szszPnnd/unDlzmiil8PHx8fHxGYoctxPg4+Pj4+N9/MzCx8fHx2dY/MzCx8fHx2dY/MzCx8fH\nx2dY/MzCx8fHx2dY/MzCx8fHx2dYsjKzEJHnROSXbqfD52BEZJqIPC0iXSKStk22iFwhIn1Op81K\nRGSmiCgROc2CfWX9+cgUEZkqIs0iMtXi/V4mImtFRIbZ7kwzbkpE1lmZhmxFRNYlnZMhv8+ezCxE\nZIqI9IrIXhHJHeU+rkg6Ccl/P7Uhvcn7j4jIThH5m4gstfpYHuerwETgKGCyy2nJFv4MTHE7EaNB\nDJ4WkVUikpOybqV5IcpLWnwLcK9SqjbNvn4qInER+VyadYmL/GCZzP1AIXB5hkk/BjjX3Pdzg1wn\nkv9mZrjf5DQPtt+ulO3mi8jjItItIk3meShK2aZERH5hZrRdIvKoiMwZ5vjvOGciUigiD4nIHhE5\n0lx8LnBCJk6ezCyA5cBDQCtw0Rj2E8e4aCX/XTPm1KXnSnP/C4CPAnuBf4rIHTYd7yBEJOjEcYZh\nHvCyUmqLUqrO7cSMlZQLndX7FhHJU0pFlFL1dh3HTpTRo/fjwOHAVxLLReQzwNnAR5RSMXPZZOBD\nwM9T92NeHC8DvgN8ZpTp+BVwVYYfaVRKNZuvl3Hw9QEO/JYTf7tHmqY0+z0EqMXI2AAQkWLgaaAP\nOAX4IHCe6ZLMH4DFwPuB0wABnhSRUKaJEZEK4BlgDnCKUuo1APM8NGa0E6WUp/4wMrAajEziK8Cj\nabZ5DvjlMPu5AugbZptjgSeATvOEPQDMGEWaFcYPI3X558x1ZyYtqwZ+ax6vA3gBOD3lc2cDrwM9\nwGvAGcnHAGaa7y8HHgG6gNvMdXOB/wP2Y2S2TwBHjNUbKAF+Zm7fA6wDlqScg+S/3w4VF9PxTXNf\na4Cj0qTxMaDdTOfLwIkp5+h5oBtoA/4FzBki/ZMxfqj7gYj5HTouaf2ZZrovAP5tpuuz5roPAlvN\nZS8CF5vbnpb0+SHPe5L3WcArQBRYSsr3NGm7U4ENpt964PiRfEfS+M8z15+Ssvwkc/lc8/0ngbfM\n/TYDq4Cpw3w3PmT6HAPMx/g+rkjZ5ipg8yCf/6TpmA+0JMc5JTaDpgOYZW6zcIhtMtnPoOdwLH/A\nOea+j09a9mnzuxhOWnaBud0s8/18833yb60M6AWuyMQV43qxCeNaU55m25mp3+e0+7T6pFhwUi8A\n6oBcjNw4CsxM2eY5xphZAIswLkLfAhYCRwB/BTYDBSkncdCgDPUFAwIYF467zPchYCPGReU4jAvM\n18zAH2puMwXjAvFLM42LzR9SusyiFviI+UOZhZER1QH3mD4LgB9j/OirMvUexPGvwE6MYuuhwJ1m\nbBaa6ydhXEjvM1+HB9nPFUA/xoXwDOBIjFLkHiBkbnMYxgXnT+Z5modx53myuf5sjFLjHcC7TI/l\nDHKhwLgTWwP8B+PO7AiMxz+tQGXKj+ttjBuVWRg/tKPN9N5ins9lwA6SflwZnveE91qMDGM2UEX6\nzKIf4yL9btPtUfOYuZl+RwY5D6uBe1KW/QR4wXx9LEZG9TFghunySYbJLMzP3ovx3V5H+hu8v2M8\ngkr32bXA583X9wC/TlmfiM1wmVY9ZgY/yPph9zPYOcS4Mesc5u+nQ+z3/4ANKct+BzyTsiwP47ud\n+K1/AuN3FkjZ7nmGuAZy8M3PXuBBzN9Xmm1nkqWZxYPA7UnvHwO+nbLNc0OdKHObK8wTkBrQ2eb6\n3wL3p3wm3/wRvtd8PwXj4nHpMMca6o7uJeCRpDTVYv7ok7Z5BrjDfH0zxkU5kLT+PNJnFt9I2c83\ngZdSlgmwDbgqU+80DnPN452fsnwDST/sEcZlcdKyMjM2y833fwBeBXIG2cfzwEMj+E4tNo+5KMV5\nH3C9+T7x4/poymfvBV5MWXYlB2cWmZz3hPe705yP1MxCAcckLTvRXLYg0+/IIOfhfzDu3IPm+yBG\nhvYZ8/2lGKW00lH8bidgZPAdwKQ06/+DWfpNWX40xs1Shfn+JHM/pUnbJGIzXGaxAfjeEOuH3c9g\n5xCjZD13mL+Jg+xzEhBLnOek5U8Af0yzfSPwZfP1V4G9abb5K/BwBq695nECQ2w7kwwyi1FVHtuF\niEzByAmPTlr8O+B2EfmmUuodrUZE5N0Yd14JvqOU+o75Oo5R2ZpM4vnj8cBcEelMWV+AcSeLUmoP\nxp3dWBCMQCSOOQnYn9JwIx+jOArGneJapVQ8af3qQfb9csr744Fj0ziFMJ3IwDsNi8z/q1KWrwJO\nHuQzwzHgpJRqFZG3MEoUYD6CUkr1D/LZY4FrR3Csw4BmpdTGpGP2isiapGMmSD2nizCeKyfz75T3\nmZz3BGszSK/CyCwT7DX/V2M8ThjJdySZP2OUxi7EePR4IVBkLgd4EtgO7BCRJzFuYh5QSjVlsO+P\nYHzXCzFKgw+lrA9hPNpK5TMYGX8zgFLqJRFJlJh/ksFxk+kxj2M5SqkOjIxwNCzHSNsfR3JIi7Z5\nAHif+feXERz/HXgqs8A4qQHglZSLaQDj0cDf03xmHQdnCC3JK5VSWwc5Vg7GHeytadY1p1k2YsyW\nXAs4cAHKwXgefGmazbuTXqd+CQb7UnSlvM/BuLBdmWbbtqRtrPJOzgjHSuq+htvvSI+bbvt06U89\np5k4ZnLeAeJKqXQXzFT6UzKCxPFz0iwb7P07MDPlf2I8ZnrA/L9SKbXfXN8pIsdh1JecjVES+a6I\nLFZKrR9svyKyEPgu8EWMjOyXInJ4SibTCJSnfK4I+C+gKKX5cA5GJjLSzKKcTCtrR4iIXI5RZzcU\n9yql/iflcznAp4D7zAwnmX3AtJTt8zA86pK2qRSRQMp3ohrj0fFwfBnjBuCPIhJSSv0ug8+kxTOZ\nhXlSl2O0iPhTyuqvYlQGvSOzUEpFMCofR8o6jOfl25RZFrOBTwNhjCJj4pgfA9qVUg2DfGYj8F8p\nX45M797XYTzG2GOel8G2Gan3m+b/0zEq1BO8G6OydjSchHHniohMwCjBJZo1rwfOFpGcQUoX6zHq\nTn6c4bHexPjBLUqULkQkH6PJ4HAXpDcxLp7JpL7P5LxbyVi+I78H/k9E5gPnk3LjYu5vFbBKRG5I\nHAvjnL8D8+J2H/CUUuoXIlKAUZn7M4y72QQbMFpNJXMZRh3JURyc2ZUDz4nIiUqpNZlImS2D5mDE\nwg5WYtR7DUV7mmXnYdT/pMtoXgDuFJFSpVTis+dgZJYvJG2TB7wHo+SX+L2cCPw6k4Qrpb5mlnp/\nIyKFSql7Mvlcuh154g/j8VM/MD3NuiUYj5Rmmu+fY+wV3IdiFCvvw7hozMKoeLyTA/UaI6mzWIHx\niGkaRiXqjzB+CHckbVcAvIHxKGIJxrPCE4HrOLiepBujieGhZprWmce4fKhnjBh3G3uBxzEu5DPN\ntNyM2QomE+9BHP/CgQruhaRUcI8wLv2m0+kYlagrMe6gCs1tjjDPQaKCew7wAQ5UcCe+D3dgZHwL\nzP0uGOSYyRXcp2JctAar4J6a8tljzfTejNEy5VKMO7XkOotMzvsVpPk+pi5Ptx1GRbvCbFWXyXdk\niPOfi1ER/Ir5Pzdp3SXA/5rO003XgbqkQfZ3i7mfiUnLjjK/Gx9LWnaeua9Q0rK1wK8G2e+LmPVh\nSbFZYu47+S/xnTnH3H/xEGlNG+M0v2XLWkNh1MG+PMi6YozH4g9hNNQ4C6MhQ2qd4j8wbojPMJ0f\nMb+DaSusB3PFKPn1A19K2XYmaa4n79inVSfFopO6eogveCNmRTfWNZ09wjxuK0adwVbzB1iechKv\nGGY/KumvB6Pp79+ApWm2rcBo8bHH/EHtwSgxHZ20zdkYmUovRrPIROXl+4YLLsZdzH3m+eo103Iv\nZlO8TLwHcSzlQNPZXlKazo40Lhg//LfMfb1MUoWuud0JwFMcqDRdA5yQtP5cjOf0EYxHPc8ydGaX\n2nT2X6RvOvuOCwnwYYzK6l4zHZeknv/hzvtg38fU5em2IyWzyOQ7MkwMfmhu+8OU5adjlPYSzaO3\nYNQNySD7Oc2M5UVp1l1nnuvp5vsc8xz+l/k+UZo4d5B9f9GMfTgpNun+TjK3/x3ws2G8B41xym/Z\nkswCI1PvY+jMdgFGBXQ3xmPgnwFFKduUYLR8azG3ewyzqfNIXTFat8UxG3aYy2amfp/T/Ym5sY+H\nEZHTMS5uRyqlXnc7PT7eIxu+IyLyUeBqjBsDyy48IjINI8M8Wim1c4jtzsS4qZim0vQi1xWzh/oO\njJZ6qY03BvBMnYXPAUTksxitYfZiVBj+EFjj1YuAj/Nk6XfkXoxHtYdglKitYibwqaEyihQ2ich6\npdTpFqYhKxGRVRiPHYff1i9ZeA8RuRWjUjHR2etJ4CvqwBAFPprjf0dGjlkJnhiHq8cvXRiDO2LU\npQLUqiFa6/mZhY+Pj4/PsHh1IEEfHx8fHw/hZxY+Pj4+PsOSdRXczz33nMrPz3c7GT4+Pj5ZQ3d3\nd9PixYurxrKPrMss8vPzWbhwdMM11dTUMGPGDItT5G10dAY9vXV0Bj29R+q8YcOGmrEeU6vHUHl5\nts1l41l0dAY9vXV0Bj293XB2JLMQkV+LSIOIvDHIehGRH4nIVhF5TUSOsSMd4XDYjt16Gh2dQU9v\nHZ1BT283nJ0qWfwWYziCwViKMZTzPIzB90Y30NUwNDVlMtLy+EJHZ9DTW0dn0NPbDWdHMgul1CpS\nhg5P4RLg98rgJWCCOWevpfh3IPqgo7eOzqCn93guWQzHFA6eFL2WAz0tLSMajVq9S8+jozPo6a2j\nM+jp7YazV1pDSZplabuWNzQ0sHz5cnJzc4nH4yxbtowVK1ZQV1dHUVERgUCA9vZ2qqqqaGlpQSlF\nVVUV9fX1RCIRAoEAnZ2dVFdX09jYiIhQXl5OY2MjpaWlxONxurq6mDRpEnV1deTl5REOh2lqaiIc\nDhONRolEIgPrg8EgJSUlNDc3U1ZWRiQSoaenZ2B9QUEBoVCI1tZWKioq6OjoIBqNDqwPhUIEg0Ha\n2tqorKykra2NWCw2sH44p+LiYoBBnSKRCDk5OePKKZM4NTU1jTun4eKU6jwenDKJU2NjI+FweFw5\nDRenxLFG4jTmi7RTw32YIxs+pJRKnQAFEfkZ8JxS6k/m+00YwzHvS9129erVarRNZ3t7e9Gtj4aO\nzuCOd3c0zq79PUybUEBRMODoscGPtU6M1HnDhg3rFy9efNxYjumVksVK4EoRuR9jMqC2dBnFWKmr\nq9OuPbaOzuCc9/5IjAfeaOSVvR1saeqmX0GOwLzKQo6aXMyywydSVuhMM0c/1vrghrMjmYWI/Alj\nMo5KczL2GzCmCkQp9VOMmZ/Ox5iEpxv4hB3pCAaDduzW0+joDM549/T189XHtrG12ZhJNUdgWjif\nve29bGrsZlNjN2tr2/nhRfMJ5dlf0vBjrQ9uODuSWSilLhtmvcKYltRWSkpK7D6E59DRGez3Vkrx\nw+d3sbU5wuSSICtOmcrh1cUUBgNEYnHerO/i7hdr2d7Sw/dX7eLr75mJSLqqOevwY60Pbjh7pTWU\nIzQ36zfUv47OYL/3X19r4NltrYTycvjWktmcMC1MoVlPEcoLcNzUUr61ZDaFeTk8v2M/f/pPva3p\nAT/WOuGGs1aZRVlZmdtJcBwdncFe75d3t/GrtXsBuOaMGcwsC6XdbvqEAq49ayYC/Hb9PlbXtNmW\nJvBjrRNuOGuVWUQiEbeT4Dg6OoN93jtaInznmZ0o4KPHTOLUmROG3P6k6WGuOM7oX3rLszvZ1txt\nS7rAj7VOuOGsVWbR0zPojIHjFh2dwR7v1kiM65/YTnesnzNmTeDyoydl9LkPv6uas+aU0dPXz/VP\nbKelO2Z52sCPtU644axVZjFpUmY/7vGEjs5gvXe0r59vPbmD+s4oC6oK+X9nzCAnwwprEeFL757O\noolFNHbFuOHJ7fT29VuaPvBjrRNuOGuVWdTV1bmdBMfR0Rms9VZKcfvzu9jY0EVVUR7fOmc2+bkj\n++kEc3O44ZxZVBcH2dTYzff+VUO/xR1i/VjrgxvOWmUWBQUFbifBcXR0Bmu9f7Nu30DLpxuXzKZ8\nlJ3sykJ53HSu0UJq1Y79/PLlvZalEfxY64QbzlplFqFQ+lYr4xkdncE674feauL+V+vJEfjG4lnM\nqSgc0/5mloW44ezZBAT+9noDD77ZaEk6wY+1TrjhrFVm0dra6nYSHEdHZ7DGe82uNu560RgM+Yun\nTee4qaVj3ifA0VNKuPr06QD8ZHUtL+zcb8l+/VjrgxvOWmUWFRUVbifBcXR0hrF7b6zv4ttP76Bf\nweVHT2LpAmvP4znzKvjYsZNRGE1qX6/rHPM+/VjrgxvOWmUWHR0dbifBcXR0hrF517RG+MYT2+iN\nK86dX87HjrGn5cnlR1Vz/sIKonHFDU9sZ0fL2NrO+7HWBzectcos/ElS9GG03g2dUa57bBsdvXFO\nml7KVadNt21MJxHh86dM49QZYTqjcb762DbqO0YfLz/W+uCGs1aZhd8eWx9G470/EuO6R7fS1BXj\nsOoivvqeWQRy7B38L5AjXHfWTI6cVExzd4xrH91K6yg77fmx1ge/n4XN+O2x9WGk3l3mnf3utl5m\nlhVw45LZFIywL8VoCeYagxHOqQixp72X6x7bSkdv34j348daH/x+FjbjN7HTh5F4R2Jxvv64MS/F\nIaX53LJ0LiX5zs4LVhQM8J3z5jA1nM/2lh6+/vg2IrH4iPbhx1of/KazNuNPkqIPmXpH+/q58akd\nvFnfRWVRHrctnUuFQzPbpVIWyuPWpXOpLg7yVkP3iIcF8WOtD244a5VZtLXZO0S0F9HRGTLzjsX7\nuenpHazf00G4IJfbls6lusTdC8/E4iC3Lp1LeSiX/+zt5FtPbSeaYYbhx1of3HDWKrOorKx0OwmO\no6MzDO/d16+4+ZmdrNndTml+gO+eP5dpE7wxbMSUcD63nT+XcEEu62o7uOnpHcTiw2cYfqz1wQ1n\nrTIL/w5EH4by7utX3PLsTl6saaMkP8Bt589lVrm3nnvPKAvx3fPnUpofYM3udm5+ZuewGYYfa33w\nSxY2E4vZM4+Al9HRGQb37utXfOeZnTy/Yz+FeTncct7cMY/3ZBezykPcunQuxcEAL9a08e1hMgw/\n1vrghrNWmYXfHlsf0nnH4v18++kd/HvnfoqCAW5dOpf5Vd7MKBLMrSzktvPnUpIfYHVNGzc+tYPo\nIBmGH2t98PtZ2IzfHlsfUr2jZmX2izVtFAcD3LZ0LgsnFrmUupExr7KQ25YaGcaa3e1868kdaVtJ\n+bHWB7+fhc0UFWXHxcFKdHSGg70T05m+tKt9oI7C6yWKVOZWFvJds9J7bW0733jinf0w/FjrgxvO\nWmUWgUDA7SQ4jo7OcMDb6Jm9lQ17OphQkMv3zp/HvMrsyigSzKko5HsXHGhWe92j2+hM6umte6x1\nwg1nrTKL9vZ2t5PgODo6g+Hd3tPHtY9u5Y26LioL8/j+hfOYXeGtVk8jZWZZiNsvnEdVUR4bG7q4\n5pGt7I8YlZ06x1o33HDWKrOoqqpyOwmOo6MzgBRN4OqHtrCpsZvq4iC3XzSP6R7pRzFWpoQL+MGF\n8zmkNJ+tzRGufmgLDZ1RbWOto7cbzlplFi0tLW4nwXF0dK5t6+Erj+1k1/4eZpQVcMdF85lcku92\nsiyluiTIDy6cx+zyAmrbernqn5t5Y1eD28lyBR2/4244a5VZKKXcToLj6Oa8ubGb//3nFpp7+jl0\nYiG3XzCPiiJ3xnqym/LCPL5/wTwOqy6iqSvGrWv281ZDl9vJchzdvuPgjrNWmYVfXB3fvLy7jf/3\n8Bbaevo4enIRty6dS2mBs6PHOk1xfi63LJ3LidNK6Ywprnl4Cy/t0qtHs07f8QT+Yyibqa+vdzsJ\njqOL8xObm7n+ie309PVz9twyPr0oSChPj1YyBbk53HDObE49JEhvXPHNJ7fz6NtNbifLMXT5jifj\nhrNWmUVxcbHbSXCc8e6slOIPG/bx/VW76FfwoXdV8+UzZjChtMTtpDlKbo6w4oRqLj96Ev0Kfvjv\n3fx23V4tHtGM9+94OtxwdiyzEJHzRGSTiGwVkWvTrJ8uIs+KyCsi8pqInO9U2nyyk1i8n++t2sUf\nNtSRI7Di5KksP/4Q2+bM9joiwsePncwXT5tGjsAf/1PPrc/VDDo8iI/PSHAksxCRAHA3sBRYBFwm\nIotSNvs68Bel1NHAh4GfWJ2Ozs5Oq3fpecarc0dvH199bBtPbWkhPzeHG86ezSWHHXiOO169hyLh\nfMHCSm5cMptQXg7Pbmvl2ke20t4z8mlaswWdY+0kTpUsTgC2KqW2K6WiwP3AJSnbKKDUfB0G9lqd\niOrqaqt36XnGo3NtWw9feHAzr+7rpLwwlx9cOI+TZ4QP2mY8eg9HsvMJ08L84MJ5VBbm8UZ9F19Y\nuYldrT0ups4+dI+1UziVWUwBdie9rzWXJfNN4CMiUgs8Anze6kQ0NjZavUvPM96cX9nTwRce3Mye\n9l5ml4f40cUL0g7fMd68MyHVeU5FIT+6ZD7zKkPsbY/yhZWbWFc7/no7+7F2BqfaFaZ7iJxa83YZ\n8Ful1O0icjLwBxE5XCl10APXhoYGli9fTm5uLvF4nGXLlrFixQrq6uooKioiEAjQ3t5OVVUVLS0t\nKKWoqqqivr6e3t5empub6ezspLq6msbGRkSE8vJyGhsbKS0tJR6P09XVxaRJk6irqyMvL49wOExT\nUxPhcJhoNEokEhlYHwwGKSkpobm5mbKyMiKRCD09PQPrCwoKCIVCtLa2UlFRQUdHB9FodGB9KBQi\nGAzS1tZGZWUlbW1txGKxgfXDOSUqugZzikajNDU1Zb0TwJrmHH65voF+BcdNDvHxhQWE8xQ1NTXv\ncOrq6qKmpsbTTlZ/9zo7Ow9yTjh98cgC7tsSYPXuTr722DY+eVw1x0+IUlhY6HmnTOK0f/9+Jk6c\nmDVxsuK7l+ycqdOYL+JOtJYwL/7fVEqda76/DkApdUvSNm8C5ymldpvvtwMnKaUO6pa6evVqtXDh\nwlGlo7u7m8LC7BxEbrSMB+dovJ+7Xqjlsc3NgNHi6RPHTSZniIrs8eA9UoZy7leK36/fxx//YzS5\nPGdeOV88dRrB3OxvEOnHeng2bNiwfvHixceN5ZhOfVPWAvNEZJaIBDEqsFembLMLWAwgIocCBYCl\nZS2/uJp9NHfHuObhrTy2uZlgQLjurBksP/6QITMKyH7v0TCUc44IVxx3CF9/z0zyc3N4cksLX3p4\nC01dUQdTaA9+rJ3BkcxCKdUHXAk8DryF0erpTRG5UUQuNjf7EvApEXkV+BNwhbK42FNaWjr8RuOM\nbHZ+o66TFX9/m40NXVQV5fHDi+Zz1pzyjD6bzd6jJRPn02eXccdF86guDrKpsZvP/X0Tr+3rcCB1\n9uHH2hkcGwtBKfUIRsV18rLrk15vBE61Mw3xeHz4jcYZ2eislOIfbzby8zV7iCt41+RivvqemZSF\nMh/jKRu9x0qmznMqCrnrvQv4zjM7eGVvJ9c8spVPnjCF9x1elZV9VPxYO0P2P7AcAV1d+g2ylm3O\n3dE4tz5Xwz0vGRnF+4+YyK1L544oo4Ds87aCkTiHC3L5znlz+dCRE+lX8PM1e7j5mZ10RbPvwuvH\n2hkyKlmISNpMJbWlktfxJ3b3NjtaItz09A5q23opyM3hS6dP54zZZaPaVzZ5W8VInQM5wvITprCg\nqojvr6ph1Y79bGuO8I3Fs7Jqkig/1s6QacmiD4il/olIr4jsEJHbRcTzA7T4E7t7lxd27ucLD26i\ntq2XGWUF3PXeBaPOKCB7vK1ktM6nzZrAXe9dwOzyAva09/KFlZt4dFNz1owr5cfaGTLNLD4PPAMs\nAQ4FzgWeBq4BPgucAtxhRwKtJC9vfM5rMBTZ4PxWQxffeXYnvXHF2fPK+dHF88c8q102eFvNWJyn\nhgu48+IFnDu/nGhc8cPnd3HrczVZ8VjKj7UzZFrBfTVwjFIqMVD+ZhFZB6xXSs0RkdeB9bak0ELC\n4fDwG40zvO7c0BnlW09uJxZXXLCwgi+cOs2SSlave9vBWJ3zc3P40ukzOHJyMT9+oZZnt7WyqbGb\nr75nJvPT9JL3Cn6snSHTkkUpkPptKcQYwwmgDvD8Q86mJn3G+E/gZedILM4NT26nJdLHUYcUs+IU\nazIK8La3XVjlfM68Cu5+7wJml4fY297LVSs385fX6un36GMpP9bOkGlm8XvgSRH5lDnU+Ccx+kz8\nzly/BNhkRwKtxL8D8Q77IzGuf2I725ojHFKaz9ffM4vcHOuabXrV206sdJ42oYAfXTyfSxZV0tev\n+OXLe7nu0a00d8UsO4ZV+LF2hkwfQ30Z2ILR8/oQYB/GkOO/MNc/CzxndeKsJhrN/t6qI8WLzm83\ndHHT0zto7IoxoSCXm5bMtnz6Uy96243VzsHcHFacMo1jp5Zy+6pdvLK3k08/8BZfPG0ap88afeMD\nq/Fj7QwZ/ULNJrI/Nf/Src+KsY8jkYjbSXAcLzkrpXj47WbuWV1LrF+xaGIRX188k8qioOXH8pK3\nU9jlfNL0MD9btpDvr6phXW0H3356J2fPbWPFKdMoCro/da0fa2fI+HZORJYARwEHNZFN7oXtdfz2\n2O7R09fPj/69i6e2tgJwyaIqPn3iIeQF7OkX6hVvJ7HTubwwj5vPncM/32riF2v28NTWVl7d18mX\nTp/OMVPcHW7Dj7UzZPRLFZG7gHuBY4FpSX9T7Uua9fjtsd3BmKxoE09tbSU/N4evnDmDFadMtS2j\nAG94O41ZI6CBAAAgAElEQVTdziLCxYuquPvShcyvLKSxK8a1j27jxy/sJhJzr4mtH2tnyLRkcRlw\nVGL48GwlGLT+cYfXcdt51Y5WfrBqF92xfqaG87n+7FnMLLO/4Zzb3m7glPP0CQXcefF87n+1nvte\nqeOfbzXxel0nd148n1Ce84+l/Fg7Q6a3ds3AfjsT4gQlJSVuJ8Fx3HKOxfu5Z3Ut3356J92xfk6f\nNYG7LlngSEYBfqztJpAjXH70JH58yXymlOazs7WHX7xs+UzIGeHH2hkyzSxuB+4TkZNFZHbyn52J\ns5rm5ma3k+A4bjg3dEb5fw9v4e9vNpKbI3z2pCl87T0zKXSwMtSPtTPMqSjk64tnkpsjPPRWE2t3\nOz9tqx9rZ8g0s7gHuBB4Adia9LfFpnTZQlmZd5r7OYXdzv1KHdRZa+3udj7397d5q6GbyqI8br9w\nHpcePtHxoa/9WDvHnIpCPn7sZABuf76G9p4+R4/vx9oZMm06Oy6GMo9EItpNlGKnc2t3jCsf3ERb\nTx9TSvOpKMpjfW0HCjh+ainXnDmDsMX9JzLFj7WzvP+IiazZ1cYb9V3c8e9dfO09swhY2MlyKPxY\nO8O4yAQypacnK7qDWIqdzr9et5fGrhjRuGJHaw/rajsQgSuOncxN5852LaMAP9ZOE8gRvnzGDEJ5\nOfx7ZxtfeWQrzd0HenvH4v309tkzo4Efa2cY9NcsIo8ppc4zXz8PpB0YRil1uk1psxy/PbZ1bKzv\n4vHNLeTlCHdePJ9+YE9bLzPLCphV7v4wYX6snWdyaT43nzuHbz+zg9fqOvnc39/mfYdPZGNDF6/s\n7SDa18+ywyfykWMmWdpqym1vN3DDeahbv98nvf6l3Qlxgrq6OmbMmOF2MhzFDud4v+KuF41W1O8/\nYiJzzRFJvTQyqR9rdzh8UjH3vHch33l2J6/u6+SXaw9uIfXX1xt4dlsrnz15Ku+eNcGSY3rB22nc\ncB40s1BK/RFARALAHOBmpVSvUwmzg4KCsc2RkI3Y4fzopma2NkeoKsrjw0dVW75/K/Bj7R5lhXnc\nunQu//dGA9uaIxw5uZjjp5bSGonx4xdq2dzUzU1P7+CmJbM5cfrYB8TzireTuOE87ENlpVRcRFYA\n37Q/OfYSCrn/eMRprHbe1tzNb9YZd4ufOWmKK52wMsGPtbsEcoQPHnnwjcTE4iB3Xjyf367fx59f\nref3G/ZxwrTSMbeU85K3U7jhnGkF9++A/7EzIU7Q2trqdhIcx0rnp7a0cNXKzXT0xjluagnvnmnN\nYwQ78GPtTRKd+cpCuWxpirC2duz9MrLB22rccM40szgBuFNEdorI8yKyKvFnZ+KspqKiwu0kOI4V\nzrF4Pz9+YTff/VcNvXHFufPLueHs2Y73nRgJfqy9S0FuDh84YiIA926oG/Nc39nibSVuOGfatvEX\nHJi7Imvp6OiguLh4+A3HEWN1bu6OcdNTO9jY0EVejrDilKksXVDh6YwC/Fh7nQsOreTPrzXwdmM3\n6/d0cNzU0fcZyCZvq3DDOdNOeb8bfivv40+SMjI21ndx49Pbaenuo7IojxvOnsWCqiILU2cffqy9\nTSgvwPuPmMiv1u7l3g11HDulZNQ3INnkbRVuOGc6RLmYU6o+IyKvmctOF5EP2ps8a/HbY2fOY5ua\n+fLDW2jp7uOIScXc/d4FWZNRgB/rbOCiQyspyQ+wsaGLf741+jmls83bCjw7nwVwI7Ac+Dkw3VxW\nC3zFjkTZhT/u/fDE+xU/famWHzy/i1i/4pJFVdx2/lzKQnk2pdAe/Fh7n8JgYGBMqbterOXuF3cT\n7x95/UW2eVuBl+ezuAI4WinVJCL3mMt2AFk16qzfxG5ouqJxbn5mB+tqO8jNET5/6jSWLsjOykM/\n1tnBxYuqKMjN4c5/7+bBjU3s2t/L1xfPpCQ/86FistF7rHi56WwA6DRfJ7L+4qRlWYE/Scrg1HdE\nueqfm1lX20G4IJfbzp+btRkF+LHOJpbMr+C7F8xlQkEur+zt4KqVm9nXkXn/32z1HgtenvzoEeAH\nIpIPRh0GcBPwT7sSZgdtbW1uJ8FxMnHe3NjNF1duoqa1hxkTCvjRJfM5YlJ2ty7xY51dHFZdzF3v\nXcCssgJ2t/XyhQc381ZDV0afzWbv0eKGc6aZxdXAIUAbEMYoUcwgy+osKisr3U6C4wznvGZXG196\neAstkT6OOqSYH140j8kl+Q6lzj78WGcfE4uD/OCi+Rw7pYS2nj6+/PAWXtg5/ASd2e49Gtxwziiz\nUEq1K6Xei5FBnATMUUpdqpTqyPRAInKeiGwSka0icu0g23xQRDaKyJsi8sdM950p/h3IwTy5pZkb\nntxOb18/S+aVc/O5cygewbNiL+PHOjspCga46dw5LF1QQTSuuOnpHTy2aehZ4caD90hxw3moIcrT\nZSSN5t/AeqXUsIPUm4MR3g2cg9GKaq2IrFRKbUzaZh5wHXCqUqpVRCaORCQTYrHY8BuNMwZz/tvr\nDfx8zR4ALntXNVccN9nzHe1Ggh/r7CU3R7jqtGlUFOZx7yt1/OD5XbT19PHBI9PPuDhevEeCG85D\n3Ub2McgcFilkMpLcCcBWpdR2ABG5H7gE2Ji0zaeAu5VSrQBKqYYM9jsi/PbYoJTi9xvquO8Vo+nd\n/5w0hWWHW54vu44f6+xGRPjYsZMJF+Tyk9W1/GrtXjp7+/jv4w95R4YxnrwzxWv9LGZhNI2dDXwe\n+BdwHnCo+f9Z4MoMjzMF2J30vtZclsx8YL6IvCAiL4nIeRnuO2N0b4+tlOI36/Zx3yt15Ahcc8aM\ncZlRgB/r8cIlh1Vx7VkzCQj8+bUGfvHy3neMJTUevYfDU/0slFI1idcicjVwnFIqUdu0WUTWAeuA\ne9J9PoV0zzdSSy25wDzgTGAq8LyIHJ50TAAaGhpYvnw5ubm5xONxli1bxooVK6irq6OoqIhAIEB7\neztVVVW0tLSglKKqqor6+nr6+/tpbm6ms7OT6upqGhsbERHKy8tpbGyktLSUeDxOV1cXkyZNoq6u\njry8PMLhME1NTYTDYaLRKJFIZGB9MBikpKSE5uZmysrKiEQi9PT0DKwvKCggFArR2tpKRUUFHR0d\nRKPRgfWhUIhgMEhbWxuVlZW0tbURi8UG1g/nlBgfZjAnpRRNTU10dnby2N4cHtjYTEDg6lMmMy/Y\nwf79OVnnlEmc+vr6qKmpGVdOw8UpFosd5DwenCKRCLNze/jK6VO5bVUtf3u9gUhPL5fMyKGyspKO\njg66u7vp7e3NKqexfveSnTN1GiuSyYiPItIIvEsptTdp2RTgVaXUsNXyInIy8E2l1Lnm++sAlFK3\nJG3zU+AlpdRvzfdPA9cqpdYm72v16tVq4cKFGai9k9bWVsrKykb12Wwl4fyrl/fw59caCAh8bfEs\nTvPw8OJWoHOsxyura9q46ekd9PUrlh1exWdOnIKIjHvvdIzUecOGDesXL1583FiOOZL5LJ4SkU+L\nyFIR+TTwuLk8E9YC80RklogEgQ8DK1O2+QdwFoCIVGI8ltqe4f4zor197GPnZxvt7e38+dX6gYzi\nG2eP/4wC9I31eObkGWFuOHsWuTnCA2808sf/1APj3zsdbjhn2k7yGmAr8CGM/hb7gLvIcNhypVSf\niFyJkcEEgF8rpd4UkRuBdUqplea6JSKyEYgDX1ZKDd1mboRUVVVZubus4JW2PH61di8CXHPmDE6Z\nMf4zCtAz1jo4nzg9zLVnzuDmZ3byu/X7KM0PsHjm+PdOxY1YD5tZmM1eb8CYg/unoz2QUuoRjJ7g\nycuuT3qtMDr/XT3aYwxHS0sLhYWFdu3eczy/Yz/3vGzcfa04ZSpnzSl3OUXOoVusQR/n02eX0RmN\nc8e/d3PXi7XEukpYdvxct5PlKG7EetjHUEqpOLACyPrGzGOdkSub2NzYzW3P7UQBHztmEhcv0uvu\nS6dYJ9DJ+fyFlfz38ZNRwC9f78h4aJDxghux1moObh2K6QDNXTFueHI70bji7DlhLj9av3bousQ6\nGd2cP3RkNRcurKSvH7715HYau/SZBMmNWGs1B3d9fb3bSbCd3r5+vvnUdpq7YxxeXcSymTnjqmd2\npugQ61R0cxYRPnfKVBaU5dIS6eOGJ7bT0zfsgBLjAjdirdUc3DrM03vnC7vZ1NhNdXGQ68+eRbxb\nv5YioEesU9HROTdH+NLJ1dzwfCNbmyP8YFUN1501c9zfILkRa63m4B7vPLWlhae2tJCfm8ONS2Yz\nIZRHc7fbqfLxsZeS/AA3LpnNF1Zu5rnt+zlmSgvnZfFcLF4l08dQiMgnzDm4N5n/P2FnwuygszOr\n5moaEXvaevnxi8aIKitOnsqscmMmrfHsPBQ6euvoDIb3jLIQnz9lGgB3r65l1/4el1NlL27EOqPM\nQkS+BlwL3A98wfx/jbk8a6iurnY7CbYQi/dzy7M7icT6OWPWBM6df6CJ7Hh1Hg4dvXV0hgPeZ88r\n5z1zyujtM34P0fj4rb9wI9aZliw+CSxRSv1cKfW4UurnGIMJftq+pFlPY2Oj20mwhd+v38fmJqOe\n4ounTTvoee14dR4OHb11dIaDvT9/6jQmlwTZ1hzhN2v3DvGp7MaNWGeaWRRhzmORRDOQVTOlj8dK\nr61N3fz19QZyBK49c8Y7Ji8aj86ZoKO3js5wsHdRMMB1Zxmj1D7wRiObGsdn/ws3Yp1pZvEYcJ+I\nLBCRkIgsxOh78bh9SbOe8vLx1YM53q+484Xd9CtjKOfD0sybPd6cM0VHbx2d4Z3eCycW8b4jJqKA\nO/+9m3j/+Ous6EasM80srgQ6gFcx5t/+D9CFMc9F1jDeiukPv93EpsZuKgvz+Pgxk9NuM96cM0VH\nbx2dIb335UdPYmJxHlubI6zcOP7Oi2cfQ5lzcH8MKAQmA4VKqY+lzjXhdUpLS91OgmW0dMf4tflM\n9rMnT6UwmH7CwvHkPBJ09NbRGdJ7h/ICrDjZaB312/X7aBpnvbvdiHXGTWfBmG9bKdWQybzbXiQe\nj7udBMv42Zo9dMf6OXFaKafNDA+63XhyHgk6euvoDIN7nzwjzCkzwkRi/dzz0h6HU2UvbsR6RJlF\nttPVNT4qu7Y0dfPstlaCAWO4g6Equ8aL80jR0VtHZxja+3MnTyU/N4fnd+wfV4MNuhFrrTKL8TKx\n++/X7wPgokMrmVySP+S248V5pOjoraMzDO09sTjIexcZk3n+YcM+p5JkO27EetDMQkS+l/T6Pc4k\nx17Gw8Tubzd0sWZ3O/m5OXzwXcN3zBkPzqNBR28dnWF47w8cWU0oL4d1tR28WTc+erm7EeuhShbJ\nHe7+YXdCnCAvL8/tJIyZ35t3R+9dVElZaHif8eA8GnT01tEZhvcuLcjl0sOMIb1/u358lC7ciPVQ\nAwm+KiJ/AzYC+eYUqO8gebY7rxMOD14RnA28WdfJutoOCvNy+MCRmXX3z3bn0aKjt47OkJn3+46Y\nyIMbm3h1Xyf/2dvBUYeUOJAy+3Aj1kOVLN6P0Z9iMiDAtDR/U+1OoJU0NTW5nYQxkShVXHr4REoL\nMhtdPtudR4uO3jo6Q2beJfm5vO+IicCBOr9sxo1YD3rFUUo1AN8GEJFcpVTWjTKbSjbfeW1r7uaV\nvZ0U5uWw7PDMZ8nKZuexoKO3js6Qufelh1Xx9zcaeKO+i82N3cyvyt75yr1WshhAKfUJESkTkY+J\nyHXm/6wbWyAazd6OOQ+/1QzAOfMqKMnPdM6q7HYeCzp66+gMmXsXBQMsmWdcth56K7tLYW7EOtMh\nyk8GtmHMw30k8Blgq7k8a4hEIm4nYVR0R+M8va0FgAsOHdmkLtnqPFZ09NbRGUbmff5Coxnts9tb\n6eztsytJtuNGrDPtZ3EH8Dml1ClKqcuUUqcCnwV+ZF/SrCdb26E/s62VSKyfwycVMbNsZAP9Zqvz\nWNHRW0dnGJn3tAkFHHVIMb19/Ty9tdXGVNmLp/pZpDAf+EvKsr8Bc61Njr1kYzt0pdRAkflC865o\nJGSjsxXo6K2jM4zcO/E7eujtJpTKzhFpvdbPIpktwIdTln0A49FU1hAMBt1Owoh5u7Gb7S0RwgW5\nnDZrwog/n43OVqCjt47OMHLvk2eEKQvlUtPaw5v12TkEiBuxzjSzuAq4S0ReEpE/i8ga4CcYU6xm\nDSUl2de2+mGzVLFkXjnBwMhHZ8lGZyvQ0VtHZxi5d14gh/PmG3V/2VrR7UasM20N9SIwB7gLWA/8\nGJhrLs8ampub3U7CiOiKxnluu/Fc9fxRPIKC7HO2Ch29dXSG0XkvXViBAM/v2E97T/ZVdLsR64zb\nYCqlWoF7bUyL7ZSVlbmdhBGxdnc70bji8OoipoSHHjBwMLLN2Sp09NbRGUbnPakkn3cdUsx/9nby\n8u52zp6XXT0B3Ii1VqPOZlvTwtW72gA4ZcboO+Bkm7NV6OitozOM3vvk6cbv6iXzd5ZNeLnp7Lig\np6fH7SRkTF+/Yu3udsCokBst2eRsJTp66+gMo/dO/K7W1rYTjWfXfG5uxFqrzCKb2qG/XtdJZzTO\n9AkFTAkXjHo/2eRsJTp66+gMo/eeVJLP7PICIrF+Xt2bXUOXe7mfBSKSJyLvFpEPme+LRKRoBJ8/\nT0Q2ichWEbl2iO3eLyJKRI7LdN+Zkk3t0FfXGEXjsZQqILucrURHbx2dYWzeJ88wmqOvzrJHUZ7t\nZyEiRwCbgV8AvzIXnwH8OsPPB4C7gaXAIuAyEVmUZrsSjOa4azLZ70gpKBj9HbqTKKUOZBbTx5ZZ\nZIuz1ejoraMzjM07cTP2Uk1bVnXQcyPWmZYs7gGuV0otBGLmsn8Bp2X4+ROArUqp7UqpKHA/cEma\n7W4CvgvY8kAuFBrZUBlusaOlh/rOKBMKclk4cWwjY2aLs9Xo6K2jM4zNe15FiMrCPJq6Y2xpyp4G\nAm7EOtPM4jAONJtVAEqpLiDTFE8Bdie9rzWXDSAiRwPTlFIPZbjPEdPamh1jwbxoFolPmh4mR2RM\n+8oWZ6vR0VtHZxibt4hwklm6eLFmv1VJsh03Yp1pP4udwLHAusQCETkB2Jrh59Nd8QbKfCKSA/wQ\nuGK4HTU0NLB8+XJyc3OJx+MsW7aMFStWUFdXR1FREYFAgPb2dqqqqmhpaUEpRVVVFfX19eTm5tLc\n3ExnZyfV1dU0NjYiIpSXl9PY2EhpaSnxeJyuri4mTZpEXV0deXl5hMNhmpqaCIfDRKNRIpHIwPpg\nMEhJSQnNzc2UlZURiUTo6ekZWF9QUEAoFKK1tZWKigo6OjqIRqMD60OhEMFgkLa2NiorK2lra+Nf\nW4xepXMLe2lqahrSqbi4GGBQp7y8PJqamlx3isViA+uHi9NwTpnEKScnh5qamnHlNFycgIOcx4NT\npnHq7e0dtdO8QmO471Vbm7hoVr5nnIaKU7JzpnEaK5LJczoRuRCjruKnwJeAmzGGK/+UUuqJDD5/\nMvBNpdS55vvrAJRSt5jvwxjjTCWaJEwCWoCLlVLrkve1evVqtXDhwozkUtm3bx+TJ08e1Wedork7\nxmV/fIP8gPC3jx5Jfu7YGqxlg7Md6OitozOM3Tsa7+eD975Od6yfP3zoMKpLvD/G1kidN2zYsH7x\n4sVjajSU6XAfD2FUTldh1FXMAJZlklGYrAXmicgsEQliDEq4Mmn/bUqpSqXUTKXUTOAl0mQUYyUb\nJod5s97ILw+fVDzmjAKyw9kOdPTW0RnG7h0M5HDEJOPuO/H78zqenfwIQCm1QSn1OaXUBUqp/1FK\nrR/BZ/uAK4HHgbeAvyil3hSRG0Xk4pEne3RkQzv0txu6AVg4MeNWyUOSDc52oKO3js5gjXfi97ap\nsXvM+3ICz/azEJF8EblZRLaLSJu5bImIXJnpgZRSjyil5iul5iilbjaXXa+UWplm2zOtLlVAdrRD\nf7vRGDJ5oUXzA2eDsx3o6K2jM1jjnfi9JX5/Xsez/SwwKp8PBy7nQMX0mxiz5WUNXm9aGO9XA833\nFliUWXjd2S509NbRGazxTvzetjZHiGXB0B9ebjp7KfBfSqnVQD+AUmoPKc1fvY7XJ4fZ2Rqht6+f\nySVBJoTyLNmn153tQkdvHZ3BGu/i/FymhfOJxRXbW7zf38LLkx9FSWlmKyJVQFYNoN/W5u0u/W83\nWltfAd53tgsdvXV0Buu8F5i/u0S9oZdxI9aZZhZ/BX4nIrMARGQyxkRI99uVMDuorBzdBEJO8XaD\ntfUV4H1nu9DRW0dnsM47m+ot3Ih1ppnFVzE65r0OTMCYk3sv8C17kmUPXr/z8ksW1qGjt47OYJ13\nNrWI8mTJwuxdfRrwFaVUMVANlCil/tcc5ylriMViw2/kEl3ROLtae8jNEeaUW1d55WVnO9HRW0dn\nsM57dnmIYECobeulo9fbU626EethMwulVD/woFKq13zfqLJpeMYkvNwOfXNTNwqYUxEiaEFnvARe\ndrYTHb11dAbrvHNzhLkVxqMor5cuPNvPAlglIifZmhIH8HI79ER9hVVNZhN42dlOdPTW0Rms9U6M\n8pz4PXoVN2Kd6UCCNcCjIvIgxuixAyULpdT1diTMDoqKrKsLsJqB+ooqa9PoZWc70dFbR2ew1tv4\n/TUO/B69ihuxzjSzCAH/MF9PtSktthMIBNxOQlqUUmxKtIQa4/wVqXjV2W509NbRGaz1Ti5ZKKWQ\nMU4RYBduxDqjzEIp9Qm7E+IE7e3tA0M5e4nGrhgtkT5K8gNMKc23dN9edbYbHb11dAZrvauLg4QL\ncmnr6WNfR5RDLP49WoUbsc4osxCR2YOs6gX2mZXgnqeqqsrtJKRlT3svADPLQpbfyXjV2W509NbR\nGaz1FhHmVYZYV9vBztaIZzMLN2KdaQX3Voy+FVtSXu8CekXk/0Sk2p4kWkdLS4vbSUhLT8zIa4uC\n1rWCSuBVZ7vR0VtHZ7Dee1KJkUHUd3i3Z4Absc706vQp4D5gPlAALMCYZvVzwBEYJZS77UiglXi1\nxW8kFgcglGf9c0ivOtuNjt46OoP13pOKjXGX6ju9m1m4EetMK7i/BcxVSvWY77eKyGeBzUqpn4nI\nFRglDU/j1WJ6t1myKLCwf0UCrzrbjY7eOjqD9d6JmfK8XLLw8mOoHGBmyrLpQOJWuJPMMx7XqK+v\ndzsJaekZKFlYn1l41dludPTW0Rms967OgpKFG7HO9AJ/B/CMiPwGo5/FVOAT5nKAC4DV1ifPWqya\nuNxqIn1GyaLQhsdQXnW2Gx29dXQG670HShYezizciHWmTWe/KyKvAR8AjgH2AcuVUo+Z6//BgX4Y\nPiMkkngMZUPJwsfHZ2RMKMglPyB09MbpisYpCurZfyWVkczB/ZhSarlSaqlS6r8TGUU20dnpzcnY\nByq4baiz8Kqz3ejoraMzWO8tIkw0H0U1eLR04UasHZuD2wtUV3uzdW+iZGFHayivOtuNjt46OoM9\n3olHUXUereR2I9ZazcHd2NjodhLSkqizsKOC26vOdqOjt47OYI/3pGKjr4VXSxZuxDrTCu5LMZrO\ndonIwBzcIpJVc3B7dZwXO1tDedXZbnT01tEZ7PGeWJIHeLeS241YazUHd3l5udtJSEu3jY+hvOps\nNzp66+gM9nhXmyULrz6GciPWWs3B7dViek/MfwxlNTp66+gMNj2GGmg+22v5vq3AjVhrNQd3aWmp\n20lIS6Qv0RrK+pKFV53tRkdvHZ3BHu/qgdZQ3pyq1o1YZ9rPIgpcBVxlPn5qysapVePxuNtJSEvE\nxpKFV53tRkdvHZ3BHu+yUC7BgNDW00ckFrflEfFYcCPWmTadXSQinxGR64BlwKH2Jsseurq8OVWi\nnZ3yvOpsNzp66+gM9ngn97XwYiW3G7EesmQhRpX7r4CPA7UYj56mAIeIyB+A/86mEoYXJ7SPxfvp\n61fk5gjBgPWZhRednUBHbx2dwT7v6uIgtW291HdEmVkWsuUYo8WNWA93dfo0cCZwklJqhlLqZKXU\ndOBk4N3AZ2xOn6V4cUJ7Ox9BgTednUBHbx2dwT5vL48R5Uash7tCfRT4glJqbfJC8/1V5vqsIS8v\nz+0kvIOePvuGJwdvOjuBjt46OoN93gOjz3qw+awbsR7uCrUI+Ncg6/5lrs8awuGw20l4B902TnwE\n3nR2Ah29dXQG+7y9PFS5G7EeLrMIKKU60q0wl2fVMKlNTU1uJ+Ed2P0YyovOTqCjt47OYJ+3lx9D\nuRHr4ZrO5onIWcBgfcsznvBIRM4D7sSYMOmXSqlbU9ZfDXwS6AMaMSrPazLdfyZ48c7Lzg554E1n\nJ9DRW0dnsM97kod7cbsR6+Eu9g3Ar4dZPywiEsCYo/scjFZVa0VkpVJqY9JmrwDHKaW6zSlbvwt8\nKJP9Z0o06r2g29khD7zp7AQ6euvoDPZ5lxXmkpdj9LXo6eu3rV5xNLgR6yEzC6XUTIuOcwKwVSm1\nHUBE7gcuAQYyC6XUs0nbvwR8xKJjDxCJRKze5Zjpjto78ZEXnZ1AR28dncE+7xyzr8We9l4aOqJM\nLyuw5TijwY1YOzVv9hSM6VgT1AInDrH9cuDRdCsaGhpYvnw5ubm5xONxli1bxooVK6irq6OoqIhA\nIEB7eztVVVW0tLSglKKqqor6+noKCgpobm6ms7OT6upqGhsbERHKy8tpbGyktLSUeDxOV1cXkyZN\noq6ujry8PMLhME1NTYTDYaLRKJFIZGB9MBikpKSE5uZmysrKiEQi9PT0DKwvKCggFArR2tpKRUUF\nHR0dRKPRgfWNrUZmEe/ppquri7a2NmKx2MD64ZwS0ysO5hQKhWhqanLUKRQKEQwGaWtro7Ky0nKn\nTOKUl5dHTU3NuHIaLk65ubkHOY8Hp0ziFI/H6e3ttcUpnNfPHqCmuR3VXu/KNSKdU7Jzpk5jRZzo\nUyciHwDOVUp90nz/UeAEpdTn02z7EeBK4Ayl1DtG8Vq9erVauHDhqNJRU1PDjBkzRvVZu/jra/X8\n4u4k5eAAAA63SURBVOW9vP+IiXz6ROtHfPeisxPo6K2jM9jr/b1/1fDklha+dPp0zp1fYcsxRsNI\nnTds2LB+8eLFx43lmE6VLGqBaUnvp2L0Bj8IETkb+BqDZBRjJRgMWr3LMTMw1IdNz0O96OwEOnrr\n6Az2eocLjEtkW0+fbccYDW7E2qkam7XAPBGZJSJB4MPAyuQNRORo4GfAxUqpjCrOR0pJSYkdux0T\nERsnPgJvOjuBjt46OoO93qUFRsOTdo9lFm7E2pHMQinVh/Fo6XHgLeAvSqk3ReRGEbnY3Ox7QDHw\nVxH5j4isHGR3o6a52XtzNR2YUtWe1lBedHYCHb11dAZ7vcP53ixZuBFrpx5DoZR6BHgkZdn1Sa/P\ntjsNZWVldh9ixNjdKc+Lzk6go7eOzmCvd6n5GKq9x1vDv7sRa+80HHYALzYttLtTnhednUBHbx2d\nwV5vr9ZZuBFrrTKLnp4et5PwDgbGhrKpU54XnZ1AR28dncFe74GSRa+3Mgs3Yq1VZuHF8f57+uwt\nWXjR2Ql09NbRGez19mrJwovzWYwrvDjevz+fhT3o6K2jM9jrXRwMIEBnb5x4v3fmefPifBbjioIC\n73TXTxCxeYhyLzo7gY7eOjqDvd6BHKEkP4ACOjz0KMqNWGuVWYRC3poaEezvlOdFZyfQ0VtHZ7Df\n24stotyItVaZRWtrq9tJOAillO2d8rzm7BQ6euvoDPZ7D9RbeKhk4UastcosKiq8M7YLQKxfEVeQ\nlyPkBewJhdecnUJHbx2dwX7vUg9WcrsRa60yi46OtJP+uUaij4Vdw5OD95ydQkdvHZ3Bfu9EL24v\nDfnhRqy1yiy8NjlMt82PoMB7zk6ho7eOzmC/d9gcH8pLJQs3Yq1VZuG1dugHms3a0xIKvOfsFDp6\n6+gM9nsfqOD2Tmbh97OwGa+1Qx/okGfjdI1ec3YKHb11dAb7vQ9UcHunNZTfz8JmvNa00O6WUOA9\nZ6fQ0VtHZ7Dfu8SDdRZ+01mb8drkMN0DFdz2PYbymrNT6OitozPY7+3FIT/G8+RHnqCtrc3tJBxE\nojVUoY0lC685O4WO3jo6g/3eYQ9OgORGrLXKLCorK91OwkFEbB5xFrzn7BQ6euvoDPZ7e7GfhRux\n1iqz8NqdV2KWPDv7WXjN2Sl09NbRGez3LgoGyBHjsXEs3m/rsTLFL1nYTCwWczsJB2H3iLPgPWen\n0NFbR2ew3ztHhNJEJbdHWkS5EWutMguvtUO3e8RZ8J6zU+joraMzOOMd9lhfC7+fhc14rR26EyUL\nrzk7hY7eOjqDM95eq7fw+1nYTFFRkdtJOAgnOuV5zdkpdPTW0Rmc8R5oEeWRkWfdiLVWmUUgYN/j\nntHQHbX/MZTXnJ1CR28dncEZb6/NaeFGrLXKLNrb291OwkHYPf82eM/ZKXT01tEZnPFOjDzrlcdQ\nbsRaq8yiqqrK7SQchBN1Fl5zdgodvXV0Bme8vTaYoBux1iqzaGlpcTsJB+FEpzyvOTuFjt46OoMz\n3l4b8sONWGuVWSil3E7CQQyULIL2hcFrzk6ho7eOzuCMd6nHKrjdiLVWmYXXiukRB1pDec3ZKXT0\n1tEZnPH2WsnCfwxlM/X19W4nYQCl1MBjKDtHnfWSs5Po6K2jMzjj7bXWUG7EWqvMori42O0kDBCL\nK/oV5AWE3Byx7ThecnYSHb11dAZnvL3WGsqNWGuVWXiJxPzbhTaWKnx8fKwhlJdDXo7Q09dPb583\nBhN0Gq0yi87OTreTMMDAiLM21leAt5ydREdvHZ3BGW8ROfAoygOV3G7E2rHMQkTOE5FNIrJVRK5N\nsz5fRP5srl8jIjOtTkN1dbXVuxw1PQ70sQBvOTuJjt46OoNz3l6aBMmNWDuSWYhIALgbWAosAi4T\nkUUpmy0HWpVSc4EfArdZnY7GxkardzlqnOiQB95ydhIdvXV0Bue8vTSYoBuxznXoOCcAW5VS2wFE\n5H7gEmBj0jaXAN80X/8NuEtERFnQoLi+I8pfXquns6uT4l27x7o7S2jqMsajt3NcKDCKzzqio7eO\nzuCcd6KS+2+vN/DCTncmmrr86EmUF+a5EmunMospQPJVuhY4cbBtlFJ9ItIGVABNyRs1NDSwfPly\ncnNzicfjLFu2jBUrVlBXV0dRURGBQID29naqqqpoaWlBKcV+KeafbyV202OP4Sgpyomzf/9+2tra\nqKyspK2tjVgsxqRJk4Z0qqqqor6+fqBVRGdnJ9XV1TQ2NiIilJeX09jYSH5+Pk1NTXR1dQ3sMy8v\nj3A4TFNTE+FwmGg0SiQSGVgfDAYpKSmhubmZsrIyIpEIPT09A+sLCgoIhUK0trZSUVFBR0cH0Wh0\nYH0oFCIYDNrmVFpaSjweH9IJoKamZlw5DRcnpdRBzuPBKZM49fT00Nvba7tTSBnXjnW1HUCHk5eJ\nAZbMLqZnf+Qg50ydxoo40RNQRD4AnKuU+qT5/qPACUqpzydt86a5Ta35fpu5TXPyvlavXq0WLlw4\nouO3dsd4fud+WlpaKC8vH6ONdQRyhFNmhCkL5dl2jJqaGmbMmGHb/r2Kjt46OoNz3p29fTy/s83V\nqVXPmlNGSX7uiJ03bNiwfvHixceN5dhOlSxqgWlJ76cCewfZplZEcoEwYMkAKGWFeVy8qIrW1lzK\nysqs2GXWUFpa6nYSXEFHbx2dwTnv4vxcli6ocORYw+FGrJ1qDbUWmCcis0QkCHwYWJmyzUrg4+br\n9wPPWFFfkUw87o3el06iozPo6a2jM+jp7YazI5mFUqoPuBJ4HHgL+ItS6k0RuVFELjY3+xVQISJb\ngauBdzSvHStdXV1W79Lz6OgMenrr6Ax6ervh7NRjKJRSjwCPpCy7Pul1D/ABO9Og44T2OjqDnt46\nOoOe3m44a9WDW8cJ7XV0Bj29dXQGPb3dcNYqs/jHP/7hdhIcR0dn0NNbR2fQ09sNZ60yiwceeMDt\nJDiOjs6gp7eOzqCntxvOWmUWfX3ud9N3Gh2dQU9vHZ1BT283nB3plGclTz/9dCNQM5rPtrS0VJaX\nlzcNv+X4QUdn0NNbR2fQ03sUzjMWL148pun1si6z8PHx8fFxHq0eQ/n4+Pj4jA4/s/Dx8fHxGZZx\nmVl4YaIlp8nA+WoR2Sgir4nI0yIyLkacG847abv3i4gSkTENpuYFMnEWkQ+a8X5TRP7odBqtJoPv\n93QReVZEXjG/4+e7kU4rEZFfi0iDiLwxyHoRkR+Z5+Q1ETnG1gQppcbVHxAAtgGzgSDwKrAoZZvP\nAT81X38Y+LPb6XbA+Syg0Hz92Wx3ztTb3K4EWAW8BBzndrodiPU84BWgzHw/0e10O+D8c+Cz5utF\nwE63022B9+nAMcAbg6w/H3gUEOAkYI2d6RmPJYuBiZaUUlEgMdFSMpcAvzNf/w1YLNk9c8ywzkqp\nZ5VS3ebblzBG/s12Mok1wE3Ad/HaZCajIxPnTwF3K6VaAZRSDQ6n0WoycVZAYijWMO8c1TrrUEqt\nYuiRty8Bfq8MXgImiMhku9IzHjOLdBMtTRlsG2UMcpiYaClbycQ5meUYdyTZzrDeInI0ME0p9ZCT\nCbORTGI9H5gvIi+IyEsi8v/bu5/QOMowjuPfn6Y0hAY9LPHiIYgoQkUFrQqiRSX4B0JRKVarqVgU\nFA9F60VQT+IfPCiiFUWFUoVaShr0YBGseBCheBDqP0qNQaiiqKGiFiuPh/ddma5pZ5bsTLLr7wNz\nmZmdfZ9kd5+dd2af57rGRlePKjE/DmyU9B2pBt0DDL5u3/eL0lghwQYtdIbQeX9wlX36SeV4JG0E\nLgauqnVEzThp3JJOIfVz39TUgBpQ5X89RJqKWks6g/xI0uqI+LXmsdWlSswbgDci4llJlwPbc8xL\n16mofo1+jg3imUU3jZbodaOlJVIlZiRdCzwCTEbE0YbGVqeyuEeB1cA+SbOked2ZPr/IXfX1vSci\n/oqIb4CvSMmjX1WJ+W5gJ0BEfAwMA61GRrd0Kr3ve2UQk8WyaLTUsNKY83TMy6RE0e9z2G0njTsi\n5iOiFRHjETFOulYzGRH7l2a4PVHl9T1NuqEBSS3StNShRkfZW1VingOuAZB0HilZ/NjoKJs3A9yZ\n74q6DJiPiMN1PdnATUNFxDFJ7UZLpwKvRW60BOyPiBlSo6XtudHSz6QXX9+qGPMzwCrg7Xwtfy4i\nJk940D5QMe6BUjHm94AJSZ8DfwNbo6OXfT+pGPODwCuStpCmYjb1+RdAJL1Fmkps5WsxjwErACJi\nG+nazA3AQeB34K5ax9Pnf08zM2vAIE5DmZlZjzlZmJlZKScLMzMr5WRhZmalnCzMzKyUk4VZFyRN\nSJruwXHOkPSFpJW9GJdZ3ZwszDJJqyTNSrqtsG5U0pykW/KqJ4AnOx4nSYfy7xo6j7lP0ubO9RHx\nA/ABcE9vozCrh5OFWRYRv5E+vJ+T1O5X/DTph1+7JF0CnJYrfBZdCYwBZ+V9qtoB3LvYcZs1wcnC\nrCAi9gLvAs9LWgusB+7Pm68HPlzgYVPAHtIvaqcW2H4in5ASzEA0orLB5mRh9l9bSGUWdgEPFert\nnE8qyvcvSSOk+mI78nJrrl9UKpfHPwhc0Jthm9XHycKsQ24adAAYAXYXNp0OHOnY/SbgKLAXeIdU\nb+3GLp7uSD6u2bLmZGHWIff8GAfeB54qbPqFVPa8aArYGRHHctn33XQ3FTUK9GufCfsfGbiqs2aL\nIWmM1DBpPfAlcEDSm7nF5Wekct/tfc8ErgbWSLo5rx4BhiW1IuKnkucaAs4m9ZQ2W9Z8ZmF2vBeA\n6dyz/DDwMKn09UrSBexih8E7gK+Bc4EL83IOqSnNhsJ+Q5KGC8uKvH4NMBsR39YbktniOVmYZZLW\nAVcAW9vrIuJV0of/oxHxKTAv6dK8eQp4MSK+Ly7ANo6finoJ+KOwvJ7X3573NVv23M/CrAuSJoD7\nImLdIo8zRroN96KI+LMngzOrkZOFmZmV8jSUmZmVcrIwM7NSThZmZlbKycLMzEo5WZiZWSknCzMz\nK+VkYWZmpZwszMys1D/DpWiGjjRJSQAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.gca().set_title('Al-Fe: Degree of bcc ordering vs X(AL) [T=700 K]')\n", "plt.gca().set_xlabel('X(AL)')\n", "plt.gca().set_ylabel('Degree of ordering')\n", "# Generate a list of all indices where B2 is stable\n", "phase_indices = np.nonzero(eq2.Phase.values == 'B2_BCC')\n", "# phase_indices[2] refers to all composition indices\n", "# We know this because pycalphad always returns indices in order like P, T, X's\n", "plt.plot(np.take(eq2['X_AL'].values, phase_indices[2]), eq2['degree_of_ordering'].values[phase_indices])\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Al-Ni (Degree of Ordering)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Dimensions: (P: 1, T: 110, X_AL: 1, component: 2, internal_dof: 5, vertex: 2)\n", "Coordinates:\n", " * P (P) float64 1.013e+05\n", " * T (T) float64 300.0 320.0 340.0 360.0 380.0 400.0 ...\n", " * X_AL (X_AL) float64 0.1\n", " * vertex (vertex) int64 0 1\n", " * component (component) " ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEXCAYAAAC6baP3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXmYXFWZuN+vq9f0lt5IQxJCJEAEdQABNbINQUBUMpPB\nEVQUJ8rMz8CoOI4wCOKG4ojLuLAMOqggiAxChkGDgMAYIiABkVUCpE1IutNL0nt3dVd9vz/uraZS\nqa6uun2r6kvqvM9TT9c999xz33uqq849yz1HVBWHw+FwOLKlrNgCDofD4dizcAWHw+FwOHLCFRwO\nh8PhyAlXcDgcDocjJ1zB4XA4HI6ccAWHw+FwOHLCFRwhIiIPiMj1VtPLd7phISJXiEiXiKiInFuE\n858rIpOFPq9l/M8i8aoLmMZ3ReR7IXtFRORZEXl3mOmGiYi8Oynv7i22Txi4giMHRGS+iIyLyFYR\nKQ+Yxrn+P9AjIiIp+zaKyOVJQSuBC3NM/8SUL3mviPxWRI4L4ltoROQtwMXAecC+wM/zeK4Ffh6d\nmLLr58D8fJ23WPg3DDrD64AMSZyP95kM++mdKCKTInJKynmOEZEJEVmZFHYI8BHgy2m8Mn6vMt3o\nqGoMuBy4SkRm9XsmIvuKyK0iMuC/bhGRfWY45jAR+YWIvCgi8Wk8f4OXb7fOxs8SruDIjVXAXcAO\n4D2zSEeBvwLelzGSap+qDgQ8x5F4/6zLgVHgVzP8KFjhICCuqneqaqeqjqZGEJGKfAqo6qiqduXz\nHEViJd7/ROIFrxUGidfmDMf3+5+JAqjqA8C3gP8SkRYAEakFbgJ+qqq3Jx37z8DdqtqZJt3Zfq9+\nCbQApwc4FgC/0LkLWAy8AzgFOBi4I/UGL4U5wF+ALwJ/TBdBVcf9697tf3lPxRUcWeL/Y60CbgB+\ngndHHJQ48F3gChGpzHDO2TQpdftf8ieBjwG1wKkp6V8qIp0i0iciP0lughCRI0XkVyKyXUSGROQx\nETkt5fgVIvKEiIyIyE4ReVREjkjav0RE/tvft0NE7hGRN2a43huAnwJliTvgRLiI3CsiF4jIJmBc\nRGpE5B1+HvWJSL+IPCgix6SkWSci3xaRzf5d7SYR+Td/d+JH8rf++Tb5x+zWVCUip4vI434a20Xk\nB/6P5JS773ieiHT4d6xrRGReUpwFfn70iMioiLwsIp+ZJi/KROQvSa6J8Co/Lz/qbx8rIutEZNB/\n/VFETk2Xpn8j0pl4+cH9yWH+HXwuXAJ0A9f6298BIsAnkq8FOBu4I911MsvvlapOAP8LfDDXY5M4\nGe9m64Oq+oiq/h44B3gbcEKGcz+mqp9W1Z8C/bM4/x6FKziy551AFfArvB+35bO8g/8K0ABckO0B\n8lozV67nTdzpJN+pnwk0AycCZwHvBj6btL8Br8nmr/G+UGuBNSJysO/SDvwCuBk4DO8L9m1g0t8/\nD/gdsB04Dngr8ALwgIi0TeP5CeCTQIxd74oBjgFOAv4Gr7YWBeqAH/jnXga8CPw66e5X8O4iz8DL\n59cDH8L7ocO/LoC/8891dDopEXkTsAZ4CDgc+LCfX9ekRD3az6934RXSbwS+kbT/B0Aj3o/U6/F+\nMLekO6eqxvHu3M9J2bUC7//wFyIS8b0e8a/lSLxmm5F0aeYDVY3i/WC/S0R+ApwLnKOqg0nR3gg0\nAY+mSSKs79UjeHkPgIjs79/wZHo9k3T824FXVPWFpGt7Bu/zOTaAz96NqrpXFi/gTuCqpO1fA19O\nifMAcP0M6ZwLTPrvPwH0Ac3+9kbg8unSA/4WeB6YnyH9E/Gawhb42/XAfwITwBuS0n0q5birgfUz\nuP8RuMR/f4R/ngOmiXs58PuUMAFeAj6ZTf4khd0A7ATqZvArw2vu+IC/vdx3PGqa+Av8/SdmcsD7\nQXs0Jc4KvJrjoiTHbqAqKc5ngW0p+Xd5pmtIOcdS3+/opLC7gJv9903p/HNIX/HusGcdF+9GSIFv\npNn3N/6+mjT7wvpeneGfo9bfLgeWzPBalHT8dcDDadJ9DPh+lnmU0dP/H7k3yGdl7eVqHFkgIvPx\n7iJvSAr+MfAPMk0nuYgcl3J3829pov0A6AU+l42Hqv5SVZeq6qtZRH9BRIbwqs+nAh9S1aeT9j+Z\nEn8rkNys0uY3xzzvNzUN4dUsFvlRnsKrhTwtIr8UkU+IyMKk9I4G3pycB8AgcABeP0auPKeqQ8kB\nIrJYRH4q3qCCAWAA744+4fhmYIeq/iHA+ZI5DK+2kcyDeAXhoSmO40nbu+QpXo3s38QbGHGliByf\n6aSq+jzeD9c5AOJ11J6K97+Hqu4ArgfWiteseJF4ndAFRUTq8ZqihoFj/ZpQMjX+3/GU43L+XmVg\nLPlcqjqpqhtneHVkmbabCTYFV3Bkxyq8dtsnxBtFMol3F7ov03fm/QGvWSPxSm3WQL222YuB1SLy\nupCdT8Vr0mlV1f1V9eaU/dFUHXb9f7gBr4npX/2/h+MVNpW+ewyvmeEkvB+3vwP+LK8NiywD7mPX\nPDgcOASvNpIrw2nC7gL2B1bjNYUdjtc0ltxvFNaXfrp0ksPT5elUx6qq/hdeoXYN3v/Or0TkxhnO\n+2PgLPEGBLwf6MEbpZNI82N4BeRv8NrinxaRf5zxasLlu3hNlEfj1ZIuTtmfaBpsSgkP8r2ajma8\nJs4+CNRUtQ1oT5PuPCBdh35JE2hIaSmR1Hl3BV57fjL/hteZ98vU49QbDbRxpvRV9TYRuRD42uxt\nd2GTqqZtP8+S44F/VdU1MDVa5nXAVK1Fvfr3o/7rChH5Nd6Qy7vwCs5zgVc1zcio2eL3YxwKnK6q\na/2wBUDy8MnHgWYROWqaWkfihz71DjmVZ9i9g/QEvILh2Vy8VXUb8F94I5HuBm4WkY/r9KPnbga+\nCZyG1z9zo6Z0YPs1yaeBb4rINXj/k9emJpQPROTvgA8Ax6rqcyJyAfBDEblbVTf40Z7Ay6upmlvQ\n71UG3gg8oV7fEHi1vcNnOGYi6f064DIROUhVX/QdXw8sxOurcyThCo6ZeSfeP8+1qvqX5B3ijQL6\nlYgcoKqbZnGOT+P9445niiQifwt8FVieZXPVbHgB+ICI/A7vh/WLJP3AisgyvD6Ee/Du1g4C3gT8\n0I/yPbwfhjtE5Mt4I5gW4OXn/6rqw7P024F3J/sxEXkJbzjm19l1yOP9wP8BP/cL56eA/YDXq+r1\neHfvQ8Ap/t3nuN/8k8q/AxtE5Jt4beEH4N1l35T6P5EJ8R5+uxsvb6vxhsduxmvCS4uq9onI/+Ll\nf6JjPpHeErwRc//jp7MfXu1wQ5qkQkdE9sUroL6sqo/4vj8VkTOAn4rIm1V1TFV7ReRRvMI20eSX\n6/eqWURSC4IBVX3Zf38i3sgqfI9JsrhxS+JevHy70S/8BPg+8Hu8ZsmE2314/V0X+9uVvNZcWZfk\nGVXVnG4q9iRcU9XMnAc8Ms0PxP14VeOPzuYEqroe+G+8H5NMNOI19eT1OQafj+D9fzyKN4zy13hN\nUgn68UYz3Yk3mulHeKOAvgSg3nMQb8P7cb4d78fyJrymmm2zlfPvLN8LHIhXINyA14ewLSmO4rWh\n343XPPQCcCPQmpTGauDv8UbPPDHNuZ7C63w9Aa+D+6d4P1L/lKO2+I5P4/2A1gLv9D0z8WP8pkJV\n/VNS+DBegX0L8Ge8/6GH8Z7NyCv+iLUb8AY7fCVl9z/iNUt9NSnsanYdIZbr9+pv8T6f5NcPfJfX\n4Y26+yEB8f8X3o33TMZ9eE1/LwErUj6fA9l1tN9+ST5vTvK8O6jLnoDM/D/rcDhKHfGeqTlHVWfq\nk5nu+Aq8Av5iVd3teY5Zuv0A77fs/4WZbtj4NakFqnpysV1mi6txOByObLne71SunTnqrvgDQT6M\nV8sKDb+vZAtwaZjphomInOaPKvxAsV3CwtU4HA7HjPj9KQleyqJ5zeEjInPwmrQARlR1azF9wsAV\nHA6Hw+HICddU5XA4HI6ccAWHw+FwOHJij3uO44EHHtCqqqpiazgcDscew8jISM/y5cunm1w0Z/a4\ngqOqqoqlS5eGklZHRweLFi2aOWKRsOzn3IJj2c+yG9j2s+y2YcOGbOflyoqSbqqqqCjEc3TBsezn\n3IJj2c+yG9j2s+wWNiVdcDQ2NhZbISOW/ZxbcCz7WXYD236W3cKmpAuOnp6eYitkxLKfcwuOZT/L\nbmDbz7Jb2JR0wWH9DsGyn3MLjmU/y25g28+yW9iUdMERjaYun2ALy37OLTiW/Sy7gW0/y25hU9IF\nx+ho6MtEhIplP+cWHMt+lt3Atp9lt7Ap6YKjvT3dgl92sOzn3IJj2c+yG9j2s+wWNiVdcHR22l4R\n0rKfcwuOZT/LbmDbz7Jb2JR0wVFZWTlzpCJi2c+5Bceyn2U3sO1n2S1sSrrgqK+vL7ZCRiz7Obfg\nWPaz7Aa2/Sy7hU1JFxy9vb3FVsiIZT/nFhzLfpbdwLafZbewKemCo6mpqdgKGbHs59yCY9nPshvY\n9rPsFjYlXXBYHz5n2c+5Bceyn2U3sO1n2S1sSrrgGBsbK7ZCRiz7ObfgWPaz7Aa2/Sy7hU1BCg4R\n+ZGIbBeRp6fZLyLyHyKyUUSeEpEjC+Flfdy1ZT/nFhzLfpbdwLafZbewKdR6HDcA3wN+Ms3+dwIH\n+a+3AFf7f/NKZ2en2fnzoTh+ZWUdVFd/hbKyTuLxdsbHz6Wq6obdtrdtO5ADD3xp2v2F2a5DRBAZ\nNOhW6LxLnxc23PKdd7O79o0bL+Xyyw+hs7OM9vY45547zg03VOW8feCB23jppQMDHx9ku64ujogw\nOCgZ455++pyDw/ydEFUNM73pTyRyAHCXqr4hzb5rgQdU9WZ/+wXgRFXdlhp3/fr1GtZCTl1dXcyb\nNy+UtPJBof3Kyjqoq1tJJPLKVJhqOSKTu21v3nwSCxfeP+3+Qm0nY82t0HmXLi+suOU772Zz7Zs2\nvY4TT7yXjo7FAJSXK5OTMrU/2+2TTtrM/fcvDHx80O1kpov7/e8/ysc/fkz6gwJgpY9jPrA5aXuL\nH5ZXampq8n2KWVEIv7KyDubMOY+6ujOoqztjl0ID2O3Lmdiurd2acX+hti27FTrvLLvlO+9mk/YB\nB7zMl7986dR26o9ytttbt9bO6vig20HjzgYrS8emu7q0VaHt27ezatUqysvLicVirFy5ktWrV9PZ\n2UltbS2RSISBgQHa2tro6+tDVWlra6Orq4u6ujoAhoaGmDdvHh0dHTQ1NdHc3Ex3dzcNDQ3EYjGG\nh4dpb2+ns7OTiooKGhsb6enpobGxkWg0yujo6NT+yspK6uvr6e3tpampidHRUcbGxqb2V1dXU1NT\nw44dO2hpaWFwcJBoNDq1v6amhsrKSvr7+2ltbaW/v5+JiQna29vZtGkT++23X07X1N3djYhkdU29\nvS+x775fYXBwnOHhhSxa9CwbN55NVVUfc+dupKvrGNranmB4eD9GRuaxaNFaOjpOZc6cLnp7D6O7\n+wjmzXuUnTuXMD7ePLW/tvZVqqv76O19I/vu+zC9vW8gGm2Y2l9fv4ny8jF27FjK/PkP0dV1NPF4\nBfPnP8jmzctpbNwIQH//EhYuvI9XXz2BsrIJ5s17jFdfPZ6mpueZnKxmcPCAqTQrKwdoaXmabduW\nMTKyDyMj+zA8PH9qfzbXVFu7tSDXNDFRS2/vG3O6ppaWPzE21pz3a9q6dRlvfvNVBfmcglxTf/9i\nliy5PfTPqb19iLPPfoGNG72p0Zcs6ee++xZywgmvMjFRxmOPzeP441/l+eebqK6e5IADBlm7dhGn\nntrBwEAlTz/dwjnnPMfNNx9Cc/MY8+cPT+3v66ti48a5HHNMF0880cZ++w0zb97I1P6urjls3VrL\nEUd08+ij81iyZCfNzeNT+199tZa+vmre+MZeHn54X97whl4aGqJT+zdtqmdsrJylS3fw0EPzOfro\nLioq4jz44HyWL988dU1hUtJNVUNDQ1M/vBbJt9+cOedRVXVboGN37jyQuXNfCtkoHCy7gW0/y26Q\nP78bb/wA55xz46zSOPDAnbz00tyQjMJlb22qWgN8yB9d9VagP12hETaDg4P5PsWsyIdfctNURcWD\nM8ZXLU+7vXPnkoz7C7Vt2a3QeWfZLd95N5u0N216HZ/73JemtsvLd72ZznZ7yZKdszo+6HbQuLOh\nIE1VInIzcCLQKiJbgM8DFQCqeg1wN3A6sBEYAT5SCC/rC6+E7Zeu8zsdsdhC4vFFGUekjIwcyPh4\nvclRVTbcCp134Yyq2jPzbnbXPjx8KUcfvR8LF07MclTVCPX14yZHVdXUxEK9Cy1YU1VYhNlUNT4+\nTlVVVShp5YMw/JKH15aVdRCJbM4YPxZbzNDQ7cTjmYcBW847y25g28+yG9j2s+y2YcOGx5cvX35U\nWOlZaaoqCtbnz5+tX6KGUVV1GxUVv5u20IjF2piYOJbx8TOzKjTCcMsnlt3Atp9lN7DtZ9ktbKyM\nqioKe/tw3Orqr8zYLAUwOXkCIyPX5ZS25byz7Aa2/Sy7gW0/y25hU9IFh/WFV4L4JTdNRSIvzBg/\nFlvM2NglBXErFJbdwLafZTew7WfZLWxKuqmqv7+/2AoZydUvtWmqrKw7bbxYbGHOTVOzdSsklt3A\ntp9lN7DtZ9ktbEq6xtHa2lpshYxk45evzu8w3IqFZTew7WfZDWz7WXYLG1fjMMxMfvns/J6tWzGx\n7Aa2/Sy7gW0/y25hU9I1jomJiWIrZGQmv3x2fs+E5byz7Aa2/Sy7gW0/y25hU9I1Duvz50/nl3j6\nu6LinhnTCNr5PROW886yG9j2s+wGtv0su4VNSRcc1sddp/NLbp4qKxtIe1wYnd9B3Kxg2Q1s+1l2\nA9t+lt3CpqSbqmpra4utkJGEXy4d4GF1fmfrZhHLbmDbz7Ib2Paz7BY2JV1wRCKRYitkJBKJZD2/\nVDzeyMTEOxgbuyTvhUbCzSqW3cC2n2U3sO1n2S1sSrqpamAgfVNPsUn0YYyNXZd2caV0TEy8g5GR\n6wpSaIDdvAPbbmDbz7Ib2Paz7BY2JV3jaGtrK7bCbiTXMPbffz6RyKszHpOvDvBMWMy7BJbdwLaf\nZTew7WfZLWxKusbR19dXbIXdSB5i29V19LTxCtEBngmLeZfAshvY9rPsBrb9LLuFTUnXOKxMKT/d\n/FLxeEXa+IXqAM+ElbxLh2U3sO1n2Q1s+1l2C5uSLjgsVC0zdX7Pn//aCn3JiysVqgM8Exbybjos\nu4FtP8tuYNvPslvYlHRTVVdXV1HOm7x8a6bO782blwOJGsYahobWFLQDPBPFyrtssOwGtv0su4Ft\nP8tuYVPSNY66urqCnzP75VvbqKurZHz8TBM1jFSKkXfZYtkNbPtZdgPbfpbdwqakC45CkesMtuDN\nLzU6+jlGRloKYOhwOBzZU9JNVUNDQ3k/R7Yz2CaTGF5bCL+gOLfgWPaz7Aa2/Sy7hU1J1zjmzZuX\n93NkO4Ntus7vefPG8u4XlELkXVAsu4FtP8tuYNvPslvYlHSNo7s7/Qp5syW587ui4sEZ40/X+Z0v\nvzBwbsGx7GfZDWz7WXYLm5KucYhI6Glm3/k98/DafPiFhXMLjmU/y25g28+yW9iUdMHR3NwcSjr5\nWr41LL984NyCY9nPshvY9rPsFjauqWqW5HP5VstVX+cWHMt+lt3Atp9lt7Ap6RpHQ0PDrNPI5/Kt\nYfjlC+cWHMt+lt3Atp9lt7Ap6YIjFosFOm66uaWmP0+w2WuD+hUC5xYcy36W3cC2n2W3sCnppqrh\n4eGcj0ltmiorS189DWP22iB+hcK5Bceyn2U3sO1n2S1sSrrGEWRx+WyapsKavTaIX6FwbsGx7GfZ\nDWz7WXYLm5KucWS7uHw2z2UE6fwOy68YOLfgWPaz7Aa2/Sy7hU1J1zgqKtKvd5FMts9lBOn8nols\n/IqFcwuOZT/LbmDbz7Jb2BSsxiEip4nICyKyUUQuSrN/fxH5rYg8ISJPicjp+XZqbGycMU62TVP5\nWLo1G79i4dyCY9nPshvY9rPsFjYFKThEJAJ8H3gncChwtogcmhLtc8CtqnoEcBbwg3x79fT0zBin\nrCx99TMfTVOpZONXLJxbcCz7WXYD236W3cKmUE1VxwAbVfVlABG5BVgBPJsUR4HEQOhGYGu+pbK5\nQ4jH03d45aNpKhXLdzDOLTiW/Sy7gW0/y25hU6iCYz6Q/Ej1FuAtKXEuB+4RkQuAWuDkdAlt376d\nVatWUV5eTiwWY+XKlaxevZrOzk5qa2uJRCIMDAzQ1tZGX18fqkpbWxtdXV1TC60MDQ0xb948tm3b\nxtDQEM3NzXR3d9PQ0EAsFmN4eJj29nY6OzuprPxn9t13K9u3L6Kl5U+MjTUzOHgYLS2r2Lq1g8rK\nSurr6+nt7aWpqYnR0VHGxsamjq+urqampoYdO3bQ0tLC4OAg0Wh0an9NTQ2VlZX09/fT2tpKf38/\nExMTtLe3s3XrViYnJ3O6pu7ubkQk4zVVVFTQ2NhIT08PjY2NRKNRRkdHk6555msaGxujv78/52sK\n8jnlek2qGuiagn5OuV5TeXk5g4ODBfmccr2mnTt3UlNTU5DPKcg1RaNRysrKCvI55XpNW7d697pW\n//fCRAqxwLqIvBc4VVU/6m+fAxyjqhckxbnQ97lKRN4G/BB4g6rGk9Nav369Ll26NBSvjo4OFi2a\nuYkp+YG/Qq75na1fMXBuwbHsZ9kNbPtZdtuwYcPjy5cvPyqs9ApV49gCLEzaXsDuTVGrgNMAVHW9\niFQDrcD2fEllO+46Hl+U92apdFgeF+7cgmPZz7Ib2Paz7BY2hRpV9RhwkIgsFpFKvM7vNSlx/gIs\nBxCR1wPVQF5nDZtu3HXycxtz5pxHWVlHPjWmxfK4cOcWHMt+lt3Atp9lt7ApSI1DVSdF5HxgLRAB\nfqSqz4jIF4E/qOoa4NPAf4rIp/A6ys/VPLejVVZW7haW7rmN8vLH8zZyKhPp/Kzg3IJj2c+yG9j2\ns+wWNgV7AFBV7wbuTgm7LOn9s8DbC+UDUF9fv1tYuuc2IpFXqK7+SsGbq9L5WcG5Bceyn2U3sO1n\n2S1sSnrKkd7e3t3CpntuY7rwfJLOzwrOLTiW/Sy7gW0/y25hk1WNw++XOBc4HNhlbJeqfih8rcLQ\n1NS0W9h0z21MF55P0vlZwbkFx7KfZTew7WfZLWyyrXH8GPgkMAi8lPLaYxkdHd0tbGzsEmKxxbuE\n5WtKkZlI52cF5xYcy36W3cC2n2W3sMm2j+M0YLGq7synTKEZGxvbLSweX8TQ0O1FeW4jGz8rOLfg\nWPaz7Aa2/Sy7hU22BcdfgKp8ihSD6cZdF+u5jVQsjwt3bsGx7GfZDWz7WXYLm2ybqn4C3CkiZ4vI\nScmvfMrlm8S4ayvPbaRieVy4cwuOZT/LbmDbz7Jb2GRb4zjf/3tFSrgCrwtPp7BUV1ebem4jlerq\n6qKePxPOLTiW/Sy7gW0/y25hk1XBoaqLZ46151FTU0N19aVmnttIpaampqjnz4RzC45lP8tuYNvP\nslvYZP0ch4iUi8jxfnPVcSKyx68euGPHDlPPbaSyY8eOYitMi3MLjmU/y25g28+yW9hk+xzHUuB/\ngBq86dEXAmMi8h5VfS6PfnmlpaXF1HMbqbS0tBRbYVqcW3As+1l2A9t+lt3CJtsaxw+A64CFqvo2\nVV0AXEMBVunLB4nO8Gj0SmCIWGzBLvuL9dxGKoODg8VWmBbnFhzLfpbdwLafZbewyba56XDgHSmT\nDn4bKP6va44kd4ZPTp5NVdWvicUWEI2+E5HBoj63kUo0Gi22wrQ4t+BY9rPsBrb9LLuFTbYFx1bg\nBOD+pLDjKMDyrmGTPInhokVrAYhEtjA5+VaGh28qptpuWB4X7tyCY9nPshvY9rPsFjbZNlX9G7BG\nRG4RkSv9NcPX+OF7FMmd3h0dp6YNt4LlceHOLTiW/Sy7gW0/y25hk1XB4a+XcSTwNFDv/32zqt6Z\nR7fQSH7AL/nhvtraV6feW+gMT8Xy8D7nFhzLfpbdwLafZbewyXpIrar+GfhyHl3yQroH/FTLEZmk\nuroPsNMZnorlhWGcW3As+1l2A9t+lt3CZtqCQ0SuU9Xz/Pc/xXtKfDesT6uebmEmkUlisYVs3/4u\n6uuXmukMT6W/v5+5c+cWWyMtzi04lv0su4FtP8tuYZOpxpH8a7sx3yJhUlbWMTW7bSTyQto48fgi\nGhrOZ2SktsB22dPa2lpshWlxbsGx7GfZDWz7WXYLm2kLDlX9atLmtaq6W8+PiJjrGEjXNJWOeLyd\n/v5+amvtFhyW/ZxbcCz7WXYD236W3cIm21FVf54m/NmwRMIiXdNUKok+jYmJiQJZBcOyn3MLjmU/\ny25g28+yW9hk2zkuuwWINADxcHWCkU3TVCzWRjx+yC4P+LW3jxfYNDcsjwt3bsGx7GfZDWz7WXYL\nm4w1DhHZLCJ/AWpE5C/JL2AbcEdBLDOQaJqqqrqNiorfUVbWnTbe5OQJDA2tYWTkuqmOcOvjri37\nObfgWPaz7Aa2/Sy7hc1MNY4P4tU27gbOSQpXoEtV09/eF4BELaO8/EEikfSFRYLphttab4+07Ofc\ngmPZz7Ib2Paz7BY2GQsOVX0QQERaVXWkMEozk00HeLqmqVQikUg+NWeNZT/nFhzLfpbdwLafZbew\nybZz/EYROS45wF+T47Y8OGWkrGwjdXVnzNgBnq5pKpWBgYF8KIaGZT/nFhzLfpbdwLafZbewybbg\nOAF4OCVsPfDX4erMjMggkcjmjHGyfRK8ra0tLK28YNnPuQXHsp9lN7DtZ9ktbLItOMaA1Aa8OsDU\n+LN4vI3x8TOzXi+8r6+vAFbBsezn3IJj2c+yG9j2s+wWNtkOx10LXCsi/6iqA/5Q3O8Bv86fWm7E\nYouzLjAS7Lq8iD0s+zm34Fj2s+wGtv0su4VNtjWOTwMNQJ+IbAf6gEbgk/kSy4ZYbCETE8fmVMtI\nxnrV0rKfcwuOZT/LbmDbz7Jb2GQ7rfoOVX0X3lrj7wIWqOp7VHVnXu0y4NUw1szYAZ6Jrq6uPJiF\nh2U/5xb2sOw9AAAgAElEQVQcy36W3cC2n2W3sMm2xgGAqm4D/gBsF5EyEcn6eBE5TUReEJGNInLR\nNHH+XkSeFZFnRORn6R3qA9cwUqmrq5vV8fnGsp9zC45lP8tuYNvPslvYZNXHISL7Ad8HjgdS5w2e\ncfCyiET8498BbAEeE5E1qvpsUpyDgIuBt6vqDhHZJ11a8fgSRkauy0bb4XA4HHkg2xrDtUAUWA4M\n4a0GuAb4pyyPPwbYqKovq2oUuAVYkRLnY8D3VXUHgKpuzzLtwAwNDeX7FLPCsp9zC45lP8tuYNvP\nslvYZFtwLAP+QVWfBFRV/wiswus0z4b5QPLDF1v8sGQOBg4WkXUi8nsROS3LtAMzb968fJ9iVlj2\nc27Bsexn2Q1s+1l2C5tsh+PGgEn//U4RaQMG2P3Hfzp2m12X3VcULAcOAk4EFgD/JyJvSO2A3759\nO6tWraK8vJxYLMbKlStZvXo1nZ2d1NbWEolEGBgYoK2tjb6+PlSVtrY2urq6ptogh4aGmDdvHhs3\nbmTu3Lk0NzfT3d1NQ0MDsViM4eFh2tvb6ezspKKigsbGRnp6emhsbCQajTI6Ojq1v7Kykvr6enp7\ne2lqamJ0dJSxsbGp/dXV1dTU1LBjxw5aWloYHBwkGo1O7a+pqaGyspL+/n5aW1vp7+9nYmKC9vZ2\nXnzxRfbdd9+crqm7uxsRyfs1DQwMUFlZmfM1Bfmccr2maDRKY2NjwT6nXK8pHo9TXl5ekM8p12vq\n7e3l4IMPLsjnFOSaRkZGmD9/fkE+p1yv6eWXX2bhwoUF/Y3I5ZrCRLIZeywi/wP8SFV/KSLX4v3A\njwJzVHXGp8dF5G3A5ap6qr99Mey6WJSIXAP8XlVv8LfvAy5S1ceS01q/fr0uXbo0y8vLzJYtW1iw\nYEEoaeUDy37OLTiW/Sy7gW0/y24bNmx4fPny5UeFlV62TVXnAA/67z8J3A88Dbw/y+MfAw4SkcUi\nUgmchddHkswd+FOYiEgrXtPVy1mmH4jm5uZ8Jj9rLPs5t+BY9rPsBrb9LLuFzYwFhz8i6jvAMICq\njqrql1X1s/7w3BlR1UngfLwn0J8DblXVZ0TkiyJyhh9tLdArIs8CvwU+o6q9uV9S9nR3Z56OvdhY\n9nNuwbHsZ9kNbPtZdgubGfs4VDUmIqcwy9X+VPVuvHU9ksMuS3qvwIX+qyA0NDQU6lSBsOzn3IJj\n2c+yG9j2s+wWNtk2VX0L+IKIVORTptDEYrFiK2TEsp9zC45lP8tuYNvPslvYZFtwXAB8BhhMLCeb\ntITsHsvw8HCxFTJi2c+5Bceyn2U3sO1n2S1ssh2O+8G8WhQJ64vLW/ZzbsGx7GfZDWz7WXYLm2wn\nOXxwule+BfOJ9cXlLfs5t+BY9rPsBrb9LLuFTcaCQ0T6Ura/nV+dwlJRYbvLxrKfcwuOZT/LbmDb\nz7Jb2MxU40jNiQ/lS6QYNDY2FlshI5b9nFtwLPtZdgPbfpbdwmamgiP1sfJ0U4fssfT09BRbISOW\n/ZxbcCz7WXYD236W3cJmps5xEZHFvFZgpG6jqnl9ujufWL9DsOzn3IJj2c+yG9j2s+wWNjMVHLXA\nRnatabyU9F7JYj0Oq0Sj0WIrZMSyn3MLjmU/y25g28+yW9hkLDhUNacVAvc0RkdHi62QEct+zi04\nlv0su4FtP8tuYbNXFwwzYX3ctWU/5xYcy36W3cC2n2W3sCnpgsP6uGvLfs4tOJb9LLuBbT/LbmFT\n0gVHZWVlsRUyYtnPuQXHsp9lN7DtZ9ktbEq64Kivry+2QkYs+zm34Fj2s+wGtv0su4VN1gWHiFSI\nyHEi8j5/u1ZEavOnln96e/O63Messezn3IJj2c+yG9j2s+wWNlkVHCLyRuDPwH8CP/SDTwB+lCev\ngtDU1FRshYxY9nNuwbHsZ9kNbPtZdgubbGscVwOXqepSYMIPexA4Ni9WBcL68DnLfs4tOJb9LLuB\nbT/LbmGTbcFxGHCj/14BVHUYqMmHVKEYGxsrtkJGLPs5t+BY9rPsBrb9LLuFTbYFxybgzckBInIM\n3lPleyzWx11b9nNuwbHsZ9kNbPtZdgubbAuOS4H/FZEvAJUicjHwC+BzeTMrANbHXVv2c27Bsexn\n2Q1s+1l2C5tsF3K6C3gn0IbXt7EIWKmq9+TRLe9UV1cXWyEjlv2cW3As+1l2A9t+lt3CJtulY1HV\nDcDH8+hScGpqbHfRWPZzbsGx7GfZDWz7WXYLm2yH414oIof7798qIn8RkZdF5G351csvO3bsKLZC\nRiz7ObfgWPaz7Aa2/Sy7hU22fRyfAl7x338V+CbwFWCPXkq2paWl2AoZsezn3IJj2c+yG9j2s+wW\nNtkWHI2q2i8i9cBfAd9V1R8Ch+RPLf8MDg4WWyEjlv2cW3As+1l2A9t+lt3CJts+js0isgzveY6H\nVDUmIg1ALH9q+cf6wiuW/ZxbcCz7WXYD236W3cIm24LjM8BtQBT4Oz/s3cCj+ZAqFNbHXVv2c27B\nsexn2Q1s+1l2C5tsh+Perar7qeoBqvq4H/wL4Iz8qeUf6+OuLfs5t+BY9rPsBrb9LLuFTdbDcQH8\nPo5Wdl2D/OVQjQqI9eFzlv2cW3As+1l2A9t+lt3CJquCQ0QOBW7C6xhXvIJD/d2R/KjlH+sLr1j2\nc27Bsexn2Q1s+1l2C5tsR1X9APgt0AwMAE3AtcCH8+RVEPr7+4utkBHLfs4tOJb9LLuBbT/LbmGT\nbcHxV8BnVXUnIKraj9dh/qVsTyQip4nICyKyUUQuyhDvTBFRETkq27SD0tramu9TzArLfs4tOJb9\nLLuBbT/LbmGTbcExBlT473tEZH//2KyeeBGRCPB9vPmuDgXO9pu/UuPVA/8MPJKl16ywfodg2c+5\nBceyn2U3sO1n2S1ssi04/g/4e//9bcCv8CY7vD/L448BNqrqy6oaBW4BVqSJ9yXg63gFVd6ZmJiY\nOVIRsezn3IJj2c+yG9j2s+wWNll1jqvq3ydt/hvwDFAH/CTL88wHNidtbwHekhxBRI4AFqrqXSLy\nL9MltH37dlatWkV5eTmxWIyVK1eyevVqOjs7qa2tJRKJMDAwQFtbG319fagqbW1tdHV1UVdXB8DQ\n0BDz5s0jHo+zZcsWmpub6e7upqGhgVgsxvDwMO3t7XR2dlJRUUFjYyM9PT00NjYSjUYZHR2d2l9Z\nWUl9fT29vb00NTUxOjrK2NjY1P7q6mpqamrYsWMHLS0tDA4OEo1Gp/bX1NRQWVlJf38/ra2t9Pf3\nMzExQXt7O7FYjJ6enpyuqbu7GxHJ+zXV1tbS0dGR8zUF+ZxyvaY5c+awffv2gn1OuV5TU1MTmzdv\nLsjnlOs1xWIxxsfHC/I5Bbmm8vJyBgYGCvI55XpNsViMnTt3FvQ3IpdrChNR1ZljzfYkIu8FTlXV\nj/rb5wDHqOoF/nYZXu3lXFXdJCIPAP+iqn9ITWv9+vW6dOnSULw6OjpYtGhRKGnlA8t+zi04lv0s\nu4FtP8tuGzZseHz58uWh9RtnOxy3GfgX4HC8msYUqnp8FklsARYmbS8AtiZt1wNvAB4QEYB2YI2I\nnJGu8AiL2trafCUdCpb9nFtwLPtZdgPbfpbdwibbBwB/BlQBtwIjAc7zGHCQiCwGXgXOAt6f2OmP\n0poakpCpxhEmkYjtR1As+zm34Fj2s+wGtv0su4VNtp3jy4DTVPVqVf1x8iubg1V1EjgfWAs8B9yq\nqs+IyBdFJKdpS8rKNjJnznmUlXXkclhaBgYGZp1GPrHs59yCY9nPshvY9rPsFjbZ1jiewmteeino\niVT1buDulLDLpol74nTpiAxSVXUb5eWPMzR0O/F48DbFtra2wMcWAst+zi04lv0su4FtP8tuYTNt\nwSEi/5C0eT/waxH5L2CXmbxU9Ud5cstIJPIKdXVnEI8vIh5vZ2zskpwLkb6+PubMmZMnw9lj2c+5\nBceyn2U3sO1n2S1sMtU4zknZ3gK8IyVMgaIUHACRyGYiEW+Ub5AaSCFGlM0Gy37OLTiW/Sy7gW0/\ny25hM23Boap/XUiR2RKJvEJ9/SlMTJyQde3DetXSsp9zC45lP8tuYNvPslvYZOwcF5E5InKFiKwR\nkctFpKpQYkEoK+umquo26upWZtV53tXVVQCr4Fj2c27Bsexn2Q1s+1l2C5uZRlV9D3gP8DxwJvCN\nvBvNgGo9sdjCjHEikVeorv7KjGnl44nKMLHs59yCY9nPshvY9rPsFjYzFRzvBE5R1X/13787/0qZ\niceXMDS0hlhsccZ45eUPUld3RmhDdx0Oh8PhMVPBUauq2wBUdTPQmH+lmYnHFzE0dDvj42cSi6Vv\nV4xEuqmo+F3GpquhoaF8q84Ky37OLTiW/Sy7gW0/y25hM9NzHOUi8te8tlRs6jaqmu0MuaESjy9i\nZOQ6yso6qKtbSSTyyrRxE01XIyPX7RI+b968fGvOCst+zi04lv0su4FtP8tuYTNTjWM73nDbH/qv\n3pTt6/NqlwXJtY+JiWOJx9PXQNI1XXV3dxdSNWcs+zm34Fj2s+wGtv0su4VNxhqHqh5QII9Zkah9\nAMyZcx5VVbftFicS6SYS8T7YxDMf3vpSdvEnfDSJcwuOZT/LbmDbz7Jb2GQ7V9Uew9jYJTN2nCea\nrpqbmwtkFQzLfs4tOJb9LLuBbT/LbmGz1xUcuTRd9fd/1/SoK8tVX+cWHMt+lt3Atp9lt7DZ6woO\neK3pamhoDRMTJ6SNE4l009p6T04PDBaahoaGYitMi3MLjmU/y25g28+yW9jslQVHMpmariYnq4Hs\nHxgsNLFYrNgK0+LcgmPZz7Ib2Paz7BY2e33BkanpanDwgKn3ZWWdaY4uLsPDw8VWmBbnFhzLfpbd\nwLafZbew2esLDpi+6WrRorVJcdqLoZaR9nZ7TgmcW3As+1l2A9t+lt3CpiQKjmSSm646Ok4FIBZb\ngMiwuSlKOjvt1YISOLfgWPaz7Aa2/Sy7hU22KwDuNSSarqqrv0Ik0sb4+GmUlz9NZeWvpuKEsbpg\nGFRUVBT1/JlwbsGx7GfZDWz7WXYLm5KrccBrTVfV1Z8B6ohEtuyy30pneWOjianB0uLcgmPZz7Ib\n2Paz7BY2JVlwJOjp6Zm2U9xCZ3lPT0+xFabFuQXHsp9lN7DtZ9ktbEq64GhsbJy2U9xCZ7nlOxjn\nFhzLfpbdwLafZbewKemCIxqNpn3OIxZbzNjYJUWyeo1oNFpshWlxbsGx7GfZDWz7WXYLm5LrHE9m\ndHR0l87ysrJO4vH2rNcsL4SfVZxbcCz7WXYD236W3cKmpAuOxLjr5Nl1LWF5XLhzC45lP8tuYNvP\nslvYlHRTlfVx15b9nFtwLPtZdgPbfpbdwqakaxyVlZVpw8vKOkw0XU3nZwHnFhzLfpbdwLafZbew\nKemCo76+frewdEvRFuuBwHR+VnBuwbHsZ9kNbPtZdgubkm6q6u3t3S3Me6J81/XLi/VAYDo/Kzi3\n4Fj2s+wGtv0su4VNSRccTU1Nu4VZeiAwnZ8VnFtwLPtZdgPbfpbdwqakC450w+csPRBoeXifcwuO\nZT/LbmDbz7Jb2BSs4BCR00TkBRHZKCIXpdl/oYg8KyJPich9IpL3DoWxsbE0YXYeCEznZwXnFhzL\nfpbdwLafZbewKUjBISIR4PvAO4FDgbNF5NCUaE8AR6nqm4DbgK/n2yvduOvUhZ/Gx88s2ky5lseF\nO7fgWPaz7Aa2/Sy7hU2hahzHABtV9WVVjQK3ACuSI6jqb1V1xN/8PbAg31LTjbtOXvhpZOS6oj1F\nbnlcuHMLjmU/y25g28+yW9gUquCYD2xO2t7ih03HKuBXGfaHQnV1dVbxyso6mDPnvIIv9JStXzFw\nbsGx7GfZDWz7WXYLm0I9xyFpwjRtRJEPAkcBJ6Tbv337dlatWkV5eTmxWIyVK1eyevVqOjs7qa2t\nJRKJMDAwQFtbG319fagqbW1tdHV1UVdXB8DQ0BDz5s1jcHCQiYkJmpub6e7upqGhgVgsxvDwMO3t\n7XR2dlJZOci++17Epk2LaGnZydhYGYOD19HSsoqtWyNUVlZSX19Pb28vTU1NjI6OMjY2NnV8dXU1\nNTU17Nixg5aWFgYHB4lGo1P7a2pqqKyspL+/n9bWVvr7+5mYmKC9vZ3+/n4ikUhO19Td3Y2IZLym\niooKGhsb6enpobGxkWg0yujoaNI1z3xN8Xicjo6OnK8pyOeU6zVVVFSwffv2nK8p6OeU6zXV1tay\nefPmgnxOuV7T0NAQc+fOLcjnNNM1zZ07l5GREVSVmpoaxsbGUFV6e3uJRqNUVlYyMTGBqlJdXc3Y\n2BiRSISysjImJiaoqqoiGo3utl9EmJycTLu/vNz7SZycnJwKExEqKysZHx+nvLwcVSUWi+22f2Ji\ngp6eHuLx+G77Kyoqppxjsdgu+xPf8dle08TEBNXV1VNrn6d+TmEiqml/v8M9icjbgMtV9VR/+2IA\nVf1qSryTge8CJ6jq9nRprV+/XpcuXRqKV0dHB4sWZW6GmjPnPKqqbtstfHz8zLzPb5WNX7FwbsGx\n7GfJbXBwkKqqql2eyB4fH6eqqqqIVtNjwS0ajTI+Pr7bw4gbNmx4fPny5UeFdZ5CNVU9BhwkIotF\npBI4C1iTHEFEjgCuBc6YrtAIm5aWlhnjTPf8Rnn5g3lvusrGr1g4t+BY9rPkpqq7TeORqBFYxIJb\nZWUlhagMFKTgUNVJ4HxgLfAccKuqPiMiXxSRM/xo/w7UAb8QkSdFZM00yYXG4ODgjHGme34jEumm\nouJ3VFXdRl3dyrwUHtn4FQvnFhzLfpbdAGKxWLEVpsWyW9gUrIhU1buBu1PCLkt6f3KhXBJks/DK\n2NgllJc/vts0JMkkpiQJu+nK8sIwzi04lv0suwEFuZsOimW3sCl+3aqIZDPuOnWhp0jkBcrKuneL\nl2i6CnM2Xcvjwp1bcCz7WXb75CfnsHFjeB29S5bE+fa3RzLGWbhwIZs3b94l7Gtf+xq1tbVccMEF\nqCpXXXUVt9xyC+Dl35VXXslhhx2W9vif/exnPPnkk3z961/fJZ3Vq1ezbt066uvrGRsb46ijjuLS\nSy9lv/32C+16w6SkC47Ozs6sOgKTF3qarrM8EukmEvEKlLBm083Wrxg4t+BY9rPstnFjGQ8/XBFi\nihOzTuH666/n0Ucf5aGHHiISibBu3TrOPvts1q9fT21tbU5pfeELX2DFihWoKldffTUrVqxg3bp1\nJqdrL+m5qmpqanI+Jt2UJKlEIq9QV3fGrDvPg/gVCucWHMt+lt0s8p3vfIcrr7ySOXPmUFZWxkkn\nncSyZcv4xS9+EThNEeHjH/84++yzD/fee2+ItuFR0jWOICV5tk1XkchmIhGvihq0BmLxTiOBcwuO\nZT/LbtYYGBhgZGSExYu9G0kR73G1ww8/nBdeeGHW6b/pTW/ixRdfnHU6+aCkaxz9/f2BjkuekmRi\nIu1zirsQdD2PoH6FwLkFx7KfZTfrJEZVzdRJnihgZsJyZ3tJFxytra2zTiObpisI9txHGH75wrkF\nx7KfZTdrNDQ0MGfOHDZt2gS89hzHU089xRFHHAF405Akj1TbsWMHzc3NWaX/pz/9iYMPPjhc6ZAo\n6YIjjLur1Nl0Y7GFaeMFee7D8t2fcwuOZT/Lbha54IILuOiiixgdHSUWi/HAAw/w/PPPc8YZ3uNp\ny5Yt49ZbbwW89TruuOMOjjvuuIxpqirXXnstXV1dLF++PO/XEISS7uOYmJj9qArYddRVujXLU0l0\nnsfjizIO3w3LLx84t+BY9rPstmRJHNVo1k092aQ3EyMjI1NDawE+/vGP77L/vPPOo7+/n+OOO45o\nNMrk5CTr1q2bmvDwq1/9KhdeeCHXXXcdqsr73vc+li1blvZcn//85/nGN77B6OgoRx11FHfeeafZ\nPqeCzFUVJmHOVZWvuWXKyjpm7DxPJhZbnLbz3MLcN9Ph3IJj2c+S28DAAA0NDbuExeNxyspsNpQM\nDAzw4Q9/mCOPPJJLL720qB6p+banzlVlknzNnx+k8zzd8F3L8/s7t+BY9rPsBrZrRFVVVfzyl78s\naqFRKEq6qSrXB3SCkM2UJZB++G4h/ILi3IJj2c+yG2C2tgG23cKmdK40DZFIJO/nyLbzfFcvb/hu\nIfyC4tyCY9nPshtkP5S1GFh2C5uSLjgGBgYKcp7kpquhoTVZD98dG7uuoCsO5kKh8i4Ilt3Atp9l\nN7A9A61lt7Ap6YKjra2t4OfMZfju/vvfmNdp22dDMfIuWyy7gW0/y25gY82L6bDsFjYlXXD09fUV\n5bzZ1kC6uo4Gwpv7KkyKlXfZYNkNbPtZdgPbd/WW3cKmdIrINFgYipxp7qt4/LWZQMOY+ypMLOTd\ndFh2A9t+lt3mzPkktbUvhtaXEI8vYWTk26GkVWqUdMFhpVo+3bTt8+c/mDZ+tg8Q5hMreZcOy25g\n28+yW1nZRioq1oeWXjYje1tbWzn00EOntm+88Ub2339/Hn/8cS677DK6u7sREd7ylrdwxRVXUFlZ\nyW9+8xu++tWvMjw8DMApp5zCl770pbTpJ6/Jkcz555/PPffcQ2trKw8//PBU+GWXXcbatWupqKhg\n8eLFfO9736OxsTHA1c+Okm6q6urqKrbCbiTPfbV58/TTDUQim/O+dG0mLOZdAstuYNvPslsxqKmp\n4aGHHpp67b///mzfvp2PfOQjfP7zn+fRRx/l97//PcuXL2fnzp08++yzfPazn+Waa67hkUceYd26\ndRxwwAE5n/f9739/2qnZTzzxRNatW8fvfvc7DjzwQL71rW+FcJW5U9IFR11deKuJhUVy53ldXWVO\nw3cLicW8S2DZDWz7WXazwvXXX89ZZ53FMcccA3jDcFesWEF7ezvf/e53ufDCC6cmJywvL2fVqlU5\nn2PZsmU0NTXtFn7SSSdNdcIfddRRbN26dRZXEpySLjiskmi6Gh39XNbDdysq7jHTce5w7C2Mjo5y\n/PHHc/zxx3POOecA8Pzzz3P44Yenjf/cc89Nuy9sbrrpJk4++eSCnCuVku7jGBoaoqWlpdga0+L5\n7dp5XlbWMdVJnkxZ2QBVVbcVrOPcct5ZdgPbfpbdikGiqSobCjmq6qqrrqK8vJz3vve9BTtnMiVd\n45g3b16xFTKS8MvlAcJCDd21nHeW3cC2n2U3KxxyyCE8+eSTu4VXVFSwdOnStPvC5Oabb2bt2rVc\ne+21RXtavaRrHN3d3SxcOHMfQrFI55c8fLei4h7KynZ/0rcQQ3ct551lN7DtZ9ktHl9CNKqhDscN\nwsc+9jFOPvlkTjnlFI46yptw9tZbb2XZsmVccMEFfOhDH+Ktb30rS5YsIR6Pc/XVV7N69epQnO+9\n916+853vcNdddzFnzpxQ0gxCSRcc1ueWmc4vUQNJHro7HYmO88Rw33y7WcCyG9j2s+w2MvJtotFo\n0deo2Geffbj++uu57LLL6OnpQURYtmwZp5xyCgsWLOCKK67gYx/7GCMjI4gIp5xySsb0rrrqKq65\n5pqp7WeeeYaPfvSjrFu3jt7eXg477DAuuugizjnnHD772c8yPj7OypUrAa+D/Jvf/GZerzcdJb0e\nx8jISFFL7ZmYyS+bRaMAYrE24vFDQn3mw3LeWXYD236W3NKtKxGLxcxOxGjFza3HkWe6uzMvsFRs\nZvLL57K1s3UrJpbdwLafZTeAycnJYitMi2W3sCnppqrUUtka2fjla9naMNyKhWU3sO1n2Q1sT/ue\nye2qq67izjvv3CVsxYoVfPrTn863Vl4o6YLD+qRkufplmvcqmTA6zy3nnWU3sO1n2Q1sz6WVye3T\nn/70HltIpKOkm6oSc8lYJYhfkGVrgzx1bjnvLLuBbT9LbiJCNBrdJSwejxfJZmYsuEWj0YIMcCjp\nGkd7e3uxFTIyW79sl60tL3/Qb77KvunKct5ZdgPbfpbc6urqGBoaYmxsbCosFosxPj5eRKvpseAm\nIgWZNqakC47Ozk4WLSre1OQzMVu/1Kar6Z46j0S6iUS8Jq1sm64s551lN7DtZ8lNRKivr98lrKOj\nw4xfKpbdwqZgTVUicpqIvCAiG0XkojT7q0Tk5/7+R0TkgHw73XHHHfk+xawIwy/XZWuzbbqynHeW\n3cC2n2U3sO1n2a2vr681zPQKUnCISAT4PvBO4FDgbBE5NCXaKmCHqi4BvgVcmW+v22+/Pd+nmBVh\n+6UO343H06+9UFbWWXC3MLHsBrb9LLuBbT/LbgMDA6EutFKoGscxwEZVfVlVo8AtwIqUOCuAH/vv\nbwOWS557eayPu86HXzad5/H4zO3clvPOshvY9rPsBrb9LLuFTUGeHBeRM4HTVPWj/vY5wFtU9fyk\nOE/7cbb42y/5cXqS07r77rsHt23bNlXgNTQ0dDc3N+8SJ1v6+vpagx5bCPLtV1YWrZwzZ8vBIhNV\niTDVivGRkQV/jscro5mOtZx3lt3Atp9lN7DtZ9ltfHz8kNNPP71+5pjZUajO8XQ1h9QSK5s4hHnx\nDofD4cidQjVVbQGS58NYAKQuXTUVR0TKgUagryB2DofD4ciaQhUcjwEHichiEakEzgLWpMRZA3zY\nf38mcL9afkzU4XA4SpSCFByqOgmcD6wFngNuVdVnROSLInKGH+2HQIuIbAQuBHYbshsEEYmIyBMi\ncpe/vdgf7vuiP/y30g8v+HBgEZkrIreJyPMi8pyIvE1EmkXkN77fb0SkyY8rIvIfvt9TInJknt0+\nJSLPiMjTInKziFQXM+9E5Ecist3vC0uE5ZxXIvJhP/6LIvLhdOcKye3f/c/1KRH5pYjMTdp3se/2\ngoicmhSecch6mH5J+/5FRFREWv3touedH36BnxfPiMjXk8KLnncicriI/F5EnhSRP4jIMX54ofNu\noYj81v/teEZEPuGH5/97oap79QuvEPoZcJe/fStwlv/+GuD/+e8/Dlzjvz8L+HkB3H4MfNR/XwnM\nBfFpcIcAAAjiSURBVL4OXOSHXQRc6b8/HfgVXl/QW4FH8ug1H3gFqEnKs3OLmXfA8cCRwNNJYTnl\nFdAMvOz/bfLfN+XJ7RSg3H9/ZZLbocAfgSpgMfASEPFfLwGv8/8X/ggcmq+888MX4t3MdQCthvLu\nr4F7gSp/ex9LeQfcA7wzKb8eKFLe7Qsc6b+vB/7s51HevxehfrmtvfD6Uu4DTgLu8jOsJ+kL/TZg\nrf9+LfA2/325H0/y6NaA9+MsKeEvAPsm/WO84L+/Fjg7Xbw8uM0HNvv/SOV+3p1a7LwDDkj5AueU\nV8DZwLVJ4bvEC9MtZd/fAjf57y8GLk7at9bPy6n8TBcvH354w97/CtjEawVH0fMO7wbl5DTxTOSd\nf973+e/PBn5WrLxL8bwTeEchvhd7+ySH3wb+FUjMPtYC7FSv6Qy8Dvn5/vvEjyX+/n4/fr54HdAN\n/Jd4TWnXi0gtME9Vt/ke24B9Uv3SuIeKqr4KfAP4C7ANLy8ex07eJcg1rwqWhyn8A96dnhk38ZqI\nX1XVP6bssuB3MHCc3+z5oIgcbcgN4JPAv4vIZrzvycXF9vObh48AHqEA34u9tuAQkXcD21X18eTg\nNFE1i335oByvCny1qh4BDJO5X6dgfn6b6Aq85oD9gFq8p/6nO3+h824mpvMpuKeIXAJMAjclgqZx\nKOTnOwe4BLgs3e5pPAqZd+V4TSZvBT4D3CoiYsQN4P8Bn1LVhcCn8PpnyeCRVz8RqQP+G/ikqg5k\nijqNR85+e23BAbwdOENENuE9qX4SXg1krnjDfWHXYcGFHg68Bdiiqo/427fhFSRdIrKv77EvsD3V\nL4172JwMvKKq3ao6AdwOLMNO3iXINa8KmYf4nYzvBj6gfhuAEbcD8W4K/uh/PxYAG0Sk3YjfFuB2\n9XgUr8Wg1YgbeKM/E/OL/AJvZoyEd0H9RKQCr9C4SVUTTnn/Xuy1BYeqXqyqC1T1ALwO2/tV9QPA\nb/GG+4L3D5BYlqugw4FVtRPYLCKH+EHLgWdTPFL9PuSPjHgr0J+ojuaBvwBvFZE5/p1ews1E3iWR\na16tBU4RkSa/VnWKHxY6InIa8FngDFUdSXE+S7yRaIuBg4BHyW7Ieiio6p9UdR9VPcD/fmzB62Tt\nxEDeAXfg3eghIgfjdXj3YCDvfLYCJ/jvTwJe9N8XNO/87+YPgedU9ZtJu/L/vQi7g8biCziR10ZV\nvQ7vn20j3t1CYuRGtb+90d//ugJ4HQ78AXgK78vShNc3cB/eP+N9QLMfV/AminwJ+BNwVJ7dvgA8\nDzwN/BRvJEvR8g64Ga+/ZQLvh25VkLzC62/Y6L8+kke3jXjtxk/6r2uS4l/iu72APzrHDz8db2TM\nS8Al+cy7lP2beK1z3ELeVQI3+v97G4CTLOUdcCxen98f8foU3lykvDsWr0npqaT/s9ML8b0oyFxV\nDofD4dh72GubqhwOh8ORH1zB4XA4HI6ccAWHw+FwOHLCFRwOh8PhyAlXcDgcDocjJ1zB4XDsZfjP\n3zwv/oy3M8QVf8qbgwrh5tg7cAWHo+iIyFDSKy4io0nbHyi232wQkU4RObbAp10N/Fr9ZZdF5BYR\n+VyS0+HiTRV+vnrj8b8FXF5gR8cejCs4HEVHVesSL7yn1t+TFHbTTMcXi6TpV6yd4x/xHtpMl97R\neFOWX6Kq3/ODbwfeJSKFmJjSsRfgCg6HecRbjOtSEXlZRHpE5CbxF0YSkaUiMikiq0TkVRHpFZF/\nEG9RrKdFZKeIfDMprX8SkftF5FoRGRCRZ0Xk+KT9zSLyE7+msFlEPi8iZSnHfl9EdgAX+ed/QET6\nRKRbRH4sIvV+/F/gzUx6j197+mfxFhzamHJ9U7USEfmaiPxMvIWxBvGm2Jj2+tPk1cH+OTek2fd2\nvKkkPqWq/5kIV9UhvCeJTw7y+ThKD1dwOPYEPoM3f86xeBOwTeA1rySIAG/CmxLlI8B3gX/Bm0/o\nTcBHROQtSfGPx5suogX4GnCHiDT4+27Cmxb+dXiT1/0NcE7KsU/iTbp3lR/2RaAdeCNwCN60GKjq\ne/EmmDvFrz39R5bX+3d4i3w14k1gN9P1J/NG4EXdfUqIt+Otq/JPqpquNvIc3tocDseMuILDsSfw\nj3grmm1V1TG8ebTe50/yluCLqjquqonJ7X6iqr2q+hfgYby1ChJsVtUfqOqEqv4Ebw6iU0VkEV7B\ncKGqjqg3Adx/4E2al+BlVf1PVY2p6qiqPq+q96tqVL1JAr/NaxPgBeVBVb1bVeOqOprl9SeYCwym\nCX873vovv5nmnIP+sQ7HjOS9jdbhmA3+j+NC4G4RSb6LLuO1xaJiqtqbtG8U6ErZrkva3pJymg68\ndUcW4U3Y2J30m1yGN/FbguQFbxCR/YDv4E07X+/Hn+2sxVPnyOL6e1KO3eF7pPItvEk114rIybr7\nug31adJyONLiahwO0/hNLq/izZA6N+lVnRg1FIAFKdv7402VvRkYwltvOXGeBlU9Mlkp5dh/x1uE\n6w2q2gB8lF0XxkmNPwzMSWyIt55Cc0qcqWMCXP9TwJI0tZEJ4L1AL14hVJuy//V4zXcOx4y4gsOx\nJ3AN8DURSSwWtY+IvGcW6S30O7rLReSDeAXHPar6CvB74OsiUi8iZSJy0AzDaevxCpsBEdkfuDBl\nfxdef0mC54BmEVnuFxpfYObvYdbXr6ob/XMekWZfFG/98zHgf0Skxk+vFq9v5L4ZPBwOwBUcjj2D\nr+MNIb3fH2n0MN5qiUF5CO+HtQ+vI/tvVbXf33c2Xlv/8/7+nwPzMqR1GV6ndT/wS7zO7GS+AnzF\nH911vl9L+AReJ/wWoJOZm4hyvf5r2bVDfwq/j+QMvAEFvxSRKmAlcPcsanCOEsOtx+EoKUTkn4Az\nVXWvHXrq1ySeAI6dqTDwm7QeB85S1T8Xws+x5+M6xx2OvQx/JNbSLOMqs6u9OUoQ11TlcDgcjpxw\nTVUOh8PhyAlX43A4HA5HTriCw+FwOBw54QoOh8PhcOSEKzgcDofDkROu4HA4HA5HTriCw+FwOBw5\n8f8B5K8Zw/HACiEAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from pycalphad.plot.utils import phase_legend\n", "phase_handles, phasemap = phase_legend(phases)\n", "\n", "plt.gca().set_title('Al-Ni: Phase fractions vs T [X(AL)=0.1]')\n", "plt.gca().set_xlabel('Temperature (K)')\n", "plt.gca().set_ylabel('Phase Fraction')\n", "plt.gca().set_ylim((0,1.1))\n", "plt.gca().set_xlim((300, 2000))\n", "\n", "for name in phases:\n", " phase_indices = np.nonzero(eq_alni.Phase.values == name)\n", " plt.scatter(np.take(eq_alni['T'].values, phase_indices[1]), eq_alni.NP.values[phase_indices], color=phasemap[name])\n", "plt.gca().legend(phase_handles, phases, loc='lower right')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the plot below we see that the degree of ordering does not change at all in each phase. There is a very abrupt disappearance of the completely ordered gamma-prime phase, leaving the completely disordered gamma phase. This is a first-order phase transition." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEXCAYAAABLZvh6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXt8XFW5sJ+3uTQhbUPShAYoUC6FUpU7BQqUYotcygGp\nF+DIpVhAsCCXDxFQsXIOioh4gXIRRUVRbgJyoFA5XJRPip9QLnKxWpBAW9ImTUiakDDp9P3+WHvS\n6XQm2Ulnz56XrOf3m19mr7Vm72fvzOx377XWXktUFY/H4/EMT0bELeDxeDye+PBBwOPxeIYxPgh4\nPB7PMMYHAY/H4xnG+CDg8Xg8wxgfBDwej2cYMyyCgIg8LSI/K9b1DTdEZLqIvCoivSLydD/lzheR\n5SKyXkTmF85waAT7pSIyPg/rmi8iy/LhZQURmRMcPxWR+4a4jlEiskJE9s+z20Ei8o6IbJHP9eYT\nEbkv7fidEvZzH4kgICLbisiHIrJSREqHuI7UF/CvIiIZecsyTkKzgYsHuf7paf+g9SKyVkReF5Fb\nReTjQ3E2zM3AEmAn3LHcBBHZBvgR8F1gW+C6gtkVB9cBB8YtMVhEZELa9zzX6+l+VpEEtgbOTFvn\nL0TknyJSlbGtG4ITc3Va8teA51X1b1ncLhORpIhc24/3IdmkVHUx8CqD/N1nQ0SOEZGXgnPW2yIy\n4DpF5GwReUJEWvvxPBN37AbFRyIIAHOBh4E24D82Yz0K7Amc2G8h1VZV7RjiNvYBtgm2cykwHlgi\nIp8f4vpCI46yqLcTgonA46r6rqq25iizE+77+ZCqvqeqnYXTy03Ux1BERohIiap2qmpLVNuJkHdx\nJ6LU60I2nNhTr6yBP4WqNqnq+2lJXwFKgOtTCSJyFPBl4HRVbQ/SKoBzgVsz1xlc2J0JfAeYIyLl\nQ9i3nwHzNuf/LyL7AX8AHgP2AuYD3xGRcwb46BbAk8BXcxVQ1fdVtWnQUqpq+oU7UTTiTv5fAx7N\nUuZp4GcDrGcOsA74PvAWUJ6WtwyYP5j1ZVn/dFyQGZ8l727gfaA6LW1f4I9AJ9AM3A/skPG5C4Hl\nwAfAIuDU9G2k7dPhwItAAjg6yDsC+AvQDawAfgGMzVj/ScBLQA/wNu5HWDXAfu4GPBJ4dwL/A+yS\ncQzSX3OyrGN+lnITgryZwDPBPrcDfwJ2TvvsicALgfMa4FGgZii+IY7h+RnH/7TM//FA/8dgX5cF\n3v8ItrV7Kj1LueODcl247+HEjP05GXgz2P9ngWMDp0Ny7P8RuJP0+Iz0k4L9GhMsX4H7XXwY7Mci\noDLE934OsC7kbyRnWWBqcGyOBeqA94DvZ5T5dHBcSrN8fibQBJQCrwMnZuRP6O84BWUqgv0/ajC/\n/Yx1/BZ4NiPt+8C/Q34+jKcCp4R1+ijcCRwNjMT92H8NzBCRCZuxvquBMbgfeCjSqpKGut1rgWrc\nDxIRmYw7uS0G9gM+ifuhPh5c7SAis3FVBt/H3VX8DvhelnWPCNZ/MTAJeF5EPom7GrkL2AP345kA\nPJCqChORObhqmx8Ak3EnuJnALbl2QkQqcSe8CuCw4DUKeCy48nqWDber5wXv786yquuAzwTv9wnK\nvSsiM3EnnxeAg4ADgDuAsmD7ZwC/AR4MPnc47oqrZIi+KbIdw+OBH+IC417APbj/Rfr6B/w/BmxD\ncFWLO9bLs/kGx+Fc4Au4k+Jo4Pa07e0L3In7LuwZOP8ox7pSPIE7oX4hI/004AFV7Qi+a5cBF+Du\n4o7A/d4Khqo+C1wD/By3j6uBb2QUOwx4UVXXZVnFl4A7g7xfBcuDdegBXsZ9rwAQkStEpHOA1xVp\nqzkY951M5zFgQj7akobEUCNasbxwJ7MfpC0/Bvx3RpmnCXknELy/AGgFaoPlfu8EgBNwV2fb9rP+\n6eS+E6gI8i4Nln8J3JVRZiTuyuzTwfJfgF9nlLmGTe8EFDg0y/G4JiNt+6DsXsHy28A5GWWmBWWy\nXlnjquU+AOrS0sbh7jZOG8yVSrbjhbsDeLifz7wD3DiI786Avv0cw/+LO6mkp12XcfzD/B/nA+uB\n7TPKzWfTO4F1QH1a2onBZyuC5TuBZzLWcw4DXzleA7yWcQx6gSOD5YuAfwJlQ/h9ziEPdwJBfmnw\nvVwPfCJL/oPA3VnSt8LdwX0iWN42OJYT08pMGOg4BeXuB+5NW64FdhngVZtWPgGcnbHOjwXb3j/E\nMRrQk+F0JyAi2wKzcD+2FL8CvpirgVhEDu0nSqe4CVeVkHmlkRVVfUBVJ6nqisHtwQat1KqCv/sD\nJ6R7Bj4VuCsxcFeMz2WsZ3GO9Wc2ku0PXJix/teDvIkiUg/sAFyfUSZ19bdLju18DHhd0+qyVXUV\nsDTI21xSVSubICJbAdvlys/BYHwzj+Fk3J1NOv83YznM/xFglaq+E8J3pao2py/jvjtbpTmF/U6k\n8ytgsojsEyx/AXel/b/B8j24u61GEfmliJwqIqNDrDffHIVrQ/sQd0GSSSWuGiyTLwJ/V9W/AwS/\n0yeAs4bg0BNsh2Bdraq6bIBXrnavTHTgIvlnSD1pioi5uFv9FzM69JTg2ggeyPKZ53G37yk2+Qep\naq+IXA7cKSI35k83J6kTzlvB3xG4qq1rspRdk/Y+zJcmqe42Np0RuKqjX2cp3wSkemFcADyVpUyu\n6opcTpIjfSgMtJ7BbieMb7ZjGGZbYf+PXQOsJ0Uix/ZHZEkLjaq+ISLP46qAlgR/71TVZJC/QkQm\n4apBPgl8E/ieiBygqu8OdntDIQjyP8d9b1cD14rI46r6z7Rizbgr8/TPpRqEdxKR9GqiEcDeIvIN\nVc08rv1Ri6s+S63/Clx7SX98R1W/E7x/D2jIyB8X/B18o24eMHsnICIjcEHgO7iTevrrd8DZ2T6n\nqt1horSq3oere872A843X8U1DKeuvJ7H1dW/meWqoi0o8zquXjydsF0Knwc+luOqpTO4Gn4X2C1H\nmWwnRIDXgI+JSF0qQUTGAbsGeZvLC8CR2TJUdTUuOGXNz8Hm+L6Oq99NJ3M5zP8xn2zOd+IO4GQR\n2RvXnnBHeqaqfqiqj6nqpcAncL1VPr2ZvoPhZ7j/73zgJ7i7sF9n3PEvYdM7uBm4KpSD2fgcsTfu\niv6EQXp8Avd/TXELm55/Ml/p7Wh/YdPv6FFAo6r2d3EVHWHrjYrthasG2qQuNcj7FK4BbkKw/DSD\naBNISzso2EY3+WsT2Bt3JbBTsA+P4K7wPpdWdndgLa6OdwqwI+4q7MfATkGZ2bh62/Nx1TOn4Xr5\naMoj2z4F6YcHn001au6M+yL+nKDHB66nUQL4OvBxXC+aTwO39rOPlbieWk/gGmb3xd1JLGPj3lZD\nbRNI/V9/hDu57hbs425B/pnBfn0zOIYfwzVA1w3Vt59jeAKuXjnVWHoG7kouvU0gzP9xPml1/2nr\n3yg9WzngEDbuObUv7vt6FS6QHYery1fg4AGOd13w/34ReCEjby6u6mRPXDXhF4P/w4wQv9Osx28w\nZXGNuB8Au6eljcfdxV+Z8btRYLu0tHuBJ3Js77fAk8H7CcFn57DpSXzLoMzE4PjuFPY8lWWb+wff\n0atxnQxOw51fzkkrMwV3PpmSltYQuByT4dmQZRuDahPIywk5jheuQXhxjrxS3K3hfwfLTzOEIJD2\nJVL6DwJz0n+MOdY/nY27PHYBb+D6NH88S/lPBPvYFnxJlgE/ZeNGpotwJ/5uXK+Zs4N1j+1vn4K8\nQ3F3HmvTXH5EWvc63El/cfAD7MB1F70y1z4Gn9kNWMiGLpcPk9blMuyXlBwN6birqMXBPrfjTto7\npeV/AdeD40NclcsjBD/iofgOcAwvSDv+/4vr3ZMZuPr9P5LHIBCkpbqIfhgcp88HZfYN8Zt6ICh7\nQUb6bNyVd1vwXXgVmBvyd5rz+IUpizvxdgLnZyl/Mu6Eul9a2lPAFcH7VIPwl3Js73jcSX0iG4JA\nttdJQflvA4vC7MsA+zkr7TvaCFyc47s/PeP/n81tfpb1DyoISPAhz0cAEbkS9wMeG7eLpzgQkdPY\n8AzI+wOVj5OgW/LPVHXIbZUiciiu6/NEVf0gj26jcAH806qa2fheVIiIAqeq6m/ClDfbJjDcEZGy\n4DH4PURkZxE5E9e2cFvcbp74EJFLRGRfEdkxeAr9e7gujUUdANIoCXpSZeu0MCCq+gzuin3H/Gqx\nI/CNYg4AIvLroAfa4D7n7wRsEjSIPYyrBx4N/BvXmPd9zf6wjGcYICJ34B7mqsU17j8AfCufV8VR\nEXQ7TfWU6dShDIEwjBGRBtzDjgBNGnKoFR8EPB6PZxjjq4M8Ho9nGOODgMfj8QxjzD0x/PTTT+vI\nkSPj1vB4PB4zfPDBBy0zZsyoz5ZnLgiMHDmSSZMmxa2xEY2Njeywww5xa4TCu0aHJV9LrmDLtxhd\nlyxZ0pgrz1cH5YGysmKYpyUc3jU6LPlacgVbvpZcwQeBvFBdXT1woSLBu0aHJV9LrmDL15Ir+CCQ\nF1pa7MwC6F2jw5KvJVew5WvJFQy2CRQjliK/d42OYvVVVTo7O0l/JqiqqoqOjqFOk114LPnG6Soi\njBo1ioyh9fvFB4E8kEgMZjjyePGu0VGsvp2dnYwcOZLy8g0zZvb29pqqu7bkG6drIpGgs7OT0aPD\nz/njq4PyQHd3d9wKofGu0VGsvqq6UQAAWL9+fUw2Q8OSb5yu5eXlDHYUCB8E8kBDQ+ZEQcWLd40O\nS75WrqpTWPK15Ao+COSFpiY741x51+iw5Nvb2xu3wqCw5GvJFXwQyAuZt9rFjHeNDku+g2k4LAYs\n+VpyBR8E8sJgGmHixrtGhyXfkpKSuBX6pbu7m2OPPZZkMgkMzfeaa67hhhtuyLdav+u99dZbOfTQ\nQzn77KxTnOckkUgwa9Ys1q0r/CjwPgjkgTVr1sStEBrvGh2WfOM42QyGO++8k2OPPbbv5D+Qr6pu\nVoPs5n4+xe23385vfvMbfvrTnw7qc+Xl5UybNo0HHnhgsx0Giw8CeaCmpiZuhdB41+iw5FtaWty9\nw++9916OOeaYvuXbbruNqVOnMnXqVG6++WYA3nnnHQ444AAuueQSpk+fzooVK/jBD37AlClTOOGE\nE1i2bFnf5++55x5mzpzJtGnTuOiii0gmk1k/n60ckHO96Vx88cW8/fbbzJkzh5tuugmAu+66i0MO\nOYRDDz2Uc845J2cawKxZs7j33nvzeyBDUJBvgojcDhwLrFbVj2fJF+DHwDG4iaznqOqSQrjlg+7u\nbsaMGRO3Rii8a3RY8K2prY1kvW2trf3md3V1cdZZZ9HU1MQ999zD6NGjefXVV3nmmWfo7e3lq1/9\nal/ZRCJBY2Mj22+/PQAvvfQSv/3tb3n88cdRVY444ggOPvhgttxyS5YtW8aNN97Iddddx0svvcT9\n99/P008/zbp16zj88MPZc889Wbp0KQ888ACPPvooZWVlXHLJJdx7771MnTp1o8/nKjdp0qSs683k\n+uuv54knnuD3v/89DQ0NvPHGG1x//fU8+uijjB07lra2tqxpKXbffXdefPHFPP1HwlOoy4FfAjfi\npj/MxtHAxOB1AHBz8NcEPT09cSuExrtGhzXfQvL73/+eH/7wh5SVlXHfffex2267ceCBB3LppZdy\n9dVXb1R2zZo1Gz19/dxzz3H00UdTVVUFwLHHHsvixYs5+uij2W677dh///0BWLx4MbNmzWKLLbYA\n4KijjgLgz3/+My+//DIzZswA3P+prq6OqVOnbvT5XOXa2tqyrjcXqWqlZ555huOOO46xY8cC7k7x\n3nvv3SQtRUlJCeXl5axdu7ag7UsFCQKq+mcRmdBPkeOBO9Q95fCciGwpIlur6nt5EVi/HoLbuiho\nGDsWNrdbmAiUlLi/EWKpL7slV7Dhm7piX79+PSNGFK42+Pjjj+87sW+//fYkEgm6uroAOPDAAzcq\nW1lZuVFAVdWcrqkTc4psPXNUlZNOOokrr7xyo/R33nlno8/nKnfzzTcPqsdP6jkBVd3kc9nS0vnw\nww+pqKgIva18UCwVg9viJsVOsTxIy0sQKHnpJcbMnJmPVUWOikBpKYwY4V4i7i+g6cs53mtqOeOl\nJSVQUsLIdesor6yEkhKXVlrqgk/w0tRyaal7n1ouK0PLytxytvfl5Wh5OaTep6eVl6MjR7J+++3R\nbbYJfSyampqKblz2/rDk29vbSyEnZ0q/su/s7GTnnXfmqaeeYu7cuZuU3XLLLUkmk/T09FBRUcHU\nqVP58pe/zEUXXYSq8sgjj3DLLbds8rmpU6cyb948LrzwQtatW8eiRYs4/fTTmTZtGqeccgrnnnsu\n9fX1tLW10dm56RzsucrlWm8uUs8JTJs2jdNOO41zzz2X2tpa2trasqal7gZaW1sZO3ZswR82K5Yg\nkC00Zn32efXq1cydO5fS0lKSySSzZ89m3rx5NDU1UVVVRUlJCR0dHdTX19Pa2oqqsk1vrzuhFTPr\n1yPr1yOqOe8q8nGPEOdR6PjmN3lr9uyc/6f6+npWrVrFqFGjAFeP3NPTQ3NzMyJCbW0tzc3NjBkz\nhmQySVdXFw0NDTQ1NVFWVkZ1dTUtLS1UV1eTSCTo7u7uyy8vL2f06NGsWbOGmpoauru76enp6cuv\nqKigsrKStrY2xo4dy9q1a0kkEn35lZWVlJeX097eTl1dHe3t7fT29vblV1VVkUwmaWxs7HefOjs7\nGTduXEH3qaurq89PVSkrK2P9+vX09vYiIiSTyb7fUyq/t7eXESNGbJIPrlG5t7e3r+dOMpmkrKys\nrwdPSUkJ69ato6SkpK/XTWqdIkJJSQmTJ09m4cKFXHDBBXz44Yeb5B922GE8++yzHHrooUyaNIkT\nTzyxr5rmlFNOYbfddmPlypWoat/nJ02axHHHHce0adPYdtttOeCAA0gmk+y4445cfvnlzJ49u8/l\nO9/5DltvvTWqSiKRoLS0lB133JHLLrtso3Lf/e532XfffTn++OOZNm0a48ePZ8qUKSSTyY2OYWqf\ngT6n3Xbbja985SvMmjWL0tJSPvaxj7FgwQIuuOCCjdJuuOEGRowYwVNPPcXMmTNJJBID/h/6y//g\ngw9ob2/f5LuXCxnsOBNDJagOejhHw/CtwNOq+rtgeSkwPVt10OLFi7XYZhbr6OjIT4Og6oaqq3Xr\n3HLaS1L5qq5MKm/9+r4gkr5MMtn3V4K0rvZ2qioqNqStW+fKJZNIarvB377l3l633Nub/X0iseFv\nIgG9vciHH27yt+ess+j9zGcKf1wLRLH6ZvNKJpOxPSvwy1/+kjlz5vRb5pVXXuGmm27qu+KP03ew\nDNX1tNNO45vf/CYTJ07crO1n+38vWbLkhRkzZuyXrXyxXB4/BJwnInfhGoTb89YeUADa2try8+NP\ntQuUlECWp08HCtdhwvmqIpz6Lhd5O64FwpJv6ko9DsIMq7DHHntwyCGH9J1Q4/QdLENxTSQSHHPM\nMZsdAIZCobqI/g6YDtSJyHLgW0AZgKreAizEdQ9dhusiekYhvPJFqqXfAt41Oiz5xvmcwKxZs0KV\nO+WUU/reF/tzDekMxbW8vJyTTjopApuBKVTvoJMHyFdgXiFcomDt2rUD1rsVC941Oiz5xlm9ss0g\nOgekGA7VQXHhnxjOA8U6mUg2vGt0WPItVFtgvrDka8kVfBDICxb6h6fwrtFhydfamPeWfC25gg8C\necHSOPLeNTos+Vob896SryVX8EEgL1RWVsatEBrvGh2WfAv5tHA+sORryRV8EMgLliYT8a7RYcnX\n2sQnlnwtuYIPAnmhvb09boXQeNfosOSbevrXCpZ8LbmCDwJ5oa6uLm6F0HjX6LDka6nfPdjyteQK\nPgjkBUtXgN41Oiz5FuPVauaUkumkT+l45JFH5n3b+ZyKMtN/oOkoDzjggEFNR5nvqSh9EMgDlnoD\neNfosORbjH3ZM6eUzMWiRYs2azv5mEqyv3UM5tjefvvt3HPPPYOajjLfU1H6IJAHLPUP967RYcm3\nGPuyZ04pmT6l41tvvdWXvt122wFulNkTTzyRQw89lKlTp3L//fcDsGDBgs2aihI2bzrKsrKyQU1H\n+Z//+Z/cdNNNOaedzJaez6kobVVeFSmWxpH3rtFhwbe2Npp5kFtb2/rNzzW95L777gtkn1IyfUrH\n6dOns9dee220zieeeIKGhgbuvvtuwI2eublTUQKbPR3lTjvtNKjpKB966CFWr17N6aefvsm0k7mm\no8znVJQ+COSB1LR3FvCu0WHNt5Dkml4yReaUkplTRWZrB5g8eTJXXnkl8+fP58gjj+Sggw7iueee\nY9asWUOeihI2fzrKlpaWQU1HCdmnouwvPZ9TUfogkAcsDRblXaPDgm/qin3dunUF7cWSbXrJ9JnN\nMqeUhIH72++yyy489dRTPP7441x11VUcfvjh/Z4Qw0xFCZs/HeWCBQsG/axArmkn+5uOMl9TUfo2\ngTzQ0dERt0JovGt0WPItdO+gzOklM7vTpk8pCW6qyEceeYTu7m7Wrl3LH//4x03W+d5771FZWcnn\nP/95zjvvPF555RWmTp3KwoUL+eCDD+jq6uKRRx7hoIMO2uSzmetPb2yeNm0aDz30EM3NzYCbJ+Ld\nd9/dZB25yk2ZMiXnunMxbdo0HnzwQVqDOaBT1T650vM5FaW/E8gD9fX1cSuExrtGhyXfOPuyl5WV\nsffee2+Sfvjhh/Pcc88xffp09txzT0444QQOO+wwxo8fv8lk9ACvv/463/rWtxgxYgRlZWVcd911\n7Lnnnpx88snMDOYUP/XUU9ljjz145513Nvpsf+ufNGkSV1xxBZ/5zGf6ppm89tprGTdu3EbryFVu\nn332GdA9k913352LL764r3fUHnvswYIFC3KmP/PMMxxxxBGhjvdAFGx6yXxRjNNLLl++nPHjx8et\nEQrvGh3F6pttusFEIhHbMBe5ppfMnFIynTh9B0shXPubinKw00v66qA8YCmQetfosOYbF7mep0if\nUtKTm3xPRemrg/KApWoA7xodlnyLdXrJ9Ckl07E0FEPUrvmeitLfCeSBVatWxa0QGu8aHZZ843y6\neSjTS1p6GtuSK/ggkBeszCsL3jVKLPla6M6ajiVfS67gg4DH4/EMa3wQyAOdnZ1xK4TGu0aHJV9r\nja+WfC25gg8CeSGz/3Ax412jo1h9RYREIrFRWjEOINcflnzjdE0kEoN+WtlOk3sR09zc3DeyYbHj\nXaOjWH1HjRpFZ2fnRsMydHV1mRrryJJvnK4iMui2KR8E8oClOUW9a3QUq6+IbDKmTrYHiooZS76W\nXMFXB+WF2trauBVC412jw5KvJVew5WvJFXwQyAupAaQs4F2jw5KvJVew5WvJFXwQyAuWbv28a3RY\n8rXkCrZ8LblCAYOAiBwlIktFZJmIXJYlf3sReUpEXhSRV0TkmGzrKUYsdQnzrtFhydeSK9jyteQK\nBQoCIlICLACOBiYDJ4vI5Ixi3wDuUdW9gZOAmwrhlg+6urriVgiNd40OS76WXMGWryVXCBkERGRE\nttcgtjMFWKaqb6lqArgLOD6jjAKp+6hqYOUg1h8rliYY967RYcnXkivY8rXkCuG7iK7DnaQ3QkTW\n4U7W9wPfUtVcj0xuC6RPzbMcOCCjzHzgjyJyPlAFzMy2otWrVzN37lxKS0tJJpPMnj2befPm0dTU\nRFVVFSUlJXR0dFBfX09rayuqSn19PatWrerrP9vZ2cm4ceNobm5GRKitraW5uZkxY8aQTCbp6uqi\noaGBpqYmysrKqK6upqWlherqahKJBN3d3X355eXldHZ2Ul5eTk1NDd3d3fT09PTlV1RUUFlZSVtb\nG2PHjmXt2rUkEom+/MrKSsrLy2lvb6euro729nZ6e3v78vO9T0uXLqWurm7AfRo9ejRr1qyJdZ9W\nrFjBrrvumrf/U9T71NLSQmVlZUG/e0Pdp6VLl9LQ0FDQ797m7FMymaSkpKTofk/Z9mnlypVUVVUV\n3e8pF6EmlRGRecCngWuCk/n2wKXAI8BS4FvAa6p6Zo7Pfw44MpUvIqcCU1T1/LQyFwc+PxCRg4Cf\nAx9X1fXp6yrGSWVWrlw5pJER48C7RoclX0uuYMu3GF37m1Qm7J3AxcA+qtoeLP9TRJ4HXlDVnUXk\n78AL/Xx+OZD+KOV4Nq3umQscBaCqi0WkAqgDVod0jI30+VOLHe8aHZZ8LbmCLV9LrhC+YXgMsEVG\n2ha4unuAJqCyn8//DZgoIjuKSDmu4fehjDLvADMARGR3oAIw0eG2paUlboXQeNfosORryRVs+Vpy\nhfB3AncAj4vIj3HVQeOBC4BfBfmfwlULZUVV14nIecAioAS4XVVfE5GrgOdV9SHg/wC3ichFuPaH\nOWpkvj5Lkd+7RoclX0uuYMvXkiuEDwJfBf6Fu4LfBngP1+XztiD/KeDp/lagqguBhRlpV6a9fx04\nOKRPUZE5QmMx412jw5KvJVew5WvJFUIGgaBx9pbglS2/J1v6cKG7uztuhdB41+iw5GvJFWz5WnKF\nQYwiKiKfAvYCNupvlH41P1yx1C/Yu0aHJV9LrmDL15IrhH9Y7EbgN8C+uF4+qdf46NTs0NTUFLdC\naLxrdFjyteQKtnwtuUL4O4GTgb1U9d0BSw5DysvL41YIjXeNDku+llzBlq8lVwjfRXQN8H6UIpbJ\nnLCjmPGu0WHJ15Ir2PK15Arhg8APgDtF5CAR2Sn9FaWcFdasWRO3Qmi8a3RY8rXkCrZ8LblC+Oqg\nm4O/x2akK67f/7CmpqYmboXQeNfosORryRVs+VpyhZB3Aqo6Isdr2AcAsNUlzLtGhyVfS65gy9eS\nK/iZxfJCT4+dxyS8a3RY8rXkCrZ8LblCP9VBIvKYqh4VvH+GLENJA6jqtIjczGCpX7B3jQ5LvpZc\nwZavJVfo/07gjrT3P8MN7ZztNeyx1C/Yu0aHJV9LrmDL15Ir9HMnoKq/hb6pIXcGrlbVDwslZomK\nioq4FULjXaPDkq8lV7Dla8kVQrQJqGoSmAf0Rq9jk8rK/kbRLi68a3RY8rXkCrZ8LblC+IbhXwHn\nRClimbZ/zOCDAAAgAElEQVS2trgVQuNdo8OSryVXsOVryRXCPycwBThfRC7FzSfQ10jsG4Zh7Nix\ncSuExrtGhyVfS65gy9eSK4QPArexYe4ATwZr164dcDLnYsG7RoclX0uuYMvXkiuEn0/gVwOXGr5Y\nmkTCu0aHJV9LrmDL15IrhB9KWkTkLBF5UkReCdKmicjno9WzgaV+wd41Oiz5WnIFW76WXCF8w/BV\nwFzgp8D2Qdpy4GtRSFnDUr9g7xodlnwtuYItX0uuED4IzAGOVdW72NAo/G/AjyKKrS5h3jU6LPla\ncgVbvpZcIXwQKAE6g/epIDAqLW1YY2kSCe8aHZZ8LbmCLV9LrhA+CCwErheRkeDaCID/Av4nKjFL\ntLe3x60QGu8aHZZ8LbmCLV9LrhA+CFwMbAO0A9W4O4Ad8G0CANTV1cWtEBrvGh2WfC25gi1fS64Q\nfj6BDlX9NO7EfyCws6qeoKprI7UzgqXI712jw5KvJVew5WvJFfofSjpbgGgOXn35qro+GjU79Pba\nGVbJu0aHJV9LrmDL15Ir9P+w2DpyzCGQwbCfXcxSv2DvGh2WfC25gi1fS67Qf3XQjrguoDsB5wN/\nAo4Cdg/+PgWcF7WgBSz1C/au0WHJ15Ir2PK15Ar9BAFVbUy9cA3Ds1X1cVX9p6o+DnwOuCTshkTk\nKBFZKiLLROSyHGU+LyKvi8hrIvLbwe5MXFRVVcWtEBrvGh2WfC25gi1fS64QfgC5amAL4P20tC2C\n9AEJJqZZAByBe9L4byLykKq+nlZmInA5cLCqtonIViHdYqekxE6NmHeNDku+llzBlq8lVxjcfAL/\nKyJni8jRInI2sChID8MUYJmqvqWqCeAu4PiMMmcBC1S1DUBVV4dcd+x0dHTErRAa7xodlnwtuYIt\nX0uuEP5O4FJgGXAi7nmB94AbCT+89La4eQhSLAcOyCizK4CI/AXX2DxfVR/LXNHq1auZO3cupaWl\nJJNJZs+ezbx582hqaqKqqoqSkhI6Ojqor6+ntbUVVaW+vp5Vq1b1De/a2dnJuHHjaG5uRkSora2l\nubmZMWPGkEwm6erqoqGhgaamJsrKyqiurqalpYXq6moSiQTd3d19+eXl5VRVVdHY2EhNTQ3d3d30\n9PT05VdUVFBZWUlbWxtjx45l7dq1JBKJvvzKykrKy8tpb2+nrq6O9vZ2ent7+/LzvU+9vb2sXLly\nwH0aPXo0a9asiXWfent76enpydv/Kep9GjlyJI2NjQX97g11n3p7e1m9enVBv3ubs0/V1dU0NjYW\n3e8p2z6VlJTQ2NhYdL+nXIhq/x2Agqqcb7EZcwyLyOeAI1X1zGD5VGCKqp6fVuZh3BSWnwfGA88A\nH1fV9CooFi9erJMmTRqKRmQsX76c8ePHx60RCu8aHZZ8LbmCLd9idF2yZMkLM2bM2C9bXqHmGF4O\nbJe2PB5YmaXMH1S1V1X/DSwFJm7GNgvGQIG0mPCu0WHJ15Ir2PK15AqFm2P4b8BEEdlRRMqBk4CH\nMso8CBwOICJ1uOqhtzZjmwWjvr4+boXQeNfosORryRVs+VpyhfBBYArwYxF5W0SeEZE/p15hPqyq\n63DPFCwC3gDuUdXXROQqETkuKLYIWCMir+OeQfiqqq4Z3O7Ew6pVq+JWCI13jQ5LvpZcwZavJVco\n4BzDqroQNxppetqVae8V9zzCxZuznTiwNJ+od40OS76WXMGWryVX8HMMezwez7AmbHUQInJGMMfw\n0uDvGVGKWaKz087cOt41Oiz5WnIFW76WXCHknYCIfB04DfgB0IgbUvpSEdlGVa+O0M8E48aNi1sh\nNN41Oiz5WnIFW76WXCH8ncCZwKdU9aequkhVf4obRO7s6NTs0NzcHLdCaLxrdFjyteQKtnwtuUL4\nIFBFMI9AGmsAWzMqR4SbbdMG3jU6LPlacgVbvpZcIXwQeAy4U0R2E5FKEZmEe3ZgUXRqdqitrY1b\nITTeNTos+VpyBVu+llwhfBA4D1gLvIybX/gloAs3z8Cwx9Ltn3eNDku+llzBlq8lVwjfRbQDOE1E\n5gB1QIufVnIDY8aMiVshNN41Oiz5WnIFW76WXCH8w2JA33zCZoZ4LhTJZDJuhdB41+iw5GvJFWz5\nWnKFQTwn4MlNV1dX3Aqh8a7RYcnXkivY8rXkCj4I5AVLE0t71+iw5GvJFWz5WnKFfoKAiHw/7f0n\nC6NjE0sTS3vX6LDka8kVbPlacoX+7wTSHwR7MGoRy5SVlcWtEBrvGh2WfC25gi1fS67Qf8PwyyJy\nH/A6MFJErspWKH0k0OFKdXV13Aqh8a7RYcnXkivY8rXkCv3fCXwW9zzA1oDgZgbLfBXXHGox0dLS\nErdCaLxrdFjyteQKtnwtuUI/dwKquhr4bwARKVVVP2poDixFfu8aHZZ8LbmCLV9LrhD+YbEzRKQG\n+A9gW2AF8LCqtkYpZ4VEIhG3Qmi8a3RY8rXkCrZ8LblCyC6iInIQ8CZunuE9gC8By4L0YU93d3fc\nCqHxrtFhydeSK9jyteQK4Z8Y/hHwZVW9K5UgIicCPwH2j0LMEpb6BXvX6LDka8kVbPlacoXwD4vt\nCtyTkXYfsEt+dWxiqV+wd40OS76WXMGWryVXCB8E/gWclJH2OVwV0bCnvLw8boXQeNfosORryRVs\n+VpyhfDVQRcCD4vIV3DTS04AJgLHRuRlitGjR8etEBrvGh2WfC25gi1fS64Q8k5AVZ8FdgZuBF4A\nbgB2CdKHPWvWrIlbITTeNTos+VpyBVu+llxhEENJq2ob8JsIXcxSU1MTt0JovGt0WPK15Aq2fC25\ngh9FNC9Y6hLmXaPDkq8lV7Dla8kVfBDICz09PXErhMa7RoclX0uuYMvXkiv4IJAXLPUL9q7RYcnX\nkivY8rXkCoMIAiJSJiKHBg+JISJVIlI1iM8fJSJLRWSZiFzWT7nPioiKyH5h1x03lvoFe9fosORr\nyRVs+VpyhfDDRnwC+CdwG/DzIPkw4PaQny8BFgBHA5OBk0VkcpZyo4GvAH8Ns95ioaKiIm6F0HjX\n6LDka8kVbPlacoXwdwI3A1eq6iSgN0j7E3BIyM9PAZap6luqmgDuAo7PUu6/gGsBU5VqlZWVcSuE\nxrtGhyVfS65gy9eSK4QPAh9jQ/dQBVDVLiDs3m4LvJu2vDxI60NE9ga2U9WHQ66zaGhra4tbITTe\nNTos+VpyBVu+llwh/HMCbwP7As+nEkRkCrAs5OclS5qmrWsE8ENgzkArWr16NXPnzqW0tJRkMsns\n2bOZN28eTU1NVFVVUVJSQkdHB/X19bS2tqKq1NfXs2rVKkaNGgVAZ2cn48aNo7m5GRGhtraW5uZm\nxowZQzKZpKuri4aGBpqamigrK6O6upqWlhaqq6tJJBJ0d3f35ZeXl1NZWUljYyM1NTV0d3fT09PT\nl19RUUFlZSVtbW2MHTuWtWvXkkgk+vIrKyspLy+nvb2duro62tvb6e3t7cvP9z4lEglWrlw54D6N\nHj2aNWvWxLpPiUSCnp6evP2fot6nsrIyGhsbC/rdG+o+JRIJVq9eXdDv3ubs05gxY2hsbCy631O2\nfRoxYgSNjY1F93vKeXJW1X4LBCfpY3FtAbcA/we4Gjes9Fmq+scQnz8ImK+qRwbLlwOo6neD5Wrc\nOESdwUcagFbgOFV9Pn1dixcv1kmTJg3oXEjee+89tt5667g1QuFdo8OSryVXsOVbjK5Llix5YcaM\nGVk724QdNuJhXKNuPa4tYAdgdpgAEPA3YKKI7Cgi5bjB6B5KW3+7qtap6gRVnQA8R5YAUKxYmkTC\nu0aHJV9LrmDL15IrDG7YiCXAl4eyEVVdJyLnAYuAEuB2VX0tmLz+eVV9qP81FDeW+gV71+iw5GvJ\nFWz5WnKF8F1ER4rI1SLyloi0B2mfCk7soVDVhaq6q6rurKpXB2lXZgsAqjrdyl0A2OoX7F2jw5Kv\nJVew5WvJFcL3Dvoh8HHgC2xo0H0NODcKKWtY6hLmXaPDkq8lV7Dla8kVwlcHnYAbOrpLRNYDqOoK\nEdl2gM8NCyxNIuFdo8OSryVXsOVryRXC3wkkyAgYIlIP2Bo4OyLa29vjVgiNd40OS76WXMGWryVX\nCB8E7gV+JSI7AojI1rgJZu7q91PDhLq6urgVQuNdo8OSryVXsOVryRXCB4ErcA+M/R3YEjfn8Erg\n29Fo2cJS5Peu0WHJ15Ir2PK15Aoh2gSCp3kPAb6mqhcG1UAtGuYps2FCb2/vwIWKBO8aHZZ8LbmC\nLV9LrhDiTkBV1wN/UNUPg+VmHwA2xlK/YO8aHZZ8LbmCLV9LrhC+OujPInJgpCaGsdQv2LtGhyVf\nS65gy9eSK4TvItoIPCoif8CNBtp3J6CqV0YhZomqqtBz68SOd40OS76WXMGWryVXCB8EKoEHg/fj\nI3IxS0lJSdwKofGu0WHJ15Ir2PK15Aohg4CqnhG1iGU6OjqoqamJWyMU3jU6LPlacgVbvpZcIWQQ\nEJGdcmR9CLwXNB4PW+rr6+NWCI13jQ5LvpZcwZavJVcI3zC8DPdswL8y3r8DfCgivxeRcdEoFj+t\nra1xK4TGu0aHJV9LrmDL15IrhA8CZwF3ArsCFcBuuOkmvwx8AndHsSAKQQtY6jHrXaPDkq8lV7Dl\na8kVwjcMfxs3gFxqAvhlInIu8E9VvVVE5uDuDIYllm7/vGt0WPK15Aq2fC25Qvg7gRHAhIy07XET\nxICbFjL0BDUfNVatWhW3Qmi8a3RY8rXkCrZ8LblC+BP3j4AnReQXuOcExgNnBOkAs4DF+dezwUAT\nORcT3jU6LPlacgVbvpZcIXwX0WtF5BXgc8A+wHvAXFV9LMh/kA3PEXg8Ho/HCGGrg1DVx1R1rqoe\nrapfTAUAD3R2dsatEBrvGh2WfC25gi1fS65QwDmGP8qMG2end6x3jQ5LvpZcwZavJVfwcwznhebm\n5rgVQuNdo8OSryVXsOVryRX8HMN5QUTiVgiNd40OS76WXMGWryVX8HMM54Xa2tq4FULjXaPDkq8l\nV7Dla8kV/BzDecHS7Z93jQ5LvpZcwZavJVfwcwznhTFjxsStEBrvGh2WfC25gi1fS64Q/jmBBHAh\n4OcYzkIymYxbITTeNTos+VpyBVu+llwhfBfRySLyJRG5HJgN7B6tli26urriVgiNd40OS76WXMGW\nryVXGCAIiON2XDXQFcBxwNeBV0TkFzKIZnAROUpElorIMhG5LEv+xSLyuoi8IiJPiMgOg9yX2LA0\nsbR3jQ5LvpZcwZavJVcY+E7gbGA6cKCq7qCqB6nq9sBBwKHAl8JsRERKcENNHw1MBk4WkckZxV4E\n9lPVPYD7gGtD70XMWJpY2rtGhyVfS65gy9eSKwwcBE4FvqKqf0tPDJYvDPLDMAVYpqpvBe0LdwHH\nZ6zzKVX9IFh8DkNzGZeVlcWtEBrvGh2WfC25gi1fS64wcBCYDPwpR96fgvwwbIsbfTTF8iAtF3OB\nR0OuO3aqq6vjVgiNd40OS76WXMGWryVXGLh3UImqrs2WoaprRSRsF9NsbQdZexeJyCnAfsBh2fJX\nr17N3LlzKS0tJZlMMnv2bObNm0dTUxNVVVWUlJTQ0dFBfX09ra2tqCr19fWsWrWqb4jXzs5Oxo0b\nR3NzMyJCbW0tzc3NjBkzhmQySVdXFw0NDTQ1NVFWVkZ1dTUtLS1UV1eTSCTo7u7uyy8vL6ezs5Py\n8nJqamro7u6mp6enL7+iooLKykra2toYO3Ysa9euJZFI9OVXVlZSXl5Oe3s7dXV1tLe309vb25ef\n73168803qaurG3CfRo8ezZo1a2LdpxUrVrDrrrvm7f8U9T61tLRQWVlZ0O/eUPfpzTffpKGhoaDf\nvc3Zp2QySUlJSdH9nrLt08qVK6mqqiq631POk3N/PT1F5APcXAG5GoD/R1Wr+t2CW89BwHxVPTJY\nvhxAVb+bUW4mcANwmKquzrauxYsX66RJkwbaZEF5//332XLLLePWCIV3jQ5LvpZcwZZvMbouWbLk\nhRkzZuyXLW+gO4HVwO0D5Ifhb8DE4InjFcBJwH+mFxCRvYFbgaNyBYBiJZFIxK0QGu8aHZZ8LbmC\nLV9LrjBAEFDVCfnYiKquC4adXoSbkvJ2VX1NRK4CnlfVh4DvA6OAe4Oep++o6nH52H7UdHd3x60Q\nGu8aHZZ8LbmCLV9LrlDAeYFVdSGwMCPtyrT3Mwvlkm8s9Qv2rtFhydeSK9jyteQKg5hZzJMbS/2C\nvWt0WPK15Aq2fC25gg8CeaG8vDxuhdB41+iw5GvJFWz5WnIFHwTywujRo+NWCI13jQ5LvpZcwZav\nJVfwQSAvrFljZ24d7xodlnwtuYItX0uu4INAXqipqYlbITTeNTos+VpyBVu+llzBB4G8YKlLmHeN\nDku+llzBlq8lV/BBIC/09PTErRAa7xodlnwtuYItX0uu4INAXrDUL9i7RoclX0uuYMvXkiv4IJAX\nLPUL9q7RYcnXkivY8rXkCj4I5IWKioq4FULjXaPDkq8lV7Dla8kVfBDIC5WVlXErhMa7RoclX0uu\nYMvXkiv4IJAX2tra4lYIjXeNDku+llzBlq8lV/BBIC+MHTs2boXQeNfosORryRVs+VpyBR8E8sLa\ntVknXytKvGt0WPK15Aq2fC25gg8CecHSJBLeNTos+VpyBVu+llzBB4G8YKlfsHeNDku+llzBlq8l\nV/BBIC9Y6hfsXaPDkq8lV7Dla8kVfBDIC5a6hHnX6LDka8kVbPlacgUfBPKCpUkkvGt0WPK15Aq2\nfC25gg8CeaG9vT1uhdB41+iw5GvJFWz5WnIFHwTyQl1dXdwKofGu0WHJ15Ir2PK15Ao+COQFS5Hf\nu0aHJV9LrmDL15Ir+CCQF3p7e+NWCI13jQ5LvpZcwZavJVfwQSAvWOoX7F2jw5KvJVew5WvJFXwQ\nyAuW+gV71+iw5GvJFWz5WnIFHwTyQlVVVdwKofGu0WHJ15Ir2PK15Ao+COSFkpKSuBVC412jw5Kv\nJVew5WvJFXwQyAsdHR1xK4TGu0aHJV9LrmDL15IrFDAIiMhRIrJURJaJyGVZ8keKyN1B/l9FZEKh\n3DaX+vr6uBVC412jw5KvJVew5WvJFQoUBESkBFgAHA1MBk4WkckZxeYCbaq6C/BD4HuFcMsHra2t\ncSuExrtGhyVfS65gy9eSK0BpgbYzBVimqm8BiMhdwPHA62lljgfmB+/vA24UEVFVzYdAbW1NPlaT\ngyjXnW+8a3RY8rXkCrZ8o3Ntbc3/1JWFCgLbAu+mLS8HDshVRlXXiUg7MBZoSS+0evVq5s6dS2lp\nKclkktmzZzNv3jyampqoqqqipKSEjo4O6uvraW1tRVXN3Z55PB5PNrq6umhvb6e3t5eGhoYBz3ur\nVq1i1KhR/a6zUEFAsqRlXuGHKcNWW23FX/7yl00K7rDDDn3va2pcJN5iiy360qKIoCkaGxs32n4x\n412jw5KvJVew5Ruta9VGXVAHOu+l8hsbG3OusVANw8uB7dKWxwMrc5URkVKgGjBRuTZQpC0mvGt0\nWPK15Aq2fC25QuGCwN+AiSKyo4iUAycBD2WUeQg4PXj/WeDJfLUHeDwejyc7BQkCqroOOA9YBLwB\n3KOqr4nIVSJyXFDs58BYEVkGXAxs0o20WOns7IxbITTeNTos+VpyBVu+llyhcG0CqOpCYGFG2pVp\n73uAzxXKJ5+MGzcuboXQeNfosORryRVs+VpyBf/EcF5obm6OWyE03jU6LPlacgVbvpZcwQeBvCCS\nrWNTceJdo8OSryVXsOVryRV8EMgLtbW1cSuExrtGhyVfS65gy9eSK/ggkBcs3f551+iw5GvJFWz5\nWnIFHwTywpgxY+JWCI13jQ5LvpZcwZavJVfwQSAvJJPJuBVC412jw5KvJVew5WvJFXwQyAtdXV1x\nK4TGu0aHJV9LrmDL15Ir+CCQFyxNLO1do8OSryVXsOVryRV8EMgLliaW9q7RYcnXkivY8rXkCj4I\n5IUHH3wwboXQeNfosORryRVs+VpyBR8E8sL9998ft0JovGt0WPK15Aq2fC25gg8CeWHdunVxK4TG\nu0aHJV9LrmDL15IrgFgbrfmJJ55oBnLPkBADra2tdbW1tS0Dl4wf7xodlnwtuYIt3yJ13WHGjBlZ\np1g0FwQ8Ho/Hkz98dZDH4/EMY3wQ8Hg8nmGMDwIhEZESEXlRRB4OlncUkb+KyL9E5O5g2kxEZGSw\nvCzIn1Bgzy1F5D4R+YeIvCEiB4lIrYg8Hrg+LiI1QVkRkZ8Erq+IyD6FdA0cLhKR10TkVRH5nYhU\nFNOxFZHbRWS1iLyaljbo4ykipwfl/yUip2fbVkSu3w++C6+IyAMismVa3uWB61IROTIt/aggbZmI\nRDLDXzbXtLxLRERFpC5YjvW49ucrIucHx+o1Ebk2LT22YztoVNW/QrxwU17+Fng4WL4HOCl4fwtw\nbvD+y8AtwfuTgLsL7Pkr4MzgfTmwJXAtcFmQdhnwveD9McCjgAAHAn8tsOu2wL+ByrRjOqeYji0w\nDdgHeDUtbVDHE6gF3gr+1gTvawrk+imgNHj/vTTXycDLwEhgR+BNoCR4vQnsFHx/XgYmF8I1SN8O\nNw1tI1BXDMe1n2N7OPC/wMhgeatiOLaD3re4BSy8gPHAE8AngYeDL2NL2o/rIGBR8H4RcFDwvjQo\nJwXyHBOcVCUjfSmwdfB+a2Bp8P5W4ORs5Qrkuy3wbvAjLg2O7ZHFdmyBCRk//kEdT+Bk4Na09I3K\nRemakXcCcGfw/nLg8rS8RcGx7jve2cpF7QrcB+wJvM2GIBD7cc3xPbgHmJmlXOzHdjAvXx0Ujh8B\nlwLrg+WxwPuqmuoQvBx3QoMNJzaC/PagfCHYCWgGfhFUXf1MRKqAcar6XuD0HrBVpmtA+n5Ejqqu\nAK4D3gHewx2rFyjOY5vOYI9nrMc5jS/irqihCF1F5Dhghaq+nJFVdK4BuwKHBlWTfxKR/YP0YvXN\nig8CAyAixwKrVfWF9OQsRTVEXtSU4m5Zb1bVvYEuXHVFLuJ0JahLPx53y7wNUAUc3Y9TrL4hyOUX\nu7eIfB1YB9yZSspSLDZXEdkC+DpwZbbsLGnFcFxLcdVQBwJfBe4REenHK27frPggMDAHA8eJyNvA\nXbgqoR8BW4pIaVBmPLAyeL8cV69JkF8NtBbIdTmwXFX/GizfhwsKq0Rk68Bpa2B1pmtA+n4UgpnA\nv1W1WVV7gfuBqRTnsU1nsMcz1uMcNJgeC3xBg3qIfpzict0ZdzHwcvBbGw8sEZGGInRNsRy4Xx3/\nD1dTUNePV9y+WfFBYABU9XJVHa+qE3CNkU+q6heAp4DPBsVOB/4QvH8oWCbIfzLthxe1axPwrojs\nFiTNAF7PcMp0PS3ofXEg0J6q5igQ7wAHisgWwRVUyrfojm0Ggz2ei4BPiUhNcPfzqSAtckTkKOBr\nwHGq+kHGPpwU9LjaEZgI/D/gb8DEoIdWOe47/1DUnqr6d1XdSlUnBL+15cA+wXe66I5rwIO4i0JE\nZFdcY28LRXZsByTuRglLL2A6G3oH7YT7xy4D7mVDD4GKYHlZkL9TgR33Ap4HXsF9SWtw9eZPAP8K\n/tYGZQVYgOux8HdgvxiO6beBfwCvAr/G9agommML/A7XXtGLOzHNHcrxxNXHLwteZxTQdRmuHvql\n4HVLWvmvB65LgaPT0o8B/hnkfb1Qrhn5b7OhYTjW49rPsS0HfhN8d5cAnyyGYzvYlx82wuPxeIYx\nvjrI4/F4hjE+CHg8Hs8wxgcBj8fjGcb4IODxeDzDGB8EPB6PZxjjg4DH8xEjeO7iH6lROAcoK8EQ\nIxML4eYpPnwQ8MSOiHSmvdaLSHfa8hfi9tscRKRJRA4p8GbnAY+pakvgcJeIfCPNaa9gWOTz1PUR\n/yEwv8COniLBBwFP7KjqqNQL9xTxf6Sl3TnQ5+MibWiLYtvGl3AP3mVb3/644Y+/rqo3Bsn3A7NE\nJI7B+Dwx44OAp+gRN6HPN0XkLRFpEZE7JZgcRUQmicg6EZkrIitEZI2IfFHcZDqvisj7InJ92rrO\nEZEnReRWEekQkddFZFpafq2I3BFcwb8rIt8SkREZn10gIm3AZcH2nxaRVhFpFpFficjooPy9uBFG\n/xjc1XxF3KQiyzL2r+9uQUSuEZHfips8Zy1u+IGc+5/lWO0abHNJlryDccMqXKSqt6XSVbUT9yTu\nzKH8fzy28UHAY4Gv4saFOQQ36FYvrgojRQmwB264iTOAG4BLgMOC9DNE5IC08tNwE3qMBa4BHhSR\nMUHenbghqncCpgCfBk7N+OxLuIHCfhCkXQU0AJ8AdsMNGYCqfg43uNyngruan4Tc38/gJgeqBn4f\nYv/T+QTwL910KICDcfM1nKOq2e4S3sCN4+8ZZvgg4LHAl3Azea1U1R7ceEMnBoPOpbhKVT9U1dSA\nXHeo6hpVfQd4Ftg7rey7qnqTqvaq6h24sWCOFJEdcCf5i1X1A3WDlP0EN9BXirdU9TZVTapqt6r+\nQ1WfVNWEusHOfoQLPpvDn1R1oaquV9XukPufYktgbZb0g3FzTTyeY5trg896hhmR12l6PJtDcKLb\nDlgoIulXtyPYMKFMUlXXpOV1A6sylkelLS/P2Ewjbj6DHXCD1DWnnV9H4AYnS5E+KQgisg3wY9wQ\n2KOD8ps7EmvfNkLsf0vGZ9sCj0x+iBtccJGIzFTVjoz80VnW5RkG+DsBT1ETVGuswI3QuGXaqyLV\n+2UIjM9Y3h43rvu7QCduntrUdsao6j5pZTOrWb6Pm7zn46o6BjiTjScPySzfBWyRWhCRMtz0mun0\nfWYI+/8KsEuWu4Re4HPAGlxAqcrI3x1XReYZZvgg4LHALcA1IpKaUGYrEfmPzVjfdkEjb6mInIIL\nAn9U1X8DzwHXishoERkhIhMH6OI5Ghc4OkRke+DijPxVuPaFFG8AtSIyIwgA32bg32Ho/VfVZcE2\n962PZ6gAAAECSURBVM6Sl8DNM9wD/I+IVAbrq8K1JTwxgIfnI4gPAh4LXIvr1vhk0GPmWdyMaUPl\nz7iTZCuuEfcEVW0P8k7G1Y3/I8i/GxjXz7quxDXYtgMP4Bpy07kauDropXRecPV+Aa4BejnQxMDV\nMIPd/1vZuDG7j6BN4ThcY/oDIjISmA0s3Iw7K49h/HwCnmGFiJwDfFZVP7LdIYMr/BeBQwY6sQfV\nRi8AJ6nqPwvh5ykufMOwx/MRI+hRNClkWWXz7qo8xvHVQR6PxzOM8dVBHo/HM4zxdwIej8czjPFB\nwOPxeIYxPgh4PB7PMMYHAY/H4xnG+CDg8Xg8wxgfBDwej2cY8/8BD5EucgP9BNsAAAAASUVORK5C\nYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.gca().set_title('Al-Ni: Degree of fcc ordering vs T [X(AL)=0.1]')\n", "plt.gca().set_xlabel('Temperature (K)')\n", "plt.gca().set_ylabel('Degree of ordering')\n", "plt.gca().set_ylim((-0.1,1.1))\n", "# Generate a list of all indices where FCC_L12 is stable and ordered\n", "L12_phase_indices = np.nonzero(np.logical_and((eq_alni.Phase.values == 'FCC_L12'),\n", " (eq_alni.degree_of_ordering.values > 0.01)))\n", "# Generate a list of all indices where FCC_L12 is stable and disordered\n", "fcc_phase_indices = np.nonzero(np.logical_and((eq_alni.Phase.values == 'FCC_L12'),\n", " (eq_alni.degree_of_ordering.values <= 0.01)))\n", "# phase_indices[1] refers to all temperature indices\n", "# We know this because pycalphad always returns indices in order like P, T, X's\n", "plt.plot(np.take(eq_alni['T'].values, L12_phase_indices[1]), eq_alni['degree_of_ordering'].values[L12_phase_indices],\n", " label='$\\gamma\\prime$ (ordered fcc)', color='red')\n", "plt.plot(np.take(eq_alni['T'].values, fcc_phase_indices[1]), eq_alni['degree_of_ordering'].values[fcc_phase_indices],\n", " label='$\\gamma$ (disordered fcc)', color='blue')\n", "plt.legend()\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python [conda env:pycalphad]", "language": "python", "name": "conda-env-pycalphad-py" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1" } }, "nbformat": 4, "nbformat_minor": 1 }