
Simplicity Matters
Rich Hickey



Simplicity is prerequisite for 
reliability

Edsger W. Dijkstra



Word Origins

Simple

sim- plex

one fold/braid

vs complex

Easy

ease < aise < adjacens

lie near

vs hard



Simple

One fold/braid

One role

One task

One concept

One dimension

But not

One instance

One operation

About lack of 
interleaving, not 
cardinality

Objective



Easy
Near, at hand

on our hard drive, in 
our tool set, IDE, apt 
get, gem install...

Near to our 
understanding/skill set

familiar

Near our capabilities

Easy is relative



We can only hope to 
make reliable those things 
we can understand

We can only consider a 
few things at a time

Intertwined things must be 
considered together

Complexity undermines 
understanding

Limits



Change

Do more, Do it differently, Do it better

Changes to software require analysis and decisions

Your ability to reason about your program is critical

More than tests, types, tools, process



Simplicity = Opportunity

Architectural Agility wins

else - push the elephant

Design is about pulling things apart

Repurpose, substitute, move, combine, extend



LISP programmers know the value of 
everything and the cost of nothing.

Alan Perlis



Programmers know the benefits of 
everything and the tradeoffs of 
nothing.







Programmers vs Programs
We focus on ourselves

programmer convenience

programmer replaceability

Rather than the programs

software quality, correctness

maintenance, change

gem install hairball



Complect

To interleave, entwine, braid

Don’t do it!

Complecting things is the 
source of complexity

Best to avoid in the first place



Making Things Easy

Bring to hand by installing

getting approved for use

Become familiar by learning, trying

But mental capability?

not going to move very far

Make challenges easy by simplifying them



We can be creating the exact 
same programs out of 

significantly simpler components



What’s in your Toolkit?
Complexity Simplicity

State, Objects Values

Methods Functions, Namespaces

variables Managed refs

Inheritance, switch, matching Polymorphism a la carte

Syntax Data

Imperative loops, fold Set functions

Actors Queues

ORM Declarative data manipulation

Conditionals Rules

Inconsistency Consistency



Simplicity--the art of 
maximizing the amount 
of work not done--is essential.

http://agilemanifesto.org/principles.html

http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html


Simplicity is not an objective in 
art, but one achieves simplicity 
despite one's self by entering 
into the real sense of things

Constantin Brancusi



Lists and Order

A sequence of things

Does order matter?

[first-thing second-thing third-thing ...]

[depth width height]

set[x y z]

order clearly doesn’t matter



Why Care about Order?

Complects each thing with the next

Infects usage points

Inhibits change

[name email] -> [name phone email]

“We don’t do that”



Order in the Wild
Complex Simple

Positional arguments Named arguments or map

Syntax Data

Product types Associative records

Imperative programs Declarative programs

Prolog Datalog

Call chains Queues

XML JSON, Clojure literals

...



Maps (aka hashes), Dammit!

First class associative data structures

Idiomatic support

literals, accessors, symbolic keys...

Generic manipulation

Use ‘em



Information is Simple

Don’t ruin it

By hiding it behind a micro-language

i.e. a class with information-specific methods

thwarts generic data composition

ties logic to representation du jour

Represent data as data



Encapsulation

Is for implementation details

Information doesn’t have implementation

Unless you added it - why?

Information will have representation

have to pick one



Wrapping Information

The information class:

IPersonInfo{

getName(); 

... verbs and other awfulness ...}

A service based upon it:

IService{

doSomethingUseful(IPersonInfo); ...}



Can You Move It?

Litmus test - can you move your subsystems?

out of proc, different language, different thread?

Without changing much

Not seeking transparency here



Subsystems Must Have

Well-defined boundaries

Abstracted operational interface (verbs)

General error handling

Take/return data

IPersonInfo - oops!

Again, maps (hashes)



Simplicity is a Choice

Requires vigilance, sensibilities and care

Equating simplicity with ease and familiarity is wrong

Develop sensibilities around entanglement

Your 'reliability' tools (testing, refactoring, type systems) 
don't care if program is simple or not

Choose simple constructs



Simplicity Matters

Complexity inhibits understanding

and therefor robustness

Simplicity enables change

It is the primary source of true agility

Simplicity = Opportunity

Go make (simple) things



Simplicity is the ultimate 
sophistication. 

Leonardo da Vinci


