{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "iNFOeMfl3tIu" }, "source": [ "# 심층 신경망" ] }, { "cell_type": "markdown", "metadata": { "id": "zKfwb8gS3tI2" }, "source": [ "
\n",
" 구글 코랩에서 실행하기\n",
" | \n",
"
Model: \"sequential\"\n",
"\n"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓\n",
"┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n",
"┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩\n",
"│ dense (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) │ \u001b[38;5;34m78,500\u001b[0m │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ dense_1 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m1,010\u001b[0m │\n",
"└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘\n"
],
"text/html": [
"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓\n",
"┃ Layer (type) ┃ Output Shape ┃ Param # ┃\n",
"┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩\n",
"│ dense (Dense) │ (None, 100) │ 78,500 │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ dense_1 (Dense) │ (None, 10) │ 1,010 │\n",
"└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘\n",
"\n"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"\u001b[1m Total params: \u001b[0m\u001b[38;5;34m79,510\u001b[0m (310.59 KB)\n"
],
"text/html": [
"Total params: 79,510 (310.59 KB)\n", "\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m79,510\u001b[0m (310.59 KB)\n" ], "text/html": [ "
Trainable params: 79,510 (310.59 KB)\n", "\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" ], "text/html": [ "
Non-trainable params: 0 (0.00 B)\n", "\n" ] }, "metadata": {} } ], "source": [ "model.summary()" ] }, { "cell_type": "markdown", "metadata": { "id": "qAi41rBTdk7k" }, "source": [ "## 층을 추가하는 다른 방법" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "id": "0XeV6V4ha3I8" }, "outputs": [], "source": [ "model = keras.Sequential([\n", " keras.layers.Dense(100, activation='sigmoid', input_shape=(784,), name='hidden'),\n", " keras.layers.Dense(10, activation='softmax', name='output')\n", "], name='패션 MNIST 모델')" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 198 }, "id": "bwXDLSOWbm3L", "outputId": "a14d71eb-5765-4c0a-81af-8f8d2f8e7d50" }, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1mModel: \"패션 MNIST 모델\"\u001b[0m\n" ], "text/html": [ "
Model: \"패션 MNIST 모델\"\n",
"\n"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓\n",
"┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n",
"┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩\n",
"│ hidden (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) │ \u001b[38;5;34m78,500\u001b[0m │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ output (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m1,010\u001b[0m │\n",
"└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘\n"
],
"text/html": [
"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓\n",
"┃ Layer (type) ┃ Output Shape ┃ Param # ┃\n",
"┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩\n",
"│ hidden (Dense) │ (None, 100) │ 78,500 │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ output (Dense) │ (None, 10) │ 1,010 │\n",
"└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘\n",
"\n"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"\u001b[1m Total params: \u001b[0m\u001b[38;5;34m79,510\u001b[0m (310.59 KB)\n"
],
"text/html": [
"Total params: 79,510 (310.59 KB)\n", "\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m79,510\u001b[0m (310.59 KB)\n" ], "text/html": [ "
Trainable params: 79,510 (310.59 KB)\n", "\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" ], "text/html": [ "
Non-trainable params: 0 (0.00 B)\n", "\n" ] }, "metadata": {} } ], "source": [ "model.summary()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "id": "yZSAxgZCbax7" }, "outputs": [], "source": [ "model = keras.Sequential()\n", "model.add(keras.layers.Dense(100, activation='sigmoid', input_shape=(784,)))\n", "model.add(keras.layers.Dense(10, activation='softmax'))" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 197 }, "id": "bW2coaNQboe5", "outputId": "13286f4d-4081-4ba3-cfbf-03e930749e62" }, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1mModel: \"sequential_1\"\u001b[0m\n" ], "text/html": [ "
Model: \"sequential_1\"\n",
"\n"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓\n",
"┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n",
"┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩\n",
"│ dense_2 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) │ \u001b[38;5;34m78,500\u001b[0m │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ dense_3 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m1,010\u001b[0m │\n",
"└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘\n"
],
"text/html": [
"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓\n",
"┃ Layer (type) ┃ Output Shape ┃ Param # ┃\n",
"┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩\n",
"│ dense_2 (Dense) │ (None, 100) │ 78,500 │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ dense_3 (Dense) │ (None, 10) │ 1,010 │\n",
"└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘\n",
"\n"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"\u001b[1m Total params: \u001b[0m\u001b[38;5;34m79,510\u001b[0m (310.59 KB)\n"
],
"text/html": [
"Total params: 79,510 (310.59 KB)\n", "\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m79,510\u001b[0m (310.59 KB)\n" ], "text/html": [ "
Trainable params: 79,510 (310.59 KB)\n", "\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" ], "text/html": [ "
Non-trainable params: 0 (0.00 B)\n", "\n" ] }, "metadata": {} } ], "source": [ "model.summary()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "kkYrPJembpYk", "outputId": "02c5131e-b695-4108-9f1b-754d419b8b39" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Epoch 1/5\n", "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 3ms/step - accuracy: 0.7525 - loss: 0.7720\n", "Epoch 2/5\n", "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m7s\u001b[0m 2ms/step - accuracy: 0.8463 - loss: 0.4270\n", "Epoch 3/5\n", "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 2ms/step - accuracy: 0.8604 - loss: 0.3857\n", "Epoch 4/5\n", "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8696 - loss: 0.3600\n", "Epoch 5/5\n", "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 2ms/step - accuracy: 0.8759 - loss: 0.3410\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ "
Model: \"sequential_2\"\n",
"\n"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓\n",
"┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n",
"┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩\n",
"│ flatten (\u001b[38;5;33mFlatten\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m784\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ dense_4 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m100\u001b[0m) │ \u001b[38;5;34m78,500\u001b[0m │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ dense_5 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m10\u001b[0m) │ \u001b[38;5;34m1,010\u001b[0m │\n",
"└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘\n"
],
"text/html": [
"┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓\n",
"┃ Layer (type) ┃ Output Shape ┃ Param # ┃\n",
"┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩\n",
"│ flatten (Flatten) │ (None, 784) │ 0 │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ dense_4 (Dense) │ (None, 100) │ 78,500 │\n",
"├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤\n",
"│ dense_5 (Dense) │ (None, 10) │ 1,010 │\n",
"└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘\n",
"\n"
]
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"\u001b[1m Total params: \u001b[0m\u001b[38;5;34m79,510\u001b[0m (310.59 KB)\n"
],
"text/html": [
"Total params: 79,510 (310.59 KB)\n", "\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m79,510\u001b[0m (310.59 KB)\n" ], "text/html": [ "
Trainable params: 79,510 (310.59 KB)\n", "\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" ], "text/html": [ "
Non-trainable params: 0 (0.00 B)\n", "\n" ] }, "metadata": {} } ], "source": [ "model.summary()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "id": "JfPe_ruQdhqA" }, "outputs": [], "source": [ "(train_input, train_target), (test_input, test_target) = keras.datasets.fashion_mnist.load_data()\n", "\n", "train_scaled = train_input / 255.0\n", "\n", "train_scaled, val_scaled, train_target, val_target = train_test_split(\n", " train_scaled, train_target, test_size=0.2, random_state=42)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "9PGejuuhdvvk", "outputId": "4fc4dfa3-5969-4495-e6e6-92b1225a6882" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Epoch 1/5\n", "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.7637 - loss: 0.6723\n", "Epoch 2/5\n", "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m5s\u001b[0m 2ms/step - accuracy: 0.8515 - loss: 0.4054\n", "Epoch 3/5\n", "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m4s\u001b[0m 2ms/step - accuracy: 0.8676 - loss: 0.3595\n", "Epoch 4/5\n", "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.8786 - loss: 0.3344\n", "Epoch 5/5\n", "\u001b[1m1500/1500\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m3s\u001b[0m 2ms/step - accuracy: 0.8858 - loss: 0.3177\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ "