{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "pWbwMtKGQOcw" }, "source": [ "# 6장. 알고리즘 체인과 파이프라인" ] }, { "cell_type": "markdown", "metadata": { "id": "amIm3xStQOc5" }, "source": [ "*아래 링크를 통해 이 노트북을 주피터 노트북 뷰어(nbviewer.org)로 보거나 구글 코랩(colab.research.google.com)에서 실행할 수 있습니다.*\n", "\n", "
\n",
" 주피터 노트북 뷰어로 보기\n",
" | \n",
" \n",
" 구글 코랩(Colab)에서 실행하기\n",
" | \n",
"
Pipeline(steps=[('scaler', MinMaxScaler()), ('svm', SVC())])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. Pipeline(steps=[('scaler', MinMaxScaler()), ('svm', SVC())])MinMaxScaler()
SVC()
Pipeline(steps=[('select',\n",
" SelectPercentile(percentile=5,\n",
" score_func=<function f_regression at 0x7dbc9f417920>)),\n",
" ('ridge', Ridge())])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. Pipeline(steps=[('select',\n",
" SelectPercentile(percentile=5,\n",
" score_func=<function f_regression at 0x7dbc9f417920>)),\n",
" ('ridge', Ridge())])SelectPercentile(percentile=5,\n",
" score_func=<function f_regression at 0x7dbc9f417920>)Ridge()
GridSearchCV(cv=5,\n",
" estimator=Pipeline(steps=[('standardscaler', StandardScaler()),\n",
" ('logisticregression',\n",
" LogisticRegression(max_iter=1000))]),\n",
" param_grid={'logisticregression__C': [0.01, 0.1, 1, 10, 100]})In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. GridSearchCV(cv=5,\n",
" estimator=Pipeline(steps=[('standardscaler', StandardScaler()),\n",
" ('logisticregression',\n",
" LogisticRegression(max_iter=1000))]),\n",
" param_grid={'logisticregression__C': [0.01, 0.1, 1, 10, 100]})Pipeline(steps=[('standardscaler', StandardScaler()),\n",
" ('logisticregression', LogisticRegression(C=1, max_iter=1000))])StandardScaler()
LogisticRegression(C=1, max_iter=1000)
GridSearchCV(cv=5,\n",
" estimator=Pipeline(steps=[('standardscaler', StandardScaler()),\n",
" ('polynomialfeatures',\n",
" PolynomialFeatures()),\n",
" ('ridge', Ridge())]),\n",
" n_jobs=-1,\n",
" param_grid={'polynomialfeatures__degree': [1, 2, 3],\n",
" 'ridge__alpha': [0.001, 0.01, 0.1, 1, 10, 100]})In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. GridSearchCV(cv=5,\n",
" estimator=Pipeline(steps=[('standardscaler', StandardScaler()),\n",
" ('polynomialfeatures',\n",
" PolynomialFeatures()),\n",
" ('ridge', Ridge())]),\n",
" n_jobs=-1,\n",
" param_grid={'polynomialfeatures__degree': [1, 2, 3],\n",
" 'ridge__alpha': [0.001, 0.01, 0.1, 1, 10, 100]})Pipeline(steps=[('standardscaler', StandardScaler()),\n",
" ('polynomialfeatures', PolynomialFeatures()),\n",
" ('ridge', Ridge(alpha=10))])StandardScaler()
PolynomialFeatures()
Ridge(alpha=10)