{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "pWbwMtKGQOcw" }, "source": [ "# 6장. 알고리즘 체인과 파이프라인" ] }, { "cell_type": "markdown", "metadata": { "id": "amIm3xStQOc5" }, "source": [ "*아래 링크를 통해 이 노트북을 주피터 노트북 뷰어(nbviewer.org)로 보거나 구글 코랩(colab.research.google.com)에서 실행할 수 있습니다.*\n", "\n", "\n", " \n", " \n", "
\n", " 주피터 노트북 뷰어로 보기\n", " \n", " 구글 코랩(Colab)에서 실행하기\n", "
" ] }, { "cell_type": "markdown", "metadata": { "id": "MG_TlaGoQOc6" }, "source": [ "이 노트북은 맷플롯립 그래프에 한글을 쓰기 위해 나눔 폰트를 사용합니다. 코랩의 경우 다음 셀에서 나눔 폰트를 직접 설치합니다." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "id": "SYmSjfS-QOc8", "outputId": "bf48a894-2750-464b-ea7e-b11bce8343d1", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "debconf: unable to initialize frontend: Dialog\n", "debconf: (No usable dialog-like program is installed, so the dialog based frontend cannot be used. at /usr/share/perl5/Debconf/FrontEnd/Dialog.pm line 78, <> line 1.)\n", "debconf: falling back to frontend: Readline\n", "debconf: unable to initialize frontend: Readline\n", "debconf: (This frontend requires a controlling tty.)\n", "debconf: falling back to frontend: Teletype\n", "dpkg-preconfigure: unable to re-open stdin: \n", "Selecting previously unselected package fonts-nanum.\n", "(Reading database ... 124947 files and directories currently installed.)\n", "Preparing to unpack .../fonts-nanum_20200506-1_all.deb ...\n", "Unpacking fonts-nanum (20200506-1) ...\n", "Setting up fonts-nanum (20200506-1) ...\n", "Processing triggers for fontconfig (2.13.1-4.2ubuntu5) ...\n" ] } ], "source": [ "# 노트북이 코랩에서 실행 중인지 체크합니다.\n", "import os\n", "import sys\n", "if 'google.colab' in sys.modules:\n", " if not os.path.isdir('mglearn'):\n", " # mglearn을 다운받고 압축을 풉니다.\n", " !wget -q -O mglearn.tar.gz https://bit.ly/mglearn-tar-gz\n", " !tar -xzf mglearn.tar.gz\n", " # 나눔 폰트를 설치합니다.\n", " !sudo apt-get -qq -y install fonts-nanum\n", " import matplotlib.font_manager as fm\n", " font_files = fm.findSystemFonts(fontpaths=['/usr/share/fonts/truetype/nanum'])\n", " for fpath in font_files:\n", " fm.fontManager.addfont(fpath)" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "hide_input": false, "id": "T9MP8FCrQOdA" }, "outputs": [], "source": [ "import sklearn\n", "from preamble import *\n", "import matplotlib\n", "\n", "# 나눔 폰트를 사용합니다.\n", "matplotlib.rc('font', family='NanumBarunGothic')\n", "matplotlib.rcParams['axes.unicode_minus'] = False" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "id": "lq_xV2pvQOdC" }, "outputs": [], "source": [ "from sklearn.svm import SVC\n", "from sklearn.datasets import load_breast_cancer\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import MinMaxScaler\n", "\n", "# 데이터 적재와 분할\n", "cancer = load_breast_cancer()\n", "X_train, X_test, y_train, y_test = train_test_split(\n", " cancer.data, cancer.target, random_state=0)\n", "\n", "# 훈련 데이터의 최솟값, 최댓값을 계산합니다\n", "scaler = MinMaxScaler().fit(X_train)" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "id": "Fi_nLDMGQOdD", "outputId": "a87adc76-369d-4061-9c34-6fe9e8d0afad", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "테스트 점수: 0.97\n" ] } ], "source": [ "# 훈련 데이터의 스케일을 조정합니다\n", "X_train_scaled = scaler.transform(X_train)\n", "\n", "svm = SVC()\n", "# 스케일 조정된 훈련데이터에 SVM을 학습시킵니다\n", "svm.fit(X_train_scaled, y_train)\n", "# 테스트 데이터의 스케일을 조정하고 점수를 계산합니다\n", "X_test_scaled = scaler.transform(X_test)\n", "print(\"테스트 점수: {:.2f}\".format(svm.score(X_test_scaled, y_test)))" ] }, { "cell_type": "markdown", "metadata": { "id": "q6gvAlpwQOdH" }, "source": [ "## 6.1 데이터 전처리와 매개변수 선택" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "scrolled": true, "id": "InesYGH8QOdI", "outputId": "8e4a98ea-bb4c-4b03-f758-a4ff5cbee326", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "최상의 교차 검증 정확도: 0.98\n", "테스트 점수: 0.97\n", "최적의 매개변수: {'C': 1, 'gamma': 1}\n" ] } ], "source": [ "from sklearn.model_selection import GridSearchCV\n", "# 이 코드는 예를 위한 것입니다. 실제로 사용하지 마세요.\n", "param_grid = {'C': [0.001, 0.01, 0.1, 1, 10, 100],\n", " 'gamma': [0.001, 0.01, 0.1, 1, 10, 100]}\n", "grid = GridSearchCV(SVC(), param_grid=param_grid, cv=5)\n", "grid.fit(X_train_scaled, y_train)\n", "print(\"최상의 교차 검증 정확도: {:.2f}\".format(grid.best_score_))\n", "print(\"테스트 점수: {:.2f}\".format(grid.score(X_test_scaled, y_test)))\n", "print(\"최적의 매개변수: \", grid.best_params_)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "hide_input": false, "id": "Qdn5SyVoQOdJ", "outputId": "c3026a0f-70e5-4892-e556-ff5b06e87068", "colab": { "base_uri": "https://localhost:8080/", "height": 693 } }, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAKmCAYAAAAM6lQQAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAkflJREFUeJzs3Xd4FOX+/vF704CEEITQMRRpoTdRqoiNZgFRVJByQPmConjwdw4ICBpEjnpEbIAiRUFERFCkHZQmRXo/iWAEQhMIEEhIT/b3x57sZEnbhUx2k7xf15XL3Zl5Zp47xMyTz848Y7FarVYBAAAAAAAA+czL3R0AAAAAAABA0UThCQAAAAAAAKag8AQAAAAAAABTUHgCAAAAAACAKSg8AQAAAAAAwBQUngAAAAAAAGAKCk8AAAAAAAAwBYUnAAAAAAAAmILCEwAAgAmsVqtH7QcAAMAdKDwBAIBiqXr16rJYLPavu+++22H9vHnzZLFYFBMTk+t+GjduLB8fH4cvb29veXl56fDhw/btgoODNWnSJIe2v//+e5a2mb+8vLx02223KS4uLr9iAwAAFCgfd3cAAADgZk2ePFkTJkzIc7v58+drwIABDss2bdqklJQU+/tSpUrdVB+WLVumpKQkSZLFYpGPj4+mTp2qRYsWqU6dOrm2rVWrlvbv329/b7FY5O3trbS0NI0cOVKbN2/WF198odKlS99U3wAAANyNwhMAACi0hg8frj59+uS4PjY2Vm3atHEo3KSlpSkhIUGVKlVy2DYtLU1Xr15VUFCQS32oW7euw3ur1aqtW7fqvvvuU8mSJXNt6+fnp8aNGzss27Fjh4YPH67IyEitWLFC3bp1c6k/AAAAnoTCEwAAKLTKly+v8uXL57j++PHjkqSyZcval61evVoPP/xwttvfe++9Wr9+/S316dtvv9WxY8c0ffp0p9skJSXpxx9/1BdffKG1a9eqQoUKKlWqlA4ePKi2bds69B8AAKAwYY4nAABQZF26dEmSHK5uuv/++3Xq1Cn715kzZxQVFaWSJUuqbdu2t3S8Y8eO6cUXX9RDDz2kbt26ycfHxz6HVEZfMkRFRWny5Ml6+OGHVblyZT3zzDMqVaqUtm3bpjNnzujVV1/VtGnTVLVqVXXr1k0fffTRLfUNAADAHSg8AQCAIiuj2FOlShX7spIlS6p69er2r6pVq2rdunVKTk5W//79s+zj2LFjioiI0NmzZ3M91vbt29WpUycFBARo7ty5kqQjR44oPDxc4eHhWa5aKlOmjH766ScFBQXpvffe0+nTp7Vs2TK1bdtWvr6+evXVV3Xy5El98cUXKlWqVJ7HBwAA8ETcagcAAAq9ZcuW6bbbblPnzp21f/9+7du3T4MHD1ZkZKSCgoJUrly5HNvGxsZq4sSJeuKJJxQaGpplfZs2bSRJjz/+uL777rss68+ePaspU6ZoxowZqlu3rlauXGkvdNWvX9++nbe3t0O7smXL6rfffss1V4kSJfT000/r6aefznU7AAAAT8UVTwAAoNCbPn26vvnmG0nSzz//rLFjx0qSDhw4kOeT5YYNG6bTp0+rQYMG2a6/cuWKrFZrtkWnOXPmqEaNGpo5c6aef/557dy5U3fccUee/Z06dar9FjxXvwAAAAoTrngCAABF1oEDB9SsWbNs16Wnp+uFF17QN998o+7du+utt95S69at1bNnT6f337t3b/3+++8aMmSI6tWrl+u2Dz30kH2b559/Xo899pjTxwEAACisKDwBAIAiq0ePHurYsWOW5QkJCfrb3/6mxYsXa9q0aXr55ZfVv39/Pf744/roo4/0/PPPO7X/smXL6l//+pckOXU1Ut26dSVJ5cqVy/b2v0uXLikmJkYWi0XBwcEqU6aMU/0AAADwVBSeAABAkTVhwoQsy1avXq0XXnhB0dHR+uabb/Tkk09Kst02l56ermHDhkmS/Pz8XD7e2LFjNWDAgGzX5fTEvFOnTmnixIn68ccfszz5rkaNGnrmmWc0btw4BQQEuNwfAAAAd6PwBAAACp1z587p6tWr9vfx8fG6du2a/vjjD126dElpaWmKiIjI0q5cuXKaNWuW6tatq3Xr1jnMx+Tn56eFCxfq3nvv1bPPPmufM8oVFStWzHGuqBsnF5dsE5u3bdtWpUuX1syZM9W+fXtVqFBB6enpOn36tP7zn/9o7Nix2rNnj9auXetyfwAAANyNwhMAACh0xo4dq/nz5zss27VrlxYtWmR/n90T6iZOnKjvv/9eXl7ZP1/FYrHoueeey9/O5uLQoUM6c+aM5s6dqz59+jisq127tv7v//5PBw8e1MyZM5WWlpZt8QoAAMCTUXgCAACFzrx58zRv3jx3dyOLCxcuZHullSSlpaVlWda8eXPVrFlT7777roKCgtS+fXuVL19eVqtVZ8+e1dq1a7V48WL17NmTohMAACiUKDwBAADkk7fffltvv/2209v7+/vrt99+05tvvqkRI0bor7/+clhfr149vfLKK3r11Vfzu6sAAAAFwmK1Wq3u7gQAAACky5cv68qVK7JYLKpYsaJKly7t7i4BAADcEgpPAAAAAAAAMEX2M2sCAAAAAAAAt4jCEwAAAAAAAExB4QkAAAAAAACmoPAEAAAAAAAAU1B4AgAAAAAAgCkoPAEAAAAAAMAUPu7uAADkh6ioKEVHR7u7G/if4OBghYSEuLsbAJAtzhnwBJwrARQXFJ4AFHpRUVEKDQ1VfHy8u7uC//H391d4eDgDagAeh3MGPAXnSgDFBYUnAIVedHS04uPjtWDBAoWGhrq7O8VeeHi4+vfvr+joaAbTADwO5wx4As6VAIoTCk8AiozQ0FC1bNnS3d0AABQCnDMAACgYTC4OAAAAAAAAU1B4AgAAAAAAgCkoPAEAAAAAAMAUFJ4AAAAAAABgCgpPAAAAAAAAMAWFJwAowo4fP67hw4erfv36KleunOrXr6+1a9e6u1sAAAAAigkKTwBQRB04cEDNmzfXzJkzdfToUV25ckVHjx5VeHi4JGnEiBEqU6aMRo0a5d6OAgCQTzp37iyLxaJBgwY5LN+/f79q1aqlOnXq6PDhw+7pHAAUUxSeABRL4eHheuWVV9SiRQsFBQXJ19dX5cuX1913363Ro0dr586dDtuPHTtWFotFFotFkZGRTh/nt99+s7f79ttvc+3PpEmT1K5dO1WtWlV+fn4KDAxU7dq19eijj+qzzz7T1atXXco4fPhwXbt2TdWrV9eaNWsUGxurCxcu6JlnnlFERIRmzJih2NhYTZ8+XUePHnVp3wBQnBSHc0ZRN3XqVJ04cUKRkZGaMmWKu7sDAMUKhScAxc5bb72lpk2b6oMPPtD+/ft17do1eXl56fLly9qxY4fef/993XXXXfrnP/9pb/P444/bX//www9OH2v58uWSpJIlS6p79+5Z1l+5ckVDhgxR48aN9cYbb2j79u06d+6cJCkuLk7Hjx/Xjz/+qGHDhqlOnTr2/eXl/Pnz2r59uyRp8uTJeuihh1S6dGlVqFBBFStWVFpamsP2N74HANgUh3NGcZD5PMc5DwAKFoUnAMXKrFmzNH78eKWmpqp3797avHmzrl69qqSkJCUkJGjr1q166aWXFBAQ4PApdevWrVWjRg1Jcmkgn/EHR0bhJ7MTJ06oXbt2mjNnjtLT0/XAAw9oyZIlunjxopKTk5WYmKhDhw4pLCxM5cuXV3R0tNPHPnHihP11q1atsqxv1KiRnn/+eZUuXVovvviiQkNDHdbPmzfP/qk7ABRXxeWcURyMHTtWNWrUUK1atTRu3Lh82efGjRvt58rM510AgCMfd3cAAApKWlqaJk6cKEnq06ePlixZ4rC+ZMmSateundq1a6e///3vWr9+vcP6Xr166YMPPtC2bdsUHR2t4ODgXI939OhRRURESJJ69+7tsO769evq1q2bIiIiVLJkSc2fP19PPvmkwzYlSpRQ48aN1bhxY40YMUIDBgxwOmtCQoL99Y1/vGSYNWuWZs2a5fQ+AaA4KU7njOKgZcuWFIcAwE244glAsfH777/r/PnzkpRlwH6jGjVqaPDgwQ7LMm6dSEtL04oVK/I83rJlyyRJvr6+euSRRxzWjR49WhEREbJYLFq6dGme/SlXrpyWL1+ugQMH5nlcAMCt45wBAED+oPAEoNiIiYmxv7ZarS63b9eunSpXrizJuTk7Mrbp0qWLypYta19+6tQpzZkzR5I0bNiwbOfxyI6Pj4/uvfdeF3sNALgZnDMAAMgfFJ4AFBuVKlWyv164cKHL7b28vNSrVy9J0rp16xxuZ7vR+fPntWPHDkmOk8xK0syZM5WSkiJvb2+NGTPG5X7kpmbNmrJYLA5/bNSqVcs+B0Xnzp3ty7N75HTGdpk/uc9YxpxPAIqT4nDOkGxzR2X8ft+4caPS09P1+eefq02bNipTpowCAwPVsGFDjRo1SqdOncp2Hxnnk549e0qyzRPYpk0b+fv7ZznPSNJff/2l8ePHq3nz5goKClKpUqVUu3ZtDRw4ULt27cq1v0ePHtWIESNUp04dlSpVShUqVFDXrl3zvKrM2fmYfv31Vz333HOqV6+eAgMDVapUKdWpU0d/+9vf7P9GeZ1rmfMJABxReAJQbNxxxx2qXbu2JOnHH3/UhAkTlJ6e7tI+MubdiI+P13/+858ct/vhhx+Unp4uLy8vPfroow7rMtp16NDBPvlsfgkICFBAQIBKlixpX+bv729fXqpUKafalyhRIsuyjC8AKA6KwznjRomJierRo4eef/557dq1SwkJCYqLi1N4eLimT5+uBg0aaO3atbnuY8iQIRo8eLB27dqllJSULOsXLVqkunXr6q233tKBAwcUFxenlJQUHT9+XF9++aXatGmjN954I9t9L1q0SM2bN9eMGTMUGRmppKQkXblyRWvXrtUjjzyiYcOGufxvlCEuLk59+vRRp06dNHv2bB07dkzXr19XamqqIiMjNXfuXLVt21aLFy/O81wbEBAgLy/+zAKADPxGBFCsvPXWW/bXkydPVosWLfT1118rNTXVqfadO3dWuXLlJOV+60TGuo4dO6pixYr25devX9e+ffskSZ06dXK5/3k5cuSI4uLitHr16izLblyenYztZs6cmWVZxhcAFBdF/Zxxo5deeklr1qzRgAEDFB4eruTkZMXExOjDDz+Uv7+/4uPj1bt3bx0/fjzb9ps3b9acOXP04IMP6vDhw0pJSdGZM2c0dOhQSdLSpUvVr18/xcXF6cEHH9SWLVuUnJyslJQUHThwQE888YQkadKkSZo/f36WfQ8YMEAJCQlq3Lix1q1bp6SkJCUmJmrdunVq2rSpPvvsM23ZssXl3CkpKXrooYe0dOlSSbY5vXbs2KGkpCR7hs8//1w1atTQuXPn8jzXxsXFKSQkxOV+AEBRReEJQLHy1FNP6cMPP5S3t7ck6eDBg+rXr5/q1Kmjjz76SImJibm29/HxsX8a/dNPPyktLS3LNnFxcfrll18kZb1l4q+//rK3qVWr1i3nAQCYp7idM44dO6axY8dq/vz5atCggSwWi4KCgjRy5EgtXrxYku3qrddffz3b9rGxserSpYtWrlypRo0aSZKqVq2qDh066PLlyxo6dKisVquGDh2qtWvXqn379vL29pbFYlHTpk317bff2r8H48ePt18xlZ6erhEjRig1NVV16tTR5s2bdf/998vX11c+Pj66//77tWXLFjVt2vSm5uOaOnWqtm3bJslWbFy8eLHatGkjX19fe4ahQ4dq3759uueee1zePwAUdxSeABQ7I0eO1Pr169W6dWv7spMnT+qll17SHXfcoa+//jrX9hmD4osXL9oHqpmtXr1aSUlJslgs9vk9Mly6dMn+OuNTcACA5ypO54x69erpzTffzHZdz5491a1bN0nSd999l23RzWKx6MMPP5SPj0+WdTNmzFBMTIyqVq2qjz76KMc+ZMxjdfr0afucSps3b9aRI0ckSVOmTNFtt92WpV1gYKA+/PDDPBJmlZCQoA8++ECS7Yqz1157Lcdty5YtqxYtWrh8DAAo7ig8ASiWOnXqpJ07d+r7779X27Zt7cvPnj2rfv36qX///kpOTs627f3336/AwEBJ0vLly7Osz7hlok2bNqpevbrDusyfxN7Mp7IAgIJXXM4ZgwcPzrZolCHjVrjExEQdOHAgy/omTZrYr3S6UUbOfv36OcyNdKPGjRvbX2fcZrhy5UpJtnmUHnnkkRzbdurUSRUqVMhxfXY2bdqky5cvS5Jefvlll9oCAJxD4QlAsZXx6fK2bdu0YcMGh0+zFy5cmOUpPBlKlChhf3LPjXN2pKam2gfIN94yIcnhU9pr167dagQAQAEpDueMu+66K9f1mYtCJ0+ezLK+QYMG2bZLS0vT3r17JUkffvihSpcuneNXcHCwvV3GFV8ZRa5GjRo5PPziRhaLxeUJ2Hfu3Gl/3aVLF5faAgCcQ+EJAGSbAHbHjh0aP368fdmiRYu0fv36bLfP+AMhMjLSfvm/ZHtcc0xMjMM2mVWuXFkWi0VS9oN2AIDnK6rnjMxFn+xkLoTFxsZmWZ/Tk1MvX75sn6sqKSlJ169fz/UrQ8btfOfOnZNk+37kJWM+LmedP39eklSmTJlsb+EDANw6Ck8A8D9eXl4KCwvTsGHD7MuWLFmS7bbdunWzD7Az3zqR8Wl2s2bN7I/hzqxMmTL2T4QzPv0FABQ+RfGckVHkyklSUpL9dU5FpuxknlT9o48+ktVqdepr6tSpkmzzMEnK9Wqnm5XRNy8v/iwCALPwGxYAbjBu3Dj765weGe3v76+uXbtKcrx1IuN1dp9cZ+jcubMk6eeff3b4ZBcAUPgUp3PGX3/9ZX/tylxK5cuXt7/OPGG6szLmyMq4Oiw38fHxLu07o2/Xrl1zuS0AwDkUngDgBpUqVbK/zm0C1Iw/FHbv3q0zZ85o7969OnXqlMO67Dz33HOSbI/Qnj9/fn50GQDgJkXpnJFXUWjPnj32102aNHF6v76+vgoNDc2yD2fVrFlTkhxuU8xOamqq/vzzT5f2nTFvVXp6urZv3+5y3wAAeaPwBKDY2L59u6Kjo/PcLvOgtW7dujlu17NnT/n5+clqtWrFihX2T64bNGighg0b5tiuRYsW9k++x40bp9OnTzvV/5SUFH3yySdObQsAuDXF8ZyxatWqHNdZrVYtWrRIktS0aVOn5lvKrHv37pKktWvX2udsclbGkwTPnTunrVu35rjdihUrXL4qrEuXLvL19ZUkzZgxw6W2AADnUHgCUGzs2LFDHTt21B9//JHrdtOnT7e/7tOnT47bBQUF6b777pMk/fjjj1qxYoUkqXfv3nn25bPPPlNQUJBiYmLUuXNnHTt2LNftz507px49eujzzz/Pc9/5IfM8GnFxcQVyTADwJMXxnDFt2jTt378/23UzZsywr8s8r5WzXn75ZZUoUULJyckaMGCAfeLw7Fy4cEEffvih/f1TTz1lnzR89OjRDnNNZYiOjtbo0aNd7lelSpXsTyRcunSp5s6dm+O2V65c0erVq+3vOVcCgHMoPAEoViIiItSkSRO9+uqr2rlzp30+h+TkZO3cuVMDBgzQzJkzJUn9+vXL89HSGbdH/PLLL9q3b5/DstzcfvvtWrlypYKCghQZGakmTZro5Zdf1pYtW+xPCkpISNCePXs0ZswY1a9fX+vWrbvp3K7KuK1BksLCwvT7779r//79evfdd7Vw4cIC6wcAuFNxO2ekpKTovvvu0+zZs+3zKZ05c0YTJkzQSy+9JElq3br1TRWebr/9dk2bNk2Sbb6qtm3batmyZfb+JyYmaseOHXr11VdVr149ff311/a2ISEhGjlypCRbQbBr167at2+frFarEhMTtXz5crVt21bHjx93+al2kvTOO++oXr16kqQhQ4ZoyJAh2rVrl1JSUiTZilpz585VixYttHbtWnu7zOfKd955R//973915MgRffrppw4FSQAo9qwAUMjt2bPHKsm6Z8+eXLfbtm2btUqVKlZJDl8lSpTIsuzZZ5+1JiUl5XnsixcvWr29ve3tatas6VLfjxw5Yu3YsWOW4/v5+WVZ1rhxY+u2bduc2u+GDRvs7Y4fP57tNvfcc49VknXgwIFZ1qWmplrr1auXpQ+SrBMnTsz12M7+ewCAO3DOcHT8+HF7m5dfftlhX76+vg77bNWqlfXChQtZ9pHb+eRGn3zySZbvYXbf01deecWhXXJysrV3794O2/j4+Di8Hz9+vLVatWrZ9iWv8+LZs2ftOXL63losFuvs2bMd2t13333Znivz+l5wrgRQnHDFE4Bio23btvr99981c+ZMPfzww6pVq5YCAgKUmpqqoKAgNW/eXCNGjNCOHTv05Zdfys/PL899BgcH65577rG/d+aWicwaNmyozZs3a+3atXr++efVsGFD3XbbbbJarSpfvrxatGihYcOG6T//+Y8OHjxon+fCbN7e3lq7dq369u2rihUrysfHR5UrV1aPHj2c+nQeAAq74njOeOyxx3TgwAENHDhQ1atXl8ViUXBwsDp16qSZM2fqt99+c+lpdtkZMWKEjh07pn/+859q3ry5goKClJaWprJly6pZs2b6v//7P23fvl3vv/++QztfX18tXbpUixcvVteuXVWxYkV7/x544AEtXbpUYWFhN92vKlWqaOPGjVq1apX69++vO+64QwEBAZJsVzb1799f27Zt05AhQxzaffPNNxo6dKiqVasmHx8fBQcH695779XgwYNvui8AUNRYrFar1d2dAIBbsXfvXrVq1Up79uxRy5Yt3d2dYo9/DwCejN9Rjk6cOKFatWpJkjZs2KDOnTu7t0PFBD+HAIoTrngCAAAAAACAKSg8AQAAAAAAwBQUngAAAAAAAGAKCk8AAAAAAAAwBYUnAAAAAAAAmILCEwAAAAAAAEzh4+4OAAAAAHCPmjVrymq1ursbAIAijCueAAAAAAAAYAoKTwAAAAAAADAFhScAAAAAAACYgsITAAAAAAAATEHhCQAAAAAAAKag8AQAAAAAAABT+Li7AwCQX8LDw93dBYh/BwCFA7+r4E78/AEoTig8ASj0goOD5e/vr/79+7u7K/gff39/BQcHu7sbAJAF5wx4Cs6VAIoLi9Vqtbq7EwBwq6KiohQdHe3ubtyS9PR0SZKXV+G/Czo4OFghISHu7gYAZKsonDPcqSidr9yJcyWA4oLCEwB4gEuXLqlt27ZKS0vTtm3bVKlSJXd3CQCALC5evKi2bdvKYrFo+/btXLEDAMgTH1MAgAdYs2aNjh07pj///FMrV650d3cAAMjWqlWrFBkZqT/++IPzFQDAKRSeAMADpKSkZPsaAABPwvkKAOAqCk8AAAAAAAAwBYUnAAAAAAAAmILCEwAAAAAAAExB4QkAAAAAAACmoPAEAAAAAAAAU1B4AgAAAAAAgCkoPAEAAAAAAMAUFJ4AAAAAAABgCgpPAAAAAAAAMAWFJwAAAAAAAJiCwhMAAAAAAABMQeEJAAAAAAAApqDwBAAAAAAAAFNQeAIAAAAAAIApKDwBAAAAAADAFBSeAAAAAAAAYAoKTwAAAAAAADAFhScAAAAAAACYgsITAAAAAAAATEHhCQAAAAAAAKag8AQAAAAAAABTWKxWq9WsnS9ZskSvv/66YmNjzToEABQJ8fHxunLliiSpbNmyCggIcHOPAMDzBQYGKiwsTH369DHtGIxnHV2/fl0xMTGSOF/dqCB+HgGgMDK18BQaGqqIiAizdg8AAIBirkGDBgoPDzdt/4xn4Qqzfx4BoDDyMXPnGZ8MeXl5qUqVKmYeCgAKNavVqsuXL0uSypUrJ4vF4uYeAYBnO3funNLT002/EonxrCPOV9krqJ9HACiMTC08ZahSpYpOnz5dEIcCAABAMVC9enWdOXOmwI7HeBa5KeifRwAoTJhcHAAAAAAAAKag8AQAAAAAAABTUHgCAAAAAACAKUwtPAUGBjr8FwAAAMgPBTXOZDwLZ/BzAgA5M7XwFBYWpjZt2igsLMzMwwAAAKCYKahxJuNZOIOfEwDImcVqtVrd3QkAAAAAAAAUPczxBAAAAAAAAFNQeAIAAAAAAIApKDwBAAAAAADAFBSeAAAAAAAAYAoKTwAAAAAAADAFhScAAAAAAACYgsITAAAAAAAATEHhCQAAAAAAAKag8AQAAAAAAABTUHgCAAAAAACAKSg8AQAAAAAAwBQUngAAAAAAAGAKCk8AAAAAAAAwBYUnAAAAAAAAmILCEwAAAAAAAExB4QkAAAAAAACmoPAEAAAAAAAAU1B4AgAAAAAAgCkoPAEAAAAAAMAUFJ4AAAAAAABgCgpPAAAAAAAAMAWFJwAAAAAAAJiCwhMAAAAAAABMQeEJAAAAAAAApvBxdwcAAAUrKipK0dHR7u4GCkBwcLBCQkLc3Q0AAAAUYxSeAKAYiYqKUmhoqOLj493dFRQAf39/hYeHU3wCAACA21B4AoBiJDo6WvHx8VqwYIFCQ0Pd3R2YKDw8XP3791d0dDSFJwAAALgNhScAKIZCQ0PVsmVLd3cDAAAAQBHH5OIAAAAAAAAwBYUnAAAAAAAAmILCEwAAAAAAAExB4QkAAAAAAACmoPAEAIDJDh48qAEDBqh27doqV66cmjZtqn379rm7WwAAAIDpKDwBAAq1zp07y2KxaNCgQe7uSrbWrl2rO++8U1999ZWOHz+uK1eu6NChQzp58qTS0tLUq1cvBQUF6b333nN3VwEAAIB8R+EJAACTpKam6vnnn1dycrIaNWqkrVu3Kj4+XqdPn1bnzp21bt06LV++XNeuXdPYsWN1/fp1d3cZAAAAyFc+7u4AAABF1d69exUVFSVJ+uSTT9SuXTtJUrVq1SRJaWlp9m2tVqusVmvBdxIAAAAwEVc8AQBgkuPHj9tft2rVKsv6hx56SI888ogCAwM1ZcoUlS5d2mH9pEmTZLFYVLNmTbO7CgAAAJiCK54AADBJQkKC/fWNRSVJ8vHx0Q8//FCQXQIAAAAKFFc8AQAAAAAAwBQUngAAAAAAAGAKCk8AgBytWbNGjz32mKpWrSo/Pz8FBgaqVatWGjt2rMP8RTdKS0vT119/rccff1whISEqWbKkAgMD1aJFC40ZM8Y+4XZmhw4d0tixY9WuXTsFBwfL19dXt912mzp27KjPP//8pifeTktL05dffqlu3bqpcuXK8vPzU4UKFfTAAw9o9uzZSklJydLmxIkTslgsslgs+u6773Tp0iX9/e9/V82aNeXt7S2LxaKNGzfmeMyMtoMHD86yzGKxaNCgQfblNWvWlMVi0aRJk7Ic+4033pAknTx50qE9cz4BAACgsGCOJwBAtsaNG6cpU6bY3/v6+iouLk579+7V3r179f7772v+/Pl66qmnHNodO3ZMvXv31uHDh+3LfHx8lJKSov3792v//v36+OOPdejQIdWqVUuS9PDDD+unn35y2I+Pj49iYmK0ZcsWbdmyRZs3b9ZXX33lUoZTp07pkUce0f79++3L/Pz8FB0drZ9//lk///yzZs+erRUrVqhChQrZ7uPMmTNq0aKFTp06JUny9vbO87gBAQGSpNTUVCUlJTksk6SSJUvm2NbLy8u+bXJyslJSUmSxWOTv759l/wAAAICn44onAEAWe/futRed+vTpoxMnTig5OVmJiYnatGmTBg4cqPT0dEVERDi0i4qKUrt27XT48GH5+fnptdde07Fjx5SUlKSUlBRFRETYr+y5evWqvd1PP/2kgIAAjRo1Sjt27FBSUpKSk5N15swZjRo1SpK0YMECbd682ekMV65cUceOHbV//35VqVJFc+bM0ZUrV5SUlKQLFy5o2rRp8vf3144dO9S3b98c9zNhwgSdO3dOU6ZM0ZUrV5ScnKzt27erbt26ObaJi4tTXFycZs6cmWXZjctvFBISYt/utddey7IsLi5OR44ccfr7AAAAALgTVzwBALJYv369/fUHH3ygatWqSZJKlCihTp06qVOnTnrhhRey3G43ePBgRUdHy8/PT6tXr1aXLl0c1tevX18TJ07UE088ofLly9uX9+3bV//+97/tx8lQtWpVTZs2TatWrdLRo0e1YsUKderUyakMo0aN0smTJxUSEqJt27Y57LtChQoaNWqU6tSpo4cfflgbNmzQmjVr1LVr1yz7iY2N1Zw5cxxum7v77rud6gMAAABQ3HHFEwAgCy8v4/QQHx+f7TZ33nmnnnzySfv7HTt22AtW//jHP7IUnTJr2LChKlWqZH//zTffZCk6Zda2bVtJttv4nHHy5EktXLhQkvTxxx/nuO+ePXuqUaNGkqTvvvsu223atGnjUHQCAAAA4DwKTwCALB544AH76xdeeEF//fVXnm2WLVsmyTYH0siRI2+5D1arVadPn9bGjRt17tw5SdK1a9ecarty5UqlpaWpYsWK6tmzZ67bNm7cWJK0b9++bNffOIcVAAAAAOdxqx0AIIsmTZro9ddf15tvvql169apbt26eumll/TCCy+oatWq2bbZuXOnJFshp2LFii4f89y5c1qyZIm2bt2q8PBw/fHHH0pISHDYJj093al97dq1S5IUHR2twMDAXLfNmPz70qVL2a5v0KCBU8cEAAAAkBWFJwBAtt544w3Vr19ff//733X+/HlNmTJF7777rp5++mmNGTNGoaGhDtufP39eklSjRg2XjmO1WjVlyhSFhYXZi0AWi0VVqlRRixYtVLNmTZ08eVJbt251ep8XLlyQZCtUXb9+3ak2iYmJ2S4vVaqU08cFAAAA4Ihb7QAAOXrmmWcUGRmpadOmqXbt2kpJSdGXX36ppk2b6vXXX3e4AiktLU2S4/xQzpg4caLGjx+vpKQktW/fXj/99JNiY2N15swZbd26VQsXLsx20u/cZPSlVatWslqtTn05czshAAAAANdQeAIA5CogIECjRo3SsWPHtHTpUoWGhio1NVVhYWEaM2aMfbuMp9RlzMfkjLNnz2rq1KmSpEcffVS//vqrevTooYCAAIftMgpJzgoODpaU8+1zAAAAAAoGhScAgFO8vLzUu3dv7d27V+3bt5ckffTRR/Z5mDIm6T5w4IDTt7etWbNGKSkpkqQJEybIYrFku92ff/7pUl+bNm0qyfZ0O4pPAAAAgPtQeAIAuKRkyZLq27evJNu8SBm3qD300EP2ZXPnznVqX5lvb6tZs2a221y+fFk//PCDS33s1q2bJNv8UfPmzXOpLQAAAID8Q+EJAJDFhAkTcp3z6MCBA5IkPz8/VapUSZLtVrmMJ8CNGzdO+/fvz7H9oUOHdPDgQfvteZLxVLzM4uPj9eyzz+rq1asu9b9Jkybq3r27JGnSpEn2/mYnPT1dM2fO1NmzZ106RkEoUaKEJCkuLs7NPQEAAABuDoUnAEAWH330kWrXrq2hQ4fql19+sd86l/F0uzlz5kiyTT7u7+8vSfL29taCBQtUqlQpXbt2TR07dtTkyZP1xx9/KD09XVarVZGRkXrzzTfVtm1b/fnnn3rwwQfl42N7wOpzzz2nFStWKDExUampqVq3bp1atmypVatW6fbbb3c5w8yZMxUcHKy4uDh16NBBb7/9tk6cOCHJVmw6fvy4Zs2apRYtWmj48OG6du1aPnzn8lfGVWCXLl3S9OnTdezYMe3atUsTJ07UunXr3Ns5AAAAwAk+7u4AAMDztG/fXqtWrdIXX3yhL774QpLk6+trn48pY5sPPvjAoV2rVq20fv169e3bV1FRUZowYYImTJggb29vWSwWpaamSpLKlCmjWrVqqVatWgoLC9PYsWN15swZPfLII7JYLLJYLEpPT5fFYtH48eMVGxur6dOnu5Th9ttv16ZNm9SrVy8dPXpUr732ml577TX5+PgoPT3d4Yl89evXt09I7km6d++u8uXL69KlSxo1apRGjRplX+fs7YwAAACAO3HFEwAgi5UrV2rTpk0aNmyYmjRpojJlyig9PV3BwcF68MEHNW/ePG3atElBQUFZ2t599906evSoPv/8c/Xs2VPVqlWTj4+P/Pz81LhxY40ePVqHDh1Ss2bNJEljxozR2rVr1bNnT1WoUEE+Pj6qUqWKnn76aW3ZskVhYWE3naNhw4Y6fPiwZs+era5du6py5cqSbPNU1axZUw8//LDmzp2rgwcPemThKSgoSD///LN69uypcuXKydfXV9WrV9eTTz6pLl26uLt7AAAAQJ4sVqvV6u5OAAAKxt69e9WqVSvt2bNHLVu2dHd3YCL+rQEAAOAJuOIJAAAAAAAApqDwBAAAAAAAAFNQeAIAAAAAAIApKDwBAAAAAADAFBSeAAAAAAAAYAoKTwAAAAAAADAFhScAAAAAAACYgsITAAAAAAAATEHhCQAAAAAAAKag8AQAAAAAAABTUHgCAAAAAACAKSg8AQAAAAAAwBQUngAAAAAAAGAKH3d3AABQ8MLDw93dBZiMf2MAAAB4AgpPAFCMBAcHy9/fX/3793d3V1AA/P39FRwc7O5uAAAAoBizWK1Wq7s7AQAoOFFRUYqOjnZ3N1AAgoODFRIS4u5uAAAAoBij8AQAKNIOHDigwYMHq0OHDvrwww/d3R0AAACgWKHwBAAo0l544QV9+umnkqSTJ09yBRAAAABQgHiqHQCgSIuPj8/2NQAAAADzUXgCAAAAAACAKSg8AQAAAAAAwBQUngAAAAAAAGAKCk8AAAAAAAAwBYUnAAAAAAAAmILCEwAAAAAAAExhsVqt1oI40JIlS/T6668rNja2IA4HAIAkKSYmRtevX5ckVa5cWd7e3m7uEQCgOAkMDFRYWJj69Onj7q4AgFsUWOEpNDRUERERBXEoAAAAAPAYDRo0UHh4uLu7AQBu4VNQB8q40snLy0tVqlQpqMMCAAAAgFucO3dO6enp3PUBoFgrsMJThipVquj06dMFfVgAAAAAKFDVq1fXmTNn3N0NAHArJhcHAAAAAACAKSg8AQAAAAAAwBQFVngKDAx0+C8AAAAAFGX8DQQABVh4CgsLU5s2bRQWFlZQhwQAAAAAt+FvIACQLFar1eruTgAAAAAAAKDoYY4nAAAAAAAAmILCEwAAAAAAAExB4QkAAAAAAACmoPAEAAAAAAAAU1B4AgAAAAAAgCkoPAEAAAAAAMAUFJ4AAAAAAABgCgpPAAAAAAAAMAWFJwAAAAAAAJiCwhMAAAAAAABMQeEJAAAAAAAApqDwBAAAAAAAAFNQeAIAAAAAAIApKDwBAAAAAADAFBSeAAAAAAAAYAoKTwAAAAAAADAFhScAAAAAAACYgsITAAAAAAAATEHhCQAAAAAAAKag8AQAAAAAAABT+Di7YVRUlKKjo83sCwAAAJBvgoODFRISkmU541p4Mn5uAbhTTr+DboXFarVandkwICBA8fHx+XpwAAAAwCz+/v4KDw93GEBHRUWpXr16SkpKcmPPgJyVKlVKERERWX5uGzRooISEBDf2DEBxkN3voFvl9BVP8fHxWrBggUJDQ7NdP3v2bM2YMUPDhw/X0KFDXe7I9evX9eKLLyoyMlKffvqpGjdu7PI+Dh8+rBEjRuiOO+7Qxx9/rICAAJf3QQ4bchjIYSCHDTkM5DCQw4YcBnIY3JEjPDxc/fv3V3R0tMPgOTo6WklJSerdu7eCg4Nd6sfevXu1e/dutW7dWi1btnQ5R0pKilatWqXLly+rR48eqlixosv7uHDhglauXKly5cqpe/fu8vX1dXkf5LDxxBwhISH6/vvvs/25TUhIuKmfWwBwVnR0dLa/g26V04UnSQoNDc32l/rkyZM1Y8YMhYWFafz48S53IjY2Vl27dtWJEye0fv16tWnTxuV97Ny5UyNHjlSzZs20Zs0aBQYGurwPctiQw0AOAzlsyGEgh4EcNuQwkMPgCTmyExwcrKpVqzq9/aZNm7R7927de++9uueee1w+XlJSkhYsWKCYmBgNHDhQ1atXd3kfp0+f1urVq1W5cmX1799fJUqUcHkf5LDx1Bxnz57NdXtXf24BwBPc8uTikydP1oQJE255MHH48GGtW7fupgdFDzzwgBo3bnxLgyJykCMzchjIYUMOAzkM5LAhh4EcBk/IkR82bdqkDRs23HKR48KFC3r22Wdvusjx1VdfqWLFirdU5CBH0ckBAIXFLRWePGEwUVQGReQwkMOGHAZyGMhhQw4DOQzksCFH/qLIYUMOgyfkAIDC5KYLT54wmCgqgyJyGMhhQw4DOQzksCGHgRwGctiQw3D48GGX29yIIocNOQyekAMACpubKjx5wmCiqAyKyGEghw05DOQwkMOGHAZyGMhhQw7Dzp07NWLECJfbZUaRw4YcBk/IAQCFkcuFJ08ZTBSVQRE5bMhhQw4DOQzksCGHgRwGctiQw5CR44477nC5bQaKHDbkMHhCDgAorFwqPM2ePdtjBhNFZVBEDnJkIIeBHAZy2JDDQA4DOWzIYcic4+OPP3a5vUSRIwM5DJ6QAwAKM5cKT/nxKFwGReTIjBw25DCQw0AOG3IYyGEghw05DDfmCAgIcHkfFDlsyGHwhBwAUNi5VHgaPny4xwwmisqgiBzkIIeBHAZy2JDDQA4DOWzIYciPHBQ5bMhh8IQcAFAUuFR4Gjp0qMsH8JTBRFEZFJHDhhwGchjIYUMOAzkM5LAhh4EcBoocNuQweEIOACgqbuqpds7ylMFEURkUkcOGHAZyGMhhQw4DOQzksCGHgRwGihw25DB4Qg4AKEpMKzx5ymCiqAyKyGFDDgM5DOSwIYeBHAZy2JDDQA4DRQ4bchg8IQcAFDU+ZuzUUwYTRWVQRA4bchjIYSCHDTkM5DCQw4YcBnIY9u7dq927dxf7Igc5DJ6QIyUlxeU2AODp8v2KJ08ZTBSVQRE5bMhhIIeBHDbkMJDDQA4bchjI4YiiEzky85Qcq1atcrkdAHi6fC08ecpgoqgMishhQw4DOQzksCGHgRwGctiQw0COrFq3bl3sixzksPGkHJcvX3a5LQB4unwrPHnKYKKoDIrIYUMOAzkM5LAhh4EcBnLYkMNAjuy1bNnS5TZFrchBDs/L0aNHD5fbA4Cny5c5njxlMFFUBkXksCGHgRwGctiQw0AOAzlsyGEgR/4pikUOcnheDi8vUx86DgBuccu/2TxlMFFUBkXksCGHgRwGctiQw0AOAzlsyGEgR/4pqkUOchT+HABQGNxS4clTBhNFZVBEDhtyGMhhIIcNOQzkMJDDhhwGcuQfihwGchg8IQcAFBY3XXjylMFEURkUkcOGHAZyGMhhQw4DOQzksCGHgRz5hyKHgRwGT8gBAIXJTRWePGUwUVQGReSwIYeBHAZy2JDDQA4DOWzIYSCHYfbs2S63yYwih4EcBk/IAQCFjcuFJ08ZTBSVQRE5bMhhIIeBHDbkMJDDQA4bchjIYZg8ebJmzJjhcrsMFDkM5DB4Qg4AKIxcKjxdv37dYwYTRWVQRA5yZEYOAzlsyGEgh4EcNuQwkMOQkWP48OEut5UocmRGDoMn5ACAwsqlwtOLL77oMYOJojIoIgc5MpDDQA4bchjIYSCHDTkM5DBkzjF06FCX21PkMJDD4Ak5AKAwc6nwFBkZ6TGDiaIyKCIHOSRyZEYOG3IYyGEghw05DOQw3GoOihwGchg8IQcAFHYuFZ4+/fTTQjuYKCqDInIYyGEghw05DOQwkMOGHAZyGMhhQ5HDQA6DJ+QAgKLApcJT48aNXT6AJwwmisqgiBwGchjIYUMOAzkM5LAhh4EcBnLYUOQwkMPgCTkAoKhw+al2rvCEwURRGRSRw0AOAzlsyGEgh4EcNuQwkMNADhuKHAZyGDwhBwAUJaYVnjxhMFFUBkXkMJDDQA4bchjIYSCHDTkM5DCQwyYlJYUix/+Qw+AJOQCgqPExY6eeMJgoKoMichjIYSCHDTkM5DCQw4YcBnIYyGFYtWqVYmJiin2RgxwGT8hx4cIFl9sAgKfL9yuePGEwUVQGReQwkMNADhtyGMhhIIcNOQzkMJDD0eXLl4t9kYMcBk/JsXLlSpfbAYCny9fCkycMJorKoIgcBnIYyGFDDgM5DOSwIYeBHAZyZNWjR49iX+Qgh40n5ShXrpzLbQHA0+Vb4ckTBhNFZVBEDgM5DOSwIYeBHAZy2JDDQA4DObJXsWJFl9sUtSIHOTwvR/fu3V1uDwCeLl8KT54wmCgqgyJyGMhhIIcNOQzkMJDDhhwGchjIkX+KYpGDHJ6Xw9fX1+V9AICnu+XCkycMJorKoIgcBnIYyGFDDgM5DOSwIYeBHAZy5J+iWuQgR+HPAQCFwS0VnjxhMFFUBkXkMJDDQA4bchjIYSCHDTkM5DCQI/9Q5DCQw8ZTcgBAYXHThSdPGEwUlUEROQzkMJDDhhwGchjIYUMOAzkM5LC5fv26y21uRJHDQA4bT8kBAIXJTRWePGEwUVQGReQwkMNADhtyGMhhIIcNOQzkMJDDJjY2Vi+++KLL7TKjyGEgh42n5ACAwsblwpOnDCaKyqCIHDbkMJDDhhwGchjIYUMOAzkM5LDJyBEZGely2wwUOQzksPGUHABQGLlUeDp8+LDHDCaKyqCIHOTIjBw25DCQw0AOG3IYyGEgh03mHJ9++qnL7SWKHJmRw8ZTcgBAYWWxWq1Wpza0WFSqVCnVrVtXH3/8sQICAlw+2OzZszVjxgwNHz5cQ4cOdbn99evX9eKLLyoyMlKffvqpGjdu7PI+Dh8+rBEjRuiOO+4gBzkkkSMzchjIYUMOAzkM5LAhh8ETc3h7e6t///7as2ePWrZsad9u7969atWqlXr37q3g4GCHfVy4cEErV65UuXLl1L1795t6tP3evXu1e/dutW7d2uG4zkpJSdGqVat0+fJl9ejRQxUrVnR5H+QwFLYc0dHR+v777136uQWA/JLT76Bb5XThqVSpUkpMTMy3AwMAAABm8vf3V3h4uEJCQuzLoqKi1KBBAyUkJLixZ0DOSpUqpYiICH5uAbhFdr+DbpXThaeoqChFR0fn24EBAAAAMwUHB2c7cGZcC0/Gzy0Ad8rpd9CtcLrwBAAAAAAAALjC5afaAQAAAAAAAM6g8AQAAAAAAABTUHgCAAAAAACAKSg8AQAAAAAAwBQUngAAAAAAAGAKCk8AAAAAAAAwBYUnAAAAAAAAmILCEwAAAAAAAExB4QkAAAAAAACmoPAEAAAAAAAAU1B4AgAAAAAAgCkoPAEAAAAAAMAUFJ4AAAAAAABgCgpPAAAAAAAAMAWFJwAAAAAAAJiCwhMAAAAAAABMQeEJAAAAAAAApqDwBAAAAAAAAFNQeAIAAAAAAIApKDwBAAAAAADAFBSeAAAAAAAAYAoKTwAAAAAAADAFhScAAAAAAACYgsITAAAAAAAATOHj7g4AgKewWq26fv16jutLliwpHx9+bQIAAMA1sbGxWrlypRo3bqzGjRu7uzum+O2333TixAn16dOHMTMcWKxWq9XdnQAAT/DHH3+obt26Oa7/6quv1L9//yzLr1+/rlOnTuXYrkqVKgoKCrK/j4+PV7169fTkk0/q/fffz7VPp06d0sqVK53ovWHQoEEqWbKkS20AAIVXTExMtsvT09OVlpamoKAg+fn5SZIWL16st99+W7Nnz1br1q0dtt+9e7dOnz6d67HS0tKUlpambt26KTAwMM++cR5DcTZ16lRt3LhRa9asUUREhEJDQzVx4kRNmjTJ3V3LFwcPHtQ//vEPvfTSS+revbv69++vhQsXKjY2VqVLl3Z39+BBKEMCwP9UrlxZixYtynF927Zts13+66+/qlu3bjm2mzt3rgYNGmR/n56erjNnzujy5ct59unIkSMaPnx4nttl1qdPnywD9gsXLmjbtm1OtS9Tpoy6dOni0jEBAO4RFxen2267Lddtjhw5ooYNG0qSLl68qAMHDiguLi7Ldu+9954WL16c434sFousVquqVaumhx56yKn+cR5DUbVu3TqdOXMmy/I77rhDHTt2lCTt379fa9euvan9P/300/rmm2/0119/qVKlSnlun5CQoPnz5zu9/6FDhzp9VdLq1as1duxYffLJJ2rfvr19+eXLl7V27Vo99thjee5j9uzZSk1Ndep4ffv2zfP3GgoXCk8AirXz58/rvvvuc7nde++9p65du0qS2rVrp127dmXZZsuWLXrllVfs7zM+RY6Pj3f6OF27dpXVatXVq1e1bNkyNW/eXM2bN3fY5ueff9b58+fVr1+/HPezd+9e9erVy6ljNmrUSIcPH3a6jwAA9ylZsmSWD018fHxUokQJvfDCC4qJicn1at7M5s+fr9mzZ9vfWywWeXt7y8fHR9u2bVOvXr2UlpamH374weFK3txwHkNR9e9//zvbolK/fv3shadbER0dLS8vL6f/X7t69apLRd7+/fs7fVVSbGysDhw4oKSkJKf3f6MXX3zR6fYdOnSg8FTEUHgCUKyVLVtW7733nsvtMg+ay5Qpk+V2BUn666+/7K9TU1N1++2331QfJenSpUsaPHiwxowZk2XA/uabbyo8PDzXAXuGt99+O9vbBTPz9fW96X4CAAqWj4+PnnrqqSzL//zzT50+fVrPPvus07/XS5QooRIlSjgsu3r1qsaPH68PPvhA9erV0/Lly1WvXj2X+8l5DEWVGTPXpKena/fu3brttttc/nl+4YUX9PHHH+drfxITEyVJ/v7+t7SfHj166KeffsqPLqGQofAEoFgrUaKE/cql9evXa86cOfY5LhISEuTn56dKlSqpSZMmevLJJ9WvXz95eTk+EDQ5OTnb2+Yyz7nh4+OjX3/91b69s1dZJSYmKjExUenp6ZJsfwDcOJfHlStXFBAQYF9eunTpHC+dLlu2rKpXr+7UsQEAhdeECRPk5eWlf/7znzfV/ujRo/riiy80a9YsXb16VZIUEhKis2fPulR44jwGuO7HH3+0///wr3/9S6+99ppb+5Mxzq1cubJb+4HCyyvvTQCg6Pvyyy9133336fTp05o4caI2bNigQ4cOafv27frwww9VoUIFDRgwQC+//HKWttu2bVOVKlWyfD377LMO23Xo0EEdOnRQu3btnO7X1KlTddttt9lvk5gxY4Zuu+02h6/Dhw/r5MmT9vc///zzrX0zAACF2scff6yvv/5a//jHP1SvXj1ZLBb718iRI7Ntc+LECX377bd69dVX1axZM9WvX1/Tp09Xnz59dOzYMc2fP1/h4eG699571aRJE40bN07r16/P89YZzmOAaxISEvTaa6+pXLlyevLJJ/Xmm2/qt99+c7r9J5984vD/fHZf999/v0t9+v333yXJfvvbpUuXFB0dbS9KO2vlypV59q1OnTou7ROFA1c8AYCkDRs2SJLGjx+f5WTcvHlztWvXTt988402btyY4z5eeOGFbG93qFevntLS0tSoUSNJrl2S/cwzz2S5jS8lJUW9e/fWnXfeqddffz1Lm1atWjm9fwBA0ZGcnKwJEybonXfeUe/evRUWFiYvLy999NFH9m02b96sJUuWZGn30EMP6ejRo/L399c999yj4cOHO0zwW6dOHT3zzDP67rvv9MUXX2jq1Kl65513tHv3bjVr1izHPnEeQ1H3zTffOLx/7LHH9OKLLyoxMdGlgpFk+3+jf//+Cg8P18KFC/XYY4+pdevW6tatm9avX68WLVrkuY9+/fpp/PjxuW4TEBDgUr/27NkjSVqzZo369u2rGjVq6Pr16y7tQ5I6d+6sGTNm5LpNxhM4UbRQeAIASS+//LJWrVqlrl276u6771bt2rVVqlQpJScn68yZM9q2bZvS09NzPZHXrFlTHTp0yHad1Wq1z0mRnJyssLCwXPuTkpKitLQ0hYSEKCQkxGFdxqfLwcHBOX5ilZiYKD8/vyy3BQIAip6UlBR9++23mjRpkv744w+9+OKL+uCDD+Tt7S3JNqlvZjcWnvz8/PTTTz8pISFBDRs2zPE2t4z5pJ566ildvnxZf/zxR45FJ85jKC6efvpph/fnzp3T1atXlZCQoJSUFKf3ExkZqYEDB2rr1q2aOnWqnnnmGUm2Yk/nzp11zz336IMPPtDf/va3XPdTtmxZNWjQwPUgObh06ZK98PTFF1+ob9++mj9/vlJSUvTf//43zzFtZgEBAfnaNxQeFJ4AQLarmiIjI7Vs2TLt2LFDp0+f1vnz5+Xr66vbb79db7/9th5//HFVrVrV5X2fO3dOv//+u0JCQjRgwADFxcXleZJ+7rnn8nwk7urVq1WqVKkc1y9atCjLFVg//vij/el6uZk8eXKe2wAA3G/s2LGaO3euzp8/r4YNG2r16tX2uQud8fvvv9uv+pVst4+7Yu/evWrUqFGWp3hxHkNxkZCQ4PC+ZMmS9uLuU089pcWLF+fa/uDBg/rkk080d+5clSpVSvPmzdPAgQPt60NCQrRp0yY98cQTGjJkiBYuXKjRo0erW7duslgs+R/oBl999ZXS09P1xBNPaMmSJdq0aZMef/xxSdLGjRtdKjyh+KLwBAD/U7p0aT377LNZ5mZy1rRp07RgwQKlpaUpOTlZ169f18WLF5WcnCxJatOmjQYMGODUvl566SU99thjN9WPDHfeeWeWZatXr9bq1avzbMuAHQAKh2bNmumuu+7SwIED9dhjj+V5hVDp0qVVrVo1+9Prtm/f7tIj2LMzbNiwLIUnzmMoLkqWLHlL7adPn66vvvpKTz31lCZPnpzlCkFJuv3227Vlyxa9++67+ve//61nn31WO3bsyHY+pIiICM2bNy/P43bp0iXbY2WWmJio6dOnq2bNmpo3b562bNmil156STt37szyBExnnD592qm+tWnTRg0bNnR5//BcFJ4AFFudO3fWpk2bbmkf27dv1+23367Ro0dLkiwWi7y9vVWiRAkFBQWpQoUKCgkJUf369V16EkjLli3VsmVLSdKyZcucvo++Tp06uvvuu7Ms79q1qymP+wUAuFfGrW+S9Ndffyk1NTXX7e+//37df//9qlChgiRp0KBBGjRoUL73i/MY4JxZs2YpLCwsz6vqfXx8NHbsWL388ss6e/ZsjpNw//LLL/rll1/yPO6yZcvyLDxNnjxZJ06c0Jdffil/f39NnjxZQ4YM0ejRo/Xxxx/neYwbHThwQIMHD85zu2nTplF4KmIoPAEotr788kvFx8fnuH7AgAHau3evDh8+nOM2NWvWVMmSJfXee++Z0UVJ0siRI3XmzBmnth0yZEi2A3YAQNHXunVrp88XGzZsUOfOnbMsj42N1RdffKGVK1cqPDxcly5dUkpKigICAhQSEqK77rpLgwcPVvv27Z3uF+cxFGU///yzUlJSFBcXpzNnzujo0aM6ePCgFi5c6FR7Hx8fl6Zy8Pf3z7boVLly5Xwtzv7444+aMmWK7rvvPvs8pYMHD9aiRYv0ySefqE6dOmrevLnT+0tMTMy3vqHwofAEoNjK/CnPjh07VLZsWdWvX9++zN/fX5JcmgTx22+/1bfffqt33nlHtWvXzpd+OjOXRVxcnAIDA/PleACAwqt27dr617/+leP6NWvW6Isvvsh23R9//KH77rtPly9f1vPPP6+XX35Z1atXl6+vr65evaojR45o3rx56tChg8aMGaO3337bqT5xHkNR9sADD9hflypVSnXr1lWrVq1UpkwZN/bq1mzYsEFPPPGEatSooYULF9rnkrJYLFqwYIE6dOig/fv3q2nTpm7uKQoLCk8AIKl9+/bq2rWrfvrpJ/uykJAQl5+88d///ldLly7VmDFjciw8lS5d2qVPpCIjI/N8Kkp2V24lJSVp0aJFTh8nO82bN3fp0ywAgHvddttt6tOnT47r//rrrxzXjRs3TlFRUdq0aZM6deqUZX27du00dOhQ3XfffZo6daoGDBig0NDQPPvEeQxF0ezZsxUXFyeLxSJfX1+VLVtW5cqVc7r9pUuXtGLFilvqQ4cOHfTHH38oJibmpvdRsWJFdenSxWFZ+/bt9c9//lN/+9vfVKlSJYd1lSpV0r59+1S6dGlt3Lgx133/+uuvTl/tmJ2AgAA9/PDDN90enoPCEwDk4Msvv3R3FyRJ99xzz02dtGNjY526jz43EydOZMAOAMXEpUuXJEnBwcE5bmOxWFS+fHmH7fPCeQxFUfXq1W+p/fHjx2/553vu3Ll67733dOTIkZvexz333JOl8OTn56c333wzxzalS5d2at//+te/tHLlypvuW40aNSg8FREUngDgf06cOOH0RIkvvPBCro+w/fbbb/Xbb7/d8n4y1KtXTxMmTHCqb0lJSSpRooSCg4OZiBUAipmLFy9q5syZOa7fsmVLjutGjhyp9evX6+GHH9bYsWN17733Otxqd/jwYX311Vf67rvv1Lp1a7Vt29bpfnEeAxy1bt06zysB8+Lt7a1nnnlG6enpN72PvJ6EeSuWLVumtLS0m27vzBgZhQOFJwD4nyNHjmjkyJFObft///d/8vHJ+Vfou+++my/7yXD06FE9++yzTu2za9euN/WIWwBA4RcVFaXhw4ffVNtHH31Uq1ev1qRJk/T8889nW/QpW7asXn75Zb355pvy9vZ2et+cx4CsnBkD5sXPzy8femIOX19f+fr6ursb8AAWKx8jAAAAAMjk4sWL+u9//6uLFy8qJSVFpUuXVs2aNdWwYUOXCk4AAFB4AgAAAAAAgCnMu6ETAAAAAAAAxRqFJwAAAAAAAJiCwhMAAAAAAABMQeEJAAAAAAAApqDwBAAAAAAAAFNQeAIAAAAAAIApKDwBAAAAAADAFBSeAAAAAAAAYAoKTwAAAAAAADAFhScAAAAAAACYgsITAAAAAAAATEHhCQAAAAAAAKag8AQAAAAAAABTUHgCAAAAAACAKSg8AQAAAAAAwBQUngAAAAAAAGAKCk8AAAAAAAAwBYUnAAAAAAAAmILCEwAAAAAAAExB4QkAAAAAAACmoPAEAAAAAAAAU1B4AgAAAAAAgCkoPAEAAAAAAMAUFJ4AAAAAAABgCgpPAAAAAAAAMAWFJwAAAAAAAJiCwhMAAAAAAABMQeEJAAAAAAAApqDwBAAAAAAAAFNQeAIAAAAAAIApKDwBAAAAAADAFBSeAAAAAAAAYAoKTwAAAAAAADAFhScAAAAAAACYgsITAAAAAAAATEHhCQAAAAAAAKag8AQAAAAAAABTUHgCAAAAAACAKSg8AQAAAAAAwBQUngAAQIGKiIiQxWLRxo0bHV7nZsmSJbJYLAoPD89z/+np6UpNTc31Ky0tzam+njt3ThaLRatXr3ZYXr16dY0fP16S1Lp1aw0aNChL27z6kJqaKqvVmuvxk5KSNGTIEJUuXVrNmzfXnj177OvmzZsni8WimJgY/fTTT7JYLDpx4kS2+6lTp44sFovDV0b/AQAAzEThCQAA5LuaNWtmKXS8+uqrN72/K1euSJLKli2b57b/+Mc/5Ovrm+tX+fLlnTquj4+PJMnPz8+l/sbFxeXZB19fX02fPj3X/bz55pvasGGD1qxZo/vuu0+9evVSfHy80/04deqU/vjjD3366adasWKFw1f37t0VHh6uxMREl7IBAAC4wsfdHQAAAEVT3759NWnSJPt7Z4s92dm1a5e8vLzk7e3t1PbVqlXL9SoqZ/dz/fp1SVJAQIBT29/oX//6l3r37p3j+goVKuS4LjU1VZ9++qneeecddejQQXfffbcWLlyo5cuX65lnnnHq+N26ddORI0eyLPfy8lJ6erp8fHy0b98+NW7c2Kn9AQAAuIrCEwAAMEXZsmXVoEGDW95PfHy8li5dqvT0dP2///f/NH/+/Dzb+Pj4qE6dOrd87OjoaElSpUqVbqp9xYoVb7ofBw8eVExMjNq1ayfJlql9+/bq16+f+vXr59Q+du3aZb+tMOPKs8TERL311lv65JNPNGfOHIpOAADAVNxqBwAAPNrrr7+upKQkzZs3TwsWLNA333yTZ5uTJ09mudUv81efPn2cOvaxY8ck2eZaSktLU0xMjGJiYvKcmynD4MGDc+3H4cOHc2wbGRkpSapSpYp9WfXq1VWnTh2Fh4frnXfeyfP4pUqVUunSpVW6dGnFxMRo6tSpqlevnj755BMtXbrU6SunAAAAbhZXPAEAAFPExMQoIiLC/r5ixYr67LPPdPHiRaf3MWPGDP373//W+++/r4EDB+rgwYMaNGiQypUrpwcffDDHdlWrVtUvv/yS4/oyZco4dfwdO3ZIkpYvX677779fd955p9N9l6QpU6aoV69eOa6vXbt2juuuXbsmSSpdurR9WZkyZZSYmKgGDRpo9+7duR47IiJCBw8e1KFDh7RmzRrt379f999/v8aNG6cff/xRjzzyiO666y516tRJrVu3Vq9evZy+BREAAMBZFJ4AAIApFi9erMWLF9vfHz58WD///LNTk2NHRUVpwoQJ+vLLLzV69Gi98sorkqR3331Xp0+fVvfu3fXGG2/YJxK/ka+vb77c5rd27Vp5e3tr7ty5euWVV3Tu3DlJUsuWLZ1qX6VKlXzpR2bOXm31zTffaN68eWrWrJn69eunH374QVWrVpUkvfLKKzp27JhWrFihTZs26dSpU05fBQYAAOAKCk8AAMAUw4YN08yZMx2W/fzzz4qIiFBoaGiO7WbNmqWXXnpJvr6++uKLL/S3v/3Nvs7Ly0tff/21JkyYoAkTJmjWrFlasGCBOnXqlO/937lzpyIiIvTvf/9b//jHP/T999/r6aeftvfDbBlXZcXFxalcuXKSbFdB+fr6KiIiwl4Eu1FaWpqOHTump556Sk899ZR9+bVr1+xXUWXo3r27unfvLsl2hVSVKlUUFBRkRhwAAFBMUXgCAAAepVevXjp16pRGjhyZ7aTe3t7emjJlivr06aMvvvhCrVu3zrJNxhxPuTl06FCuE2uHhYWpWrVqevHFF7V79269+uqr6t69u0uFmcGDB2vw4ME5rn/88cf13XffZbsu4za8c+fO2QtPp0+f1okTJ3It3F28eDHX9bmZO3euBg0adFNtAQAAskPhCQAAmMZqtSohIUHnz59XZGSkoqOj1bx581zbVKxYUZMnT85z3y1btsz2lrd//vOfGjp0aJ7tc5tfacmSJfrpp580a9Ys+fn5ady4cfruu+80bNgwpyY3DwgIUHh4eJ7b5TbXVLNmzRQUFKRt27apUaNGSk1N1datWzVz5kwNGzZM8+bNy7aoVblyZadvxwMAADAbhScAAGCKWbNmadasWZJsVynVqFFDjzzySJ6Fp1tVoUIFVahQ4abb79mzR0OHDtUDDzyg5557TpLUqFEjTZo0SePGjdOzzz6b5z4sFsstz+3k4+Oj4cOHa+rUqWrYsKGWL18uq9Wqvn37Or2PzJO756Z+/fp5XiEGAABwMyg8AQCAfPfLL78oJSVFPj4+Kl26tCpUqGB/YlpuxZCoqCinJh+/UZUqVRQdHa2UlBSX24aEhMjf39/+PjY2VnfddZe+/fZbh2LMa6+9pjZt2uj+++/PcV9Xr17Nce6l3Pj7+yskJCTL8kmTJumvv/7Sgw8+qNq1a2v58uUqW7as0/t19pa7hIQElSxZ0un9AgAAOIvCEwAAyHd33HHHTbUbMGCANm3a5HK7uXPnatKkSTp58qTLbTds2KDOnTvb33fu3NnhfWa5FZ0kadmyZbnO6ZSTe+65Rxs3bsyyvESJEpo7d67mzp3r8j6lvJ+AN3v2bPtVXQAAAGag8AQAADxGdsUXZ3nCpNiDBg3yiH4AAAB4CvOfBQwAAAAAAIBiyWLlsScAAAAAAAAwAVc8AQAAAAAAwBQUngAAAAAAAGAKCk8AAAAAAAAwBYUnAAAAAAAAmILCEwAAAAAAAExB4QkAAAAAAACmoPAEAAAAAAAAU1B4AgAAAAAAgCl83N0BAIBni4qKUnR0tLu7gf8JDg5WSEiIu7sBAECBYSwCT8AY7OZReAIA5CgqKkqhoaGKj493d1fwP/7+/goPD2fgAwAoFhiLwFMwBrt5FJ4AADmKjo5WfHy8FixYoNDQUHd3p9gLDw9X//79FR0dzaAHAFAsMBaBJ2AMdmsoPAEA8hQaGqqWLVu6uxsAAKCYYiwCFF5MLg4AAAAAAABTUHgCAAAAAACAKSg8AQAAAAAAwBQUngAAAAAAAGAKCk8AANyE48ePa/jw4apfv77KlSun+vXra+3ate7uFgAAAOBRKDwBAOCiAwcOqHnz5po5c6aOHj2qK1eu6OjRowoPD5ckjRgxQmXKlNGoUaPc21EAAAAP1rlzZ1ksFg0aNMhh+f79+1WrVi3VqVNHhw8fdk/nkG8oPAEA8lV4eLheeeUVtWjRQkFBQfL19VX58uV19913a/To0dq5c6fD9mPHjpXFYpHFYlFkZKTTx/ntt9/s7b799ttc+zNp0iS1a9dOVatWlZ+fnwIDA1W7dm09+uij+uyzz3T16lWXMg4fPlzXrl1T9erVtWbNGsXGxurChQt65plnFBERoRkzZig2NlbTp0/X0aNHXdo3AAC4NcVhLFLUTZ06VSdOnFBkZKSmTJni7u7gFlF4AgDkm7feektNmzbVBx98oP379+vatWvy8vLS5cuXtWPHDr3//vu666679M9//tPe5vHHH7e//uGHH5w+1vLlyyVJJUuWVPfu3bOsv3LlioYMGaLGjRvrjTfe0Pbt23Xu3DlJUlxcnI4fP64ff/xRw4YNU506dez7y8v58+e1fft2SdLkyZP10EMPqXTp0qpQoYIqVqyotLQ0h+1vfA8AAMxTHMYixUHm8RNjqcKPwhMAIF/MmjVL48ePV2pqqnr37q3Nmzfr6tWrSkpKUkJCgrZu3aqXXnpJAQEBDp8mtm7dWjVq1JAklwZcGQPDjMJPZidOnFC7du00Z84cpaen64EHHtCSJUt08eJFJScnKzExUYcOHVJYWJjKly+v6Ohop4994sQJ++tWrVplWd+oUSM9//zzKl26tF588UWFhoY6rJ83b57901EAAJB/istYpDgYO3asatSooVq1amncuHH5ss+NGzfax2CZx3Mwn4+7OwAAKPzS0tI0ceJESVKfPn20ZMkSh/UlS5ZUu3bt1K5dO/3973/X+vXrHdb36tVLH3zwgbZt26bo6GgFBwfneryjR48qIiJCktS7d2+HddevX1e3bt0UERGhkiVLav78+XryyScdtilRooQaN26sxo0ba8SIERowYIDTWRMSEuyvbxxkZpg1a5ZmzZrl9D4BAMCtKU5jkeKgZcuWFIeKEK54AgDcst9//13nz5+XpCwDqxvVqFFDgwcPdliWcYl7WlqaVqxYkefxli1bJkny9fXVI4884rBu9OjRioiIkMVi0dKlS/PsT7ly5bR8+XINHDgwz+MCAADPxFgE8FwUngAAtywmJsb+2mq1uty+Xbt2qly5siTn5lbI2KZLly4qW7asffmpU6c0Z84cSdKwYcOynW8hOz4+Prr33ntd7DUAAPAUjEUAz0XhCQBwyypVqmR/vXDhQpfbe3l5qVevXpKkdevWOdzOdqPz589rx44dkhwnA5WkmTNnKiUlRd7e3hozZozL/chNzZo1ZbFYHAaFtWrVss8V0LlzZ/vy7B4NnLFd5k9YM5Yx5xMAALemOIxFJNvcURnjho0bNyo9PV2ff/652rRpozJlyigwMFANGzbUqFGjdOrUqWz3kTFO6dmzpyTb/JNt2rSRv79/lvGLJP31118aP368mjdvrqCgIJUqVUq1a9fWwIEDtWvXrlz7e/ToUY0YMUJ16tRRqVKlVKFCBXXt2jXPq8qcnY/p119/1XPPPad69eopMDBQpUqVUp06dfS3v/3N/m+U1xiOOZ/MR+EJAHDL7rjjDtWuXVuS9OOPP2rChAlKT093aR8Z8yPEx8frP//5T47b/fDDD0pPT5eXl5ceffRRh3UZ7Tp06GCfJDS/BAQEKCAgQCVLlrQv8/f3ty8vVaqUU+1LlCiRZVnGFwAAuDnFYSxyo8TERPXo0UPPP/+8du3apYSEBMXFxSk8PFzTp09XgwYNtHbt2lz3MWTIEA0ePFi7du1SSkpKlvWLFi1S3bp19dZbb+nAgQOKi4tTSkqKjh8/ri+//FJt2rTRG2+8ke2+Fy1apObNm2vGjBmKjIxUUlKSrly5orVr1+qRRx7RsGHDXP43yhAXF6c+ffqoU6dOmj17to4dO6br168rNTVVkZGRmjt3rtq2bavFixfnOYYLCAiQlxelETPx3QUA5Iu33nrL/nry5Mlq0aKFvv76a6WmpjrVvnPnzipXrpyk3C9xz1jXsWNHVaxY0b78+vXr2rdvnySpU6dOLvc/L0eOHFFcXJxWr16dZdmNy7OTsd3MmTOzLMv4AgAAN6+oj0Vu9NJLL2nNmjUaMGCAwsPDlZycrJiYGH344Yfy9/dXfHy8evfurePHj2fbfvPmzZozZ44efPBBHT58WCkpKTpz5oyGDh0qSVq6dKn69eunuLg4Pfjgg9qyZYuSk5OVkpKiAwcO6IknnpAkTZo0SfPnz8+y7wEDBighIUGNGzfWunXrlJSUpMTERK1bt05NmzbVZ599pi1btricOyUlRQ899JCWLl0qyTan144dO5SUlGTP8Pnnn6tGjRo6d+5cnmO4uLg4hYSEuNwPOI/CEwAgXzz11FP68MMP5e3tLUk6ePCg+vXrpzp16uijjz5SYmJiru19fHzsnxr+9NNPSktLy7JNXFycfvnlF0lZL23/66+/7G1q1ap1y3kAAEDhUtzGIseOHdPYsWM1f/58NWjQQBaLRUFBQRo5cqQWL14syXb11uuvv55t+9jYWHXp0kUrV65Uo0aNJElVq1ZVhw4ddPnyZQ0dOlRWq1VDhw7V2rVr1b59e3l7e8tisahp06b69ttv7d+D8ePH26+YSk9P14gRI5Samqo6depo8+bNuv/+++Xr6ysfHx/df//92rJli5o2bXpT83FNnTpV27Ztk2QrNi5evFht2rSRr6+vPcPQoUO1b98+3XPPPS7vH/mPwhMAIN+MHDlS69evV+vWre3LTp48qZdeekl33HGHvv7661zbZwxeLl68aB9QZLZ69WolJSXJYrHY52HIcOnSJfvrjE8rAQBA8VKcxiL16tXTm2++me26nj17qlu3bpKk7777Ltuim8Vi0YcffigfH58s62bMmKGYmBhVrVpVH330UY59yJjH6vTp0/Y5lTZv3qwjR45IkqZMmaLbbrstS7vAwEB9+OGHeSTMKiEhQR988IEk2xVnr732Wo7bli1bVi1atHD5GMh/FJ4AAPmqU6dO2rlzp77//nu1bdvWvvzs2bPq16+f+vfvr+Tk5Gzb3n///QoMDJQkLV++PMv6jEvb27Rpo+rVqzusy/yJ2c18egYAAIqG4jIWGTx4cLZFowwZt8IlJibqwIEDWdY3adLEfqXTjTJy9uvXz2FupBs1btzY/jrjNsOVK1dKss2j9Mgjj+TYtlOnTqpQoUKO67OzadMmXb58WZL08ssvu9QW7kPhCQCQ7zI+Bdy2bZs2bNjg8KnjwoULszwtJUOJEiXsT1i5cW6F1NRU+0DmxkvbJTl8mnbt2rVbjQAAAAqx4jAWueuuu3Jdn7kodPLkySzrGzRokG27tLQ07d27V5L04YcfqnTp0jl+BQcH29tlXPGVUeRq1KiRw0NVbmSxWFyegH3nzp321126dHGpLdyHwhMAwFSdO3fWjh07NH78ePuyRYsWaf369dlunzGQi4yMtF+mLdkeqxsTE+OwTWaVK1eWxWKRlP3gCgAAFE9FdSySueiTncyFsNjY2Czrc3oi7+XLl+1zVSUlJen69eu5fmXIuJ3v3Llzkmzfj7xkzMflrPPnz0uSypQpk+0tfPBMFJ4AAKbz8vJSWFiYhg0bZl+2ZMmSbLft1q2bfSCU+RL3jE8dmzVrZn9ccmZlypSxf3KX8SkdAACAVDTHIhlFrpwkJSXZX+dUZMpO5knVP/roI1mtVqe+pk6dKsk2D5OkXK92ulkZffPyopRRmPCvBQAoMOPGjbO/zunRvv7+/urataskx0vcM15n9wljhs6dO0uSfv75Z4dP4AAAAKTiNRb566+/7K9dmUupfPny9teZJ0x3VsYcWRlXh+UmPj7epX1n9O3atWsut4X7UHgCABSYSpUq2V/nNlFlxoBu9+7dOnPmjPbu3atTp045rMvOc889J8n2qOP58+fnR5cBAEARUpTGInkVhfbs2WN/3aRJE6f36+vrq9DQ0Cz7cFbNmjUlyeE2xeykpqbqzz//dGnfGfNWpaena/v27S73De5B4QkAcMu2b9+u6OjoPLfLPLioW7dujtv17NlTfn5+slqtWrFihf0TxgYNGqhhw4Y5tmvRooX9E8px48bp9OnTTvU/JSVFn3zyiVPbAgAAz1McxyKrVq3KcZ3VatWiRYskSU2bNnVqvqXMunfvLklau3atfc4mZ2U8SfDcuXPaunVrjtutWLHC5avCunTpIl9fX0nSjBkzXGoL96HwBAC4ZTt27FDHjh31xx9/5Lrd9OnT7a/79OmT43ZBQUG67777JEk//vijVqxYIUnq3bt3nn357LPPFBQUpJiYGHXu3FnHjh3Ldftz586pR48e+vzzz/Pcd37IPN9BXFxcgRwTAICirjiORaZNm6b9+/dnu27GjBn2dZnntXLWyy+/rBIlSig5OVkDBgywTxyenQsXLujDDz+0v3/qqafsk4aPHj3aYa6pDNHR0Ro9erTL/apUqZL9iYRLly7V3Llzc9z2ypUrWr16tf09YzD3ofAEAMgXERERatKkiV599VXt3LnTft99cnKydu7cqQEDBmjmzJmSpH79+uX5COCMy9h/+eUX7du3z2FZbm6//XatXLlSQUFBioyMVJMmTfTyyy9ry5Yt9ie6JCQkaM+ePRozZozq16+vdevW3XRuV2Vcfi5JYWFh+v3337V//369++67WrhwYYH1AwCAoqa4jUVSUlJ03333afbs2fb5lM6cOaMJEybopZdekiS1bt36pgpPt99+u6ZNmybJNl9V27ZttWzZMnv/ExMTtWPHDr366quqV6+evv76a3vbkJAQjRw5UpKtINi1a1ft27dPVqtViYmJWr58udq2bavjx4+7/FQ7SXrnnXdUr149SdKQIUM0ZMgQ7dq1SykpKZJsRa25c+eqRYsWWrt2rb1d5jHYO++8o//+9786cuSIPv30U4eCJExgBQAgB3v27LFKsu7ZsyfX7bZt22atUqWKVZLDV4kSJbIse/bZZ61JSUl5HvvixYtWb29ve7uaNWu61PcjR45YO3bsmOX4fn5+WZY1btzYum3bNqf2u2HDBnu748ePZ7vNPffcY5VkHThwYJZ1qamp1nr16mXpgyTrxIkTcz22s/8eAAAUFYxFHB0/ftze5uWXX3bYl6+vr8M+W7VqZb1w4UKWfeQ2TrnRJ598kuV7mN339JVXXnFol5ycbO3du7fDNj4+Pg7vx48fb61WrVq2fclrvHX27Fl7jpy+txaLxTp79myHdvfdd1+2Y7C8vheMwW4NVzwBAG5Z27Zt9fvvv2vmzJl6+OGHVatWLQUEBCg1NVVBQUFq3ry5RowYoR07dujLL7+Un59fnvsMDg7WPffcY3/vzKXtmTVs2FCbN2/W2rVr9fzzz6thw4a67bbbZLVaVb58ebVo0ULDhg3Tf/7zHx08eNA+H4HZvL29tXbtWvXt21cVK1aUj4+PKleurB49ejj1KSoAAMiqOI5FHnvsMR04cEADBw5U9erVZbFYFBwcrE6dOmnmzJn67bffXHqaXXZGjBihY8eO6Z///KeaN2+uoKAgpaWlqWzZsmrWrJn+7//+T9u3b9f777/v0M7X11dLly7V4sWL1bVrV1WsWNHevwceeEBLly5VWFjYTferSpUq2rhxo1atWqX+/fvrjjvuUEBAgCTblU39+/fXtm3bNGTIEId233zzjYYOHapq1arJx8dHwcHBuvfeezV48OCb7gvyZrFarVZ3dwIA4Jn27t2rVq1aac+ePWrZsqW7u1Ps8e8BAChuOPc5OnHihGrVqiVJ2rBhgzp37uzeDhUT/BzeGq54AgAAAAAAgCkoPAEAAAAAAMAUFJ4AAAAAAABgCgpPAAAAAAAAMAWFJwAAAAAAAJiCwhMAAAAAAABM4ePuDgAAAAAAgLzVrFlTVqvV3d0AXMIVTwAAAAAAADAFhScAAAAAAACYgsITAAAAAAAATEHhCQAAAAAAAKag8AQAAAAAAABTUHgCAAAAAACAKXzc3QEAgOcLDw93dxcg/h0AAMUX50C4Ez9/t4bCEwAgR8HBwfL391f//v3d3RX8j7+/v4KDg93dDQAACgRjEXgKxmA3z2K1Wq3u7gQAwHNFRUUpOjra3d3A/wQHByskJMTd3QAAoMAwFoEnYAx28yg8AQCKtCNHjmjYsGFq3769/vWvf7m7OwAAAAUmPT1dQ4cOVVRUlObPn69q1aq5u0sohphcHABQpM2cOVNbt27VO++8o9OnT7u7OwAAAAVm165dmjt3rn755RctWLDA3d1BMUXhCQBQpMXFxWX7GgAAoKjLPPaJjY11Y09QnFF4AgAAAAAAgCkoPAEAAAAAAMAUFJ4AAAAAAABgCgpPAAAAAAAAMAWFJwAAAAAAAJiCwhMAAAAAAABMQeEJAAAAAAAApqDwBAAAAAAAAFNQeAIAAAAAAIApKDwBAAAAAADAFBSeAAAAAAAAYAoKTwAAAAAAADAFhScAAAAAAACYgsITAAAAAAAATEHhCQAAAAAAAKag8AQAAAAAAABTUHgCAAAAAACAKSg8AQAAAAAAwBQUngAAAAAAAGAKCk8AAAAAAAAwBYUnAAAAAAAAmILCEwAAAAAAAExhsVqt1oI40JIlS/T6668rNja2IA4HAIAkKSYmRtevX5ckVapUST4+Pm7uEQCgOAkMDFRYWJj69OlTIMfj7y5klpycrIsXL0qy/SyWKVPGzT2CpyjI300FVngKDQ1VREREQRwKAAAAADxGgwYNFB4eXiDH4u8uAM4qqN9NBfaxb0bF3cvLS1WqVCmowwIAAACAW5w7d07p6ekFevURf3cByEtB/24q8PsNqlSpotOnTxf0YQEAAACgQFWvXl1nzpxxy7H5uwtATgr6dxOTiwMAAAAAAMAUFJ4AAAAAAABgigIrPAUGBjr8FwAAAACKMnf8DcTfXQDyUtC/Jwqs8BQWFqY2bdooLCysoA4JAAAAAG7jjr+B+LsLQF4K+veExWq1WgvkSAAAAAAAAChWmOMJAAAAAAAApqDwBAAAAAAAAFNQeAIAAAAAAIApKDwBAAAAAADAFBSeAAAAAAAAYAoKTwAAAAAAADAFhScAAAAAAACYgsITAAAAAAAATEHhCQAAAAAAAKag8AQAAAAAAABTUHgCAAAAAACAKSg8AQAAAAAAwBQUngAAAAAAAGAKCk8AAAAAAAAwBYUnAAAAAAAAmILCEwAAAAAAAExB4QkAAAAAAACmoPAEAAAAAAAAU1B4AgAAAAAAgCkoPAEAAAAAAMAUFJ4AAAAAAABgCgpPAAAAAAAAMAWFJwAAAAAAAJiCwhMAAAAAAABM4ePuDgAAClZUVJSio6Pd3Q0UgODgYIWEhLi7GwAAACjGKDwBQDESFRWl0NBQxcfHu7srKAD+/v4KDw+n+AQAAAC3ofAEAMVIdHS04uPjtWDBAoWGhrq7OzBReHi4+vfvr+joaApPAAAAcBsKTwBQDIWGhqply5bu7gYAAACAIo7JxQEAAAAAAGAKCk8AAAAAAAAwBYUnAAAAAAAAmILCEwAAAAAAAExB4QkAAJMdPHhQAwYMUO3atVWuXDk1bdpU+/btc3e3AAAAANNReAIAFGqdO3eWxWLRoEGD3N2VbK1du1Z33nmnvvrqKx0/flxXrlzRoUOHdPLkSaWlpalXr14KCgrSe++95+6uAgAAAPmOwhMAACZJTU3V888/r+TkZDVq1Ehbt25VfHy8Tp8+rc6dO2vdunVavny5rl27prFjx+r69evu7jIAAACQr3zc3QEAAIqqvXv3KioqSpL0ySefqF27dpKkatWqSZLS0tLs21qtVlmt1oLvJAAAAGAirngCAMAkx48ft79u1apVlvUPPfSQHnnkEQUGBmrKlCkqXbq0w/pJkybJYrGoZs2aZncVAAAAMAVXPAEAYJKEhAT76xuLSpLk4+OjH374oSC7BAAAABQorngCAAAAAACAKSg8AQAAAAAAwBQUngAAOVqzZo0ee+wxVa1aVX5+fgoMDFSrVq00duxYh/mLbpSWlqavv/5ajz/+uEJCQlSyZEkFBgaqRYsWGjNmjH3C7cwOHTqksWPHql27dgoODpavr69uu+02dezYUZ9//vlNT7ydlpamL7/8Ut26dVPlypXl5+enChUq6IEHHtDs2bOVkpKSpc2JEydksVhksVj03Xff6dKlS/r73/+umjVrytvbWxaLRRs3bszxmBltBw8enGWZxWLRoEGD7Mtr1qwpi8WiSZMmZTn2G2+8IUk6efKkQ3vmfAIAAEBhwRxPAIBsjRs3TlOmTLG/9/X1VVxcnPbu3au9e/fq/fff1/z58/XUU085tDt27Jh69+6tw4cP25f5+PgoJSVF+/fv1/79+/Xxxx/r0KFDqlWrliTp4Ycf1k8//eSwHx8fH8XExGjLli3asmWLNm/erK+++sqlDKdOndIjjzyi/fv325f5+fkpOjpaP//8s37++WfNnj1bK1asUIUKFbLdx5kzZ9SiRQudOnVKkuTt7Z3ncQMCAiRJqampSkpKclgmSSVLlsyxrZeXl33b5ORkpaSkyGKxyN/fP8v+AQAAAE/HFU8AgCz27t1rLzr16dNHJ06cUHJyshITE7Vp0yYNHDhQ6enpioiIcGgXFRWldu3a6fDhw/Lz89Nrr72mY8eOKSkpSSkpKYqIiLBf2XP16lV7u59++kkBAQEaNWqUduzYoaSkJCUnJ+vMmTMaNWqUJGnBggXavHmz0xmuXLmijh07av/+/apSpYrmzJmjK1euKCkpSRcuXNC0adPk7++vHTt2qG/fvjnuZ8KECTp37pymTJmiK1euKDk5Wdu3b1fdunVzbBMXF6e4uDjNnDkzy7Ibl98oJCTEvt1rr72WZVlcXJyOHDni9PcBAAAAcCeueAIAZLF+/Xr76w8++EDVqlWTJJUoUUKdOnVSp06d9MILL2S53W7w4MGKjo6Wn5+fVq9erS5dujisr1+/viZOnKgnnnhC5cuXty/v27ev/v3vf9uPk6Fq1aqaNm2aVq1apaNHj2rFihXq1KmTUxlGjRqlkydPKiQkRNu2bXPYd4UKFTRq1CjVqVNHDz/8sDZs2KA1a9aoa9euWfYTGxurOXPmONw2d/fddzvVBwAAAKC444onAEAWXl7G6SE+Pj7bbe688049+eST9vc7duywF6z+8Y9/ZCk6ZdawYUNVqlTJ/v6bb77JUnTKrG3btpJst/E54+TJk1q4cKEk6eOPP85x3z179lSjRo0kSd99912227Rp08ah6AQAAADAeRSeAABZPPDAA/bXL7zwgv7666882yxbtkySbQ6kkSNH3nIfrFarTp8+rY0bN+rcuXOSpGvXrjnVduXKlUpLS1PFihXVs2fPXLdt3LixJGnfvn3Zrr9xDisAAAAAzuNWOwBAFk2aNNHrr7+uN998U+vWrVPdunX10ksv6YUXXlDVqlWzbbNz505JtkJOxYoVXT7muXPntGTJEm3dulXh4eH6448/lJCQ4LBNenq6U/vatWuXJCk6OlqBgYG5bpsx+felS5eyXd+gQQOnjgkAAAAgKwpPAIBsvfHGG6pfv77+/ve/6/z585oyZYreffddPf300xozZoxCQ0Mdtj9//rwkqUaNGi4dx2q1asqUKQoLC7MXgSwWi6pUqaIWLVqoZs2aOnnypLZu3er0Pi9cuCDJVqi6fv26U20SExOzXV6qVCmnjwsAAADAEbfaAQBy9MwzzygyMlLTpk1T7dq1lZKSoi+//FJNmzbV66+/7nAFUlpamiTH+aGcMXHiRI0fP15JSUlq3769fvrpJ8XGxurMmTPaunWrFi5cmO2k37nJ6EurVq1ktVqd+nLmdkIAAAAArqHwBADIVUBAgEaNGqVjx45p6dKlCg0NVWpqqsLCwjRmzBj7dhlPqcuYj8kZZ8+e1dSpUyVJjz76qH799Vf16NFDAQEBDttlFJKcFRwcLCnn2+cAAAAAFAwKTwAAp3h5eal3797au3ev2rdvL0n66KOP7PMwZUzSfeDAAadvb1uzZo1SUlIkSRMmTJDFYsl2uz///NOlvjZt2lSS7el2FJ8AAAAA96HwBABwScmSJdW3b19JtnmRMm5Re+ihh+zL5s6d69S+Mt/eVrNmzWy3uXz5sn744QeX+titWzdJtvmj5s2b51JbAAAAAPmHwhMAIIsJEybkOufRgQMHJEl+fn6qVKmSJNutchlPgBs3bpz279+fY/tDhw7p4MGD9tvzJOOpeJnFx8fr2Wef1dWrV13qf5MmTdS9e3dJ0qRJk+z9zU56erpmzpyps2fPunSMglCiRAlJUlxcnJt7AgAAANwcCk8AgCw++ugj1a5dW0OHDtUvv/xiv3Uu4+l2c+bMkWSbfNzf31+S5O3trQULFqhUqVK6du2aOnbsqMmTJ+uPP/5Qenq6rFarIiMj9eabb6pt27b6888/9eCDD8rHx/aA1eeee04rVqxQYmKiUlNTtW7dOrVs2VKrVq3S7bff7nKGmTNnKjg4WHFxcerQoYPefvttnThxQpKt2HT8+HHNmjVLLVq00PDhw3Xt2rV8+M7lr4yrwC5duqTp06fr2LFj2rVrlyZOnKh169a5t3MAAACAE3zc3QEAgOdp3769Vq1apS+++EJffPGFJMnX19c+H1PGNh988IFDu1atWmn9+vXq27evoqKiNGHCBE2YMEHe3t6yWCxKTU2VJJUpU0a1atVSrVq1FBYWprFjx+rMmTN65JFHZLFYZLFYlJ6eLovFovHjxys2NlbTp093KcPtt9+uTZs2qVevXjp69Khee+01vfbaa/Lx8VF6errDE/nq169vn5Dck3Tv3l3ly5fXpUuXNGrUKI0aNcq+ztnbGQEAAAB34oonAEAWK1eu1KZNmzRs2DA1adJEZcqUUXp6uoKDg/Xggw9q3rx52rRpk4KCgrK0vfvuu3X06FF9/vnn6tmzp6pVqyYfHx/5+fmpcePGGj16tA4dOqRmzZpJksaMGaO1a9eqZ8+eqlChgnx8fFSlShU9/fTT2rJli8LCwm46R8OGDXX48GHNnj1bXbt2VeXKlSXZ5qmqWbOmHn74Yc2dO1cHDx70yMJTUFCQfv75Z/Xs2VPlypWTr6+vqlevrieffFJdunRxd/cAAACAPFmsVqvV3Z0AABSMvXv3qlWrVtqzZ49atmzp7u7ARPxbAwAAwBNwxRMAAAAAAABMQeEJAAAAAAAApqDwBAAAAAAAAFNQeAIAAAAAAIApKDwBAAAAAADAFBSeAAAAAAAAYAoKTwAAAAAAADAFhScAAAAAAACYgsITAAAAAAAATEHhCQAAAAAAAKag8AQAAAAAAABTUHgCAAAAAACAKSg8AQAAAAAAwBQ+7u4AAKDghYeHu7sLMBn/xgAAAPAEFJ4AoBgJDg6Wv7+/+vfv7+6uoAD4+/srODjY3d0AAABAMWaxWq1Wd3cCAFBwoqKiFB0d7e5uoAAEBwcrJCTE3d0AAABAMUbhCQBQpJ06dUrjx4/X3XffreHDh7u7OwAAAECxQuEJAFCk/b//9//03nvvycvLS2fPnlWlSpXc3SUAAACg2OCpdgCAIi3jtsL09HRduXLFzb0BAAAAihcKTwAAAAAAADAFhScAAAAAAACYgsITAAAAAAAATEHhCQAAAAAAAKag8AQAAAAAAABTUHgCAAAAAACAKSxWq9VaEAdasmSJXn/9dcXGxhbE4QAAkCRduXJF8fHxkqRKlSrJx8fHzT0CABQngYGBCgsLU58+fdzdFQBwiwIrPIWGhioiIqIgDgUAAAAAHqNBgwYKDw93dzcAwC0K7GPfjCudvLy8VKVKlYI6LAAAslqtslgs7u4GAKCYOXfunNLT07nrA0CxVuD3G1SpUkWnT58u6MMCAAAAQIGqXr26zpw54+5uAIBbMbk4AAAAAAAATEHhCQAAAAAAAKYosMJTYGCgw38BAAAAoCjjbyAAKMDCU1hYmNq0aaOwsLCCOiQAAAAAuA1/AwGAZLFarVZ3dwIAAAAAAABFD3M8AQAAAAAAwBQUngAAAAAAAGAKCk8AAAAAAAAwBYUnAAAAAAAAmILCEwAAAAAAAExB4QkAAAAAAACmoPAEAAAAAAAAU1B4AgAAAAAAgCkoPAEAAAAAAMAUFJ4AAAAAAABgCgpPAAAAAAAAMAWFJwAAAAAAAJiCwhMAAAAAAABMQeEJAAAAAAAApqDwBAAAAAAAAFNQeAIAAAAAAIApKDwBAAAAAADAFBSeAAAAAAAAYAoKTwAAAAAAADAFhScAAAAAAACYwsfZDaOiohQdHW1mXwAAAIB8ExwcrJCQkCzLGdfCk/FzC8CdcvoddCssVqvV6syGAQEBio+Pz9eDAwAAAGbx9/dXeHi4wwA6KipK9evXV2Jioht7BuSsRIkSOnr0aJaf2wYNGighIcGNPQNQHJQqVUoRERH5Wnxy+oqn+Ph4LViwQKGhobluN3v2bM2YMUPDhw/X0KFDXe7Q9evX9eKLLyoyMlKffvqpGjdu7PI+Dh8+rBEjRuiOO+7Qxx9/rICAAJf3QQ4bchjIYSCHDTkM5DCQw4YcBnIYCjJHeHi4+vfvr+joaIfBc3R0tBITE1WuXDk9+uij8vX1dbkfe/fu1e7du9W6dWu1bNnS5fYpKSlatWqVLl++rB49eqhixYou7+PChQtauXKlypUrp+7du5OjCOVISkrK9uc2ISFBvXv3VnBwsMv7BgBnREdH6/vvv8/yO+hWOV14kqTQ0NBcf5lPnjxZM2bMUFhYmMaPH+9yZ2JjY9W1a1edOHFC69evV5s2bVzex86dOzVy5Eg1a9ZMa9asUWBgoMv7IIcNOQzkMJDDhhwGchjIYUMOAzkMnpAjs0cffVQ1atRwud2mTZu0e/du3Xvvvbrnnntcbp+UlKQFCxYoJiZGAwcOVPXq1V3ex+nTp7V69WpVrlxZ/fv3V4kSJVzeBzlsPC1H69attXv37hy3Cw4OVtWqVV3ePwC4U75NLj558mRNmDDhlgcThw8f1rp16256UPTAAw+ocePGtzQoIgc5MiOHgRw25DCQw0AOG3IYyGHwhBw3upkrUjZt2qQNGzbccpHjwoULevbZZ2+6yPHVV1+pYsWKt1TkIIdn5riZK7YAwNPlS+HJEwYTRWVQRA4DOWzIYSCHgRw25DCQw0AOG3Lkr6JY5CBH4c8BAIXBLReePGEwUVQGReQwkMOGHAZyGMhhQw4DOQzksCFH/qLIYUMOgyfkAIDC4pYKT54wmCgqgyJyGMhhQw4DOQzksCGHgRwGctiQI39R5LAhh8ETcgBAYXLThSdPGEwUlUEROQzksCGHgRwGctiQw0AOAzlsyGE4fPiwy21uRJHDhhwGT8gBAIXNTRWePGEwUVQGReQwkMOGHAZyGMhhQw4DOQzksCGHYefOnRoxYoTL7TKjyGFDDoMn5ACAwsjlwpOnDCaKyqCIHDbksCGHgRwGctiQw0AOAzlsyGHIyHHHHXe43DYDRQ4bchg8IQcAFFYuFZ5mz57tMYOJojIoIgc5MpDDQA4DOWzIYSCHgRw25DBkzvHxxx+73F6iyJGBHAZPyAEAhZlLhacZM2Z4zGCiqAyKyEEOiRyZkcNADhtyGMhhIIcNOQw35ggICHB5HxQ5bMhh8IQcAFDYuVR4Gj58uMcMJorKoIgc5CCHgRwGctiQw0AOAzlsyGHIjxwUOWzIYfCEHABQFLhUeBo6dKjLB/CUwURRGRSRw4YcBnIYyGFDDgM5DOSwIYeBHAaKHDbkMHhCDgAoKm7qqXbO8pTBRFEZFJHDhhwGchjIYUMOAzkM5LAhh4EcBoocNuQweEIOAChKTCs8ecpgoqgMishhQw4DOQzksCGHgRwGctiQw0AOA0UOG3IYPCEHABQ1Pmbs1FMGE0VlUEQOG3IYyGEghw05DOQwkMOGHAZyGPbu3avdu3cX+yIHOQyekCMlJcXlNgDg6fL9iidPGUwUlUEROWzIYSCHgRw25DCQw0AOG3IYyOGIohM5MvOUHKtWrXK5HQB4unwtPHnKYKKoDIrIYUMOAzkM5LAhh4EcBnLYkMNAjqxat25d7Isc5LDxpByXL192uS0AeLp8Kzx5ymCiqAyKyGFDDgM5DOSwIYeBHAZy2JDDQI7stWzZ0uU2Ra3IQQ7Py9GjRw+X2wOAp8uXOZ48ZTBRVAZF5LAhh4EcBnLYkMNADgM5bMhhIEf+KYpFDnJ4Xg4vL1MfOg4AbnHLv9k8ZTBRVAZF5LAhh4EcBnLYkMNADgM5bMhhIEf+KapFDnIU/hwAUBjcUuHJUwYTRWVQRA4bchjIYSCHDTkM5DCQw4YcBnLkH4ocBnIYPCEHABQWN1148pTBRFEZFJHDhhwGchjIYUMOAzkM5Pj/7d17UFT3/f/xF3IViILVaBpFxxhM0FSq5Ka0GrET1MmUGG/xghptWirKdOwkmmh11PmKhjTaamxmoF6pStLSWhEzNV6q9dIaGq2IGm2t0URFqAwgyAr8/ti4Hwgs7AL7Y1mejxlm2HPO53M+L2fZ8/G952JFDoMcLYcih0EOwx1yAEBb0qTCk7tMJjxlUkQOK3IY5DDIYUUOgxwGOazIYZDDSE1NdbpNTRQ5DHIY7pADANoapwtP7jKZ8JRJETmsyGGQwyCHFTkMchjksCKHQQ5j5cqV2rhxo9PtHqDIYZDDcIccANAWOVV4Ki0tdZvJhKdMishBjprIYZDDihwGOQxyWJHDIIfxIEdCQoLTbSWKHDWRw3CHHADQVjlVeEpMTHSbyYSnTIrIQY4HyGGQw4ocBjkMcliRwyCHUTPHnDlznG5PkcMgh+EOOQCgLXOq8HT58mW3mUx4yqSIHOSQyFETOazIYZDDIIcVOQxyGM3NQZHDIIfhDjkAoK1zqvD0/vvvt9nJhKdMishhkMMghxU5DHIY5LAih0EOgxxWFDkMchjukAMAPIFThaeBAwc6vQN3mEx4yqSIHAY5DHJYkcMgh0EOK3IY5DDIYUWRwyCH4Q45AMBTOP1UO2e4w2TCUyZF5DDIYZDDihwGOQxyWJHDIIdBDiuKHAY5DHfIAQCexGWFJ3eYTHjKpIgcBjkMcliRwyCHQQ4rchjkMMhhZbFYKHJ8jRyGO+QAAE/j44pO3WEy4SmTInIY5DDIYUUOgxwGOazIYZDDIIexd+9e3blzp90XOchhuEOOW7duOd0GANxdi5/x5A6TCU+ZFJHDIIdBDityGOQwyGFFDoMcBjlqKywsbPdFDnIY7pIjKyvL6XYA4O5atPDkDpMJT5kUkcMgh0EOK3IY5DDIYUUOgxwGOeoaO3Zsuy9ykMPKnXJ06dLF6bYA4O5arPDkDpMJT5kUkcMgh0EOK3IY5DDIYUUOgxwGOer38MMPO93G04oc5HC/HGPGjHG6PQC4uxYpPLnDZMJTJkXkMMhhkMOKHAY5DHJYkcMgh0GOluOJRQ5yuF8OX19fp/sAAHfX7MKTO0wmPGVSRA6DHAY5rMhhkMMghxU5DHIY5Gg5nlrkIEfbzwEAbUGzCk/uMJnwlEkROQxyGOSwIodBDoMcVuQwyGGQo+VQ5DDIYeUuOQCgrWhy4ckdJhOeMikih0EOgxxW5DDIYZDDihwGOQxyWJWWljrd5psochjksHKXHADQljSp8OQOkwlPmRSRwyCHQQ4rchjkMMhhRQ6DHAY5rIqLi5WYmOh0u5oochjksHKXHADQ1nhVV1dXO7Shl5e2b9+uyspK/fSnP9Vjjz2m9evXKygoyOmdpqamauPGjUpISNCcOXOcbl9aWqrExERdvnxZ77//vgYOHOh0H2fPniXH18hhRQ6DHAY5rMhhkMMghxU5DHfK8fnnn6usrEyffvqpBg8ebFufk5OjIUOGaNy4ceratWu9fdy6dUtZWVnq0qWLxowZ06QbPufk5OjUqVOKioqqtX9HWSwW7d27V4WFhRo7dmyTnsJHDqOt5Lh9+7b+8Ic/NOl9CwDNZe8zqLkcLjwFBQXp7t27LbZjAAAAwJUCAwOVl5ensLAw27KrV6/qiSeeUFlZWSuODLCvY8eOOn/+PO9bAK2ivs+g5nK48HT16lXdvn27xXYMAAAAuFLXrl3rnTgzr4U7430LoDXZ+wxqDocLTwAAAAAAAIAzmvxUOwAAAAAAAKAhFJ4AAAAAAADgEhSeAAAAAAAA4BIUngAAAAAAAOASFJ4AAAAAAADgEhSeAAAAAAAA4BIUngAAAAAAAOASFJ4AAAAAAADgEhSeAAAAAAAA4BIUngAAAAAAAOASFJ4AAAAAAADgEhSeAAAAAAAA4BIUngAAAAAAAOASFJ4AAAAAAADgEhSeAAAAAAAA4BIUngAAAAAAAOASFJ4AAAAAAADgEhSeAAAAAAAA4BIUngAAAAAAAOASFJ4AAAAAAADgEhSeAAAAAAAA4BIUngAAAAAAAOASFJ4AAAAAAADgEhSeAAAAAAAA4BI+rT0AAHAX1dXVKi0ttbs+ICBAPj58bAIAAMA5xcXFysrK0sCBAzVw4MDWHo5LnDhxQleuXNH48eOZM6MWr+rq6urWHgQAuINLly7p8ccft7t+27ZtmjZtWp3lpaWl+uKLL+y2e+SRR9S5c2fb67t37yo8PFwTJ07UL3/5ywbH9MUXXygrK8uB0RszZ85UQECAU20AAG3XnTt36l1eVVWlyspKde7cWX5+fpKkXbt2adWqVUpNTVVUVFSt7U+dOqVr1641uK/KykpVVlZq9OjReuihhxodG8cxtGfJyck6dOiQ9u3bp/Pnz+vJJ5/U0qVLtWzZstYeWos4c+aM3njjDc2fP19jxozRtGnTlJ6eruLiYgUHB7f28OBGKEMCwNd69OihHTt22F3//PPP17v8yJEjGj16tN12mzZt0syZM22vq6qqdP36dRUWFjY6ptzcXCUkJDS6XU3jx4+vM2G/deuWjh075lD7Tp06aeTIkU7tEwDQOkpKShQaGtrgNrm5uYqIiJAk5efn6/Tp0yopKamzXUpKinbt2mW3Hy8vL1VXV+vRRx/Viy++6ND4OI7BU/3lL3/R9evX6yx/7LHH9L3vfU+S9Nlnn+njjz9uUv+vvvqqdu7cqRs3bqh79+6Nbl9WVqYtW7Y43P+cOXMcPispOztbixYt0oYNGzRs2DDb8sLCQn388ceKi4trtI/U1FTdv3/fof1NmjSp0c81tC0UngC0azdv3lRMTIzT7VJSUhQbGytJGjp0qP7xj3/U2ebo0aP62c9+Znv94Fvku3fvOryf2NhYVVdXq6ioSJmZmYqMjFRkZGStbfbv36+bN29q6tSpdvvJycnRyy+/7NA+BwwYoLNnzzo8RgBA6wkICKjzpYmPj4/8/f01d+5c3blzp8GzeWvasmWLUlNTba+9vLzk7e0tHx8fHTt2TC+//LIqKyv1pz/9qdaZvA3hOAZP9e6779ZbVJo6daqt8NQct2/fVocOHRz+WysqKnKqyDtt2jSHz0oqLi7W6dOnde/ePYf7/6bExESH20dHR1N48jAUngC0ayEhIUpJSXG6Xc1Jc6dOnepcriBJN27csP1+//599erVq0ljlKSCggLNmjVLCxcurDNhX758ufLy8hqcsD+watWqei8XrMnX17fJ4wQA/P/l4+OjyZMn11n+73//W9euXdP06dMd/lz39/eXv79/rWVFRUVavHix1q5dq/DwcP3xj39UeHi40+PkOAZP5Yo711RVVenUqVMKDQ11+v08d+5crV+/vkXHU15eLkkKDAxsVj9jx47Vnj17WmJIaGMoPAFo1/z9/W1nLh04cEC//e1vbfe4KCsrk5+fn7p3766nnnpKEydO1NSpU9WhQ+0HglZUVNR72VzNe274+PjoyJEjtu0dPcuqvLxc5eXlqqqqkmT9D8A37+Xxv//9T0FBQbblwcHBdk+dDgkJUc+ePR3aNwCg7VqyZIk6dOigN998s0ntL168qLS0NH3wwQcqKiqSJIWFhenLL790qvDEcQxw3u7du21/D6tXr9Zbb73VquN5MM/t0aNHq44DbVeHxjcBAM+3detWxcTE6Nq1a1q6dKkOHjyof/3rXzp+/Lh+9atfqVu3boqPj1dSUlKdtseOHdMjjzxS52f69Om1touOjlZ0dLSGDh3q8LiSk5MVGhpqu0xi48aNCg0NrfVz9uxZ/fe//7W93r9/f/P+MQAAbdr69ev1u9/9Tm+88YbCw8Pl5eVl+5k3b169ba5cuaKMjAz9/Oc/16BBg9S/f3+tW7dO48eP1+eff64tW7YoLy9PL7zwgp566im9/fbbOnDgQKOXznAcA5xTVlamt956S126dNHEiRO1fPlynThxwuH2GzZsqPU3X9/PqFGjnBrThQsXJMl2+VtBQYFu375tK0o7Kisrq9Gx9evXz6k+0TZwxhMASDp48KAkafHixXUOxpGRkRo6dKh27typQ4cO2e1j7ty59V7uEB4ersrKSg0YMECSc6dkT5kypc5lfBaLRePGjdPTTz+tX/ziF3XaDBkyxOH+AQCeo6KiQkuWLNGaNWs0btw4rVixQh06dNCvf/1r2zZ//etf9eGHH9Zp9+KLL+rixYsKDAzU8OHDlZCQUOsGv/369dOUKVP00UcfKS0tTcnJyVqzZo1OnTqlQYMG2R0TxzF4up07d9Z6HRcXp8TERJWXlztVMJKsfxvTpk1TXl6e0tPTFRcXp6ioKI0ePVoHDhzQd7/73Ub7mDp1qhYvXtzgNkFBQU6N69NPP5Uk7du3T5MmTVLv3r1VWlrqVB+SNGLECG3cuLHBbR48gROehcITAEhKSkrS3r17FRsbq+eee059+/ZVx44dVVFRoevXr+vYsWOqqqpq8EDep08fRUdH17uuurradk+KiooKrVixosHxWCwWVVZWKiwsTGFhYbXWPfh2uWvXrna/sSovL5efn1+dywIBAJ7HYrEoIyNDy5Yt06VLl5SYmKi1a9fK29tbkvWmvjV9s/Dk5+enPXv2qKysTBEREXYvc3twP6nJkyersLBQly5dslt04jiG9uLVV1+t9fqrr75SUVGRysrKZLFYHO7n8uXLmjFjhv72t78pOTlZU6ZMkWQt9owYMULDhw/X2rVr9dprrzXYT0hIiJ544gnng9hRUFBgKzylpaVp0qRJ2rJliywWi86dO9fonLamoKCgFh0b2g4KTwAg61lNly9fVmZmpk6ePKlr167p5s2b8vX1Va9evbRq1Sq98sor+va3v+1031999ZUuXLigsLAwxcfHq6SkpNGD9I9+9KNGH4mbnZ2tjh072l2/Y8eOOmdg7d692/Z0vYasXLmy0W0AAK1v0aJF2rRpk27evKmIiAhlZ2fb7l3oiAsXLtjO+pWsl487IycnRwMGDKjzFC+OY2gvysrKar0OCAiwFXcnT56sXbt2Ndj+zJkz2rBhgzZt2qSOHTtq8+bNmjFjhm19WFiYDh8+rAkTJmj27NlKT0/XggULNHr0aHl5ebV8oG/Ytm2bqqqqNGHCBH344Yc6fPiwXnnlFUnSoUOHnCo8of2i8AQAXwsODtb06dPr3JvJUe+99562b9+uyspKVVRUqLS0VPn5+aqoqJAkPfPMM4qPj3eor/nz5ysuLq5J43jg6aefrrMsOztb2dnZjbZlwg4AbcOgQYP07LPPasaMGYqLi2v0DKHg4GA9+uijtqfXHT9+3KlHsNfnxz/+cZ3CE8cxtBcBAQHNar9u3Tpt27ZNkydP1sqVK+ucIShJvXr10tGjR/XOO+/o3Xff1fTp03Xy5Ml674d0/vx5bd68udH9jhw5st591VReXq5169apT58+2rx5s44ePar58+fr73//e50nYDri2rVrDo3tmWeeUUREhNP9w31ReALQbo0YMUKHDx9uVh/Hjx9Xr169tGDBAkmSl5eXvL295e/vr86dO6tbt24KCwtT//79nXoSyODBgzV48GBJUmZmpsPX0ffr10/PPfdcneWxsbEuedwvAKB1Pbj0TZJu3Lih+/fvN7j9qFGjNGrUKHXr1k2SNHPmTM2cObPFx8VxDHDMBx98oBUrVjR6Vr2Pj48WLVqkpKQkffnll3Zvwv3JJ5/ok08+aXS/mZmZjRaeVq5cqStXrmjr1q0KDAzUypUrNXv2bC1YsEDr169vdB/fdPr0ac2aNavR7d577z0KTx6GwhOAdmvr1q26e/eu3fXx8fHKycnR2bNn7W7Tp08fBQQEKCUlxRVDlCTNmzdP169fd2jb2bNn1zthBwB4vqioKIePFwcPHtSIESPqLC8uLlZaWpqysrKUl5engoICWSwWBQUFKSwsTM8++6xmzZqlYcOGOTwujmPwZPv375fFYlFJSYmuX7+uixcv6syZM0pPT3eovY+Pj1O3cggMDKy36NSjR48WLc7u3r1b//d//6eYmBjbfUpnzZqlHTt2aMOGDerXr58iIyMd7q+8vLzFxoa2h8ITgHar5rc8J0+eVEhIiPr3729bFhgYKElO3QQxIyNDGRkZWrNmjfr27dsi43TkXhYlJSV66KGHWmR/AIC2q2/fvlq9erXd9fv27VNaWlq96y5duqSYmBgVFhbq9ddfV1JSknr27ClfX18VFRUpNzdXmzdvVnR0tBYuXKhVq1Y5NCaOY/BkP/jBD2y/d+zYUY8//riGDBmiTp06teKomufgwYOaMGGCevfurfT0dNu9pLy8vLR9+3ZFR0frs88+03e+851WHinaCgpPACBp2LBhio2N1Z49e2zLwsLCnH7yxrlz5/T73/9eCxcutFt4Cg4OduobqcuXLzf6VJT6zty6d++eduzY4fB+6hMZGenUt1kAgNYVGhqq8ePH211/48YNu+vefvttXb16VYcPH9b3v//9OuuHDh2qOXPmKCYmRsnJyYqPj9eTTz7Z6Jg4jsETpaamqqSkRF5eXvL19VVISIi6dOnicPuCggL9+c9/btYYoqOjdenSJd25c6fJfTz88MMaOXJkrWXDhg3Tm2++qddee03du3evta579+765z//qeDgYB06dKjBvo8cOeLw2Y71CQoK0ksvvdTk9nAfFJ4AwI6tW7e29hAkScOHD2/SQbu4uNih6+gbsnTpUibsANBOFBQUSJK6du1qdxsvLy9961vfqrV9YziOwRP17NmzWe3/85//NPv9vWnTJqWkpCg3N7fJfQwfPrxO4cnPz0/Lly+32yY4ONihvlevXq2srKwmj613794UnjwEhScA+NqVK1ccvlHi3LlzG3yEbUZGhk6cONHsfh4IDw/XkiVLHBrbvXv35O/vr65du3IjVgBoZ/Lz8/Wb3/zG7vqjR4/aXTdv3jwdOHBAL730khYtWqQXXnih1qV2Z8+e1bZt2/TRRx8pKipKzz//vMPj4jgG1BYVFdXomYCN8fb21pQpU1RVVdXkPhp7EmZzZGZmqrKyssntHZkjo22g8AQAX8vNzdW8efMc2vYnP/mJfHzsf4S+8847LdLPAxcvXtT06dMd6jM2NrZJj7gFALR9V69eVUJCQpPa/vCHP1R2draWLVum119/vd6iT0hIiJKSkrR8+XJ5e3s73DfHMaAuR+aAjfHz82uBkbiGr6+vfH19W3sYcANe1XyNAAAAAKCG/Px8nTt3Tvn5+bJYLAoODlafPn0UERHhVMEJAAAKTwAAAAAAAHAJ113QCQAAAAAAgHaNwhMAAAAAAABcgsITAAAAAAAAXILCEwAAAAAAAFyCwhMAAAAAAABcgsITAAAAAAAAXILCEwAAAAAAAFyCwhMAAAAAAABcgsITAAAAAAAAXILCEwAAAAAAAFyCwhMAAAAAAABc4v8Bp5JabX5HkGUAAAAASUVORK5CYII=\n", "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgODUxLjQgNDg4Ljc1NTcxMTk1NjUgXSAvQ29udGVudHMgOSAwIFIgL0Fubm90cyAxMCAwIFIgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0xlbmd0aCAxMiAwIFIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnic7VhNUxxHDL33r+ijOdC01J+6YiekfEiFmEoOqRyoBWyoXRwDjv9+3sx+jHphdhcMLlfFB6pm3myr1XpqSY+DN+f/Xk7Ofz86tK/fmYPhbXJryF7h77319gp/XyzZI/y9Nx5vM1MTuYin6eIp1upKSoUYkG9fPxhzYT7Z4thyCS4IVx9DLNXWUCwJu9q9cfa12Jtz+6e9xk5fYP3IHvx2end3fnMNj+zBL2RvJ9fG9JawLJfMNcCb5NmVUAIFjU81Hji4xFJjBd4ZaAC4eGiO7SOd9C55kuxLjQGRWvhsWp957nPy2YmnKKF1PXNxOXOG1cZ1hTeeKjsvd4IWNiYHclhYc26dryG5WihHbp1XeOOksvOw87534mpFP97NJ6Sht/seIAd4RpRxoD5guTPHhUoQUDyZmcMTc/AzWYr25MJwdFKSYEPs5+3JmfnLvrJ79m978tb8dIKU9A6RtF1GD0+TmYWJ/V9Prz/PDk9vPl8ffbz7cDnZn1yehVDEvvlojx9YSuxiLQI/QthshQooGbHC1REh8lUk0hZnGNyMmIkIkwgIDAjOFm8yx7mZYx3pFJEu3MU6+5i+eaSJeDRGu0eakSXffaSLD46S9xJwd/K2SIfiYg6CjyLPk9NE8Rki3f1iLNJtcmz0JZdnCDQzGB0xk4JD+ZPU5TXv6s0x2HprGTWpbZEmkKAehYjDh+Rd4ZiyoC5qPHadEABKnkazK5UqMqJBo6uE+0Z2Ysw7Y/Qnv/w0Mw+uQHXdBfcDjh08zrVs8tQ3eVR7Lsl5nzKKN8KFaHKq3aFydJ4JZ9T4tMFrRt/JyBfgyoyG+1q/rPPr9b3SfIkPAbY7yzUKtqHErO4C++4u+NUFuJ3sgV8ElJN9dTrdQ6NwMRS8nN/Yi8u74X6MUsmpOJ98idlGtN6aalfsZy3ODunnK+qhQik79gk/bkDvsD5KWjI5fEIDX3yaaXhYMTVRtuODmQ1MMuj289+jdSKmVLoEYsF8cA+fNnhGf8YzHqeNHY1v5JLzYk0/xMRITmrAPiSpbODy3Z6tuOo9e3+83o29lBOmnoa3JbSibAGs2Fq+rxGVqIc1SQtIE5FHoV1o6Wa4hPM1nGTkLDpuS8gK1FFfLd+VioRC3i94Igf/3OBGiQON3Y06u5w0lKiNIuZtnDwWRnkoqWZBlHUP435agGDwRaqkvgSP9DBeVW3ePi1I0+f1UlCEDosmX9K2tlFzHLOCHuYlScHoFra0jfXRRZsJ0aGdSuEU4hYzw+xyPIz1UDN+FdZHiyezEk9dHgj5nFrtNMCNdAKbNSLZFsJJvbaiY0fvnqiatM9KHGmfFaycVDZeyPUNckl7rVSR9lrByj9l4yGvHyeUiBx1l/mHQnoxhfTNQvz/lUZjIf6hib5TTUQeGwQJvWhRuFTncxGUCg1mtFh40OgkiQ4zPYd4TxCJX37Remj4fSN7xmA/wNvFEKEjpiA+UiuGFN6IIUJdL+SFciOGGvgRYgg56dAkPEan7OVlxZDmsBRHGAPg+azFyUHFVuSDRjFUp26+5gZNGB4F43m9RyOltPw0Mw+uaBgbx9OAj1JZoVrzwnvYKSypS5+AxeUePtU4GO16cGXpuBzsNPhmMmW+Bos7MoUc4wKk0P2P9pnVkClIMQldZFr6GnxFn0YH+jS6Th+K7fBN8dfgiihIju34DgRmHCb4PPdfEQi95VJax6cab4hSdnYmEKPUYs28Fz2RwJ2lVKigAsoz4xYzFBPGjdCPp3xPTwXu+3WNqGX3G6DSXWsi5uuF13qjfKLwWmuUjfBqteIjGuVTdddao9RmIijBkZBfNX2FN6k6nAcnghKPW7zBbRwzk6Xv/hH6pm4zg+1WYtL8B3pbNYsKZW5kc3RyZWFtCmVuZG9iagoxMiAwIG9iagoxNDA1CmVuZG9iagoxMCAwIG9iagpbIF0KZW5kb2JqCjE3IDAgb2JqCjw8IC9MZW5ndGggMTggL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzIyUTCAwxRDrjQAHaUDTgplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTQ1IC0yODcgMTAwMCA4MzggXSAvTGVuZ3RoIDIzNgovRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNkcuNwzAMRO+qgg0EMP9UPQEWPij9X3cox0ku5oNGHI7owcdBaQe9hlhsWkOmbFKdVy3f9TlMeZNl7urSikBxYYoq8qMoNMmaa3ZPJLkxGdxsBtmhZO5QFIqxkYqSZpGkkCLFcwjcFAqHkcCpU0pUz+lYgZDsaISBtC3jtG3jtnVByAMVzQb7iI6i1ZQY0jXQ47tiIL5NIrkrV76VHt20xr2qNc7hjAfZxNqaXAynMf2HsvpmFv9QP+FSv9Qu6+PX3n3zwVz9T/iNa6Nw3E4fesvnNmPsGV0zN61ND7sjfelSz/H3D4xVYYoKZW5kc3RyZWFtCmVuZG9iagoxOSAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvRm9ybSAvQkJveCBbIC00NSAtMjg3IDEwMDAgODM4IF0gL0xlbmd0aCAxNjgKL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTY+7DQMxDEN7T8ERrL88zwFBCmf/NrwLkkth6EE0JXGEOWwJXuOkFuzRJX/Aqnc52xp+w+ndwyz+qCfBw274aN9dezxHdkJWc29OvWiPlAVNQ5rCjNUVPhvHyBB4sxOF4MtY/CVUJOZF+6KaRSr3H9GThXJBKrvWCF51jOKdwVf0+qJTE+55KszpvKmEmaI5qWFyKVOgxYnLoczyzXAwz+MNrp8+7QplbmRzdHJlYW0KZW5kb2JqCjIwIDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTQ1IC0yODcgMTAwMCA4MzggXSAvTGVuZ3RoIDc2Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE3MzQ2AUAgD4HunYAT5eeBExgPuf9UmajjxJS2FZohlygWqNpVG+VRaPrKlQx6LafgQVxrfXuPEXirFacL5+p9i481ZPW4O0RqVCmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0Zvcm0gL0JCb3ggWyAtNDUgLTI4NyAxMDAwIDgzOCBdIC9MZW5ndGggMTkxCi9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE3QOw7EIAwE0J5TcIFI+Is5T6RViuz92x1DVqHiSQZ7TDGVak71W1IuXO/iwzb1aFAP2kSNnuoriYCyyyu1Mau+Kaet6tJVAj0OIkUIpof3JEne4BGbDslO882r9eQqzFqZHZ16m7gTxgZI103uM1C86Joj1NsmtbxP1jdlCEQRfySYnRJ8jCCMIpa0Uc+iWFcIKytOTDZ8jIihkmLPzIbbbFw10EVxMtfsfRbxXAHVsXb673Ziz88PZRRUyQplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTQ1IC0yODcgMTAwMCA4MzggXSAvTGVuZ3RoIDIyNQovRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNUEFuA0EIu+8r/IFIYAaYec9KVQ7p/6/17KZtTliywTZHr8LDg/g+2u2Grwv2tI3E/6M3/TySiW7TVm1pb0Fd+7YEN/0Bh4VQzPpEPX/ZP3TfeR41UKHbjwH3vLzh2vGYYAe8iejGedB0SfHoC7lS09GMzezg3G4b1XRQfI09A2W3xpGlrdlI6vYkxqKYMMegXLgQORFVCDMxuwGHdCPhy6R3uLAYGhbf9ZxDi8qvLsFSMLsMZZJ1lQhFZ8qitiFDOhugnsY0VdRUiPPwofLSuS64du7nnHrT1w/8lVQ4CmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0Zvcm0gL0JCb3ggWyAtNDUgLTI4NyAxMDAwIDgzOCBdIC9MZW5ndGggMjA4Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2QS25FIQxD56wiS4D8Wc+Vqg54+5/2cNV2gAjYsZ2MriWl8hm3mHKG/l98n/GLn/E9vENyGtxQkzCVqCkOmpriqvKMbBXjp7zFzKVh2poglSXqgVKhobzSwSYqvcXicoIO2yXeLR76nlgO4opTLLTzZRj5LK6jZqCC9nRRnJc1Pg3SUGg+YxkVcVfRGJgvwtWlaGzxG2e7uBGHuE60ZxhmMa8hozo3kYIFEAV+Kn2MlU2suaXs9vjutzoj5sUYYsc75t/qHtb49QPInEXwCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0Zvcm0gL0JCb3ggWyAtNDUgLTI4NyAxMDAwIDgzOCBdIC9MZW5ndGggMzk3Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE1SOY4DMQzr5xX6wAI6fbwnwCJF8v92STnJppgxYYkSRfmae8iPhcvzmqYHPhrOpUSI/6NX+H6VD/FIsFKr0eOKrWLLJcYSS5yxxWzI7QrdgqDPlDmR7Txul80gMMenKTvEauMeP7cUlPDdR6riGqDQDNFaxeyRvCZ97JKu5nHK40RbFCGKaTIQTUWFWewA+USPRnNyvmH+hX4Mmk/4C55B75CiEjoxfqE70aNRKe1JW2+EvFwDM2AI1E6oyYoeBpMFIyXM7/M1Zkks5CEjxmxOlHWEpiLPTQLfW8UNiiKt+c+DUJn2sycZpeRHmFSQm1K1JLCcWtoLgodKv4cMg/1Y4whyHMscCVehYCQicU5E7CCD98ywD8fIQRVDD1a10lcfPgt2NuijEj6no818tVpuk+r71Pd+Y6A+MsJ3c3xTAav467F5nj7uzWGPjY/RZa3NRnP4UgqPEOoNM3Eea3c5Yd+Qw4wPh66wCl1iVfp2+tBJ76d+ePT6aKP7VMttUP17P9zV7x+MJaWNCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0Zvcm0gL0JCb3ggWyAtNDUgLTI4NyAxMDAwIDgzOCBdIC9MZW5ndGggNjI5Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE2TQY4rMQhE930KX6AlGwy2zxPpaxaZ+2/nFZ1If9ExMbgoCrgiRouV7feKgxWzpUcLz5bbWlhvr2vZbtFnW8TNY23bbHO7PLu3OaK9rxX4iF4+OFdbPdoE6XXlOm1ObxneZlhLvDP1Ojuxy8lP7CZrgHYWnjD+9cMnDkSJS6FNS26jeZIPZO9CPXjMycM3xBKGY8BypFh6AbyvYYSc3obgSG7OOQRrVSxwfDGBX4hRJOeA4IYCQmWH4EYiKEES8Jy8U3HERgaiFcnDDQJNs5LR4zlf16DEfLhgLSR5U9L5WmSVFVCvM1adkuqJTrjVSRtWKNcqT5Tg8qy+25oScQ08E0SdNHR10FwNTTRY1J+5W65ZVeTc8qBGwjrUjkPbP+Pxun6ujQpOht+yDPGp4j/Dq4Zv1JsXC1VcD2SoyGw3ci4Eu6ubonNzu3h+iwhp71MU6ek9utjo0VhQ2hgmLjHl1JwylfeYdCU+BuIzM2U66lWUj/N9aQxsodncD75R7ZNynCwSGiCRGvmlOZ58bUyVoV/3uvZGl0dyZw7SaKN6Ykzc2AsGyFMDOuuEObiy0p8IFfy8Wb4KRVLt56gkPywQtRgqypiIxOhTmhTKU1KxkjSTklnhBGP0UTNDDQgbW8vAXKsmi1qv3YYW9eDxWfx0atqtLF9PhDOlzxtHJ6E48yZU2988Bh8SGyCaC2avaBl8oGnUBWkdbrWm3PUm767gW3mt+oc2YN10Sui3q2PKd2sj1SfmSozuWnhxvNk5cb6Z5JqB3LV/j6U6FaHKnzfSQijSRqhS68kj+ZRZaopJDaCoSW6tSRftTy/Uln9/2uT5dAplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTQ1IC0yODcgMTAwMCA4MzggXSAvTGVuZ3RoIDI5MgovRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNUbttRDEM698UWiCA9bfmCRCkuOzfhvTL5a4wTJgSScnXniWeJj9Xux/0OOhDnbCi32Hv9ce/UNgGos4L3Trfl3pINdWJOsiH5hsi+/ivY4/vFPdET6iLDRwixLIkesQs5fNKDVEwmSpaIQlP9SZjSKkU59NCqExQDOcoNZT46Gn2UsjtY2ZVYGxKTDfMUNvAq9A7YDQ31NCnS2qkoOd8xmPQrEWthJZsxb50M6c2kmvjwApZLWC1KWiYxdHiqxGEE0NysceTE+MFPsFddEsa3RxR0hQ9hnud0LyhZnOQzs0ohr6ZXAc8DhhmNbUnYhWQzT63x83AaddB4XrfSJvDFQUmSvxeFLaPHIHRIzkRa/mjgRU5qp7/+Ik//foFSGB0CgplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTQ1IC0yODcgMTAwMCA4MzggXSAvTGVuZ3RoIDMyMgovRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNUkluxDAMu+cV+kABa5ffM0Axh/T/11JyMelJtGlSlJJLwim30M/ltQfdB/EGGvZBw74vtqSIgMbEB92XxbnzVaf6mvq6HKpGoXFq9bnABPpE67ahKiqwJ5hcUDvTVPPD2BoN3vF57xusJvn0CV7kJuS5yZHZTcn27gToaAWNGFnydLdot2QwVpSOG91UK1ClGcyrM1mykmZ3FNJCDmaype0LD+tO7YIchvfm3dHmBjpHR2DBhLodjPRtFnEG/JNY4BrtVhBLoSHrCcGIbBhagM07lBQa4rFi7fZnYLsZW4ixcMKn8R6zeJaBkOzUQXsdsxpo/KxFcNrHwXdHj6kdvxksoORUi6mv+fSN7s9P0D9EoZty/0SNRGeKf6C5+/OqFYHFfLE6JA1TZ+58QNtj9xj/QSO4H20bff8CMlaGYQplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTQ1IC0yODcgMTAwMCA4MzggXSAvTGVuZ3RoIDE5NgovRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNkLkNAzEMBHNVwQYMaEnqYT0HGA7s/lMvZRmnSAMN/zKiywOm8ikD+OF74Zg1if6mrV+lGQNGZVZHX/Re9EANYuoDbTrJYQd5a9ve9KvzKn1KjKw9ZdSUFn5QX0Og9YPcspn1k6yPbW/CyAyt9U/7z+rk28SaC6bJVTxjAqseYor3EOUMNCSY5SLNBEpnzFIuBRUgGGPBbLAe5wCvaU7DHjQYJBeN/FHRjGCvq6hXYSOF5/pgBT7Xvkbe5fkFr2NSLgplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTQ1IC0yODcgMTAwMCA4MzggXSAvTGVuZ3RoIDkwCi9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE3OsQ3AMAgEwJ4pvEAkgzEkC0Up8P5t/IojU3HSgx5i4yLSyiDIuZYgb5JkzaZEPal/KVuSal3pllwdqVrWbAv6e4MeOh3N8wXgYNzu6ZhrA8v3C/8pIn4KZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvRm9ybSAvQkJveCBbIC00NSAtMjg3IDEwMDAgODM4IF0gL0xlbmd0aCAxNTIKL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTdA7DsQgDATQnlNwgUgY/+BCqy3I/dvYEIK7p0xkj0mAkKVRvpNLueWRVDjI05H2fyP9E9SSyfJ7irHY10q8hT0Lgwkrf+pvykJbCm8qrJ/2PFUOotmGWg9C9bQ1CKq9e9eAlVEpQWvGvmJeZNsvwOonGRvOLnIAPOdZdlRXPYoCni8gB5fA+5BBvmqcrV7h9wDu/0xNCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0Zvcm0gL0JCb3ggWyAtNDUgLTI4NyAxMDAwIDgzOCBdIC9MZW5ndGggNDg1Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nFVUSW7EMAy7+xX6QAFr8/KeAYo5pP+/lpQTdHoITEQSRVFOmsWUqVt+WqFtcrXh9okQvdqTd7V32ymjG0oIBt/N9Q911u4HvNvULuETFYVAM3tIdJexQ3wtebWxgKaBZonnlhFDPCpiiPiQ3FPcpuRwnIpI2hZXMIHBVSWi1/lqDvlEnloZrvOuseXFYpnFau53H6v8LbqPEl2PNp1HrWJEqq8T8yBClIgwA5g1gQcRsMTeQtZUqz5pzj7onB5CJRle2jI2VUNtUhfUJ5RwHp6vxgmJODEz6MGpoStkoUtkpW+nD51kZzpLJfT6aCv3oba2AfXPfl7Y1TDigV0VCtRDX6DXoMM5yNwT9VCwR/HkMomZVIOesTgFanEVEk7HKp3wLzYeOoW7wdl4YrZ+3jgYmOFpd41jWrLUbsFqmPX0oXfsbNNLiY15a7OhpdbKPzunV4QIjJVhdmq0ImTpuzbCPbOPb/pRd2jj4U1bs7R5eUi1vjBD5205u+KJeeZ5w4mZQQ9ODV0hC10iK307fcpJfg90tt9el7ZyH2prG1Dx7Ie7SuzNE6sK49XFt0agcwLpBzDciaut9YlOkAx/qCjwuULel+oCseJ2FLwKKiTiX+D7A30FUdX8oVPybt+/2V7T5QplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9MZW5ndGggMzIyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDVSOXIAMQjr9xX6wM6Y237PZjIpkv+3EWxSgREWQnbawYIFbnekOMoWPuTKJRAN/DA7EJMBheBEFTxXZ2b4vmIrCuGFWxSxNm5efS5PZlZwffmt9sTnMvXJtIgYI3luSSJyBAqJgO5RkMrqCZykNipIBIHdLK68KK1eeWYw72YmvhRu8EjqpaLuroMIUi9DHEZr7hmZhcwFZVtukvlGseu5lGKKu5rtMcbOmsjR9lrl1FRUGXSppJcOrlWLlSLrPkjakdlIZ1Ft2GQ0Jxe3IZacHH89lJs8nT2V4OaRZ3ht9HpxJ9pj5429734ryg5qb9VpjWgj1K/9brREe17NznyyiAVJuiEF8UPmntO+uPfrb86oN/JpiTBTqpC5x19ABSL9E5S+c5Stogjesg40qSYJohzz/6We6+v6/AWfZ3V7CmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0xlbmd0aCA1MDQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicLZNJrhxBCET3dQouUFIy5HSetiwvvu+/9QvaixIUkBAEMG/YsHnsrbKZaTvDfvmDJdz+Srof+2klwuZFlC1HTPs8K1GWrdn/63bQ57nX7jBPt7XNCZqF1e+0GhaYsyx2SHyeJAFKEgqIJGgpdZHp8CAXEO5Xfh3SjmMJ87useB8++gnZgVfuVCErOKKOapxtAfjcSeFhOfk/epNFLGAz8BCfI/kunkgBHDQfg1yThg6+Fd1RbmHxIobcIqUGHnCUq6J6pauDfYZtYFIawo7VhUDYJkyilswoexvI1uBR2or/SdaEaw+IFKG8PIr3uQj25mHjVf87RqO+aKe71DCTfJJ0CiNtWYqAbDrdfptRSsNZMYJ18ajuFoDWyPDT2rxCzzTV3HWk5lfnoqUVyGSpkx2JZ/LayQeexdQLxAu+wbLpBEazaJWoHKcl+NdoLZjHghsHzwqhdLFDr87sJpvRstojTdvA2+naOJCMXjmWrLSKzLroyK+6FLYAS/Wag5gsQY1qbAGm4hS0L71bGl58d+UwbZ1DsSFJNXWYObr3uJqM6gc7omMKbkjSt/K2xjfJ6VSfVN4COQVlN28cUZH2/B/KCwIqvZxCsh5vNnc10W5vqc5Wk5YEOZmlOWgU4ezO++XOsTBraHvDvtf9ef48v/8Be4a+hgplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9MZW5ndGggODMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNYy7DcAgDET7m+IWiIRtsMM+UZTC2b8NQVDd0/3cGguDx1BXZ6jwEkixiS+0K8U6EyYnW/xQ67Ka1VlL7O1Io8y3hLotipXt28SD+wOfxxebCmVuZHN0cmVhbQplbmRvYmoKMzUgMCBvYmoKPDwgL0xlbmd0aCA0MjkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNZJNstwwCIT3PgUXcJX4kSWdZ1KpLF7uv83XeLKYAQGGpun5DBsWx+7aVittZtgvv/K4+X7sb3sxt/1cUY9FDXljW2SZL2yE+ZwWI+xzeeo7IjGI1mt9KYO3l3kOe4jPYUwkvIYx0s+iN82OzOcK8nqTDWYcilSdzmeLD5bNY1lhS9U5l23ezzEfjyWwPB4lWMFrWq/zfO1W5s91KDzJhidofrrB3sKo1+faRR7M2WVtOpwgCEhwdysKHBRzTMgAlKt3kJkhslbzGbSSBU+d9vKodlmxSG3RU6zQP25Q47WZGijvzslEwfl67FDZzvw66xFTyZLOnjOsiaHDzZ4x7VZ48IwUxKOmXBbQd8I9OrjLlaHdDWXBAjcLhI+2nGpne44a7uKGSUWfxb2622FMuC2mKPywiumQEAUeb0D2uPQGJfw7zQWG43DYahFpkRSNDg0SgHQUUiHk5ugu3CnB9/N6X0rwJAoYySXr0DxVTcfiJJJHsX1q1nsOqRBcyRbVuiqO4P+FJlXDk84Sq9qKn3gjOv+UnLJ7gHfqFqOlVzDyFZi09vsfMPeiBAplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9MZW5ndGggMzUxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nCWSO24EMQxD+zmFLrCA9fHvPBsEKZL7t3nUFgPZkkxS1NQdNiy3vepa7WUz0r78qTWN299TO+xkl050IPF+utV+n5plLy+rHPaKYzXCXrnoyE2lyrJWg6d/4vuJrlyLVCYt+o1T8XVAu+apaA5wKH/QVraH7bS5zYdgeOnC536mQmQ2r8XeCGrGuSynBIOc59ih4gdkB7FEmdNqQbkYgga/x+bQi8iwCURsb1cSNYpQAN4ZVZCb9xIltALKgV1zWGGt3KudbRinUbKMU15uknTRsfjG6ImY0/VJv7pAKlVyyYFtYq7pPZoiKk/1KfClamKCliHGcPixz8Uxljkry7PaZla+yGgtbaMQd7vBOuj3YD0rPzHbJ53wRR3OAvXG66gCigcV5sAIx/wjzY56UuFIxkX20v9FKMcddxCX2NgrTs3AHZEx29Gm1QCFV3KckT9/5fv5eb7/ATgqgTMKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvTGVuZ3RoIDM1NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFkrltxUAMRHNVwQYELK896vmG4eC7/9SPlA0HAke8Z7i5twyxI3eEpIasteRDr7ApNky+H0TWu5HrkDATd6ymeA55XTGW+BriB7vrCwmqX1d5Q/EkHsa4TwnfFdEtEYvZ2DSxNdu+LrMHKVPDsbM6BxHlzzNFqbVzHks2EZBOcl3xYvPI6sCmGQzZ2VxszjLMOFrAFR/bOXDVUukSsJxHaODbZWW54UVB0dRxmngNgrjVKGpYQovAr2yv64uY0r8VHAUQcAzBh8I365Z0t7UUdLm9KGnfwXK2ZU19kO7KYDoy3tZSWNKFfkNlyS4qeGcK8qSWI1hNSwLIaZw6su4sY5YtAXJwQUoH2Rg/uBHeIT1n0y31vOcN0ETcOjzd6yhxqkDPYGJ21/zVOFtkZ7dCztmSVRxN83kWLBJ13sGH2MERImYruhu9G9VrfF9/7/JBt2dH/5E+8n5dnz8oBoWGCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0xlbmd0aCAzNDQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTZLJbQMxDEXvUwUbGEDctNTjIMjB7v+aR9oBcuIfSkP+RZlHhviSO5akD0lz+dJLgXaGvK7w0+j5QfFBHlvCpvimjiGhUx6Xr5CI4JRObu7Pro/LVr47WTXEWBpR/5geCedkGBO3aE3U4ESX92ydyh4TTeq0OglQ0HF28f+bb9bJh/nz+rns7Bb0gpc2qvk5VGKyMxf3c4DUW7zH6WqzeDWyZJLa+Y9Q+uw9mjDAOB0OaxWWlBwolc76B3JZBWdwpb6RhGuBVi+64ZCBFwoxJ47JHtU+R/aEqsuOLqspFagAMPOGdFl9G0aqyd3zfB2ydKR4Z+rjXeE138is0oY8dt1W0SiW3vAsMxGkWgwf1+ZFDMEoRuakH80XxadejO4u9lkrtnYpcV1129Npz93vAyWhBFtWRwfr1hHo5JlwQdGdo2wyQy4Gl30V2F+ED+L8/gVuuH+VCmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0xlbmd0aCAyMTcgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTZFLjsMwDEP3PoUuMIB+lqzzZFDMonP/bSm7Rbrii6g4JmPOxCSTfmySTaZcRb8yDPMUpv9hpiAlU4c6mQQ06BrGC5SkVdAF5a3X0LnOBIcmF6kURVk7bBSZJBUUHkdZ4TRNfPE5TPOL3Ceo3Zv6siCRL3q784ZzRns3hXz2A2uCp0glUdyqvG9hstOJG6U5mkE270ySyB/YLfSBd1SwkdWZsJdr0k6N+nT5Vjh1JiZd7EKHrbs7a0Kb3fPiU33OdprQ6vMQ2jP0lJz0+SfX+BuPF3wBUyYKZW5kc3RyZWFtCmVuZG9iago0MCAwIG9iago8PCAvTGVuZ3RoIDE1MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxFTksKAzEI3ecUXqCgjtHkPFPKLDL339ZnhhYCPvK+akZMzvQ6OskwCgt6SxPv1IXpLgRytRh/AG79VKtdLTM8/TdAsFJSIUGRTyedbczMFhLeHaJa92xyzP3TbSvcH4tkETJqV0bioiMZoNRB4V3L48ZgMsV1EFJdj+rBTYat0JglyGHbkUMRgf1I4afiap8v8V41tAplbmRzdHJlYW0KZW5kb2JqCjQxIDAgb2JqCjw8IC9MZW5ndGggNTQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicMzIxUTBQMDdV0DU2VTA0M1QwNzdXSDHkgjFzwSyQZA4XVBWYAZLLgavK4crgSgMAF6kOiAplbmRzdHJlYW0KZW5kb2JqCjQyIDAgb2JqCjw8IC9MZW5ndGggMzMyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2RS27EQAhE930KLmAJKOjPeRxFWTj336bAmixG1BgaikfuLSor5fKtktMlHfJlw6ZJmsovVUgg5Bm2U4IlrkdiQxxT4hy5h9dDS/ET3QB4G90jdLeK+damslsaMxkuoeihwOro6ZXpGXyXS2wyBiM6w7ozu+FM9uKkGl9mjDNYfy0JZ/Aqx6GiSXCZK0Lg2pGGd7TyBCuWuG++ycqoy2UutgmA47nm4ufiQfG0aFjP+GBrVbCef2zP+BmWR3w2Qipbp/Klei1OoDNbKma7BqwtpvzHi9Bc2WCOfoz7TrImLQaiw27iR6AErmULNNw2MVuEWlWHH9m1VJGxusLyNlLxZV0KHBG5iYkRfKmdId1AfWU/OgCRVuTsM1v5KubaEKMP4aAiyjIdvEhtgVMOai0suuAP+S6OvmmhAK/duLj5B9tNhN9/Nz59HAplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjw8IC9MZW5ndGggMjAxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1QMW4DMQzb/Qp+oIAlSrbvPVcEHdL/r6GUtBMJU7JI8hATO/HFBPdGOvFtgysRNPwOZrEFxkLEBFnouAe9WIAWQk1Ma7yH69divmrC4HHpD5ZCR3jCbSOM8Kn960ixy8DjsCNcAdvUzdoxeaEbbOknzTZub8Xa+HN8EjRJmyK2/J+tziJ2JmJNXRXKo7tcXFf5SmpavnS9KqA2CytlvF+UO927h/RZSorZkdvdu12ftSJWnT3fTD1RaSr3X6/3+BmPF9zLRzcKZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvTGVuZ3RoIDQwNyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwtk0uOHDEMQ/d1Cl2gAOvj33k6GMyic/9tHu0sGlLZFkVS6prdmlWzt7YVsUfaH396s9Xs77PKRjP3YdXNa1p2+zw+p0W3aPpZpCt8nhj7fO9lwUtfVslx5rK+LGvZ8hPcXefKQhd04GXGMO9DNx7mAttuTk2MMt/CipYWvu37eCeryy1G2g6LtXgyQKQeoKw6YQXHJBVlM1BCX6gX4tAidg7O6kd81DiRXvNm2YChZyaolzmedJgkDQuOJX+m0E7WHH7K8tzxbstjLNlH3dynIlFQYCZmVYljUlkdIYclHteNcPGb+aK244pelLh4R0m2M5ySbxrSMeJkg5NeWEGcDQ0alLSmgy8N8AqMib3VB6bBuy8zkO+qIHbNbR8+Uk+FeC/cCuLm29tRDw+mXyE/i4jTQ1wqNds4K+ZZN7rQlC1M43DUGVFdI6EEb1hJj9t7rGPQL+CJ9BcpiY1vrv/EX3ZUq6BdjrwRsUAo89GJLJJuUmjeqIEim/bSDiKnc7OZGmDTurKXCLl/h8/z+/z8A5yFlwgKZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvTGVuZ3RoIDIwMyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNUDuuwzAM230KXiCA9bFlnyfFwxva+6+llCLtEtKiQ4u0EegwHB4wn5g+8JBmNsDJq5krhpY0eoELzpbkkI0nbyoO3TDhxCZ0B80672gsMofOTqRCq8Szyb4mMqz+ERO6ldI3HHuBDvzufCtP3IpP3TikEyncZJYiy3/YJZrOH+a3+mXS/cPWRkIEgV1EbrQC7ChXdqqbvVhFYOSA9gkWoFzeKrMOKMcpMTHzacbSqXWOS2UsqxZ7lk4Dnml3dX62//b3Bl5wTAgKZW5kc3RyZWFtCmVuZG9iagoxNSAwIG9iago8PCAvVHlwZSAvRm9udCAvQmFzZUZvbnQgL0ZMUkJQTytOYW51bUJhcnVuR290aGljIC9GaXJzdENoYXIgMAovTGFzdENoYXIgMjU1IC9Gb250RGVzY3JpcHRvciAxNCAwIFIgL1N1YnR5cGUgL1R5cGUzCi9OYW1lIC9GTFJCUE8rTmFudW1CYXJ1bkdvdGhpYyAvRm9udEJCb3ggWyAtNDUgLTI4NyAxMDAwIDgzOCBdCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9DaGFyUHJvY3MgMTYgMCBSCi9FbmNvZGluZyA8PCAvVHlwZSAvRW5jb2RpbmcKL0RpZmZlcmVuY2VzIFsgMzIgL2NpZDEgNjcgL2NpZDM2IDgzIC9jaWQ1MiA4NiAvY2lkNTUgOTcgL2NpZDY2IDk5IC9jaWQ2OCAvY2lkNjkgL2NpZDcwCi9jaWQ3MSAxMDUgL2NpZDc0IDEwOCAvY2lkNzcgMTEyIC9jaWQ4MSAxMTQgL2NpZDgzIC9jaWQ4NCAvY2lkODUgXQo+PgovV2lkdGhzIDEzIDAgUiA+PgplbmRvYmoKMTQgMCBvYmoKPDwgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9Gb250TmFtZSAvRkxSQlBPK05hbnVtQmFydW5Hb3RoaWMgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC00NSAtMjg3IDEwMDAgODM4IF0gL0FzY2VudCA4NTAgL0Rlc2NlbnQgLTI5OSAvQ2FwSGVpZ2h0IDAKL1hIZWlnaHQgMCAvSXRhbGljQW5nbGUgMCAvU3RlbVYgMCAvTWF4V2lkdGggMTA1MiA+PgplbmRvYmoKMTMgMCBvYmoKWyA4OTIgMjI0IDg5MiAyMjQgMjI0IDIyNCAyMjQgMjI0IDIyNCA4OTIgODkyIDIyNCAyMjQgODkyIDIyNCAyMjQgMjI0IDIyNAoyMjQgMjI0IDIyNCAyMjQgMjI0IDIyNCAyMjQgMjI0IDIyNCAyMjQgMjI0IDIyNCAyMjQgMjI0IDIyNCA0NDYgMjk3IDU4MyA1ODMKODkyIDg5MiAyOTcgNDQ2IDQ0NiA0NDYgNTgzIDI5NyA1ODMgMjk3IDQ0NiA1ODMgNTgzIDU4MyA1ODMgNTgzIDU4MyA1ODMgNTgzCjU4MyA1ODMgMjk3IDI5NyA0NDYgNTgzIDQ0NiA2NjkgMTA1MiA2NDQgNjI3IDYzOSA3MjEgNTk2IDU1NCA3MTAgNzE4IDI0Nwo0MTAgNjI2IDUyOSA4ODQgNzEwIDc1MiA1ODYgNzUyIDYxMCA1OTIgNjIxIDY5NiA2MzUgOTYxIDYxNyA2MTEgNTk0IDQ0NiA5NjEKNDQ2IDQzNCA0NDYgMjk3IDU2MCA1ODggNDkwIDU4OCA1NTkgMzQwIDU4OCA1OTIgMjQ0IDMwMSA1MzAgMjQ0IDg5MiA1OTIgNTc3CjU4OCA1ODggMzgzIDQ3NSAzNTcgNTkyIDUzMCA3ODggNTI4IDUzMCA0NzMgNDQ2IDQ0NiA0NDYgNjY5IDIyNCA4OTIgMjI0IDIyNAoyMjQgMjI0IDg5MiA4OTIgODkyIDIyNCA4OTIgMjI0IDg5MiA4OTIgMjI0IDIyNCAyMjQgMjI0IDMwMyAzMDMgNDQ2IDQ0NiA4OTIKODkyIDg5MiA4OTIgODkyIDIyNCA4OTIgODkyIDIyNCAyMjQgMjI0IDI5NyA4OTIgODkyIDg5MiA4OTIgODkyIDIyNCA0NDYgODkyCjg5MiA4OTIgODkyIDg5MiA4OTIgODkyIDIyNCA0NDYgODkyIDQ0NiA0NDYgODkyIDIyNCA4OTIgNDQ2IDQ0NiA0NDYgODkyIDg5Mgo4OTIgODkyIDg5MiA4OTIgMjI0IDIyNCAyMjQgMjI0IDIyNCAyMjQgODkyIDIyNCAyMjQgMjI0IDIyNCAyMjQgMjI0IDIyNCAyMjQKMjI0IDg5MiAyMjQgMjI0IDIyNCAyMjQgMjI0IDIyNCA4OTIgODkyIDIyNCAyMjQgMjI0IDIyNCAyMjQgODkyIDg5MiAyMjQgMjI0CjIyNCAyMjQgMjI0IDIyNCA4OTIgMjI0IDIyNCAyMjQgMjI0IDIyNCAyMjQgMjI0IDIyNCAyMjQgODkyIDIyNCAyMjQgMjI0IDIyNAoyMjQgMjI0IDg5MiA4OTIgMjI0IDIyNCAyMjQgMjI0IDIyNCA4OTIgMjI0IF0KZW5kb2JqCjE2IDAgb2JqCjw8IC9jaWQxIDE3IDAgUiAvY2lkMzYgMzIgMCBSIC9jaWQ1MiAzMyAwIFIgL2NpZDU1IDM0IDAgUiAvY2lkNjYgMzUgMCBSCi9jaWQ2OCAzNiAwIFIgL2NpZDY5IDM3IDAgUiAvY2lkNzAgMzggMCBSIC9jaWQ3MSAzOSAwIFIgL2NpZDc0IDQwIDAgUgovY2lkNzcgNDEgMCBSIC9jaWQ4MSA0MiAwIFIgL2NpZDgzIDQzIDAgUiAvY2lkODQgNDQgMCBSIC9jaWQ4NSA0NSAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDE1IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCA+PgplbmRvYmoKNDYgMCBvYmoKPDwgL1R5cGUgL1BhdHRlcm4gL1BhdHRlcm5UeXBlIDEgL1BhaW50VHlwZSAxIC9UaWxpbmdUeXBlIDEKL0JCb3ggWyAwIDAgNzIgNzIgXSAvWFN0ZXAgNzIgL1lTdGVwIDcyCi9SZXNvdXJjZXMgPDwgL1Byb2NzZXRzIFsgL1BERiAvVGV4dCAvSW1hZ2VCIC9JbWFnZUMgL0ltYWdlSSBdID4+Ci9NYXRyaXggWyAxIDAgMCAxIDAgNDg4Ljc1NTcxMTk1NjUgXSAvTGVuZ3RoIDE1MiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwljzEOwzAMA3e9gh8Q4DiK4qxduucPbZd4ydLvl1QhwoAp60Q3NNb5tAWq+1P3vUv3C2/6XzNfE9Q0HksbuOg0UNOi0+lyeoCiM3CkjGWAmrYFjlYG33Ya2TBCRkLQTOxiavO0/+7LEq4mOykaB72GOZmiEe2FJ3sTjcu9AnB7iMd8XhkVMMRkfK9/6BOrsPawHyWzMRwKZW5kc3RyZWFtCmVuZG9iago0NyAwIG9iago8PCAvVHlwZSAvUGF0dGVybiAvUGF0dGVyblR5cGUgMSAvUGFpbnRUeXBlIDEgL1RpbGluZ1R5cGUgMQovQkJveCBbIDAgMCA3MiA3MiBdIC9YU3RlcCA3MiAvWVN0ZXAgNzIKL1Jlc291cmNlcyA8PCAvUHJvY3NldHMgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KL01hdHJpeCBbIDEgMCAwIDEgMCA0ODguNzU1NzExOTU2NSBdIC9MZW5ndGggMTYyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nHWPMQ7DMAwDd72CH3AhO4rirF2y9w9tl3jJ0u+XdOfChAFT1olyOM/jML+tXvf0rceC/4/rPRu2Jl1PvKziY1aWBDWMV/WOk46DGhaNTpPTAhSdjj1l1A5q2BrYfRr822iko4eMhKCZ2MTU5GG/2aclioqspGhsLLOZnSka0WXiyV5F4/AyA3B6iMd8ZWZUwBCT8cvcQ0sswtrdvkeQN8QKZW5kc3RyZWFtCmVuZG9iago1IDAgb2JqCjw8IC9IMSA0NiAwIFIgL0gyIDQ3IDAgUiA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvRjEtTmFudW1CYXJ1bkdvdGhpYy1jaWQxMTI4IDE4IDAgUiAvRjEtTmFudW1CYXJ1bkdvdGhpYy1jaWQxMTk4IDE5IDAgUgovRjEtTmFudW1CYXJ1bkdvdGhpYy1jaWQxNjI0IDIwIDAgUiAvRjEtTmFudW1CYXJ1bkdvdGhpYy1jaWQxNzc4IDIxIDAgUgovRjEtTmFudW1CYXJ1bkdvdGhpYy1jaWQyMjQxIDIyIDAgUiAvRjEtTmFudW1CYXJ1bkdvdGhpYy1jaWQyMzMzIDIzIDAgUgovRjEtTmFudW1CYXJ1bkdvdGhpYy1jaWQyNTIwIDI0IDAgUiAvRjEtTmFudW1CYXJ1bkdvdGhpYy1jaWQyNzY4IDI1IDAgUgovRjEtTmFudW1CYXJ1bkdvdGhpYy1jaWQyODY0IDI2IDAgUiAvRjEtTmFudW1CYXJ1bkdvdGhpYy1jaWQyOTU5IDI3IDAgUgovRjEtTmFudW1CYXJ1bkdvdGhpYy1jaWQzMTE0IDI4IDAgUiAvRjEtTmFudW1CYXJ1bkdvdGhpYy1jaWQzMTY3IDI5IDAgUgovRjEtTmFudW1CYXJ1bkdvdGhpYy1jaWQzMjQzIDMwIDAgUiAvRjEtTmFudW1CYXJ1bkdvdGhpYy1jaWQzMzc5IDMxIDAgUiA+PgplbmRvYmoKMiAwIG9iago8PCAvVHlwZSAvUGFnZXMgL0tpZHMgWyAxMSAwIFIgXSAvQ291bnQgMSA+PgplbmRvYmoKNDggMCBvYmoKPDwgL0NyZWF0b3IgKE1hdHBsb3RsaWIgdjMuMTAuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjEwLjApCi9DcmVhdGlvbkRhdGUgKEQ6MjAyNTAzMTQxNDM0NTNaKSA+PgplbmRvYmoKeHJlZgowIDQ5CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDE1ODY3IDAwMDAwIG4gCjAwMDAwMTQzNjUgMDAwMDAgbiAKMDAwMDAxNDM5NyAwMDAwMCBuIAowMDAwMDE1Mjc4IDAwMDAwIG4gCjAwMDAwMTUzMjEgMDAwMDAgbiAKMDAwMDAxNTM0MiAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzNDMgMDAwMDAgbiAKMDAwMDAwMTg0NCAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDE4MjMgMDAwMDAgbiAKMDAwMDAxMzA4OSAwMDAwMCBuIAowMDAwMDEyODc5IDAwMDAwIG4gCjAwMDAwMTI0MjUgMDAwMDAgbiAKMDAwMDAxNDEzNCAwMDAwMCBuIAowMDAwMDAxODY0IDAwMDAwIG4gCjAwMDAwMDE5NTQgMDAwMDAgbiAKMDAwMDAwMjMyMSAwMDAwMCBuIAowMDAwMDAyNjIwIDAwMDAwIG4gCjAwMDAwMDI4MjYgMDAwMDAgbiAKMDAwMDAwMzE0OCAwMDAwMCBuIAowMDAwMDAzNTA0IDAwMDAwIG4gCjAwMDAwMDM4NDMgMDAwMDAgbiAKMDAwMDAwNDM3MSAwMDAwMCBuIAowMDAwMDA1MTMxIDAwMDAwIG4gCjAwMDAwMDU1NTQgMDAwMDAgbiAKMDAwMDAwNjAwNyAwMDAwMCBuIAowMDAwMDA2MzM0IDAwMDAwIG4gCjAwMDAwMDY1NTQgMDAwMDAgbiAKMDAwMDAwNjgzNyAwMDAwMCBuIAowMDAwMDA3NDUzIDAwMDAwIG4gCjAwMDAwMDc4NDggMDAwMDAgbiAKMDAwMDAwODQyNSAwMDAwMCBuIAowMDAwMDA4NTgwIDAwMDAwIG4gCjAwMDAwMDkwODIgMDAwMDAgbiAKMDAwMDAwOTUwNiAwMDAwMCBuIAowMDAwMDA5OTMzIDAwMDAwIG4gCjAwMDAwMTAzNTAgMDAwMDAgbiAKMDAwMDAxMDY0MCAwMDAwMCBuIAowMDAwMDEwODY0IDAwMDAwIG4gCjAwMDAwMTA5OTAgMDAwMDAgbiAKMDAwMDAxMTM5NSAwMDAwMCBuIAowMDAwMDExNjY5IDAwMDAwIG4gCjAwMDAwMTIxNDkgMDAwMDAgbiAKMDAwMDAxNDQxOCAwMDAwMCBuIAowMDAwMDE0ODQzIDAwMDAwIG4gCjAwMDAwMTU5MjcgMDAwMDAgbiAKdHJhaWxlcgo8PCAvU2l6ZSA0OSAvUm9vdCAxIDAgUiAvSW5mbyA0OCAwIFIgPj4Kc3RhcnR4cmVmCjE2MDgwCiUlRU9GCg==\n" }, "metadata": {} } ], "source": [ "mglearn.plots.plot_improper_processing()" ] }, { "cell_type": "markdown", "metadata": { "id": "_sP6-TrZQOdJ" }, "source": [ "## 6.2 파이프라인 구축하기" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "id": "dfUUf92iQOdK" }, "outputs": [], "source": [ "from sklearn.pipeline import Pipeline\n", "pipe = Pipeline([(\"scaler\", MinMaxScaler()), (\"svm\", SVC())])" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "scrolled": true, "id": "bsYtSEySQOdL", "outputId": "96662878-13e3-4dbe-d63b-687e57b7f90a", "colab": { "base_uri": "https://localhost:8080/", "height": 156 } }, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "Pipeline(steps=[('scaler', MinMaxScaler()), ('svm', SVC())])" ], "text/html": [ "
Pipeline(steps=[('scaler', MinMaxScaler()), ('svm', SVC())])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ] }, "metadata": {}, "execution_count": 8 } ], "source": [ "pipe.fit(X_train, y_train)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "id": "LACeIwsJQOdM", "outputId": "699e05cf-5e9e-42f0-b804-46fcb895ebc7", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "테스트 점수: 0.97\n" ] } ], "source": [ "print(\"테스트 점수: {:.2f}\".format(pipe.score(X_test, y_test)))" ] }, { "cell_type": "markdown", "metadata": { "id": "mf3W9b1qQOdM" }, "source": [ "## 6.3 그리드 서치에 파이프라인 적용하기" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "scrolled": true, "id": "ijQze66uQOdM" }, "outputs": [], "source": [ "param_grid = {'svm__C': [0.001, 0.01, 0.1, 1, 10, 100],\n", " 'svm__gamma': [0.001, 0.01, 0.1, 1, 10, 100]}" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "id": "YFMgmB8HQOdN", "outputId": "d2e6c790-a716-488b-a67b-82a68c481a76", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "최상의 교차 검증 정확도: 0.98\n", "테스트 세트 점수: 0.97\n", "최적의 매개변수: {'svm__C': 1, 'svm__gamma': 1}\n" ] } ], "source": [ "grid = GridSearchCV(pipe, param_grid=param_grid, cv=5)\n", "grid.fit(X_train, y_train)\n", "print(\"최상의 교차 검증 정확도: {:.2f}\".format(grid.best_score_))\n", "print(\"테스트 세트 점수: {:.2f}\".format(grid.score(X_test, y_test)))\n", "print(\"최적의 매개변수:\", grid.best_params_)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "hide_input": false, "id": "1rXnM5nJQOdN", "outputId": "ab363262-00de-4235-b93c-40fc16796cbe", "colab": { "base_uri": "https://localhost:8080/", "height": 693 } }, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ4AAAKmCAYAAAAM6lQQAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAkgRJREFUeJzs3Xd4FOX+/vF704CEEEroGHoJvYlSRWw0G6KoIMgB5QtK8ejvHBAQNIgc9YjYAKUqqIgIirSD0qRI7ycRiEBoAqEmpCf7+2NPdrKk7UImu0ner+vK5e7MPDPPHWLmyWdnnrFYrVarAAAAAAAAgDzm5e4OAAAAAAAAoHCi8AQAAAAAAABTUHgCAAAAAACAKSg8AQAAAAAAwBQUngAAAAAAAGAKCk8AAAAAAAAwBYUnAAAAAAAAmILCEwAAAAAAAExB4QkAAMAEVqvVo/YDAADgDhSeAABAkVStWjVZLBb719133+2wft68ebJYLLp69WqO+2ncuLF8fHwcvry9veXl5aVDhw7ZtwsODtbEiRMd2v7xxx+Z2mb88vLyUpkyZRQbG5tXsQEAAPKVj7s7AAAAcKsmTZqk8ePH57rd/Pnz1b9/f4dlGzduVHJysv19iRIlbqkPS5cuVWJioiTJYrHIx8dHU6ZM0TfffKM6derk2LZmzZrat2+f/b3FYpG3t7dSU1M1fPhwbdq0SbNnz1bJkiVvqW8AAADuRuEJAAAUWEOHDlXv3r2zXR8TE6M2bdo4FG5SU1MVHx+vihUrOmybmpqqa9euKSgoyKU+1K1b1+G91WrVli1bdN9996l48eI5tvXz81Pjxo0dlm3fvl1Dhw5VZGSkli9frm7durnUHwAAAE9C4QkAABRY5cqVU7ly5bJdf/z4cUlS6dKl7ctWrVqlhx9+OMvt7733Xq1bt+62+vTdd9/p6NGjmjZtmtNtEhMT9dNPP2n27Nlas2aNypcvrxIlSujAgQNq27atQ/8BAAAKEuZ4AgAAhdalS5ckyeHqpvvvv1+nTp2yf505c0ZRUVEqXry42rZte1vHO3r0qF5++WU99NBD6tatm3x8fOxzSKX3JV1UVJQmTZqkhx9+WJUqVdKzzz6rEiVKaOvWrTpz5oxee+01TZ06VVWqVFG3bt308ccf31bfAAAA3IHCEwAAKLTSiz2VK1e2LytevLiqVatm/6pSpYrWrl2rpKQk9evXL9M+jh49qoiICJ09ezbHY23btk2dOnVSQECA5s6dK0k6fPiwwsPDFR4enumqpVKlSunnn39WUFCQ3n//fZ0+fVpLly5V27Zt5evrq9dee00nT57U7NmzVaJEiVyPDwAA4Im41Q4AABR4S5cuVZkyZdS5c2ft27dPe/fu1cCBAxUZGamgoCCVLVs227YxMTGaMGGCnnzySYWGhmZa36ZNG0nSE088oe+//z7T+rNnz2ry5MmaPn266tatqxUrVtgLXfXr17dv5+3t7dCudOnS+v3333PMVaxYMT3zzDN65plnctwOAADAU3HFEwAAKPCmTZumb7/9VpL0yy+/aMyYMZKk/fv35/pkuSFDhuj06dNq0KBBluuvXLkiq9WaZdFpzpw5ql69umbMmKEXX3xRO3bsUO3atXPt75QpU+y34Ln6BQAAUJBwxRMAACi09u/fr2bNmmW5Li0tTS+99JK+/fZbde/eXW+//bZat26tnj17Or3/Xr166Y8//tCgQYNUr169HLd96KGH7Nu8+OKLeuyxx5w+DgAAQEFF4QkAABRaPXr0UMeOHTMtj4+P19/+9jctWrRIU6dO1ciRI9WvXz898cQT+vjjj/Xiiy86tf/SpUvrX//6lyQ5dTVS3bp1JUlly5bN8va/S5cu6erVq7JYLAoODlapUqWc6gcAAICnovAEAAAKrfHjx2datmrVKr300kuKjo7Wt99+q6eeekqS7ba5tLQ0DRkyRJLk5+fn8vHGjBmj/v37Z7kuuyfmnTp1ShMmTNBPP/2U6cl31atX17PPPquxY8cqICDA5f4AAAC4G4UnAABQ4Jw7d07Xrl2zv4+Li9P169d17NgxXbp0SampqYqIiMjUrmzZspo5c6bq1q2rtWvXOszH5Ofnp4ULF+ree+/Vc889Z58zyhUVKlTIdq6omycXl2wTm7dt21YlS5bUjBkz1L59e5UvX15paWk6ffq0/vOf/2jMmDHavXu31qxZ43J/AAAA3I3CEwAAKHDGjBmj+fPnOyzbuXOnvvnmG/v7rJ5QN2HCBP3www/y8sr6+SoWi0UvvPBC3nY2BwcPHtSZM2c0d+5c9e7d22FdrVq19H//9386cOCAZsyYodTU1CyLVwAAAJ6MwhMAAChw5s2bp3nz5rm7G5lcuHAhyyutJCk1NTXTsubNm6tGjRp67733FBQUpPbt26tcuXKyWq06e/as1qxZo0WLFqlnz54UnQAAQIFE4QkAACCPvPPOO3rnnXec3t7f31+///673nrrLQ0bNkx//fWXw/p69erplVde0WuvvZbXXQUAAMgXFqvVanV3JwAAACBdvnxZV65ckcViUYUKFVSyZEl3dwkAAOC2UHgCAAAAAACAKbKeWRMAAAAAAAC4TRSeAAAAAAAAYAoKTwAAAAAAADAFhScAAAAAAACYgsITAAAAAAAATEHhCQAAAAAAAKbwcXcHACAvREVFKTo62t3dwP8EBwcrJCTE3d0AgCxxzoAn4FwJoKig8ASgwIuKilJoaKji4uLc3RX8j7+/v8LDwxlQA/A4nDPgKThXAigqKDwBKPCio6MVFxenBQsWKDQ01N3dKfLCw8PVr18/RUdHM5gG4HE4Z8ATcK4EUJRQeAJQaISGhqply5bu7gYAoADgnAEAQP5gcnEAAAAAAACYgsITAAAAAAAATEHhCQAAAAAAAKag8AQAAAAAAABTUHgCAAAAAACAKSg8AUAhdvz4cQ0dOlT169dX2bJlVb9+fa1Zs8bd3QIAAABQRFB4AoBCav/+/WrevLlmzJihI0eO6MqVKzpy5IjCw8MlScOGDVOpUqU0atQo93YUAIA80rlzZ1ksFj3//PMOy/ft26eaNWuqTp06OnTokHs6BwBFFIUnAEVSeHi4XnnlFbVo0UJBQUHy9fVVuXLldPfdd+vVV1/Vjh07HLYfM2aMLBaLLBaLIiMjnT7O77//bm/33Xff5difiRMnql27dqpSpYr8/PwUGBioWrVq6dFHH9Xnn3+ua9euuZRx6NChun79uqpVq6bVq1crJiZGFy5c0LPPPquIiAhNnz5dMTExmjZtmo4cOeLSvgGgKCkK54zCbsqUKTpx4oQiIyM1efJkd3cHAIoUCk8Aipy3335bTZs21Ycffqh9+/bp+vXr8vLy0uXLl7V9+3Z98MEHuuuuu/TPf/7T3uaJJ56wv/7xxx+dPtayZcskScWLF1f37t0zrb9y5YoGDRqkxo0b680339S2bdt07tw5SVJsbKyOHz+un376SUOGDFGdOnXs+8vN+fPntW3bNknSpEmT9NBDD6lkyZIqX768KlSooNTUVIftb34PALApCueMoiDjeY5zHgDkLwpPAIqUmTNnaty4cUpJSVGvXr20adMmXbt2TYmJiYqPj9eWLVs0YsQIBQQEOHxK3bp1a1WvXl2SXBrIp//BkV74yejEiRNq166d5syZo7S0ND3wwANavHixLl68qKSkJCUkJOjgwYMKCwtTuXLlFB0d7fSxT5w4YX/dqlWrTOsbNWqkF198USVLltTLL7+s0NBQh/Xz5s2zf+oOAEVVUTlnFAVjxoxR9erVVbNmTY0dOzZP9rlhwwb7uTLjeRcA4MjH3R0AgPySmpqqCRMmSJJ69+6txYsXO6wvXry42rVrp3bt2unvf/+71q1b57D+8ccf14cffqitW7cqOjpawcHBOR7vyJEjioiIkCT16tXLYd2NGzfUrVs3RUREqHjx4po/f76eeuoph22KFSumxo0bq3Hjxho2bJj69+/vdNb4+Hj765v/eEk3c+ZMzZw50+l9AkBRUpTOGUVBy5YtKQ4BgJtwxROAIuOPP/7Q+fPnJSnTgP1m1atX18CBAx2Wpd86kZqaquXLl+d6vKVLl0qSfH199cgjjzise/XVVxURESGLxaIlS5bk2p+yZctq2bJlGjBgQK7HBQDcPs4ZAADkDQpPAIqMq1ev2l9brVaX27dr106VKlWS5NycHenbdOnSRaVLl7YvP3XqlObMmSNJGjJkSJbzeGTFx8dH9957r4u9BgDcCs4ZAADkDQpPAIqMihUr2l8vXLjQ5fZeXl56/PHHJUlr1651uJ3tZufPn9f27dslOU4yK0kzZsxQcnKyvL29NXr0aJf7kZMaNWrIYrE4/LFRs2ZN+xwUnTt3ti/P6pHT6dtl/OQ+fRlzPgEoSorCOUOyzR2V/vt9w4YNSktL0xdffKE2bdqoVKlSCgwMVMOGDTVq1CidOnUqy32kn0969uwpyTZPYJs2beTv75/pPCNJf/31l8aNG6fmzZsrKChIJUqUUK1atTRgwADt3Lkzx/4eOXJEw4YNU506dVSiRAmVL19eXbt2zfWqMmfnY/rtt9/0wgsvqF69egoMDFSJEiVUp04d/e1vf7P/G+V2rmXOJwBwROEJQJFRu3Zt1apVS5L0008/afz48UpLS3NpH+nzbsTFxek///lPttv9+OOPSktLk5eXlx599FGHdentOnToYJ98Nq8EBAQoICBAxYsXty/z9/e3Ly9RooRT7YsVK5ZpWfoXABQFReGccbOEhAT16NFDL774onbu3Kn4+HjFxsYqPDxc06ZNU4MGDbRmzZoc9zFo0CANHDhQO3fuVHJycqb133zzjerWrau3335b+/fvV2xsrJKTk3X8+HF9+eWXatOmjd58880s9/3NN9+oefPmmj59uiIjI5WYmKgrV65ozZo1euSRRzRkyBCX/43SxcbGqnfv3urUqZNmzZqlo0eP6saNG0pJSVFkZKTmzp2rtm3batGiRbmeawMCAuTlxZ9ZAJCO34gAipS3337b/nrSpElq0aKFvv76a6WkpDjVvnPnzipbtqyknG+dSF/XsWNHVahQwb78xo0b2rt3rySpU6dOLvc/N4cPH1ZsbKxWrVqVadnNy7OSvt2MGTMyLUv/AoCiorCfM242YsQIrV69Wv3791d4eLiSkpJ09epVffTRR/L391dcXJx69eql48ePZ9l+06ZNmjNnjh588EEdOnRIycnJOnPmjAYPHixJWrJkifr27avY2Fg9+OCD2rx5s5KSkpScnKz9+/frySeflCRNnDhR8+fPz7Tv/v37Kz4+Xo0bN9batWuVmJiohIQErV27Vk2bNtXnn3+uzZs3u5w7OTlZDz30kJYsWSLJNqfX9u3blZiYaM/wxRdfqHr16jp37lyu59rY2FiFhIS43A8AKKwoPAEoUp5++ml99NFH8vb2liQdOHBAffv2VZ06dfTxxx8rISEhx/Y+Pj72T6N//vlnpaamZtomNjZWv/76q6TMt0z89ddf9jY1a9a87TwAAPMUtXPG0aNHNWbMGM2fP18NGjSQxWJRUFCQhg8frkWLFkmyXb31xhtvZNk+JiZGXbp00YoVK9SoUSNJUpUqVdShQwddvnxZgwcPltVq1eDBg7VmzRq1b99e3t7eslgsatq0qb777jv792DcuHH2K6bS0tI0bNgwpaSkqE6dOtq0aZPuv/9++fr6ysfHR/fff782b96spk2b3tJ8XFOmTNHWrVsl2YqNixYtUps2beTr62vPMHjwYO3du1f33HOPy/sHgKKOwhOAImf48OFat26dWrdubV928uRJjRgxQrVr19bXX3+dY/v0QfHFixftA9WMVq1apcTERFksFvv8HukuXbpkf53+KTgAwHMVpXNGvXr19NZbb2W5rmfPnurWrZsk6fvvv8+y6GaxWPTRRx/Jx8cn07rp06fr6tWrqlKlij7++ONs+5A+j9Xp06ftcypt2rRJhw8fliRNnjxZZcqUydQuMDBQH330US4JM4uPj9eHH34oyXbF2euvv57ttqVLl1aLFi1cPgYAFHUUngAUSZ06ddKOHTv0ww8/qG3btvblZ8+eVd++fdWvXz8lJSVl2fb+++9XYGCgJGnZsmWZ1qffMtGmTRtVq1bNYV3GT2Jv5VNZAED+KyrnjIEDB2ZZNEqXfitcQkKC9u/fn2l9kyZN7Fc63Sw9Z9++fR3mRrpZ48aN7a/TbzNcsWKFJNs8So888ki2bTt16qTy5ctnuz4rGzdu1OXLlyVJI0eOdKktAMA5FJ4AFFnpny5v3bpV69evd/g0e+HChZmewpOuWLFi9if33DxnR0pKin2AfPMtE5IcPqW9fv367UYAAOSTonDOuOuuu3Jcn7EodPLkyUzrGzRokGW71NRU7dmzR5L00UcfqWTJktl+BQcH29ulX/GVXuRq1KiRw8MvbmaxWFyegH3Hjh321126dHGpLQDAORSeAEC2CWC3b9+ucePG2Zd98803WrduXZbbp/+BEBkZab/8X7I9rvnq1asO22RUqVIlWSwWSVkP2gEAnq+wnjMyFn2ykrEQFhMTk2l9dk9OvXz5sn2uqsTERN24cSPHr3Tpt/OdO3dOku37kZv0+bicdf78eUlSqVKlsryFDwBw+yg8AcD/eHl5KSwsTEOGDLEvW7x4cZbbduvWzT7AznjrRPqn2c2aNbM/hjujUqVK2T8RTv/0FwBQ8BTGc0Z6kSs7iYmJ9tfZFZmyknFS9Y8//lhWq9WprylTpkiyzcMkKcernW5Vet+8vPizCADMwm9YALjJ2LFj7a+ze2S0v7+/unbtKsnx1on011l9cp2uc+fOkqRffvnF4ZNdAEDBU5TOGX/99Zf9tStzKZUrV87+OuOE6c5KnyMr/eqwnMTFxbm07/S+Xb9+3eW2AADnUHgCgJtUrFjR/jqnCVDT/1DYtWuXzpw5oz179ujUqVMO67LywgsvSLI9Qnv+/Pl50WUAgJsUpnNGbkWh3bt32183adLE6f36+voqNDQ00z6cVaNGDUlyuE0xKykpKfrzzz9d2nf6vFVpaWnatm2by30DAOSOwhOAImPbtm2Kjo7OdbuMg9a6detmu13Pnj3l5+cnq9Wq5cuX2z+5btCggRo2bJhtuxYtWtg/+R47dqxOnz7tVP+Tk5P16aefOrUtAOD2FMVzxsqVK7NdZ7Va9c0330iSmjZt6tR8Sxl1795dkrRmzRr7nE3OSn+S4Llz57Rly5Zst1u+fLnLV4V16dJFvr6+kqTp06e71BYA4BwKTwCKjO3bt6tjx446duxYjttNmzbN/rp3797ZbhcUFKT77rtPkvTTTz9p+fLlkqRevXrl2pfPP/9cQUFBunr1qjp37qyjR4/muP25c+fUo0cPffHFF7nuOy9knEcjNjY2X44JAJ6kKJ4zpk6dqn379mW5bvr06fZ1Gee1ctbIkSNVrFgxJSUlqX///vaJw7Ny4cIFffTRR/b3Tz/9tH3S8FdffdVhrql00dHRevXVV13uV8WKFe1PJFyyZInmzp2b7bZXrlzRqlWr7O85VwKAcyg8AShSIiIi1KRJE7322mvasWOHfT6HpKQk7dixQ/3799eMGTMkSX379s310dLpt0f8+uuv2rt3r8OynNxxxx1asWKFgoKCFBkZqSZNmmjkyJHavHmz/UlB8fHx2r17t0aPHq369etr7dq1t5zbVem3NUhSWFiY/vjjD+3bt0/vvfeeFi5cmG/9AAB3KmrnjOTkZN13332aNWuWfT6lM2fOaPz48RoxYoQkqXXr1rdUeLrjjjs0depUSbb5qtq2baulS5fa+5+QkKDt27frtddeU7169fT111/b24aEhGj48OGSbAXBrl27au/evbJarUpISNCyZcvUtm1bHT9+3OWn2knSu+++q3r16kmSBg0apEGDBmnnzp1KTk6WZCtqzZ07Vy1atNCaNWvs7TKeK999913997//1eHDh/XZZ585FCQBoMizAkABt3v3bqsk6+7du3PcbuvWrdbKlStbJTl8FStWLNOy5557zpqYmJjrsS9evGj19va2t6tRo4ZLfT98+LC1Y8eOmY7v5+eXaVnjxo2tW7dudWq/69evt7c7fvx4ltvcc889VknWAQMGZFqXkpJirVevXqY+SLJOmDAhx2M7++8BAO7AOcPR8ePH7W1GjhzpsC9fX1+HfbZq1cp64cKFTPvI6Xxys08//TTT9zCr7+krr7zi0C4pKcnaq1cvh218fHwc3o8bN85atWrVLPuS23nx7Nmz9hzZfW8tFot11qxZDu3uu+++LM+VuX0vOFcCKEq44glAkdG2bVv98ccfmjFjhh5++GHVrFlTAQEBSklJUVBQkJo3b65hw4Zp+/bt+vLLL+Xn55frPoODg3XPPffY3ztzy0RGDRs21KZNm7RmzRq9+OKLatiwocqUKSOr1apy5cqpRYsWGjJkiP7zn//owIED9nkuzObt7a01a9aoT58+qlChgnx8fFSpUiX16NHDqU/nAaCgK4rnjMcee0z79+/XgAEDVK1aNVksFgUHB6tTp06aMWOGfv/9d5eeZpeVYcOG6ejRo/rnP/+p5s2bKygoSKmpqSpdurSaNWum//u//9O2bdv0wQcfOLTz9fXVkiVLtGjRInXt2lUVKlSw9++BBx7QkiVLFBYWdsv9qly5sjZs2KCVK1eqX79+ql27tgICAiTZrmzq16+ftm7dqkGDBjm0+/bbbzV48GBVrVpVPj4+Cg4O1r333quBAwfecl8AoLCxWK1Wq7s7AQC3Y8+ePWrVqpV2796tli1burs7RR7/HgA8Gb+jHJ04cUI1a9aUJK1fv16dO3d2b4eKCH4OARQlXPEEAAAAAAAAU1B4AgAAAAAAgCkoPAEAAAAAAMAUFJ4AAAAAAABgCgpPAAAAAAAAMAWFJwAAAAAAAJjCx90dAAAAAOAeNWrUkNVqdXc3AACFGFc8AQAAAAAAwBQUngAAAAAAAGAKCk8AAAAAAAAwBYUnAAAAAAAAmILCEwAAAAAAAExB4QkAAAAAAACm8HF3BwAgr4SHh7u7CxD/DgAKBn5XwZ34+QNQlFB4AlDgBQcHy9/fX/369XN3V/A//v7+Cg4Odnc3ACATzhnwFJwrARQVFqvVanV3JwDgdkVFRSk6Otrd3bgtaWlpkiQvr4J/F3RwcLBCQkLc3Q0AyFJhOGe4U2E6X7kT50oARQWFJwDwAJcuXVLbtm2VmpqqrVu3qmLFiu7uEgAAmVy8eFFt27aVxWLRtm3buGIHAJArPqYAAA+wevVqHT16VH/++adWrFjh7u4AAJCllStXKjIyUseOHeN8BQBwCoUnAPAAycnJWb4GAMCTcL4CALiKwhMAAAAAAABMQeEJAAAAAAAApqDwBAAAAAAAAFNQeAIAAAAAAIApKDwBAAAAAADAFBSeAAAAAAAAYAoKTwAAAAAAADAFhScAAAAAAACYgsITAAAAAAAATEHhCQAAAAAAAKag8AQAAAAAAABTUHgCAAAAAACAKSg8AQAAAAAAwBQUngAAAAAAAGAKCk8AAAAAAAAwBYUnAAAAAAAAmILCEwAAAAAAAExB4QkAAAAAAACmoPAEAAAAAAAAU1B4AgAAAAAAgCkoPAEAAAAAAMAUFqvVajVr54sXL9Ybb7yhmJgYsw4BAIVCXFycrly5IkkqXbq0AgIC3NwjAPB8gYGBCgsLU+/evU07BuNZRzdu3NDVq1clcb66WX78PAJAQWRq4Sk0NFQRERFm7R4AAABFXIMGDRQeHm7a/hnPwhVm/zwCQEHkY+bO0z8Z8vLyUuXKlc08FAAUaFarVZcvX5YklS1bVhaLxc09AgDPdu7cOaWlpZl+JRLjWUecr7KWXz+PAFAQmVp4Sle5cmWdPn06Pw4FAACAIqBatWo6c+ZMvh2P8Sxykt8/jwBQkDC5OAAAAAAAAExB4QkAAAAAAACmoPAEAAAAAAAAU5haeAoMDHT4LwAAAJAX8mucyXgWzuDnBACyZ2rhKSwsTG3atFFYWJiZhwEAAEARk1/jTMazcAY/JwCQPYvVarW6uxMAAAAAAAAofJjjCQAAAAAAAKag8AQAAAAAAABTUHgCAAAAAACAKSg8AQAAAAAAwBQUngAAAAAAAGAKCk8AAAAAAAAwBYUnAAAAAAAAmILCEwAAAAAAAExB4QkAAAAAAACmoPAEAAAAAAAAU1B4AgAAAAAAgCkoPAEAAAAAAMAUFJ4AAAAAAABgCgpPAAAAAAAAMAWFJwAAAAAAAJiCwhMAAAAAAABMQeEJAAAAAAAApqDwBAAAAAAAAFNQeAIAAAAAAIApKDwBAAAAAADAFBSeAAAAAAAAYAoKTwAAAAAAADAFhScAAAAAAACYgsITAAAAAAAATOHj7g4AQFaioqIUHR3t7m4gnwQHByskJMTd3QAAAACQxyg8AfA4UVFRCg0NVVxcnLu7gnzi7++v8PBwik8AAABAIUPhCYDHiY6OVlxcnBYsWKDQ0FB3dwcmCw8PV79+/RQdHU3hCQAAAChkKDwB8FihoaFq2bKlu7sBAAAAALhFTC4OAAAAAAAAU1B4AgAAAAAAgCkoPAEAAAAAAMAUFJ4AAAAAAABgCgpPAAC7AwcOqH///qpVq5bKli2rpk2bau/eve7uFgAAAIACisITAOSTzp07y2Kx6Pnnn3d3V7K0Zs0a3Xnnnfrqq690/PhxXblyRQcPHtTJkyeVmpqqxx9/XEFBQXr//ffd3VUAAAAABQSFJwCAUlJS9OKLLyopKUmNGjXSli1bFBcXp9OnT6tz585au3atli1bpuvXr2vMmDG6ceOGu7sMAAAAoADwcXcHAADut2fPHkVFRUmSPv30U7Vr106SVLVqVUlSamqqfVur1Sqr1Zr/nQQAAABQ4HDFEwBAx48ft79u1apVpvUPPfSQHnnkEQUGBmry5MkqWbKkw/qJEyfKYrGoRo0aZncVAAAAQAHCFU8AAMXHx9tf31xUkiQfHx/9+OOP+dklAAAAAIUAVzwBAAAAAADAFBSeAAAAAAAAYAoKTwAKhdWrV+uxxx5TlSpV5Ofnp8DAQLVq1UpjxoxxmL/oZqmpqfr666/1xBNPKCQkRMWLF1dgYKBatGih0aNH2yfczujgwYMaM2aM2rVrp+DgYPn6+qpMmTLq2LGjvvjii1ueeDs1NVVffvmlunXrpkqVKsnPz0/ly5fXAw88oFmzZik5OTlTmxMnTshischisej777/XpUuX9Pe//101atSQt7e3LBaLNmzYkO0x09sOHDgw0zKLxaLnn3/evrxGjRqyWCyaOHFipmO/+eabkqSTJ086tGfOJwAAAKBoY44nAAXe2LFjNXnyZPt7X19fxcbGas+ePdqzZ48++OADzZ8/X08//bRDu6NHj6pXr146dOiQfZmPj4+Sk5O1b98+7du3T5988okOHjyomjVrSpIefvhh/fzzzw778fHx0dWrV7V582Zt3rxZmzZt0ldffeVShlOnTumRRx7Rvn377Mv8/PwUHR2tX375Rb/88otmzZql5cuXq3z58lnu48yZM2rRooVOnTolSfL29s71uAEBAZKklJQUJSYmOiyTpOLFi2fb1svLy75tUlKSkpOTZbFY5O/vn2n/AAAAAIomrngCUKDt2bPHXnTq3bu3Tpw4oaSkJCUkJGjjxo0aMGCA0tLSFBER4dAuKipK7dq106FDh+Tn56fXX39dR48eVWJiopKTkxUREWG/sufatWv2dj///LMCAgI0atQobd++XYmJiUpKStKZM2c0atQoSdKCBQu0adMmpzNcuXJFHTt21L59+1S5cmXNmTNHV65cUWJioi5cuKCpU6fK399f27dvV58+fbLdz/jx43Xu3DlNnjxZV65cUVJSkrZt26a6detm2yY2NlaxsbGaMWNGpmU3L79ZSEiIfbvXX38907LY2FgdPnzY6e8DAAAAgMKHK54AFGjr1q2zv/7www9VtWpVSVKxYsXUqVMnderUSS+99FKm2+0GDhyo6Oho+fn5adWqVerSpYvD+vr162vChAl68sknVa5cOfvyPn366N///rf9OOmqVKmiqVOnauXKlTpy5IiWL1+uTp06OZVh1KhROnnypEJCQrR161aHfZcvX16jRo1SnTp19PDDD2v9+vVavXq1unbtmmk/MTExmjNnjsNtc3fffbdTfQAAAAAAM3DFE4ACzcvL+DUWFxeX5TZ33nmnnnrqKfv77du32wtW//jHPzIVnTJq2LChKlasaH//7bffZio6ZdS2bVtJttv4nHHy5EktXLhQkvTJJ59ku++ePXuqUaNGkqTvv/8+y23atGnjUHQCAAAAAHej8ASgQHvggQfsr1966SX99ddfubZZunSpJNscSMOHD7/tPlitVp0+fVobNmzQuXPnJEnXr193qu2KFSuUmpqqChUqqGfPnjlu27hxY0nS3r17s1x/8xxWAAAAAOBu3GoHoEBr0qSJ3njjDb311ltau3at6tatqxEjRuill15SlSpVsmyzY8cOSbZCToUKFVw+5rlz57R48WJt2bJF4eHhOnbsmOLj4x22SUtLc2pfO3fulCRFR0crMDAwx23TJ/++dOlSlusbNGjg1DEBAAAAIL9QeAJQ4L355puqX7++/v73v+v8+fOaPHmy3nvvPT3zzDMaPXq0QkNDHbY/f/68JKl69eouHcdqtWry5MkKCwuzF4EsFosqV66sFi1aqEaNGjp58qS2bNni9D4vXLggyVaounHjhlNtEhISslxeokQJp48LAAAAAPmBW+0AFArPPvusIiMjNXXqVNWqVUvJycn68ssv1bRpU73xxhsOVyClpqZKcpwfyhkTJkzQuHHjlJiYqPbt2+vnn39WTEyMzpw5oy1btmjhwoVZTvqdk/S+tGrVSlar1akvZ24nBAAAAABPQOEJQKEREBCgUaNG6ejRo1qyZIlCQ0OVkpKisLAwjR492r5d+lPq0udjcsbZs2c1ZcoUSdKjjz6q3377TT169FBAQIDDdumFJGcFBwdLyv72OQAAAAAoyCg8ASh0vLy81KtXL+3Zs0ft27eXJH388cf2eZjSJ+nev3+/07e3rV69WsnJyZKk8ePHy2KxZLndn3/+6VJfmzZtKsn2dDuKTwAAAAAKGwpPAAqt4sWLq0+fPpJs8yKl36L20EMP2ZfNnTvXqX1lvL2tRo0aWW5z+fJl/fjjjy71sVu3bpJs80fNmzfPpbYAAAAA4OkoPAEo0MaPH5/jnEf79++XJPn5+alixYqSbLfKpT8BbuzYsdq3b1+27Q8ePKgDBw7Yb8+TjKfiZRQXF6fnnntO165dc6n/TZo0Uffu3SVJEydOtPc3K2lpaZoxY4bOnj3r0jHyQ7FixSRJsbGxbu4JAAAAAE9C4QlAgfbxxx+rVq1aGjx4sH799Vf7rXPpT7ebM2eOJNvk4/7+/pIkb29vLViwQCVKlND169fVsWNHTZo0SceOHVNaWpqsVqsiIyP11ltvqW3btvrzzz/14IMPysfH9iDQF154QcuXL1dCQoJSUlK0du1atWzZUitXrtQdd9zhcoYZM2YoODhYsbGx6tChg9555x2dOHFCkq3YdPz4cc2cOVMtWrTQ0KFDdf369Tz4zuWt9KvALl26pGnTpuno0aPauXOnJkyYoLVr17q3cwAAAADcxsfdHQCA29G+fXutXLlSs2fP1uzZsyVJvr6+9vmY0rf58MMPHdq1atVK69atU58+fRQVFaXx48dr/Pjx8vb2lsViUUpKiiSpVKlSqlmzpmrWrKmwsDCNGTNGZ86c0SOPPCKLxSKLxaK0tDRZLBaNGzdOMTExmjZtmksZ7rjjDm3cuFGPP/64jhw5otdff12vv/66fHx8lJaW5vBEvvr169snJPck3bt3V7ly5XTp0iWNGjVKo0aNsq9z9nZGAAAAAIUPVzwBKNBWrFihjRs3asiQIWrSpIlKlSqltLQ0BQcH68EHH9S8efO0ceNGBQUFZWp7991368iRI/riiy/Us2dPVa1aVT4+PvLz81Pjxo316quv6uDBg2rWrJkkafTo0VqzZo169uyp8uXLy8fHR5UrV9YzzzyjzZs3Kyws7JZzNGzYUIcOHdKsWbPUtWtXVapUSZJtnqoaNWro4Ycf1ty5c3XgwAGPLDwFBQXpl19+Uc+ePVW2bFn5+vqqWrVqeuqpp9SlSxd3dw8AAACAm1isVqvV3Z0AgIz27NmjVq1aaffu3WrZsqW7uwOT8e8NAAAAFF5c8QQAAAAAAABTUHgCAAAAAACAKSg8AQAAAAAAwBQUngAAAAAAAGAKCk8AAAAAAAAwBYUnAAAAAAAAmILCEwAAAAAAAExB4QkAAAAAAACmoPAEAAAAAAAAU1B4AgAAAAAAgCkoPAEAAAAAAMAUFJ4AAAAAAABgCgpPAAAAAAAAMIWPuzsAANkJDw93dxeQD/h3BgAAAAovCk8APE5wcLD8/f3Vr18/d3cF+cTf31/BwcHu7gYAAACAPGaxWq1Wd3cCAG4WFRWl6Ohod3cD+SQ4OFghISHu7gYAAACAPEbhCQA8wI0bN9SrVy+lpqZqyZIlCgoKcneXAAAAAOC2Mbk4AHiAFStW6D//+Y9+/fVXLV++3N3dAQAAAIA8QeEJADxAXFyc/fWNGzfc2BMAAAAAyDsUngAAAAAAAGAKCk8AAAAAAAAwBYUnAAAAAAAAmILCEwAAAAAAAExB4QkAAAAAAACmoPAEAAAAAAAAU1isVqvVrJ0vXrxYb7zxhmJiYsw6BAAUCvHx8bp8+bIkqUyZMvL393dzjwDA8wUGBiosLEy9e/d2d1cAAEA2TC08hYaGKiIiwqzdAwAAoIhr0KCBwsPD3d0NAACQDR8zd55+pZOXl5cqV65s5qEAAABQhJw7d05paWlcWQ8AgIcztfCUrnLlyjp9+nR+HAoAAABFQLVq1XTmzBl3dwMAAOSCycUBAAAAAABgCgpPAAAAAAAAMIWphafAwECH/wIAAAB5gXEmAAAFg6mFp7CwMLVp00ZhYWFmHgYAAABFDONMAAAKBovVarW6uxMAAAAAAAAofJjjCQAAAAAAAKag8AQAAAAAAABTUHgCAAAAAACAKSg8AQAAAAAAwBQUngAAAAAAAGAKCk8AAAAAAAAwBYUnAAAAAAAAmILCEwAAAAAAAExB4QkAAAAAAACmoPAEAAAAAAAAU1B4AgAAAAAAgCkoPAEAAAAAAMAUFJ4AAAAAAABgCgpPAAAAAAAAMAWFJwAAAAAAAJiCwhMAAAAAAABMQeEJAAAAAAAApqDwBAAAAAAAAFNQeAIAAAAAAIApKDwBAAAAAADAFD7ObhgVFaXo6Ggz+wIAAADkmeDgYIWEhGRazrgWnoyfWwDulN3voNthsVqtVmc2DAgIUFxcXJ4eHAAAADCLv7+/wsPDHQbQUVFRqlevnhITE93YMyB7JUqUUERERKaf2wYNGig+Pt6NPQNQFGT1O+h2OX3FU1xcnBYsWKDQ0NAs18+aNUvTp0/X0KFDNXjwYJc7cuPGDb388suKjIzUZ599psaNG7u8j0OHDmnYsGGqXbu2PvnkEwUEBLi8D3LYkMNADgM5bMhhIIeBHDbkMJDD4I4c4eHh6tevn6Kjox0Gz9HR0UpMTFSvXr0UHBzsUj/27NmjXbt2qXXr1mrZsqXLOZKTk7Vy5UpdvnxZPXr0UIUKFVzex4ULF7RixQqVLVtW3bt3l6+vr8v7IIeNJ+YICQnRDz/8kOXPbXx8/C393AKAs6Kjo7P8HXS7nC48SVJoaGiWv9QnTZqk6dOnKywsTOPGjXO5EzExMeratatOnDihdevWqU2bNi7vY8eOHRo+fLiaNWum1atXKzAw0OV9kMOGHAZyGMhhQw4DOQzksCGHgRwGT8iRleDgYFWpUsXp7Tdu3Khdu3bp3nvv1T333OPy8RITE7VgwQJdvXpVAwYMULVq1Vzex+nTp7Vq1SpVqlRJ/fr1U7FixVzeBzlsPDXH2bNnc9ze1Z9bAPAEtz25+KRJkzR+/PjbHkwcOnRIa9euveVB0QMPPKDGjRvf1qCIHOTIiBwGctiQw0AOAzlsyGEgh8ETcuSFjRs3av369bdd5Lhw4YKee+65Wy5yfPXVV6pQocJtFTnIUXhyAEBBcVuFJ08YTBSWQRE5DOSwIYeBHAZy2JDDQA4DOWzIkbcoctiQw+AJOQCgILnlwpMnDCYKy6CIHAZy2JDDQA4DOWzIYSCHgRw25DAcOnTI5TY3o8hhQw6DJ+QAgILmlgpPnjCYKCyDInIYyGFDDgM5DOSwIYeBHAZy2JDDsGPHDg0bNszldhlR5LAhh8ETcgBAQeRy4clTBhOFZVBEDhty2JDDQA4DOWzIYSCHgRw25DCk56hdu7bLbdNR5LAhh8ETcgBAQeVS4WnWrFkeM5goLIMicpAjHTkM5DCQw4YcBnIYyGFDDkPGHJ988onL7SWKHOnIYfCEHABQkLlUeMqLR+EyKCJHRuSwIYeBHAZy2JDDQA4DOWzIYbg5R0BAgMv7oMhhQw6DJ+QAgILOpcLT0KFDPWYwUVgGReQgBzkM5DCQw4YcBnIYyGFDDkNe5KDIYUMOgyfkAIDCwKXC0+DBg10+gKcMJgrLoIgcNuQwkMNADhtyGMhhIIcNOQzkMFDksCGHwRNyAEBhcUtPtXOWpwwmCsugiBw25DCQw0AOG3IYyGEghw05DOQwUOSwIYfBE3IAQGFiWuHJUwYThWVQRA4bchjIYSCHDTkM5DCQw4YcBnIYKHLYkMPgCTkAoLDxMWOnnjKYKCyDInLYkMNADgM5bMhhIIeBHDbkMJDDsGfPHu3atavIFznIYfCEHMnJyS63AQBPl+dXPHnKYKKwDIrIYUMOAzkM5LAhh4EcBnLYkMNADkcUnciRkafkWLlypcvtAMDT5WnhyVMGE4VlUEQOG3IYyGEghw05DOQwkMOGHAZyZNa6desiX+Qgh40n5bh8+bLLbQHA0+VZ4clTBhOFZVBEDhtyGMhhIIcNOQzkMJDDhhwGcmStZcuWLrcpbEUOcnhejh49erjcHgA8XZ7M8eQpg4nCMigihw05DOQwkMOGHAZyGMhhQw4DOfJOYSxykMPzcnh5mfrQcQBwi9v+zeYpg4nCMigihw05DOQwkMOGHAZyGMhhQw4DOfJOYS1ykKPg5wCAguC2Ck+eMpgoLIMictiQw0AOAzlsyGEgh4EcNuQwkCPvUOQwkMPgCTkAoKC45cKTpwwmCsugiBw25DCQw0AOG3IYyGEghw05DOTIOxQ5DOQweEIOAChIbqnw5CmDicIyKCKHDTkM5DCQw4YcBnIYyGFDDgM5DLNmzXK5TUYUOQzkMHhCDgAoaFwuPHnKYKKwDIrIYUMOAzkM5LAhh4EcBnLYkMNADsOkSZM0ffp0l9ulo8hhIIfBE3IAQEHkUuHpxo0bHjOYKCyDInKQIyNyGMhhQw4DOQzksCGHgRyG9BxDhw51ua1EkSMjchg8IQcAFFQuFZ5efvlljxlMFJZBETnIkY4cBnLYkMNADgM5bMhhIIchY47Bgwe73J4ih4EcBk/IAQAFmUuFp8jISI8ZTBSWQRE5yCGRIyNy2JDDQA4DOWzIYSCH4XZzUOQwkMPgCTkAoKBzqfD02WefFdjBRGEZFJHDQA4DOWzIYSCHgRw25DCQw0AOG4ocBnIYPCEHABQGLhWeGjdu7PIBPGEwUVgGReQwkMNADhtyGMhhIIcNOQzkMJDDhiKHgRwGT8gBAIWFy0+1c4UnDCYKy6CIHAZyGMhhQw4DOQzksCGHgRwGcthQ5DCQw+AJOQCgMDGt8OQJg4nCMigih4EcBnLYkMNADgM5bMhhIIeBHDbJyckUOf6HHAZPyAEAhY2PGTv1hMFEYRkUkcNADgM5bMhhIIeBHDbkMJDDQA7DypUrdfXq1SJf5CCHwRNyXLhwweU2AODp8vyKJ08YTBSWQRE5DOQwkMOGHAZyGMhhQw4DOQzkcHT58uUiX+Qgh8FTcqxYscLldgDg6fK08OQJg4nCMigih4EcBnLYkMNADgM5bMhhIIeBHJn16NGjyBc5yGHjSTnKli3rclsA8HR5VnjyhMFEYRkUkcNADgM5bMhhIIeBHDbkMJDDQI6sVahQweU2ha3IQQ7Py9G9e3eX2wOAp8uTwpMnDCYKy6CIHAZyGMhhQw4DOQzksCGHgRwGcuSdwljkIIfn5fD19XV5HwDg6W678OQJg4nCMigih4EcBnLYkMNADgM5bMhhIIeBHHmnsBY5yFHwcwBAQXBbhSdPGEwUlkEROQzkMJDDhhwGchjIYUMOAzkM5Mg7FDkM5LDxlBwAUFDccuHJEwYThWVQRA4DOQzksCGHgRwGctiQw0AOAzlsbty44XKbm1HkMJDDxlNyAEBBckuFJ08YTBSWQRE5DOQwkMOGHAZyGMhhQw4DOQzksImJidHLL7/scruMKHIYyGHjKTkAoKBxufDkKYOJwjIoIocNOQzksCGHgRwGctiQw0AOAzls0nNERka63DYdRQ4DOWw8JQcAFEQuFZ4OHTrkMYOJwjIoIgc5MiKHDTkM5DCQw4YcBnIYyGGTMcdnn33mcnuJIkdG5LDxlBwAUFBZrFar1akNLRaVKFFCdevW1SeffKKAgACXDzZr1ixNnz5dQ4cO1eDBg11uf+PGDb388suKjIzUZ599psaNG7u8j0OHDmnYsGGqXbs2OcghiRwZkcNADhtyGMhhIIcNOQyemMPb21v9+vXT7t271bJlS/t2e/bsUatWrdSrVy8FBwc77OPChQtasWKFypYtq+7du9/So+337NmjXbt2qXXr1g7HdVZycrJWrlypy5cvq0ePHqpQoYLL+yCHoaDliI6O1g8//ODSzy0A5JXsfgfdLqcLTyVKlFBCQkKeHRgAAAAwk7+/v8LDwxUSEmJfFhUVpQYNGig+Pt6NPQOyV6JECUVERPBzC8AtsvoddLucLjxFRUUpOjo6zw4MAAAAmCk4ODjLgTPjWngyfm4BuFN2v4Nuh9OFJwAAAAAAAMAVLj/VDgAAAAAAAHAGhScAAAAAAACYgsITAAAAAAAATEHhCQAAAAAAAKag8AQAAAAAAABTUHgCAAAAAACAKSg8AQAAAAAAwBQUngAAAAAAAGAKCk8AAAAAAAAwBYUnAAAAAAAAmILCEwAAAAAAAExB4QkAAAAAAACmoPAEAAAAAAAAU1B4AgAAAAAAgCkoPAEAAAAAAMAUFJ4AAAAAAABgCgpPAAAAAAAAMAWFJwAAAAAAAJiCwhMAAAAAAABMQeEJAAAAAAAApqDwBAAAAAAAAFNQeAIAAAAAAIApKDwBAAAAAADAFBSeAAAAAAAAYAofd3cAADyF1WrVjRs3sl1fvHhx+fjwaxMAAACuiYmJ0YoVK9S4cWM1btzY3d0xxe+//64TJ06od+/ejJnhwGK1Wq3u7gQAeIJjx46pbt262a7/6quv1K9fv0zLb9y4oVOnTmXbrnLlygoKCrK/j4uLU7169fTUU0/pgw8+yLFPp06d0ooVK5zoveH5559X8eLFXWoDACi4rl69muXytLQ0paamKigoSH5+fpKkRYsW6Z133tGsWbPUunVrh+137dql06dP53is1NRUpaamqlu3bgoMDMy1b5zHUJRNmTJFGzZs0OrVqxUREaHQ0FBNmDBBEydOdHfX8sSBAwf0j3/8QyNGjFD37t3Vr18/LVy4UDExMSpZsqS7uwcPQhkSAP6nUqVK+uabb7Jd37Zt2yyX//bbb+rWrVu27ebOnavnn3/e/j4tLU1nzpzR5cuXc+3T4cOHNXTo0Fy3y6h3796ZBuwXLlzQ1q1bnWpfqlQpdenSxaVjAgDcIzY2VmXKlMlxm8OHD6thw4aSpIsXL2r//v2KjY3NtN3777+vRYsWZbsfi8Uiq9WqqlWr6qGHHnKqf5zHUFitXbtWZ86cybS8du3a6tixoyRp3759WrNmzS3t/5lnntG3336rv/76SxUrVsx1+/j4eM2fP9/p/Q8ePNjpq5JWrVqlMWPG6NNPP1X79u3tyy9fvqw1a9bosccey3Ufs2bNUkpKilPH69OnT66/11CwUHgCUKSdP39e9913n8vt3n//fXXt2lWS1K5dO+3cuTPTNps3b9Yrr7xif5/+KXJcXJzTx+natausVquuXbumpUuXqnnz5mrevLnDNr/88ovOnz+vvn37ZrufPXv26PHHH3fqmI0aNdKhQ4ec7iMAwH2KFy+e6UMTHx8fFStWTC+99JKuXr2a49W8Gc2fP1+zZs2yv7dYLPL29paPj4+2bt2qxx9/XKmpqfrxxx8druTNCecxFFb//ve/sywq9e3b1154uh3R0dHy8vJy+v+1a9euuVTk7devn9NXJcXExGj//v1KTEx0ev83e/nll51u36FDBwpPhQyFJwBFWunSpfX++++73C7joLlUqVKZbleQpL/++sv+OiUlRXfcccct9VGSLl26pIEDB2r06NGZBuxvvfWWwsPDcxywp3vnnXeyvF0wI19f31vuJwAgf/n4+Ojpp5/OtPzPP//U6dOn9dxzzzn9e71YsWIqVqyYw7Jr165p3Lhx+vDDD1WvXj0tW7ZM9erVc7mfnMdQWJkxc01aWpp27dqlMmXKuPzz/NJLL+mTTz7J0/4kJCRIkvz9/W9rPz169NDPP/+cF11CAUPhCUCRVqxYMfuVS+vWrdOcOXPsc1zEx8fLz89PFStWVJMmTfTUU0+pb9++8vJyfCBoUlJSlrfNZZxzw8fHR7/99pt9e2evskpISFBCQoLS0tIk2f4AuHkujytXriggIMC+vGTJktleOl26dGlVq1bNqWMDAAqu8ePHy8vLS//85z9vqf2RI0c0e/ZszZw5U9euXZMkhYSE6OzZsy4VnjiPAa776aef7P8//Otf/9Lrr7/u1v6kj3MrVark1n6g4PLKfRMAKPy+/PJL3XfffTp9+rQmTJig9evX6+DBg9q2bZs++ugjlS9fXv3799fIkSMztd26dasqV66c6eu5555z2K5Dhw7q0KGD2rVr53S/pkyZojJlythvk5g+fbrKlCnj8HXo0CGdPHnS/v6XX365vW8GAKBA++STT/T111/rH//4h+rVqyeLxWL/Gj58eJZtTpw4oe+++06vvfaamjVrpvr162vatGnq3bu3jh49qvnz5ys8PFz33nuvmjRporFjx2rdunW53jrDeQxwTXx8vF5//XWVLVtWTz31lN566y39/vvvTrf/9NNPHf6fz+rr/vvvd6lPf/zxhyTZb3+7dOmSoqOj7UVpZ61YsSLXvtWpU8elfaJg4IonAJC0fv16SdK4ceMynYybN2+udu3a6dtvv9WGDRuy3cdLL72U5e0O9erVU2pqqho1aiTJtUuyn3322Uy38SUnJ6tXr16688479cYbb2Rq06pVK6f3DwAoPJKSkjR+/Hi9++676tWrl8LCwuTl5aWPP/7Yvs2mTZu0ePHiTO0eeughHTlyRP7+/rrnnns0dOhQhwl+69Spo2effVbff/+9Zs+erSlTpujdd9/Vrl271KxZs2z7xHkMhd23337r8P6xxx7Tyy+/rISEBJcKRpLt/41+/fopPDxcCxcu1GOPPabWrVurW7duWrdunVq0aJHrPvr27atx48bluE1AQIBL/dq9e7ckafXq1erTp4+qV6+uGzduuLQPSercubOmT5+e4zbpT+BE4ULhCQAkjRw5UitXrlTXrl119913q1atWipRooSSkpJ05swZbd26VWlpaTmeyGvUqKEOHTpkuc5qtdrnpEhKSlJYWFiO/UlOTlZqaqpCQkIUEhLisC790+Xg4OBsP7FKSEiQn59fptsCAQCFT3Jysr777jtNnDhRx44d08svv6wPP/xQ3t7ekmyT+mZ0c+HJz89PP//8s+Lj49WwYcNsb3NLn0/q6aef1uXLl3Xs2LFsi06cx1BUPPPMMw7vz507p2vXrik+Pl7JyclO7ycyMlIDBgzQli1bNGXKFD377LOSbMWezp0765577tGHH36ov/3tbznup3Tp0mrQoIHrQbJx6dIle+Fp9uzZ6tOnj+bPn6/k5GT997//zXVMm1FAQECe9g0FB4UnAJDtqqbIyEgtXbpU27dv1+nTp3X+/Hn5+vrqjjvu0DvvvKMnnnhCVapUcXnf586d0x9//KGQkBD1799fsbGxuZ6kX3jhhVwfibtq1SqVKFEi2/XffPNNpiuwfvrpJ/vT9XIyadKkXLcBALjfmDFjNHfuXJ0/f14NGzbUqlWr7HMXOuOPP/6wX/Ur2W4fd8WePXvUqFGjTE/x4jyGoiI+Pt7hffHixe3F3aefflqLFi3Ksf2BAwf06aefau7cuSpRooTmzZunAQMG2NeHhIRo48aNevLJJzVo0CAtXLhQr776qrp16yaLxZL3gW7y1VdfKS0tTU8++aQWL16sjRs36oknnpAkbdiwwaXCE4ouCk8A8D8lS5bUc889l2luJmdNnTpVCxYsUGpqqpKSknTjxg1dvHhRSUlJkqQ2bdqof//+Tu1rxIgReuyxx26pH+nuvPPOTMtWrVqlVatW5dqWATsAFAzNmjXTXXfdpQEDBuixxx7L9QqhkiVLqmrVqvan123bts2lR7BnZciQIZkKT5zHUFQUL178ttpPmzZNX331lZ5++mlNmjQp0xWCknTHHXdo8+bNeu+99/Tvf/9bzz33nLZv357lfEgRERGaN29ersft0qVLlsfKKCEhQdOmTVONGjU0b948bd68WSNGjNCOHTsyPQHTGadPn3aqb23atFHDhg1d3j88F4UnAEVW586dtXHjxtvax7Zt23THHXfo1VdflSRZLBZ5e3urWLFiCgoKUvny5RUSEqL69eu79CSQli1bqmXLlpKkpUuXOn0ffZ06dXT33XdnWt61a1dTHvcLAHCv9FvfJOmvv/5SSkpKjtvff//9uv/++1W+fHlJ0vPPP6/nn38+z/vFeQxwzsyZMxUWFpbrVfU+Pj4aM2aMRo4cqbNnz2Y7Cfevv/6qX3/9NdfjLl26NNfC06RJk3TixAl9+eWX8vf316RJkzRo0CC9+uqr+uSTT3I9xs3279+vgQMH5rrd1KlTKTwVMhSeABRZX375peLi4rJd379/f+3Zs0eHDh3KdpsaNWqoePHiev/9983ooiRp+PDhOnPmjFPbDho0KMsBOwCg8GvdurXT54v169erc+fOmZbHxMRo9uzZWrFihcLDw3Xp0iUlJycrICBAISEhuuuuuzRw4EC1b9/e6X5xHkNh9ssvvyg5OVmxsbE6c+aMjhw5ogMHDmjhwoVOtffx8XFpKgd/f/8si06VKlXK0+LsTz/9pMmTJ+u+++6zz1M6cOBAffPNN/r0009Vp04dNW/e3On9JSQk5FnfUPBQeAJQZGX8lGf79u0qXbq06tevb1/m7+8vSS5Ngvjdd9/pu+++07vvvqtatWrlST+dmcsiNjZWgYGBeXI8AEDBVatWLf3rX//Kdv3q1as1e/bsLNcdO3ZM9913ny5fvqwXX3xRI0eOVLVq1eTr66tr167p8OHDmjdvnjp06KDRo0frnXfecapPnMdQmD3wwAP21yVKlFDdunXVqlUrlSpVyo29uj3r16/Xk08+qerVq2vhwoX2uaQsFosWLFigDh06aN++fWratKmbe4qCgsITAEhq3769unbtqp9//tm+LCQkxOUnb/z3v//VkiVLNHr06GwLTyVLlnTpE6nIyMhcn4qS1ZVbiYmJ+uabb5w+TlaaN2/u0qdZAAD3KlOmjHr37p3t+r/++ivbdWPHjlVUVJQ2btyoTp06ZVrfrl07DR48WPfdd5+mTJmi/v37KzQ0NNc+cR5DYTRr1izFxsbKYrHI19dXpUuXVtmyZZ1uf+nSJS1fvvy2+tChQwcdO3ZMV69eveV9VKhQQV26dHFY1r59e/3zn//U3/72N1WsWNFhXcWKFbV3716VLFlSGzZsyHHfv/32m9NXO2YlICBADz/88C23h+eg8AQA2fjyyy/d3QVJ0j333HNLJ+2YmBin7qPPyYQJExiwA0ARcenSJUlScHBwtttYLBaVK1fOYfvccB5DYVStWrXban/8+PHb/vmeO3eu3n//fR0+fPiW93HPPfdkKjz5+fnprbfeyrZNyZIlndr3v/71L61YseKW+1a9enUKT4UEhScA+J8TJ044PVHiSy+9lOMjbL/77jv9/vvvt72fdPXq1dP48eOd6ltiYqKKFSum4OBgJmIFgCLm4sWLmjFjRrbrN2/enO264cOHa926dXr44Yc1ZswY3XvvvQ632h06dEhfffWVvv/+e7Vu3Vpt27Z1ul+cxwBHrVu3zvVKwNx4e3vr2WefVVpa2i3vI7cnYd6OpUuXKjU19ZbbOzNGRsFA4QkA/ufw4cMaPny4U9v+3//9n3x8sv8V+t577+XJftIdOXJEzz33nFP77Nq16y094hYAUPBFRUVp6NCht9T20Ucf1apVqzRx4kS9+OKLWRZ9SpcurZEjR+qtt96St7e30/vmPAZk5swYMDd+fn550BNz+Pr6ytfX193dgAewWPkYAQAAAEAGFy9e1H//+19dvHhRycnJKlmypGrUqKGGDRu6VHACAIDCEwAAAAAAAExh3g2dAAAAAAAAKNIoPAEAAAAAAMAUFJ4AAAAAAABgCgpPAAAAAAAAMAWFJwAAAAAAAJiCwhMAAAAAAABMQeEJAAAAAAAApqDwBAAAAAAAAFNQeAIAAAAAAIApKDwBAAAAAADAFBSeAAAAAAAAYAoKTwAAAAAAADAFhScAAAAAAACYgsITAAAAAAAATEHhCQAAAAAAAKag8AQAAAAAAABTUHgCAAAAAACAKSg8AQAAAAAAwBQUngAAAAAAAGAKCk8AAAAAAAAwBYUnAAAAAAAAmILCEwAAAAAAAExB4QkAAAAAAACmoPAEAAAAAAAAU1B4AgAAAAAAgCkoPAEAAAAAAMAUFJ4AAAAAAABgCgpPAAAAAAAAMAWFJwAAAAAAAJiCwhMAAAAAAABMQeEJAAAAAAAApqDwBAAAAAAAAFNQeAIAAAAAAIApKDwBAAAAAADAFBSeAAAAAAAAYAoKTwAAAAAAADAFhScAAAAAAACYgsITAAAAAAAATEHhCQAAAAAAAKag8AQAAPJVRESELBaLNmzY4PA6J4sXL5bFYlF4eHiu+09LS1NKSkqOX6mpqU719dy5c7JYLFq1apXD8mrVqmncuHGSpNatW+v555/P1Da3PqSkpMhqteZ4/MTERA0aNEglS5ZU8+bNtXv3bvu6efPmyWKx6OrVq/r5559lsVh04sSJLPdTp04dWSwWh6/0/gMAAJiJwhMAAMhzNWrUyFToeO211255f1euXJEklS5dOtdt//GPf8jX1zfHr3Llyjl1XB8fH0mSn5+fS/2NjY3NtQ++vr6aNm1ajvt56623tH79eq1evVr33XefHn/8ccXFxTndj1OnTunYsWP67LPPtHz5coev7t27Kzw8XAkJCS5lAwAAcIWPuzsAAAAKpz59+mjixIn2984We7Kyc+dOeXl5ydvb26ntq1atmuNVVM7u58aNG5KkgIAAp7a/2b/+9S/16tUr2/Xly5fPdl1KSoo+++wzvfvuu+rQoYPuvvtuLVy4UMuWLdOzzz7r1PG7deumw4cPZ1ru5eWltLQ0+fj4aO/evWrcuLFT+wMAAHAVhScAAGCK0qVLq0GDBre9n7i4OC1ZskRpaWn6f//v/2n+/Pm5tvHx8VGdOnVu+9jR0dGSpIoVK95S+woVKtxyPw4cOKCrV6+qXbt2kmyZ2rdvr759+6pv375O7WPnzp322wrTrzxLSEjQ22+/rU8//VRz5syh6AQAAEzFrXYAAMCjvfHGG0pMTNS8efO0YMECffvtt7m2OXnyZKZb/TJ+9e7d26ljHz16VJJtrqXU1FRdvXpVV69ezXVupnQDBw7MsR+HDh3Ktm1kZKQkqXLlyvZl1apVU506dRQeHq5333031+OXKFFCJUuWVMmSJXX16lVNmTJF9erV06effqolS5Y4feUUAADAreKKJwAAYIqrV68qIiLC/r5ChQr6/PPPdfHiRaf3MX36dP373//WBx98oAEDBujAgQN6/vnnVbZsWT344IPZtqtSpYp+/fXXbNeXKlXKqeNv375dkrRs2TLdf//9uvPOO53uuyRNnjxZjz/+eLbra9Wqle2669evS5JKlixpX1aqVCklJCSoQYMG2rVrV47HjoiI0IEDB3Tw4EGtXr1a+/bt0/3336+xY8fqp59+0iOPPKK77rpLnTp1UuvWrfX44487fQsiAACAsyg8AQAAUyxatEiLFi2yvz906JB++eUXpybHjoqK0vjx4/Xll1/q1Vdf1SuvvCJJeu+993T69Gl1795db775pn0i8Zv5+vrmyW1+a9askbe3t+bOnatXXnlF586dkyS1bNnSqfaVK1fOk35k5OzVVt9++63mzZunZs2aqW/fvvrxxx9VpUoVSdIrr7yio0ePavny5dq4caNOnTrl9FVgAAAArqDwBAAATDFkyBDNmDHDYdkvv/yiiIgIhYaGZttu5syZGjFihHx9fTV79mz97W9/s6/z8vLS119/rfHjx2v8+PGaOXOmFixYoE6dOuV5/3fs2KGIiAj9+9//1j/+8Q/98MMPeuaZZ+z9MFv6VVmxsbEqW7asJNtVUL6+voqIiLAXwW6Wmpqqo0eP6umnn9bTTz9tX379+nX7VVTpunfvru7du0uyXSFVuXJlBQUFmREHAAAUURSeAACAR3n88cd16tQpDR8+PMtJvb29vTV58mT17t1bs2fPVuvWrTNtkz7HU04OHjyY48TaYWFhqlq1ql5++WXt2rVLr732mrp37+5SYWbgwIEaOHBgtuufeOIJff/991muS78N79y5c/bC0+nTp3XixIkcC3cXL17McX1O5s6dq+eff/6W2gIAAGSFwhMAADCN1WpVfHy8zp8/r8jISEVHR6t58+Y5tqlQoYImTZqU675btmyZ5S1v//znPzV48OBc2+c0v9LixYv1888/a+bMmfLz89PYsWP1/fffa8iQIU5Nbh4QEKDw8PBct8tprqlmzZopKChIW7duVaNGjZSSkqItW7ZoxowZGjJkiObNm5dlUatSpUpO344HAABgNgpPAADAFDNnztTMmTMl2a5Sql69uh555JFcC0+3q3z58ipfvvwtt9+9e7cGDx6sBx54QC+88IIkqVGjRpo4caLGjh2r5557Ltd9WCyW257bycfHR0OHDtWUKVPUsGFDLVu2TFarVX369HF6Hxknd89J/fr1c71CDAAA4FZQeAIAAHnu119/VXJysnx8fFSyZEmVL1/e/sS0nIohUVFRTk0+frPKlSsrOjpaycnJLrcNCQmRv7+//X1MTIzuuusufffddw7FmNdff11t2rTR/fffn+2+rl27lu3cSznx9/dXSEhIpuUTJ07UX3/9pQcffFC1atXSsmXLVLp0aaf36+wtd/Hx8SpevLjT+wUAAHAWhScAAJDnateufUvt+vfvr40bN7rcbu7cuZo4caJOnjzpctv169erc+fO9vedO3d2eJ9RTkUnSVq6dGmOczpl55577tGGDRsyLS9WrJjmzp2ruXPnurxPKfcn4M2aNct+VRcAAIAZKDwBAACPkVXxxVmeMCn2888/7xH9AAAA8BTmPwsYAAAAAAAARZLFymNPAAAAAAAAYAKueAIAAAAAAIApKDwBAAAAAADAFBSeAAAAAAAAYAoKTwAAAAAAADAFhScAAAAAAACYgsITAAAAAAAATEHhCQAAAAAAAKag8AQAAAAAAABT+Li7AwAAzxYVFaXo6Gh3dwP/ExwcrJCQEHd3AwCAfMNYBJ6AMdito/AEAMhWVFSUQkNDFRcX5+6u4H/8/f0VHh7OwAcAUCQwFoGnYAx26yg8AQCyFR0drbi4OC1YsEChoaHu7k6RFx4ern79+ik6OppBDwCgSGAsAk/AGOz2UHgCAOQqNDRULVu2dHc3AABAEcVYBCi4mFwcAAAAAAAApqDwBAAAAAAAAFNQeAIAAAAAAIApKDwBAAAAAADAFBSeAAC4BcePH9fQoUNVv359lS1bVvXr19eaNWvc3S0AAADAo1B4AgDARfv371fz5s01Y8YMHTlyRFeuXNGRI0cUHh4uSRo2bJhKlSqlUaNGubejAAAAHqxz586yWCx6/vnnHZbv27dPNWvWVJ06dXTo0CH3dA55hsITACBPhYeH65VXXlGLFi0UFBQkX19flStXTnfffbdeffVV7dixw2H7MWPGyGKxyGKxKDIy0unj/P777/Z23333XY79mThxotq1a6cqVarIz89PgYGBqlWrlh599FF9/vnnunbtmksZhw4dquvXr6tatWpavXq1YmJidOHCBT377LOKiIjQ9OnTFRMTo2nTpunIkSMu7RsAANyeojAWKeymTJmiEydOKDIyUpMnT3Z3d3CbKDwBAPLM22+/raZNm+rDDz/Uvn37dP36dXl5eeny5cvavn27PvjgA91111365z//aW/zxBNP2F//+OOPTh9r2bJlkqTixYure/fumdZfuXJFgwYNUuPGjfXmm29q27ZtOnfunCQpNjZWx48f108//aQhQ4aoTp069v3l5vz589q2bZskadKkSXrooYdUsmRJlS9fXhUqVFBqaqrD9je/BwAA5ikKY5GiIOP4ibFUwUfhCQCQJ2bOnKlx48YpJSVFvXr10qZNm3Tt2jUlJiYqPj5eW7Zs0YgRIxQQEODwaWLr1q1VvXp1SXJpwJU+MEwv/GR04sQJtWvXTnPmzFFaWpoeeOABLV68WBcvXlRSUpISEhJ08OBBhYWFqVy5coqOjnb62CdOnLC/btWqVab1jRo10osvvqiSJUvq5ZdfVmhoqMP6efPm2T8dBQAAeaeojEWKgjFjxqh69eqqWbOmxo4dmyf73LBhg30MlnE8B/P5uLsDAICCLzU1VRMmTJAk9e7dW4sXL3ZYX7x4cbVr107t2rXT3//+d61bt85h/eOPP64PP/xQW7duVXR0tIKDg3M83pEjRxQRESFJ6tWrl8O6GzduqFu3boqIiFDx4sU1f/58PfXUUw7bFCtWTI0bN1bjxo01bNgw9e/f3+ms8fHx9tc3DzLTzZw5UzNnznR6nwAA4PYUpbFIUdCyZUuKQ4UIVzwBAG7bH3/8ofPnz0tSpoHVzapXr66BAwc6LEu/xD01NVXLly/P9XhLly6VJPn6+uqRRx5xWPfqq68qIiJCFotFS5YsybU/ZcuW1bJlyzRgwIBcjwsAADwTYxHAc1F4AgDctqtXr9pfW61Wl9u3a9dOlSpVkuTc3Arp23Tp0kWlS5e2Lz916pTmzJkjSRoyZEiW8y1kxcfHR/fee6+LvQYAAJ6CsQjguSg8AQBuW8WKFe2vFy5c6HJ7Ly8vPf7445KktWvXOtzOdrPz589r+/btkhwnA5WkGTNmKDk5Wd7e3ho9erTL/chJjRo1ZLFYHAaFNWvWtM8V0LlzZ/vyrB4NnL5dxk9Y05cx5xMAALenKIxFJNvcUenjhg0bNigtLU1ffPGF2rRpo1KlSikwMFANGzbUqFGjdOrUqSz3kT5O6dmzpyTb/JNt2rSRv79/pvGLJP31118aN26cmjdvrqCgIJUoUUK1atXSgAEDtHPnzhz7e+TIEQ0bNkx16tRRiRIlVL58eXXt2jXXq8qcnY/pt99+0wsvvKB69eopMDBQJUqUUJ06dfS3v/3N/m+U2xiOOZ/MR+EJAHDbateurVq1akmSfvrpJ40fP15paWku7SN9foS4uDj95z//yXa7H3/8UWlpafLy8tKjjz7qsC69XYcOHeyThOaVgIAABQQEqHjx4vZl/v7+9uUlSpRwqn2xYsUyLUv/AgAAt6YojEVulpCQoB49eujFF1/Uzp07FR8fr9jYWIWHh2vatGlq0KCB1qxZk+M+Bg0apIEDB2rnzp1KTk7OtP6bb75R3bp19fbbb2v//v2KjY1VcnKyjh8/ri+//FJt2rTRm2++meW+v/nmGzVv3lzTp09XZGSkEhMTdeXKFa1Zs0aPPPKIhgwZ4vK/UbrY2Fj17t1bnTp10qxZs3T06FHduHFDKSkpioyM1Ny5c9W2bVstWrQo1zFcQECAvLwojZiJ7y4AIE+8/fbb9teTJk1SixYt9PXXXyslJcWp9p07d1bZsmUl5XyJe/q6jh07qkKFCvblN27c0N69eyVJnTp1crn/uTl8+LBiY2O1atWqTMtuXp6V9O1mzJiRaVn6FwAAuHWFfSxysxEjRmj16tXq37+/wsPDlZSUpKtXr+qjjz6Sv7+/4uLi1KtXLx0/fjzL9ps2bdKcOXP04IMP6tChQ0pOTtaZM2c0ePBgSdKSJUvUt29fxcbG6sEHH9TmzZuVlJSk5ORk7d+/X08++aQkaeLEiZo/f36mfffv31/x8fFq3Lix1q5dq8TERCUkJGjt2rVq2rSpPv/8c23evNnl3MnJyXrooYe0ZMkSSbY5vbZv367ExER7hi+++ELVq1fXuXPnch3DxcbGKiQkxOV+wHkUngAAeeLpp5/WRx99JG9vb0nSgQMH1LdvX9WpU0cff/yxEhIScmzv4+Nj/9Tw559/VmpqaqZtYmNj9euvv0rKfGn7X3/9ZW9Ts2bN284DAAAKlqI2Fjl69KjGjBmj+fPnq0GDBrJYLAoKCtLw4cO1aNEiSbart954440s28fExKhLly5asWKFGjVqJEmqUqWKOnTooMuXL2vw4MGyWq0aPHiw1qxZo/bt28vb21sWi0VNmzbVd999Z/8ejBs3zn7FVFpamoYNG6aUlBTVqVNHmzZt0v333y9fX1/5+Pjo/vvv1+bNm9W0adNbmo9rypQp2rp1qyRbsXHRokVq06aNfH197RkGDx6svXv36p577nF5/8h7FJ4AAHlm+PDhWrdunVq3bm1fdvLkSY0YMUK1a9fW119/nWP79MHLxYsX7QOKjFatWqXExERZLBb7PAzpLl26ZH+d/mklAAAoWorSWKRevXp66623slzXs2dPdevWTZL0/fffZ1l0s1gs+uijj+Tj45Np3fTp03X16lVVqVJFH3/8cbZ9SJ/H6vTp0/Y5lTZt2qTDhw9LkiZPnqwyZcpkahcYGKiPPvool4SZxcfH68MPP5Rku+Ls9ddfz3bb0qVLq0WLFi4fA3mPwhMAIE916tRJO3bs0A8//KC2bdval589e1Z9+/ZVv379lJSUlGXb+++/X4GBgZKkZcuWZVqffml7mzZtVK1aNYd1GT8xu5VPzwAAQOFQVMYiAwcOzLJolC79VriEhATt378/0/omTZrYr3S6WXrOvn37OsyNdLPGjRvbX6ffZrhixQpJtnmUHnnkkWzbdurUSeXLl892fVY2btyoy5cvS5JGjhzpUlu4D4UnAECeS/8UcOvWrVq/fr3Dp44LFy7M9LSUdMWKFbM/YeXmuRVSUlLsA5mbL22X5PBp2vXr1283AgAAKMCKwljkrrvuynF9xqLQyZMnM61v0KBBlu1SU1O1Z88eSdJHH32kkiVLZvsVHBxsb5d+xVd6katRo0YOD1W5mcVicXkC9h07dthfd+nSxaW2cB8KTwAAU3Xu3Fnbt2/XuHHj7Mu++eYbrVu3Lsvt0wdykZGR9su0Jdtjda9eveqwTUaVKlWSxWKRlPXgCgAAFE2FdSySseiTlYyFsJiYmEzrs3si7+XLl+1zVSUmJurGjRs5fqVLv53v3Llzkmzfj9ykz8flrPPnz0uSSpUqleUtfPBMFJ4AAKbz8vJSWFiYhgwZYl+2ePHiLLft1q2bfSCU8RL39E8dmzVrZn9cckalSpWyf3KX/ikdAACAVDjHIulFruwkJibaX2dXZMpKxknVP/74Y1mtVqe+pkyZIsk2D5OkHK92ulXpffPyopRRkPCvBQDIN2PHjrW/zu7Rvv7+/urataskx0vc019n9Qljus6dO0uSfvnlF4dP4AAAAKSiNRb566+/7K9dmUupXLly9tcZJ0x3VvocWelXh+UkLi7OpX2n9+369esut4X7UHgCAOSbihUr2l/nNFFl+oBu165dOnPmjPbs2aNTp045rMvKCy+8IMn2qOP58+fnRZcBAEAhUpjGIrkVhXbv3m1/3aRJE6f36+vrq9DQ0Ez7cFaNGjUkyeE2xaykpKTozz//dGnf6fNWpaWladu2bS73De5B4QkAcNu2bdum6OjoXLfLOLioW7duttv17NlTfn5+slqtWr58uf0TxgYNGqhhw4bZtmvRooX9E8qxY8fq9OnTTvU/OTlZn376qVPbAgAAz1MUxyIrV67Mdp3VatU333wjSWratKlT8y1l1L17d0nSmjVr7HM2OSv9SYLnzp3Tli1bst1u+fLlLl8V1qVLF/n6+kqSpk+f7lJbuA+FJwDAbdu+fbs6duyoY8eO5bjdtGnT7K979+6d7XZBQUG67777JEk//fSTli9fLknq1atXrn35/PPPFRQUpKtXr6pz5846evRojtufO3dOPXr00BdffJHrvvNCxvkOYmNj8+WYAAAUdkVxLDJ16lTt27cvy3XTp0+3r8s4r5WzRo4cqWLFiikpKUn9+/e3TxyelQsXLuijjz6yv3/66aftk4a/+uqrDnNNpYuOjtarr77qcr8qVqxofyLhkiVLNHfu3Gy3vXLlilatWmV/zxjMfSg8AQDyREREhJo0aaLXXntNO3bssN93n5SUpB07dqh///6aMWOGJKlv3765PgI4/TL2X3/9VXv37nVYlpM77rhDK1asUFBQkCIjI9WkSRONHDlSmzdvtj/RJT4+Xrt379bo0aNVv359rV279pZzuyr98nNJCgsL0x9//KF9+/bpvffe08KFC/OtHwAAFDZFbSySnJys++67T7NmzbLPp3TmzBmNHz9eI0aMkCS1bt36lgpPd9xxh6ZOnSrJNl9V27ZttXTpUnv/ExIStH37dr322muqV6+evv76a3vbkJAQDR8+XJKtINi1a1ft3btXVqtVCQkJWrZsmdq2bavjx4+7/FQ7SXr33XdVr149SdKgQYM0aNAg7dy5U8nJyZJsRa25c+eqRYsWWrNmjb1dxjHYu+++q//+9786fPiwPvvsM4eCJExgBQAgG7t377ZKsu7evTvH7bZu3WqtXLmyVZLDV7FixTIte+6556yJiYm5HvvixYtWb29ve7saNWq41PfDhw9bO3bsmOn4fn5+mZY1btzYunXrVqf2u379enu748ePZ7nNPffcY5VkHTBgQKZ1KSkp1nr16mXqgyTrhAkTcjy2s/8eAAAUFoxFHB0/ftzeZuTIkQ778vX1ddhnq1atrBcuXMi0j5zGKTf79NNPM30Ps/qevvLKKw7tkpKSrL169XLYxsfHx+H9uHHjrFWrVs2yL7mNt86ePWvPkd331mKxWGfNmuXQ7r777styDJbb94Ix2O3hiicAwG1r27at/vjjD82YMUMPP/ywatasqYCAAKWkpCgoKEjNmzfXsGHDtH37dn355Zfy8/PLdZ/BwcG655577O+dubQ9o4YNG2rTpk1as2aNXnzxRTVs2FBlypSR1WpVuXLl1KJFCw0ZMkT/+c9/dODAAft8BGbz9vbWmjVr1KdPH1WoUEE+Pj6qVKmSevTo4dSnqAAAILOiOBZ57LHHtH//fg0YMEDVqlWTxWJRcHCwOnXqpBkzZuj333936Wl2WRk2bJiOHj2qf/7zn2revLmCgoKUmpqq0qVLq1mzZvq///s/bdu2TR988IFDO19fXy1ZskSLFi1S165dVaFCBXv/HnjgAS1ZskRhYWG33K/KlStrw4YNWrlypfr166fatWsrICBAku3Kpn79+mnr1q0aNGiQQ7tvv/1WgwcPVtWqVeXj46Pg4GDde++9Gjhw4C33BbmzWK1Wq7s7AQDwTHv27FGrVq20e/dutWzZ0t3dKfL49wAAFDWc+xydOHFCNWvWlCStX79enTt3dm+High+Dm8PVzwBAAAAAADAFBSeAAAAAAAAYAoKTwAAAAAAADAFhScAAAAAAACYgsITAAAAAAAATEHhCQAAAAAAAKbwcXcHAAAAAABA7mrUqCGr1erubgAu4YonAAAAAAAAmILCEwAAAAAAAExB4QkAAAAAAACmoPAEAAAAAAAAU1B4AgAAAAAAgCkoPAEAAAAAAMAUPu7uAADA84WHh7u7CxD/DgCAootzINyJn7/bQ+EJAJCt4OBg+fv7q1+/fu7uCv7H399fwcHB7u4GAAD5grEIPAVjsFtnsVqtVnd3AgDguaKiohQdHe3ubuB/goODFRIS4u5uAACQbxiLwBMwBrt1FJ4AAIXa4cOHNWTIELVv317/+te/3N0dAACAfJOWlqbBgwcrKipK8+fPV9WqVd3dJRRBTC4OACjUZsyYoS1btujdd9/V6dOn3d0dAACAfLNz507NnTtXv/76qxYsWODu7qCIovAEACjUYmNjs3wNAABQ2GUc+8TExLixJyjKKDwBAAAAAADAFBSeAAAAAAAAYAoKTwAAAAAAADAFhScAAAAAAACYgsITAAAAAAAATEHhCQAAAAAAAKag8AQAAAAAAABTUHgCAAAAAACAKSg8AQAAAAAAwBQUngAAAAAAAGAKCk8AAAAAAAAwBYUnAAAAAAAAmILCEwAAAAAAAExB4QkAAAAAAACmoPAEAAAAAAAAU1B4AgAAAAAAgCkoPAEAAAAAAMAUFJ4AAAAAAABgCgpPAAAAAAAAMAWFJwAAAAAAAJiCwhMAAAAAAABMQeEJAAAAAAAAprBYrVZrfhxo8eLFeuONNxQTE5MfhwMAQJJ09epV3bhxQ5JUsWJF+fj4uLlHAICiJDAwUGFhYerdu3e+HI+/u5BRUlKSLl68KMn2s1iqVCk39wieIj9/N+Vb4Sk0NFQRERH5cSgAAAAA8BgNGjRQeHh4vhyLv7sAOCu/fjfl28e+6RV3Ly8vVa5cOb8OCwAAAABuce7cOaWlpeXr1Uf83QUgN/n9uynf7zeoXLmyTp8+nd+HBQAAAIB8Va1aNZ05c8Ytx+bvLgDZye/fTUwuDgAAAAAAAFNQeAIAAAAAAIAp8q3wFBgY6PBfAAAAACjM3PE3EH93AchNfv+eyLfCU1hYmNq0aaOwsLD8OiQAAAAAuI07/gbi7y4Aucnv3xMWq9VqzZcjAQAAAAAAoEhhjicAAAAAAACYgsITAAAAAAAATEHhCQAAAAAAAKag8AQAAAAAAABTUHgCAAAAAACAKSg8AQAAAAAAwBQUngAAAAAAAGAKCk8AAAAAAAAwBYUnAAAAAAAAmILCEwAAAAAAAExB4QkAAAAAAACmoPAEAAAAAAAAU1B4AgAAAAAAgCkoPAEAAAAAAMAUFJ4AAAAAAABgCgpPAAAAAAAAMAWFJwAAAAAAAJiCwhMAAAAAAABMQeEJAAAAAAAApqDwBAAAAAAAAFNQeAIAAAAAAIApKDwBAAAAAADAFBSeAAAAAAAAYAoKTwAAAAAAADCFj7s7AADIX1FRUYqOjnZ3N5APgoODFRIS4u5uAAAAoAij8AQARUhUVJRCQ0MVFxfn7q4gH/j7+ys8PJziEwAAANyGwhMAFCHR0dGKi4vTggULFBoa6u7uwETh4eHq16+foqOjKTwBAADAbSg8AUARFBoaqpYtW7q7GwAAAAAKOSYXBwAAAAAAgCkoPAEAAAAAAMAUFJ4AAAAAAABgCgpPAAAAAAAAMAWFJwAATHbgwAH1799ftWrVUtmyZdW0aVPt3bvX3d0CAAAATEfhCQBQoHXu3FkWi0XPP/+8u7uSpTVr1ujOO+/UV199pePHj+vKlSs6ePCgTp48qdTUVD3++OMKCgrS+++/7+6uAgAAAHmOwhMAACZJSUnRiy++qKSkJDVq1EhbtmxRXFycTp8+rc6dO2vt2rVatmyZrl+/rjFjxujGjRvu7jIAAACQp3zc3QEAAAqrPXv2KCoqSpL06aefql27dpKkqlWrSpJSU1Pt21qtVlmt1vzvJAAAAGAirngCAMAkx48ft79u1apVpvUPPfSQHnnkEQUGBmry5MkqWbKkw/qJEyfKYrGoRo0aZncVAAAAMAVXPAEAYJL4+Hj765uLSpLk4+OjH3/8MT+7BAAAAOQrrngCAAAAAACAKSg8AQAAAAAAwBQUngAA2Vq9erUee+wxValSRX5+fgoMDFSrVq00ZswYh/mLbpaamqqvv/5aTzzxhEJCQlS8eHEFBgaqRYsWGj16tH3C7YwOHjyoMWPGqF27dgoODpavr6/KlCmjjh076osvvrjlibdTU1P15Zdfqlu3bqpUqZL8/PxUvnx5PfDAA5o1a5aSk5MztTlx4oQsFossFou+//57Xbp0SX//+99Vo0YNeXt7y2KxaMOGDdkeM73twIEDMy2zWCx6/vnn7ctr1Kghi8WiiRMnZjr2m2++KUk6efKkQ3vmfAIAAEBBwRxPAIAsjR07VpMnT7a/9/X1VWxsrPbs2aM9e/bogw8+0Pz58/X00087tDt69Kh69eqlQ4cO2Zf5+PgoOTlZ+/bt0759+/TJJ5/o4MGDqlmzpiTp4Ycf1s8//+ywHx8fH129elWbN2/W5s2btWnTJn311VcuZTh16pQeeeQR7du3z77Mz89P0dHR+uWXX/TLL79o1qxZWr58ucqXL5/lPs6cOaMWLVro1KlTkiRvb+9cjxsQECBJSklJUWJiosMySSpevHi2bb28vOzbJiUlKTk5WRaLRf7+/pn2DwAAAHg6rngCAGSyZ88ee9Gpd+/eOnHihJKSkpSQkKCNGzdqwIABSktLU0REhEO7qKgotWvXTocOHZKfn59ef/11HT16VImJiUpOTlZERIT9yp5r167Z2/38888KCAjQqFGjtH37diUmJiopKUlnzpzRqFGjJEkLFizQpk2bnM5w5coVdezYUfv27VPlypU1Z84cXblyRYmJibpw4YKmTp0qf39/bd++XX369Ml2P+PHj9e5c+c0efJkXblyRUlJSdq2bZvq1q2bbZvY2FjFxsZqxowZmZbdvPxmISEh9u1ef/31TMtiY2N1+PBhp78PAAAAgDtxxRMAIJN169bZX3/44YeqWrWqJKlYsWLq1KmTOnXqpJdeeinT7XYDBw5UdHS0/Pz8tGrVKnXp0sVhff369TVhwgQ9+eSTKleunH15nz599O9//9t+nHRVqlTR1KlTtXLlSh05ckTLly9Xp06dnMowatQonTx5UiEhIdq6davDvsuXL69Ro0apTp06evjhh7V+/XqtXr1aXbt2zbSfmJgYzZkzx+G2ubvvvtupPgAAAABFHVc8AQAy8fIyTg9xcXFZbnPnnXfqqaeesr/fvn27vWD1j3/8I1PRKaOGDRuqYsWK9vfffvttpqJTRm3btpVku43PGSdPntTChQslSZ988km2++7Zs6caNWokSfr++++z3KZNmzYORScAAAAAzqPwBADI5IEHHrC/fumll/TXX3/l2mbp0qWSbHMgDR8+/Lb7YLVadfr0aW3YsEHnzp2TJF2/ft2ptitWrFBqaqoqVKignj175rht48aNJUl79+7Ncv3Nc1gBAAAAcB632gEAMmnSpIneeOMNvfXWW1q7dq3q1q2rESNG6KWXXlKVKlWybLNjxw5JtkJOhQoVXD7muXPntHjxYm3ZskXh4eE6duyY4uPjHbZJS0tzal87d+6UJEVHRyswMDDHbdMn/7506VKW6xs0aODUMQEAAABkRuEJAJClN998U/Xr19ff//53nT9/XpMnT9Z7772nZ555RqNHj1ZoaKjD9ufPn5ckVa9e3aXjWK1WTZ48WWFhYfYikMViUeXKldWiRQvVqFFDJ0+e1JYtW5ze54ULFyTZClU3btxwqk1CQkKWy0uUKOH0cQEAAAA44lY7AEC2nn32WUVGRmrq1KmqVauWkpOT9eWXX6pp06Z64403HK5ASk1NleQ4P5QzJkyYoHHjxikxMVHt27fXzz//rJiYGJ05c0ZbtmzRwoULs5z0OyfpfWnVqpWsVqtTX87cTggAAADANRSeAAA5CggI0KhRo3T06FEtWbJEoaGhSklJUVhYmEaPHm3fLv0pdenzMTnj7NmzmjJliiTp0Ucf1W+//aYePXooICDAYbv0QpKzgoODJWV/+xwAAACA/EHhCQDgFC8vL/Xq1Ut79uxR+/btJUkff/yxfR6m9Em69+/f7/TtbatXr1ZycrIkafz48bJYLFlu9+eff7rU16ZNm0qyPd2O4hMAAADgPhSeAAAuKV68uPr06SPJNi9S+i1qDz30kH3Z3LlzndpXxtvbatSokeU2ly9f1o8//uhSH7t16ybJNn/UvHnzXGoLAAAAIO9QeAIAZDJ+/Pgc5zzav3+/JMnPz08VK1aUZLtVLv0JcGPHjtW+ffuybX/w4EEdOHDAfnueZDwVL6O4uDg999xzunbtmkv9b9Kkibp37y5Jmjhxor2/WUlLS9OMGTN09uxZl46RH4oVKyZJio2NdXNPAAAAgFtD4QkAkMnHH3+sWrVqafDgwfr111/tt86lP91uzpw5kmyTj/v7+0uSvL29tWDBApUoUULXr19Xx44dNWnSJB07dkxpaWmyWq2KjIzUW2+9pbZt2+rPP//Ugw8+KB8f2wNWX3jhBS1fvlwJCQlKSUnR2rVr1bJlS61cuVJ33HGHyxlmzJih4OBgxcbGqkOHDnrnnXd04sQJSbZi0/HjxzVz5ky1aNFCQ4cO1fXr1/PgO5e30q8Cu3TpkqZNm6ajR49q586dmjBhgtauXevezgEAAABO8HF3BwAAnqd9+/ZauXKlZs+erdmzZ0uSfH197fMxpW/z4YcfOrRr1aqV1q1bpz59+igqKkrjx4/X+PHj5e3tLYvFopSUFElSqVKlVLNmTdWsWVNhYWEaM2aMzpw5o0ceeUQWi0UWi0VpaWmyWCwaN26cYmJiNG3aNJcy3HHHHdq4caMef/xxHTlyRK+//rpef/11+fj4KC0tzeGJfPXr17dPSO5JunfvrnLlyunSpUsaNWqURo0aZV/n7O2MAAAAgDtxxRMAIJMVK1Zo48aNGjJkiJo0aaJSpUopLS1NwcHBevDBBzVv3jxt3LhRQUFBmdrefffdOnLkiL744gv17NlTVatWlY+Pj/z8/NS4cWO9+uqrOnjwoJo1ayZJGj16tNasWaOePXuqfPny8vHxUeXKlfXMM89o8+bNCgsLu+UcDRs21KFDhzRr1ix17dpVlSpVkmSbp6pGjRp6+OGHNXfuXB04cMAjC09BQUH65Zdf1LNnT5UtW1a+vr6qVq2annrqKXXp0sXd3QMAAAByZbFarVZ3dwIAkD/27NmjVq1aaffu3WrZsqW7uwMT8W8NAAAAT8AVTwAAAAAAADAFhScAAAAAAACYgsITAAAAAAAATEHhCQAAAAAAAKag8AQAAAAAAABTUHgCAAAAAACAKSg8AQAAAAAAwBQUngAAAAAAAGAKCk8AAAAAAAAwBYUnAAAAAAAAmILCEwAAAAAAAExB4QkAAAAAAACmoPAEAAAAAAAAU/i4uwMAgPwXHh7u7i7AZPwbAwAAwBNQeAKAIiQ4OFj+/v7q16+fu7uCfODv76/g4GB3dwMAAABFmMVqtVrd3QkAQP6JiopSdHS0u7uBfBAcHKyQkBB3dwMAAABFGIUnAEChdurUKY0bN0533323hg4d6u7uAAAAAEUKhScAQKH2//7f/9P7778vLy8vnT17VhUrVnR3lwAAAIAig6faAQAKtfTbCtPS0nTlyhU39wYAAAAoWig8AQAAAAAAwBQUngAAAAAAAGAKCk8AAAAAAAAwBYUnAAAAAAAAmILCEwAAAAAAAExB4QkAAAAAAACmsFitVmt+HGjx4sV64403FBMTkx+HAwBAknTlyhXFxcVJkipWrCgfHx839wgAUJQEBgYqLCxMvXv3dndXAMAt8q3wFBoaqoiIiPw4FAAAAAB4jAYNGig8PNzd3QAAt8i3j33Tr3Ty8vJS5cqV8+uwAADIarXKYrG4uxsAgCLm3LlzSktL464PAEVavt9vULlyZZ0+fTq/DwsAAAAA+apatWo6c+aMu7sBAG7F5OIAAAAAAAAwBYUnAAAAAAAAmCLfCk+BgYEO/wUAAACAwoy/gQAgHwtPYWFhatOmjcLCwvLrkAAAAADgNvwNBACSxWq1Wt3dCQAAAAAAABQ+zPEEAAAAAAAAU1B4AgAAAAAAgCkoPAEAAAAAAMAUFJ4AAAAAAABgCgpPAAAAAAAAMAWFJwAAAAAAAJiCwhMAAAAAAABMQeEJAAAAAAAApqDwBAAAAAAAAFNQeAIAAAAAAIApKDwBAAAAAADAFBSeAAAAAAAAYAoKTwAAAAAAADAFhScAAAAAAACYgsITAAAAAAAATEHhCQAAAAAAAKag8AQAAAAAAABTUHgCAAAAAACAKSg8AQAAAAAAwBQUngAAAAAAAGAKH2c3jIqKUnR0tJl9AQAAAPJMcHCwQkJCMi1nXAtPxs8tAHfK7nfQ7bBYrVarMxsGBAQoLi4uTw8OAAAAmMXf31/h4eEOA+ioqCjVr19fCQkJbuwZkL1ixYrpyJEjmX5uGzRooPj4eDf2DEBRUKJECUVERORp8cnpK57i4uK0YMEChYaG5rjdrFmzNH36dA0dOlSDBw92uUM3btzQyy+/rMjISH322Wdq3Lixy/s4dOiQhg0bptq1a+uTTz5RQECAy/sghw05DOQwkMOGHAZyGMhhQw4DOQz5mSM8PFz9+vVTdHS0w+A5OjpaCQkJKlu2rB599FH5+vq63I89e/Zo165dat26tVq2bOly++TkZK1cuVKXL19Wjx49VKFCBZf3ceHCBa1YsUJly5ZV9+7dyVGIciQmJmb5cxsfH69evXopODjY5X0DgDOio6P1ww8/ZPoddLucLjxJUmhoaI6/zCdNmqTp06crLCxM48aNc7kzMTEx6tq1q06cOKF169apTZs2Lu9jx44dGj58uJo1a6bVq1crMDDQ5X2Qw4YcBnIYyGFDDgM5DOSwIYeBHAZPyJHRo48+qurVq7vcbuPGjdq1a5fuvfde3XPPPS63T0xM1IIFC3T16lUNGDBA1apVc3kfp0+f1qpVq1SpUiX169dPxYoVc3kf5LDxtBytW7fWrl27st0uODhYVapUcXn/AOBOeTa5+KRJkzR+/PjbHkwcOnRIa9euveVB0QMPPKDGjRvf1qCIHOTIiBwGctiQw0AOAzlsyGEgh8ETctzsVq5I2bhxo9avX3/bRY4LFy7oueeeu+Uix1dffaUKFSrcVpGDHJ6Z41au2AIAT5cnhSdPGEwUlkEROQzksCGHgRwGctiQw0AOAzlsyJG3CmORgxwFPwcAFAS3XXjyhMFEYRkUkcNADhtyGMhhIIcNOQzkMJDDhhx5iyKHDTkMnpADAAqK2yo8ecJgorAMishhIIcNOQzkMJDDhhwGchjIYUOOvEWRw4YcBk/IAQAFyS0XnjxhMFFYBkXkMJDDhhwGchjIYUMOAzkM5LAhh+HQoUMut7kZRQ4bchg8IQcAFDS3VHjyhMFEYRkUkcNADhtyGMhhIIcNOQzkMJDDhhyGHTt2aNiwYS63y4gihw05DJ6QAwAKIpcLT54ymCgsgyJy2JDDhhwGchjIYUMOAzkM5LAhhyE9R+3atV1um44ihw05DJ6QAwAKKpcKT7NmzfKYwURhGRSRgxzpyGEgh4EcNuQwkMNADhtyGDLm+OSTT1xuL1HkSEcOgyfkAICCzKXC0/Tp0z1mMFFYBkXkIIdEjozIYSCHDTkM5DCQw4YchptzBAQEuLwPihw25DB4Qg4AKOhcKjwNHTrUYwYThWVQRA5ykMNADgM5bMhhIIeBHDbkMORFDoocNuQweEIOACgMXCo8DR482OUDeMpgorAMishhQw4DOQzksCGHgRwGctiQw0AOA0UOG3IYPCEHABQWt/RUO2d5ymCisAyKyGFDDgM5DOSwIYeBHAZy2JDDQA4DRQ4bchg8IQcAFCamFZ48ZTBRWAZF5LAhh4EcBnLYkMNADgM5bMhhIIeBIocNOQyekAMAChsfM3bqKYOJwjIoIocNOQzkMJDDhhwGchjIYUMOAzkMe/bs0a5du4p8kYMcBk/IkZyc7HIbAPB0eX7Fk6cMJgrLoIgcNuQwkMNADhtyGMhhIIcNOQzkcETRiRwZeUqOlStXutwOADxdnhaePGUwUVgGReSwIYeBHAZy2JDDQA4DOWzIYSBHZq1bty7yRQ5y2HhSjsuXL7vcFgA8XZ4VnjxlMFFYBkXksCGHgRwGctiQw0AOAzlsyGEgR9ZatmzpcpvCVuQgh+fl6NGjh8vtAcDT5ckcT54ymCgsgyJy2JDDQA4DOWzIYSCHgRw25DCQI+8UxiIHOTwvh5eXqQ8dBwC3uO3fbJ4ymCgsgyJy2JDDQA4DOWzIYSCHgRw25DCQI+8U1iIHOQp+DgAoCG6r8OQpg4nCMigihw05DOQwkMOGHAZyGMhhQw4DOfIORQ4DOQyekAMACopbLjx5ymCisAyKyGFDDgM5DOSwIYeBHAZy2JDDQI688//bu/egqO77/+Mv5CoQBavRNIqOMZigqVTJTWk1Yieokykx3uIFNdq0VJTp2Ek00eqo8xUNabTV2MxAvVKVpKW1ImZqvFTrpTU0WhE12lqjiYpQGUCQFfj9sXE/EFjYBfbHsjwfM8yw55zP53xezrLn43vPhSKHQQ7DHXIAQFvSpMKTu0wmPGVSRA4rchjkMMhhRQ6DHAY5rMhhkMNITU11uk1NFDkMchjukAMA2hqnC0/uMpnwlEkROazIYZDDIIcVOQxyGOSwIodBDmPlypXauHGj0+0eoMhhkMNwhxwA0BY5VXgqLS11m8mEp0yKyEGOmshhkMOKHAY5DHJYkcMgh/EgR0JCgtNtJYocNZHDcIccANBWOVV4SkxMdJvJhKdMishBjgfIYZDDihwGOQxyWJHDIIdRM8ecOXOcbk+RwyCH4Q45AKAtc6rwdPnyZbeZTHjKpIgc5JDIURM5rMhhkMMghxU5DHIYzc1BkcMgh+EOOQCgrXOq8PT++++32cmEp0yKyGGQwyCHFTkMchjksCKHQQ6DHFYUOQxyGO6QAwA8gVOFp4EDBzq9A3eYTHjKpIgcBjkMcliRwyCHQQ4rchjkMMhhRZHDIIfhDjkAwFM4/VQ7Z7jDZMJTJkXkMMhhkMOKHAY5DHJYkcMgh0EOK4ocBjkMd8gBAJ7EZYUnd5hMeMqkiBwGOQxyWJHDIIdBDityGOQwyGFlsVgocnyNHIY75AAAT+Pjik7dYTLhKZMichjkMMhhRQ6DHAY5rMhhkMMgh7F3717duXOn3Rc5yGG4Q45bt2453QYA3F2Ln/HkDpMJT5kUkcMgh0EOK3IY5DDIYUUOgxwGOWorLCxs90UOchjukiMrK8vpdgDg7lq08OQOkwlPmRSRwyCHQQ4rchjkMMhhRQ6DHAY56ho7dmy7L3KQw8qdcnTp0sXptgDg7lqs8OQOkwlPmRSRwyCHQQ4rchjkMMhhRQ6DHAY56vfwww873cbTihzkcL8cY8aMcbo9ALi7Fik8ucNkwlMmReQwyGGQw4ocBjkMcliRwyCHQY6W44lFDnK4Xw5fX1+n+wAAd9fswpM7TCY8ZVJEDoMcBjmsyGGQwyCHFTkMchjkaDmeWuQgR9vPAQBtQbMKT+4wmfCUSRE5DHIY5LAih0EOgxxW5DDIYZCj5VDkMMhh5S45AKCtaHLhyR0mE54yKSKHQQ6DHFbkMMhhkMOKHAY5DHJYlZaWOt3mmyhyGOSwcpccANCWNKnw5A6TCU+ZFJHDIIdBDityGOQwyGFFDoMcBjmsiouLlZiY6HS7mihyGOSwcpccANDWeFVXV1c7tKGXl7Zv367Kykr99Kc/1WOPPab169crKCjI6Z2mpqZq48aNSkhI0Jw5c5xuX1paqsTERF2+fFnvv/++Bg4c6HQfZ8+eJcfXyGFFDoMcBjmsyGGQwyCHFTkMd8rx+eefq6ysTJ9++qkGDx5sW5+Tk6MhQ4Zo3Lhx6tq1a7193Lp1S1lZWerSpYvGjBnTpBs+5+Tk6NSpU4qKiqq1f0dZLBbt3btXhYWFGjt2bJOewkcOo63kuH37tv7whz806X0LAM1l7zOouRwuPAUFBenu3bsttmMAAADAlQIDA5WXl6ewsDDbsqtXr+qJJ55QWVlZK44MsK9jx446f/4871sAraK+z6DmcrjwdPXqVd2+fbvFdgwAAAC4UteuXeudODOvhTvjfQugNdn7DGoOhwtPAAAAAAAAgDOa/FQ7AAAAAAAAoCEUngAAAAAAAOASFJ4AAAAAAADgEhSeAAAAAAAA4BIUngAAAAAAAOASFJ4AAAAAAADgEhSeAAAAAAAA4BIUngAAAAAAAOASFJ4AAAAAAADgEhSeAAAAAAAA4BIUngAAAAAAAOASFJ4AAAAAAADgEhSeAAAAAAAA4BIUngAAAAAAAOASFJ4AAAAAAADgEhSeAAAAAAAA4BIUngAAAAAAAOASFJ4AAAAAAADgEhSeAAAAAAAA4BIUngAAAAAAAOASFJ4AAAAAAADgEhSeAAAAAAAA4BIUngAAAAAAAOASFJ4AAAAAAADgEj6tPQAAcBfV1dUqLS21uz4gIEA+PnxsAgAAwDnFxcXKysrSwIEDNXDgwNYejkucOHFCV65c0fjx45kzoxav6urq6tYeBAC4g0uXLunxxx+3u37btm2aNm1aneWlpaX64osv7LZ75JFH1LlzZ9vru3fvKjw8XBMnTtQvf/nLBsf0xRdfKCsry4HRGzNnzlRAQIBTbQAAbdedO3fqXV5VVaXKykp17txZfn5+kqRdu3Zp1apVSk1NVVRUVK3tT506pWvXrjW4r8rKSlVWVmr06NF66KGHGh0bxzG0Z8nJyTp06JD27dun8+fP68knn9TSpUu1bNmy1h5aizhz5ozeeOMNzZ8/X2PGjNG0adOUnp6u4uJiBQcHt/bw4EYoQwLA13r06KEdO3bYXf/888/Xu/zIkSMaPXq03XabNm3SzJkzba+rqqp0/fp1FRYWNjqm3NxcJSQkNLpdTePHj68zYb9165aOHTvmUPtOnTpp5MiRTu0TANA6SkpKFBoa2uA2ubm5ioiIkCTl5+fr9OnTKikpqbNdSkqKdu3aZbcfLy8vVVdX69FHH9WLL77o0Pg4jsFT/eUvf9H169frLH/sscf0ve99T5L02Wef6eOPP25S/6+++qp27typGzduqHv37o1uX1ZWpi1btjjc/5w5cxw+Kyk7O1uLFi3Shg0bNGzYMNvywsJCffzxx4qLi2u0j9TUVN2/f9+h/U2aNKnRzzW0LRSeALRrN2/eVExMjNPtUlJSFBsbK0kaOnSo/vGPf9TZ5ujRo/rZz35me/3gW+S7d+86vJ/Y2FhVV1erqKhImZmZioyMVGRkZK1t9u/fr5s3b2rq1Kl2+8nJydHLL7/s0D4HDBigs2fPOjxGAEDrCQgIqPOliY+Pj/z9/TV37lzduXOnwbN5a9qyZYtSU1Ntr728vOTt7S0fHx8dO3ZML7/8siorK/WnP/2p1pm8DeE4Bk/17rvv1ltUmjp1qq3w1By3b99Whw4dHP5bKyoqcqrIO23aNIfPSiouLtbp06d17949h/v/psTERIfbR0dHU3jyMBSeALRrISEhSklJcbpdzUlzp06d6lyuIEk3btyw/X7//n316tWrSWOUpIKCAs2aNUsLFy6sM2Ffvny58vLyGpywP7Bq1ap6LxesydfXt8njBAD8/+Xj46PJkyfXWf7vf/9b165d0/Tp0x3+XPf395e/v3+tZUVFRVq8eLHWrl2r8PBw/fGPf1R4eLjT4+Q4Bk/lijvXVFVV6dSpUwoNDXX6/Tx37lytX7++RcdTXl4uSQoMDGxWP2PHjtWePXtaYkhoYyg8AWjX/P39bWcuHThwQL/97W9t97goKyuTn5+funfvrqeeekoTJ07U1KlT1aFD7QeCVlRU1HvZXM17bvj4+OjIkSO27R09y6q8vFzl5eWqqqqSZP0PwDfv5fG///1PQUFBtuXBwcF2T50OCQlRz549Hdo3AKDtWrJkiTp06KA333yzSe0vXryotLQ0ffDBByoqKpIkhYWF6csvv3Sq8MRxDHDe7t27bX8Pq1ev1ltvvdWq43kwz+3Ro0erjgNtV4fGNwEAz7d161bFxMTo2rVrWrp0qQ4ePKh//etfOn78uH71q1+pW7duio+PV1JSUp22x44d0yOPPFLnZ/r06bW2i46OVnR0tIYOHerwuJKTkxUaGmq7TGLjxo0KDQ2t9XP27Fn997//tb3ev39/8/4xAABt2vr16/W73/1Ob7zxhsLDw+Xl5WX7mTdvXr1trly5ooyMDP385z/XoEGD1L9/f61bt07jx4/X559/ri1btigvL08vvPCCnnrqKb399ts6cOBAo5fOcBwDnFNWVqa33npLXbp00cSJE7V8+XKdOHHC4fYbNmyo9Tdf38+oUaOcGtOFCxckyXb5W0FBgW7fvm0rSjsqKyur0bH169fPqT7RNnDGEwBIOnjwoCRp8eLFdQ7GkZGRGjp0qHbu3KlDhw7Z7WPu3Ln1Xu4QHh6uyspKDRgwQJJzp2RPmTKlzmV8FotF48aN09NPP61f/OIXddoMGTLE4f4BAJ6joqJCS5Ys0Zo1azRu3DitWLFCHTp00K9//WvbNn/961/14Ycf1mn34osv6uLFiwoMDNTw4cOVkJBQ6wa//fr105QpU/TRRx8pLS1NycnJWrNmjU6dOqVBgwbZHRPHMXi6nTt31nodFxenxMRElZeXO1Uwkqx/G9OmTVNeXp7S09MVFxenqKgojR49WgcOHNB3v/vdRvuYOnWqFi9e3OA2QUFBTo3r008/lSTt27dPkyZNUu/evVVaWupUH5I0YsQIbdy4scFtHjyBE56FwhMASEpKStLevXsVGxur5557Tn379lXHjh1VUVGh69ev69ixY6qqqmrwQN6nTx9FR0fXu666utp2T4qKigqtWLGiwfFYLBZVVlYqLCxMYWFhtdY9+Ha5a9eudr+xKi8vl5+fX53LAgEAnsdisSgjI0PLli3TpUuXlJiYqLVr18rb21uS9aa+NX2z8OTn56c9e/aorKxMERERdi9ze3A/qcmTJ6uwsFCXLl2yW3TiOIb24tVXX631+quvvlJRUZHKyspksVgc7ufy5cuaMWOG/va3vyk5OVlTpkyRZC32jBgxQsOHD9fatWv12muvNdhPSEiInnjiCeeD2FFQUGArPKWlpWnSpEnasmWLLBaLzp071+ictqagoKAWHRvaDgpPACDrWU2XL19WZmamTp48qWvXrunmzZvy9fVVr169tGrVKr3yyiv69re/7XTfX331lS5cuKCwsDDFx8erpKSk0YP0j370o0YfiZudna2OHTvaXb9jx446Z2Dt3r3b9nS9hqxcubLRbQAArW/RokXatGmTbt68qYiICGVnZ9vuXeiICxcu2M76layXjzsjJydHAwYMqPMUL45jaC/KyspqvQ4ICLAVdydPnqxdu3Y12P7MmTPasGGDNm3apI4dO2rz5s2aMWOGbX1YWJgOHz6sCRMmaPbs2UpPT9eCBQs0evRoeXl5tXygb9i2bZuqqqo0YcIEffjhhzp8+LBeeeUVSdKhQ4ecKjyh/aLwBABfCw4O1vTp0+vcm8lR7733nrZv367KykpVVFSotLRU+fn5qqiokCQ988wzio+Pd6iv+fPnKy4urknjeODpp5+usyw7O1vZ2dmNtmXCDgBtw6BBg/Tss89qxowZiouLa/QMoeDgYD366KO2p9cdP37cqUew1+fHP/5xncITxzG0FwEBAc1qv27dOm3btk2TJ0/WypUr65whKEm9evXS0aNH9c477+jdd9/V9OnTdfLkyXrvh3T+/Hlt3ry50f2OHDmy3n3VVF5ernXr1qlPnz7avHmzjh49qvnz5+vvf/97nSdgOuLatWsOje2ZZ55RRESE0/3DfVF4AtBujRgxQocPH25WH8ePH1evXr20YMECSZKXl5e8vb3l7++vzp07q1u3bgoLC1P//v2dehLI4MGDNXjwYElSZmamw9fR9+vXT88991yd5bGxsS553C8AoHU9uPRNkm7cuKH79+83uP2oUaM0atQodevWTZI0c+ZMzZw5s8XHxXEMcMwHH3ygFStWNHpWvY+PjxYtWqSkpCR9+eWXdm/C/cknn+iTTz5pdL+ZmZmNFp5WrlypK1euaOvWrQoMDNTKlSs1e/ZsLViwQOvXr290H990+vRpzZo1q9Ht3nvvPQpPHobCE4B2a+vWrbp7967d9fHx8crJydHZs2ftbtOnTx8FBAQoJSXFFUOUJM2bN0/Xr193aNvZs2fXO2EHAHi+qKgoh48XBw8e1IgRI+osLy4uVlpamrKyspSXl6eCggJZLBYFBQUpLCxMzz77rGbNmqVhw4Y5PC6OY/Bk+/fvl8ViUUlJia5fv66LFy/qzJkzSk9Pd6i9j4+PU7dyCAwMrLfo1KNHjxYtzu7evVv/93//p5iYGNt9SmfNmqUdO3Zow4YN6tevnyIjIx3ur7y8vMXGhraHwhOAdqvmtzwnT55USEiI+vfvb1sWGBgoSU7dBDEjI0MZGRlas2aN+vbt2yLjdOReFiUlJXrooYdaZH8AgLarb9++Wr16td31+/btU1paWr3rLl26pJiYGBUWFur1119XUlKSevbsKV9fXxUVFSk3N1ebN29WdHS0Fi5cqFWrVjk0Jo5j8GQ/+MEPbL937NhRjz/+uIYMGaJOnTq14qia5+DBg5owYYJ69+6t9PR0272kvLy8tH37dkVHR+uzzz7Td77znVYeKdoKCk8AIGnYsGGKjY3Vnj17bMvCwsKcfvLGuXPn9Pvf/14LFy60W3gKDg526hupy5cvN/pUlPrO3Lp375527Njh8H7qExkZ6dS3WQCA1hUaGqrx48fbXX/jxg27695++21dvXpVhw8f1ve///0664cOHao5c+YoJiZGycnJio+P15NPPtnomDiOwROlpqaqpKREXl5e8vX1VUhIiLp06eJw+4KCAv35z39u1hiio6N16dIl3blzp8l9PPzwwxo5cmStZcOGDdObb76p1157Td27d6+1rnv37vrnP/+p4OBgHTp0qMG+jxw54vDZjvUJCgrSSy+91OT2cB8UngDAjq1bt7b2ECRJw4cPb9JBu7i42KHr6BuydOlSJuwA0E4UFBRIkrp27Wp3Gy8vL33rW9+qtX1jOI7BE/Xs2bNZ7f/zn/80+/29adMmpaSkKDc3t8l9DB8+vE7hyc/PT8uXL7fbJjg42KG+V69eraysrCaPrXfv3hSePASFJwD42pUrVxy+UeLcuXMbfIRtRkaGTpw40ex+HggPD9eSJUscGtu9e/fk7++vrl27ciNWAGhn8vPz9Zvf/Mbu+qNHj9pdN2/ePB04cEAvvfSSFi1apBdeeKHWpXZnz57Vtm3b9NFHHykqKkrPP/+8w+PiOAbUFhUV1eiZgI3x9vbWlClTVFVV1eQ+GnsSZnNkZmaqsrKyye0dmSOjbaDwBABfy83N1bx58xza9ic/+Yl8fOx/hL7zzjst0s8DFy9e1PTp0x3qMzY2tkmPuAUAtH1Xr15VQkJCk9r+8Ic/VHZ2tpYtW6bXX3+93qJPSEiIkpKStHz5cnl7ezvcN8cxoC5H5oCN8fPza4GRuIavr698fX1bexhwA17VfI0AAAAAoIb8/HydO3dO+fn5slgsCg4OVp8+fRQREeFUwQkAAApPAAAAAAAAcAnXXdAJAAAAAACAdo3CEwAAAAAAAFyCwhMAAAAAAABcgsITAAAAAAAAXILCEwAAAAAAAFyCwhMAAAAAAABcgsITAAAAAAAAXILCEwAAAAAAAFyCwhMAAAAAAABcgsITAAAAAAAAXILCEwAAAAAAAFzi/wGuk1wMbu4KWQAAAABJRU5ErkJggg==\n", "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgODUxLjQgNDg4Ljc1NTcxMTk1NjUgXSAvQ29udGVudHMgOSAwIFIgL0Fubm90cyAxMCAwIFIgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0xlbmd0aCAxMiAwIFIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnic7VhNbxw3DL3rV+gYHyJLlCiJVyetixyKujHaQ9GDsXYSB7tO4zjN3+/T7MdQa++HHTsI0BwMzLxZURQfRfL58OXFv5eTi9+Pj+yL1+ZwfJt8MsG+x99b6+17/H2xwR7j763xeJuZysElPE0XT6lWV5hLIEC+f31nzBvz0RZHlkp0Uaj6FFOptsZig5Cr7Y2yr8VeX9g/7RV2+gLrx/bwt7Obm4vrK3hkD38J9tPkypjBEpblkqlGeMOeXIklhqjxqcYjRcckNVXgzUAHwMUjc2Lv6aR37INkX2qKiNTCZ9P7THOf2WcnPiSJveuZisuZMqx2riu881TZeboT9LAxOQaHhTXn3vka2dUScqLeeYV3Tio7dzvvByfer+jHu/mINPT2uQdIEZ6FkHGgIWC5maMSShRQPJmZo1Nz+HOwIdnTN4aSk8KCDbGft6fn5i/7zB7Yv+3pK/PTKVLSO0TStowenyYzCxPPfz27+jw7Orv+fHX84ebd5eT55PI8xiL25Qd7csfSQC7VIvAjxu1WQgElG6xQdSEg8lUkhR3OELjZYCYhTCIgMCI4O7zJlOZmTnSkOSFdqMU6+8TfPNIh0MYY7R9pQpZ895EuPrrA3kvE3cm7Ih2LSzkKPoo8Tk6HkB4h0u0XmyLdJ8dWX3J5hEATgdENZjg6lD/hlte0rzcnYOuVJdSkvkUa4uI8+5JQz9i7QomzoC5qPLVOGJFptkOzKzVUZESHJlcD7luwE2NeGxPUJ7/8NOvg1YqpSbIH7kccO3ica9nkw9DkUe0JvOP+S0w4VXQIJ3HFttEHx1yZRePTDq8ZjScjYYBrOxofqv2y0q9X+FDna+YVPmacIwn2CUykbgP5dhv86gp8mhyAYYSU2D47mx6gVbgUC14uru2by5vxhuxDZkLzrVxbuZ/1ODkkoK+saUshO/KMH3egd1ifhG9xmdDCF580l2pFx9lGfDSzhUsC4X7+ezTPiECWlkKIsIu38GmHZ3RoPONx2tnR+FYuKS/WDGNMSsFJjdgnCJctXL4+sEgCGdj748V+7HFmzD0db0toRdkCWLG1fF8jisMAa5IWkCYib4T2oaVNcYzzdZxk5Cx6bk/ICtRRXy3flwpuV7EteCAH/1zjRokDje1GnV9OOkrURgkTN06eCqE+FK5ZEGXdxWiYFyAZfJEqPBThDV2MVnWbds8L0nV6vRQUoceizRfe1ThqTpusoIt5YSkY3uKOxrE+vGgzMTk0VCnEMe0wM04vJ+NgDz3jV2G9t3wyK/nU8kCCz9yrpxHuxBPYrAnJtpBO6rWXHXt690DdpH1W8kj7rGDlpLLxRK5vEUzaa6WLtNcKVv4pG3d5fT+pFIIL7TL/0EhPppG+WYj/v+JoU4h/qKLvSRVB7KD0xITDB48NosRBtihcqvO5CEqFBjNaLDzIHZgcZnqChliM0eMXv/wyM3f9vg1kO2E/whtH6MLOe85tksAUFcWn4TSQJh4Sp938EZ92OOp6CV7CMEGPZjS8dYCuYb7ER8yDyH4cIieP0Sl7eVoxpDksxQWMAfB81uPBQcdW5INGMVRzm6+pQxnDo2A8r7doDMzLTzNz54qOsc04j/hGKitka154DzuFhFv6RCwut/CpxpuYRQ+uJI3L0U6HbydT5muwuJEpwREuAMf2X9pHVkOmIMUktsj09HX4ij6NjvRpdJ0+FNvxm+KvwxVRkBy78T0IzDhM9HnuvyIQessxr+NTjXdEKTt7E4hRarFm3oseSODeUipWUAHlmXGLCYoJ40YcxlO6paciDf26JtSy2w1Q6a41EfP1wmu9UT5QeK01yk549VrxHo3yobprrVFqMwmU4EjIr8pf4Q1Xh/PgRFDiaYc3uI2bzGQZun+Cvqm7zGC7lZg0/wG/ZzZHCmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKMTQyNwplbmRvYmoKMTAgMCBvYmoKWyBdCmVuZG9iagoxNyAwIG9iago8PCAvTGVuZ3RoIDE4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDMyMlEwgMMUQ640AB2lA04KZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvRm9ybSAvQkJveCBbIC00NSAtMjg3IDEwMDAgODM4IF0gL0xlbmd0aCAyMzYKL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTZHLjcMwDETvqoINBDD/VD0BFj4o/V93KMdJLuaDRhyO6MHHQWkHvYZYbFpDpmxSnVct3/U5THmTZe7q0opAcWGKKvKjKDTJmmt2TyS5MRncbAbZoWTuUBSKsZGKkmaRpJAixXMI3BQKh5HAqVNKVM/pWIGQ7GiEgbQt47Rt47Z1QcgDFc0G+4iOotWUGNI10OO7YiC+TSK5K1e+lR7dtMa9qjXO4YwH2cTamlwMpzH9h7L6Zhb/UD/hUr/ULuvj195988Fc/U/4jWujcNxOH3rL5zZj7BldMzetTQ+7I33pUs/x9w+MVWGKCmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0Zvcm0gL0JCb3ggWyAtNDUgLTI4NyAxMDAwIDgzOCBdIC9MZW5ndGggMTY4Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE2Puw0DMQxDe0/BEay/PM8BQQpn/za8C5JLYehBNCVxhDlsCV7jpBbs0SV/wKp3OdsafsPp3cMs/qgnwcNu+GjfXXs8R3ZCVnNvTr1oj5QFTUOawozVFT4bx8gQeLMTheDLWPwlVCTmRfuimkUq9x/Rk4VyQSq71ghedYzincFX9PqiUxPueSrM6byphJmiOalhcilToMWJy6HM8s1wMM/jDa6fPu0KZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvRm9ybSAvQkJveCBbIC00NSAtMjg3IDEwMDAgODM4IF0gL0xlbmd0aCA3NgovRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNzM0NgFAIA+B7p2AE+XngRMYD7n/VJmo48SUthWaIZcoFqjaVRvlUWj6ypUMei2n4EFca317jxF4qxWnC+fqfYuPNWT1uDtEalQplbmRzdHJlYW0KZW5kb2JqCjIxIDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTQ1IC0yODcgMTAwMCA4MzggXSAvTGVuZ3RoIDE5MQovRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxN0DsOxCAMBNCeU3CBSPiLOU+kVYrs/dsdQ1ah4kkGe0wxlWpO9VtSLlzv4sM29WhQD9pEjZ7qK4mAsssrtTGrvimnrerSVQI9DiJFCKaH9yRJ3uARmw7JTvPNq/XkKsxamR2depu4E8YGSNdN7jNQvOiaI9TbJrW8T9Y3ZQhEEX8kmJ0SfIwgjCKWtFHPolhXCCsrTkw2fIyIoZJiz8yG22xcNdBFcTLX7H0W8VwB1bF2+u92Ys/PD2UUVMkKZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvRm9ybSAvQkJveCBbIC00NSAtMjg3IDEwMDAgODM4IF0gL0xlbmd0aCAyMjUKL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTVBBbgNBCLvvK/yBSGAGmHnPSlUO6f+v9eymbU5YssE2R6/Cw4P4Ptrthq8L9rSNxP+jN/08kolu01ZtaW9BXfu2BDf9AYeFUMz6RD1/2T9033keNVCh248B97y84drxmGAHvInoxnnQdEnx6Au5UtPRjM3s4NxuG9V0UHyNPQNlt8aRpa3ZSOr2JMaimDDHoFy4EDkRVQgzMbsBh3Qj4cukd7iwGBoW3/WcQ4vKry7BUjC7DGWSdZUIRWfKorYhQzoboJ7GNFXUVIjz8KHy0rkuuHbu55x609cP/JVUOAplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTQ1IC0yODcgMTAwMCA4MzggXSAvTGVuZ3RoIDIwOAovRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9kEtuRSEMQ+esIkuA/FnPlaoOePuf9nDVdoAI2LGdjK4lpfIZt5hyhv5ffJ/xi5/xPbxDchrcUJMwlagpDpqa4qryjGwV46e8xcylYdqaIJUl6oFSoaG80sEmKr3F4nKCDtsl3i0e+p5YDuKKUyy082UY+Syuo2aggvZ0UZyXNT4N0lBoPmMZFXFX0RiYL8LVpWhs8Rtnu7gRh7hOtGcYZjGvIaM6N5GCBRAFfip9jJVNrLml7Pb47rc6I+bFGGLHO+bf6h7W+PUDyJxF8AplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTQ1IC0yODcgMTAwMCA4MzggXSAvTGVuZ3RoIDM5NwovRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNUjmOAzEM6+cV+sACOn28J8AiRfL/dkk5yaaYMWGJEkX5mnvIj4XL85qmBz4azqVEiP+jV/h+lQ/xSLBSq9Hjiq1iyyXGEkucscVsyO0K3YKgz5Q5ke08bpfNIDDHpyk7xGrjHj+3FJTw3Ueq4hqg0AzRWsXskbwmfeySruZxyuNEWxQhimkyEE1FhVnsAPlEj0Zzcr5h/oV+DJpP+AueQe+QohI6MX6hO9GjUSntSVtvhLxcAzNgCNROqMmKHgaTBSMlzO/zNWZJLOQhI8ZsTpR1hKYiz00C31vFDYoirfnPg1CZ9rMnGaXkR5hUkJtStSSwnFraC4KHSr+HDIP9WOMIchzLHAlXoWAkInFOROwgg/fMsA/HyEEVQw9WtdJXHz4LdjbooxI+p6PNfLVabpPq+9T3fmOgPjLCd3N8UwGr+OuxeZ4+7s1hj42P0WWtzUZz+FIKjxDqDTNxHmt3OWHfkMOMD4eusApdYlX6dvrQSe+nfnj0+mij+1TLbVD9ez/c1e8fjCWljQplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTQ1IC0yODcgMTAwMCA4MzggXSAvTGVuZ3RoIDYyOQovRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNk0GOKzEIRPd9Cl+gJRsMts8T6WsWmftv5xWdSH/RMTG4KAq4IkaLle33ioMVs6VHC8+W21pYb69r2W7RZ1vEzWNt22xzuzy7tzmiva8V+IhePjhXWz3aBOl15TptTm8Z3mZYS7wz9To7scvJT+wma4B2Fp4w/vXDJw5EiUuhTUtuo3mSD2TvQj14zMnDN8QShmPAcqRYegG8r2GEnN6G4EhuzjkEa1UscHwxgV+IUSTngOCGAkJlh+BGIihBEvCcvFNxxEYGohXJww0CTbOS0eM5X9egxHy4YC0keVPS+VpklRVQrzNWnZLqiU641UkbVijXKk+U4PKsvtuaEnENPBNEnTR0ddBcDU00WNSfuVuuWVXk3PKgRsI61I5D2z/j8bp+ro0KTobfsgzxqeI/w6uGb9SbFwtVXA9kqMhsN3IuBLurm6Jzc7t4fosIae9TFOnpPbrY6NFYUNoYJi4x5dScMpX3mHQlPgbiMzNlOupVlI/zfWkMbKHZ3A++Ue2TcpwsEhogkRr5pTmefG1MlaFf97r2RpdHcmcO0mijemJM3NgLBshTAzrrhDm4stKfCBX8vFm+CkVS7eeoJD8sELUYKsqYiMToU5oUylNSsZI0k5JZ4QRj9FEzQw0IG1vLwFyrJotar92GFvXg8Vn8dGrarSxfT4Qzpc8bRyehOPMmVNvfPAYfEhsgmgtmr2gZfKBp1AVpHW61ptz1Ju+u4Ft5rfqHNmDddErot6tjyndrI9Un5kqM7lp4cbzZOXG+meSagdy1f4+lOhWhyp830kIo0kaoUuvJI/mUWWqKSQ2gqElurUkX7U8v1JZ/f9rk+XQKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvRm9ybSAvQkJveCBbIC00NSAtMjg3IDEwMDAgODM4IF0gL0xlbmd0aCAyOTIKL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTVG7bUQxDOvfFFoggPW35gkQpLjs34b0y+WuMEyYEknJ154lniY/V7sf9DjoQ52wot9h7/XHv1DYBqLOC90635d6SDXViTrIh+YbIvv4r2OP7xT3RE+oiw0cIsSyJHrELOXzSg1RMJkqWiEJT/UmY0ipFOfTQqhMUAznKDWU+Ohp9lLI7WNmVWBsSkw3zFDbwKvQO2A0N9TQp0tqpKDnfMZj0KxFrYSWbMW+dDOnNpJr48AKWS1gtSlomMXR4qsRhBNDcrHHkxPjBT7BXXRLGt0cUdIUPYZ7ndC8oWZzkM7NKIa+mVwHPA4YZjW1J2IVkM0+t8fNwGnXQeF630ibwxUFJkr8XhS2jxyB0SM5EWv5o4EVOaqe//iJP/36BUhgdAoKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvRm9ybSAvQkJveCBbIC00NSAtMjg3IDEwMDAgODM4IF0gL0xlbmd0aCAzMjIKL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTVJJbsQwDLvnFfpAAWuX3zNAMYf0/9dScjHpSbRpUpSSS8Ipt9DP5bUH3QfxBhr2QcO+L7akiIDGxAfdl8W581Wn+pr6uhyqRqFxavW5wAT6ROu2oSoqsCeYXFA701Tzw9gaDd7xee8brCb59Ale5CbkucmR2U3J9u4E6GgFjRhZ8nS3aLdkMFaUjhvdVCtQpRnMqzNZspJmdxTSQg5msqXtCw/rTu2CHIb35t3R5gY6R0dgwYS6HYz0bRZxBvyTWOAa7VYQS6Eh6wnBiGwYWoDNO5QUGuKxYu32Z2C7GVuIsXDCp/Ees3iWgZDs1EF7HbMaaPysRXDax8F3R4+pHb8ZLKDkVIupr/n0je7PT9A/RKGbcv9EjURnin+gufvzqhWBxXyxOiQNU2fufEDbY/cY/0EjuB9tG33/AjJWhmEKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvRm9ybSAvQkJveCBbIC00NSAtMjg3IDEwMDAgODM4IF0gL0xlbmd0aCAxOTYKL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTZC5DQMxDARzVcEGDGhJ6mE9BxgO7P5TL2UZp0gDDf8yossDpvIpA/jhe+GYNYn+pq1fpRkDRmVWR1/0XvRADWLqA206yWEHeWvb3vSr8yp9SoysPWXUlBZ+UF9DoPWD3LKZ9ZOsj21vwsgMrfVP+8/q5NvEmgumyVU8YwKrHmKK9xDlDDQkmOUizQRKZ8xSLgUVIBhjwWywHucAr2lOwx40GCQXjfxR0Yxgr6uoV2Ejhef6YAU+175G3uX5Ba9jUi4KZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvVHlwZSAvWE9iamVjdCAvU3VidHlwZSAvRm9ybSAvQkJveCBbIC00NSAtMjg3IDEwMDAgODM4IF0gL0xlbmd0aCA5MAovRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNzrENwDAIBMCeKbxAJIMxJAtFKfD+bfyKI1Nx0oMeYuMi0sogyLmWIG+SZM2mRD2pfylbkmpd6ZZcHala1mwL+nuDHjodzfMF4GDc7umYawPL9wv/KSJ+CmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL1R5cGUgL1hPYmplY3QgL1N1YnR5cGUgL0Zvcm0gL0JCb3ggWyAtNDUgLTI4NyAxMDAwIDgzOCBdIC9MZW5ndGggMTUyCi9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE3QOw7EIAwE0J5TcIFIGP/gQqstyP3b2BCCu6dMZI9JgJClUb6TS7nlkVQ4yNOR9n8j/RPUksnye4qx2NdKvIU9C4MJK3/qb8pCWwpvKqyf9jxVDqLZhloPQvW0NQiqvXvXgJVRKUFrxr5iXmTbL8DqJxkbzi5yADznWXZUVz2KAp4vIAeXwPuQQb5qnK1e4fcA7v9MTQplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9UeXBlIC9YT2JqZWN0IC9TdWJ0eXBlIC9Gb3JtIC9CQm94IFsgLTQ1IC0yODcgMTAwMCA4MzggXSAvTGVuZ3RoIDQ4NQovRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxVVEluxDAMu/sV+kABa/PyngGKOaT/v5aUE3R6CExEEkVRTprFlKlbflqhbXK14faJEL3ak3e1d9spoxtKCAbfzfUPddbuB7zb1C7hExWFQDN7SHSXsUN8LXm1sYCmgWaJ55YRQzwqYoj4kNxT3KbkcJyKSNoWVzCBwVUlotf5ag75RJ5aGa7zrrHlxWKZxWrudx+r/C26jxJdjzadR61iRKqvE/MgQpSIMAOYNYEHEbDE3kLWVKs+ac4+6JweQiUZXtoyNlVDbVIX1CeUcB6er8YJiTgxM+jBqaErZKFLZKVvpw+dZGc6SyX0+mgr96G2tgH1z35e2NUw4oFdFQrUQ1+g16DDOcjcE/VQsEfx5DKJmVSDnrE4BWpxFRJOxyqd8C82HjqFu8HZeGK2ft44GJjhaXeNY1qy1G7Bapj19KF37GzTS4mNeWuzoaXWyj87p1eECIyVYXZqtCJk6bs2wj2zj2/6UXdo4+FNW7O0eXlItb4wQ+dtObviiXnmecOJmUEPTg1dIQtdIit9O33KSX4PdLbfXpe2ch9qaxtQ8eyHu0rszROrCuPVxbdGoHMC6Qcw3ImrrfWJTpAMf6go8LlC3pfqArHidhS8Ciok4l/g+wN9BVHV/KFT8m7fv9le0+UKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvTGVuZ3RoIDMyMiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UjlyADEI6/cV+sDOmNt+z2YyKZL/txFsUoERFkJ22sGCBW53pDjKFj7kyiUQDfwwOxCTAYXgRBU8V2dm+L5iKwrhhVsUsTZuXn0uT2ZWcH35rfbE5zL1ybSIGCN5bkkicgQKiYDuUZDK6gmcpDYqSASB3SyuvCitXnlmMO9mJr4UbvBI6qWi7q6DCFIvQxxGa+4ZmYXMBWVbbpL5RrHruZRiirua7THGzprI0fZa5dRUVBl0qaSXDq5Vi5Ui6z5I2pHZSGdRbdhkNCcXtyGWnBx/PZSbPJ09leDmkWd4bfR6cSfaY+eNve9+K8oOam/VaY1oI9Sv/W60RHtezc58sogFSbohBfFD5p7Tvrj362/OqDfyaYkwU6qQucdfQAUi/ROUvnOUraII3rIONKkmCaIc8/+lnuvr+vwFn2d1ewplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9MZW5ndGggNTA0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC2TSa4cQQhE93UKLlBSMuR0nrYsL77vv/UL2osSFJAQBDBv2LB57K2ymWk7w375gyXc/kq6H/tpJcLmRZQtR0z7PCtRlq3Z/+t20Oe51+4wT7e1zQmahdXvtBoWmLMsdkh8niQBShIKiCRoKXWR6fAgFxDuV34d0o5jCfO7rHgfPvoJ2YFX7lQhKziijmqcbQH43EnhYTn5P3qTRSxgM/AQnyP5Lp5IARw0H4Nck4YOvhXdUW5h8SKG3CKlBh5wlKuieqWrg32GbWBSGsKO1YVA2CZMopbMKHsbyNbgUdqK/0nWhGsPiBShvDyK97kI9uZh41X/O0ajvminu9Qwk3ySdAojbVmKgGw63X6bUUrDWTGCdfGo7haA1sjw09q8Qs801dx1pOZX56KlFchkqZMdiWfy2skHnsXUC8QLvsGy6QRGs2iVqBynJfjXaC2Yx4IbB88KoXSxQ6/O7Cab0bLaI03bwNvp2jiQjF45lqy0isy66MivuhS2AEv1moOYLEGNamwBpuIUtC+9WxpefHflMG2dQ7EhSTV1mDm697iajOoHO6JjCm5I0rfytsY3yelUn1TeAjkFZTdvHFGR9vwfygsCKr2cQrIebzZ3NdFub6nOVpOWBDmZpTloFOHszvvlzrEwa2h7w77X/Xn+PL//AXuGvoYKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvTGVuZ3RoIDgzIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDWMuw3AIAxE+5viFoiEbbDDPlGUwtm/DUFQ3dP93BoLg8dQV2eo8BJIsYkvtCvFOhMmJ1v8UOuymtVZS+ztSKPMt4S6LYqV7dvEg/sDn8cXmwplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9MZW5ndGggNDI5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDWSTbLcMAiE9z4FF3CV+JElnWdSqSxe7r/N13iymAEBhqbp+QwbFsfu2lYrbWbYL7/yuPl+7G97Mbf9XFGPRQ15Y1tkmS9shPmcFiPsc3nqOyIxiNZrfSmDt5d5DnuIz2FMJLyGMdLPojfNjsznCvJ6kw1mHIpUnc5niw+WzWNZYUvVOZdt3s8xH48lsDweJVjBa1qv83ztVubPdSg8yYYnaH66wd7CqNfn2kUezNllbTqcIAhIcHcrChwUc0zIAJSrd5CZIbJW8xm0kgVPnfbyqHZZsUht0VOs0D9uUOO1mRoo787JRMH5euxQ2c78OusRU8mSzp4zrImhw82eMe1WePCMFMSjplwW0HfCPTq4y5Wh3Q1lwQI3C4SPtpxqZ3uOGu7ihklFn8W9utthTLgtpij8sIrpkBAFHm9A9rj0BiX8O80FhuNw2GoRaZEUjQ4NEoB0FFIh5OboLtwpwffzel9K8CQKGMkl69A8VU3H4iSSR7F9atZ7DqkQXMkW1boqjuD/hSZVw5POEqvaip94Izr/lJyye4B36hajpVcw8hWYtPb7HzD3ogQKZW5kc3RyZWFtCmVuZG9iagozNiAwIG9iago8PCAvTGVuZ3RoIDM1MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwlkjtuBDEMQ/s5hS6wgPXx7zwbBCmS+7d51BYD2ZJMUtTUHTYst73qWu1lM9K+/Kk1jdvfUzvsZJdOdCDxfrrVfp+aZS8vqxz2imM1wl656MhNpcqyVoOnf+L7ia5ci1QmLfqNU/F1QLvmqWgOcCh/0Fa2h+20uc2HYHjpwud+pkJkNq/F3ghqxrkspwSDnOfYoeIHZAexRJnTakG5GIIGv8fm0IvIsAlEbG9XEjWKUADeGVWQm/cSJbQCyoFdc1hhrdyrnW0Yp1GyjFNebpJ00bH4xuiJmNP1Sb+6QCpVcsmBbWKu6T2aIipP9SnwpWpigpYhxnD4sc/FMZY5K8uz2mZWvshoLW2jEHe7wTro92A9Kz8x2yed8EUdzgL1xuuoAooHFebACMf8I82OelLhSMZF9tL/RSjHHXcQl9jYK07NwB2RMdvRptUAhVdynJE/f+X7+Xm+/wE4KoEzCmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0xlbmd0aCAzNTQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRZK5bcVADERzVcEGBCyvPer5huHgu//Uj5QNBwJHvGe4ubcMsSN3hKSGrLXkQ6+wKTZMvh9E1ruR65AwE3espngOeV0xlvga4ge76wsJql9XeUPxJB7GuE8J3xXRLRGL2dg0sTXbvi6zBylTw7GzOgcR5c8zRam1cx5LNhGQTnJd8WLzyOrAphkM2dlcbM4yzDhawBUf2zlw1VLpErCcR2jg22VlueFFQdHUcZp4DYK41ShqWEKLwK9sr+uLmNK/FRwFEHAMwYfCN+uWdLe1FHS5vShp38FytmVNfZDuymA6Mt7WUljShX5DZckuKnhnCvKkliNYTUsCyGmcOrLuLGOWLQFycEFKB9kYP7gR3iE9Z9Mt9bznDdBE3Do83esocapAz2Bidtf81ThbZGe3Qs7ZklUcTfN5FiwSdd7Bh9jBESJmK7obvRvVa3xff+/yQbdnR/+RPvJ+XZ8/KAaFhgplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9MZW5ndGggMzQ0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE2SyW0DMQxF71MFGxhA3LTU4yDIwe7/mkfaAXLiH0pD/kWZR4b4kjuWpA9Jc/nSS4F2hryu8NPo+UHxQR5bwqb4po4hoVMel6+QiOCUTm7uz66Py1a+O1k1xFgaUf+YHgnnZBgTt2hN1OBEl/dsncoeE03qtDoJUNBxdvH/m2/WyYf58/q57OwW9IKXNqr5OVRisjMX93OA1Fu8x+lqs3g1smSS2vmPUPrsPZowwDgdDmsVlpQcKJXO+gdyWQVncKW+kYRrgVYvuuGQgRcKMSeOyR7VPkf2hKrLji6rKRWoADDzhnRZfRtGqsnd83wdsnSkeGfq413hNd/IrNKGPHbdVtEolt7wLDMRpFoMH9fmRQzBKEbmpB/NF8WnXozuLvZZK7Z2KXFdddvTac/d7wMloQRbVkcH69YR6OSZcEHRnaNsMkMuBpd9FdhfhA/i/P4Fbrh/lQplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9MZW5ndGggMjE3IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE2RS47DMAxD9z6FLjCAfpas82RQzKJz/20pu0W64ouoOCZjzsQkk35skk2mXEW/MgzzFKb/YaYgJVOHOpkENOgaxguUpFXQBeWt19C5zgSHJhepFEVZO2wUmSQVFB5HWeE0TXzxOUzzi9wnqN2b+rIgkS96u/OGc0Z7N4V89gNrgqdIJVHcqrxvYbLTiRulOZpBNu9Mksgf2C30gXdUsJHVmbCXa9JOjfp0+VY4dSYmXexCh627O2tCm93z4lN9znaa0OrzENoz9JSc9Pkn1/gbjxd8AVMmCmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0xlbmd0aCAxNTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRU5LCgMxCN3nFF6goI7R5DxTyiwy99/WZ4YWAj7yvmpGTM70OjrJMAoLeksT79SF6S4EcrUYfwBu/VSrXS0zPP03QLBSUiFBkU8nnW3MzBYS3h2iWvdscsz9020r3B+LZBEyaldG4qIjGaDUQeFdy+PGYDLFdRBSXY/qwU2GrdCYJchh25FDEYH9SOGn4mqfL/FeNbQKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvTGVuZ3RoIDU0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDMyMVEwUDA3VdA1NlUwNDNUMDc3V0gx5IIxc8EskGQOF1QVmAGSy4GryuHK4EoDABepDogKZW5kc3RyZWFtCmVuZG9iago0MiAwIG9iago8PCAvTGVuZ3RoIDMzMiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9kUtuxEAIRPd9Ci5gCSjoz3kcRVk499+mwJosRtQYGopH7i0qK+XyrZLTJR3yZcOmSZrKL1VIIOQZtlOCJa5HYkMcU+IcuYfXQ0vxE90AeBvdI3S3ivnWprJbGjMZLqHoocDq6OmV6Rl8l0tsMgYjOsO6M7vhTPbipBpfZowzWH8tCWfwKsehoklwmStC4NqRhne08gQrlrhvvsnKqMtlLrYJgOO55uLn4kHxtGhYz/hga1Wwnn9sz/gZlkd8NkIqW6fypXotTqAzWypmuwasLab8x4vQXNlgjn6M+06yJi0GosNu4kegBK5lCzTcNjFbhFpVhx/ZtVSRsbrC8jZS8WVdChwRuYmJEXypnSHdQH1lPzoAkVbk7DNb+Srm2hCjD+GgIsoyHbxIbYFTDmotLLrgD/kujr5poQCv3bi4+QfbTYTffzc+fRwKZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago8PCAvTGVuZ3RoIDIwMSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9UDFuAzEM2/0KfqCAJUq27z1XBB3S/6+hlLQTCVOySPIQEzvxxQT3RjrxbYMrETT8DmaxBcZCxARZ6LgHvViAFkJNTGu8h+vXYr5qwuBx6Q+WQkd4wm0jjPCp/etIscvA47AjXAHb1M3aMXmhG2zpJ802bm/F2vhzfBI0SZsitvyfrc4idiZiTV0VyqO7XFxX+UpqWr50vSqgNgsrZbxflDvdu4f0WUqK2ZHb3btdn7UiVp0930w9UWkq91+v9/gZjxfcy0c3CmVuZHN0cmVhbQplbmRvYmoKNDQgMCBvYmoKPDwgL0xlbmd0aCA0MDcgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicLZNLjhwxDEP3dQpdoADr4995OhjMonP/bR7tLBpS2RZFUuqa3ZpVs7e2FbFH2h9/erPV7O+zykYz92HVzWtadvs8PqdFt2j6WaQrfJ4Y+3zvZcFLX1bJceayvixr2fIT3F3nykIXdOBlxjDvQzce5gLbbk5NjDLfwoqWFr7t+3gnq8stRtoOi7V4MkCkHqCsOmEFxyQVZTNQQl+oF+LQInYOzupHfNQ4kV7zZtmAoWcmqJc5nnSYJA0LjiV/ptBO1hx+yvLc8W7LYyzZR93cpyJRUGAmZlWJY1JZHSGHJR7XjXDxm/mituOKXpS4eEdJtjOckm8a0jHiZIOTXlhBnA0NGpS0poMvDfAKjIm91QemwbsvM5DvqiB2zW0fPlJPhXgv3Ari5tvbUQ8Ppl8hP4uI00NcKjXbOCvmWTe60JQtTONw1BlRXSOhBG9YSY/be6xj0C/gifQXKYmNb67/xF92VKugXY68EbFAKPPRiSySblJo3qiBIpv20g4ip3OzmRpg07qylwi5f4fP8/v8/AOchZcICmVuZHN0cmVhbQplbmRvYmoKNDUgMCBvYmoKPDwgL0xlbmd0aCAyMDMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicTVA7rsMwDNt9Cl4ggPWxZZ8nxcMb2vuvpZQi7RLSokOLtBHoMBweMJ+YPvCQZjbAyauZK4aWNHqBC86W5JCNJ28qDt0w4cQmdAfNOu9oLDKHzk6kQqvEs8m+JjKs/hETupXSNxx7gQ787nwrT9yKT904pBMp3GSWIst/2CWazh/mt/pl0v3D1kZCBIFdRG60AuwoV3aqm71YRWDkgPYJFqBc3iqzDijHKTEx82nG0ql1jktlLKsWe5ZOA55pd3V+tv/29wZecEwICmVuZHN0cmVhbQplbmRvYmoKMTUgMCBvYmoKPDwgL1R5cGUgL0ZvbnQgL0Jhc2VGb250IC9GTFJCUE8rTmFudW1CYXJ1bkdvdGhpYyAvRmlyc3RDaGFyIDAKL0xhc3RDaGFyIDI1NSAvRm9udERlc2NyaXB0b3IgMTQgMCBSIC9TdWJ0eXBlIC9UeXBlMwovTmFtZSAvRkxSQlBPK05hbnVtQmFydW5Hb3RoaWMgL0ZvbnRCQm94IFsgLTQ1IC0yODcgMTAwMCA4MzggXQovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvQ2hhclByb2NzIDE2IDAgUgovRW5jb2RpbmcgPDwgL1R5cGUgL0VuY29kaW5nCi9EaWZmZXJlbmNlcyBbIDMyIC9jaWQxIDY3IC9jaWQzNiA4MyAvY2lkNTIgODYgL2NpZDU1IDk3IC9jaWQ2NiA5OSAvY2lkNjggL2NpZDY5IC9jaWQ3MAovY2lkNzEgMTA1IC9jaWQ3NCAxMDggL2NpZDc3IDExMiAvY2lkODEgMTE0IC9jaWQ4MyAvY2lkODQgL2NpZDg1IF0KPj4KL1dpZHRocyAxMyAwIFIgPj4KZW5kb2JqCjE0IDAgb2JqCjw8IC9UeXBlIC9Gb250RGVzY3JpcHRvciAvRm9udE5hbWUgL0ZMUkJQTytOYW51bUJhcnVuR290aGljIC9GbGFncyAzMgovRm9udEJCb3ggWyAtNDUgLTI4NyAxMDAwIDgzOCBdIC9Bc2NlbnQgODUwIC9EZXNjZW50IC0yOTkgL0NhcEhlaWdodCAwCi9YSGVpZ2h0IDAgL0l0YWxpY0FuZ2xlIDAgL1N0ZW1WIDAgL01heFdpZHRoIDEwNTIgPj4KZW5kb2JqCjEzIDAgb2JqClsgODkyIDIyNCA4OTIgMjI0IDIyNCAyMjQgMjI0IDIyNCAyMjQgODkyIDg5MiAyMjQgMjI0IDg5MiAyMjQgMjI0IDIyNCAyMjQKMjI0IDIyNCAyMjQgMjI0IDIyNCAyMjQgMjI0IDIyNCAyMjQgMjI0IDIyNCAyMjQgMjI0IDIyNCAyMjQgNDQ2IDI5NyA1ODMgNTgzCjg5MiA4OTIgMjk3IDQ0NiA0NDYgNDQ2IDU4MyAyOTcgNTgzIDI5NyA0NDYgNTgzIDU4MyA1ODMgNTgzIDU4MyA1ODMgNTgzIDU4Mwo1ODMgNTgzIDI5NyAyOTcgNDQ2IDU4MyA0NDYgNjY5IDEwNTIgNjQ0IDYyNyA2MzkgNzIxIDU5NiA1NTQgNzEwIDcxOCAyNDcKNDEwIDYyNiA1MjkgODg0IDcxMCA3NTIgNTg2IDc1MiA2MTAgNTkyIDYyMSA2OTYgNjM1IDk2MSA2MTcgNjExIDU5NCA0NDYgOTYxCjQ0NiA0MzQgNDQ2IDI5NyA1NjAgNTg4IDQ5MCA1ODggNTU5IDM0MCA1ODggNTkyIDI0NCAzMDEgNTMwIDI0NCA4OTIgNTkyIDU3Nwo1ODggNTg4IDM4MyA0NzUgMzU3IDU5MiA1MzAgNzg4IDUyOCA1MzAgNDczIDQ0NiA0NDYgNDQ2IDY2OSAyMjQgODkyIDIyNCAyMjQKMjI0IDIyNCA4OTIgODkyIDg5MiAyMjQgODkyIDIyNCA4OTIgODkyIDIyNCAyMjQgMjI0IDIyNCAzMDMgMzAzIDQ0NiA0NDYgODkyCjg5MiA4OTIgODkyIDg5MiAyMjQgODkyIDg5MiAyMjQgMjI0IDIyNCAyOTcgODkyIDg5MiA4OTIgODkyIDg5MiAyMjQgNDQ2IDg5Mgo4OTIgODkyIDg5MiA4OTIgODkyIDg5MiAyMjQgNDQ2IDg5MiA0NDYgNDQ2IDg5MiAyMjQgODkyIDQ0NiA0NDYgNDQ2IDg5MiA4OTIKODkyIDg5MiA4OTIgODkyIDIyNCAyMjQgMjI0IDIyNCAyMjQgMjI0IDg5MiAyMjQgMjI0IDIyNCAyMjQgMjI0IDIyNCAyMjQgMjI0CjIyNCA4OTIgMjI0IDIyNCAyMjQgMjI0IDIyNCAyMjQgODkyIDg5MiAyMjQgMjI0IDIyNCAyMjQgMjI0IDg5MiA4OTIgMjI0IDIyNAoyMjQgMjI0IDIyNCAyMjQgODkyIDIyNCAyMjQgMjI0IDIyNCAyMjQgMjI0IDIyNCAyMjQgMjI0IDg5MiAyMjQgMjI0IDIyNCAyMjQKMjI0IDIyNCA4OTIgODkyIDIyNCAyMjQgMjI0IDIyNCAyMjQgODkyIDIyNCBdCmVuZG9iagoxNiAwIG9iago8PCAvY2lkMSAxNyAwIFIgL2NpZDM2IDMyIDAgUiAvY2lkNTIgMzMgMCBSIC9jaWQ1NSAzNCAwIFIgL2NpZDY2IDM1IDAgUgovY2lkNjggMzYgMCBSIC9jaWQ2OSAzNyAwIFIgL2NpZDcwIDM4IDAgUiAvY2lkNzEgMzkgMCBSIC9jaWQ3NCA0MCAwIFIKL2NpZDc3IDQxIDAgUiAvY2lkODEgNDIgMCBSIC9jaWQ4MyA0MyAwIFIgL2NpZDg0IDQ0IDAgUiAvY2lkODUgNDUgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAxNSAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgPj4KZW5kb2JqCjQ2IDAgb2JqCjw8IC9UeXBlIC9QYXR0ZXJuIC9QYXR0ZXJuVHlwZSAxIC9QYWludFR5cGUgMSAvVGlsaW5nVHlwZSAxCi9CQm94IFsgMCAwIDcyIDcyIF0gL1hTdGVwIDcyIC9ZU3RlcCA3MgovUmVzb3VyY2VzIDw8IC9Qcm9jc2V0cyBbIC9QREYgL1RleHQgL0ltYWdlQiAvSW1hZ2VDIC9JbWFnZUkgXSA+PgovTWF0cml4IFsgMSAwIDAgMSAwIDQ4OC43NTU3MTE5NTY1IF0gL0xlbmd0aCAxNTIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicJY8xDsMwDAN3vYIfEOA4iuKsXbrnD22XeMnS75dUIcKAKetENzTW+bQFqvtT971L9wtv+l8zXxPUNB5LG7joNFDTotPpcnqAojNwpIxlgJq2BY5WBt92GtkwQkZC0EzsYmrztP/uyxKuJjspGge9hjmZohHthSd7E43LvQJwe4jHfF4ZFTDEZHyvf+gTq7D2sB8lszEcCmVuZHN0cmVhbQplbmRvYmoKNDcgMCBvYmoKPDwgL1R5cGUgL1BhdHRlcm4gL1BhdHRlcm5UeXBlIDEgL1BhaW50VHlwZSAxIC9UaWxpbmdUeXBlIDEKL0JCb3ggWyAwIDAgNzIgNzIgXSAvWFN0ZXAgNzIgL1lTdGVwIDcyCi9SZXNvdXJjZXMgPDwgL1Byb2NzZXRzIFsgL1BERiAvVGV4dCAvSW1hZ2VCIC9JbWFnZUMgL0ltYWdlSSBdID4+Ci9NYXRyaXggWyAxIDAgMCAxIDAgNDg4Ljc1NTcxMTk1NjUgXSAvTGVuZ3RoIDE2MiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJx1jzEOwzAMA3e9gh9wITuK4qxdsvcPbZd4ydLvl3TnwoQBU9aJcjjP4zC/rV739K3Hgv+P6z0btiZdT7ys4mNWlgQ1jFf1jpOOgxoWjU6T0wIUnY49ZdQOatga2H0a/NtopKOHjISgmdjE1ORhv9mnJYqKrKRobCyzmZ0pGtFl4sleRePwMgNweojHfGVmVMAQk/HL3ENLLMLa3b5HkDfECmVuZHN0cmVhbQplbmRvYmoKNSAwIG9iago8PCAvSDEgNDYgMCBSIC9IMiA0NyAwIFIgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0YxLU5hbnVtQmFydW5Hb3RoaWMtY2lkMTEyOCAxOCAwIFIgL0YxLU5hbnVtQmFydW5Hb3RoaWMtY2lkMTE5OCAxOSAwIFIKL0YxLU5hbnVtQmFydW5Hb3RoaWMtY2lkMTYyNCAyMCAwIFIgL0YxLU5hbnVtQmFydW5Hb3RoaWMtY2lkMTc3OCAyMSAwIFIKL0YxLU5hbnVtQmFydW5Hb3RoaWMtY2lkMjI0MSAyMiAwIFIgL0YxLU5hbnVtQmFydW5Hb3RoaWMtY2lkMjMzMyAyMyAwIFIKL0YxLU5hbnVtQmFydW5Hb3RoaWMtY2lkMjUyMCAyNCAwIFIgL0YxLU5hbnVtQmFydW5Hb3RoaWMtY2lkMjc2OCAyNSAwIFIKL0YxLU5hbnVtQmFydW5Hb3RoaWMtY2lkMjg2NCAyNiAwIFIgL0YxLU5hbnVtQmFydW5Hb3RoaWMtY2lkMjk1OSAyNyAwIFIKL0YxLU5hbnVtQmFydW5Hb3RoaWMtY2lkMzExNCAyOCAwIFIgL0YxLU5hbnVtQmFydW5Hb3RoaWMtY2lkMzE2NyAyOSAwIFIKL0YxLU5hbnVtQmFydW5Hb3RoaWMtY2lkMzI0MyAzMCAwIFIgL0YxLU5hbnVtQmFydW5Hb3RoaWMtY2lkMzM3OSAzMSAwIFIgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL1R5cGUgL1BhZ2VzIC9LaWRzIFsgMTEgMCBSIF0gL0NvdW50IDEgPj4KZW5kb2JqCjQ4IDAgb2JqCjw8IC9DcmVhdG9yIChNYXRwbG90bGliIHYzLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My4xMC4wKQovQ3JlYXRpb25EYXRlIChEOjIwMjUwMzE0MTQzNDU2WikgPj4KZW5kb2JqCnhyZWYKMCA0OQowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAxNTg4OSAwMDAwMCBuIAowMDAwMDE0Mzg3IDAwMDAwIG4gCjAwMDAwMTQ0MTkgMDAwMDAgbiAKMDAwMDAxNTMwMCAwMDAwMCBuIAowMDAwMDE1MzQzIDAwMDAwIG4gCjAwMDAwMTUzNjQgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzQzIDAwMDAwIG4gCjAwMDAwMDE4NjYgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAxODQ1IDAwMDAwIG4gCjAwMDAwMTMxMTEgMDAwMDAgbiAKMDAwMDAxMjkwMSAwMDAwMCBuIAowMDAwMDEyNDQ3IDAwMDAwIG4gCjAwMDAwMTQxNTYgMDAwMDAgbiAKMDAwMDAwMTg4NiAwMDAwMCBuIAowMDAwMDAxOTc2IDAwMDAwIG4gCjAwMDAwMDIzNDMgMDAwMDAgbiAKMDAwMDAwMjY0MiAwMDAwMCBuIAowMDAwMDAyODQ4IDAwMDAwIG4gCjAwMDAwMDMxNzAgMDAwMDAgbiAKMDAwMDAwMzUyNiAwMDAwMCBuIAowMDAwMDAzODY1IDAwMDAwIG4gCjAwMDAwMDQzOTMgMDAwMDAgbiAKMDAwMDAwNTE1MyAwMDAwMCBuIAowMDAwMDA1NTc2IDAwMDAwIG4gCjAwMDAwMDYwMjkgMDAwMDAgbiAKMDAwMDAwNjM1NiAwMDAwMCBuIAowMDAwMDA2NTc2IDAwMDAwIG4gCjAwMDAwMDY4NTkgMDAwMDAgbiAKMDAwMDAwNzQ3NSAwMDAwMCBuIAowMDAwMDA3ODcwIDAwMDAwIG4gCjAwMDAwMDg0NDcgMDAwMDAgbiAKMDAwMDAwODYwMiAwMDAwMCBuIAowMDAwMDA5MTA0IDAwMDAwIG4gCjAwMDAwMDk1MjggMDAwMDAgbiAKMDAwMDAwOTk1NSAwMDAwMCBuIAowMDAwMDEwMzcyIDAwMDAwIG4gCjAwMDAwMTA2NjIgMDAwMDAgbiAKMDAwMDAxMDg4NiAwMDAwMCBuIAowMDAwMDExMDEyIDAwMDAwIG4gCjAwMDAwMTE0MTcgMDAwMDAgbiAKMDAwMDAxMTY5MSAwMDAwMCBuIAowMDAwMDEyMTcxIDAwMDAwIG4gCjAwMDAwMTQ0NDAgMDAwMDAgbiAKMDAwMDAxNDg2NSAwMDAwMCBuIAowMDAwMDE1OTQ5IDAwMDAwIG4gCnRyYWlsZXIKPDwgL1NpemUgNDkgL1Jvb3QgMSAwIFIgL0luZm8gNDggMCBSID4+CnN0YXJ0eHJlZgoxNjEwMgolJUVPRgo=\n" }, "metadata": {} } ], "source": [ "mglearn.plots.plot_proper_processing()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "id": "K9uU1C8YQOdW" }, "outputs": [], "source": [ "rnd = np.random.RandomState(seed=0)\n", "X = rnd.normal(size=(100, 10000))\n", "y = rnd.normal(size=(100,))" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "id": "aoYwW0KUQOdW", "outputId": "54ac4b8c-3cc6-493a-e041-a19bd12db9c2", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "X_selected.shape: (100, 500)\n" ] } ], "source": [ "from sklearn.feature_selection import SelectPercentile, f_regression\n", "\n", "select = SelectPercentile(score_func=f_regression, percentile=5).fit(X, y)\n", "X_selected = select.transform(X)\n", "print(\"X_selected.shape:\", X_selected.shape)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "id": "Q3orEhgxQOdX", "outputId": "94d8c019-4f14-442c-f100-4ad6698f1548", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "교차 검증 점수 (릿지): 0.91\n" ] } ], "source": [ "from sklearn.model_selection import cross_val_score\n", "from sklearn.linear_model import Ridge\n", "print(\"교차 검증 점수 (릿지): {:.2f}\".format(\n", " np.mean(cross_val_score(Ridge(), X_selected, y, cv=5))))" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "id": "gTfQ1u2AQOdY", "outputId": "ddc633fa-8301-4cdd-8907-5fda4dc4454b", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "교차 검증 점수 (파이프라인): -0.25\n" ] } ], "source": [ "pipe = Pipeline([(\"select\", SelectPercentile(score_func=f_regression,\n", " percentile=5)),\n", " (\"ridge\", Ridge())])\n", "print(\"교차 검증 점수 (파이프라인): {:.2f}\".format(\n", " np.mean(cross_val_score(pipe, X, y, cv=5))))" ] }, { "cell_type": "markdown", "metadata": { "id": "8MfLDHV8QOdY" }, "source": [ "## 6.4 파이프라인 인터페이스" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "id": "UrLLiO_lQOdY" }, "outputs": [], "source": [ "def fit(self, X, y):\n", " X_transformed = X\n", " for name, estimator in self.steps[:-1]:\n", " # 마지막 단계를 빼고 fit과 transform을 반복합니다\n", " X_transformed = estimator.fit_transform(X_transformed, y)\n", " # 마지막 단계 fit을 호출합니다\n", " self.steps[-1][1].fit(X_transformed, y)\n", " return self" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "id": "0553HfC6QOdZ" }, "outputs": [], "source": [ "def predict(self, X):\n", " X_transformed = X\n", " for step in self.steps[:-1]:\n", " # 마지막 단계를 빼고 transform을 반복합니다\n", " X_transformed = step[1].transform(X_transformed)\n", " # 마지막 단계 predict을 호출합니다\n", " return self.steps[-1][1].predict(X_transformed)" ] }, { "cell_type": "markdown", "metadata": { "id": "vXTZqo9zQOdZ" }, "source": [ "#### 파이프라인 그리기" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "id": "KmNACXC6QOda", "outputId": "99240d9e-493d-45bf-fc1a-d13b0c93f9b1", "colab": { "base_uri": "https://localhost:8080/", "height": 156 } }, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "Pipeline(steps=[('select',\n", " SelectPercentile(percentile=5,\n", " score_func=)),\n", " ('ridge', Ridge())])" ], "text/html": [ "
Pipeline(steps=[('select',\n",
              "                 SelectPercentile(percentile=5,\n",
              "                                  score_func=<function f_regression at 0x7dbc9f417920>)),\n",
              "                ('ridge', Ridge())])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ] }, "metadata": {}, "execution_count": 19 } ], "source": [ "from sklearn import set_config\n", "\n", "set_config(display='diagram')\n", "pipe" ] }, { "cell_type": "markdown", "metadata": { "id": "WwQ-wb73QOda" }, "source": [ "### 6.4.1 `make_pipleline`을 사용한 파이프라인 생성" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "id": "cQCiqsGzQOda" }, "outputs": [], "source": [ "from sklearn.pipeline import make_pipeline\n", "# 표준적인 방법\n", "pipe_long = Pipeline([(\"scaler\", MinMaxScaler()), (\"svm\", SVC(C=100))])\n", "# 간소화된 방법\n", "pipe_short = make_pipeline(MinMaxScaler(), SVC(C=100))" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "id": "IdlII_AsQOda", "outputId": "c287f3db-2e53-4e34-b402-e859989c81dd", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "파이프라인 단계:\n", " [('minmaxscaler', MinMaxScaler()), ('svc', SVC(C=100))]\n" ] } ], "source": [ "print(\"파이프라인 단계:\\n\", pipe_short.steps)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "id": "Cgn7AyvtQOdb", "outputId": "be01f002-9ba7-4973-8292-59aba600b8ad", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "파이프라인 단계:\n", " [('standardscaler-1', StandardScaler()), ('pca', PCA(n_components=2)), ('standardscaler-2', StandardScaler())]\n" ] } ], "source": [ "from sklearn.preprocessing import StandardScaler\n", "from sklearn.decomposition import PCA\n", "\n", "pipe = make_pipeline(StandardScaler(), PCA(n_components=2), StandardScaler())\n", "print(\"파이프라인 단계:\\n\", pipe.steps)" ] }, { "cell_type": "markdown", "metadata": { "id": "7ObAvej7QOdb" }, "source": [ "### 6.4.2 단계 속성에 접근하기" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "id": "f5797E7HQOdb", "outputId": "e2872fe0-8d3e-47dc-f2cc-2020317eb034", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "components.shape: (2, 30)\n" ] } ], "source": [ "# cancer 데이터셋에 앞서 만든 파이프라인을 적용합니다\n", "pipe.fit(cancer.data)\n", "# \"pca\" 단계의 두 개 주성분을 추출합니다\n", "components = pipe.named_steps[\"pca\"].components_\n", "print(\"components.shape:\", components.shape)" ] }, { "cell_type": "markdown", "metadata": { "id": "tOIccvFAQOdc" }, "source": [ "### 6.4.3 그리드 서치 안의 파이프라인의 속성에 접근하기" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "id": "C5fnc4b-QOdc" }, "outputs": [], "source": [ "from sklearn.linear_model import LogisticRegression\n", "\n", "pipe = make_pipeline(StandardScaler(), LogisticRegression(max_iter=1000))" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "id": "CQovBghFQOdc" }, "outputs": [], "source": [ "param_grid = {'logisticregression__C': [0.01, 0.1, 1, 10, 100]}" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "id": "dUl3xlGNQOdc", "outputId": "d769bf06-8dca-45b8-d5dd-a21c9edcf721", "colab": { "base_uri": "https://localhost:8080/", "height": 189 } }, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "GridSearchCV(cv=5,\n", " estimator=Pipeline(steps=[('standardscaler', StandardScaler()),\n", " ('logisticregression',\n", " LogisticRegression(max_iter=1000))]),\n", " param_grid={'logisticregression__C': [0.01, 0.1, 1, 10, 100]})" ], "text/html": [ "
GridSearchCV(cv=5,\n",
              "             estimator=Pipeline(steps=[('standardscaler', StandardScaler()),\n",
              "                                       ('logisticregression',\n",
              "                                        LogisticRegression(max_iter=1000))]),\n",
              "             param_grid={'logisticregression__C': [0.01, 0.1, 1, 10, 100]})
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ] }, "metadata": {}, "execution_count": 26 } ], "source": [ "X_train, X_test, y_train, y_test = train_test_split(\n", " cancer.data, cancer.target, random_state=4)\n", "grid = GridSearchCV(pipe, param_grid, cv=5)\n", "grid.fit(X_train, y_train)" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "id": "pJy40kYiQOdd", "outputId": "31ee22f1-0a50-405f-b1a0-66e08a9158b2", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "최상의 모델:\n", " Pipeline(steps=[('standardscaler', StandardScaler()),\n", " ('logisticregression', LogisticRegression(C=1, max_iter=1000))])\n" ] } ], "source": [ "print(\"최상의 모델:\\n\", grid.best_estimator_)" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "id": "bC-mEwt7QOdd", "outputId": "ddb51b19-7520-4557-c443-0838217f1be1", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "로지스틱 회귀 단계:\n", " LogisticRegression(C=1, max_iter=1000)\n" ] } ], "source": [ "print(\"로지스틱 회귀 단계:\\n\",\n", " grid.best_estimator_.named_steps[\"logisticregression\"])" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "id": "pOh4--10QOdd", "outputId": "2cb9c834-c0f7-4eb9-deb1-f4d9de8f4a0e", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "로지스틱 회귀 계수:\n", " [[-0.448 -0.346 -0.417 -0.529 -0.158 0.603 -0.718 -0.784 0.048 0.275\n", " -1.295 0.053 -0.691 -0.919 -0.148 0.461 -0.126 -0.103 0.428 0.715\n", " -1.085 -1.093 -0.851 -1.041 -0.728 0.077 -0.836 -0.649 -0.649 -0.43 ]]\n" ] } ], "source": [ "print(\"로지스틱 회귀 계수:\\n\",\n", " grid.best_estimator_.named_steps[\"logisticregression\"].coef_)" ] }, { "cell_type": "markdown", "metadata": { "id": "z7FhwysPQOde" }, "source": [ "## 6.5 전처리와 모델의 매개변수를 위한 그리드 서치" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "id": "WxbwLvAJQOde" }, "outputs": [], "source": [ "# 보스턴 주택 데이터셋이 1.2 버전에서 삭제되므로 직접 다운로드합니다.\n", "data_url = \"http://lib.stat.cmu.edu/datasets/boston\"\n", "raw_df = pd.read_csv(data_url, sep=\"\\s+\", skiprows=22, header=None)\n", "data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])\n", "target = raw_df.values[1::2, 2]\n", "X_train, X_test, y_train, y_test = train_test_split(data, target,\n", " random_state=0)\n", "\n", "from sklearn.preprocessing import PolynomialFeatures\n", "pipe = make_pipeline(\n", " StandardScaler(),\n", " PolynomialFeatures(),\n", " Ridge())" ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "scrolled": true, "id": "BOpzVetwQOde" }, "outputs": [], "source": [ "param_grid = {'polynomialfeatures__degree': [1, 2, 3],\n", " 'ridge__alpha': [0.001, 0.01, 0.1, 1, 10, 100]}" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "scrolled": true, "id": "TYiiuqZ2QOdf", "outputId": "80691c40-1940-4722-b558-158056339739", "colab": { "base_uri": "https://localhost:8080/", "height": 229 } }, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "GridSearchCV(cv=5,\n", " estimator=Pipeline(steps=[('standardscaler', StandardScaler()),\n", " ('polynomialfeatures',\n", " PolynomialFeatures()),\n", " ('ridge', Ridge())]),\n", " n_jobs=-1,\n", " param_grid={'polynomialfeatures__degree': [1, 2, 3],\n", " 'ridge__alpha': [0.001, 0.01, 0.1, 1, 10, 100]})" ], "text/html": [ "
GridSearchCV(cv=5,\n",
              "             estimator=Pipeline(steps=[('standardscaler', StandardScaler()),\n",
              "                                       ('polynomialfeatures',\n",
              "                                        PolynomialFeatures()),\n",
              "                                       ('ridge', Ridge())]),\n",
              "             n_jobs=-1,\n",
              "             param_grid={'polynomialfeatures__degree': [1, 2, 3],\n",
              "                         'ridge__alpha': [0.001, 0.01, 0.1, 1, 10, 100]})
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
" ] }, "metadata": {}, "execution_count": 32 } ], "source": [ "grid = GridSearchCV(pipe, param_grid=param_grid, cv=5, n_jobs=-1)\n", "grid.fit(X_train, y_train)" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "id": "BIcI8y3nQOdf", "outputId": "f81ec07f-0429-4d39-ab9c-2c457c8928a3", "colab": { "base_uri": "https://localhost:8080/", "height": 328 } }, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAE3CAYAAACEkGprAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAARgVJREFUeJzt3Xd8E+UfB/BPku6V7ha6mG2BsrHIRvZUhiKCgKKgLAEREK0gSxRB/CkbBBQUAdkIInvJkiVLKG0phS4605U2Te73RzUY0nk92rT9vF+vvF707snle18uyTfPPc+dTBAEAUREREQmSF7eARAREREVhIUKERERmSwWKkRERGSyWKgQERGRyWKhQkRERCaLhQoRERGZLBYqREREZLJYqBAREZHJMivvAEpDp9MhOjoa9vb2kMlk5R0OERERFYMgCEhLS0P16tUhlxfeZ1KhC5Xo6Gj4+PiUdxhEREQkQlRUFLy9vQttU6ELFXt7ewBAW/SCGczLORoiItNV75SivEOoFMxl2vIOoVLIztBgVff9+u/xwlToQuXf0z1mMIeZjIUKEVFBLO1YqEjBXMahnVIqzrANZpyIiIhMFgsVIiIiMlksVIiIiMhksVAhIiIik8VChYiIiEwWCxUiIiIyWSxUiIiIyGSxUCEiIiKTxUKFiIiITBYLFSIiIjJZLFSIiIjIZLFQISIiIpPFQoWIiIhMFgsVIiIiMlksVIiIiMhksVAhIiIik8VChYiIiEwWCxUiIiIyWSxUiIiIyGSxUCEiIiKTxUKFiIiITBYLFSIiIjJZLFSIiIjIZLFQISIiIpPFQoWIiIhMFgsVIiIiMlksVIiIiMhksVAhIiIik8VChYiIiEwWCxUiIiIyWSxUiIiIyGSZlXcApmzqunFo0z8Y2Vk5+mUp8al4p8kHAACvutUwcv4QBAbXgcJcgcdRidi2aDdO/nJO397CygITlr2FHm92wrSuc3DlyPUiX/fFsd0xZskb2LJwNzZ88rPBulqN/DBh6dvw8q8GdUY2dny9D7u+PSDRHj9bdo62mLHpPQT3aoYRdScgOizWYL2VrRXenDcYbfu3hLmVOdIS0zD75cV4cPshAKDDoNYY/ukg2DvZIikmBSunfI+rx24U+HodBrXGax/2h3N1J6jT1di2eA/2rvhdv74i5/JpheW2brNaGBoyEIEt6wIAEh4m4ufPd+L0zgv5bsvS2gIDJ/dB9zdfgLWdFdSZOTi88QR++HSrvk1lyl1hZDIZRsx5Fd1GdISZhRlCL4Xjm7FrEBf5uMDnFHacOrorMWLOq3iuexOYW5ojU5WJQz+cwE+f7SirXSpTudlanFh0BWHHHwE6Ad4t3PHCjOawdrTMt31OpgZ/LLuOsKOPkJuthZWjBfp82QYutZW4uScCRz+7BEs7c4PnDFrXCY6+9mWxO+UmN1uLo4uu4d6xaAg6Ab7PuaHLjKaF5DEXp5fewN2jj6DN1sHK0QIvLWoF19oOuLH7Pg59dhkWT+VxyPoX4ORrVxa7U2IsVIqwfNJ6/P798XzXzf/1I1w/dQtv1Z8EdWY22g5oiY9+moSER0m4dfYuLK0tsOb6VzizK/8vhPzM3DYFFlYWiPo72midrdIGnx8MwU+f7cCubw/A2786vjoxG6mPVTj28xmxu1gm3H1dseTU3AJzIVfI8dn+jxBx4wHeDpqMrHQ1vOpWQ1ZaFgCgQZtATFk7BtO7zsHt86Fo2z8Yc/ZMx+hGUxAbEW+0ved6NMGUtWMQ0ncB/jpxCx5+bpizezqSY1NweueFCp3LpxWV2+f7NseRH09h3qtLkKvJRXCvZpizaxrebToV929GGbXvNLQdlG4OeL/DLCRGJ8HDzw3fnP0McZGPcXD9sUqVu6K8Ov0ltO3fEuOe+xCpj1UYtfB1zNs3A+80+QA6rc6ofVHHaaP29RATFot3m05FekoGqtf2xOLjs5GWnG5QRFcWx7+8jOSINIzY2QsKCzl+/+Q8Dnx0DgOWdzBqq8vVYdf4k3Cto8SwX3rAwtYcyZFpsLB58jXl380H3ee0LMtdMAlHFl5F0v00vLWrOxQWchz45CL2zbiAV1a0M2qry9Xhl3Gn4FZHiZHbu8HC1hxJT+UxoJsPes19rix3oVRKdeonMzMTly5dKlUAW7duRZs2beDh4QEvLy/06tUL165dK9U2y4KjuxJedTyx83/7oc7MBgCc3nEej0JjUO95fwCAJjsX73eYiVUf/FDs7a6c8j1C+i6AKjHNaF2nIW2RkZqp/+X68G40di09gP4Te0uwR8+WKjEd7zadiu1f7ct3fbcRHZGpysK349YiK10NAHgUGoOk2BQAQP8JPXF082ncPh8KADi98wJun72LPu90zXd7nYe2x/EtZ/DXiVsAgLjIx9g4eyteHNcTQMXO5dOKyu3G2dtwavs55GpyAQAX9l9GZloWfOt759v+4PpjWDF5AxKjkwDk5e76yVsIeK4OgMqVu6L0f683fpy/HclxKdDpdFgf8jPcfV3RvGuj/NsXcZye/OUctn65B+kpGQCA6LBY/H3hHmoE+ZbNDpWh7LQc3Np9H20mNIKlnTnMLBRo934TPDgbi6RwlVH7W3vvw8LWHJ0+agEL27xf+05+9rB1sy7r0E1KdpoGN3bfR/sJQfo8dny/Ee6fjUNiPnm8sTcSlrbm6PpxM30enf3sYVeB8yi6ULlw4QJ8fHzQqVMn/bIlS5bgq6++KtF2fv31VyxatAixsbGIjIxE06ZN0aNHD+h0xr9WTElKfCouH/4Lg6a+BHsnO8jlcnQe2g7Ono44ty+veNPpdEh4lFSi7cY/SChwXb2W/rh55o7Bsptn7qBus5pQmClKvhNlSJ2hRlpSeoHrXxjcBn/suYhZ26fi50erseb6V2jTL1i/vt7z/rh55m+D59z84w7qtfTPd3uW1hbQ5OQaLDO3NIffP1/OFTmXTysqt/9lZWuFl9/vg5ysnAJPQz7dU6AwU6Bu81q4f+MBgMqVu8J41nSHs6ejwXGXo87BvcsR+h8jTyvJcSpXyBHcsymC2gbixJY/pA3eBMTfTgYgwDPIWb/M3sMG9p42iLlu/Dl357cHqN3RC3vfP43VXXfjh4EHcO/owzKM2DTF3k4GAFR7Ko8O1WwQ/Zfx98vt36JQp2N17Jz8B5Z32Yd1A37H3aOPyizeZ0F0oTJjxgysXbsWtra2+mUDBw7EunXrSrSd77//Hq1atYJMJoOZmRkGDRqE2NhYJCQU/IVdlkYtHIatMWvww72lCPl5Mmo3rqFfN/OlL2CrtMGOxPXYm74RoxYOw4ye8/EoNOaZxOLkoURyfKrBsuS4VJiZm8HBpWKfo/X2r44Xx3bHL4v3YIjvu/h+5s8I2TIZ9f4ZV+HooURy3NP7ngJHD2W+2zu370+8MLgN6j3vD5lMhhoNfNB/Ym/YO+edg63MuSzIG3MHY2/aRvSf2Buz+n9Z7OJmzJI3kJ2ZgwPfHQVQdXLn5OEIAPked04FHHfFPU5bdG+CfRk/4pNtU7D2w0346+Qt6QI3ERmJalgpLSE3M/yasXGxQmZitlH7lAdpuLYlFM2HB+DtA33RemxD7J/+B2L+evJdcO/IQ6ztvgdruu7GL6OPVYlCJjNRDSulhXEenS2RmaQ2ap8cmYYrW8Pw3HB/vPtbL7Qd1wB7p51D9F+J+jZ3jzzCim6/YnnXfdgy6oTJFzKix6iEhoaif//+GDt2rH6Zr68vEhMTC3lW4WJiYvDFF1+gW7ducHd3F72dklh6fgHcfFyNlr9afRRWfvA9Fo9aAZ1WB2dPR7zywYtYfHw2xraYjuiwWHy6YyoyVVl4xfNtpCdnoNOQtpi3bwamdZ6d77n/0pLJ5RAEwWCZ8E/Pk1wuk/z1SqqwXBbFydMRu5YewM0/8n6pn955Aef2XUaPtzrh9vnQvP0z2nehwP0+uOE4bBxsMHHFKDi6K3HvcgR+XX0IoxcOA2D6uXxaaXL7rw2f/IzNn+1A1xEd8cXvn2BS25Aij9M+73RF+1daYVKbEGiyNQAqXu6KUlBu57y8KO8fT+2rTidAJs//N15xj9M/D15FX7vX0bBdPXy0eRIEnVDgWLgKSxCAfA4HmRxGxw8AZCSo0XhwXVRv4gYAqNPZGzXbVcfNXRGo1sgVdTt7w7+rD8ytzZCTqUHo71E48NE5dJsdjIDule/U2b8EXd6g7qfJ5DIIuvzz2GxwHXg3zTum/Tt7oVa7ari+8z6qN3KBfxcvBHTz/iePubjzexR+nXEeujnPIbC7zzPfHzFEFypardZoWUZGhuhA2rVrh9OnT6N169bYvXt3vm2ys7ORnf2kElepjM/PldT4ljMKXPffX5xJsSlY9cEPaNMvGG36B+POhXto/EIQ+juN0M8K+v3742jaqSEGTX0JC99YWurYnqZKTNP3CPzL3tkOOp0OqmL+On6WCstlUTJVmQi9FG6wLCY8FjUa5H0AqRLT89331ATjsTz/2vnNfuz8Zr/+75fG9UDYtch/tmfauXxaaXL7X9lZOdi38nd0HNQaXUd0xJppGwts2/HV1nhz/hDM6D7XYBZRRctdUQrKrU9AdQB5+/bvWCkAcHC2Q2xEXL7PKclxqs3V4uqxG9i74iBeHNu90hUqVkpLZKdpIAiCwRetOjUn39kqFnZm8KjnZLBM6W2HxLC8Hqp/x1sAgIWNORr0q4VHVxNwe9/9Sl2oWDtaIDstp9h5tLQzh0d9wzw6+tgi4V7e96VhHs3QsF9NPLySiJt7I022UBF96qdly5Y4c+aMPnFarRbTpk1DcHBwEc/M36lTpxAXF4d69eqhffv2UKuNu7QWLFgApVKpf/j4lH1SzSzMkJaUDjsnW2hztUbjINRZ2bBztC3g2aVz91IY/JvVMlgWEFwHkbce6n/tVlShl8LhVdfTYJlPgBfio/K6fe/+GYa6zZ/a9+fq4N6ViGJtXyaTofc7XXFyW95YgMqcy6fJFcZv81yNNt9ZK/9q1bcFJq4YjVn9vsDdpwrIqpK7R/dikZ6SYXDcyRVy1G5aE6GX8z/uijpO8/u/0Bbxf1FRuQU6QafR6QsNAFCnZiP1YQbcA52M2rvXc0byA8OCLvm+CvaeNgW+hjZbCyulhXRBmyD3QEdoNTokhD35YZ6VmoOUh+nwqOdo1N6jnhOSHxj+YEiKSINDBc6j6EJlyZIleO+995CSkoJ+/fqhdu3a2LZtGz7//HPRwbi7u2P58uUICwvDkSNHjNbPmDEDqamp+kdUlPSnV/7l6OaAwR/2g6N73rllazsrjPtmJHLUGhzf8gdunP4b2ZnZGP/tW7Cyyatqg3s1Q5fX2+P0zvPFeo0Bk3rj899CYG5RvI6twxtPwqtuNfR5pytkMhl8A70w6IOXsHfFQXE7aUIOfHcEQz4aCL/63pDJZOgwqDWadm6I7V/tBQDsWf4ber7VWT+IsU2/YLTo3gS/rj4EIO/X/5KTc6F0dQCQN76gWi0PAHnTut9f+y6yM3Pw27pjACp3Lp/21fHZaN61EeT/nK54YXAbNGwXiOP/TCV++jhs3rURpv8wAfNe/Qo3Tv9ttL2qkjudVodfVx/Cm/Neg7OnIxRmCrw57zWoM9Q4/+tlAMDoL4fhox8n6p9T1HE6efU76Pl2Z/1nRq1GfnhxXA8c2niijPfu2bN1sUKdLt44uegqstNykKvOxfGFV+Be3wkeDZyx/8OzOPnVVX37oP61cPG720gMS4WgE3Dn4AM8uBCPZq8HAADOr7mJpHAVBEGALleHW3siEHb8EZoNCyinPSwbti5W8O/ijWNfXkN2mgYatRZHvrgKz/pO8GzgjL0fnsexr57MlG3UvybOrb2NhHt5efz7YBQeXIhHi2F54/3OrrmNxP/k8cae+7h3PBothuU/QNwUiD714+fnh6NHj2LlypUIDw/HyJEjMXr0aHh6ehb95H9otVooFIazBORyORQKhdFyALC0tISlZf4XuJFahioLNvbW+Pr0PNg4WEMul+Hib1cxtdOnUGeooc5QY1qXOXhz3mvYcPcbWFhbIDk2BSsmbyh2F66bjyt8Ar2gMFMY9czkJyU+FR/3/gxjv34Tby0Yiqx0NXYvO1Aprr9w8pdzcPJ0xLx9M2DnaIvYiHh81HM+ou7kXU/m4m9XsWb6JszY9B4cXOwRH5WAuYMWI+J63kwUJ09H+NbzgqVN3q8Ce2c7zNr+Aeyd7ZCbk4s/dl/E9K5z9FN0K3Mun/bj/O145YOXMO37CQCA2Ih4fPLiFwi7dh+A8XE4+MP+MLcy17f/V9jV+/io1/wqlbv1IT/DwsoCK68ugpm5AvcuR2BGj/nIUeed7q1W0wMeNdz07Ys6Trd9uQdDQ17GsJmvQGGmQFpSOn7+fGelzB0AdPnkORz//BLW9/0Vgk6A93PuePGrtgDyBs9qNU+GEPh39UFmQhZ2TTiJ7DQNlF626L+0PZxr5v34sHOzxoGPziLjcRa0Gh3cApwwYGVHuAcY985UNt1nNsfhz69gdZ8D+gu+9VvSGkDe4FltzpM8BnTzRkaiGtsnnNHn8eVl7eCiz6MV9s24gPR/8uge4IhXVrWHR6BjeexasciE/EY1FdPZs2dx/vx5TJo0CQCQkJAAOzs7WFlZFev5V69excyZMzF//nw0bNgQOTk5mDp1Kvbs2YMbN24YzCjKj0qlglKpREe8BDOZeaFtiYiqsqDLlWfqeHkylxmPz6SSy07X4Ju2u5GamgoHB4dC24o+9bNp0yb069cPs2fP1i/btm0bJk6cWMizDDVs2BBdu3bFG2+8AQ8PD9SsWRORkZE4dOhQkUUKERERVX6ie1SaNGmCrVu3okOHDoiJybtuSGpqKpo2bYrw8PAini0N9qgQERUPe1SkwR4VaZRJj0pCQgL8/Q0H3yiVSmRmZordJBEREZEB0YWKQqEwupbKgwcPij0+hYiIiKgooguVgQMHYuPGjfrrqISGhmLo0KHo06ePZMERERFR1Sa6UJk7dy527NiB+Ph4ODk5ITAwEHK5HHPnzpUyPiIiIqrCRF9HZcuWLdi6dSuuXbuG8PBweHl5oV27dvnek4CIiIhIDNGzflxdXcv9Dsec9UNEVDyc9SMNzvqRRpnM+gkICMC1a9eKbkhEREQkkuhTP8HBwejWrRvGjRsHb29vg3UjR44sdWBEREREoguVXbt2wcbGBuvXrzdYLpPJWKgQERGRJEQXKhER+d/mnIiIiEgqoseoEBERET1rogsVuVwOhUKR78POzg7NmjXDN998I2WsREREVMWILlSWLl2Kxo0b49ChQwgPD8epU6fQoUMHLFu2DCdOnMCYMWPw9ddfY8GCBVLGS0RERFVIqe6evGvXLtSoUUO/LC4uDp06dcLNmzcBANeuXcOAAQMQFhYmSbBP43VUiIiKh9dRkQavoyKNMrmOSkxMjEGRAgAeHh54/Pix/u/GjRsjJSVF7EsQERFRFSe6UPHw8MDBgwcNlh07dgxubm76vzUaDczMRE8sIiIioipOdBUxc+ZMvPjii+jTpw/q1KmDhw8fYseOHVi2bJm+zS+//IIWLVpIEigRERFVPaJ7VF5++WWcOnUKnp6euHHjBszNzbFz506Di7316NEDP/30kySBEhERUdVTqvMyWq0WdevW1feiJCQkQK1Ww8rKCgDg5ORU+giJiIioyhLdo7Jp0yb069cPs2fP1i/btm0bJk6cKElgRERERKILlUWLFuHUqVP63hMAGDJkCA4dOiRJYERERESiC5WEhAT4+/sbLFMqlcjMzCx1UERERERAKQoVhUIBrdbwwjcPHjww6GEhIiIiKg3RhcrAgQOxceNGyGQyAEBoaCiGDh2KPn36SBYcERERVW2iC5W5c+dix44diI+Ph5OTEwIDAyGTyTB37lwp4yMiIqIqTPT0ZFtbW+zZswfnz59HeHg4vLy80K5dO30PCxEREVFplahQefDggdGyatWqoVq1agCAqKgoAICvr68EoREREVFVV6JCpUaNGsXqMXl6kC0RERGRGCUqVEJDQ/X//vXXX7F9+3Z8/vnncHd3x4MHDxASEoJevXpJHiQRERFVTTJBEAQxTwwMDMTp06fh6uqqXxYdHY1u3brhxo0bkgVYGJVKBaVSiY54CWYy8zJ5TSKiiijosqK8Q6gUzGU8YyCF7HQNvmm7G6mpqXBwcCi0rehZP/Hx8QZFCgBUr14dcXFxYjdJREREZEB0oVKnTh2sWLHCYNnPP/8MZ2fnUgdFREREBJRievLKlSvRsWNHrFq1Cv7+/oiOjsb58+exbds2KeMjIiKiKkx0j0qzZs0QFhaGYcOGwc3NDZ06dcKlS5fQr18/CcMjIiKiqkx0jwoAuLm5YcqUKfmu69WrF/bv31+azRMREVEVJ7pHpShXr159VpsmIiKiKqJUPSqm4pPrV2Br/8xqLqIS4fRF6Xgqcss7hErDU2FX3iFUCsm6zPIOoVJIs9Lhm2K25bc7ERERmSwWKkRERGSynlmhIvKCt0RERER6z6xQGTt27LPaNBEREVURz6xQefqqtUREREQlxVM/REREZLKeWaEik8me1aaJiIioiuCsHyIiIjJZPPVDREREJuuZFSrLli17VpsmIiKiKkJ0obJ7926sWbMGABAXF4emTZuidu3auHz5MgBgwIAB0kRIREREVZboQmXevHl4/vnnDf795ptvYvLkyZIFR0RERFWb6JsSRkVFoWHDhsjMzMSuXbsQGhoKKysrXj+FiIiIJCO6ULG0tIRKpcKGDRvQp08fWFlZQaPRQKfTSRkfERERVWGiC5X+/fvD29sbCoUCV69eBQAcOXIEDRs2lCo2IiIiquJEFyqLFy9Gly5dUL9+ffj5+QEA4uPjERISIllwREREVLWJHkyrUCjg4uKCPXv26Jf16tULwcHBkgRGREREJLpQ2bRpE/r164fZs2frl23btg0TJ06UJDAiIiIi0YXKokWLcOrUKVhZWemXDRkyBIcOHZIkMCIiIiLRhUpCQgL8/f0NlimVSmRmZpY6KCIiIiKglGNUtFqtwbIHDx4Y9LAQERERlYboQmXgwIHYuHEjZDIZACA0NBRDhw5Fnz59JAuOiIiIqjbRhcrcuXOxY8cOxMfHw8nJCYGBgZDL5Zg7d66U8REREVEVJvo6Klu2bMHWrVtx7do1hIeHw8vLC+3atdP3sBARERGVlkwQBEHME11dXZGQkCB1PCWiUqmgVCpx5LovbO1Fdw4RScpcpi26ERWLpyK3vEOoNDwVduUdQqWQrOOEESmkpelQMzAGqampcHBwKLSt6G/3gIAAXLt2TezTiYiIiIok+tRPcHAwunXrhnHjxsHb29tg3ciRI0sdGBEREZHoUz81a9bMf4MyGcLDw0sVVHHx1A+ZIp76kQ5P/UiHp36kwVM/0ijJqR/RPSoRERFin0pERERULKILlQcPHhS4ztfXV+xmiYiIiPREFyo1atSATCbDv2eO/jst+ekr1hIRERGJIXpgh06ng1arhU6ng06nw82bN9GlSxds375dyviIiIioCpNsBGpgYCA2bdqEmTNnSrVJIiIiquJEn/rJj5ubG2JiYqTcpEnKVuvw9dxknPw9EzpBQPPnrTB1rguUTgqDdqG3cjBxeKzR8zPSBLz+rgNGTXYCAORqBGxYlor929ORlamDtY0cH3/hguatrctkf8oTcymNbLWAxXOTcfxgFgQBaNHKEtPnOsHxqTzevZWD8cMfGz0/XSVgxBh7DH7TDq90Mc5zZoaAzr2sMXuxyzPbB1OhVgv4dLYKBw+qodMBrVtbYP58JZydDH/X3bylwdChSUbPT1PpMHasHaZMsYdGI+Dbb9Pxy/YsqFQ6+PiY4ZMQe7RubVlWu1Ou1God3p+VgN2/pUOnAzq2scbSz9zh4qwwahsTl4uPFyTgxB9ZUGcLcHNR4J0RSowZ4QgAuBeRg0+/TMLJc1nQagW4OCkwbqQj3hmuLOO9KntqtYCQT1Ox/2AWBB3QprUlFs5XwjmfPMbGaTH/cxXOnM2GOluAq4scbwyzxcgRT2Z97dydiS8WpyE1VQcPdwXmzFKifVvTPSZFFypPT0HOyMjATz/9VCUG0i6ZnYTIMA22HvWCuYUMc6Y8xsz3HuN/Gz0N2tWtb4H9fxrmQ6sV8ErHRwgIenJQfDr5MTQ5wHe7qsHJRYH4mFzk5IiaNV7hMJfSWDQ7GffDcrHjWDVYWMgwa0oiPn4vCcs2uhm0869vgd//9DJYptUK6N8hBoFBFlA6KozWA8Dbr8QjMMjime6DqZg5S4Wwe7k4ecINFhYyTJqcgvHjk/HTj4ZFWoP65rh6xcNgmVYroG27x2jY0BwAsHBhGo4czcaWn53h42OGs2ezMXZcCvbtdYWXl/GXTGUz6ZPHuHNPg9un/WBpIcMbE+MwdGwsfvvZ+BgbNi4WFhYyXDzoC2cnBU6dy0LfYdFwdFDgtf72OHgsEx3bWGPVInfY2shx8aoanQc+hI+XGXp1ti2HvSs7H81MQWhYLs6f9ICFhQzjJiXjnfHJ2PaTq1Hbd8cnwdJShiMH3OHkJMfZ89l4bXgilEo5BvazwbkL2Zj0QQq2/+yKFs0tsG9/Fl5/IxEnj7ijhp+kfReSEX3qp06dOqhbt67+0bhxY+zevRurVq0q0XYuXLiAXr16wd3dHdWqVUOnTp1w9epVsWE9c+kqHfb9ko4x051gay+HhaUM733sjPOn1Ii4l1Pk84/+mgFzCxnadcn7hX/xTBYi7mmwYKUbnFzyPrjcq5nB28/8me6HKWAupZGm0mHPtgyMn6aE3T95nPSxI86dVCMiVFPk8w//mgVzCxnad7HKd/31K9kIv6tBv1cr95cBAKhUOmzdmokPZ9jD3l4OS0sZPglxwIkTOQgtRi737VPDwgLo2jWveN6xIwvjxtrCxyfvC6BVK0v06W2FrVsr/7U4UlVabNiiwvyPXOBgr4ClpRxfznTFoROZuH3X+P197pIa7wxXwvmfXsB2z1ujbUsrnLuUBQAYN9IRbw9VwtYm72vruSZWqFvLAjf/zi67nSoHKpUOm7dm4pMPHfTH5JxPlDh2Iht38zkmL13WYMQwWzj90wPYqqUlng+2wJ+X8nK+5rsMDOhvjRbN83549OmV9+/vN2WU3U6VkOhCJSIiAuHh4fpHUlISbt26hRYtWpRoO9OmTcOYMWMQExODR48eoWXLlnjppZfEhvXM/X0jG4IA1G/85Fe8ezUzeHopcPNy0W+YTatVeO1tB/0sqd/3ZKBrX1vMm5qAvi2j8HKHh9j5Y9ozi9+UMJfSuH09B4IANGjypMfD4588Xr9SdB5/WKXC0FH2Bd5Q9PsVaRg41BbWNpX/oop/XddAEICmTZ4Ut9WrK+DlpcDly0UXKitWpmP0KDt9LtVqAeYWhnnNzgHuhlb+C9ld+ivv/R3c9EkB7F3dHL5eZjh3Ocuo/WsD7LFsXQqiY3MhCAIOHsvAhctqvNzH3qhtdrYOm35RIfKhBi/1qNwXsrv6V94x2azpk/d39eoKeHsp8Odl44JvQH9rrF2XgZhYLQRBwNHjaly+osGLffJ+0P15OQctWxj2jgY/Z5HvtkyF6E+epUuXws/PT/9wdHREWFgYevXqVaLtHD58GH379oVCoYBcLsewYcPw4MEDxMXFiQ3tmUp6rIXSUQ4zM8MPH2dXBZISCp+WfeF0Fh7H5qLXgCdvrKgIDfb8nI4Xetpi5xlvfPSFK5Z+noRDe9KfSfymhLmURlKCFo5Oxnl0cVUgMUFX6HPPn1bjcZwWfQbk31sSGa7BHyfUePUN4y+LyijhsQ5O+eTSzVWOx48Lz+XJU9mIjdXh5ZefjIfq0tUKK1dm4NEjLbRaAYePqHHokBopKYVvqzKIe6yFi5PCKJcebgrEPzZ+f6/60h1+PubwaRoB25pheHV0LNZ/44l2zxuOL1u9MRV2tcIw6ZPH+P5bT/jXrtynJB8naOGc3zHplv8xuWShI3x8FGjYPBbetaMx8p0kLP3aCa1aWuq35+ZmeNrRvRjHd3kSXaj8+OOPRstq1qyJY8eOlWg7ZmaG58TOnj0LDw8PuLoan3szBToB+f7ylMny1hVm06pUvDzCARaWT56f+FiLVh2t0a6LDczMZGj2vBX6vmKPPVsr95crwFxKRVfA54tMDghFfPZ8v1KFQcPtDPL4XxtXp6HHSzZwda/84ymAvFzm17Ekkxd9TK5YkY433rCB5X9yOW+uA5o1NcegQYl4vlU8Dh/OxsAB1rCzrfy9UzqdkG8u5XJZvsfsu1PjERahQei5GlDdq40fV3hi5MQ4HDlleJps9DAl0sNrY9WX7hg6JhaHT1bu02g6HYD88ijL/73//vQURNzPxZ9/eCDybnWsXuaMCZOTcfKUWr+9p/9fZHIZdEUd4OWoRCNndu7ciZ07dwIAUlNTMXz4cIP1CQkJRjcoLIl79+7hgw8+wLfffguFwviDMTs7G9nZT7qyVSqV6NcSS+koR7pKB0EQDL5kVak6oxkW/3X3ZjauX8rG3G8NBzfa2skR2NDwF4GXnxnOHq/cbz6AuZSKo5Mc6SrBOI8pOjg6F/yFeOdmDv66lIMFS/OfyZP4WIv9OzPx4z6PfNdXRk5OMqhSjY/JlBSd0ayf/7pxU4M//9Rg+TIng+X29nLMm2c4K2XU6GTUr2+agxal5OKkQEo+7++kFK3RrJ/7URp895MKd/7wQ61/xpT17mKLd4YrMXdxIjq3szFob2kpx8A+9th3KAOrN6aiS3vD9ZWJs5McqnzymJyig/NT7+8HUbnY9FMmLpz20A+M7dbFCm8Ms8XCJWlo384Kzk5yJD/Vo5eSost3JpapKFFZL5fLoVAo9EXEv//+91GzZk1s3LhRVCDJycl48cUX8eabb+L111/Pt82CBQugVCr1Dx8fH1GvVRr+DSyh0QgIv/vkfHVqihaPInMRUMisiE2rVOj9ih2UjoYHQ2CQBaIiDM9XR4Zp4OFV+T/ImEtpBDSwgEYjIOypPD6MzC10ps73K9Pw4iu2Rnn81+b1aQhuY4madSv3YOT/CgoyR44GuHPnyXGUnKxDZKQWDRsWfBytWJ6OVwdZ6wcwFiQ6WosjR9To3Tv/gcuVSdOGlsjJEXDzzpOxD0nJWoTd16BZQ8OpsCmpeV+c1laG+bOxliFFlbcuN9f4F7+5mQz5/KatVBoGmSMnB/j7qWPyfqQWjRoavjdT9Xk07DKxtpZB9U8eGzcyx7W/DMdbXb6aY7QtU1KiQuWll17C+vXrsX79evj4+Oj//e9j2bJleP7550scRHp6Onr27InmzZtj8eLFBbabMWMGUlNT9Y+oqKgSv1Zpubgp8EJPG3w9NwnpKh3Uah2++jQJgQ0tUK+RJT6Z8BjfzDe8tkLMw1wc/y0DQ942vkNkn0H22PVTGq5ezOuW+/OPLOzfno5h71b+awMwl9JwcVOgcy9rfDUnBWn/5PHLWSmo18gC9RtZ4KMJiVgyL8XgOTEPc3HsYCaGvp3/2JPMDB1+2ZiO4e9UjbEp/3JzU6B3byt8OlsFlUqHrCwBM2emonEjczRubIGx45IxZ65hT+7Dh7k48Jsao0cbj/O5e1ejH48SEZGLUaOS8frrNvD3N90vBal4uJlhYB87vD/rMVJVWmRl6TAx5DFaNLZEiyZWGDImBlNn513Tp76/BerWMseEj+KRmJQ3fuXcpSx8vToF/XvljUMbMDIG2/amITs7L59HT2di8840vP5y4Xferejc3RTo29saIZ+m6o/JGTNT0KSxOZo2tsCosUmYOScVABDgb45aNRWYHpKCpH/y+OelHKxck47ePfPG+rz1hh02bc7AxT+zIQgCfj2QhWMn1Bg+1HRn9Yn+qfn3339Dp9MhJibG6N4+JbmWSlZWFvr06YPq1atj/fr1Bc48AABLS0tYWpb/RWk++twVi2YlYkD7hxB0QLNWVli4xh0A8CBCY3Tdjs1rU9Guqw2q+xh/OAU1tcS0+S5YMD0BiY+1cHZTIGSRK55rU7kvUPYv5lIaIZ87Y+HMZLzULgY6nYAWrayweHXeOK/IcA1ysg3zuGltGtp3sYaXb/4fATs3Z8C3ljmataz8v/yf9uVCJT4OUaFV63gIAtC6lQW++y7vlE54eK5RLlevzkDXrlbwzSeXN2/m4rUhScjNBRwcZBg2zAaj3jbdLwSprV7kjgkfPUad5+/nXfCttTV2rK8OAAgN0yD7n1xaWMhwYLMXPl6QgGZdHyAjUwelvRyT33HEB2Pzcv/RRCd8/m0yJn/yGDodUM3DDGu+8kDvLpU/n19/6YjpH6egeatY6ASgbWtL/PBd3inbsPAn14qysJBh20+umPe5Ch27PUZmlg4O9nKMGW2H8WPyCr4unaww62Ml3p2QjKRkHbyqK/DdSmc0qG+6xbNM+PeugiW0detWjBw5EllZxtPMintTwpycHLz44osQBAF79+6FhUXJRm+rVCoolUocue4LW/vKPziNKgZzGW/KKRVPReWfxltWPBWVexpvWUnWVe4xb2UlLU2HmoExSE1NhYND4b1iontUPvnkE2zZsgUXL15EQEAAXnjhBbz77rtGA2wLc/bsWRw8eBDOzs5GvTCbNm1Cly5dxIZHRERElYDoQiUtLQ29e/dGWloaHj58CE9PT6xduxadO3fGgAEDirWNDh06QGSHDhEREVUBos+XWFtbQ6VSoW7durh27RoAwNXVtUrclJCIiIjKhugelR49emD16tWYPHkyTp48iVWrViE+Ph7Ozs5SxkdERERVmOhCZfbs2Xj48CEUCgXWrFmDd955B1lZWVi9erWU8REREVEVJrpQcXV1hY2NDS5duoRu3bohIiJCyriIiIiIxBcqFy5cQM+ePZGbm4vU1LyLzSxZsgSCIOD999+XLEAiIiKqukQPpp0xYwbWrl0LW9snF9sZOHAg1q1bJ0lgRERERKILldDQUPTv399gerGvry8SExMlCYyIiIhIdKGS39VnMzIyShUMERER0X+JLlRatmyJM2fO6O/No9VqMW3aNAQHB0sWHBEREVVtogfTLlmyBAMGDEBKSgr69euHq1evIjMzEydOnJAyPiIiIqrCit2jcvHiRYO//fz8cPToUcyaNQseHh4YOXIk/vrrL9SrV0/yIImIiKhqKnaPSr9+/fDo0SP93/Xq1cPt27cxffr0ZxIYERERUbELFW9vb6xYsQLdu3eHmZkZEhMTERUVle9NBZ++EzIRERGRGMUuVJYtW4bRo0dj0qRJ0Gg0kMlk8PPzM2onk8nynRFEREREVFLFHqPSokULXL58GdnZ2dDpdHB3d4dOpzN6sEghIiIiqYienrx27Vop4yAiIiIyUqLpyU9fHr+gy+WPHDlSfERERERE/yhRoTJ37twi28hkMhYqREREJIkSFSoRERHPKg4iIiIiI6LHqBARERE9a6IvoX/9+nVMnToVYWFhRjN9wsPDSx0YERERkehCZfTo0Wjbti1cXV1Rt25dBAQE4NNPP8XYsWOljI+IiIiqMNGnfiIjI/Hll1+iS5cucHZ2xuDBg/HLL79g7969UsZHREREVZjoQsXMzAw5OTmoVasW7t27BwAICgrC9evXJQuOiIiIqjbRhUqLFi2wb98+tGjRAjt27MCdO3dw8uRJyGQyKeMjIiKiKkz0GJWZM2fi1q1bsLGxwYQJE1CvXj3IZDLMmTNHyviIiIioCpMJ+d3+WIT79+9DrVYjMDBQis0Vi0qlglKpxJHrvrC150xrMg3mMt7vSiqeitzyDqHS8FTYlXcIlUKyLrO8Q6gU0tJ0qBkYg9TUVDg4OBTatkQ9Kjt27ICzszM6duyIkydP5tsmPj4e7du3L8lmiYiIiPJVokJl9OjRCAwMxOnTp9GxY8d828hkMt5BmYiIiCRRokLl0qVLsLa2BgBoNJpnEhARERHRv0pUqPj5+en/rVAoJA+GiIiI6L9Ej0C9fPky2rRpAwcHBygUCigUCsjlchYwREREJBnR05PfeustDBkyBN99953+dBARERGRlEQXKtHR0Zg6daqUsRAREREZEH3qp3nz5jh16pSUsRAREREZEN2jsm7dOrz22mt4/vnnERgYaHDp/OHDh0sSHBEREVVtoguV3bt348qVK8jMzMS5c+f0y2UyWZkXKlG5TrDJ5SBeosomjFdBIBOTpnUv7xAqhayMXAAxxWorulCZPXs2rl69iho1aojdBBEREVGhRI9RkcvlBtdVISIiIpKa6EJlyJAhWLRokZSxEBERERkQfeonMjIS33zzDbZu3YqgoCCDwbTr1q2TJDgiIiKq2kQXKvXr10f9+vWljIWIiIjIgOhCZdasWVLGQURERGRE9BgVAFi2bBkCAwNhbW2N+vXrY9WqVVLFRURERCS+R2X58uX43//+h6lTp8LX1xf379/H4sWLIQgC3n33XSljJCIioipKdKGyePFiHDp0CLVq1dIv69y5M7p3785ChYiIiCQh+tSPSqUyKFIAoE6dOlCpVKUOioiIiAgoRaHi4OCA8PBwg2X37t2Dvb19qYMiIiIiAkpx6ueDDz5Az549MWXKFPj4+CAyMhJLlizB9OnTpYyPiIiIqjDRhcqYMWOg1Wrx9ddfIzIyEr6+vpg0aRLeeecdKeMjIiKiKkx0oQIA48ePx/jx46WKhYiIiMiA6EJFq9Xi559/xsWLF40G0PIS+kRERCQF0YXKuHHjsHPnTrRt2xY2NjZSxkREREQEoBSFyu7du3Ht2jV4enpKGQ8RERGRnujpyebm5vDw8JAyFiIiIiIDoguV/v3747vvvpMyFiIiIiIDok/9yGQyTJgwAQcPHkRQUBBkMpl+3cyZMyUJjoiIiKo20YVKamoqBg8eDAC4f/++fvl/CxYiIiKi0hBdqKxYsQJWVlZSxkJERERkQPQYFU9PT4wZMwYXLlyQMh4iIiIiPdGFyq5duyCTydC3b1/Ur18fCxcuRGxsrJSxERERURUnulDp2LEjli9fjpiYGPzvf/9DaGgomjRpgj59+mD79u3QaDRSxklERERVkOhCRb8BuRxdu3ZFSEgI3n77bZw4cQLjx4+Hj48PFi5cCJ1OJ0WcREREVAWVqlDJzMzEDz/8gE6dOiEwMBChoaHYs2cPYmJicOLECVy4cAETJkyQKlYiIiKqYkTP+nnzzTexfft2ODs7Y/To0di8ebPBlWoDAgLw008/oWbNmli2bJkkwRIREVHVIrpQSUhIwObNm9GrV68Cr51iYWGB0aNHiw6OiIiIqjaZIAhCcRuvW7euWO1GjhwpOqCSUKlUUCqV2HClMWzsFWXymkREVHWlaa3LO4RKISs9F+Obn0dqaiocHBwKbVuiHpW5c+cW2UYmk5VZoUJERESVW4kKlYiIiGcVBxEREZER0WNUACA2NhYbNmxAZGQkatWqhTfeeANubm5SxUZERERVnOhC5dq1a2jfvj2CgoLg6+uLnTt3Yv78+Thz5gwaNGggZYwmJydbh+/nP8TFQykQdECD5+3x1qc+sHcyTOf925mY/+Y9o+dnpmnx0mgPDJpYHempudixPBZn9ycjVyPAxl6BnsPd0WNY1Sj4mEtpMI/SYS6lw1xKQ5Otw8+fReDKkUQIOiCgpRKvz6wFOydzg3ZRf2fgq7duGj0/K02LnqO88NIEXwCANlfA7m8f4NeVDzFiXm20f8WzTPZDLNGFyqRJk7B06VIMGzZMv+yHH37AuHHjcPz4cSliM1kb5j7EozA1vv69AcwtZFg2LRLfTI7AxxvqGrSrUc8Ga841Mlim0wp4r8tN1GpgAwDYvyEeNnYKfLm3HuwczRB+IxMzB9+Bdx0rBLWyL7N9Ki/MpTSYR+kwl9JhLqWxeX44YsKzMP+3ZjCzkOO76aFY/cFdvP+dYaeAT6AtlpwJNlim0wqY0e0S/Orb6pd99upfqF7HGg6uhoWOqRJ9wbfr168bFCkAMHz4cNy4caPE24qKikJwcDBkMhlyc3PFhlQmMtO0OLY9EUOmVoeNvQLmlnIM+9AL106n4eG9rCKff/ZAMswtZGjeWQkAGDiuGl6eUA12jnk1Y60gG/j4W+PeXxnPdD9MAXMpDeZROsyldJhLaWSm5eL0jngMfN8P1nZmMLeQY9D0Grh5OgXRYZlFPv/ibwkwt5CjcSdn/bIx3wTgrS/8YW5Z6ovTlwnRUcpkMqP7+WRnZxd4TZWCnD9/Hq1bt0aTJk3EhlKmwm9kAoKAOo2eVKcu1SzgWt0CoVeLPmj2rIlD7zc99HlSmBnmKz01F9Hhavj6V/4pcMylNJhH6TCX0mEupRF5Ix0QgJqNnvQaOXtawrm6JcKvphX5/IPfPULXN6sbfDe7elk9k1ifFdGFSu/evTFp0iSo1WoAeZfTnzx5Mnr27Fmi7dSpUwe3b9/GkCFDxIZSplISNLBzNDN60yhdzZCaUPiNGP86o0JSnAYd+jvnu14QBCybGom6jW3R7AWlZDGbKuZSGsyjdJhL6TCX0lAlamCbXx5dzKFKLDyPt/5IQXJcDlr3c3+WIT5zoseoLFq0CL169YK9vT2cnZ2RlJSEFi1aYP/+/SXajouLS7HbZmdnIzs7W/+3SqUq0WtJQdAB+XUayWVAUfdf3LM6Dj2GuRXY3fbTl9GIDldj7tYACSI1fcylNJhH6TCX0mEupSHohHzzKJPnrSvMgbWP0GloNZhbVIxTPAURHb2rqysuXLiAM2fOYOnSpTh9+jTOnj0LJycnKeMzsGDBAiiVSv3Dx8fnmb1WQewdFchQafH0BX3TU7VwcC647rt/KxN3rmSg+9D8R6jvWROHU7uT8PH6OoVupzJhLqXBPEqHuZQOcykNW0dzZOaTx4zUXKNZP//14HY6wq6o8MIQ057RUxylKrP27NmDb7/9FuvWrcP333+Pa9euSRVXvmbMmIHU1FT9Iyoq6pm+Xn5qNLBBrkZAVKhavyw9JRexD7JRs0HB50p3r4nDCwNd9APB/uvgpsfYuzYOn/xQF+4+ls8kblPEXEqDeZQOcykd5lIavvVtkavR4VHok3E96SkaxD9QG8zkedpvax+hzQAP2DlWjJk9hRFdqCxduhSvvvoqAKBx48aIjY1Fy5YtceDAAcmCe5qlpSUcHBwMHmXN0dUcz/dwxPfzHyIzTYsctQ7r5kShdkMb1G5oi68nReCHBQ8NnvP4UTYuHExBn5HG5wmPb0/Elq+j8fH6OvCqXbEGOJUWcykN5lE6zKV0mEtpKF0t0KK7C7YsiEBmWi5y1FpsnheBGkF2qNHQHqvev4MtXxheNT7hkRqXfk9Etzeql1PU0hLdb7Z06VIcOHAAHTt21C/bs2cPpkyZUuIBtRXNO/P9sG52FMa/cOOfixjZYeqK2gCAmAg1cnMMT8DuWxeP5p2V+f4C2PZtDHLUOswfaXixo+adlHj3M79ntxMmgrmUBvMoHeZSOsylNEbMq4Mf54Tjwy6XIOgEBLZUYvyyegCAuPtZRnn8fX00mnRyhptP5SjoSnT35P9yc3PD48ePi728KMePH8cLL7wAjUYDM7Pi1U+8ezIREZUl3j1ZGiW5e7LoUz9BQUG4edPwUr3x8fHw8vISu0kiIiIiA6JP/YwYMQIDBgxASEgI/P39oVKpMG/ePPTs2RNHjx41aNupU6cit9exY0ejUc1ERERUtYk+9SOXF68zRiaTQavVinmJIvHUDxERlSWe+pFGSU79iO5R0RV1xR4iIiKiUqrYl6sjIiKiSo2FChEREZksFipERERkslioEBERkclioUJEREQmi4UKERERmSwWKkRERGSyWKgQERGRyWKhQkRERCaLhQoRERGZLBYqREREZLJYqBAREZHJYqFCREREJouFChEREZksFipERERkslioEBERkclioUJEREQmi4UKERERmSwWKkRERGSyWKgQERGRyWKhQkRERCaLhQoRERGZLBYqREREZLJYqBAREZHJYqFCREREJouFChEREZksFipERERkslioEBERkclioUJEREQmi4UKERERmSwWKkRERGSyWKgQERGRyTIr7wBKQxAEAEBWuracIyEioqogS5db3iFUClnpeXn893u8MBW6UElLSwMAjGl3o5wjISIiopJKS0uDUqkstI1MKE45Y6J0Oh2io6Nhb28PmUxW3uEUSKVSwcfHB1FRUXBwcCjvcCos5lE6zKV0mEtpMI/SqQi5FAQBaWlpqF69OuTywkehVOgeFblcDm9v7/IOo9gcHBxM9qCpSJhH6TCX0mEupcE8SsfUc1lUT8q/OJiWiIiITBYLFSIiIjJZLFTKgKWlJWbNmgVLS8vyDqVCYx6lw1xKh7mUBvMoncqWywo9mJaIiIgqN/aoEBERkclioUJEREQmi4UKERERmSwWKsWgVqsxZswYVKtWDR4eHhg8eDASExMLbP/NN9+gZs2acHd3R5s2bXD16lWD9Vu2bEFgYCA8PDzQpEkTHD161Ggby5Ytg7m5OUJCQqTeHZMidW5zc3MREhICmUyGtWvXPuPoTVdJ85qVlYWRI0dCJpPh8OHDZRhpxRYVFYXg4GDIZDLk5vLS6iVRUO50Oh1CQkLg7e0Nd3d39OzZE/fv3y+/QE1QaXJX1GeoKWKhUgwTJ07ErVu3cOfOHTx48AAAMGTIkHzbbt68GZ999hkOHjyI+Ph4DBo0CN27d0dqaioA4PTp03jrrbewYcMGxMXFYebMmejbty/Cw8P12xg4cCD279+PwMDAZ79z5UzK3AJAq1atEBUVBQ8PjzKJ31SVJK+ZmZlo0KABnJycyjLECu/8+fNo3bo1mjRpUt6hVDiF5e6LL77Ajh078OeffyImJgb169dH7969WQj+ozS5K85nqEkSqFApKSmCubm5cObMGf2yqKgoAYBw69Yto/bPPfecMH/+fINlderUEZYvXy4IgiC88sorwqhRowzWd+7cWZg2bZr+7/v37wuCIAgdOnQQPv74Y8n2xdRInVtBeJI7Pz8/Yc2aNc8octNW0rzm5uYKUVFRgiAIAgDh0KFDZRZrRZaQkCCkpaUJx44dEwAIGo2mvEOqMArKnU6nEzw8PIQff/xR3zYzM1Ows7MT9u/fX17hmpTS5K44n6GmiD0qRbh06RIEQUBwcLB+mbe3N3x9fXHu3DmDtjk5Obhy5QratGljsLx169b6tufOnTNa36ZNG4Nt+fn5Sb0bJknq3AJVJ3eFKUleAUChUFSoW1GYChcXF9jZ2ZV3GBVSQbmLiIhAXFycwfvc2toazZo1y/fYrYrE5q64n6GmiIVKEeLi4uDi4gIzM8PbInl4eCAuLs5gWWJiInJzc41OO/y3bVxcXKHrqxKpc0t5SpJXIlPy7/HJ93nJFZW7ivwZykKlCDqdLt87M8vlcuh0OqO2AIza/7dtftvLb1tVgdS5pTwlySuRKeH7XLyicleRc8tCpQguLi5ISUmB8NQFfJOSkuDq6mqwzNnZGTKZDElJSQW2dXFxKXR9VSJ1bilPSfJKZEpcXFwAgO9zEYrKXUX+DGWhUoSmTZsiJycHN2/e1C9LSkpCWFgYmjVrZtDW2toa9evXx6VLlwyWX7hwQd+2RYsWha6vSqTOLeUpSV6JTEmdOnWgVCoN3ue5ubm4cuUKj90iFJW7Cv0ZWp4jeSuKQYMGCV26dBFSUlKEzMxMYejQoUJwcLAgCIIwePBgYcqUKfq2y5cvF7y9vYW///5b0Gq1wtKlSwUHBwchJiZGEARB2L9/v6BUKoU//vhD0Ol0wo4dOwQrKyvh2rVrRq9b2Wf9CIK0uf2vqjzrRxBKltf/Amf9lBhn/YiXX+6mTZsmNGrUSIiOjhZycnKE6dOnC35+fkJmZmY5Rmp6xOSuJJ+hpsSs8DKGAGDNmjUYP348atWqBZ1OhxdeeAG7du0CANy9exfZ2dn6tmPGjEFCQgI6deqEjIwMBAQE4ODBg/D09AQA9OzZEwsXLsTQoUORmJgIHx8fbNu2DY0aNSqPXSt3UuaWnihJXolMybx586BWq9G4cWNoNBo0a9YMBw8ehLW1dXmHZvKKyl1F/Qzl3ZOJiIjIZHGMChEREZksFipERERkslioEBERkclioUJEREQmi4UKERERmSwWKkRERGSyWKgQERGRyWKhQkRERCaLhQoRGZk4cSKaNGlS4PrDhw/ne4dmU9GxY0eEhIQUq+3x48chk8mQm5v7jKMiIjFYqBCREW9vb/j7+5d3GERE4L1+iMjI1KlTyzsEIiIA7FEhqvJkMhlmzZqFRo0aQalU4vDhwwgJCUHHjh31bQ4dOoT69evDyckJjRs3xvnz5w22ceLECQQHB8PNzQ3+/v7YsGEDZDIZ7t+/DwDQaDSYN28eatasierVqyMgIACLFy8WHXN4eDiGDRuGGjVqoFq1aggKCsKRI0fybbthwwZ4eXlh69atqFWrFtzd3dGhQwdcvXrVoN2hQ4fQqFEjuLu7Izg4GNevX9evmzdvHho1aoRq1arB29sb06dPFx07EZUMCxUiwubNm7Fr1y6kpKSgXbt2Butu3LiB3r17Y/78+UhKSsLOnTvx448/6tdHRUWhR48eGD16NOLj43Hq1Cn89NNPBtuYNGkSAODWrVuIjo7GsWPHsGbNGqN2xRUaGooOHTrg5s2biImJwbvvvosxY8YU2D42Nhb79+/HX3/9hUePHiEoKAi9e/dGRkaGvs0XX3yBX3/9FfHx8ejRowfee+89/bro6Gjs3r0bMTExOH/+PFauXIk//vhDVOxEVDIsVIgIM2bMQK1atSCTyWBpaWmwbuXKlejRowf69+8PmUyGWrVqGQxU3bx5MwIDA/H2229DJpPBw8MDK1as0K+Pjo7GihUrsHTpUtSsWROenp5o1qwZ4uLicOHCBVHxdu/eHcOGDcO1a9ewceNG3LlzB2FhYQW2t7S0xPLly2FnZwdzc3MsWrQIjx8/Nig2lixZAh8fHwDAq6++ikuXLunXLV++HBqNBjt37sTWrVthZWVV6OsRkXQ4RoWI9F/Q+QkPD0f9+vUNlrm7u+v/ff/+fdSpU8dgfe3atQ3WC4KAW7duwdnZWZJ4N27ciA8//BC9evVCYGAg/P39odPpCmzv4+MDGxsb/d/W1tZwcnJCQkICqlWrBgAICgrSr7e1tUVaWpo+/v79+8PFxQXt27eHj48P3N3dodVqJdkXIiocCxUiKpSLiwuio6MNlkVFRen/7ebmhitXrhis/297Ly8vAMDFixfRvXv3UsejVqsxatQo7NixA7169QIAnDt3rtDnqFQqg7+Tk5ORkJCAmjVrQq1WA0CB060//fRT1K1bF1u3btUv++KLL0qzC0RUAjz1Q0SFGjRoELZv345jx44BAO7evYsFCxbo17/yyiu4ePEiNm3aBEEQoFKp8P777+vX+/n5YciQIZg0aRJu3LgBAMjMzMSPP/6Imzdvljie3NxcaDQaxMfHAwAiIyMNXi8/sbGx+Pzzz6HVapGVlYWJEyeiUaNGaNmyZZGvl5WVhdTUVGRnZyMnJwczZ85EaGhoieMmInFYqBBRofr27Yuvv/4aI0aMgJubGwYPHowBAwbo1wcFBWHHjh1YvHgx3N3d0aRJE/To0QPAk16KNWvWYMCAAejXrx/c3NwQEBCAvXv3ws3NrcTx2NnZYeXKlZg5cybc3NwwaNAgjBo1qtDneHp6IikpCXXr1oWnpydSU1Oxf//+Yl20bs6cOUhLS0O1atUQEBAAGxsbtGjRosRxE5E4MkEQhPIOgogql4SEBLi5uSEuLs5gPEt52LBhA0JCQvDw4cNyjYOIxOEYFSKS3JUrV+Do6FisHpNWrVohIiLCaPlrr72GzZs3Gy3ftGkTunTpIkmcRGT6WKgQUamtWrUKQ4cOhZ2dHcLDwzF9+nQMHz68WKdWzp49W+C6JUuWSBkmEVVAHKNCRKV2+PBh1K1bFy4uLmjXrh06dOjAmTFEJAmOUSEiIiKTxR4VIiIiMlksVIiIiMhksVAhIiIik8VChYiIiEwWCxUiIiIyWSxUiIiIyGSxUCEiIiKTxUKFiIiITBYLFSIiIjJZ/weM1wK17h5CKgAAAABJRU5ErkJggg==\n", "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1R5cGUgL0NhdGFsb2cgL1BhZ2VzIDIgMCBSID4+CmVuZG9iago4IDAgb2JqCjw8IC9Gb250IDMgMCBSIC9YT2JqZWN0IDcgMCBSIC9FeHRHU3RhdGUgNCAwIFIgL1BhdHRlcm4gNSAwIFIKL1NoYWRpbmcgNiAwIFIgL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9UeXBlIC9QYWdlIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovTWVkaWFCb3ggWyAwIDAgMzk5LjA4MjUgMjI1LjE0NzUgXSAvQ29udGVudHMgOSAwIFIgL0Fubm90cyAxMCAwIFIgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0xlbmd0aCAxMiAwIFIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicrVhLb9w2EL7zV/BoH8zl8M1jnLQGcnOzQA9FYRj2euPASuJ126D/vkPqRa1GXLnxYQ1pSH3fR86DQ28+7P55vNv9dnXJ339im/Ht7oUB/4K/PZf8C/5+cOBX+NsziW8N0zEKGZTFl6fxRSkrwHiLNlm+fGbsgW3e4ecv+MEVY9oI7/ADHYUOOCUBggihMD2NJgVexBap/7AwZfBnfgyprRegOPggrOOHHf+df+WbdyprEM4FaQ0+BAcxRnyA6FTU7LDHVaYVX1Vm8cOeXENniUFEmbVFI1QgLcUyj3C6Fc1mNgQaWC2CpE0j3pyzZZhNbShABVpoRZtGRIK2JZnNbUhEr0QwtGlEJHg7kuO5DYWotRLa0aaCZM6bSTAcIDsfw8EqL1M4KC2lVRgOvDrK5jwNqaaPeMJUBMxccyfQB63BJgk+qpAeQFkjbSuwMspmsTtGM9ggjJoEEmEqFM+yYBrPIwMBN4QRZavlVbcDQRoIKq0xKGlcWiOY6LodqIyyOU1DqhlikLJVM7OXGJ3OGqLGkMEHiQbdK1wcZHOWhhbTxy9lq6Z1JzBGrUxA7igdWJ92yWjU0yqsjLI5T0PKGSKYslWLQi9ROZAu75PXKedAGumhU7g4yOYsDS2mzzrKVi0onUDlvJTp5MC/wacHraKBzsuVUTbPu4Y69foMIEyl5nkOT5OxICEQhyCmbPW6cHTCFDwU6BCMlO1EeTg6ZgomErWPKcp2Is073xojQafADwCgUypog2nqW99WRhnB1JCKhsCibCdyvVdpg8uhFcBpp9sY86pXuTzKCKaGVkQ1aFTmEMqzymv+PLRkvGu8RMBmM7df2Gw6I+y0dxgsFmkyErvEPvUHe8a/kl9IRLGAsyGNKiOcyk93Dbvcss2vwEHy7UNuY7f37A9+lrIQzvmffPuR/bJl1yxLYIDfymlLMZoq5Oh03FQb9Xp6ij1obFun7IOpxu6dUGuJCV5ldNvKF43UYKrwKoNwLpi1qyaotVTCTbvR0VSjjk54v55ZEtROYS80pR5MFWqN5UgHqWHlloOckJd+C0ZoDNqUJBgReTXLOIfH+/3u5ub26fvnW2I1XdF3sb1/4WIAj5zCQm4jiKgzr7M427jXO7A/bFTAm9OEeDDVmVOC+XCKWlWoQxAQptS96QR1coA8Ra2n7ksQFwkMLDZqMm9xOgqrMAnn+7enc54UWn7279dvzePt08M5BywvCeNsh15VUWSUs7/+PhRvu5ebm/vd/nDORtMOVbFeleIf2zt7LqTTO/3ylbWo4OzT/NLRkLU+zVxzkS/mDV8vIsqsvz0MIB8F+0ltx/2NbXV1TmAfFeupgtcetZRzRaX+aSyPlUC/DZbC4zLYN8KKePT6t8HSeK6GV+49LGAVbgTlBMQVWG6FH38erHDkajC/wpOrweIKV64FC3qFL1eDTQ4vyDna/k+wADZWWNsWVIvuP4V6YQMIWDwVJdZV/wo0cOleuoTmvLDSt4fsSjwt1BKcwgKMl7awXh0e7BN/yPzv1avjEjdx9CpkKZxd4+j/BXbN/gPFcm2iCmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKMTE2OQplbmRvYmoKMTAgMCBvYmoKWyBdCmVuZG9iagoxNyAwIG9iago8PCAvTGVuZ3RoIDU0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDO1MFYwULAwVDA2slAwNTBSMDEwVkgx5IIxc8EskGQOF1QVmAGSy4GryuHK4EoDABRvDmEKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvTGVuZ3RoIDEyNCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwtTjkOBCEM6/MKfwAJkyGE98xotc3+v90kTIMjfI690GEDbXZwO1zxUKg9r59w1kEzLAPXhl24hZuYLIPOAlp9O9pAso1e8qZMIvztipyIqyY9GAzPtbUEztdhXhG5bORb+YFRF1R0h7KmhDGX8ew8u2/5yucPQ5QoQAplbmRzdHJlYW0KZW5kb2JqCjE5IDAgb2JqCjw8IC9MZW5ndGggMjIxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDWQuW0FMQxEc1XBBhbQ8JJUzxqGE/efekj5B8IMKB6PjG0yxVMeXxK2ZVnIF4Yebfs7bKGdGyNTxZdLWso7AimxZpf5v9r9oVPmVgZmdI07P9wgD4PG9JpYY0rfoXGdYsljR7CpWjUI0jFgk4/tzm21yRqyVICQpKQ1EzugFtI8JReIpghzNXD1uCuA+bWU4q77WfsdP32CzDoBdraDmUR4q1mz0SkpwQEgFshzqhyHN2G/OgS6LeUdxhwa216/TtLOdltd7oWvV++AcjXS2K8QPlAF+P0HyrJSrQplbmRzdHJlYW0KZW5kb2JqCjIwIDAgb2JqCjw8IC9MZW5ndGggMTM2IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE2OOwpDMQwEe51iLxCwZH3s8ziEFC/3b7N+wZBKIwl2NkZHg5rh0QM9CkV+quxThONzU2riEvWJtAGtQLpBJ/dsWGLWkTVgnsjJmb+gJSfyumlLLrHSP9qJm9ohL/oazBwxHdYUMZRZSkMk/RHsVtDOjuzEj/FC993aB077JW95fQEwZisiCmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0xlbmd0aCAyNzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicLVE7bsUwDNtzCl7gAdbfPk+KokN7/7WUkiEgY8qURMc2LETgY4FQRRG/5DqCqMLfRT3yYLOoZGAL7oskI/F7ydrI2hAjnoQUPURZoitQWlD3cdV9Bu/LUoa5JGs3PBy5W/Gj9FWECHI9GOZUhvW3Ck6nWAvOwZ477nTZRPbrU1/ZCic0+rovWBpVhXmP78th7GzboceoKjSLigRPoxdr4iQxt17yGe3Na4gdom4WLyEzobP1F+NqYdOFW9eaufrPlXiIbu80nlSZm1dOLn5WK8rAW1U+g5wHbXZrNrVMjG9gfLE0eftkd7VCJnNvJTtdjfOcsHtGQbh5us7WVJidaNAt8D7/ff1c3/+VU2aUCmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0xlbmd0aCA1MTQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNZRNstwwCIT3PgUXmCrxIySdx6lUFpP7b/OBXhYe2kJAA+2Z22XIPPKJkOkmy1N+6WN79dHfx8JALnq4hFPnlo+5vI8qd47skF0ZCH4frI6Q7wVbcoiqShqm/BkAl1z9vpRLp1KNJYsIak1cawm138e44yoWR2yK7Tbv42QEeLm2+Bw8dZxbSOB7ysTAN+s4qLfKE3Jcwq0ZcR5wIz4opbGuzdOeEFuViYcwo+WyEKJkoe9FZxZiOD+ItgrZgdEhBvoxqm33ACU8YaAhvkYTwrMTTuXlhD5DseSBhYHoJWh1jn2tXw9oK3eZbGXjVt4RzGqa0VhKZjKea2E+454YMbUcFpxR2RROCQMtj0457GDXGPiZ3CLF5GHN9cax3WNl6eOaagSQLOD7HMBCJ4O0ECuV5Gm9MLI1WHkkdjPsQAEVqwQv2jWGsKxIYn0U7SjECvJK06BRtkSwGnlsLIui5uqRxqi8jNUOdbzHmk09WG8iuhprIps4cLPKNlurdAafueLaaEUXUhSu9/4ke6zOxlsg19glIrwrf5YaWQvdXbkEEe69pBIjjMnf8ii5rLI1nYuUAYZlizo4d6+qSG2M5rIR5ugP1ZBuWV3NslB9wsQqNSbP6RBUV2x4CRon2K74kQBsXT4lIPbz6TkUl4+X3O/3//9/4H3+PL//AcrRxvoKZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvTGVuZ3RoIDM3NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNksltK0EMRO8TBRMYoLn0Fo8Mwwc5/6tf9fh/GJDEUnMrFtlXWrM+7a6yntumL/vwayxb074vb81GN8+w2uZjGDGvy/e24JPdoixmyryu0HNZRsqb1S0Xzzmm1QQP69uqhc3Oc9FqN6ts5m1haRCqXrXMO56e5tQ+dh8PKIJYygW4cpzueAIqmxdvlvpSWTzoPkEQTVEosXNLqosur50KGqtrnMfi8TjIESFRx4dyNKJnnWxvGnDYUmGXo40j3vuqvf6ggW7vy+d/NERyHtT/oVUgCCBNRWNEho8QkUQ6yUnzOlLHsYzlfpDGUm4uctoRSeSRq4rB4VeDKFaAZy3it3W4ZrAN9TzCdhas2jqBqF/b1vEgw/EEZ0BuPOvCw++kOUprWXSIdbaXNqDU7YZirrD7IcxWb8YRcV1bsBdZhmR3N1kO2Tu1eyLOJbgPUJPK99CZujaKper7WF45VcQlSBkjdFMoy7/niF/X1/X5A5WPipMKZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvTGVuZ3RoIDU3OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1k0tuJDEMQ/d9Cl2gAevj33l6MJhFcv/tPKqSRUEu25Iokp4nbdhMe1farLCdy/74q+6xFde+X7WvrRpWU/Fa5bY1l31e5dPWCsvrxGXJp/h5ZY5exSVnbovtXePzCtqsSAvnZAxzbkxOPy+njwD4KpvjmgOqnhN2K9McaHm5kdNyqpqDRasv7iT9iyzw7NNVdFd1p9VY5udY+bEYZRVHWIKpkh2qVIGSqYqunCiHeeOyownJU2SyWc/O0Q0+B2Upp8qpxkfncj6YfRDMIUyw7KAtpgsiNzihc5zquWP6E10MNhN7oQzIqTyD2WCFE0ckAAsaauyCXbVncOCwfrskIYZa5GIl4iBNGkuSdwMORu4dyHmn2hW5v4Q72gjvMRK2xjjOJgpDbosIo1N4kJmu8BYcEfKBKT2YWaS7Mf3D3wEllDnSTwj2mDav7jsyrmSHG4t+EcTbMi3yQ3VPu1MyKzLbffxaAN0pIXRTORJBOXWWbQidgxtjtxjYl7tfz0r9McSCq1/Lf17/2k5Bv+9eOVJ6IQQDyZae6tF/1HaGu/JX2WlTqo4cLh9jLiq385sak7VoKhlC9GX0f9bRaS7xpW3ciqIlbM+AR2oW+HzIaOKOWLPVkP7Is2TKeqxOjFazV6kTp9PtnDh9QpUcsKTO8K3nkT2bHoysnleYsMGWhXc/AMY47GB18Z9j/dg8eMBa6RnpRkirzpGlVSVQPRuf8nc/TqrxDH2JHLGLm3azW7crudDKnT+KSJ2//wGXcOAkCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0xlbmd0aCA3NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwztTBWMFAwMVTQNTZVMDUyUTA3tFBIMeQyMoYI5XIZmhiBWTlcJiYmCmYmFiCWIYIB0pDDBdMKYZmB1cPMyOHK4EoDABaKFC4KZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvTGVuZ3RoIDY3MyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw9VFtuHDEM+59T6AIBrKft82xR9CO5/29JaVogG2tnLIkiqc3jssS3fEVIRsr2lF/62FWxlJ/H1Rk4HtsRT4Qpn8d3Spj4dUmTWFeKj8NC9pbwErwJ1FNVPk8XtSuRRzTXnDv6DaJbwhumu3MM6XiD/5ZsE2J7mtjhG3b1RdhAo2tQ6eEbgHMrIWr3JRyD5+ex2vMkqm9Y32KOreoqek5X1e1vH83dnZWY0EPB02BTcEG0CmxE32fP0xEm5A1OzJzhgFUAnEVBEbs0ZWwLCokChDYsPiZONgFs0P/K8Xn+tDKxjNKAEEaOe7EwOFKiW3kFIgx8QDXVu/gOICB14W7go8gtkMrcfV+644LuUEmNOUcIRlldIVv3K3mt5VYpVgR9ZaAcVNT445hUAAHwF3I94JCylgg5BaqBtEAu5+GJkfeaJzk3zP3NMc2uovd2VT359tGt3VlrkChsNNhIN9Hqi17/z6PvhLzBiTXj5UDJCD6UkixRm+HNljWTpqeZpQ2Ga2M22B+Lzjw8/2nFxfqBnKcjQ86X0/xXvuw0Giyf0iy8K0oH0ki44OAQ4/TfaARoK7iuChZ5VMsNPPQC9gNOAnY7rHxZARX9Nv3KrUE9tOwo5RsOZxk0p1lw/44jPk9xIyE3ZuOK47eh6WYAfrCziRbQqJSTokJx5YGX64xntZtpTnC5ECWb6mCttt5WFJHd1po/OWRqj3N8IgLkDYdCk0P+d/v3dtWo+/aJc7tzLm8gifUfZAlvZG/YGeQ8ZxQ6n7PBWxw17npnD2wPyQgfchzVvcbVtyn8xk54kxrHmuRc+2U93VoG/phSFZ4jU0dOF96WMTFdy5p6WuXeZZTUcUDUoiPCow1CU41lHItCEzkWpE312oyW+/0Xj/EVOwplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9MZW5ndGggNTYyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nC2TSa4bMQxE9z4FL2BAnCT1eX4QZJHcf5tXtBc22eJcLPZNW1aPvSut89rJbb/8dcveXvZPSh/7K7nb7rG97UnbYT8v97Be5plWbt5t2Xo+x+KxWMtiW0RL/Lxif76fMAIyKHt5Tv4338eNGvmQyJW8HK1wIsYPFZKsHwsRQd3qIhuW3pY0gIUXaX/xOZTYRF1LomoqP5OXqNtWyy3ImxcLDdDJocHmhV8UwySeqZhUDE3HI7kmTpKhmHhell7UKd8zl9OBRvbAAiK++tsBBTPcDjjgM7Mfnqla62gXRVGJIzRRmvJM1swM+n0FwgE1nmloC3vfmEplgWmzJmdDh5IO3MeVPwJNe2FP2nIAtaRWEKMlCzisq8h2Vn6h3tdpResvugpWr8HbF53QDVkbrw5+a88c+NGL2FSyagXT82jyywCSJgbgQl33up8lPwKMOHHtTgNDkxq75YaomiWZ450skLxibsQZKfL5aIL9zcq+RP55/Zlh6orU0lSyqqYZcatbXkXiPvDGkY9YArDDupzRGQDrBrDkLHaPRZADd3ojzwArKcrX56X0QrvAsXt4s9BYswPhBnIXwGt4g18LBnI3jPTaA7AYBeTyVbfES9Zd36VXyyLyYCktcSxUS5D0fkBPIDqdz/Fy+SnGPloKEApfzy+nU3zuO4zVtXyYm9ykNF2GPFL35p/bqcmSdK6stWruSPdG3qM7PmMt0eN7x/75YsJqbeOzH+3q938eztq9CmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0xlbmd0aCA1NyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwzMTFTMFAwNFDQNTSxVDAxNlPQtTBWSDHkAjNBYrlcMNkcMAsoncMFU5iDUJfDlcGVBgBMNg8gCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0xlbmd0aCA0MjkgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNZJNstwwCIT3PgUXcJX4kSWdZ1KpLF7uv83XeLKYAQGGpun5DBsWx+7aVittZtgvv/K4+X7sb3sxt/1cUY9FDXljW2SZL2yE+ZwWI+xzeeo7IjGI1mt9KYO3l3kOe4jPYUwkvIYx0s+iN82OzOcK8nqTDWYcilSdzmeLD5bNY1lhS9U5l23ezzEfjyWwPB4lWMFrWq/zfO1W5s91KDzJhidofrrB3sKo1+faRR7M2WVtOpwgCEhwdysKHBRzTMgAlKt3kJkhslbzGbSSBU+d9vKodlmxSG3RU6zQP25Q47WZGijvzslEwfl67FDZzvw66xFTyZLOnjOsiaHDzZ4x7VZ48IwUxKOmXBbQd8I9OrjLlaHdDWXBAjcLhI+2nGpne44a7uKGSUWfxb2622FMuC2mKPywiumQEAUeb0D2uPQGJfw7zQWG43DYahFpkRSNDg0SgHQUUiHk5ugu3CnB9/N6X0rwJAoYySXr0DxVTcfiJJJHsX1q1nsOqRBcyRbVuiqO4P+FJlXDk84Sq9qKn3gjOv+UnLJ7gHfqFqOlVzDyFZi09vsfMPeiBAplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9MZW5ndGggMzU0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nEWSuW3FQAxEc1XBBgQsrz3q+Ybh4Lv/1I+UDQcCR7xnuLm3DLEjd4Skhqy15EOvsCk2TL4fRNa7keuQMBN3rKZ4DnldMZb4GuIHu+sLCapfV3lD8SQexrhPCd8V0S0Ri9nYNLE1274uswcpU8OxszoHEeXPM0WptXMeSzYRkE5yXfFi88jqwKYZDNnZXGzOMsw4WsAVH9s5cNVS6RKwnEdo4NtlZbnhRUHR1HGaeA2CuNUoalhCi8CvbK/ri5jSvxUcBRBwDMGHwjfrlnS3tRR0ub0oad/BcrZlTX2Q7spgOjLe1lJY0oV+Q2XJLip4ZwrypJYjWE1LAshpnDqy7ixjli0BcnBBSgfZGD+4Ed4hPWfTLfW85w3QRNw6PN3rKHGqQM9gYnbX/NU4W2Rnt0LO2ZJVHE3zeRYsEnXewYfYwREiZiu6G70b1Wt8X3/v8kG3Z0f/kT7yfl2fPygGhYYKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvTGVuZ3RoIDM0NCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNksltAzEMRe9TBRsYQNy01OMgyMHu/5pH2gFy4h9KQ/5FmUeG+JI7lqQPSXP50kuBdoa8rvDT6PlB8UEeW8Km+KaOIaFTHpevkIjglE5u7s+uj8tWvjtZNcRYGlH/mB4J52QYE7doTdTgRJf3bJ3KHhNN6rQ6CVDQcXbx/5tv1smH+fP6uezsFvSClzaq+TlUYrIzF/dzgNRbvMfparN4NbJkktr5j1D67D2aMMA4HQ5rFZaUHCiVzvoHclkFZ3ClvpGEa4FWL7rhkIEXCjEnjske1T5H9oSqy44uqykVqAAw84Z0WX0bRqrJ3fN8HbJ0pHhn6uNd4TXfyKzShjx23VbRKJbe8CwzEaRaDB/X5kUMwShG5qQfzRfFp16M7i72WSu2dilxXXXb02nP3e8DJaEEW1ZHB+vWEejkmXBB0Z2jbDJDLgaXfRXYX4QP4vz+BW64f5UKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvTGVuZ3RoIDIxNyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNkUuOwzAMQ/c+hS4wgH6WrPNkUMyic/9tKbtFuuKLqDgmY87EJJN+bJJNplxFvzIM8xSm/2GmICVThzqZBDToGsYLlKRV0AXlrdfQuc4EhyYXqRRFWTtsFJkkFRQeR1nhNE188TlM84vcJ6jdm/qyIJEvervzhnNGezeFfPYDa4KnSCVR3Kq8b2Gy04kbpTmaQTbvTJLIH9gt9IF3VLCR1Zmwl2vSTo36dPlWOHUmJl3sQoetuztrQpvd8+JTfc52mtDq8xDaM/SUnPT5J9f4G48XfAFTJgplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9MZW5ndGggNDM4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1SS24FIQzbzylyASTyg3CeV1VdtPff1g7tW8xgQb62s0qmWMiwCklVSXP50CdsianJz0U15buRz5AwFbctoS4eJa8ncOvriB8Try2+S2I6XnwhXgtxiPd58/zwZQLh1hAfaWIr+3w9pvdG90Gsiyb6nI0XRbavKaroN1ef5osvQLrxIUIxp2bKYTEtkyzsgokUTTgOu2sSOMISW5VL9SJgQG0KV9Wl8k/D6/l6DPHjcuKzLnQkDz2YBvQNzdM1DNCik8e+xcgFT4wCImcK7woNUMJlsLdboijUwNyDfTP6JCGrEXdBtyZkXD4gmuhEkgmrJS6XycKyJYctsA6L46erldaTPMwZC+AoHJdgsEBFWBcIFwrdaQgjTcYd7HgjZiU4bALRH+Mzu8Aqlot1XRKtTWA4IjoI0UovtdXeCOJdMBCWEHagcRxyqy1LEYLrAJ1D6Zj4U+DSOugCPwcgaUUyudjbnaLBjnbmNbmFXYBl2IlQNxPQU4MldjQHLcOWw7fcsvgUfCLSRSUbQfVNYRBTHG95G7InRUnfFA12xj30nW1K1pq0Zd413uai0z5/AWtfqhMKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvTGVuZ3RoIDE5OCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNkDFuxTAMQ3efghcoYFGS5ZwnRdHh9/5raSEf7RDwwYwEUnkRE5X48ESyUFX4tHGQu/DTdMzXiOA/4r4e8kiEO3wvhJW+wD1iGiIMXtJMOHfrPXyuJm7N5QSXNKYc9ia9sHoTjYh5HLuW9jtsB3xJFdl7xjTt+teWgWrTurIde/I+/RpOwVd7fxTMJr6pLiVb4AzEVh5X4qtOwrWR6ueTOpc6+249favpzKXcUNLQxnvkaUH2eU/2923v8T2+fgFj8EhYCmVuZHN0cmVhbQplbmRvYmoKMzUgMCBvYmoKPDwgL0xlbmd0aCAxNTEgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicRU5LCgMxCN3nFF6goI7R5DxTyiwy99/WZ4YWAj7yvmpGTM70OjrJMAoLeksT79SF6S4EcrUYfwBu/VSrXS0zPP03QLBSUiFBkU8nnW3MzBYS3h2iWvdscsz9020r3B+LZBEyaldG4qIjGaDUQeFdy+PGYDLFdRBSXY/qwU2GrdCYJchh25FDEYH9SOGn4mqfL/FeNbQKZW5kc3RyZWFtCmVuZG9iagozNiAwIG9iago8PCAvTGVuZ3RoIDU0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nDMyMVEwUDA3VdA1NlUwNDNUMDc3V0gx5IIxc8EskGQOF1QVmAGSy4GryuHK4EoDABepDogKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvTGVuZ3RoIDM2NyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNkjtuAzEMRPs9BS8QQPyJ0nkcGCmc+7eZodaIK82KHz3Ocm2TIZXy5SnLTdJMvvWKpRJjyC+UtXpdOaBiIGVJlErmltgqjyvXllSVad4NJiI8H9dEnKqUGVMq8D0mIjUd1bhZQ/ha7ZCY7LYG+iNvaUmgZqGrr2LEtnhWg7pFn7bYjYojvK6K+lAGsqM8UspRj/yyROcgBaj51ly4yZSJTJ4gt6PmwJSJqbf29Ji2QO64SfKVZHg7hAj5FjzArWO+RK2fGsSd82Big+d9Tr4TO2/eUPtQh5yK5DGiyX2Pm9zx00jusZvTOUmT2z7KyprcMm5y89nkhr9Bcht5kytqSK61m1xLb3Kd1uSaq8n7bHKq2+n8F6ncFeUGHIX6wMZQ+VsVvUQv/nuQKh2Z/MOGOQMMRq/ggDkyd0fgQoLX8uya9VvveRMT+ajeNb+3EB7Ns4d0L/VwxGYkEl/0Bxl08b3vj+vnev4BP7yT9AplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9MZW5ndGggMjE5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nE1RO25DMQzbfQpdIID+ls/zgqJDe/+1lPoSZDBImJZE0XGUmHbQw4JCC8foKaup1qbfYS3+LHf9YFrnZuZBbk5WSS6F43QtZyV3IdvACDI9g9cy3sO03weTJtAZijqY4Ua7yyYV1HIrchL9jaQwJ4EbODWSYHgriTpsM5gxCt9+7/2GhDCIpLxZu5dh+WLo7tiqp3mg94HjPO0QNV7tEMoBwoOfagUbBSfp7s6dD8KUnH07WkYCOvGancHO6D/wnhGdV8FLKpQQ3M77mn1f/3Gt7/X1B+2VUeAKZW5kc3RyZWFtCmVuZG9iagozOSAwIG9iago8PCAvTGVuZ3RoIDI5OCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJw1UTluxDAM7P0KfsCAecp6zwZBmvy/zczYqUTxmIPsteyyLDurrCusI+3Lj7hvpX6PqKcY19iZY77wj7DP4Wg/l7kjmbbbciOL8rT1ZqK2eTCJik+SJy7RhXoZrM259GWNShN4ENzL1lghvW+rEp9vqwFhARl1X5xxVOLa1t4WNTJA9XzBkJeinFFHAu2ZKVSIUj1CrfXPU3uLWP3o6JhXWMO/lKKPwvXKiSJY61xy2rFe600LLdKh7utZU2FD2FplcoeF6rPUnK01Z8az9vcQn+NHRwneJMsZ5O0G3oJ7iKclXqNgySFi6Y2XzSEcrejgKjhSl/iIwSwgq1t8fLHULEW+Sx2uOR0ib6F4tFD5PjyMyMwOKuGMpAmEyyoKf43Q0/cfOM53LAplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9MZW5ndGggMzMyIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD2RS27EQAhE930KLmAJKOjPeRxFWTj336bAmixG1BgaikfuLSor5fKtktMlHfJlw6ZJmsovVUgg5Bm2U4IlrkdiQxxT4hy5h9dDS/ET3QB4G90jdLeK+damslsaMxkuoeihwOro6ZXpGXyXS2wyBiM6w7ozu+FM9uKkGl9mjDNYfy0JZ/Aqx6GiSXCZK0Lg2pGGd7TyBCuWuG++ycqoy2UutgmA47nm4ufiQfG0aFjP+GBrVbCef2zP+BmWR3w2Qipbp/Klei1OoDNbKma7BqwtpvzHi9Bc2WCOfoz7TrImLQaiw27iR6AErmULNNw2MVuEWlWHH9m1VJGxusLyNlLxZV0KHBG5iYkRfKmdId1AfWU/OgCRVuTsM1v5KubaEKMP4aAiyjIdvEhtgVMOai0suuAP+S6OvmmhAK/duLj5B9tNhN9/Nz59HAplbmRzdHJlYW0KZW5kb2JqCjQxIDAgb2JqCjw8IC9MZW5ndGggMjAxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+CnN0cmVhbQp4nD1QMW4DMQzb/Qp+oIAlSrbvPVcEHdL/r6GUtBMJU7JI8hATO/HFBPdGOvFtgysRNPwOZrEFxkLEBFnouAe9WIAWQk1Ma7yH69divmrC4HHpD5ZCR3jCbSOM8Kn960ixy8DjsCNcAdvUzdoxeaEbbOknzTZub8Xa+HN8EjRJmyK2/J+tziJ2JmJNXRXKo7tcXFf5SmpavnS9KqA2CytlvF+UO927h/RZSorZkdvdu12ftSJWnT3fTD1RaSr3X6/3+BmPF9zLRzcKZW5kc3RyZWFtCmVuZG9iago0MiAwIG9iago8PCAvTGVuZ3RoIDQwNyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJwtk0uOHDEMQ/d1Cl2gAOvj33k6GMyic/9tHu0sGlLZFkVS6prdmlWzt7YVsUfaH396s9Xs77PKRjP3YdXNa1p2+zw+p0W3aPpZpCt8nhj7fO9lwUtfVslx5rK+LGvZ8hPcXefKQhd04GXGMO9DNx7mAttuTk2MMt/CipYWvu37eCeryy1G2g6LtXgyQKQeoKw6YQXHJBVlM1BCX6gX4tAidg7O6kd81DiRXvNm2YChZyaolzmedJgkDQuOJX+m0E7WHH7K8tzxbstjLNlH3dynIlFQYCZmVYljUlkdIYclHteNcPGb+aK244pelLh4R0m2M5ySbxrSMeJkg5NeWEGcDQ0alLSmgy8N8AqMib3VB6bBuy8zkO+qIHbNbR8+Uk+FeC/cCuLm29tRDw+mXyE/i4jTQ1wqNds4K+ZZN7rQlC1M43DUGVFdI6EEb1hJj9t7rGPQL+CJ9BcpiY1vrv/EX3ZUq6BdjrwRsUAo89GJLJJuUmjeqIEim/bSDiKnc7OZGmDTurKXCLl/h8/z+/z8A5yFlwgKZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago8PCAvTGVuZ3RoIDIwMyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNUDuuwzAM230KXiCA9bFlnyfFwxva+6+llCLtEtKiQ4u0EegwHB4wn5g+8JBmNsDJq5krhpY0eoELzpbkkI0nbyoO3TDhxCZ0B80672gsMofOTqRCq8Szyb4mMqz+ERO6ldI3HHuBDvzufCtP3IpP3TikEyncZJYiy3/YJZrOH+a3+mXS/cPWRkIEgV1EbrQC7ChXdqqbvVhFYOSA9gkWoFzeKrMOKMcpMTHzacbSqXWOS2UsqxZ7lk4Dnml3dX62//b3Bl5wTAgKZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvTGVuZ3RoIDIxNiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PgpzdHJlYW0KeJxNUUtuRCEM23MKXwCJfIHzUI26aO+/rcObkbpAtkKIHRNbMZCB7hMhm2fgSxorsiZ+i1Tpp0nIPyYrPkw3JAfWgsyFFJwmO2EG1YQO6BwFpynFSEwIzgatptMsFE6eVA/YcswaYnuDFlyoMZId42qd5qVIZTenZF7U4XVD9nj8rPKwbuXWqfZmnOB2yXoT9go9rUSfsCDo9cYVum3o9huRctNCLqNPaLIL6ZGmu93tvV6XWyJzrNHBOkdQfRlig7YZ2GnJ1GTWB0jcf6jUT/turz8XoUwpCmVuZHN0cmVhbQplbmRvYmoKNDUgMCBvYmoKPDwgL0xlbmd0aCAyMDcgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4Kc3RyZWFtCnicNZBLjsMwDEP3PoUuEMDUx7LPk6KYRef+21J2ugj0IhoCybAuXVIunS6B5NflhWbgKlP+D1H4PAQx5+xLfP93uZvPIpWImiZDazqVsQ7lqBky7cy7ocdBaJx7cAJWljgKJ8XZCcMEizdhSlHp+bJJR4ecdIx/eNUe0tFlWUGa+Crgvb1x/T3/JS6RJaz9rLxCh+g2ERANukZWHq3QWBR1Zyagwm5jtb+UZSAr9oAgCrI6gm1kTMSpe84z2ZId8mp2suGn/bv9tfcXdH5N4gplbmRzdHJlYW0KZW5kb2JqCjE1IDAgb2JqCjw8IC9UeXBlIC9Gb250IC9CYXNlRm9udCAvRkxSQlBPK05hbnVtQmFydW5Hb3RoaWMgL0ZpcnN0Q2hhciAwCi9MYXN0Q2hhciAyNTUgL0ZvbnREZXNjcmlwdG9yIDE0IDAgUiAvU3VidHlwZSAvVHlwZTMKL05hbWUgL0ZMUkJQTytOYW51bUJhcnVuR290aGljIC9Gb250QkJveCBbIC00NSAtMjg3IDEwMDAgODM4IF0KL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0NoYXJQcm9jcyAxNiAwIFIKL0VuY29kaW5nIDw8IC9UeXBlIC9FbmNvZGluZwovRGlmZmVyZW5jZXMgWyA0NSAvY2lkMTQgL2NpZDE1IDQ4IC9jaWQxNyAvY2lkMTggL2NpZDE5IC9jaWQyMCA1MyAvY2lkMjIgL2NpZDIzIC9jaWQyNAovY2lkMjUgL2NpZDI2IDk1IC9jaWQ2NCA5NyAvY2lkNjYgMTAwIC9jaWQ2OSAvY2lkNzAgL2NpZDcxIC9jaWQ3MiAvY2lkNzMKL2NpZDc0IDEwOCAvY2lkNzcgL2NpZDc4IC9jaWQ3OSAvY2lkODAgL2NpZDgxIDExNCAvY2lkODMgL2NpZDg0IC9jaWQ4NQovY2lkODYgMTIxIC9jaWQ5MCBdCj4+Ci9XaWR0aHMgMTMgMCBSID4+CmVuZG9iagoxNCAwIG9iago8PCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL0ZvbnROYW1lIC9GTFJCUE8rTmFudW1CYXJ1bkdvdGhpYyAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTQ1IC0yODcgMTAwMCA4MzggXSAvQXNjZW50IDg1MCAvRGVzY2VudCAtMjk5IC9DYXBIZWlnaHQgMAovWEhlaWdodCAwIC9JdGFsaWNBbmdsZSAwIC9TdGVtViAwIC9NYXhXaWR0aCAxMDUyID4+CmVuZG9iagoxMyAwIG9iagpbIDg5MiAyMjQgODkyIDIyNCAyMjQgMjI0IDIyNCAyMjQgMjI0IDg5MiA4OTIgMjI0IDIyNCA4OTIgMjI0IDIyNCAyMjQgMjI0CjIyNCAyMjQgMjI0IDIyNCAyMjQgMjI0IDIyNCAyMjQgMjI0IDIyNCAyMjQgMjI0IDIyNCAyMjQgMjI0IDQ0NiAyOTcgNTgzIDU4Mwo4OTIgODkyIDI5NyA0NDYgNDQ2IDQ0NiA1ODMgMjk3IDU4MyAyOTcgNDQ2IDU4MyA1ODMgNTgzIDU4MyA1ODMgNTgzIDU4MyA1ODMKNTgzIDU4MyAyOTcgMjk3IDQ0NiA1ODMgNDQ2IDY2OSAxMDUyIDY0NCA2MjcgNjM5IDcyMSA1OTYgNTU0IDcxMCA3MTggMjQ3CjQxMCA2MjYgNTI5IDg4NCA3MTAgNzUyIDU4NiA3NTIgNjEwIDU5MiA2MjEgNjk2IDYzNSA5NjEgNjE3IDYxMSA1OTQgNDQ2IDk2MQo0NDYgNDM0IDQ0NiAyOTcgNTYwIDU4OCA0OTAgNTg4IDU1OSAzNDAgNTg4IDU5MiAyNDQgMzAxIDUzMCAyNDQgODkyIDU5MiA1NzcKNTg4IDU4OCAzODMgNDc1IDM1NyA1OTIgNTMwIDc4OCA1MjggNTMwIDQ3MyA0NDYgNDQ2IDQ0NiA2NjkgMjI0IDg5MiAyMjQgMjI0CjIyNCAyMjQgODkyIDg5MiA4OTIgMjI0IDg5MiAyMjQgODkyIDg5MiAyMjQgMjI0IDIyNCAyMjQgMzAzIDMwMyA0NDYgNDQ2IDg5Mgo4OTIgODkyIDg5MiA4OTIgMjI0IDg5MiA4OTIgMjI0IDIyNCAyMjQgMjk3IDg5MiA4OTIgODkyIDg5MiA4OTIgMjI0IDQ0NiA4OTIKODkyIDg5MiA4OTIgODkyIDg5MiA4OTIgMjI0IDQ0NiA4OTIgNDQ2IDQ0NiA4OTIgMjI0IDg5MiA0NDYgNDQ2IDQ0NiA4OTIgODkyCjg5MiA4OTIgODkyIDg5MiAyMjQgMjI0IDIyNCAyMjQgMjI0IDIyNCA4OTIgMjI0IDIyNCAyMjQgMjI0IDIyNCAyMjQgMjI0IDIyNAoyMjQgODkyIDIyNCAyMjQgMjI0IDIyNCAyMjQgMjI0IDg5MiA4OTIgMjI0IDIyNCAyMjQgMjI0IDIyNCA4OTIgODkyIDIyNCAyMjQKMjI0IDIyNCAyMjQgMjI0IDg5MiAyMjQgMjI0IDIyNCAyMjQgMjI0IDIyNCAyMjQgMjI0IDIyNCA4OTIgMjI0IDIyNCAyMjQgMjI0CjIyNCAyMjQgODkyIDg5MiAyMjQgMjI0IDIyNCAyMjQgMjI0IDg5MiAyMjQgXQplbmRvYmoKMTYgMCBvYmoKPDwgL2NpZDE0IDE3IDAgUiAvY2lkMTUgMTggMCBSIC9jaWQxNyAxOSAwIFIgL2NpZDE4IDIwIDAgUiAvY2lkMTkgMjEgMCBSCi9jaWQyMCAyMiAwIFIgL2NpZDIyIDIzIDAgUiAvY2lkMjMgMjQgMCBSIC9jaWQyNCAyNSAwIFIgL2NpZDI1IDI2IDAgUgovY2lkMjYgMjcgMCBSIC9jaWQ2NCAyOCAwIFIgL2NpZDY2IDI5IDAgUiAvY2lkNjkgMzAgMCBSIC9jaWQ3MCAzMSAwIFIKL2NpZDcxIDMyIDAgUiAvY2lkNzIgMzMgMCBSIC9jaWQ3MyAzNCAwIFIgL2NpZDc0IDM1IDAgUiAvY2lkNzcgMzYgMCBSCi9jaWQ3OCAzNyAwIFIgL2NpZDc5IDM4IDAgUiAvY2lkODAgMzkgMCBSIC9jaWQ4MSA0MCAwIFIgL2NpZDgzIDQxIDAgUgovY2lkODQgNDIgMCBSIC9jaWQ4NSA0MyAwIFIgL2NpZDg2IDQ0IDAgUiAvY2lkOTAgNDUgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAxNSAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDAgL2NhIDEgPj4KL0EyIDw8IC9UeXBlIC9FeHRHU3RhdGUgL0NBIDEgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL1R5cGUgL1BhZ2VzIC9LaWRzIFsgMTEgMCBSIF0gL0NvdW50IDEgPj4KZW5kb2JqCjQ2IDAgb2JqCjw8IC9DcmVhdG9yIChNYXRwbG90bGliIHYzLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My4xMC4wKQovQ3JlYXRpb25EYXRlIChEOjIwMjUwMzE0MTQzNTAzWikgPj4KZW5kb2JqCnhyZWYKMCA0NwowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAxNDQ0MCAwMDAwMCBuIAowMDAwMDE0MjQ2IDAwMDAwIG4gCjAwMDAwMTQyNzggMDAwMDAgbiAKMDAwMDAxNDM3NyAwMDAwMCBuIAowMDAwMDE0Mzk4IDAwMDAwIG4gCjAwMDAwMTQ0MTkgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzQwIDAwMDAwIG4gCjAwMDAwMDE2MDUgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAxNTg0IDAwMDAwIG4gCjAwMDAwMTI3NzMgMDAwMDAgbiAKMDAwMDAxMjU2MyAwMDAwMCBuIAowMDAwMDEyMDEzIDAwMDAwIG4gCjAwMDAwMTM4MTggMDAwMDAgbiAKMDAwMDAwMTYyNSAwMDAwMCBuIAowMDAwMDAxNzUxIDAwMDAwIG4gCjAwMDAwMDE5NDggMDAwMDAgbiAKMDAwMDAwMjI0MiAwMDAwMCBuIAowMDAwMDAyNDUxIDAwMDAwIG4gCjAwMDAwMDI3OTYgMDAwMDAgbiAKMDAwMDAwMzM4MyAwMDAwMCBuIAowMDAwMDAzODMwIDAwMDAwIG4gCjAwMDAwMDQ0ODIgMDAwMDAgbiAKMDAwMDAwNDYyOCAwMDAwMCBuIAowMDAwMDA1Mzc0IDAwMDAwIG4gCjAwMDAwMDYwMDkgMDAwMDAgbiAKMDAwMDAwNjEzOCAwMDAwMCBuIAowMDAwMDA2NjQwIDAwMDAwIG4gCjAwMDAwMDcwNjcgMDAwMDAgbiAKMDAwMDAwNzQ4NCAwMDAwMCBuIAowMDAwMDA3Nzc0IDAwMDAwIG4gCjAwMDAwMDgyODUgMDAwMDAgbiAKMDAwMDAwODU1NiAwMDAwMCBuIAowMDAwMDA4NzgwIDAwMDAwIG4gCjAwMDAwMDg5MDYgMDAwMDAgbiAKMDAwMDAwOTM0NiAwMDAwMCBuIAowMDAwMDA5NjM4IDAwMDAwIG4gCjAwMDAwMTAwMDkgMDAwMDAgbiAKMDAwMDAxMDQxNCAwMDAwMCBuIAowMDAwMDEwNjg4IDAwMDAwIG4gCjAwMDAwMTExNjggMDAwMDAgbiAKMDAwMDAxMTQ0NCAwMDAwMCBuIAowMDAwMDExNzMzIDAwMDAwIG4gCjAwMDAwMTQ1MDAgMDAwMDAgbiAKdHJhaWxlcgo8PCAvU2l6ZSA0NyAvUm9vdCAxIDAgUiAvSW5mbyA0NiAwIFIgPj4Kc3RhcnR4cmVmCjE0NjUzCiUlRU9GCg==\n" }, "metadata": {} } ], "source": [ "mglearn.tools.heatmap(grid.cv_results_['mean_test_score'].reshape(3, -1),\n", " xlabel=\"ridge__alpha\", ylabel=\"polynomialfeatures__degree\",\n", " xticklabels=param_grid['ridge__alpha'],\n", " yticklabels=param_grid['polynomialfeatures__degree'], vmin=0)\n", "plt.show() # 책에는 없음" ] }, { "cell_type": "code", "execution_count": 34, "metadata": { "id": "W08f3VFwQOdf", "outputId": "226aa300-1b4b-4b95-986b-1cbc039ce572", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "최적의 매개변수: {'polynomialfeatures__degree': 2, 'ridge__alpha': 10}\n" ] } ], "source": [ "print(\"최적의 매개변수:\", grid.best_params_)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "id": "48b7f9irQOdf", "outputId": "827e60ae-9f1b-4fed-e0d3-afc797f073ba", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "테스트 세트 점수: 0.77\n" ] } ], "source": [ "print(\"테스트 세트 점수: {:.2f}\".format(grid.score(X_test, y_test)))" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "id": "VvBW4M9QQOdg", "outputId": "18aaf0e6-ad21-448f-d393-01f84207fc27", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "다항 특성이 없을 때 점수: 0.63\n" ] } ], "source": [ "param_grid = {'ridge__alpha': [0.001, 0.01, 0.1, 1, 10, 100]}\n", "pipe = make_pipeline(StandardScaler(), Ridge())\n", "grid = GridSearchCV(pipe, param_grid, cv=5)\n", "grid.fit(X_train, y_train)\n", "print(\"다항 특성이 없을 때 점수: {:.2f}\".format(grid.score(X_test, y_test)))" ] }, { "cell_type": "markdown", "metadata": { "id": "RJT4uau1QOdh" }, "source": [ "## 6.6 모델 선택을 위한 그리드 서치" ] }, { "cell_type": "code", "execution_count": 37, "metadata": { "id": "iBZUi2GWQOdi" }, "outputs": [], "source": [ "pipe = Pipeline([('preprocessing', StandardScaler()), ('classifier', SVC())])" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "id": "1s9hzEK3QOdi" }, "outputs": [], "source": [ "from sklearn.ensemble import RandomForestClassifier\n", "\n", "param_grid = [\n", " {'classifier': [SVC()], 'preprocessing': [StandardScaler()],\n", " 'classifier__gamma': [0.001, 0.01, 0.1, 1, 10, 100],\n", " 'classifier__C': [0.001, 0.01, 0.1, 1, 10, 100]},\n", " {'classifier': [RandomForestClassifier(n_estimators=100)],\n", " 'preprocessing': [None], 'classifier__max_features': [1, 2, 3]}]" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "id": "QBV0Yc6aQOdi", "outputId": "ba51aada-cd69-4528-c810-b17b818da26d", "colab": { "base_uri": "https://localhost:8080/" } }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "최적의 매개변수:\n", "{'classifier': SVC(), 'classifier__C': 10, 'classifier__gamma': 0.01, 'preprocessing': StandardScaler()}\n", "\n", "최상의 교차 검증 점수: 0.99\n", "테스트 세트 점수: 0.98\n" ] } ], "source": [ "X_train, X_test, y_train, y_test = train_test_split(\n", " cancer.data, cancer.target, random_state=0)\n", "\n", "grid = GridSearchCV(pipe, param_grid, cv=5)\n", "grid.fit(X_train, y_train)\n", "\n", "print(\"최적의 매개변수:\\n{}\\n\".format(grid.best_params_))\n", "print(\"최상의 교차 검증 점수: {:.2f}\".format(grid.best_score_))\n", "print(\"테스트 세트 점수: {:.2f}\".format(grid.score(X_test, y_test)))" ] }, { "cell_type": "markdown", "metadata": { "id": "8rU4u4SIQOdj" }, "source": [ "### 6.6.1 중복 계산 피하기" ] }, { "cell_type": "code", "execution_count": 40, "metadata": { "id": "zbOCjJDFQOdj" }, "outputs": [], "source": [ "pipe = Pipeline([('preprocessing', StandardScaler()), ('classifier', SVC())],\n", " memory=\"cache_folder\")" ] }, { "cell_type": "markdown", "metadata": { "id": "OVoiUG42QOdj" }, "source": [ "## 6.7 요약 및 정리" ] } ], "metadata": { "anaconda-cloud": {}, "environment": { "kernel": "python3", "name": "common-cpu.m102", "type": "gcloud", "uri": "gcr.io/deeplearning-platform-release/base-cpu:m102" }, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.12" }, "colab": { "provenance": [] } }, "nbformat": 4, "nbformat_minor": 0 }