{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "RcbU7uu7akGj" }, "source": [ "# 머신 러닝 교과서 3판" ] }, { "cell_type": "markdown", "metadata": { "id": "WOFUIVf8akGn" }, "source": [ "# 7장 - 다양한 모델을 결합한 앙상블 학습" ] }, { "cell_type": "markdown", "metadata": { "id": "CwcCkUCsakGn" }, "source": [ "**아래 링크를 통해 이 노트북을 주피터 노트북 뷰어(nbviewer.jupyter.org)로 보거나 구글 코랩(colab.research.google.com)에서 실행할 수 있습니다.**\n", "\n", "
\n",
" 주피터 노트북 뷰어로 보기\n",
" | \n",
" \n",
" 구글 코랩(Colab)에서 실행하기\n",
" | \n",
"
MajorityVoteClassifier(classifiers=[Pipeline(steps=[('sc', StandardScaler()),\n",
" ('clf',\n",
" LogisticRegression(C=0.001,\n",
" random_state=1))]),\n",
" DecisionTreeClassifier(criterion='entropy',\n",
" max_depth=1,\n",
" random_state=0),\n",
" Pipeline(steps=[('sc', StandardScaler()),\n",
" ('clf',\n",
" KNeighborsClassifier(n_neighbors=1))])])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. MajorityVoteClassifier(classifiers=[Pipeline(steps=[('sc', StandardScaler()),\n",
" ('clf',\n",
" LogisticRegression(C=0.001,\n",
" random_state=1))]),\n",
" DecisionTreeClassifier(criterion='entropy',\n",
" max_depth=1,\n",
" random_state=0),\n",
" Pipeline(steps=[('sc', StandardScaler()),\n",
" ('clf',\n",
" KNeighborsClassifier(n_neighbors=1))])])MajorityVoteClassifier(classifiers=[Pipeline(steps=[('sc', StandardScaler()),\n",
" ('clf',\n",
" LogisticRegression(C=0.001,\n",
" random_state=1))]),\n",
" DecisionTreeClassifier(criterion='entropy',\n",
" max_depth=1,\n",
" random_state=0),\n",
" Pipeline(steps=[('sc', StandardScaler()),\n",
" ('clf',\n",
" KNeighborsClassifier(n_neighbors=1))])])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. MajorityVoteClassifier(classifiers=[Pipeline(steps=[('sc', StandardScaler()),\n",
" ('clf',\n",
" LogisticRegression(C=0.001,\n",
" random_state=1))]),\n",
" DecisionTreeClassifier(criterion='entropy',\n",
" max_depth=1,\n",
" random_state=0),\n",
" Pipeline(steps=[('sc', StandardScaler()),\n",
" ('clf',\n",
" KNeighborsClassifier(n_neighbors=1))])])