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Abstract

owadays, the amount of available computing resources is limitless

and the energy consumption in IT is assuming an increasing impor-

tance due to the huge number of compute-intensive applications

used in business and scientific fields. In 2014 the IT infrastructures in

United States consumed about 70 billion kWh and this data has been esti-

mated to grow to 73 billion kWh by 2020. Besides the significant amounts

of money (e.g., 7.4 billion dollars in 2011), large energy consumption val-

ues also come with enormous volume of greenhouse gases released into the
atmosphere.

While several efforts have been done to improve the data-centers’ energy
efficiency, their energy consumption must be further reduced, for example,
taking into consideration the workload heterogeneity. In this thesis, new
techniques to evaluate and improve the energy efficiency of data-centers are
proposed. To this end, performance modeling approaches such as queuing
networks, Petri nets and stochastic processes are applied, and analytical and
discrete event simulation techniques are used.

To investigate the data-centers energy consumption problem, four differ-
ent paths are followed: i) a new power model is proposed for better charac-
terize current systems’ architecture; ii) a new energy metric is introduced
to account for data-centers’ workload heterogeneity; iii) a new framework
is adopted to study Big data applications; iv) epistemic uncertainty is prop-
agated into a model to improve the accuracy of its output measures.

The power model proposed in this thesis accounts for both dynamic volt-
age/frequency scaling and simultaneous multi-threading, two widespread
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energy saving techniques used in multi-core architectures. The energy per
time-unit of execution is the new energy-performance trade-off metric that
also considers the heterogeneity of the workload. Pool depletion systems is
the framework proposed to analyze all the applications that generate a large
number of tasks which must be executed by one or more subsystems with
limited capacity (e.g., Big Data applications), and investigate new schedul-
ing strategies to decrease their execution time. Finally, since stochastic
models are fundamental in this thesis, epistemic uncertainty propagation is
studied. It allows the modeler to take into account the impact of uncertain
input parameters on the output measures of the model.
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Sommario

alcolatori piu performanti e un maggior numero di operazioni com-

plesse eseguite sia dalle industrie sia nel campo scientifico hanno

portato a un elevato consumo energetico nel settore delle tecnolo-

gie dell’informazione. Negli Stati Uniti, tale consumo energetico ammon-

tava a 70 TWh nel 2014 e lo si stima crescere fino a 73 TWh entro il

2020. 11 consumo di grandi quantita di energia ¢ un problema per il set-
tore dell’informazione a causa degli ingenti costi economici e ambientali.

Nonostante siano stati fatti molti sforzi per diminuire il consumo en-
ergetico di queste infrastrutture, ancora molto puo essere fatto tenendo
in considerazione, per esempio, 1’eterogeneita delle applicazioni eseguite.
In questa tesi vengono proposti nuovi metodi per valutare e migliorare
I’efficienza energetica dei data-center, ricorrendo ad approcci analitici e
simulativi per la modellazione delle prestazioni, quali le reti di code, le reti
di Petri e 1 processi stocastici. Per affrontare questo problema abbiamo fatto
ricorso a diverse metodologie come: i) un nuovo modello per la miglior
caratterizzazione dell’architettura e del consumo energetico dei nuovi sis-
temi; ii) una nuova metrica che considera I’eterogeneita del carico di lavoro
di questi sistemi per valutare con piu precisione le loro prestazioni; iii)
un nuovo framework per studiare le applicazioni Big Data; iv) I’incertezza
epistemica usata per migliorare 1’accuratezza dei modelli.

Diversamente dai modelli di potenza attualmente disponibili, quello pro-
posto in questa tesi tiene in considerazione, contemporaneamente, due tec-
niche per il risparmio energetico molto diffuse: il dynamic voltage/fre-
quency scaling e il simultaneous multi-threading. 1L energia per unita di
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tempo di esecuzione, la nuova metrica proposta in questa tesi, valuta an-
che I’eterogeneita delle applicazioni per studiare il trade-off tra le perfor-
mance del sistema e il suo consumo energetico. Pool depletion systems
¢ il framework proposto sia per studiare tutte le applicazioni che gener-
ano un gran numero di richieste poi eseguite da uno o piu sottosistemi
con capacita limitata, sia per proporre una nuova strategia di pianificazione
in grado di diminuire il tempo di esecuzione di queste applicazioni. In-
fine, poiché 1 modelli stocastici sono di fondamentale importanza in questa
tesi, ¢ stata considerata anche la propagazione dell’incertezza epistemica,
in quanto permette di studiare come i risultati di un modello vengano in-
fluenzati dall’incertezza dei suoi parametri in ingresso.
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CHAPTER

Introduction

1.1 Motivations: the need for energy efficiency

Data-centers power consumption is one of the greatest issues that I'T orga-
nizations must face; indeed, to enable future expansions [8]], it is necessary
to take under control the energy related costs. The U.S. data-centers energy
consumption will be 73 billion kWh in 2020 [[124]]. Although it is esti-
mated to increase only by 4% with respect to 2014, it is still an important
problem, if considering that the worldwide amount of energy consumed
for data-centers in 2014 has been estimated to be 270 TWh [136]. More-
over, even if large data-centers have made great improvements in energy
efficiency, small and medium data-centers — that are generally used in med-
ical, retail, office, and education sectors — are difficult to monitor and may
affect the global energy consumption trend due to their wide diffusion [55].

Besides being a huge cost for every IT company, the energy high de-
mand of data-centers has also an environmental impact due to the emission
of large quantities of greenhouse gases. Indeed, according to the litera-
ture, data-centers are estimated to be responsible for 2% to 10% of global
CO, emissions [96,[109] and the U.S. Environmental Protection Agency
estimated that 67.9 million metric tons of C'O5 have been released in the
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Chapter 1. Introduction

atmosphere in 2011 by IT industry [10].

For these reasons, the reduction of data-centers energy consumption is
crucial when new infrastructures and applications are developed. Reduc-
ing energy consumption allows IT companies to increase their revenues in
several different ways. First of all, it lowers the electricity bill, letting the
company save several money. Then, reducing the carbon tax the organiza-
tion must pay when the C'O, emitted by their infrastructure exceeds some
thresholds [116]]. Finally, the governments may also apply some credit
and cap-and-trade systems in order to limit the data-centers C'O, produc-
tion [[85,[129]]. For instance, when a business exceeds allowed carbon diox-
ide emission levels, it must purchase either credits or carbon offsets from
the market — usually, less polluting companies — to be permitted to keep on
working and producing C'Os.

1.2 Problems and research objectives

Due to its relevance for IT organizations, the problem of energy consump-
tion in data-centers has been largely studied by scientists from industry and
academia. Many different techniques have been proposed, such as frame-
works and tools to directly reduce the energy consumption of a server, or
scheduling strategies to better allocate the incoming requests, thus being
able to turn off unused resources. Nonetheless, several efforts are still re-
quired in order to further improve the available techniques and introduce
new approaches. The main problems studied in this thesis are:

e Power models. As said, over the years several techniques and strate-
gies have been proposed in literature in order to improve the data-
centers energy efficiency. However, most of the proposals require a
suitable power model that can estimate the power consumption of the
system starting from simple system parameters, such as the utiliza-
tion of its resources. Especially when the techniques considered are
based on results that exhibit a non-linear behavior, the accuracy of the
power consumption model is of paramount importance to correctly
identify the optimal system configurations that can achieve the target
performance with the lowest possible power budget. The typical use
of analytic expressions for the power computation is the inclusion of
energy characterization in models of the system defined using suitable
formalisms, i.e., queuing networks, Petri nets, Markov chains. Taking
into account widespread commercial power reduction techniques, like
dynamic voltage/frequency scaling (DVFS) and multi-threading, we
can provide a more detailed power consumption expressions that can

2



1.2. Problems and research objectives

be used to obtain more accurate estimates. Unfortunately, the avail-
able power models either do not consider these power-saving features,
or do not account for both of them at the same time [|16,/107,(149].

e Multi-class workloads. The available techniques and metrics pro-
posed to reduce power consumption through the application of effi-
cient load control strategies rarely take into consideration the multi-
class nature of system workload, i.e., jobs with different characteris-
tics and behavior. However, this type of workloads may be composed
by a mix of jobs that saturates different resources, thus it is an im-
portant system’s feature which may be exploited in order to increase
the utilization of each resource, thus decreasing the idle period of a
server. Indeed, a scheduler that accounts for the mix of requests in
execution could make the system work with an optimal mix. This
way, the utilization of each server increases and the system’s energy
consumption decreases, since a strong relationship between a server
power consumption and its CPU utilization has been proven in litera-
ture [49,/138]. However, the available power metrics (8] analyze the
power consumption of a data-center assuming it is processing only a
single class of job. This assumption may decrease the accuracy of the
power/energy metrics and, in the worst case, also make the user take
a sub-optimal decision about the strategy that should be adopted.

¢ Epistemic uncertainty. When a model is adopted to study a physical
system, its input parameters are usually estimated from either obser-
vations or experts’ opinions. In both these cases, the value of the
parameters is not the exact one since it is derived from a finite number
of samples. For this reason, it is necessary to assume that some of the
input parameters of the model are assessed with uncertainty, thus to
be stochastic. Those input parameters become input random variables
with a probability density function (pdf). Thus, the model does not
return an exact value, but some stochastic results with a confidence
interval. Differently from aleatory uncertainty — that has been largely
considered in literature [58,/117]] and that is due to the natural varia-
tions of the physical phenomenon modeled — epistemic uncertainty is
introduced into the model by a lack of knowledge (i.e., finite number
of observations) and needs to be propagated to the output. Albeit in
the former case the uncertainty is reduced improving the model itself,
in the latter one it may be curtailed by collecting a larger amount of
samples for a more accurate input parameters estimation.

e Other systems and applications. Energy consumption has become

3



Chapter 1. Introduction

such an important problem also due to the wide diffusion of portable
devices (e.g., smartphones, sensors, etc.) [10,/106]. Indeed, they are
usually powered by a battery with a short lifetime, thus it is impor-
tant to efficiently manage power and energy requirements in order to
extend their life. In other words, reducing energy consumption is fun-
damental when dealing with mobile devices in order to increase the
lifetime of their battery, differently from the data-centers case where
energy efficiency is crucial to increase the companies revenues. For
these reasons, analyzing energy consumption in small devices to make
their lifetime longer is another important feature that may be enabled
by power models.

1.3 Possible solutions and original contributions

In order to cope with the problems highlighted in Section different
models and techniques are proposed and applied in this thesis. They are
presented and briefly discussed in the following.

e A model to estimate the power consumption of a multi-core CPU,
when both DVFS and multi-threading are enabled, is provided. It
needs some parameters that may be easily derived from operational
and machine characteristics (e.g., number of active threads, frequency,
etc.) and some calibration parameters that must be derived from the
experiments. It has been tested considering different physical ma-
chines and its performance have been evaluated against those of the
already available power models.

e In order to take into consideration the multi-class workload and its
properties, two different strategies have been pursued:

— a new energy metric, namely energy per time-unit of execution
(EX), has been proposed to let the users consider different classes
of request. This metric may be exploited to evaluate the perfor-
mance of energy saving strategies in a multi-class environment;

— Pool depletion systems are proposed and deeply analyzed. This
new framework lets the users consider a system made of a pool
of heterogeneous tasks that must be depleted in the shortest time
by machines with finite capacity. Besides varying the capacity of
each server and the number of tasks in the pool, this framework
is also studied considering a different number of available servers
and multi-core components.

4



1.4. Structure of the thesis

e The epistemic uncertainty propagation is studied from different point
of views. First of all, the case of an M/M/1 queue is analyzed as-
suming the uncertain input parameters are the inter-arrival and service
rates. In particular, the average number of customer in the queue and
its average response time are studied based on the distribution of the
two input parameters. Then, epistemic uncertainty propagation is ap-
plied to the case of a power model; for this purpose, the input parame-
ters that affect the most the output measures are identified and further
analyzed. Furthermore, a technique involving parametric sensitivity is
used to quickly identify the most uncertain input parameters; it is pro-
posed and its efficiency is shown considering a dependability model.

e The energy consumption problem is studied also from the portable
devices perspective. In particular, the case of Mobile CrowdSensing
(MCS) — a contribution-based paradigm involving mobiles in perva-
sive application deployment and operation — is studied.

1.4 Structure of the thesis

The remainder of this work is divided into four parts. Part[l| presents basic
concepts that will be considered in the rest of the thesis. Part|lljintroduces
a new framework used to optimize the Big Data applications performance.
Epistemic uncertainty propagation is studied and analyzed in Part Fi-
nally, in Part|[V|the energy consumption problem is evaluated relatively to
a Mobile CrowdSensing system.

More precisely, Chapter 2] discusses the main characteristics and proper-
ties of multi-class workloads, presents some of the power models available
in literature and introduces the work done on epistemic (parametric) uncer-
tainty propagation. Chapter [3] describes the model proposed to take into
consideration both DVFS and multi-threading while studying the power
consumption of a multi-core CPU, whereas Chapter @] introduces the En-
ergy per time-unit of Execution metric that takes into account the different
nature of each job.

Chapter [5] presents the Pool depletion systems framework and some
possible exploitations, in order to take advantageous scheduling decisions
while considering a pool of tasks that must be executed in the shortest time.

Chapter [0] studies an M/M/1 queue under the hypothesis of uncertain
inter-arrival and service rates. In Chapter [/| uncertainty propagation is ap-
plied to a power model to determine the input parameters that most affect
its output measures. Chapter [§]identifies a relationship between epistemic
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Chapter 1. Introduction

uncertainty and parametric sensitivity that may be used to analyze large and
complex model.

Chapter [9] proposes a queuing network model to study the performance
and the energy consumption of a Mobile CrowdSensing system.

Finally, Chapter draws the conclusions of this work, outlining the
future directions.

Several results of this thesis have been presented to international confer-
ences. Some of them have also been published on (or accepted by) scientific
journals. Finally, some new results have not been published yet.

The published contributions are:

the power model that considers both DVFS and hyper-threading strate-
gies of a multi-core CPU (Chapter [3) was introduced in [23]] and fur-
ther extended in this thesis;

the Energy per time-unit of Execution metric (Chapter [4) that takes
into account the class of each job has been originally proposed in [22];

the Pool depletion systems framework (Chapter [5)) has been the sub-
ject of multiple studies: in [24] a first analysis is proposed, analytical
equations for the one subsystem case are given in [25] and they are
extended to handle multiple subsystems in [[112];

the problem of epistemic uncertainty propagation in power models
(Chapter was first introduced in [63]];

the relationship between epistemic uncertainty and parametric sensi-
tivity (Chapter [)) was investigated in [113]];

finally, the queuing network to study MCS applications (Chapter [9)
has been first proposed in [[111]] and extended in [110].

The unpublished contributions are:

the state of the art (Chapter [2);

case study and numerical results of Energy per time-unit of Execution
metric in Section 4.4}

the experimental analysis of Pool depletion systems presented in Sec-
tion [5.4.3] and the battery-operated Pool depletion systems (Section
5.5.2);

epistemic uncertainty propagation in M/M/1 queue (Chapter [0, that
has been submitted to ACM TOMPECS]

Ihttps://tompecs.acm.org/
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CHAPTER

State of the art

Queuing networks (QNs) are used in this work to model data-centers and
study their energy consumption. In particular, the benefits of working in an
optimal operational point are analyzed from the power consumption point
of view. Moreover, epistemic (parametric) uncertainty propagation is also
considered and its effects on the output measures of both M/M/1 queues
and power models are studied.

In this chapter, available work on queuing networks, data-centers en-
ergy consumption and epistemic uncertainty propagation are analyzed and
discussed.

2.1 Multi-class and multi-resource queuing networks

Computer systems may be modeled through the QN framework; it consists
of a network of queues, where each different queue represents a service
center [[84]]. The resources of the network are visited by the jobs (or users)
that ask to be served. Once a job has been served by a resource, it is routed
to another resource. A QN may be either open or closed: in an open QN
the jobs arrive with a given rate (i.e., inter-arrival rate) at the model and
leave once they have been completely processed; a QN is closed when the

9



Chapter 2. State of the art

number of customers into the model is known and does not change during
the analysis. QN models are a common tool to study computer systems
thanks to the low costs of definition, parameterization and evaluation, and
the high accuracy of the results provided.

QN are a subset of queuing theory [84]; indeed, while queuing theory is
mainly focused on modeling complex systems with a single service center
and complex characteristics, QN aims to model the system using multiple
service centers with simple characteristics. Moreover, several extensions
of QN have been proposed; Kelly networks [78]] are the most important for
what concern this thesis. Differently from Jackson networks [75]] that take
into account only a class of customers, Kelly networks can model several
classes of jobs. Although systems with single-class workload are easier
to be analyzed, multi-class networks are more common since they allow
to model real systems and provide more reliable results. Indeed, multi-
class workloads let the modeler distinguish between requests with different
behaviors, such as a system that processes both jobs that saturate the CPU
and another type of jobs that saturate the I/O.

For the purpose of this thesis, multi-resource and multi-class QN are
used to model the systems considered. In particular, in order to prevent
the model from becoming too complex to be analyzed, but still considering
reasonable approximation of the real systems, two-resource and two-class
QN are used. Moreover, this kind of systems has been proven to have an
optimal operational point [118]] and closed-form expressions have been pro-
vided to identify it. Further details about this property are given in Section
AN

Networks of queues may be evaluated through different approaches [84]:
i) performance bounds analysis, a simple technique that allows evaluation
with very low complexity; ii) computation of the values of performance
metrics, obtained with complex but efficient algorithms; iii) QN simulation,
that is more flexible but also more expensive than other approaches. The
techniques that have been mainly adopted in this thesis are the analytical
and simulative ones.

2.1.1 Common saturation sector and equi-utilization point

Closed QN with two resources and two-class workloads have been deeply
analyzed by Rosti et al. in [118]. In particular, they proved that an op-
timal operational point — where the system pOWCIEI [80] and the sum of
the utilization of all the resources are maximized — exists. They provided

21t is defined as the ratio of system throughput to system response time, thus it increases when the system
throughput increases or the system response time decreases.

10



2.1. Multi-class and multi-resource queuing networks

closed-form expressions to derive such a point, just assuming to know the
matrix [D,.], where D, is the service demand of a class ¢ job when it is
served by a resource r (i.e., the amount of service time required to resource
r by a complete execution of a class ¢ job).

The population mix of a QN with multi-class workload is defined as a
vector of fraction of customers of each class, 5 . Indeed, if N4 and Np are
the number of customers in the system for class A and class B, respectively,
the population mix is derived as:

3 Ny Np
B = (Ba,BB) = (W’ N (2.1)
where N = N, + Np. The optimal operational point coincides with the
equi-utilization one. Since a two-resource model is considered, in this point
itis U; = U,, where U, is the global utilization of resource r.

In order to determine the equi-utilization point, also known as optimal

population mix, E*, the following equation is given in [[118]:

— %
B = (52 = le—AlDiB’BE =1- 52) (2.2)
DipD2a
Note that, the equi-utilization point only depends on the service demands,
D, ., and not on either the number of class A and class B jobs or their sum,
N.

Besides the equi-utilization point 5*, also the equi-load point may be
derived. Although two equally loaded stations may be expected to be also
equally utilized, it is not true. Indeed, the equi-load point, @* is computed
as:

DDy p )
ar=|(a% = ,ap=1—a7 (2.3)
( A Dia+ Dy —Dip—Dys’ P A

thus resulting in a different point with respect to the equi-utilization one.
Finally, the equi-utilization point is shown to belong to the common sat-
uration sector [S|I 18] (see Figure[2.1). It is defined as a sector of population
mixes for which both the resources saturate and become the bottlenecks of
the system. For example, in the case of D14 > Dyy and Do > Dip the
bottleneck of the system is resource 1 when 5 = (1,0) (i.e., only class
A jobs are into the system) and resource 2 when E = (0,1) — being the
bottleneck of a single class model defined as the resource with the largest
service demand [40]. For this reason, there is at least a population mix for
which the bottleneck of the system switches from resource 1 to resource 2.
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Figure 2.1: Representation of the common saturation sector (bold line), equi-utilization
and equi-load points defined in [11§].

Starting from this consideration, the edges (i.e., population mixes) of the
common saturation sector, 3'°% and 5"?, are defined as follows:

Dyp — D1 low low
y¥B 1- A
DiaDop — DayDip 2.4)
DQB - DlB up _ 1 — up) .
DiaDyp — DopaDyp’ P A

BzowZ(leZDzA
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When the population mix is outside the common saturation sector, only
one of the two resources is saturating, otherwise both of them are the
bottlenecks of the system. Similar results may be obtained for the case
Doy > Dygqand D1g > Doyp.

Figure [2.1] depicts all the population mixes with which a system may
work, that are all the values between 54 = 0 (i.e., /5’ =(0,1))and B4 =1
(i.e., E = (1,0)). Considering the case D14 > Dyy and Dyp > Dip,
resource 2 is the bottleneck of the system when 0 < 84 < A%“. On
the contrary, resource 1 saturates when /)" < 4 < 1. Finally, both the
resources are saturating when the system works with a population mix such
that B¢ < 84 < B (i.e., the population mix is in the common saturation
sector). In the same figure, it is also shown that the equi-utilization point,
B%, and the equi-load one, %, belong to the common saturation sector, but
are distinct.

2.2 Power and energy models and strategies

The ever-increasing data-centers energy consumption leaded computer sci-
entists to develop techniques to decrease the amount of energy a data-center
needs to properly work.

Although power consumption models and energy-saving techniques have
been proposed for many of the aspects that affect the data-centers perfor-
mance (e.g, computer architecture, operating system, algorithms), for the
purpose of this work only performance metrics (e.g., throughput, response
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time, resources’ utilization, etc.) have been considered, thus providing a
better view on architectural aspects.

2.2.1 Basic concepts

As stated in [[10], it is fundamental to have a deep knowledge of the basic
concepts related to power and energy consumption in order to better under-
stand the mechanisms used for their management. The power of a system
is the rate at which the work is performed, it is measured in watts (W) and
it is one watt when one Ampere is transferred through a potential differ-
ence of one volt. Instead, energy is defined as the amount of work done
in a period of time and is measured in Joule (J) or watt-hour (Wh), with
1 Wh = 3600 J. Energy equivalent to a watt-hour is consumed when the
power of one watt is run for one hour.
Power and energy are computed through Eqgs. (2.5) and (2.6), respec-
tively:
P=V-I (2.5)

E=P-T (2.6)

where V' is the voltage (measured in volts), [ is the electric current (mea-
sured in Amperes) and 7' is the period of time considered.

For the purpose of this work, the difference between power and energy
is essential; indeed, reducing power consumption does not implies that also
energy consumption is decreased [[10]. First of all, consider the distribution
of costs between power and energy. Power inefficiency is mainly due to un-
derutilized resources — although the resources are used for less than 50% on
average, the infrastructure must be built to manage the peak load that rarely
occurs — thus, it is an infrastructure cost. Instead, energy consumption ac-
counts for electricity bills, which is the main cost of a data-center. Then, let
us assume the CPU power consumption (i.e., its performance) is reduced
to the purpose of reducing the energy consumed by the CPU itself. If it is
done, the time required by the CPU to complete a given task is stretched.
Since energy is computed as shown in Eq. (2.6), the energy consumed by
the underpowered CPU may be as high as the one used by a more powerful
CPU that stops working after a shorter time.

2.2.2 Energy-aware techniques classification

Several authors recognize the existence of a correlation between the utiliza-
tion of the resources and their energy consumption [9}/12,79]]. In fact, even
if a resource is idle (i.e., its utilization is U = 0%), some power is required
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to keep that resource on. As stated in [49]], the amount of power required
to keep on a server is not lower than half of the peak power (i.e., the power
needed when the server is fully utilized). For this reason, turning off the un-
der utilized servers may help to decrease a data-center energy consumption.
Such a decision must be taken considering also the service level agreements
(SLAs) between the service provider and the users, since providing reliable
quality of service (QoS) is an important requirements for data-centers and
cloud computing [10]]. Indeed, even if a shut down server does not con-
sume energy, it may require several minutes to be turned on when needed,
thus slowing down the new processing, increasing the response time and
decreasing the throughput. Also reducing the number of available servers
may degrade the performance due to an increased load on the remaining
ones. For this reason, the trade-off between utilization of the resources and
time required to execute a job is a crucial factor which must be considered
when trying to minimize the energy consumption of a data-center.

Several approaches have been proposed in order to cope with the energy
consumption problem in data-centers and they have been classified by Jin
et al. [76]]. They identified four main categories to describe the techniques
used to improve the data-centers energy efficiency, which are represented
in Figure

Energy efficiency techniques. It is the main approach applied to de-
crease the energy consumption of computing devices. Tools and frame-
works are exploited to this purpose. Dynamic voltage/frequency scaling
(DVES) is a widely adopted technique belonging to this set of strategies. It
focuses on reducing chip’s voltage and frequency in order to decrease its
energy consumptions. Besides decreasing its speed, a device may be also
turned off through power-down mechanisms. Indeed, when a device is idle
(i.e., it is on but is not used), it may be shut down in order to save energy.
Other technique are used to increase the CPU utilization (thus, its power
consumption); it is the case of simultaneous multi-threading (SMT) that
enables the parallel execution of multiple independent threads.

Resource management. Virtualization and cloud computing are also
used to increase the energy efficiency of a data-center. As stated in [[10],
while virtualization allow to create several virtual machines (VMs) on a
physical server, thus increasing its utilization, cloud computing is a power
efficient framework since it allows to adjust resource usage depending on
users’ current requirements and the cloud provider may efficiently arrange
all the incoming requests. In fact, the main technique belonging to this
category is the workload consolidation that lets the provider increase the
efficiency of the data-center, for example increasing the resources utiliza-
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tion, thus decreasing the global execution time. Other techniques are the
network traffic engineering, i.e., frameworks that allow to aggregate and
redirect traffic to make some resources enter a low-power state, the power
distribution that allows to better allocate the available power, and the use of
renewable energy.

Green metrics. Cloud providers need appropriate metrics to evaluate
the greenness of their data-centers and the efficiency of the energy saving
techniques adopted. The parameters such as the carbon dioxide emissions
and the efficiency of the data-centers should be clearly visualized by the
cloud providers in order to take suitable decisions about how to increase
their revenues. Moreover, monitoring, controlled experiments and simula-
tions may provide crucial information during the data-center design phase.

Thermal control. High power consumption and the increasing den-
sity of data-centers’ components make heat dissipation grow. This is a
data-center critical problem for several reasons; since the reliability of each
component is affected by the data-center temperature, cooling mechanisms
are required, thus power consumption further rises. It has been estimated
that, for each watt consumed by a resource, 0.5 to 1 more watt is required
for the cooling system [10]. In fact, almost half of the energy consumed by
the data-centers is for the cooling [|36,/49,93]]. However, recent studies [47]]
concluded that data-centers can operate with hotter temperature than the
current ones, without excessively reduce the life of the components, thus
decreasing the energy consumption.

In this thesis the first three approaches have been considered. Indeed,
as previously said, a power model to consider DVFS and multi-threading
is deployed, a workload consolidation problem is studied, and a metric to
better evaluate energy consumption in multi-class workload systems is pro-
posed.

2.2.3 Energy saving algorithms and frameworks for data-centers

Several energy saving techniques available in literature have been analyzed
by [10] and [67]. According to Beloglazov et al. [10], the available algo-
rithms and strategies may also be distinguished based on the environment
considered: non-virtualized or virtualized.

Resource management, scheduling algorithms and power management
are the main strategies adopted to decrease energy consumption of non-
virtualized systems [28,48,54,57, 114, 128]. Usually, besides a monitoring
phase, where the workload (e.g., the incoming requests to a web server)
is observed, the technique adopted change the current system configura-
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Figure 2.2: The green data-centers techniques identified in [76|]. The strategies adopted
in this thesis are marked by x on the top-left corner.

tion. For example, it may turn on/off the physical nodes, change the CPU
frequency or schedule the requests on different resources to decrease the
system energy consumption while complying with the SLAs.

Pinheiro et al. [114]] proposed an algorithm to spread (i.e., load balanc-
ing) or concentrate (i.e., load unbalancing) the incoming requests on either
all the nodes or just a few of them, respectively. While the balancing tech-
nique is adopted to reach required performance levels and comply with the
SLAs, the load concentration is used to make some nodes idle, thus being
able to shut them down and save energy. The algorithm considers three
different resources (CPU, disk and network), but it is claimed to be imple-
mented on a single node — thus, resulting in a single point of failure and
possibly becoming the bottleneck of the system — and be able to turn off
one node at a time, potentially resulting in bad performance when applied
to large clusters.

Chase et al. 28] proposed an operating system (OS) for Internet hosting
centers, that works with the OS of the available servers to coordinate the
data-centers’ components. Besides efficiently scheduling the incoming re-
quests taking into account power consumption and SLAs, the OS proposed
also decrease the power consumption of the CPU of each server. This is
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possible by continuously monitoring the workload and allocating the re-
sources to each application based on the QoS selected for that request. It
is claimed that this technique allows a data-center to adapt to fluctuating
workload while improving energy efficiency.

The algorithm proposed by Elnozahy et al. in [48] uses both VOVO (i.e.,
vary on vary off, or turning on/off the available physical resources) and
DVEFS to manage the power-performance trade-off. In particular, the au-
thors investigated different policies to be adopted by their algorithm. They
claimed the Coordinated Combined Policy is the most efficient one and
it operates in three steps: i) it determines the appropriate CPU frequency
based on the required response time; ii) it derives the number of servers
that must be on, and shut down all the other resources; iii) it sets the CPU
frequency of all the available nodes proportionally to the number of nodes
that are on.

The strategy proposed in [128] exploits the workload consolidation in
order to find an optimal utilization point, such that the energy consumption
is minimized and the system performance is increased. Indeed, the energy
consumption is high with low utilization due to the servers idle period;
on the contrary, the system performance are affected by large resources
utilization (e.g., high cache miss rate, scheduling conflicts, etc.). CPU and
disk are the components considered in this work.

Gandhi et al. [54] studied the problem of finding an optimal power al-
location for server farms. In particular, they considered the power con-
sumption being affected by the CPU and its frequency. After noting a lin-
ear power-to-frequency relationship for the DVFES technique, Gandhi et al.
tried to identify the optimal operating point such that the server power con-
sumption and the average response time are minimized.

Garg et al. [57] studied the problem of energy efficiency executing high
performance computing (HPC) applications from a cloud provider perspec-
tive. They proposed some scheduling strategies that exploit DVFS and the
data-centers geographical distribution. Some of them account only for ei-
ther the provider profit or the C'O, emissions. The authors also proposed a
multi-objective policy that takes into considerations both the profit and the
environmental aspects. After finding for each application the data-center
with the lowest carbon dioxide emissions, the multi-objective scheduling
policy selects the application/data-center pair that maximizes the provider’s
profit.

Also the case with virtualized environment has been largely investigated
in literature [[16,83,[105,127,/139]. The strategies proposed usually take into
account the CPU power consumption and work with DVFS and VM con-
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solidation techniques in order to decrease energy consumption and satisfy
the performance requirements.

In [[105] the authors used a soft resource scaling in order to allow the
virtual machine monitor (VMM) to limit the time a virtual machine can use
the resource. Furthermore, the authors found that greater benefits may be
obtained using both hard and soft scaling. Thus, they proposed local and
global policies for their scaling technique: the local policy is responsible
for the coordination of the virtual machines’ energy-saving techniques; the
global one manages the physical machines.

Kusic et al. [83]] took into consideration the case of dynamic VM allo-
cation for a multi-tiered web application that executes a variable workload.
They adopted a limited lookahead control in order to maximize the service
provider’s profit, and took into consideration different parameters: i) the
number of VMs to be allocated to each request; ii) the number of host on
which each VM should be placed; iii) the amount of CPU shared for each
VM; iv) the number of physical machines that may be turned off. More-
over, a Kalman filter is adopted to estimate how the workload is changing,
thus to forecast the future system requirements and resources allocation.

The authors of [127] adopted a strategy to decrease the energy consump-
tion, while keep on complying with the QoS. In particular, the resources
are allocated to each application’s VM based on the priority of the appli-
cation itself. This strategy is thought for enterprises, where the priority of
each application may be exactly known. Three schedulers are used to reach
their goal: the application-level scheduler assign each incoming request to
an application’s VM; the local-level scheduler allocates the available re-
sources to each VM based on the application’s priority; the global-level
scheduler controls the resources flowing among the applications. They do
not consider VMs migration to improve the system adaptation to dynamic
workloads.

pMapper is a framework proposed by Verma et al. in [139]. It im-
plements three different managers to dynamic place applications in a vir-
tualized environment, minimize the system energy consumption and com-
ply with the required QoS. In particular, the performance manager is in
charge of monitoring each application and resizing their VMs according to
the SLA. The power manager changes the CPU’s power state and applies
DVES. The migration manager deals with VM migration in order to con-
solidate the workload. The three managers work at each time frame in order
to continuously optimize the service provider’s profit.

Boru et al. [16] proposed a data replication technique in order to better
exploit the data-centers geographical distribution to improve energy con-
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sumption and network bandwidth, and decrease the communication delay.
After modeling the three aspects to improve, they proposed an algorithm
that, starting from the original data object available in the central DB, cre-
ates and distributes its replicas on data-center DB and rack DB based on
the collected observations of frequency of accesses.

2.2.4 Power and energy consumption models

Several power models have been proposed for studying and developing new
techniques to decrease data-centers power consumption. The linear model
proposed by Fan et al. in [49] has been widely used in literature [[18}50,
151]. In this model, the server power consumption has been estimated to
linearly grow with CPU utilization:

P(Ucpu) = Pidle + (Pbusy - Pidle) : Ucpu (27)

where Py and Py, are the power consumptions of an idle and a fully
utilized servers, respectively, whereas U, is the CPU utilization. This
model is adopted in [[I51] beside a cooling power model to identify the
data-center cooling energy saving potential. It is also used in [S0] to pre-
dict the racks performance and the thermal dynamics in order to provide
a predictive control able to save a significant amount of energy just taking
decisions for server provisioning, job placement and thermal management.
Fan et al. also introduced a non-linear model where power consumption in-
creases monotonically with the CPU utilization. The equation that defines
the non-linear model is:

P(Ucpu) = Pidle + (Pbusy - idle) . (2Ucpu - ngu) (28)

where r is a calibration parameter that is estimated through experiments.

Buyya et al. [18] proposed a power model similar to the one introduced
in [49] in order to deal with the energy-aware resource allocation in cloud
environments. Since the ratio between Pig. and P, is generally known
(e.g., 70%), they adopted the model:

P(Ucpu) =cC- Pbusy + (1 - C) : Pbusy : Ucpu (29)

where ¢ = P,/ Pysy. This power model has also been used in [21] to
propose an adaptation strategy for managed Cassandra data centers that
can minimize their operational costs while complying with the SLAs.
Those are the simplest available power models due to the small number
of required parameters. Nonetheless, several other more accurate power
models have been proposed in literature. Note that, the cost of a greater

19



Chapter 2. State of the art

accuracy is the complexity of the model itself. For example, some power
models consider several server components besides the CPU. It is the case
of the linear weighted power model proposed by Economou et al. [45]], that
is:

P = P’idle + Ucpu : lcpu + Umem ' lmem + Udisk ' ldisk: + Unet ' lnet (210)

where U, is the utilization of resource r, and [, represents the linear rela-
tionship between the utilization and power consumption for each resource
r. In this case, a weighted linear model is used to estimate the power con-
sumption of a server, that is the sum of power consumption of each compo-
nent (i.e., CPU, memory, disk and network).

A similar approach is adopted by Bohra et al. in [[14]. They first pro-
posed a power model that takes into consideration CPU, cache, memory
and disk, then — after noting a correlation between CPU and cache, and
memory and disk — improved it as follows:

P, cpu,cache — 1Lidle,1 + Cepu ’gcpu + Ccache * £cache
Pmem,disk = Pidl6,2 + Crmem gmem + Ciisk - gdisk (21 1)
P = Clpcpu,cache + CQPmem,disk

where Pjg.1 and P2 are the idle power consumptions, ¢, is the weight
of the monitored system events ¢, for resource r, and c¢; and ¢, are the
contribution ratios of the power consumptions P, cache aNd Premy disks T€-
spectively.

Other available models take into consideration the power consumption
of the whole data-center. For example, Gosh et al. [59] proposed a stochas-
tic model to evaluate the performability of an IaaS Cloud environment and
its cost. In particular, they grouped all the physical machines into three dif-
ferent pools (i.e., hot, warm and cold) based on their current status (i.e.,
running, turned on and not ready, turned off, respectively). Thus, they
gave different costs to performance and dependability parameters in order
to evaluate and eventually optimize the cost and capacity of the considered
environment. While considering the power consumption of the physical
machines and its cost, they also take into account the cooling cost.

All the models presented in this Section are meant to estimate the power
consumption of a component (e.g., the CPU), a server or the whole data-
center. For the purpose of this thesis, it is not always enough to take into
consideration the power required by the system considered, but it is neces-
sary to know also its energy consumption. The energy models may be de-
rived starting from all the power models presented in this Section (or other
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power models available in literature), and applying Eq. (2.6) to estimate
the energy consumption.

Finally, also stochastic hybrid models worth to be mentioned, although
we have not recurred to them in this thesis. They combine discrete-event
and continuous simulation techniques to efficiently represent both the com-
ponents with a discrete behavior and those that follow a continuous evo-
lution. In fact, when applied to energy consumption related problems,
stochastic hybrid models have been adopted for many purposes, e.g., mod-
eling energy management on smartphones [1]], or studying energy storage
in smart homes while considering how it is affected by grid-convenient bat-
tery management policies [[73]].

2.3 Uncertainty propagation

Several frameworks have been proposed to classify uncertainty [119] and
the two main categories that have been identified are aleatory and epis-
temic uncertainty [108]]. The former, also known as irreducible uncertainty,
depends on natural variations of the physical phenomena and represents
randomness in samples; an improved model is required in order to decrease
this type of uncertainty. Instead, epistemic uncertainty is due to a lack of
knowledge about the physical systems. It is the kind of uncertainty consid-
ered in this work since it may be reduced [4]].

Although several papers in literature have already considered QN mod-
els with uncertainty [[17,)58,/117], they took into account only aleatory un-
certainty.

For example, Boxma and Kurkova [[17]] studied the workload tail be-
havior in the case of an M/M/1 queue with different service rates, that are
exponentially distributed high-speed periods and low-speed periods with a
changing distribution.

Both inter-arrival and service rates of an M /G/1 queue are assumed to
vary over time in [58]]. The model proposed by Gelenbe and Roseberg is
used to analyze those systems in which the parameters may vary slowly,
such as telephone systems or computer networks with bursty workloads.
The authors set the slow changes assumption in order to make each varia-
tion of the input parameters lead to some exploitable approximations.

Rosenberg et al. [[117] took into consideration random variations in the
inter-arrival rate of exponential queuing systems. In particular, they first
derived the necessary and sufficient conditions for queue stability when
the buffer size is infinite, then focused on finite buffer with the incoming
requests that stop entering the queue when the buffer is full.
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In all the previous cases, expected value of the model’s parameters may
change at any time due to random environments. Since the input parameters
are assumed to vary during the analysis of the model, the problem analyzed
in those papers is different from the kind of uncertainty considered in this
thesis, where the average value of the input parameters is assumed to be
constant.

Some applications of epistemic (parametric) uncertainty is studied in
[88,/131]]. In particular, authors of [[131] proposed a numerical method
that is applied to an M/G/1/K queue with vacation when only one in-
put parameter is affected by epistemic uncertainty (i.e., the vacation rate).
Moreover, they assumed the distribution of the uncertain parameter is given.
Lopatatzidis et al. [88] used parametric uncertainty to study a Geo/Geo/1/K
queue. They considered a finite state system and assumed bounds on the
input parameter values instead of the distributions.

Although the same kind of uncertainty is considered in this thesis, it
is different from [88}/131] for several reasons. In particular: i) at least
two input parameters are assumed to be affected by epistemic uncertainty;
ii) the M/M/1 queue stability condition is taken into account since inter-
arrival and service rates are assumed to be the uncertain input parameters;
iii) a given confidence interval on the input parameters is used to derive
epistemic distributions; iv) both closed form expressions and a numerical
approach are adopted to propagate the uncertainty through the model.

Recently, Bortolussi et al. [15]] analyzed uncertain stochastic models by
introducing a new class of models, namely imprecise population processes,
which captures the parameters variability over time and use differential in-
clusions to derive the evolution of their probability mass. This approach
is based on [126], where Markov chains have been extended with interval
probabilities, i.e., transition probabilities are not precisely known but regu-
lated by the probabilities associated to the set of all elementary sets within
lower and upper bounds. However, both approaches deal with uncertain
parameters that are not regulated by distribution functions supporting the
deduction of closed form formulas, whereas, in this thesis, such formulas
are used to calculate the performance metrics (i.e., average number of enti-
ties in the system and average response time).

Epistemic uncertainty propagation has been mostly studied for depend-
ability models adopting different techniques [7,97,98]. In [98]] parametric
epistemic uncertainty propagation through analytic dependability models is
presented. Closed-form expressions for the distribution function, expected
value and variance of model outputs are derived for calculating the system
reliability, and the model output results to be a simple closed-form expres-
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sion of model input parameters. Authors of [98] used multidimensional
integration proposed by Singpurwalla in [[125] to analyze the uncertainty
propagation; the same technique is also used in this thesis when studying
uncertainty propagation in M/M/1 queues and power models. Baumgartel
et al. [7] adopted a simulative technique. In particular, they used inverse
uncertainty propagation on input parameters in order to find the input un-
certainties that satisfy a given bound on the simulation output uncertainty.
Also note that, when dealing with complex and large systems, it becomes
hard to threat with multidimensional integration. For this reason, alterna-
tive techniques to multidimensional integration have been proposed in lit-
erature, such as the Monte Carlo sampling method to propagate epistemic
uncertainty in complex and large models proposed and adopted by Mishra
et al. in [97].

The Monte Carlo sampling method is also used for calculating: i) re-
liability in [92], where a diverse set of parameter range distributions self-
regulate the number of architectural evaluations to the desired significance
level and report the desired percentiles which ultimately characterize the
system reliability; ii) performance in [134]], where parameters uncertainties
are sampled from probability distribution functions and propagated in mul-
tiple software architectural models, thus to evaluate their robustness with
respect to a certain set of performance requirements.

The specification of uncertain parameters in literature leads to classify
the proposed approaches into two categories: i) parametric or probabilis-
tic, i.e., the probability of density functions (pdf) is known for uncertain
parameters, and several solving techniques are available to deal with such
specification, e.g., maximum likelihood [39], or applied statistics such as
method of moments and Bayesian estimation [102]; ii) non-parametric or
fuzzy (originally introduced by Zadeh [|147]), i.e., uncertain parameters are
described using linguistic categories with fuzzy boundaries.

Looking at the general context of non-functional analysis of software
under uncertainty, several approaches are based on sensitivity analysis tech-
niques that aim to identify the model parameter ranges affecting the soft-
ware quality, e.g., [120]]. In the software performance domain, one of the
seminal works in this direction is [43]], where the concepts of uncertainty,
performance conditions and implications firstly appeared.
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2.3.1 Multi-dimensional integral for epistemic uncertainty propaga-
tion

In this thesis, when dealing with epistemic uncertainty propagation, the
multi-dimensional integral approach, adopted in [98,125], is used. In par-
ticular, consider a set of input random variables {©;,7 = 1,2, ...,1} and an
output measure M defined as a random variable M = (01, 0,, ..., ).
Computing the output measure with specific parameter values can be seen
as computing the conditional measure M (0O = 01,0, = 605,...,0; = 6))
(henceforward denoted by ) (e)) because of the uncertainty introduced by
the input parameters. Applying the theorem of total probability [[133] and
using the joint epistemic density fo, o,...0,(61,62,...,0;) (hereinafter de-
noted by f(e)), the conditional measure M () can be unconditioned. Thus,
Cdf of the measure M is computed as follows:

Fy(m) = /.../]1(1\4(-) <m) - f(e) db; ... db, (2.12)

where 1(¢) is an indicator variable that is 1 when the event ( is verified,
and O otherwise. Instead, the expected values of measure M is computed
as:

E[M] = /.../M(.).f(.) do; ... db, (2.13)

It is also possible to derive the variance of the measure M as Var[M] =
E[M?) — E[M]?, where the second moment is computed as:

E[M?] = //M2(0> - f(e) db; ... dO, (2.14)
For the sake of simplicity, in this thesis, we assume the epistemic random

variables to be independent, thus the joint epistemic density is given by the
product of the marginals:

f(®) = fo,,0.,..0,(01,02,....00) = fo,(61) - fo,(02) - ... - fo,(0h)
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CHAPTER

CPU power model for DVFS and
simultaneous multi-threading

3.1 Motivation

The servers’ CPUs are the components that are usually taken into account
while estimating the power consumption of a data-center. As said in Chap-
ter 2], it has been proven [49,[138]] that server power consumption and its
CPU utilization are strongly related and the former metric depends on the
latter one; consequently, CPU utilization also affects the energy efficiency
of the whole data-center.

Dynamic voltage/frequency scaling (DVFS) and Simultaneous multi-
threading (SMT) are two technologies available in literature and used to
tackle the energy efficiency problem. DVFES has been developed to make
CPU voltage manageable; indeed, it may be increased if it is required to
comply with the SLAs, or decreased to reduce server’s power consump-
tion and save energy. Instead, SMT was first introduced for performance
reasons, since it allows the CPU to increase its utilization and throughput.
However, it has also been crucial while considering the power consumption
issue, since it gives control over the CPU utilization. In fact, it is possible to
reduce the CPU idle periods by enabling SMT, thus decreasing the servers’

25



Chapter 3. CPU power model for DVFS and simultaneous multi-threading

energy consumption.

Although DVFS and SMT are two very common techniques used to im-
prove data-centers energy efficiency, some recent power models and frame-
works do not account for them. In particular, they are rarely considered in
the same model and at the same time, thus decreasing the accuracy of the
framework.

In this chapter the linear power model proposed by Fan et al. in [49]]
— that has been widely adopted in literature to estimate the servers’ power
consumption — is extended to make it account for DVES and SMT at the
same time and provide more accurate power consumption estimates.

3.2 What are DVFS and SMT?

In this Section the basic definitions of dynamic voltage/frequency scaling
and simultaneous multi-threading are given, and the papers in which these
two techniques are adopted to decrease a server energy consumption are
discussed.

3.2.1 Dynamic Voltage and Frequency Scaling

As said in Section [2.2.3] DVFS is commonly described in literature as one
of the main available energy saving techniques. It was firstly adopted in
[141] in order to decrease the power consumption of a CMOS integrated
circuit, such as the CPU component. In fact, the CPU power consumption
is proportional to V2 - f [29] and may be computed as [86]:

P=Pg+C-V*- f (3.1)

where C' is the capacitance of the transistors, f is the operating frequency
and V' is the voltage. Since the commonly given relationship between volt-
age and frequency is V' o f [29], it possible to decrease the number of
CPU cycles per second in order to reduce the voltage and save energy.
DVES is used to dynamically adapt the CPU power to the incoming re-
quests; it is usually enabled accordingly to the system workload that may
be either predicted at run time or given in advance [30]. In the former case,
based on the predicted incoming requests, the resources (e.g., the CPU)
may increase or decrease their frequency (and their voltage) on-line in or-
der to process all the tasks with the minimum energy consumption, but
still complying with the SLAs. Instead, the latter case allows the service
provider to set the frequency of the resources a priori based on the available
knowledge about they system. For instance, if the memory is the bottleneck
of the system considered, the service provider may decrease the frequency

26



3.2. What are DVFS and SMT?

of the CPU in order to save energy without affecting the performance of the
system.

Accordingly to the previous considerations, Choi et al. [30] proposed
a workload decomposition technique in order to distinguish between on-
chip and off-chip requests: on-chip requests are executed on CPU, whereas
off-chip requests are served by memory (the second resource considered).
Exploiting the data cache misses and the CPU stall cycles, the authors pro-
posed a DVFS policy that dynamically change the CPU frequency in order
to maximize the energy-performance trade-off.

DVFES technique is also applied to components other than CPU. Indeed,
David et al. [35] proposed to use DVFS technique for memory in order to
dynamically adapt its operating point to the current workload, after noting
that a large amount of memory power depends on its frequency. In fact,
they used an algorithm to set the memory frequency/voltage based on its
bandwidth utilization.

3.2.2 Simultaneous Multi-Threading

SMT is a technique used to improve the efficiency of threads parallel exe-
cution, in particular enabling independent threads to issue multiple instruc-
tions in a single cycle [135]]. The main SMT impacts are higher CPU uti-
lization and throughput [87,/123,/135]], since the same number of requests
can be served in a shorter time when SMT is enabled. The CPU power
consumption also increases due to the relationship between CPU utiliza-
tion and its power consumption, already discussed in Chapter 2l However,
since the execution time is shorter, its energy consumption may be reduced.

Intel Hyper-Threading Technology (HTT) is the Intel’s implementation
of SMT. It was first available on Xeon server processors in February 2002
and nowadays it is a widespread technology. In particular, each available
CPU core is seen by the OS as two logical cores that share the incoming
requests when feasible.

SMT has been largely taken into consideration in literature [87, 123/ 135,
149] due to its importance.

Tullsen et al. [135]] used simulation to evaluate the improvements made
available by SMT. In particular, they showed the SMT technology is able to
outperform other parallel enabling strategies (e.g., single-threaded wide su-
perscalar, fine-grained multi-threading, multiple-issue multiprocessor) im-
proving processors’ utilization and throughput, but also increasing the com-
plexity of instructions and the shared resources contentions.

Seng et al. [123]] proved that SMT also increases the CPU’s power con-
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sumption for the same reasons that increase processor’s performance. In-
deed, SMT can decrease energy consumption providing more parallelism
and minimizing the underutilized resources. For that purpose, they used a
simulative technique and proposed a power model that splits the CPU con-
sidered into several different areas, and all of them concur to the total CPU
power consumption.

Li et al. [87] first extended an available simulator to make it account for
SMT technology, then investigated how SMT affects the micro-processor
performance and its power consumption, i.e., the SMT power-performance
trade-off. They found the SMT can increase the performance gain and
power consumption by 20% and 24%, respectively, and significantly re-
ducing the energy consumption.

Zhai et al. [[149] took into consideration the Intel Hyper-Threading Tech-
nology and proposed HaPPy, a power profiling to dynamically estimate the
threads power consumption. In other words, HaPPy can split the server
power consumption among all the threads processed by the server itself,
thus estimate the power consumption of all the application concurrently
executed.

3.3 Testbed and experiments for DVFS and SMT performance
evaluation

In this Section the test environment and the experiments used to evaluate
how DVEFS and SMT affect the CPU power consumption are described.
Problem analysis and data collection are required in order to propose a new
power model able to accounts for the two energy saving techniques.

3.3.1 Testbed description

In order to collect different results and provide a more accurate power
model, data have been collected from two hardware configurations:

e Machinel is an HP computer with an Intel i3-2120 CPU@3.3GHz,
two CPU cores and a 6GB memory (4GB + 2GB), a hard disk drive
and an integrated graphic card, with Ubuntu 12.04 OS. Its idle and
maximum power consumption have been derived from measurements
and are Pig. = 29 watt and Py, = 66 watt, respectively.

e Machine2 is an ASUS server with an Intel i7-3770 CPU@3.4GHz,
with four cores, a 16GB memory, a dedicated GeForce GTX 560 GPU,
two hard disk drives and a solid state disk. For this configuration,
Ubuntu 14.04 is the running operating system. The idle and maximum
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power consumption have been estimated to be Py, = 59 watt and
Pyysy = 115 watt, respectively.

Both the CPU micro-processor support Intel HTT technology and the
SMT level is two for both the configurations; that means that Machinel and
Machine2 can concurrently run four and eight parallel threads, respectively,
with a dedicated logical core and without needing of threads interleaving.
Moreover, the two operating systems used for these experiments enable
the dynamic voltage/frequency scaling, thus allowing to govern the CPU
frequency based on the current workload.

In particular, it is possible to manually set the maximum CPU frequency
to a specific value updating the scaling_max_freq file, and turning
on/off each logical thread by editing the on1ine file. Thus, it is allowed
to turn off HTT technology for all the processor or just for some cores.

Both the machines are connected to the power source via a Yokogawa
WT210 digital power meterﬂ in order to periodically measure their power
consumption. The CPU statistics, including its utilization, are monitored
with the iostaf’] command that derives each measure as the mean of all the
threads that are turned on. Finally, data about frequency of each thread may
be found periodically reading the /proc/cpu_info file.

Since the goal of these experiments is to investigate the CPU power con-
sumption with DVFS and SMT technologies, a benchmark that executes
CPU-bound applications is required. In particular, each experiment is ex-
ecuted generating instances of the Sunflow benchmark from the DaCapo
suite [13]. Sunflow renders a set of images using ray tracing and splitting
the load into several concurrent threads.

3.3.2 Experiments analysis

As said, DVFS and SMT have been proven to deeply affect CPU perfor-
mance and server’s power consumption and energy efficiency. Indeed,
DVES can change the clock frequency (and the voltage) of the processor,
while SMT can increase its utilization.

However, their impact on server’s energy consumption is hard to detect
when considering only the CPU utilization. For this reason, we perform
several experiments in order to investigate how the dynamic voltage/fre-
quency scaling and simultaneous multi-threading affect the CPU perfor-
mance.

3htt}o: //tmi.yokogawa.com/discontinued-products/digital-power—analyzers/
digital-power-analyzers/wt210wt230-digital-power-meters/. Accessed: Jan. 15,2018.
“https://linux.die.net/man/1/iostat. Accessed: Jan. 15, 2018.

29


http://tmi.yokogawa.com/discontinued-products/digital-power-analyzers/digital-power-analyzers/wt210wt230-digital-power-meters/
http://tmi.yokogawa.com/discontinued-products/digital-power-analyzers/digital-power-analyzers/wt210wt230-digital-power-meters/
https://linux.die.net/man/1/iostat

Chapter 3. CPU power model for DVFS and simultaneous multi-threading

In particular, we collected data from Machinel and Machine2 while ex-
ecuting Sunflow benchmark and considering different configurations. In
fact, the two machines have been analyzed setting the maximum CPU fre-
quency and the number of available logical threads to different values for
each experiment, as shown in Section |3.3.1

Concerning Machinel, the maximum CPU frequency was set to {1600,
2500, 3300} MHz. Note that, when the maximum frequency is different
from the minimum one, CPU may work with every value of frequency that
is between the minimum and the maximum one. Thus, for example, by
selecting 1600 MHz as maximum frequency (i.e., freqmax = freqmin) the
frequency scaling is disabled, whereas if the maximum frequency is 2500
MHz the CPU speed may span from 1600 to 2500 MHz. The number of
concurrent threads ranges from 1 to 4 for Machinel.

Similar experiments have been performed for MachineZ2. In this case the
CPU frequency varied between 1600 MHz (i.e., its minimum value) and
{1600, 2500, 3401} MHz. The number of parallel threads ranged from 1
to 8.

For the purpose of these experiments, the number of threads generated
by the benchmark has been set equal to the maximum number of threads
available for each configuration considered. Moreover, for each different
configuration, 20 benchmark executions have been performed.

Figure [3.1a] depicts the average power consumed by Machinel, with
95% confidence intervals, to process the workload generated by Sunflow
benchmark under different parameters configurations (i.e., different val-
ues of CPU frequency and number of concurrent threads). As expected,
the power linearly increases with respect to the maximum CPU clock fre-
quency. Such increment grows according to the number of parallel threads
used; for instance, using only one thread, the increment from 1600 to 3300
MHz is about 35% (from 35 to 47 watt), while using four threads the incre-
ment is almost 60% (40 to 63 watt).

Instead, when varying the number of parallel threads, the power does not
increases linearly; indeed, it follows a step behavior with a gap of nearly 10
watt from the second to the third configuration. In fact, the gap analysis is
particularly interesting between configuration 2 — 1 and configuration 2 — 2,
when the number of logical threads is the same, but in the first case both
the threads are on the same physical core, whereas in the second one each
thread is served by a different core.

An analogous system behavior has been observed studying Machine2;
the results are depicted in Figure [3.1b] where average power consumption
values with 95% confidence intervals are represented. In this case, a larger
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Figure 3.1: Power required by (a) Machinel and (b) Machine2 to execute a CPU-bound
application, varying CPU speed and the number of available logical threads. In the
legend, x — y denotes a configuration with x logical threads running on y physical
cores. Note that, x may be twice larger than y due to SMT.
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gap is registered while varying the number of active cores from two to four.

3.4 Power modeling

The linear and non-linear power models proposed in [49] and already de-
scribed in Egs. and (2.8)), respectively, have been adopted in this
chapter as the starting points to provide a new power consumption model
that accounts also for DVFS and SMT.

In order to investigate how to accurately model the system’s power con-
sumption, P4, and P, have been estimated for both Machinel and Ma-
chine2 observing the collected samples. Instead, the values of the cali-
bration parameter r has been derived from the collected observations by a
fitting procedure.

The fitting procedure has been performed by the DEPSO evolutionary
algorithm proposed by Zhang and Xie in [150]. As said by the authors, the
DEPSO algorithm integrates the Differential evolution (DE) and Particle
swarm optimization (PSO) techniques; while the PSO tries to iteratively
improve a solution based on a given measure of quality, the DE algorithm
introduces some mutations on the results computed by the PSO to maintain
population diversity.

To prevent over-fitting, half of the collected measures are used to test the
model and compute the value of the parameters, whereas the other half is
used for computing the current value of the mean absolute percentage error
(MAPE). MAPE is defined as:

MAPE = —
V|

where A, is the actual value and F; is the estimated one.

Application of the standard power models given in Egs. and (2.8))
to estimate the power consumption of the experiments described in Sec-
tion provides results with a large MAPE (i.e., MAPEgg7) = 42% and
MAPEg,gg) ~ 41% for the quad-core CPU). Indeed, for all the experi-
ments the CPU utilization observed with 1ostat command is closed to
100% and it is not scaled based on the real resources utilization (i.e., the
number of active threads an the real CPU speed). In this case, according to
Egs. and (2.8), the server’s power consumption is always maximum.

In order to alleviate that problem, the CPU utilization is weighted first
with the fraction of active cores, then with the portion of active threads.

(3.2)
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Thus, the new equations adopted to compute CPU utilization are:

Ocr
Ucpu(ccr) = T : Ucpu (33)
and o
Ucpu(cth> - T_th : Ucpu (34)
th

where C, (C},) is the number of active cores (threads) and 7., (13;,) is the
total number of cores (threads) that the CPU is capable to concurrently run.

Substituting the utilization as computed in Eqgs. (3.3) and (3.4) into the
power models defined in Egs. and (2.8)), it is possible to obtain more
accurate estimates of the system power consumption. For instance, apply-
ing the non-linear power model to the quad-core case, MAPEg, a3 ~ 14%
and MAPEg,gz ~ 12%.

The MAPE may be reduced also taking into account the maximum fre-
quency at which the CPU is allowed to work while estimating the server’s
power consumption. For this purpose, the CPU utilization is weighted also
by the ratio of the frequency currently allowed to its maximum value (i.e.,
3300 MHz and 3401 MHz for dual-core and quad-core CPU, respectively).
Thus, the CPU utilization is derived either as:

Cor fr

U(fra Ccr‘) - Tcrfrmax : Ucpu (35)
or as: C f
th Jr

== “Uep, 3.6

UG, Cu) = 25— Uy (3.6)

where, fr is the CPU speed allowed, and fr,, .. 1s its absolute maximum
value.

Substituting Eqs. (3.5) or (3.6) into the linear and non-linear power
models proposed by Fan et. al in [49] allows to further decrease the MAPE
for the quad-core case between 5% and 9%

Finally, a scaling factor that accounts for available cores and threads,
and the maximum CPU frequency allowed, may be adopted in order to fur-
ther decrease the MAPE, thus obtaining more accurate power consumption
estimates.

The scaling factor is defined as a function of operating parameters O =
{Cin, C., fr} which may be set by the applications, and machine param-
eters M = {Tyy,, Ter, fr,,..} that are fixed and depend on the hardware
characteristics of the server considered. The equation:

A0, M) = (Cth - C—a) <f—")n (3.7)

 Qin
Tth TC’I’ frmaa;
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defines the scaling factor, where oy, o, and n are calibration parameters
evaluated during the validation phase through the DEPSO algorithm.

Thus, CPU utilization is scaled, taking into consideration the scaling
factor derived from Eq. (3.7), as:

Uepu (O, M) = MO, M) - Uppy (3.8)

and the server power consumption depending on the current operating con-

ditions and the system’s feature, P(O, M), is derived substituting Uy, in

Egs. (2.7) and (2.8)) with the scaled utilization U, (O, M) computed in Eq.
as:

P(Ou M) = Pidle + (Pbusy - Bdle) : Ucpu(Ou M) (39)
and
P(07 M) - Pidle + (Pbusy - Pidle) ' (2Ucpu(07 M) - Ucpu(07 M)T) (310)

for the liner and non-linear cases, respectively.

Usage of scaling factor A(O, M) to derive the real CPU utilization re-
duces the MAPE between 3% and 4% in the quad-core case.

The results obtained through the normalized utilization for both Ma-
chinel and Machine2 are depicted in the Q-Q plots shown in Figure [3.2]
For the sake of clarity, only the non-linear power models obtained using
CPU utilization derived as in Eqs. (3.5) and (3.8) are represented. The Q-
Q plots depict the power estimates derived through the considered power
model against the power measures collected by the Yokogawa WT210 dig-
ital power meter. If the two values are the same, the point lies on the
bisection line. As expected, analyzing the results obtained for the same
machine with different CPU utilization models (i.e., P(Ugpy(fr, C.;)) and
P(U.pu(O, M)), it may be seen that the power estimates obtained using the
scaling factor A(O, M) are more accurate than those obtained considering
only the CPU speed and the number of active cores.

For further details the reader may refer to Tables [3.1]and [3.2] where the
values of the calibration parameters used for the power model considered
and its MAPE are reported.
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Figure 3.2: Comparison between the power samples and the power estimates for (a) Ma-
chinel and (b) Machine2. The estimates have been obtained using the CPU utilization

as defined in Egs. (3.3) and (3.3).
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Table 3.1: The calibration parameters and MAPE for each power model are provided
in this table. The machine considered is Machinel. Columns from 1 to 3 provide
information about the power model, the CPU utilization definition and the equation
where it is defined; the value of all the calibration parameters are given in the columns
from 4 to 7; finally, last column states the MAPE.

Power Model Ucpy def. Ugpu Eq T Qe Qi n MAPE
Linear Uepu — — — — — 46.181%
Non-Linear Uepu — 0 — — — 45.318%
Linear Uepu(Cer) — — — — 24.432%
Non-Linear Uepu(Cer) 0.509 — — — 20.633%
Linear Uepu(Chp,) — — — — 17.657%
Non-Linear Uepu(Chp,) 0.793 — — — 17.533%
Linear Uepu(fr, Cer) — — — — 7.869%
Non-Linear | Uegp,(fr, Cer) 0.809 — — — 5.517%
Linear Uepu(fr, Ctn) — — — — 9.180%
Non-Linear | Uecpy (fr, Cip) 1225 | — — — 8.502%
Linear Uepu (O, M) — 0.699 | 0.280 | 1.379 | 1.845%
Non-Linear Uepu (O, M) 2.918 | 0.400 | 0.157 | 1.670 | 1.072%

Table 3.2: The calibration parameters and MAPE for each power model are provided
in this table. The machine considered is Machine2. Columns from 1 to 3 provide
information about the power model, the CPU utilization definition and the equation
where it is defined; the value of all the calibration parameters are given in the columns

from 4 to 7; finally, last column states the MAPE.

Power Model Ucpy def. Ugpu Eq T Qe Qi n MAPE
Linear Uepu — — — — — 42.747%
Non-Linear Uepu — 0 — — — 41.632%
Linear Uepu(Cer) — — — — 15.920%
Non-Linear Uepu(Coer) 0.724 — — — 14.211%
Linear Uepu(Chp) — — — — 12.306%
Non-Linear Uepu(Chp) 1.009 — - - 12.298%
Linear Uepu (fr, Cer) — — — — 5.239%
Non-Linear | Uep,(fr, Cer) 0.945 — — — 5.132%
Linear Uecpu(fr, Ctn) — — — — 8.303%
Non-Linear | Uepy (fr, Cip) 1437 | — — — 6.727%
Linear Uepu (O, M) — | 0753 | 0.348 | 1.244 | 3.862%
Non-Linear Uepu (O, M) 1.510 | 0.581 | 0.505 | 1.888 | 3.177%
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CHAPTER

Energy per time-unit of execution: a
multi-class energy metric

4.1 Motivation

Besides proposing new techniques to decrease the data-centers’ energy con-
sumption, scientists also need to determine the infrastructure greenness
level. Thus, green performance metrics have been proposed in literature
[140] in order to qualitatively and quantitatively define that data-centers’
parameter. In fact, the energy metrics are crucial in developing green data-
centers for many reasons: first of all, they let the designers clearly deter-
mine the energy efficiency of the infrastructure; second, they enable the
comparison of the data-centers from the energy consumption perspective;
finally, they provide guidelines to designers and service providers to im-
prove the performance of the data-centers.

Nevertheless, the energy metrics have been poorly studied and some
data-centers’ features have never been taken into account while develop-
ing the currently available ones. It is the case of multi-class workload,
although differences and interactions in power consumption have been ex-
perimentally observed in systems that concurrently run multiple types of
application [27].
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For instance, a data-center may concurrently execute applications with
different bottlenecks, such as scientific computing applications (CPU-bound),
in-memory databases (memory-bound), MapReduce processes (I/O inten-
sive) and video transcoding requests (GPU-bound).

The system’s component to which the application is bound depends on
the class of the application. That may generate bottlenecks which prevent
the fully utilization of each resource, thus producing a waste of power due
to the underutilization (i.e., idle period) that all the no-bottleneck resources
are subject to.

For these reasons, a metric to accurately study the power and energy
consumptions of a data-center must take into account both the different
kind of applications that is processed by the system and the components
that are exploited to serve each request.

Following this idea, the energy per time-unit of execution metric (abbre-
viated as EX) accounts for the class of each job and may take into consid-
eration all the components of a server and their energetic relationship with
the other system’s resources.

4.2 Areview of the available energy metrics

Wang and Khan [140]] analyzed and classified the available energy metrics
and provided general guidelines for data-center green metrics development.
In fact, they proposed the five following criteria to make a data-centers
energy metric efficient: i) it must adapt to each type of data-center (e.g.,
multi-tier data-centers, data-centers with redundancy, internal data-centers,
etc.); ii) it should takes into account the whole system and not amplify the
effects of few components; iii) it must consider the data-center’s typical
working conditions; iv) its implementation in current system must be as
easy as possible in order to facilitate its dissemination and acceptance; v)
also its utilization should be as simple as possible to spread the new energy
metric adoption.

Moreover, they proposed to organize the green metrics based on the fol-
lowing characteristics:

e point of view of either the user or the service provider. Indeed, while
the users are usually interested in the environmental impact of their
applications, the system administrator cares for the greenness level of
the data-center and its components;

e measure grain, since the energy metric may measure the energy con-
sumption to different levels, from the finest (e.g., per bit, per instruc-
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tion, etc.) to the coarsest grains (e.g., per racks, per data-center);

e number of dimensions analyzed, thus being single-dimension or ba-
sic when only a parameter of the system is taken into consideration
(e.g., dioxide carbon emissions, system temperature, etc.), and multi-
dimension or extended when the measure depends on different vari-
ables, such as the Total cost of ownership (TCO) that accounts for
purchasing, operating and maintenance costs.

Greenhouse gases emission, humidity, thermal and power/energy met-
rics are classified as basic metrics. Indeed, they take into account only
specific parameters in order to evaluate the data-centers energy efficiency.
For the purpose of this thesis, only the power/energy metric are deeply de-
scribed in the following, whereas emissions, humidity and thermal metrics
are not further investigated. In fact, due to the large amount of power and
energy consumed by the data-centers, several power metrics have been pro-
posed in literature to monitor and study this problem.

Data-center infrastructure efficiency (DCIiE) and Power usage effective-
ness (PUE) have been proposed in [[8] and are widely accepted by the in-
dustries. PUE is computed as:

_ Total Facility Power

PUE = :
IT Equipment Power

(4.1)

where the Total Facility Power is the power required to make the whole
data-center work (e.g., IT equipment, cooling, light, etc.) and the IT Equip-
ment Power is the power needed for only the IT equipment (e.g., compute,
storage, network, etc.). It can only be greater than or equal to one and repre-
sents the relationship between the power consumption of IT infrastructure
and all the other facilities. Thus, if PUE = 2.0, it means that the data-center
power consumption is two times greater than the power consumption of its
IT components.
Instead, DCIE is defined as the reciprocal of PUE, thus:

1 IT Equipment Power
PUE  Total Facility Power
When DCIE = 0.5 (i.e., PUE = 2.0), it means the IT equipment con-
sumes half of the power required by the data-center.

Although PUE and DCIiE are fundamentally the same, the authors claimed
both of them are adopted to differently represent the energy distribution in

data-centers. In Table[d.T|the typical values of PUE and DCIE [61]], and the
corresponding efficiency leve]E], are shown.

DCiE =

(4.2)

Shttp://www.42u.com/measurement /pue-dcie.htm, Accessed: Jan. 15, 2018.
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Table 4.1: Some typical PUE and DCiE values for enterprise data-center. The last column
reports the corresponding data-center efficiency.

PUE | DCIiE Efficiency
1.2 | 83% | Very efficient
1.5 | 67% Efficient
2.0 | 50% Average
2.5 | 40% Inefficient
3.0 | 33% | Very inefficient

The evolution from PUE and DCIiE is the data-center energy produc-
tivity (DCeP or DCP) [8]. Since it lets the user see the data-center as a
black box (power and input data go into the box, while heat and outputs
are returned), DCeP may help designer in investigating the data-center pro-
ductivity that the authors claim to be difficult to determine. It is defined

as:
Useful Work

~ Total Facility Power

DCeP (4.3)

where Useful Work is the number of tasks that have been processed by the
system during a given time window.

In order to investigate the energy-performance trade-off in data-centers,
Energy-Response time product (ERP) and Energy-response time weighted
sum (ERWS) have been proposed. For both these metrics, the performance
parameter of the equation is the customer’s response time. In particular,
ERP (also know as Energy-Delay product) is defined as:

ERP =E[E] - E[R] (4.4)

where E[E] and E[R)] are the expected values of energy consumption and
response time, respectively. It has been used by Gonzalez and Horowitz
[60] to study the energy dissipation in microprocessors and by Gandhi et
al. [53] to analyze server farm management policies. Since ERP is defined
as the product of two expectations, it may result in difficult analytical han-
dling. For this reason, ERWS is another widely adopted metric to estimate
the energy-performance trade-off of a system. Differently from Energy-
Response time product, ERWS is defined as:

ERWS = w1 - ]E[E] + wsy - E[R], w1, Wy > 0 (45)

where w; and ws are two constant weights used to change the impact of
energy consumption and delay on the final output. This trade-off metric
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was used by Albers and Fujiwara [2]] to analyze scheduling problems in
battery-operated systems to decrease the response time of all the jobs while
keeping a low energy consumption. Instead, Wierman et al. [142] used
ERWS to investigate how to scale the processing speed in order to improve
the energy-performance trade-off of a computer communication system.

Although ERWS is better than ERP for analytical evaluation especially
when used into non-linear optimization algorithms, it fails to effectively
take into account the order of magnitude of the combined quantities. For
instance, reducing E[R] from 1000 to 999 seconds produces on ERWS the
same effect of decreasing the expected response time from 10 to 9 sec-
onds, which in several cases may be unrealistic. Instead, ERP is able to
distinguish between the two cases, recognizing the latter reduction is more
advantageous than the former one.

Wang and Khan [140] also reviewed some extended metrics. As pre-
viously said, TCO is one of them since it accounts for capital and opera-
tional costs. In particular, the former includes the investment to purchase
and build the infrastructure, the latter consists of all the monthly costs re-
quired to run the data-center. Other extended metrics combine some key
data-center’s indicators: for instance, it may consists of DCiE and the uti-
lizations of server, storage, network and data-center.

Hereinafter ERP and ERWS are the main comparison measures that will
be adopted while proposing new energy metrics and investigating available
systems and applications. Indeed, they are easier to derive and to adapt
to different levels of detail (e.g., single components, a server, the whole
data-center) than the other power/energy metrics analyzed in this section.

4.3 Energy per time-unit of execution

Although the definition of a metric to estimate energy consumed per unit
of work is relatively straightforward for systems with one type of work-
load, this is no longer the case when considering multi-class systems. In
this section, an energy metric to study the energy-performance trade-off in
multi-class systems is presented and it is derived starting from the single-
class case. Moreover, while considering multi-class workloads, the metric
also accounts for the relationship between each components in the case of
models with more than one resource.

As a general remark, in the considered cases the proposed definitions do
not depend on a specific power consumption model. Indeed, energy and
performance metrics are first derived and then used as input parameters to
study the energy-performance trade-off. Thus, according to the complexity
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of the analyzed scenario, it is possible to use either a simple linear power
model that evaluates the server’s power consumption accounting only for
CPU utilization, as the one described in Eq. , an advanced model that
considers also contribution of other resources such as disks or memory, for
example, those presented in Egs. and (2.T1), or even a complex non-
linear equation that accounts for DVES and SMT such as the power model
presented in Chapter 3]

4.3.1 Single-class workload

Let us start focusing on a single-class workload being executed by a single
resource. If C'(7T') is the number of jobs that the system has completed up
to time 7" and E'(T) is the total energy consumed by the system during the
same time window. The energy per job at time T, EJ(T), of the system
considered is defined as follows:
E(T)
EJ(T) = —= 4.6
Referring to the average power consumption of the system as P and to the
system throughput as X (7), where X(7T') = C(T')/T, and recalling Eq.
(2.6)), the previous equation may be written as:
p-T P
X(T)-T  X(T)
Since the utilization law states U = X(T') - D, where D is the service
demand (i.e. the average time a job uses the resource during its execution),

the dependency on the time interval 7' may be dropped and the average
energy consumption per job is derived as:

P
EJ=D- — 4.8
i (4.8)

EJ(T) = 4.7)

The previous expression is interesting especially when using power mod-
els that depends entirely on the utilization of a single resource (i.e., Egs.
(2.7) and (2.8), [49]), since it expresses the energy consumed by a job as a
function of the utilization of the resource analyzed.

Eq. (4.8) may be extended and used to study the systems with multiple
resources. Let us now call P the power consumption of a system composed
by K resources, each one characterized by a power consumption F,, and
X (T) the system throughput. Thus, P is now computed as:

K
P=)"P,
r=1
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and the energy per job of the system can be derived through the following
equation:

EJ.(T) (4.9)

]~

P “ p
PIT) = X7y = 22X

r=1 r=1

where E/J, is the energy per job of resource r. Recurring again to the
utilization law for multi-resource systems, U, = X(T) - D, (where D,
is the service demand of resource r and U, is its utilization), Eq. is
rewritten as:

“ o p
EJ=) DTF’“ (4.10)
r=1 r

4.3.2 Multi-class workload and single resource

When considering several classes of jobs, Egs. and are not
straightforward since different types of jobs may have different demand re-
quirements. In order to cope with this issue, a single resource executing
several classes of jobs is first considered, then the obtained results are ex-
tended in order to account also for multiple and possibly different resources.

It is worthwhile noticing that the problem of considering jobs with dif-
ferent execution times due to their different class is not specific of the en-
ergy per job metric, but it must be considered while evaluating energy-
performance trade-off as a consequence of investigating systems with multi-
class workload. Indeed, similar considerations would have been necessary
also trying to extend classical metrics (i.e., ERP and ERWS) to a multi-class
scenario.

Let us consider a system with H classes, and refer to the number of
completions of class ¢ in the time window 7" as C.(T"). The resource’s
power consumption depends on its global utilization that is computed as
the sum of the utilizations of the resource while executing class c tasks:

When investigating systems with multi-class workload, it is not possible to
compute the energy per job metric as in Eq. (#.6). Indeed, that measure
is no longer fair since it does not take into account the different service
demands of the jobs.

Thus, the energy per time-unit of execution, F. X, is proposed to account
for the different times required by each job to be processed and it is defined
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as follows:
B P-T B P
B Zc DC ' CC(T) B Ec DC : XC(T)

where D, is the service demand of the class ¢ jobs and X (7') is the class ¢
throughput of the resource considered. Using the utilization law for multi-
class workloads, U. = X.(T') - D., and dropping the dependency on 7', Eq.

(4.11) becomes:

EX(T) @.11)

B P P P
>, D. X (T) Y U. U

It is interesting to note that, when considering single-class systems, the
following relationships between £'J and £ X holds:

EX

(4.12)

EJ=FEX-D (4.13)

showing that the two metrics are related through a multiplicative constant
that is the service demand of the resource observed.

4.3.3 Multi-class workload and multi resources

The extension of energy per time-unit of execution metric to multiple re-
sources requires extra care. In particular, the system’s components must
be distinguished between separable and inseparable resources. Separable
resources are energetically distinct and they can be enabled or disabled in-
dependently from the other resources. In this case, energy optimization can
be performed by switching off unused resources. The replicas of tiers in a
multi-tier application (e.g., database nodes or caching components) are an
example of separable resources.

Instead, inseparable resources cannot be individually disabled. All the
resources must be active for the system to work, even if they are not utilized
in the considered scenario. For instance, these resources may represent the
different always-on hardware components (e.g., disk, CPU, GPU, network),
or services required to support the execution of the entire application (e.g.,
a database in a complex multi-tier web-service).

It is important to note that in some cases, depending on the specific
configuration, the same resource (e.g., the disk) can be considered either
separable if it is able to activate a low power consumption state, or insep-
arable if the OS has no way of turning the resource off. In other words,
that is not an intrinsic characteristic of the resources, but depends on their
capability to be separately disabled to preserve energy.
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The energy per time-unit of execution in case of separable components
can be computed as the sum of the same measure for each single resource,
thus as:

K K P
EXgep =Y EX, =) o (4.14)
r=1 r=1 "

However, Eq. might not be fair when considering systems com-
posed by inseparable resources since it tends to infinity if one of the com-
ponent’s utilization tends to zero.

Thus, a different definition of £ X is required for inseparable resources.
In particular, it is defined as the ratio of system power consumption to the
sum of all the components’ utilization:

XLk P
YU XU

Although the denominator of Eq. (4.15) (i.e., the sum of the resources’
utilization) might seem arbitrary, it may be related to specialized measures
previously defined in the literature. Indeed, let us recall the definition of
normalized system throughput for a system with multi resources and multi-
class workload, given in [118]:

EXInsep

(4.15)

D
X'=>" 302(6 (4.16)

where D, = Zf: 1 Dy 1s the total demand of class c jobs and the sum of

all the service demands is D = >>7 S°% D, .. Through utilization law,
the utilization of resource r is defined as:

H H
U= Uec=) Xc D (4.17)
c=1 c=1

Substituting Eq. (4.17) in Eq. (4.19), the following equation is obtained for
EXInsep:

P P
EXInsep = K H = H (418)
Zr:l Zc:l XCDTC zczl XC ’ DC
and multiplying both sides of Eq. (4.18) by D:
P
D - EXipsep = < = EJ (4.19)
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since in the single-class case, the normalized system throughput as defined
in Eq. (#.16) is equal to the system throughput. For the same reason, the
relationships presented in Egs. (4.13) and @.19) are identical.
Furthermore, complex systems may be composed by several subsets of
inseparable resources. In this case, the previous definitions given in Eqgs.
(4.14) and (4.15) may be combined to obtain a general expression to cor-
rectly evaluate the energy per time-unit of execution of jobs in multi-class

systems.
For that purpose, let us partition the K resources into M groups. Each
group G,, = {ry,...,rg,, } contains K,, components. All the resources

in a group G, are inseparable, while different groups G, and G, (with
[ # m) are separable. Thus, the energy per time-unit of execution for the
entire system is defined as:

M
ZTern PT

b= Z ZreGm UT

m=1

In this case, it is interesting to note that Eq. may be reduced to
Eq. when M = K and G,, = {m}. Instead, it is reduced to Eq.
(4.15) when M = 1land G; ={1,...,K}.

Finally, it worths noting that, the three energy per time-unit of execution
metrics, i.e., Eqs. (#.14)), (@.13) and (#.20)), can be used to study the energy
consumption of a system. While using the same metric, it is possible to
compare the energy efficiency of different systems or different system’s
configurations. Instead, the results obtained recurring to different metrics
cannot be used for comparisons, since they do not account for all the system
characteristics at the same way.

(4.20)

4.4 Numerical results

The energy per time-unit of execution metric introduced in the previous
section is now applied to study a system with two resources and two classes
and it is compared with ERP and ERWS metrics in order to compare their
results. For this purpose, a system composed by two parallel workstations
with the same characteristics of Machine2 (described in Section [3.3.1)) is
considered. A queuing network is used to model the system analyzed and
its representation is given in Figure 4.1]

The think time of the system in Figure [@.1] is zero (i.e., it is a batch
system), thus the jobs do not spend time in the delay station. As said, a
multi-class workload is considered and the users’ requests are divided into
class A and class B jobs.
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Delay
station

Figure 4.1: The system considered to study the EX metric.

Table 4.2: Average service demands of the web application adopted as case-study.

Class A | Class B
Resource 1 3.84s 2.3808 s
Resource 2 096 s 6s

Let us also assume the system can process a maximum of N = 50 re-
quests simultaneously. Moreover, the administrator can tune the proportion
of class A and class B requests into the system by appropriately varying
the kind of jobs submitted to the system.

As done in Chapter 2] 34 represents the percentage of class A requests,
and Sp = 1 — (34 is the percentage of class B jobs into the system. Thus,
the population mix of the system is defined as 8= (Ba, BB)-

The service demands of the to workstations for both class A and class B
jobs are given in Table 4.2

In order to study the population mix 5 that minimizes the energy con-
sumption of the system while providing the best performance, the linear
power consumption model described in Eq. is adopted. As done for
Machine2 in Chapter@ Piqie = 59 watt and Py, = 115 watt for both the
workstations considered.

The model here described has been analyzed with JMVA, the analytical
solver of JMT [11], a comprehensive framework for performance evalua-
tion, system modeling with analytical and simulation techniques, capacity
planning and workload characterization studies, developed by Politecnico
di Milano and Imperial College London.

The performance of the system shown in Figure d.1|are depicted in Fig-
ure {4.2] against the percentage of class A jobs into the system.

As visible, the best performance values are obtained when the popula-
tion mix is 5 = (0.4, 0.6), that is the optimal population mix of the system
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Figure 4.2: The performance of the system considered in this section. Its response time is

plotted in (a), the throughput in (b), the utilization of the two resources are depicted in
(c) and the system power consumption in (d).
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considered, 5*, and may be derived through Eq. . Thus, when the
system works with 20 class A and 30 class B jobs, it provides the shortest
system response time and the largest system throughput. Since the sum of
the utilizations of each resource is maximum in ﬁ*, also the system power
consumption (i.e., the sum of the power consumed by each resource) is
maximum when the system works with the optlmal population mix. Note
that, as previously said in Chapter all the 6 belonging to the common sat-
uration sector — that is derived through Eq. (2.4) — make the system work
with its best performance.

The power-performance trade-offs evaluated with ERP, ERWS and EX
are depicted in Figure as a function of $4. In particular, since it was
not possible to derive the system’s energy consumption without knowing
the time window for which the two workstations were turned on, the E[E]
parameter in Eqs. (#.4) and (4.5) has been substituted by the expected
power E[P] as in [53]].

ERWS has been evaluated for different values of w; and w, weights; in
fact, w; = {0.25,0.50,0.75} and wy = 1 — w; in order to observe how
ERWS changes when either the response time or the power consumption is
the more important parameter for the service provider. Instead, Eq.
has been used to estimate EX, since the two parallel workstations may be
independently shut down when they are not used.

The population mix for which the system has the best power-performance
trade-off according to each metric is marked by a bullet. In order to com-
pare all the different metrics, each value has been normalized between 0 and
1, dividing it by the maximum value estimated by the metric considered.

E Xsep 1s the only metric that identifies the optimal population mix as
the one which provides the best power-performance trade-off. As said, in
that point the system works with its minimum response time and maxi-
mum power consumption. However, if the system may complete the same
amount and proportion of jobs in a shorter time, its energy consumption
could be lower as said in Section 2.2.11

Moreover, if the impact of power consumption is lower than the one of
response time (i.e., ERWS with w; = 0.25 and wy, = 0.75), the best oper-
ating point estimated by ERWS is very close to the one given by £ Xg,,.

Finally, ERP and the other configurations of ERWS identify 5 = (1,0)
as the population mix with the best power-performance trade-off.

It is important to note that, in the case here analyzed, the computation of
the total amount of time to serve a given number of jobs is not a trivial task.
Indeed, recurring to the throughput definition (i.e., X = C/T, where X is
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Figure 4.3: The system’s energy-performance trade-off evaluated with different metrics
and normalized over the maximum value estimated by each metric. The minimum
value of each curve, i.e., the best operating point proposed by the metric considered, is
marked with e.

the throughput and C' is the number of completed task in time 7") to derive
the time required to complete /N requests would be misleading, since the
class of each processed job is not taken into account. That is exactly the
problem which is tackled in this chapter, while introducing the energy per
time-unit of execution metric.
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CHAPTER

Pool depletion systems

5.1 Motivation

The pervasiveness of Big Data applications in organizations is occurring
at a surprising high speed. Successful companies must adopt these new
technologies in order to keep their advantage over competitors.

One of the most important characteristics of this new paradigm is the
large size of data that must be processed in a reasonable amount of time. To
address the resulting performance problem, the Hadoop MapReduce tech-
nology has been proposed [38,72] originally by Google. Its operational
concept is based on distributed computing and parallelism. Initially, the in-
put data is split into blocks that are processed in parallel by a large number
of tasks generated by each job during the Map phase. In the following Re-
duce phase, newly created tasks process in parallel the intermediate results
of the Map phase producing the final output of the job. The completion of a
job may require one or more cycles of Map and Reduce phases. Typically,
each phase can take hours, or even days, to complete due to the significantly
large data sizes and the consequent high number of tasks to be executed in
parallel.

Thus, the analysis of resource consumption behavior during the execu-
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tion of a MapReduce job shows a pattern that is repeated in each phase:
generation of a large number of tasks, followed by their parallel execution.

Also other current real life problems adopt the same execution pattern;
for example, it is the case of video content providers, such as YouTube or
Netflix, that often need to transcode a huge pool of videos [41] to multiple
formats suitable to be sent and played by several different devices (e.g.,
smart-phones, smart-TVs, tablets, etc.).

The execution time of parallel tasks is deeply affected by two factors
that are related to the characteristics of the tasks and the architecture of
the computing infrastructure. While the first factor concerns the resource
requirements of the tasks, since they may saturate different resources during
their execution and the bottleneck of the system may migrate, the second
one regards the characteristics of the system’s components.

In fact, in cloud infrastructures, the resources that are dynamically allo-
cated to the tasks may be heterogeneous and have different capacities (e.g.,
computational power, storage size and speed, etc.). Furthermore, these
physical systems typically have a limitation on the number of tasks that
may be concurrently processed. This constraint — continuously reached in
this kind of applications due to the high number of tasks — is required for
performance control on response time.

As a function of the mix of tasks in execution in a single server (referred
to as subsystem), the time required by parallel execution of the tasks may
be in some cases extremely inflated due to the bottlenecks migration.

The variability introduced in the execution time of the tasks may have
a large impact on the completion time of the whole job. To cope with this
problem, the tasks admission policy in each subsystem plays a fundamental
role.

In order to study the performance and behavior of such applications —
where a huge and fixed number of tasks, referred to as pool, waits to be
admitted for execution in a set of service centers with limited capacity —
Pool depletion systems are proposed and described in this chapter. The
same framework is adopted to investigate the scheduling strategies able
to decrease the time required for the completion of all the tasks initially
allocated to the pool (referred to as depletion time).

In particular, the Optimal population mix policy is proposed and eval-
uated. It consists in scheduling the tasks execution in a way such that the
optimal population mix (described in Section [2.1)) of the considered system
is exploited to minimize the depletion time.

Note that, several scheduling strategies have been described in litera-
ture to deal with systems that serve a large number of tasks. Each policy
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may have different objectives: i) to minimize the execution time of each
single task; ii) to optimize the system utilization exploiting the jobs allo-
cation on each resource, iii) to minimize the execution time of a single job
that is served by all the resources of the system, as may happen in scien-
tific applications. Case i has been deeply analyzed in literature: FCEFS,
JSQ, MaxWeight and Completely Fair Scheduler strategies are examples
of scheduling policies used in that case. Differently from Case i, in the
problem considered in this chapter the minimization of task execution time
does not necessarily minimize the time required for job completion. Also
Case ii has been studied in depth; for example, Fair and Capacity sched-
ulers [82] are adopted by Hadoop to allocate resources in order to improve
system utilization when executing jobs possibly from multiple tenants. The
objective of the problem here considered is described by Case iii.

5.2 System description

A Pool depletion system is a framework composed by a pool of independent
tasks and one or more subsystems (i.e., servers that process the incoming
requests). A scheduler placed between pool and subsystems lets each task
in the pool be routed to one of the available servers; different scheduling
strategies may be implemented to optimize the performance of the system.
Let us assume all the tasks are created in the pool at the same time instant
and then are sent to the available subsystems for their execution. In these
systems, the most important parameter is the time required by the execution
of all the tasks, i.e., the depletion time.

When considering MapReduce applications, the pool initially contains
the Map tasks that, for simplicity, are assumed to be completed before start-
ing the following Reduce phase (that is modeled with another Pool deple-
tion system). Besides MapReduce applications, other examples of such
type of workloads are video transcoding/analysis, applications of business
analytics and NoSQL queries [26,41]].

In particular, we focus on jobs composed by two types of tasks, defined
as class A and class B. For instance, in multimedia stream applications
each chunk is processed by a single task and the two classes may represent
the computation of audio and video chunks, respectively. Instead, for what
concern MapReduce-based applications, the two different classes may rep-
resent data retrieving from different tables and their joining to answer some
users’ queries.

Each subsystem is composed by two resources, denoted as Res/ and
Res2 which, for example, may represent the CPU and the storage of a
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Figure 5.1: Pool depletion system with only one subsystem.

server. As said in previous chapters, the time required by a class c task to be
served by the resource 7 is referred to as service demand, D,.. The service
demands characterize the workload in terms of total processing require-
ments to the resources and, in this chapter, they are assumed to be expo-
nentially distributed. The two resources satisfy the assumptions of BCMP
theorem: they can work either in processor sharing, or in first come first
served with all the requests of identical service time, but possibly with dif-
ferent visit ratio. We assume that they execute the concurrent tasks accord-
ing to a processor sharing queuing discipline: all the tasks are processed by
the resources with a service rate proportional to the current number of tasks
in service.

The number of tasks initially in the pool is denoted as N = N4 + Np,
where N4 and Np are the number of class A and class B tasks, respectively.
The system can execute no more than A < N tasks concurrently. This
limitation, that prevents all the /V tasks to be executed in parallel, may be
used to model constraints on memory occupancy or restriction to comply
with the SLAs. The system is allowed to execute K4 tasks of class A
and Kp of class B, such that X = K4 + Kp; note that, K4 < N4 and
Kp < Np.

As soon as a task is completed, another task of the same class starts
being processed by the subsystem. When all the tasks of a class are com-
pleted, the system allows the tasks of the other class to enter the subsystems
until their capacity K is reached. Figure gives a visual representation
of a Pool depletion system with only one subsystem.

Figure|5.2|shows the temporal evolution of a Pool depletion system with
only one subsystem. In particular, the number of tasks concurrently pro-
cessed into the subsystem and their proportions are depicted.

Initially, K out of N tasks immediately starts being processed by the
first resource of the system. As long as there are tasks of both classes in
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Figure 5.2: Temporal evolution of the number of tasks processed by a Pool depletion
system. The initial instant of each phase is shown on the x-axis.

the pool waiting to be executed, the number of tasks into the subsystem
is always K = K, + Kp. This phase is addressed as ®;: after a short
initial transient period, denoted with 7', the system behaves as a closed
queuing model with K4 and K3 customers, since whenever the task of a
class leaves the subsystem, it is immediately replaced by another one of the
same type.

At time T3, the tasks in the pool of one of the two classes are finished
and there are not other tasks of that class which can enter the subsystem
(in Figure class A tasks). At this time the system starts replacing the
tasks of the exhausted class with the ones of the other class in order not
to underutilize the subsystem; phase ®y begins. Also in this case, after an
initial transient period in which all the remaining tasks of the exhausted
class are served, the system behaves as a closed queuing model with K
customers (in Figure they are all class B customers). The end of the
transient period is denoted as 1715.

If the pool is empty, the subsystem begins to execute a decreasing num-
ber of tasks since they cannot be replaced by new ones when they are com-
pleted. The beginning of this last phase is denoted as 732, whereas the
whole period of time in which the server is working with less than K tasks
is referred to as phase ®y. The job has been completely executed at time
T, i.e., the depletion time, when all its tasks have been processed. Indeed,
the depletion time is the total time required to complete the execution of all
the NV tasks initially in the pool.

5.3 Modeling a Pool depletion system

Two different models have been adopted to investigate the Pool depletion
systems’ behavior, and they are presented in this section. In particular,
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Figure 5.3: CTMC describing a Pool depletion system with single-class workload and one
subsystem, when Ny = 5 and K 4 = 2.

continuous time Markov chain (CTMC) is used to analytically study the
new framework, but only very simple systems can be analyzed due to the
state space explosion problem. Thus, a multi-formalism model has been
proposed in order to investigate more complex systems.

5.3.1 Continuous time Markov chain

Pool depletion systems with only one subsystem and single-class or multi-
class workload have been modeled with CTMC. Although the system de-
scription provided in Section [5.2] for the framework considered seems to
be very simple, the underlying Markov process is characterized by many
asymmetries that makes its analysis a bit involved. To simplify the pre-
sentation, a simple single-class example with fixed parameters is initially
presented, then it is extended to the two-class case.

Single-class model

Let us consider a single-class Pool depletion system with N = Ny = 5
tasks to be completed, and only one subsystem with capacity K = K4 = 2,
i.e., the number of tasks that are allowed to be executed at the same time.
The corresponding CTMC is shown in Figure [5.3] and its state is identified
by the tuple: (npa,ni4,n24), where npa is the number of tasks that are
waiting in the pool to enter the subsystem, n;4 is the number of tasks in
resource Resl and ns 4 is the number of tasks in resource Res2. Note that
nia +nga < K.

The loading phase is ignored since it is negligible, thus K tasks are
immediately admitted in resource Res/. For this reason, the initial state of
the CTMC is (nOA — N4, N1A, O) = (3, 2, 0)

Let us call 1 = 1/D; 4 the rate at which tasks leaves Resl, and py =
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Figure 5.4: Portion of the CTMC that describes the Pool depletion system with single
subsystem and two-class workload.

1/Dy4 the rate at which tasks are served by Res2. The tasks always leave
from Resl to Res2 at rate jip, producing a transition from (noa4,n14,n24)
to (TLOA, niga — 1L,nog + 1).

The effect of tasks completion at resource Res? is different depending on
whether there are other tasks waiting to be processed (np4 > 0, phase @y in
Figure or not. In the former case, the system performs a transition from
state (npa,n14,n24) to state (noa — 1,n14 + 1,n24 — 1) at rate po, since
whenever a task exits the system from resource Res2, one of the waiting
tasks immediately enters the subsystem and is served by Res!. Instead, if
the tasks waiting in the pool are finished (nps = 0, phase @y in Figure
[5.2), the subsystem starts working with one less task, transitioning from
state (0,714, n24) to state (0,114,124 — 1) at rate po. When the last task
has been executed, the system is in the absorbing state (0, 0, 0).

Multi-class model

Figure [5.4] shows the basic transition structure of the CTMC underlying a
two-class Pool depletion system with a single subsystem. For the sake of
clarity, only outgoing arcs are shown.

When considering a Pool depletion system processing a two-class work-
load, each state is characterized by a six components tuple, (npa, nog, n14,
nip, N24,Nap ), that represents the number of tasks waiting in the pool and
being executed at Res/ and Res2 for both the classes.

If n14 +nyp > 0, then the tasks are processed by Res!; thus, the tran-
sition may be either to state (npa,nop,n1a — 1,n15, 24 + 1,125) Or to
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state (noa, nos, N1a, N1 — 1,N24,n2p + 1) at rate:

Nic

fie = ce{A, B} (5.1

. ;
nia +mp  Die

where the ratio n;./(n14 + n15) implements the processor sharing policy
used by the resource.

Instead, the completion of a task at resource Res2 can trigger four dif-
ferent behaviors, each one leading to a different pattern for the next state.
Let us focus on class A tasks; the case for class B is symmetrical.

If class A tasks are still waiting in the pool to be served (i.e., npa > 0,
phase @y in Figure[5.2), the system will allow a new class A task to start its
execution. This leads the system to state (noa—1,nop, n1a+ 1,115, Noa —
1,n9p) and it is represented in Figure 5.4/ by the continuous arcs.

If there are no more class A tasks in the pool (i.e., np4 = 0) but at
least one class B task is waiting to be processed (i.e., nop > 0, phase @y in
Figure[5.2)), thus the completion of a class A task makes a class B task enter
the subsystem in order to exploit its capacity K. That leads the system to
state (0,nop —1,n14,n15+ 1,124 — 1, n2p) and is represented by a dashed
arc in Figure[5.4] Note that, during phase @y, the components 114 and 194
become 0 after the transient period 7712, as shown in Figure[5.2]

If no more tasks are into the pool (i.e., npa = 0 and npp = 0, phase Py
in Figure [5.2)), then the subsystem starts depleting and serving less than A
tasks in parallel; this is represented by state (0,0, 114,715,124 — 1, n2p).
The depletion phase, the one considered when the pool is empty, is repre-
sented in Figure |5.4|by a dotted arc.

Finally, when the last task is completed, the system reach the absorbing
state (0,0,0,0,0,0). This is represented with a dash-dotted arc in Figure
5.4 As for Resl, due to the processor sharing scheduling algorithm, the
service rate of Res2 is:

N2

Hoe = ce{A, B} (5.2)

- . ,
Noa +nop Do

Models analysis

In order to compute the depletion time, the well-known technique for evalu-
ating the up to-absorption time [[103]] is applied. Let us consider the CTMC
of the general model with absorbing state (0, 0,0, 0,0, 0) and infinitesimal
generator matrix Q = [g;;], and call W the set of non-absorbing states.
The mean time spent by the CTMC in state ¢ until absorption is defined
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zi:/ mi(T)dT
0

where 7;(7) is the unconditional probability of the CTMC being in state ¢
at time 7. The row vector z = [z;] satisfies the following equation:

zQy = —mw(0) (5.3)

where 7y, and Qy;- are the transient probability vector and the infinitesimal
generator matrix restricted to the non-absorbing states only, respectively.
Following [[103]], the mean time to absorption of the CTMC, 7', can be
computed from the solution of Eq. (5.3):

T:ZZ'i

If we call P, the average power consumed in state ¢, then the average
total energy consumed by the system is:

E:Zzi-Pi

ieW

as

In a similar way, if we call u,; an indicator function that is true if a
resource 7 is used in state i, ¢;(X) the indicator function that is true when
state 7 belongs to phase X € {I, 1, [}, and m, the number of tasks admitted
in the subsystem in state ¢, then the average utilization of resource r, U,,
the average time ®(.X) spent in phase X, and the average number of tasks
in the subsystem can be derived as:

iEew iew iew
5.3.2 Multi-formalism model

A multi-formalism model is used to evaluate more complex configurations
of the Pool depletion systems. Indeed, when values of N and K increase or
multiple subsystems are considered, the CTMC model cannot provide any
results in a reasonable time due to state space explosion.

Thus, a Pool depletion system may be described as shown in Figure
5.5 using a multi-formalism model consisting of Colored Petri Net (CPN)
and multi-class fork-and-join queuing network. The workload of the model
consists of two type of customers: the tokens, representing the colors of
the Petri net, and the jobs, representing the requests to be executed by the
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Figure 5.5: The multi-formalism model used to study Pool depletion systems.

Table 5.1: Color-sets of the Petri net in the multi-formalism model.

Colour-set | Description
<C> Task class C' = {A, B}
< C,C" > | Task class C, original class C’

queuing network. Each type of workload comprises two different classes
of customers. CPN tokens are used to model the admission policy of the
new tasks into each subsystem, while queuing network primitives are used
to describe the service demands of the tasks. According to [62]], the use of
several formalisms allows exploiting the most appropriate modeling primi-
tives to express the corresponding concepts in the most efficient and natural
way.

The jobs are created in the delay station Jobs; note that, it is possible
to focus on a single job that is continuously executed, without loss of gen-
erality, and the think time (i.e., the service time of the Jobs station) is set
to Z = 0. When the job enters the Fork node, it is split into N4 tasks of
class A and Np tasks of class B, with N = N4 + Npg. The tasks waiting to
be executed are represented as tokens into place Wait: in this case, color
class < C' > is used to remember the task class as an attribute of the token.
Table summarizes the color classes used in the model; in Figure @]
color classes are represented in angled brackets as labels associated to the
places and, with a slight abuse of notation, to queuing stations.

The place MaxTasks represents the considered scheduling assignment
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5.3. Modeling a Pool depletion system

and contains tokens belonging to < C' > color class, initialized to K 4 and
K p tokens for the corresponding task classes. Its marking represents the
chosen configuration that allows a total of K = K4 + Kp tasks simul-
taneously into a subsystem. The execution of a task starts with the firing
of transition Enter, which can occur in one of the four following modes.
When the subsystem is in normal operation, transition can fire in mode 1
or 2 removing respectively one token of class A or B from its input places,
and creating customers of class (A, A) or (B, B) in the queue Res1, that
represents the first resource of the subsystem. When there are no more to-
kens of either class B or A in place Wait, transition Enter fires in mode
3 or 4 allowing a task of class A or B to enter instead of the one that has
already been completed. Queuing stations Res1 and Res?2 represent the
two resources of the subsystem. Even if the task classes generated by the
CPN transition are (A, A), (A4, B), (B, B) and (B, A), only the first com-
ponent of each couple is used to determine the service requirements of a
task. Instead, the second component is used in place Rel to allow transi-
tion Leave forwarding the correct task type to Join node, and to return
the acquired task token into place MaxTasks. This is accomplished by
the firing of transition Leave according to four modes, as summarized in

Table

Each subsystem has a similar structure, and the same sub-model is re-
peated n times as shown in Figure [5.5] Each subsystem can be character-
ized by different service demand for its resources, and different tasks al-
lowances K 4 and KKz. When all the tasks have been completed, the Join
primitive can fire, returning the customer to the reference station, and al-
lowing the next job to start. To characterize the configuration of the system,
the pool population mix and the subsystem population mix are denoted, re-
spectively, as:

@»_(a __Na _1_a>

= A—NA‘i‘NB, B — A (54)
> Ky '
= = —_— :1_

3 (m o ol ﬁA)

Note that, while the scheduler generally has control over the subsystem
population mix, 5, it cannot set the pool population mix, @. Indeed, the
pool population mix depends on the type of application that is processed by
the system, thus it changes when different applications are considered.
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Table 5.2: Transitions firing modes of the Petri net in the multi-formalism model.

| Transition | Mode || In; | In, | Out, | Outy || Description
Enter Wait MaxTasks Resl
1 A A (A, A) Class A task
2 B B (B,B) Class B task
3 A Bwithwait.B=0 (A, B) Class A task, depletion
4 B A withWait.A=0 (B, A) Class B task, depletion
Leave Rel MaxTasks | Join
1 (A, A) A A Class A task
2 (B, B) B B Class B task
3 (A, B) B A Class A task, depletion
4 (B,A) A B Class B task, depletion

swalsAs uonajdap |0od "G 1a1deysn



5.4. Results

5.4 Results

5.4.1 Analytical results

Let us start considering the case of a Pool depletion system with a sin-
gle subsystem. In order to derive the analytic equations its determine the
depletion time, two assumptions (hereinafter referred to as asymptotic as-
sumptions) have been made: i) the number of tasks initially in the pool
must be much larger than the number of tasks simultaneously admitted in
the subsystem, i.e., N > K ii) the subsystem’s capacity is large enough
to saturate the subsystem itself.

When the two hypotheses are verified, the transient phases shown in Fig-
ure [5.2) are negligible and the depletion time is computed as 7' = T + 15,
where T and 75 are the length of phases ®; and ¢y, respectively, without
considering the imperceptible transient periods. In fact, when the asymp-
totic assumptions hold, the depletion time may be computed just accounting
for the two dominant phases, ®; and Py.

While analyzing the asymptotic behavior of a Pool depletion system,
phase @y lasts until there is at least one task of each class in the system.

Being the pool and subsystem population mixes defined as in Eq. (5.4),
the ®; length is given by:

- A . N'OéA N'OCB
Ti(N,a, f) = min (XA(BA)’XB<5A)) (5.5)

where X.((34) is the throughput for tasks of class ¢ € {A, B} when there
are Ky = 4K (thus, K = (1 — $4)K) tasks in the subsystem. ®; ends
when the pool runs out of tasks of one of the two classes.

During phase @y the system always executes a single class workload
(e.g., class B in Figure [5.2). It starts with less than N, tasks — c is the
remaining class — since part of them have been already executed during @,
and it ends when there are no more tasks in the system. The length of phase
Dy, (i.e., Th), is computed as:

N-aAfmin<%,%)XA(ﬁA)
TN & 3) — Xa(l) 5.6
WNED =Y wanmn( s OO
Xg(0)

where X 4(1) (Xp(0)) is the class A (B) throughput when there are only
tasks of class A (B) in the system. Based on the class of the tasks in the
pool when phase @y begins, one of the two formulas in Eq. (5.6) is consid-
ered. For instance, if phase ®; ends when class A tasks are exhausted (i.e.,
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N-ag

XaBn) < X (ﬁ ) the second expression in Eq. must be used, since
the first one returns 0. Instead, if the pool runs out of class B tasks when @
finishes, first formula in Eq. (5.6) is adopted.

To derive the asymptotic depletion time of the system, the definition
previously presented is adopted and Eqs. (5.5) and (5.6) are summed as
follows:

=,

T(N,d, () = Ty(N, &, B) + Tz(

a, B)
=min ( N-aq )
B Xa(Ba)’ XB 5,4
N - a4 —min (X%g), e ) a(Ba) (57
Xa(1)
N -ag — min <X]XFEZ)’XA1; ) 5(Ba)
X5(0)

Both the formulas in Eq. (5.6) are used since, in any case, one of them is 0
depending on the exhausted class.
After some algebraic manipulation, Eq. (5.7 becomes:

- N'OzA N-aB
T(N,d,p) = ) T X0
min N-aa N-agy [, Xa(Ba) B Xp(B4)
i (XA(BA)’ XB(ﬁA)) (1 Xa(1)  Xp(0) )

Finally, due to the first asymptotic assumption (i.e., N > K), Eq.
is normalized over the initial number of tasks in the pool, N, without loss
of generality:

+

+

(5.8)

=,

T(N7&75> _ - 7
= 7, f)
Qa 1 — iy
X401 ) Xp(0) (5:3)

. ag  l—ay ~ Xa(Ba)  Xp(Ba)
e (XA<5A>’XB<BA>> (1 Xa(l)  Xp(0) )

As said, all the equations presented in this section are for Pool depletion
systems with only one subsystem. However, they may be easily adapted
to the multi-subsystem case. In fact, the class ¢ € {A, B} throughput of
the single subsystem, X.(/34), must be substituted by the sum of the class

¢ throughputs of the S available subsystems, S5 | X7(53,4).
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Note also that, Eqs. (5.8)) and depend on the population mixes &
and 5 . As previously said, the scheduler can easily control the population
mix of the subsystem, while it is not usually allowed to modify the pool
population mix. For this reason, two different minimum depletion times
may be identified: the relative and the absolute ones. In the former case,
the decision about the optimal operating point of the Pool depletion system
analyzed is taken only varying the population mix E . In the latter case, the
scheduler is assumed to have control over both & and 5 . This topic is better
analyzed in next section for the Pool depletion systems with one subsystem.

Relative minimum depletion time

Initially, the configuration analyzed consists of a system where all the pa-
rameters (i.e., Ny, Ng, K and service demands matrix) are known, and
only the fraction of tasks of the two classes in the subsystem (i.e., /{4 and
Kp) varies. Referring to Eq. , the scheduler can vary only 3 , whereas
@’ is given as an input parameter and is constant. In this situation, the sched-
uler must look for /34 values such that the depletion time, computed through
Eq. (5.9), is minimized.

Let us assume that the input parameters given by the user are the follow-
ing service demands:

0.75 0.64 } (5.10)

Dre = [0.48 1.25

and as € [0, 1]. They are used to compute the normalized depletion time
as in Eq. (5.9). The optimal population mix of the service demand matrix
in Eq. s derived through Eq. and is 3* = (0.6,0.4). Similarly,
Eq. (2.4) can be used to determine the minimum and maximum values
of the common saturation sector, that are 5°° = (0.46,0.54) and §*» =
(0.73,0.27), respectively.

The scheduler must analyze all the possible 54 € [0, 1] which may be
adopted by the subsystem and identify the one that minimizes the depletion
time.

Figure shows the normalized depletion time, 7'/ N, and the time re-
quired to complete phases ®; and @y, 77 /N and T5/N respectively, when
B4 varies and for two different applications (two different values of a4 are
considered: a4 = 0.4 in Figure[5.6a and a4 = 0.8 in Figure[5.6b).

In Figure T is minimum when 84 € [0.20,0.73]. The common
saturation sector is included in the interval that minimizes the depletion
time and both of them have the same upper bound. The minimum 7' can
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Figure 5.6: Asymptotic depletion time as a function of parameter (4 for (a) & = (0.4, 0.6)
and (b) d = (0.8,0.2).

68



5.4. Results

be identified looking for a B such that the execution of all class A and
class B tasks ends at the same time. Let us denote such a value as 37 =
(Ka/K,Kp/K). If the system works with population mix 8, then:

Na/Xa(B%) = Ng/Xp(64)-

Indeed, the system completes the execution of both the classes at the same
time:

- N N N N
T1<N,&,/3+>=mm< - g ) - g

XA(B3) Xs(BY)) ~ Xa(B5)  Xs(Bh)

and 7, = 0.

Similar considerations can be drawn also for the results of Figure [5.6b]
In that case, minimum depletion time is obtained for interval [0.46,0.82]
that still includes the common saturation sector of the system considered.

It is interesting to note that when BX < %% (i.e., the lower bound of
the common saturation sector) the depletion time is minimum for 8,4 €
(8%, B9F], whereas if 5§ > ' (i.e., the upper bound of the common satu-
ration sector) the depletion time is minimum for 84 € [8%%, 31]. Instead,
the depletion time is minimum for any 84 € 85", 8] if 5 belongs to
the common saturation sector of the subsystem.

Recalling from [118] the formulas to compute the per class throughput
of a system such as the one considered in this section (i.e., with Dy 4 > Dsy
and Dyp > DlB)Z

Xa(Ba) = Draves Drapis P47 S Pa< By
* i oo (5.11)
( % Ba < plv .
Xp(Ba) = § proRD— B < B4 < B
\ % Ba > B

it is possible to provide the equation for computing the value of 37, when
the asymptotic assumptions hold, imposing:

Xa(Ba) _ Na
Xp(Ba) Np
In fact, Algorithm may be used to determine the 37 value:

Line [I] derives the lower and upper bounds of the common saturation
sector of the subsystem. Line [2| computes the value of 37 assuming it is

(5.12)
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Algorithm 1 Algorithm to determine the value of BX.

low Dap—D1p up Dap—D1p
BAY < Daa DyaD2p—D2aDip’ Ba” < Dia D1aD2p—D24aD15

6-‘:— « NaDoa
A NaD2a+NpD2p

if 31 < B then
return 3

else

ﬂ+ y NaDia
A NaDi1a+NpDiB

if 3 > B then
return 3
else
return (3% {or any other value belonging to the common saturation sector}
end if
end if

—_

R A A

_ ==
» e 2

lower than 3%, thus substituting the formulas for 34 < 8%" in Eq.
to Eq. (5.12). The hypothesis is verified at line 3} if it holds the 3/ derived
is returned, otherwise it assumed to be larger than /3,}” and the process is
repeated at lines [B}{§] If also the new hypothesis does not hold, it means
class A and class B tasks are completed at the same time for any 34 in the
common saturation sector. For this reason, any value between ﬁljw and 3}
(e.g., the optimal one, 3%) may be returned.

Note that, also Algorithm m is valid only in the case considered (i.e.,
when D;4 > Doy and Dyp > D). However, the formulas for the case
where Dy4 > D14 and Dy > D,p are easily derivable since, as shown
in Chapter 2] these conditions only affect the resource that saturates before
and after the common saturation sector.

When the depletion time is minimum for several values of B, the sched-
uler can also account for other performance metrics to make better choices
about the operating point. For instance, it may consider the per-class re-
sponse times. Indeed, it is able to make the system operate with the min-
imum depletion time and privilege one of the two classes making its tasks
exit the system faster than the tasks of the other class.

In the case of a Pool depletion system with multiple subsystems, the
optimal operating point 5 * must be computed for each subsystem. Indeed,
as shown in this section, the population mix of a subsystem depends only
on the characteristics (i.e., the service demand matrix) of the subsystem
itself.

Finally, it worths to notice that the minimum values of depletion time
identified in this section are relative to the given values of &. A more gen-
eral problem is studied in next section, where an absolute minimum is iden-
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tified.

Absolute minimum depletion time

Let us now assume the scheduler is also able to modify & (i.e., the popula-
tion mix of the pool) in order to identify the shortest depletion time. Thus,
considering the case of a single subsystem, the parameters passed by the
users are the initial number of tasks /V in the pool, the capacity K of the
subsystem and the service demand matrix.

As said, the scheduler looks for the minimum depletion time varying
both a4 and (4 in Eq. (5.9). In particular, it operates according to the
following steps: i) it computes the equi-utilization point 3% € [3%", B%]
of the subsystem using Eq. (2.2); ii) it derives X (/%) and X p(3% ) through
Eq. using the formulas for 8% < B4 < B, since 5% € (8K, Y]
as shown in Figure iii) it computes the optimal pool population mix,
a*, substituting the throughputs previously computed into Eq. and
making some algebraic manipulations:

Ng _ XB(8%)
L+ 5 =1+ X6y
NatNp _ Xa(B3)+X5(83)
s TR (5.13)
Oé* — XA(/BZ)
S CAES I

iv) the scheduler makes the system work with N4/N = o and with any
number of tasks in the subsystem such that K4 /K = 4 € [3%", B%F].

Figure [5.7] represents the depletion time of a Pool depletion system as
a function of a4 and 4, when the asymptotic assumptions hold and the
subsystem is characterized by the service demand matrix in Eq. (5.10).
In particular, it shows that an absolute minimum depletion time is found
when a4 = o and for any value of 34 € [5%%, 3], that is, the common
saturation sector of the subsystem. Note that, a@* is the equi-load point of a
system, is computed as shown in Eq. and is @* = (0.69,0.31) for the
service demand matrix considered.

As previously seen, when the application is characterized by & # a*,
the system can only reach a relative minimum depletion time.

Note that, when considering a multi-subsystem Pool depletion system
the optimal pool population mix is computed with an equation slightly dif-
ferent from Eq. (5.13). Indeed, the throughput per class of each subsystem
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Figure 5.7: Depletion time over the number of tasks initially into the pool as a function of
a4 and o when asymptotic assumptions hold.

must be taken into account, thus:

XalB2) s Xas(B4)
XA(BZ) + XB(ﬁjl) Zf:l XA,S(BZ,S) + Zsszl XB,S (B:Z,s)
(5.14)

Finally, the scheduling strategy that makes a Pool depletion system work
with its optimal population mixes (i.e., 5 * and, if possible, @*) to minimize
the depletion time of the applications it is executing is called Optimal pop-
ulation mix strategy.

Since this strategy operates on the execution order of the tasks gener-
ated by the application, it may be implemented together with the already
available scheduling policies that have different targets (e.g., minimization
of the execution time of each task, optimization of the system utilization)
in order to further improve the system’s performance.

oy =

5.4.2 Simulative results

When the asymptotic assumptions do not hold, the equations provided in
Section[5.4.T]are no longer valid. For this reason, the Pool depletion system
is simulated recurring to the multi-formalism model described in Section
[5.3.2] The multi-formalism model has been validated against the CTMC
model described in Section [5.3.1] but only Pool depletion systems with
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small values of N and K and a single subsystem have been considered.

Indeed, the CTMC model is affected by the well known state space ex-
plosion problem and can provide the results in a reasonable time when
N ~ 100 and K ~ 10. If more complex systems are considered, the
state space explodes and the time required to complete the analysis is un-
acceptable.

In next sections, the multi-formalism model is used to study Pool deple-
tion systems with single and multiple subsystems. In the case of multiple
subsystems, a further distinction is considered: in fact, the subsystems may
be identical — in this case we talk about homogeneous subsystems — or have
different characteristics — also known as heterogeneous subsystems.

All the simulations provided in this chapter are performed with JSIMg,
the JMT [[11] simulator, and the results are computed with 99% confidence
interval.

Single subsystem

First of all, the non-asymptotic version of the relative minimum problem
presented in Section [5.4.1]is studied for a Pool depletion system with only
one subsystem. The service demand matrix used in this section is the one
given in Eq. (5.10) and, as already said, the corresponding equi-load point
is a* = (0.69,0.31).

Since in the relative minimum problem the scheduler cannot change the
pool population mix &, we assume that the application executed by the Pool
depletion system has & ~ a’*.

Figure [5.8] shows the length of the three phase when N = 100 and
K = 10. The Pool depletion system has been analyzed for N = (70, 30),
i.e., @ = (0.7,0.3), whereas several values of 5 have been taken into con-
sideration. Note that, the sum of the durations of all the phases depicted in
Figure [5.8]is the depletion time.

Although T3, is maximum when 54 = 0.6, the minimum depletion
time is observed when the system works with 54 = 0.5. That discrepancy
is due to the non-asymptotic conditions of the system,. Indeed /V is not
much larger than K, and K is not large enough to saturate the subsystem.
For these reasons, the transient periods (i.e., 7%, 71712 and T3) cannot be
neglected and they affect the general system behavior.

Figure depicts the amount of time saved when the Pool depletion
system works with B different from the worst one (i.e., the subsystem pop-
ulation mix for which the maximum depletion time is observed). The per-
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Figure 5.8: Depletion time and length of each phase as a function of 5, for the system
with service demand matrix given in Eq. (5.10), when an = 0.7, N = 100 and
K =10.

centage of time saved is:

Tmaw - Tes imate
G = timated (5.15)

Testimated

where 7}, 1s the maximum depletion time observed for the system ana-
lyzed and 7. stimateq 18 the depletion time measured with the current E .

Note that, depending on the service demand matrix considered, the gain
obtained when the subsystem operates with its optimal population mix may
be different, i.e., either larger or smaller.

Also the non-asymptotic behavior of the absolute minimum problem has
been studied. For this purpose, the optimal population mix of the service
demand matrix considered has been derived, i.e., 5* = (0.6,0.4), and the
system is assumed to work with that subsystem population mix. Thus, the
depletion time is depicted against the a4 values, trying to identify the pool
population mix for which the system executes, in the shortest time, all the
tasks that are initially in the pool. The results are shown in Figure[5.10]

Differently from the asymptotic case, the Pool depletion system has its
minimum depletion time for a value of & different from the optimal one.
In particular, the minimum 7" is observed for a4 = 0.9. Moreover, the
maximum 7, of the system is not measured when & = a*; however, it is
observed for a a4 value (i.e., 4 = 0.65) that is closer to the optimal one
than the pool population mix for which the minimum 7" is measured.
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Figure 5.9: Percentage of time saved when the system works with [, different from the
one for which the system has the longest depletion time (i.e., o = 1).
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Figure 5.10: Depletion time and length of each phase as a function of a4, for the system
with service demand matrix given in Eq. , when 4 = 0.6, N = 100 and
K =10.
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Figure 5.11: Depletion time over number of tasks initially into the pool as a function of
Ba, for different configurations of a Pool depletion system with a4 = 0.7 and the
service demand matrix given in Eq. (5.10).

Finally, Figure[5.11]depicts the results obtained considering three differ-
ent configurations of the system, that are (N, K') = {(1000, 10), (1000, 100),
(2000, 200)}, assuming & = (0.7, 0.3). The confidence intervals are shown
in the graph.

From those results we note that the larger is /&, the flatter is the optimal
region (i.e., the interval for which the depletion time is minimum). Indeed,
if the subsystem capacity is larger, then it can saturate. This result supports
the initial decision of considering asymptotic behavior of the system, and it
seems reasonable to expect that the larger is the value of /, the lower will
be the error done by the scheduler. Moreover, as long as the ratio of K to
N is the same, the normalized depletion time does not seem to deeply vary.

Homogeneous subsystems

A Pool depletion system may be composed of identical (homogeneous)
subsystems. The main advantage introduced by homogeneous distributed
subsystems is the parallelization of jobs execution.

Since all the subsystems have the same characteristics, their optimal
population mixes, E; (s is the subsystem considered), are identical. For
this reason, all the subsystems have the same throughput and Eq. (5.14)
coincides with Eq. (5.13).

In Figure [5.12]two performance metrics of a Pool depletion system with
homogeneous distributed subsystems are depicted as a function of the num-
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Figure 5.12: (a) Energy consumption and (b) depletion time of a Pool depletion system

with homogeneous subsystem that works with & = (%7 %), as functions of total

number of subsystems and their population mix.

ber S of available subsystems, and their population mix E . The pool size
of the considered system is N = 1008 and the capacity of each subsystem
is K = 108/S. In the simulations, we consider S = {1,2,3,4,6} and the
service demand matrix presented in Eq. (5.10) is adopted to characterize
all the subsystems of the Pool depletion system.

Since the service demand matrix does not change with respect to the
one considered for the single subsystem case, the optimal population mix
of each subsystem is E* = (0.6,0.4) and the equi-load point is &* =
(0.69,0.31). All the subsystems are identical, thus they all work with the
same population mix.

For the sake of simplicity, only an application with N4 = 724 and Np =
284, 1.e., @ = ({25, o5 )» is considered.

Figure [5.124] represents the energy consumed to execute all the tasks
initially in the pool when PL, = 315 W, Pblusy =630 W, P, =250 W
and Py, = 500 W. P}, and Py, are the power consumptions of resource

bus bus

r when it is idle and fully utilized, respectively.

Energy consumption has been derived through Eq. (2.6) after estimating
the power consumption of each resource of the Pool depletion system using
the linear power model described by Eq. (2.7). Note that, the depletion time
is substituted to 7" in Eq. (2.6).

In the configuration considered, the minimum value of energy consump-
tion is observed when the system is working with only one subsystem.
However, it is interesting to note that working with six subsystems and with
the optimal population mix, ﬁ*, lets the service provider save more energy
than working with only one subsystem and with a suboptimal population
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mix.

Figure shows the time required by the system to complete all the
tasks initially in the pool (i.e., the depletion time). In this case, provisioning
a large number of subsystems allows the service provider to parallelize the
work. Thus, the depletion time can be reduced increasing the number of
subsystems available for tasks execution.

Since the energy consumption and the depletion time have different opti-
mal operating point, the system designer must take into account the service
provider’s priorities before configuring the Pool depletion system.

Finally, it worths to notice that for the application with @ = ({25, fo55 )
both the metrics analyzed have their minimum point when all the available

subsystems work with their optimal population mix, 5 *=(0.6,0.4).

Heterogeneous subsystems

The analysis of heterogeneous subsystems is interesting since it allows us
to consider more general systems. For example, they can be used to model
a data-center with different types of servers (e.g., new and old machines,
fast and slow servers, etc.).

In order to study this type of environments, we focus on a Pool deple-
tion system with two subsystems. Since they must have different features,
the first subsystem is defined through the service demand matrix given in
Eq. (5.10), whereas the following matrix defines the load of the second
subsystem:

0.86 0.65
Dre = { 03 1.02} (5.16)

The optimal population mix of the service demand matrix in Eq. (5.16)
is derived through Eq. (2.2)) and represents the optimal population mix of
the second subsystem, that is 35 = (0.3, 0.7).

As previously said, the optimal population mix of the pool must be com-
puted with Eq. (5.14) if the system has heterogeneous subsystems, and in
this case it is @* ~ (0.55, 0.45). This result highlights another important as-
pect of Pool depletion systems with heterogeneous distributed subsystems,
besides the parallelization of the workload. In fact, differently from the ho-
mogeneous case, using heterogeneous subsystems lets the service provider
execute different applications with better performance. This result is shown
in Figure [5.13] which depicts the depletion times of two different applica-
tions — that are characterized by two different pool population mixes, &
— executed by homogeneous and heterogeneous subsystems. The hetero-
geneous configuration provides a shorter depletion time than the homoge-
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Figure 5.13: Comparison of depletion time of Pool depletion systems with homogeneous
and heterogeneous subsystems for two different applications: (a) & = (0.55,0.45) and
(b) & = (0.70,0.30).

neous one when it is serving application with @ = (0.55,0.45) ~ a7 ;..
(i.e., the optimal pool population mix of the system with heterogeneous
subsystems). On the contrary, if the application with @ = (0.70,0.30)
is considered, the homogeneous environment provides better performance
than the heterogeneous one, since the new application is closer to the ho-
mogeneous optimal pool population mix, @} ...

The energy consumption and depletion time of the system with two het-
erogeneous subsystems are depicted in Figure [5.14] for an application with
A = Qpeer- EBach metric is analyzed against the population mix of each
subsystem, 51 and 5}. In this case, for both the metrics, the minimum val-
ues are observed when each subsystem s works with its optimal population
mix, 5%, i.e., GF = (0.6,0.4) and §; = (0.3,0.7), thus the scheduler can be
easily configured to make any subsystem operate as near as possible to its
optimal operating point.

5.4.3 Experimental results

The results obtained through analytic analysis and simulation are validated
with experiments performed on PoliCloud [52], the private cloud designed
and implemented by Politecnico di Milano, with 454 CPUs (1816 cores)
and approximately 6 TB of storage.

In order to validate the results previously obtained, the one-subsystem
case is considered. The pool is enabled by instantiating a virtual machine
(VM) which starts a benchmark, generates the multi-class workload and
monitors the whole system. A python script implements the tasks schedul-
ing strategy.
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Figure 5.14: (a) Energy consumption and (b) depletion time of a heterogeneous dis-
tributed system for & = (0.55,0.45), as functions of the population mix of each sub-
system.

The subsystem is composed by two VMs, that are the two resources
modeled in the Pool depletion system framework. Both the VMs into the
subsystem are identically instantiated with one CPU, 2 GB memory and the
Ubuntu Server 16.04 operating system.

The tasks composing the workload are generated using sysbench [81]],
a modular, cross-platform and multi-threaded benchmark tool. Each task
is CPU-bound and requires the computation of a certain value of prime
numbers; such a value is passed as input parameter to the tool. Note that,
the amount of prime numbers generated and the time required to complete
the task are linearly related as shown in Figure [5.13]

Specifying a different amount of prime numbers to be generated by sys-
bench, it is possible to take into consideration a multi-class workload. In
fact, two possibly different values representing the prime numbers to be
generated (i.e., x4 for class A and xp for class B) are passed to each VM
before starting the benchmark. Due to the linear relationship existing be-
tween the amount of prime numbers to be generated and the time to com-
plete each task, if the former is exponentially distributed, also the latter
follows the same distribution. Thus, whenever a class ¢ task is sent to a
VM, the amount of prime numbers to be generated by that task follows an
exponential distribution with average ..

The total time each task spends into a VM also accounts for the other
operations performed by the physical machines hosting the VMs and the
connection time between the VMs involved.

For the purpose of these experiments, the average service demands con-
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Figure 5.15: Q-Q plot that compares the number of primes generated and the time re-
quired to complete that operation, showing the linear relationship existing between the
two quantities.

sidered are given by the following matrix (in seconds):

4.30889 3.48539

Dre=1 939562  6.57502

(5.17)

for which @* = (0.62,0.38) and §* = (0.52,0.48). The pool size is set
to N = 100 with @ = (0.6,0.4) ~ &*, whereas the subsystem capacity is
K = 10 and its population mix 34 varies between 0 and 1.

The average amount of prime numbers to be generated to make each
VM work with the mean service demands given by Eq. (5.17) are reported
in the following matrix:

(5.18)

NumPrimes,., = [ 3497 2773 }

1744 5141

Each experiment is repeated 100 times and the average depletion time
for each configuration considered is depicted in Figure [5.16]

The first and second bars are the depletion time observed in the real
cloud environment and estimated by the multi-formalism model, respec-
tively. They refer to the left y-axis and their 99% confidence intervals are
also depicted. The minimum depletion time is observed for E = (0.5,0.5) ~
E*. When this Pool depletion system works with its optimal operating
point, it can save up to 15% of time required to complete the application
when a different population mix is adopted.

The third bar represents the Mean absolute percentage error (MAPE)
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Figure 5.16: Depletion time of a Pool depletion system observed in a real cloud environ-
ment (first bar) and estimated through the multi-formalism model proposed in Section
B-3.2](second bar). The MAPE of the model is shown by the third bar that refers to the
right y-axis.

computed as:
|Tbench - Tszm‘
bench

where Tpe,.p, 1s the average depletion time observed during the experiment
and Ty;,, is the estimated one. MAPE refers to the right y-axis and shows
that the largest error made by the model, that is for /5’ = (0.5,0.5), is lower
than 3%.

That proves the multi-formalism model proposed in this chapter can es-
timate the depletion time of a Pool depletion system with very good accu-
racy.

MAPE = (5.19)

5.5 Exploitation

Two real applications are now considered to show some possible exploita-
tions of Pool depletion systems. In the first case, an Apache Hive based
application is analyzed, whereas in the second example, a battery-operated
Pool depletion system is studied.

5.5.1 Apache Hive

Although Pool depletion systems can model many different Big Data appli-
cations, the case-study we consider in this section is an Apache Hive [132]]
based application. Apache Hive is an open source data warehouse system
and is used on top of Apache Hadoop. It has been extensively adopted by
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Figure 5.17: Query plan of three MapReduce jobs analyzed in [132|].

many organizations (e.g., Facebook, Netflix, Spotify) since it makes easier
the management of large data and their queries. Hive was introduced by
Facebook in [132]. It may be run on different Hadoop’s frameworks (e.g.,
MapReduce, YARN, Spark, Tez) and provides a SQL-like query language
that is called HiveQL.

A query to retrieve most popular Facebook status based on users’ gender
and school is investigated in [132]. Its simplified query plan is shown in
Figure where three MapReduce jobs are represented.

To study the performance of Optimal population mix strategy introduced
in Section the depletion time of a system adopting that policy is com-
pared with the depletion time of the same system when all the class A tasks
are executed before the class B ones, and vice-versa. In particular, we focus
on the MapReduce 1 join function of the Hive query in Figure

In that case, both Map and Reduce have multi-class workloads. Indeed,
Map phase gets its data from two different tables through retrieving tasks
(i.e., I/O bound) and must execute joining tasks (i.e., CPU bound) in order
to join the data retrieved; instead, the Reduce phase must still process the
data and then write two temporary tables.

Assuming two tables must be joint, we wish to identify the best way to
execute all the tasks of a MapReduce job in order to decrease the total time
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required to complete the join clause and get the expected results.

The Map and Reduce phases are modeled by two different Pool deple-
tion systems with heterogeneous subsystems, and have been characterized
starting from the parameters derived in [148]] and [|6]. The former provides
some data about MapReduce jobs executed on Facebook’s clusters, the lat-
ter refers to a public Hadoop repositoryﬂ Thus, the Map system is defined
by the following service demands (in seconds):

25 21 29 22
Map Map __
Drc,l - { 16 39 :| Drc,Q - |: 10 34 :| (520)

whereas the Reduce one has the following service demands (still in sec-
onds):

Red 95 39 Red 60 46
Dm—[% 82 Dre2= 17 70 (>:21)

Let us assume the MapReduce job is splitted into N = 1000 and
Nfed = 200 tasks before Map and Reduce phases start, respectively. The
number of tasks that is concurrently executed during the two phases is
KMar — 100 for Map and K**? = 50 for Reduce The optimal population
mix of each subsystem, derived using Eq. (2.2), are 577 = (0.58,0.42),

3Mer — (0.29,0.71), F7 = (0.52,0. 48) and Brfet — (0.25,0.75).

Finally, an apphcatlon whose @M% = (0.53,0.47) for Map phase and
afed = (0.49,0.51) for the Reduce one has been considered. For both Map
and Reduce phases @ ~ a*, where the equi-load point of each phase has
been computed through Eq. (5.14).

The results of the simulations have been computed with 99% confidence
intervals, and they are shown in Figure [5.18] As said, besides the Opti-
mal population mix strategy, also the First A Then B and First B Then A
strategies have been observed to investigate the improvement enabled by
our scheduling strategy.

In Figure [5.18] the time to complete all the Map and Reduce tasks into
the system are compared based on the scheduling policy adopted. The to-
tal time to complete a MapReduce job is also depicted. For the sake of
simplicity, we assume Reduce tasks are served after the Map ones and no
parallelism between tasks belonging to different phases is admitted (i.e.,
Total length = Map phase length + Reduce phase length). Due to the
large number of Map tasks that are generated, this phase is affecting the

6 Available at http: //ftp.pdl.cmu.edu/pub/datasets/hla/l Accessed: Jan. 15, 2018. Please,
include Attp at the beginning of the URL.
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Figure 5.18: Time to complete the MapReduce 1 job adopting different scheduling strate-
gies.

global performance of the system more than the Reduce one. When the
subsystems work with their optimal population mixes, the service provider
complete all the tasks (i.e., the MapReduce 1 job) in a shorter time than
using other strategies. The system requires the longest time to complete the
MapReduce job when it executes the class B tasks after completing all the
class A ones.

Based on the observed results, Optimal population mix strategy lets the
system save from 5% to 15% of the total time, with respect to other strate-
gies. As said, this result may be further increased; in fact, Optimal popu-
lation mix strategy can be implemented into a system together with other
scheduling policies that operates at different levels and with different tar-
gets.

5.5.2 Battery-operated Pool depletion systems

The analysis of a Pool depletion system may be also exploited in order to
compute the probability of completing all the tasks in the pool before the
battery that keeps the whole system on runs out of power. For instance, let
us assume the main power source fails as soon as a new job (e.g., a Big
Data application) enters a Pool depletion system to be processed. Thus, the
uninterruptible power supply (UPS) starts working to keep the server on.
The goal of this analysis is to investigate if all the tasks initially in the
pool can be executed before the UPS battery is completely discharged and
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the Pool depletion system is shut down. The results obtained from this
study may be used to configure the UPS in order to make it suitable for the
service provider’s purposes.

Several battery models have been proposed in literature in order to in-
vestigate the life of a battery: some of them, such as the electro-chemical
models [44], are very accurate and need several input parameters to work;
some others, like the kinetic battery model (KiBaM) [71,/77]], need just a
few parameters and may be easily used also by inexperienced users. In this
section, the latter model is adopted.

The KiBaM is an accurate and simple model [71,[/7] that divides the
stored charge into two different wells: the available charge and the bound
charge. The two wells are connected by a pipe and the charge can migrate
in both directions — based on the level of charge in the two wells — at a
given rate w. At the beginning, a fraction ¢ = [0, 1] of the total capacity
is in the available charge well, and the remaining 1 — ¢ fraction is in the
bound charge well. When the battery is strained, only the available charge
may be used, whereas the bound charge slowly becomes available.

The battery lifetime L is derived in [77]] by solving the differential equa-
tions that models the change of the charge of both the wells and, when
the load is constant, it may be computed determining the variable ¢ in the
equation:

(1—¢)- I 1—evt
) W'
where I = P(U)/AV is the load current that strains the battery (where
P(U) is the Pool depletion system power consumption as a function of
utilization U and AV is the voltage of the battery), ¢ is the lifetime of the
battery, ¥ is the battery full capacity and w’ = w/[$(1 — ¢)]. In this section,

¢ =0.5and w = 0.01 [71]].

Let us consider a Pool depletion system with N = 1000 tasks initially in
the pool and one subsystem composed by a CPU and a disk, whose capacity
is K = 100 and with the following service demand matrix:

L=t|I-t+ =5 (5.22)

3.84  2.3808 ] (5.23)

Dre = { 0.96 6

whose equi-utilization and equi-load points are §* = (0.4,0.6) and @* =
(0.56,0.44), respectively.

The Pool depletion system power consumption is computed recurring to
the linear power model in Eq. (2.7) and assuming P30 = 60W, B?0 =

100W, Pdisk = OW and Pgdis* = 20W. The UPS battery parameters

busy
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Figure 5.19: Probability that all the N tasks initially in the pool are served before the UPS
battery runs out of power, P(T < L), as a function of 34, when the pool population
mix is set to & = o* and different battery capacity 7 are considered.

are obtained from Trust OXXTRON 1000VA UPSE] specifications and are
AV =12 volt and 4 = 9Ah.

The Pool depletion system described is simulated with JSIMg [11]] when
its pool population mix is @ = @* = (0.56,0.44). The cumulative distribu-
tion function of the depletion time for many values of 5 has been evaluated.
Thus, the probability of processing all the /V tasks before the battery is ex-
hausted, i.e., Prob(T < L), is derived and the results are plotted in Figure
5.19i

When a battery with 9Ah capacity is used, the probability to process all
the tasks initially in the pool before the battery completely drains is only the
50% if the system implements the Optimal population mix strategy. That
probability is lower if the subsystem is not working with its 5* For this
reason, the system provider should consider a different UPS. In particular,
a battery with a larger initial capacity is required. For instance, increasing
the battery capacity of 1Ah allows the Pool depletion system to complete
all the tasks before the battery is empty for several subsystem’s population
mixes.

Thttp://www.trust.com/en/product/17680-oxxtron-1000va-ups, Accessed: Jan. 15,
2018.

87


http://www.trust.com/en/product/17680-oxxtron-1000va-ups




Part 111

Epistemic uncertainty
propagation

89






CHAPTER

Parametric Uncertainty Propagation in
M/M/1 Queue

This chapter analyzes epistemic uncertainty propagation in M/M/1 queues,
proposing two different approaches to evaluate how this kind of uncertainty
affects the output measure of the model considered. The M/M/1 queuing
model has been taken into account due to its relevance in the rest of this the-
sis. Indeed, M/M/1 queues are are the basic elements of both Pool depletion
systems (Chapter[5)) and Mobile CrowdSensing (Chapter [0) models.

This chapter is based on research conducted with Universitd degli Studi
dell’Aquila and Duke University. In fact, we mainly focused on the Erlang
case described in Section [6.2.2] whereas the colleagues from Universitd
degli Studi dell’Aquila primarily worked on the Uniform case introduced in
Section

Although we mainly focused on Erlang distributed input parameters, the
results about the Uniform case are also presented in this thesis to provide
comparison with a different approach to the same problem. In this way, a
broader view about epistemic uncertainty propagation is given. Thus, the
purpose of assuming Uniform distribution for each input parameter is not
to introduce non-determinism. In fact, Markov Decision Processes may be
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used to study the effect of uncertainty on non-deterministic models [[121}
122].

6.1 Motivation

The well known M/M/1 queue is revisited in this chapter considering the
epistemic (parametric) uncertainty. Two input parameters, namely the ar-
rival rate A\ and the service rate i of the model are generally considered as
fixed values while solving the model. In practice, these parameters are es-
timated from measurements, thus they are given in the form of confidence
intervals, in addition to their point estimates. It behooves the analyst to con-
sider the effects that the confidence intervals on the input parameters have
on the output results of the queuing model. The objective of this chapter is
to show how to carry out such parametric uncertainty propagation to derive
confidence intervals on the steady state outputs of the M/M/1 queue, such
as system response time R and number of customers being processed by
the queue N.

In carrying out such uncertainty propagation, the arrival and the service
rates are seen to be random variables themselves. As they vary over their
respective support, not only the stability condition needs to be maintained,
but also computational instability arises when the values of the two pa-
rameters are nearly equal. This makes epistemic uncertainty propagation
somewhat delicate. Two different approaches to propagate epistemic un-
certainty are investigated and shown, thus to provide confidence intervals
on the two output measures of the M/M/1 queue (i.e., R and V), given
confidence intervals of the input parameters.

The approaches described in this chapter allow to take early decisions
about the system design under two different hypotheses about the distribu-
tions of input parameters. For example, assume to have some requirements
on the response time. With the techniques discussed, the risk of violating
that requirement under the current uncertainty in the system and environ-
ment parameters may be studied. In fact, the probability that response time
is shorter than the required value may be calculated. This evaluation may
lead to two types of considerations about the system design: first, do not
place the system in an environment where the arrival rate is larger than a
threshold \; second, make design decisions that lead the service rate to be
higher than another threshold ji.
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6.2 Basic equations for uncertainty propagation

This section provides the mathematical calculations for analyzing an M/M/1
queues with a certain degree of uncertainty on their arrival and service rates.
In particular, it is known by M/M/1 definition that inter-arrival and service
times are exponentially distributed, but their rates (or mean values) are as-
sumed to be uncertain.

M/M/1 queues are usually adopted to analyze queuing models [94].
Some examples of current applications that have been modeled with ex-
ponential distributed arrival and service times are data-centers and cloud
resources [|16,(104,(143]].

Let us introduce a probability space (2, F, P), where A and M are
two random variables respectively defined as the arrival and the service
rates of an M/M/1 system. We assume these two random variables to
be independent, hence their joint probability density can be written as:
oA 1) = fa(Q) far ().

In this setting, if the average number of entities in the system is denoted
by N, it is itself a random variable depending on the pair (A, M). That is
to say that N is known only conditionally to (A, M):

A
Nlpcy vy = ——.
| A=) M= A

In a similar way, denoting by R the average response time of the system,
that is again a random variable depending on the same pair (A, M) as fol-

lows:
1

Rla=an=p = PRy
The system must be studied under stability condition, namely when the
arrival rate is lower than the service one, so that the average number of
entities and the average response time do not tend to infinity. Hence, in
order to limit the divergence of N and R when A and x are very close, two
different limitations on the random variables joint region are introduced and
they are defined as follows:

Br ={(A\,p) : p>kA}, for some k& > 1

or
Be={(\p): p>X+¢€}, for some € > 0.
The condition ;o > kA is equivalent to the condition
1

Nlpar =y < ——
|A7)\7M7M Lk — 17
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whereas 1 > A\ + € is equivalent to

1
R‘A:A,M:p, < E

Furthermore, both regions are independent of the values of A and M, and
the two events are denoted as:

A ={(A,M) € B} = {N < ﬁ}

and

Aez{(A,M)eBe}:{R<%}.

Taking this into account, it is possible to compute:

BVI4) = 5rpsENLa) or EIN|A] = 5o EINL
and
BIRIA] = 5 BIRLy] o E[RIA] = 5o EIRLL),

which reduces to derive the numerators and denominators separately.
To simplify the presentation, only the average number of entities in the
system is considered in the following. For the denominators, we have:

P(As) = PN M) € Bu) = [ [ Franmdndu
D 6.1)
P(Al) = P((A,M) € B) =/B Far O\ p)ddp

whereas the numerators are derived using the theorem of total expectation
[133]:

E[NlAk]:]E{ﬁlAk] E[MA Tl (A, M)]

A
://M gmmmnMumww 62)

S

where the second equality is justified by the random variable 14, that is
measurable with respect to the o —algebra generated by (A, M).

fA (A, p)dAdp
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6.2. Basic equations for uncertainty propagation

The variance of the same random variable is computed as:

Var[N|Ay] = E[N?|A}] — (E[N|A])?
(6.3)

A EN 14 — (BIN|AL)?

therefore reducing the problem to derive:

A2
E[N?1,4,] = E[E[N?1, |\, M]] = E {mlwm}} (6.4)

The expected number of entities into the system, when we restrict to the
second type of region, is formalized as:

BINLL = | x| =B |l 0)

-/ g A Faarh )

and the variance expression is written accordingly. Analogous formulas can
be written also for the response time random variable F.

As shown in the subsequent sections, there are interesting cases for the
probability densities fy(\) and fy,(p) for which computations are quite
easy for the outputs such as: E[N1y4,], E[N1y4, |, E[R14,], E[R14,]. To
take into account epistemic uncertainty in the M/M/1 input parameters,
two different distributions for the densities are considered: Uniform and
Erlang. The former distribution corresponds to the case when one has no
information regarding the behavior of the rates within known bounds, hence
considering uniform density seems to be the most natural assumption one
can make. The latter distribution is inspired by the inter-arrival and service
times that are exponentially distributed. In this case, as shown and proved
in [98],125[133]], A follows an r-stage Erlang distribution with rate s, and
M has a n-stage Erlang distribution with rate u. Parameters s and v are de-
fined respectively as the sum of » samples collected for inter-arrival times,
and as the sum of the n samples collected for service times.

(6.5)

6.2.1 The Uniform case

In this case, no specific knowledge of the random variables A and M are
available, but we assume that they are both uniformly distributed on some
known lower (L) and upper (U) bound intervals, that are denoted respec-
tively by [Ar, A\y| and [ur, |- Thus, their joint probability density is given
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by:

fane(As ) = fa(A) fur (1)
1
YO —Az) Lixp aolx g o) (A ) (6.6)

(/~LU —HL

1
= —1g5(A
O B( 7:“’)

with C' = (A\y — Ar) - (uy — pr) that denotes the area of rectangle B =
AL, Au] X [pr, po] where the joint probability density is concentrated.

Thus, substituting Eq. (6.6) into Eq. (6.1)):
Ce

Ck
P(A) = — d P(A)=— 6.7
(Ap) =7 and P(A) == (6.7)
where ('}, and C, denote the areas of the regions By N B and B. N B,
respectively.
As a consequence:

E[N1,,]= —d/\d

NA // —d/\d
’ k Ck BynB KM — a

N21 = // d)\du
Ak BpNB N )\

E[N?|A] // 5 d\d

Eqgs. (6.8) and (6.9) can be easily computed, but the results depend on the
relative positions of the endpoints of [Ar, \y| and [uy, py| intervals. An
explicit expression can be obtained in all cases, but here only one is shown,
for which the integrals are stepwise evaluated.

Clearly, all these formulas result in closed-form expressions because
of the choice of uniform densities for the random variables. Numerical
integration could become necessary if different and more complex choices
were made.

Explicit computations are shown in the following for A\, < pp < py <
Ay. In this case, the area of the integration region is

1

Ck::é(MU_ML)<M?U_)\L+M_kL_>\L>a
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6.2. Basic equations for uncertainty propagation

and the integral in Eq. (6.8]) becomes:

// —d)\d,u
BkmB,u_
S ()
BkﬂB

. / R du— G
pr I M A

2204 %
=—/ pln(p—A)| - dp— Cy
I AL

L

12294 ]{; _ 1 rU
= —/ pin (T“) dp +/ pin(p — Ap)dp — Cy,
ML HL
(6.10)

Eq. (6.10) is easily computable in an explicit manner, leading to:

——d\du
//J;kmBN A

2 (k= Dpu 2 (k= 1Dpr
)\L )\% uU—)\L

=)~ 2 () ¢
2(# fr) 5 H(ﬂL_)\L k

The second moment of the random variable NV is similarly derived:

)\2
SRV
//BkﬁB (,LL - )\>2

_ 2 (k — D
= Ck + g In (k(“U — )\L>) (6.12)
2 (k= 1Dpr k=2 5 2
— pgIn (k(/LL—)\L)) - k_l(MU_ML)

Assembling all pieces together an explicit expression for the expectation
and the variance of the steady state average number of entities in the system
is obtained.
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Computations run along the same lines also to compute:

A
//—1{u>)\+e}fA,M()\mu)d)‘dﬂ
RJR H— A

/ ”’/
—dud)\
A+€ (6.13)

(1= AD)

5 (= Av)

= T 111(MU —AL) —

— (A\v—Ar) [ (Av+AL) + MQU +1Ine

4

All the other cases may be similarly computed and are described in Section
6.3.1]

In the remainder of this section the behavior of the model proposed is
studied while the amount of uncertainty decreases and the integration areas
defined above collapse towards a single point.

We assume the Uniform density to be concentrated on the rectangle
AL, Au] X [pr, po] as the dimensions §; = Ay — A, dy = py — pur, tend to
0,1i.e., Ap, Ay = Ao and pp, uy — po, where by (g, f19) we are denoting
any point such that pig > Ag.

In this case, for §; and d sufficiently small, the integration region is
completely contained into the limitation region Ay or A., hence the condi-
tional expectation is given by:

E[N|A] = / —dp,d)\ (6.14)

5152

and we want to estimate the error made by substituting this expression with
the corresponding certainty expression Ao/ (o — Ao)-

Applying the changes of variable A = v+ Ay and p = y+ ., Eq. (6.14)

becomes:
51 o
1 2 x+)\L
G(01,02) = dyd 6.15
(41.5) /0/ gzt - (©15)

Eq. (6.13) is a smooth function in two variables that can be expanded
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around (0, 0) up to the third order obtaining:

G(61,0,) =
= G(0,0) + gg (0,0)8, + gg (0,0)d,
+ = {%25(0 0)d7 + %25(;(0 0)d5 + 8?12%2 (0, 0)51521 o
+1 {%2?(0 0) + 3 6?25;2(0,())5%52 10
+3 8?13;52 (0,0)6,65 + %?g(o 0)53]

+ 0(p4(61,62))

where p4(d1, d2) indicates a polynomial of degree 4 in 01, 0.
It is straightforward to see that G(0,0) = 0 and for any n > 1:

oG 82 gn-1 8+ A\ oG
5.0 d 0,0)=0
65n ( b 2) /0 8571171 (y — 51 + pur — )\L> vy = 6(5? ( ’ )

oG 01 gn-1 T+ A oG
5.0 da —
aan( 1,02) = /0 don1 (52—x+uL—>\L) = or o (0,0) =0

(6.17)
hence, substituting Eq. (6.17)) into Eq. (6.16):
G(61,02) =
2
TG0, 0)6,0
851862
G ) Py ) (6.18)
852862 (0,0)0702 + ———= 96,062 (0,0)916;
+ 0(51(52)
Computing the three terms we obtain:
0*G AL
851852 <07 O) n Hr — )\L
83G ML
—85%852 (0,0) = —(ML W (6.19)
PG —AL
8518(52 (0 0) (,U,L — )\L)Q
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and plugging Eq. (6.19) into Eq. (6.18):
G(61, 02) AL 1

= 01 — Ao 01+ 0 6.20

0109 ,LLL—)\L+ (ML—AL)QWL ! 102) + 001 +02) ( )

As a matter of fact, the function G depends also on the two parameters Af,

and i, which respectively tend to \g and 9 as 9; — 0 and o — 0. The
error made by evaluating the expression directly at Ay and i is:

|G (01,02, A, p11,) — G (61, 02, Ao, fo)|
0102
Assuming that \g — A\, = k01 and pg— pup = hdy forsome 0 < k,h < 1
and applying the mean value theorem we get
|G (01,02, AL, pir) — G(01, 02, Ao, o)
51(52
<

‘3G(51,52,§7M0 9G (61, 62, Ao,
OAf, a,UL
for appropriately chosen & € [\, A\o] and ¢ € [ur, o). After some cal-

culations it can be shown that, in the given initial intervals, both partial
derivatives can be uniformly bounded by

))msl +] O‘h@

{ 1 N 51 + 8y 207 + 262 + 35152}
o (we —Av)?  (ur — Av)? (we — Av)?
Summarizing,
|G(51, 92, AL, ,UL)’ Ao
= 0+ 6
510, o —ag T 001 02)

as expected.

6.2.2 The Erlang case

When dealing with M/M/1 queues (i.e., exponential distributed arrival and
service times), it is possible to show that the arrival and service rates, A and
M, are Erlang distributed with as many stages as the number of collected
samples for inter-arrival and service times, respectively [[133]]. For instance,
considering the inter-arrival time X, the sum S of a random sample of size
n (e, S =Y, X;) is r-stage Erlang distributed with rate parameter ),
and hence the probability density function of .S is [133]]:

/\rsrflef)\s

W (6.21)

fsia(s|A) =
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6.2. Basic equations for uncertainty propagation

As shown in [99], applying Bayes’ theorem and using Jeffreys’ prior for A
(i.e., fa(A) = s/)), the pdf of the rate A is r-stage Erlang with rate s and
has the form:

N 1 s" 7)\3
(r—1)!

In the same way, for the service time Y with rate parameter y, it can be
shown that U follows a n-stage Erlang distribution with rate p such that
U = >" Y. Hence, rate M as a random variable is n-stage Erlang dis-
tributed with rate parameter w.

fa(A) = fais(Als) = (6.22)

Thus, the joint probability density of the two independent random vari-
ables is:

Mn—lune—uu

r—1!  (n—1)

N 1 s” —>\S

oA ) = fa(N) far(p) =

(6.23)

where A follows an Erlang(r, s) density, with r € N, s > 0, while M is
another Erlang(n,u) distributed random variable, n € N, u > 0. The area
of integration is no more limited by the bounds of the input parameters, and
their samples are in the interval [0, c0), but need to satisfy the stability
constraint (i.e., A < p). In this setting, the probability of k£ limitation
becomes:

k N~ 1 s" —/\s Mn 1une—uu
P(Ag) . d\d
¢) / / -1 (m—1yp

r—1 . .
uk \m n+i—1 s ¢
Py =1- () ()
(4x) s + uk ;( n—1 ) s+ ku
Similarly for region A, we have:
p—e yr—1 sTe —As n—1, n_ —pu
/ / A e Ay
(r—1)! (n—1)!

<>2 () e )

i=0 j
(6.25)

(6.24)

The cumulative distribution function, expected values and second moments,
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when k is used to limit the values that A can assume, are:

Fyia, (z // 1{A<x}fA Nu(pdrdp, xR

E[N|A;] = Sa) far(p)ddp (6.26)

By, 1 —A

E[N?|Ay] =

(A) S (p)dAdp

Bk:u)‘

and

Fria (@ // L e AW fuddy, 2 € R

Ak ] AfA<A>fM<u>cudu 627)
E[R?|Ax] = Ak //Bk TESNE (A) far(p)ddp

for N and R, respectively. Similar equations can be obtained using the
e-limitation strategy.

Differently from the Uniform case, these expressions are not easily in-
tegrable and numerical integration is used to solve them. Note that, in the
case of Erlang distribution, Egs. (6.26) and can be correctly used
for all the values of A\ and yu, while the Uniform case requires a different
expression depending on the relative values of A\, Ay, pp and p.

E[R[A] =

6.3 Experiments and comparison of the approaches

This section provides further details of the derivations based on the basic
framework given in Section [6.2] for different Uniform (Section [6.3.1)) and
Erlang (Section[6.3.2) alternatives. The two proposed alternatives are com-
pared in Section

6.3.1 Uniform density results

Considerations about the derivations of E[N| Ay, .|, E[R|Ay.e], Var[N| Ay, ]
and Var|R| Ay, | are reported in this section in case of Uniform distribution,
while considering different relative positions of A and p’s lower and upper
bounds (i.e., Ay, Ay, pr, py). From now on, to simplify notation, we
indicate those as E[NV], E[R], Var[N], and Var[R]. In order to cope with
all possibilities, five different cases have to be considered:
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. . . .
u 4
A ny hy N A L L v u

Figure 6.1: Case (3): A\, < pr, < puy < Ay, for(a)p =k - and (b) p =X +e.

(1) AL <Av < pp < pus
(2) pr < Ap < pu < Avs
(3) AL < pr < pw < Aus
4) pr < Ap < Av < pu;
(5) A\p < pp < Ay < py.

For the sake of order, graphical representation is reported only for case
(3). In this case the straight line intersects the integration area, thus further
elaborations are needed to evaluate the integral. Specifically, this case is
analyzed by considering the limitations defined in Section[6.2] i.e.: i) u >
kA, that is referred to as prod, and ii) u > A + €, that is referred to as
sum. Figure [6.1a]reports the prod case, where the intersection with the line
v = kX occurs in points (11, /k, pur) and (uy /k, pu). Instead, Figure [6.1D)
shows the sum case, where the intersection with the line ;1 = A\ + € occurs
in points (uy, — €, pr) and (uy — €, py). These points are then used in the
formulas for E[N], E[R], Var[N], and Var|[R] since they delimit the area
of interest.

Closed-form formulas for deriving E[N], E[R], Var[N], and Var[R] of
all cases have been derived using Mathematica [74]]. E[N] for case (3) with
k and e limitations is given in Egs. and (6.13), respectively; for the
sake of order, the formulas of all other cases are omitted.

However, although some cases have more complex formulas than others,
it is worth noting that while considering A and M as uniformly distributed
in the ranges (Ap,A\y) and (ur,u0), it is possible to calculate the average
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number of entities and the average response time along with their variances
by means of closed-form formulas in all cases, as claimed in Section [6.2]

6.3.2 Erlang density results

The results obtained with Erlang distributed rate parameters, as described
in Section are shown. Also in this case, as for the Uniform one, both
the additive and the multiplicative limitation techniques are considered. To
allow a fair comparison between the Uniform and the Erlang alternatives,
we select some combinations of the Erlang distributed rate parameters to
obtain 5 cases similar to the ones identified in Section [6.3.1] In particular,
parameters have been chosen in a way such that values Ay and Ay can be
interpreted as a confidence interval on A, and similarly for M. Being A
the point estimate for random variable A, such that N\ = 22:1 Ai/r, where
A; are the values of the same random variable. The following assumptions
have been used:

1. E [A ~ Erlang (7", i)} _ ALty

2
2.rzmin{héN:P()\LSANErlcmg(h,%) S)\U) Zl—a}

The first assumption specifies that the expected values of the inter-arrival
rate in the Erlang case must be equal to the expected value of the same
parameter with uniform distribution. The second one sets the confidence
interval of rate parameter between )\, and Ay (the parameters of the Uni-
form distribution) with a 100(1 — «)% confidence level, by choosing r as
the minimum integer that concentrates at least 1 — « probability mass of
an Erlang distribution, with the given mean between A\, and A\;. Similar
assumptions can be done for the service rate M. Following 98], the value
of r can be determined analytically:

~

A
r= E{Xgr,aﬂ - Xgr,lfa/2} (6.28)

where X%nl—a /2 is the critical value of the chi-square distribution with 2r
degrees of freedom, = % and d) = @ is the half-width of the
confidence interval.

The analysis is performed for different confidence interval lengths of
each input parameter; for example, for a given inter-arrival rate ), and its
half-width confidence interval d,, we set A\;, = A—d yand A\y = A+d 5 for
the Uniform case, and the number of stages of the Erlang case is computed
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using Eq. (6.28). Similar considerations are done for the service rate M.
In order to comply with the considered case, also the values of the rate
parameters may change. In particular, for case (1), case (3), case (4) and
case (5) the average rates are A = 0.4 and i = 0.6, whereas in case (2)
A = 0.6 and it = 0.55. Note that, even if in this last case the system is
unstable, it is still possible to get non-divergent results when the confidence
intervals of the two rate parameters are large enough to include cases in
which A < p. Also in this section, E[N] and Var[N] are depicted only
for case (3) (i.e., A\ < pup < py < Ay). These results with both € and £
limitations are plotted in Figure[6.2]

For all output metrics and for all cases, e-limitation provides results that
are closer to the one of a system where the parameters are not subject to
uncertainty (see Section[6.4]for further considerations about that). The only
exception occurs in case (1) and for tight confidence intervals, where the
two limitations seem to provide similar results. For all cases except case
(2), the tighter the confidence intervals of the two rate parameters (i.e., the
larger is the number of samples that are collected for the two parameters),
the more accurate the output metrics, and their expected values are closer
to the exact ones. This property is further stressed by the fact that the
corresponding variance tends to 0.

Since case (2) is the only one dealing with an unstable system, the vari-
ance of its output metrics is closer to 0 when the confidence intervals of
the rates is larger. That is because when measures are less accurate, service
rate may be larger than the inter-arrival one, and the system is still stable.
Note also that, although expected values and variances of random variables
N and R are different, their behaviors are similar.

Finally, based on the considered cases, one of the two rate parameters
may affect the output metrics more than the other one. This is due to the
confidence interval length of each input parameter. For example, in case
(1), case (3) and case (5), the confidence interval length of the inter-arrival
rate is varying faster than the confidence interval of the service rate, and
both NV and R seem to depend more on inter-arrival rate. The opposite hap-
pens in case (4), where the two output random variables are more affected
by the service rate. Instead, in case (2), the confidence intervals length is
the same for both inter-arrival and service rates.

6.3.3 Comparison between Uniform and Erlang results

After analyzing both the proposed alternatives (i.e., Uniform and Erlang),
we now compare them to identify the gap among the provided results. As

105



Chapter 6. Parametric Uncertainty Propagation in M/M/1 Queue

A_C1_ength

A_Cl _length

—""010

1_Cl_length oos p.CI_length

(a) (b)

Figure 6.2: (a) Expectation and (b) variance of random variable N for the Erlang dis-
tributed rates while considering case (3), with € and k limitation techniques.

previously said, the Uniform and the Erlang alternatives are meant for dif-
ferent scenarios: the Uniform one may be used when no information about
the rate parameters are given, whereas Erlang densities are adopted if inter-
arrival and service times are exponentially distributed.

The comparison between the two alternatives is performed assuming
that the average inter-arrival and service rates are A =04 j/s and i =
0.6 j/s, respectively, and varying the length of their confidence interval.
In particular, the confidence interval half-width of inter-arrival rate is d) =
[1,10] - 4 - 1072, and d,, = [1,10] - 1072 is the one of service rate. The
model is analyzed under some of the cases previously identified (i.e., case
(1), case (3) and case (5)) while changing the dy and d,, values. Cases (2)
and (4) can be similarly generated and analyzed.

Tablereports an excerpt of the calculation performed for E[N] while
using the closed formulas introduced in Section [6.3.1] The table is struc-
tured as follows: the rows report the actual values of A, and Ay, whereas on
the columns the ones used for x7, and p7. These values are derived by vary-
ing the d and d,, values in the ranges defined above. Entries of the table
indicate the E[N] values obtained while adopting the appropriate formula
corresponding to one of the cases presented in Section [6.3.1] Specifically,
the cells of Table[6.T|have different colors indicating the used formula: light
gray for case (1), white for case (5), and dark gray for case (3). Table[6.14]
reports the E[N] values while considering the k-limitation, whereas Table
6.1b|shows the E[ V] values for the e-one.
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Table 6.1: Closed formulas applied for the evaluation of E[N| with (a) multiplicative and (b) additive limitations. Three cases are analyzed:
case (1) is light gray, case (3) is gray and case (5) is white.

(@)
(ML, pu)
d=0.05 d=0.06 d=0.07 d=0.08 d=0.09 d=0.10
(0.55, 0.65) (0.54, 0.66) (0.53,0.67) (0.52, 0.68) (0.51, 0.69) (0.5,0.7)
d=0.01 (0.36, 0.44) 2.08919 2.11184 2.13986 2.17409 2.21562 2.26604
d=0.02 (0.32,0.48) 2.24561 2.27889 2.32137 2.37550 2.44534 2.53845
d=0.03 (0.28, 0.52) 2.60534 2.68476 2.80566 3.06077 3.48777 3.82179
d=0.04 (0.24, 0.56) 4.12062 4.43937 4.65711 4.81292 4.92817 5.01549
d=0.05 (0.2, 0.6) 6.32117 6.20215 6.10217 6.01597 5.94016 5.87244
(AL, Av) d=0.06 (0.16, 0.64) 7.75326 7.43185 7.15425 6.91942 6.71934 6.54677
d=0.07 (0.12, 0.68) 7.23214 7.03606
d=0.08 | (0.08,0.72)
d=0.09 | (0.04,0.76)
d=0.10 | (0.0,08)
(b)
(ML, pu)
d=0.05 d=0.06 d=0.07 d=0.08 d=0.09 d=0.10
(0.55, 0.65) (0.54, 0.66) (0.53,0.67) (0.52, 0.68) (0.51, 0.69) (0.5,0.7)
d=0.01 (0.36, 0.44) 2.08919 2.11184 2.13986 2.17409 2.21562 2.26604
d=0.02 (0.32, 0.48) 2.24561 2.27889 2.32137 2.37550 2.44534 2.53845
d=0.03 (0.28, 0.52) 2.60534 2.68476 2.80566 3.05430 3.40319 3.67364
d=0.04 (0.24, 0.56) 401118 426172 4.42909 4.54557 4.62878 4.68914
d=0.05 (0.2, 0.6) 5.90743 5.78397 5.67928 5.58821 5.50743 5.43467
(AL, Av) d=0.06 (0.16, 0.64) 7.12138 6.84135 6.59190 6.37700 6.19142 6.02958
d=0.07 (0.12, 0.68) 6.62967 6.45721
d=0.08 (0.08, 0.72)
d=0.09 | (0.04,0.76)
d=0.10 | (0.0,08)

sayoeoidde ay) Jo uosuedwod pue sjuswniadxy g9
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i Uniform
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I Erlang

e

02

ACl_ength ACl _tength

(a) (b)

Figure 6.3: Comparison of Uniform and Erlang (a) expectations and (b) variances of
random variable N, adopting e-limitation.

The Uniform and the Erlang alternatives have been compared by study-
ing the expected values and the variances calculated for the number of en-
tities and the system response time (i.e., E[V], E[R], Var[N] and Var|R)).
For the considered set of parameters, the exact values of the two considered
measures are N = 2 entities and B = 5 seconds. Furthermore, both ¢ and
k limitations are taken into account, assuming ¢ = 0.001 and £ = 1.001.
For the sake of order, only the results for N when using e-limitation are
depicted in Figure[6.3] where the Uniform and Elrnag alternatives are com-
pared. Note that, similar results were obtained using k-limitation.

If the confidence intervals of the two rate parameters are tight enough,
the Uniform alternative performs better than the Erlang one. Indeed, the
expected values of the output metric computed with the two different alter-
natives are close, while the variance obtained with the Erlang alternative is
slightly larger than the one showed by the Uniform one. It is important to
note that, since the variance is related to the confidence interval, the smaller
the variance, the tighter the confidence interval of the analyzed output met-
ric. The Erlang alternative performs better than the Uniform one for input
parameters with less tight confidence interval. Both the expected values and
the variances computed with Erlang alternative are smaller than those com-
puted with the Uniform one. Similar results are obtained while considering
random variable R.

A further analysis is performed considering the length of the two-sided
95% confidence intervals for both the output metrics. In particular, the
cumulative distribution functions of N and R are computed both with Uni-
form and Erlang alternatives. Then, to derive the confidence interval of the
two output random variables, the 2.5¢h and 97.5th percentiles for each Cdf
are derived.

The results are shown in Figure that depicts the two-sided 95%
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Figure 6.4: Confidence interval length of output random variable N when (a) d,, = 0.01
and (b) d,, = 0.1.

confidence interval lengths of random variable N, when derived with e-
limitation, against confidence interval length of inter-arrival rate. In partic-
ular, they are obtained assuming A = 0.4 jobs/s and ji = 0.6 jobs/s, and
fixing the half-width of confidence interval of service rate to 0.01 (Figure
[0.4a) and to 0.1 (Figure [6.4b). The results show that the Erlang alterna-
tive provides the tighter confidence interval for output metric /V, especially
when confidence interval on inter-arrival rate is larger. As previously said,
the Uniform alternative can work slightly better than the Erlang one if con-
fidence intervals of both inter-arrival and service rates are tight enough.
Similar results have been obtained for system response time, R.

Similar results may be obtained also for different values of arrival and
service rates. For example, the results for number of customers, /N, when
A = 0.6 jobs/s and fi = 1 jobs/s, are shown in Figure In particular,
Figure shows the 95% confidence interval for computed with the two
different techniques. They are depicted as a function of half-width con-
fidence interval on input parameters (i.e., dy and d,) that, for the sake of
simplicity, are assumed to be the same. In this case, the Erlang technique
is providing more accurate results than the Uniform one, indeed the confi-
dence interval obtained with the Erlang approach is tighter than that from
the Uniform one. Instead, Figure [6.5b] validates the approach presented in
this chapter, generating the model’s input parameters from exponential dis-
tribution. For this reason, only the Erlang technique has been considered.
In fact, each point in the figure is obtained considering a different amount
of observations to estimate the input parameters of the model. In this case,
each curve is depicted as a function of the number of collected samples for
each input parameter (i.e., £y and k,). As visible, each point is within the
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Figure 6.5: Average number of customers, N, in the M/M/I queue, , when =06 j/s and
i = 1j/s, for (a) comparing the Uniform and Erlang approaches and (b) validating
the Erlang one.

confidence interval bounds, proving that the technique is providing good
results.

To fairly compare the two alternatives, the time they require to estimates
expected values and variances of the output measures must be also taken
into account. In fact, closed-form equations have been provided for the
Uniform alternative, thus the time to get results with this strategy is negli-
gible. Instead, as said in Section [6.2.2] the Erlang equations are not easly
treatable and numerical integration (i.e., numerical-solution) has been used
to study N and R. In this case, the time needed by the Erlang alternative to
provide results is not negligible, since every time input parameters change,
the result must be computed from the beginning. For example, Figure [6.6]
shows the time the Erlang alternative requires to compute Var[N] (i.e., first
and second moments) with e-limitation. The tighter the confidence intervals
on the input parameters, the longer the time needed for computation. Sim-
ilar results have been obtained with k-limitation and they are not reported
here for the sake of simplification. In particular, the total time required by
Erlang alternative for the computation of all the (Erlang) values shown in
Figure [6.3b] has been slightly longer than 65 seconds. Similar considera-
tions may be drawn for the computation of Var[R].

Summarizing, the Uniform alternative is always faster than the Erlang
one, since closed-form expressions have been derived for this alternative.
Nonetheless, if the confidence intervals of the input parameters are not tight
enough, it could be the case to sacrifice the performance for more accurate
results.
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Figure 6.6: Time required by the Erlang alternative to compute V ar[N| with e-limitation.

6.4 Additive and multiplicative limitations

This section further investigates the two limitation techniques adopted in
this chapter to comply with stability condition, i.e., A < u. To avoid A = p,
an additive limitation and a multiplicative one are used. In the former case,
we consider only the values of A and M such that A\ < 1 — ¢, where € is an
arbitrarily small positive quantity. In the latter one, the values of A and M
are those for which A < p/k, where k is an arbitrary quantity larger than 1.

In Figure [6.7] the two kinds of limitations are compared with respect to
the pairs of inter-arrival and service rate samples distributed with three dif-
ferent Erlang distributions represented by the ellipses. In fact, each ellipse
depicted in Figure[6.7]is defined as:

((A - X}ﬁ>2 N (M)Q 1 (6.29)

c-A c-p

where ) and [i are the average values of inter-arrival and service rates, re-
spectively, n and m are the number of samples collected for the two esti-
mates and ¢ is a constant factor that multiplies 6/+/ (with 6 = {\, i} and
[ = {m,n}), the standard deviation of an [-stage Erlang distribution with
rate [/ 0. As shown in Figure where € = 1 and k = 2, for some distribu-
tion of A and M (e.g., those represented by ellipse A) k-limitation provides
better results since it considers a larger area than the e-one. e-limitation
works better than k-limitation for other distributions of the two rates (e.g.,
ellipse C'). Finally, there are distributions of inter-arrival and service rates
for which both the limitations can be used with no distinction (e.g., ellipse
B).

The efficiency of both the limitations depends on the values of several
parameters: € (or k), 5\, it, m and n. Furthermore, limited to the Erlang
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LA

0

Figure 6.7: Comparison of e-limitation and k-limitation for different Erlang distributions.

case, the area taken into account by each limitation is not enough to evalu-
ate its efficiency, since the analyzed metric (e.g., average number of entities
in the system, system response time, etc.) also affects the result. For these
reasons, the selection of a limitation is not an easy task that can be com-
pleted a priori. In fact, the results shown in Section [6.3 have been derived
and studied for both the limitations.

In order to determine the accuracy of the two limitations, their error may
be evaluated as follows:

(6.30)

where Ay, is the area considered when limitations are not used (i.e., A = u
are legit values) and Ay, is the area considered when lim = {e, k} lim-
itation is adopted. Since no metrics are taken into account, Eq. (6.30)
evaluates the accuracy of the two limitations considering how many com-
bination of samples are discarded and not used for the evaluation of the
output measure. For example, Figure [6.8] shows the errors made by ¢ and
k limitations as a function of € and k, respectively. The results presented
in the two graphs have been obtained considering two different cases. The
straight lines have been computed with A ~ Erlang(7,17.5) and M ~
Erlang(16,26.67), whereas for the dashed lines A ~ Erlang(110,68.75)
and M ~ Erlang(139,77.22) have been adopted. In both cases, the error
made by the limitations increases with the absolute value of € and k since
a larger area is discarded. Furthermore, as shown in Figure the per-
formance of k-limitation is also affected by the values of \ and i and their
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Figure 6.8: Error for Erlang distributed A and M, as a function of (a) € and (b) k.

ratio. Indeed, the area taken into consideration by this limitation decreases
when A /i is close to 1 and the values of the two input parameters are large.
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CHAPTER

Epistemic Uncertainty Propagation in
Power Models

7.1 Motivation

As happens for many models, also those used to estimate systems’ power
consumption are usually solved assuming fixed values for their input pa-
rameters. However, since those parameters are estimated from a finite num-
ber of observations, they are not exactly known and should be expressed
as confidence intervals. Thus, they introduce epistemic uncertainty into the
model due to partial information and lack of knowledge. As stated in Chap-
ter[2) and [6] epistemic uncertainty must be propagated through the model in
order to determine how it is affecting the model’s output measures.

In this chapter, epistemic uncertainty is propagated through a power con-
sumption model, when the data-center arrivals forms a homogeneous Pois-
son process and service times are exponentially distributed (i.e., the rates
are fixed over time).

Epistemic uncertainty propagation is applied to a power model for two
main reasons: i) to investigate how the input parameters affect the output
measure of the power model (i.e., power consumption estimates); ii) to
determine the accuracy of each input parameter required to estimate the
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power consumption with a given confidence.

7.2 Modeling M/M/c/K queues power consumption

The non-linear power model presented in [49]] and defined by Eq. (2.8) is
the starting point of this chapter. Stres is the benchmark used to generate
the CPU workload and Machine2 described in Chapter [3]is the system taken
into consideration. In order to analyze different CPU utilization (i.e., U =
{0%, 25%, 50%, 75%, 100%}), Stress works with a different amount of
threads (i.e., Threads = {0, 1, 2, 3, 4}) and the SMT level of each core is
set to 1. Note that, power consumption samples observed when U = 0%
and U = 100% are P,q. and P, samples, respectively.

Before adopting Eq. (2.8) to study the power consumption of a server,
samples collection and parameters estimation are required. As previously
said, the finite number of observations for input parameters is the source of
epistemic uncertainty. Thus, in this chapter, uncertainty is introduced into
the system by the stochastic parameters Pjgc, Physy, 7 and U.

In order to decrease the number of random variables, [, is expressed
as a function of P,g.. To this end, samples analysis and algebraic ma-
nipulation have been performed and a linear relationship between the two
parameters has been identified. The relationship is defined by the equation
Pyysy = m - Pige + g with m = 0.796211 and ¢ = 61.8296, in the case
of the architecture considered (i.e., Machine2). In Figure a Q-Q plot
shows the existing linear relationship between B, and F;q.. Some points
are not fitted by the provided linear equation; that is due to some back-
ground processes that were executed during the measurement campaign,
making the system collect some P,y samples when U # 0%.

Thus, power model given in Eq. (2.8) is extended considering the linear
relationship, and it becomes:

P(U, Pgie,7) = Pige + [¢+ (m — 1) - Pyge] - 2U = U") (7.1)

with m = 0.796211 and ¢ = 61.8296.

The effectiveness of the power model defined by Eq. is shown
in Figure where a Q-Q plot compares [Pg,|U], the distribution of the
system power consumption estimated through Eq. with a fixed value
U, with Psg,,(U), the power consumption distribution estimated from the
samples collected during the measurement campaign for the considered uti-
lization level U. In particular, each realization of [Pgs|U] is determined
starting from the sampled distribution of the idle system, Pgg,(0), the

8https://people.seas.harvard.edu/~apw/stress/, Accessed: Jan. 15, 2018.
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Figure 7.2: Q-Q plot comparing the distribution of the estimated power consumption
[PEst|U] against the sampled one Ps gy, (U).

considered utilization level U, and the calibration parameter r = 1.45862
(where such value has been estimated from the collected samples). In par-
ticular, we have:

[Pest|U] = Psamp(0) + [61.8296 — 0.203789 - Py (0)] - (2U — UM47562)

(7.2)

As it can be seen, the obtained curves are closely aligned to the 45° line for

all values of U, showing that the proposed procedure is capable of estimat-

ing very well the real power consumption distribution for a given utilization
level U.

In order to avoid the stability issues, an M /M /c/K queue is adopted

to model the server considered in this chapter. Thus, solving the proper
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continuous time Markov chain (CTMC), U is computed through equation
[130]:

‘(c—1)-m
U=1- - 7.3
where the probability to be in state 7 of the considered CTMC, 7, is defined
as:
A <i<
7Ti={ o, o forO_?_c 7.4)
pramy o for ¢ <1 < K

and 7y, the probability to be in state 0, is:

c—1 ; K : -1
N A
o= (Z M + Z ci—cc!Mi> 75

=0 i=c

Assuming to know the number of cores of the considered architecture, c,
and its buffer capacity, /K, the resource utilization is a stochastic object on
the two r.v. A and M, the arrival and service rates, respectively.

Deriving the utilization of the queue starting from A and M estimates,
instead of collecting utilization samples, has a two-fold advantage: i) dif-
ferently from U, estimation of A and M does not require to determine an
optimal time window; ii) it enables what-if analysis, thus to study the sys-
tem under different values of inter-arrival and service rates.

The densities of the input random variables (i.e., arrival rate A, service
rate M, P,y and calibration parameter r) that may affect the output of the
power model are analyzed in the following.

As said and proved in [97-99], the rate of an exponential density deter-
mined from a finite set of its samples is Erlang distributed. It is the case of
the arrival and service rates when dealing with M /M /c/ K queues. In par-
ticular, since arrival (service) time, X, is exponentially distributed with rate
A (resp. u), the random variable Sy = Zfil X, follows a kx-stage Erlang
distribution with rate parameter A (resp. p), and its pdf, given A = X (resp.
M = p), is:

)\kASkA_l —>\SA

e
splh)="—A —
fSA|A( A| ) (k‘A—l)| (7 6)
Mk]\l Sﬁj\ll_le*MSM ’
fSMlM(SM|M) = |
(kar — 1)!

Applying Bayes theorem and using Jeffreys’ prior for A (resp. M) (i.e.,
fa(X) = sa/A and fpr () = sar/p) as done in [99], the pdf of rate param-
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Figure 7.3: On the left, the density of the collected P;q. samples compared to a
Normal(58.992,0.619657) one. On the right, a Q-Q plot that compares the collected
samples to the random variates estimated through the Normal distribution.

eter A (resp. M) is derived as:
)\k:A—ls][f\Ae—)\sA
(ka —1)!

,LLkM_lslf\/le_”sM
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With regard to P,y and calibration parameter r, Mathematica [74] has
been used to fit the collected samples and find their probability densities.
The results that estimate the P,y density are shown in Figure They
have been derived after collecting 20000 samples. In particular, in Figure
the pdf of the collected samples is compared to the one of the esti-
mated Normal(58.992,0.619657) density. In Figure a Q-Q plot is
used to analyze the two densities. The results confirm that the density of
the P4, samples observed during the measurement campaign can be ap-
proximated by the estimated Normal density. The coefficient of variation
(cy) 1s computed as the ratio of the standard deviation to the mean, and for
P,gie ~ Normal(58.992,0.619657) itis ¢, = 0.0105. Since it is larger than
1%, the impact of P, 4. density on the output of the model described by Eq.
is further analyzed in the next Section.

In order to evaluate the calibration parameter r density, 3700 samples
have been collected for each considered value of utilization, UU. In fact,
3700 samples has been found to be a good trade-off between the quality of
the measure and the time required for samples collection. Then, 100 sets
have been created, each one composed by 185 randomly selected samples
(i.e., 37 samples for each value of U). Finally, starting from the 100 sets,
Mathematica is used to estimate parameter r density. The results are shown

Iajsa(Alsa) = = Erlang(ky, sp) ,

(7.7)

faisy, (plsar) = = Erlang(ky, spr)
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Figure 7.4: On the left, the density of the estimated r samples compared to a
Normal(1.45862,0.00439) one. On the right, the Cdf of the normal distribution.

in Figure where the pdf and cumulative distribution function (Cdf) of
r ~ Normal(1.45862,0.00439) is plotted. Due to its small coefficient of
variation, ¢, = 0.003, calibration parameter r is not considered as a source
of uncertainty for the purpose of this chapter and it is assumed to be exactly
known.

7.3 Epistemic uncertainty in power models

In this Section, the techniques used to study uncertainty propagation in the
power model described by Eq. are presented. In order to identify the
parameters that must be considered to obtain more accurate results, two dif-
ferent cases are analyzed: i) the uncertainty is introduced into the system by
P4, A and M, and ii) only A and M are the sources of uncertainty. Then,
the validation of the chosen equation is performed, using Monte Carlo sam-
ples, for some different values of resource utilization, U'.

7.3.1 Epistemic uncertainty in M/M/c/K queues

The equations for epistemic uncertainty propagation presented in Section
[2.3.1]are now extended and adapted to the case of power consumption esti-
mation in M /M /c/K queues.

As said in Section [7.2] for the purpose of this chapter we assume epis-
temic uncertainty is introduced into the system by input random variables
Pigie, A and M, since P, is expressed as a function of P4, and the den-
sity of the calibration parameter  has a small coefficient of variation.
Considering three input parameters are introducing uncertainty into the
power model, a three-dimensional integral (i.e., one for each input ran-
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dom variable) is required to compute the unconditional Cdf and expected
value of the output metric. In particular, assuming the epistemic random
variables to be independent, Eq. (2.12) for deriving Cdf becomes:

F pPye=p A=n =) (T) =

/ / / P(U|Pae =p, A=\ M =p) <a)- (18)
fJ\/f( ) meze( ) dA dp dp
and the one for expected value, i.e., Eq. (2.13)), now is:

U’Pldle puA )\ M = )] =

/// P(U|Pae =p A=\ M=p)  (19)

) meze( ) dA dlu’ dp

The limits of integration of each input parameter vary between 0 and infin-
ity since there are not constraints on the values the input parameters may
assume. In particular, since a finite capacity M /M /c/K queue is consid-
ered, the system is always stable and no constraints on the value of A are
given. The epistemic densities of A and M, i.e., fo () and fy/ (1), are given
in Eq. , whereas fp,,. (p) is the probability density function of the ran-
dom variable P,y., that is P,y ~ Normal(58.992,0.619657) as shown in
Section

Let us call respectively k) and k,, the number of samples collected before
estimating the values of A and M. The Cdf of the power consumption and
its expected value derived through Egs. and (7.9), respectively, are
shown in Figure They have been solved through numerical integrations
— performed by Mathematica — due to the complexity to get closed form
solutions. Both the statistical measures are plotted against the number of
samples collected for A and M estimation. For the sake of simplicity, only
the case when ky = £, (i.e., the same number of samples is collected to
estimate arrival and service rates) is represented in Figure and only
U ~ 70% is considered (i.e., average arrival rate A =64 jobs/second,
and average service rate ji = 2.25 jobs/second). As expected, the results
show the importance to collect as many samples as possible for each input
parameter to make their confidence interval tighter. Indeed, starting from
the number of collected samples, £, it is possible to derive the confidence
interval of an exponential distributed random variable as follows [97]]:

1
2d = 5, {Xoh.aj2 — Xok1—aj2} (7.10)
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Figure 7.5: The power consumption Cdf (a) and expected value (b) plotted as a function
of the collected samples for the two input parameters, when A\ = 6.4 j/s and i = 2.25
J/s.
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Figure 7.6: 95% confidence interval for the power model input parameters A and M as a
Junction of the number of observations. On the left, the confidence interval length for
A = 6.4 j/s; on the right, the confidence interval length for i1 = 2.25 j/s.

where d is the half-width of the confidence interval of the considered input
random variable, s is the sum of the k collected samples and X%k,l—a /2 is
the critical value of the chi-square distribution with 2% degrees of freedom.
The confidence interval length of the random variables A and M, computed
with Eq. for U ~ 70%, are plotted in Figure as a function of the
number of observations. The straight lines are the lower and upper bounds,
while the dashed ones are the average values A=64 j/sand i = 2.25 j/s.
Similar results may be obtained for different resource utilization, varying
the average arrival rate, .

In order to evaluate the impact of the input random variable P4, on
the output metric of the considered power model, Egs. (7.8) and (7.9) are
adapted to make them take into account only the effect of A and M, assum-
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Figure 7.7: P-P plot that compares the power consumption Cdfs computed through Egs.

and (7.11), when ky = k,, = 10.

ing P, 1s estimated with certainty. Thus, they become:
Fpwia=ry=p () =

// PUIN =AM =) <2)- (V) - ) i D

PUIA = A, M = )] =
// PUIA =AM = ) - fa(\) - Far(pe) d dp

respectively. Also in this case numerical solutions have been derived. Since
the results computed through Egs. and for U ~ 70% are
similar to those depicted in Figure they are not plotted. In order to
show that the Cdfs and expected values derived in the two different ways
are identical, a P-P plot is used for the Cdfs comparison and is depicted
in Figure For the sake of space, only the P-P plot for ky = k, = 10
is shown here. Similar results are obtained considering the Cdfs obtained
with larger values of £y = £,.

Based on the presented results, it is possible to assert that epistemic un-
certainty introduced by P,y into the considered power model is negligible,
and the uncertainty analysis can be performed just accounting for the den-
sities of A and M, thus adopting Eq. to derive the Cdf of the power
consumption, and Eq. for its expected value. Note that this assump-
tion has also the effect of reducing the computational complexity, allowing
to deal with only a 2-dimensional integral.

(7.12)
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Finally, in the limiting case ky, k, — oo, the Erlang distributed input
random variables have a zero variance, thus they are deterministic dis-
tributed (or degenerate) [70] and they take a single value (i.e., A = A and
i = j1). In this case, the considered model is no more affected by epis-
temic uncertainty, and it may be studied without accounting for epistemic
uncertainty propagation.

7.3.2 Validation

In order to validate Eq. (7.11)), that is used to derive the Cdf of the power
model given in Eq. for M/M/c/K queues, a further benchmark is run
on the architecture presented in Chapter 3| (i.e., Machine2). The benchmark
consists in executing a given number of CPU intensive requests. The arrival
and service times for each request are passed by the user at the beginning
of the test.

For the purpose of this validation, 1000 exponentially distributed sam-
ples for arrival and service times are generated. This step is repeated for
each value of resource utilization that has been studied. In particular, the
average service rate /i is set to 2.25 jobs/second, and the average arrival rate
varies among A = {0.8,1.6,2.4,3.2,4.0,4.8,5.6,6.4, 7.2} jobs/second, in
order to consider different resource utilization, that are derived as shown by
Eq. (7.3).

In addition to the generated arrival and service times samples, the power
consumption measures recorded by a Yokogawa WT210 power meter are
also collected.

For the sake of clarity, only the results for U ~ 9% and U ~ 70%
(i.e., A =08and \ = 6.4, respectively) are depicted in Figure They
are plotted as a function of the number of samples observed for arrival and
service rates estimation, £k, and k,, that in this chapter are assumed to be
always equal.

In both the figures, the lower and upper bounds (i.e., the straight lines)
have been derived starting from the power consumption Cdf computed
through Eq. (7.11). Then, the 95% confidence interval has been derived
for each Cdf, and the two bounds have been plotted varying the number of
observations.

The average power consumption measured by means of the power meter
and independent on the number of collected samples is depicted in Figures
[7.8d and as a dotted line.

The samples of arrival and service times are used to plot the estimated
power consumption (one point for each estimate). For this purpose, k)
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Figure 7.8: The results for U ~ 9% are depicted on the left, those for U ~ T0% are
depicted on the right.

and k, samples (i.e., the number of generated Monte Carlo samples) are

averaged in order to derive the mean arrival and service rates (i.e., A and
i), respectively. Then, after using these values to compute U as in Eq.
(7.3), it is possible to estimate average power consumption through Eq.
(7.1), with P4, and r set to their average value. The larger the number
of observations of arrival and service times, the more accurate the power
consumption estimates.

As expected, a great amount of power consumption estimates lies be-
tween the two bounds and they are closer to the mean value when a large
amount of samples is observed. While in Figure few samples for both
the parameters are enough to obtain values close to the average one, when
the utilization of the system is U ~ 70% (Figure [7.8b)) at least 300 observa-
tions are required for both A and M before obtaining some accurate power
consumption estimates.

7.4 Exploitation: life of a UPS battery

In this section the previous considerations about epistemic uncertainty prop-
agation in power models are applied to a real exploitation case. In fact, a
UPS battery that starts working after the power source failed is analyzed. In
particular, the battery lifetime of a UPS, that must keep on a server which
1s processing a constant workload, is estimated.

Three main UPS architectures exist [145]: i) on-line UPS, that pro-
vides electrical power from the battery whether there is a failure or not; ii)
standby UPS, that provides electrical power from the battery only if power
source failed; iii) line-interactive UPS, that are high-class standby UPS.
For the purpose of this section, distinction between the three architectures
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is irrelevant since, in the scenario considered, the power source has already
failed.

Several models have been proposed in literature in order to estimate a
UPS battery lifetime: some of them, such as the electro-chemical models
[44]], are very accurate and need several input parameters to work; some
others, like the kinetic battery model (KiBaM) [71,77], need just a few
parameters and may be easily used also by inexperienced users. In this
section, the latter model is adopted.

The KiBaM is an accurate and simple model [71,[/7] that divides the
stored charge into two different wells: the available charge and the bound
charge. The two wells are connected by a pipe and the charge can migrate
in both directions — based on the level of charge in the two wells — at a
given rate w. At the beginning, a fraction ¢ = [0, 1] of the total capacity
is in the available charge well, and the remaining 1 — ¢ fraction is in the
bound charge one. When the battery is strained, only the available charge
may be used, whereas the bound charge slowly becomes available charge.
For the purpose of this section, the battery lifetime equation is derived as
in [77]] by solving the differential equations that model the dynamic of the
charge of both the wells that, when the load is assumed to be constant, is:
(1—¢)-I 1—e*t

¢ W’
where [ is the load that is straining the battery, ¢ is the lifetime of the battery,
4 is the battery full capacity and w’ = w/[p(1 — ¢)].

Although [71] has already analyzed how uncertainty on input parameters
(i.e., initial capacity and load) affects the KiBaM performance in predicting
the GomX—lﬂ satellite state of charge, they expressed the uncertainty on the
output measure without considering the number of observations of the input
parameters. In this sense, our technique lets the users consider the amount
of samples to be collected in order to get a more accurate output measure.

Note also that the batteries are usually not fully drained in order to pre-
vent damages [34]. Thus, a UPS unit is shut down when the battery capacity
is lower than a fixed threshold. Nevertheless, in this chapter it is assumed
the battery can completely drain and the UPS unit does not shut down until
the battery is exhausted. Note that, the standard UPS battery configuration
may be considered after some adjustments to Eq. (7.13).

Battery lifetime is derived solving the kinetic battery model for fixed
load given in Eq. (7.13). For this purpose, ¢ = 1/2 and w = 1/100 as done
by Hermanns et al. in [71]. They also assumed the battery initial capacity

I-t+ =4 (7.13)

https://gomspace.com/gomx-1.aspx, Accessed: Jan. 15, 2018.
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is uniform distributed between 70% and 90% of full capacity ¥, thus as-
suming to deal with a random environment. Furthermore, in our case, load
I is affected by epistemic uncertainty due to the finite number of samples
collected for the input parameters A and M (i.e., arrival and service rates,
respectively). Indeed, the current load I is derived starting from server
utilization in Eq. (7.3)); utilization is used to compute the server’s power
consumption through Eq. that is divided by voltage AV to obtain the
load I (i.e., I = P(U, Pyge,7)/AV). This is a different assumption with
respect to [[71]], where also the load was affected by aleatory uncertainty.
Finally, voltage is AV = 12V, and the capacity is ¥ = 9 Ah; both of them
are from the specifications of Trust OXXTRON 1000VA UPS.
Starting from Eq. (7.13)), battery lifetime L is defined as:

1—¢)- I\, pu) 1—e vt
L(A,u,'y)zt!f(%u)-ﬂr( L0 — ="

0] w
For the sake of simplicity, the dependency of L on A,  and v has been
dropped. Thus, the epistemic uncertainty of input parameters A and M is

propagated to the battery lifetime as follows:

0= [ [T [THe <0 50 ful) i) ndudy @14

where 04 90
, voIUY
fr(v) ~ Uniform (100, 100) ,
whereas fx()) and fy/(u) are the Erlang densities given in Eq. (7.7).

The Cdfs obtained solving Eq. @ for A = 0.8 j/s and A= 6.4 j/s are
depicted in Figures and[7.9b] respectively. Although tighter confidence
intervals are derived increasing the number of observation for arrival and
service rates from 10 to 100, a smaller improvement is obtained when the
number of collected samples is further increased. Indeed, in both cases
depicted in Figure the Cdf of the battery lifetime for £y = £, = 1000
is very similar to the one derived with &y = &, = 100.

In fact, for the case-study considered, the inaccuracy of output measure
is mainly due to the aleatory uncertainty introduced by the unknown bat-
tery capacity . That may also be seen considering the limiting case for
kx, k, — oo discussed in Section when arrival and service rates, A and
M, follows a degenerate distribution (i.e., they are known with certainty),
while the full capacity v is still uniformly distributed. The battery lifetime
Cdf for k) = k, = 1000 and k£, k, — 0o, when \ = 6.4 j/s, are plotted in
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Figure 7.9: Battery lifetime Cdfs when the resource utilization is U ~ 9% (on the left)
and U =~ 70% (on the right).
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Figure 7.10: Battery lifetime Cdfs when the resource utilization is U ~ 70% and the
number of collected samples is 1000 or tends to infinity.

Figure where it is shown that the difference between the two Cdfs is
negligible. Similar results are obtained for A = 0.8 j/s.
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CHAPTER

Parametric sensitivity to study epistemic
uncertainty propagation

8.1 Motivation

Epistemic uncertainty is propagated into a model to study the effects of in-
accurate input parameters on the output measures, thus getting results with
confidence intervals. As already presented, the technique adopted in this
thesis for epistemic uncertainty propagation is based on multi-dimensional
integrals. Unfortunately, it is not always easy to study the uncertainty prop-
agation with that technique. Indeed, for large and complex models, it is
often not practical to analytically or numerically compute the uncertainty
through integrals.

Parametric sensitivity analysis allows the modeler to identify the input
parameters that most affect the output measures of the model. Differently
from epistemic uncertainty propagation, parametric sensitivity can be easily
computed in short time also considering complex models.

The purpose of this chapter is to find a relationship between epistemic
uncertainty and parametric sensitivity, in order to enable a faster uncertainty
analysis also on large models with several input parameters.
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Figure 8.1: Reliability block diagram of the multi-voltage propulsion system.

8.2 The system and its model

The multi-voltage propulsion system for the Italian High Speed Railway
[33] is the case-study used in this chapter. In particular, the dependability
of this system is here considered.

Although in this chapter the epistemic uncertainty propagation and para-
metric sensitivity analyses are applied to a dependability model, the results
obtained can be also adopted when studying different type of models (e.g.,
performance models).

The multi-voltage propulsion system, originally proposed in [33] and
[37], consists of three equivalent modules in a parallel redundant configu-
ration. The reliability block diagram of the system is shown in Figure [8.1]
Each module is composed of transformer (7'), filter (F'), inverter (/) and
motor (M) in series with two parallel converters (C; and C5). In [33]], the
components’ failure times are assumed to be exponentially distributed, and
their failure rates are reported in Table [8.1]

Denote by A = Ar+Ap+ A+ Ay, the total failure rate of the series com-
ponents and -y the failure rate of each parallel component. The propulsion
system works until one of the three parallel modules is up.

A single module of the multi-voltage propulsion system is modeled by
the CTMC in Figure[8.2] In State 2 all the components are working and the
module is fully operational. In State I the module is still working, but only
one of the two converters is operative, whereas State 0 is the down state and
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Table 8.1: Failure rates of the system’s components.

Component Failure rate [f/h]
Transformer | A\p =2.2-1070
Converter v=28-10"°

Filter Ap =4.0-1077
Inverter A =3.8-10"°
Motor Ay =32-107°

Figure 8.2: Continuous time Markov chain model for one module of the multi-voltage
propulsion system.

the module is broken. The CTMC goes from State 2 to State 1 when one of
the two converters fails. If a series component breaks up, the CTMC goes
to State 0 independently of its current state. Note that, if the CTMC is in
State 1, the working converter is considered as a series component.

The fully symbolic transient solution of the CTMC in Figure 8.2 may be
derived resorting to Laplace transforms, and it is:

o (t) = e~ 2+t
71 (t) = 26~ OFNE 2= (2y+)1 (8.1)
’/To(t) =1- ’/Tl(t) - 7T2(t)

Considering only the working states, the reliability of the module is derived
as:

R(t) = my(t) + my(t) = 20~ O0FNE _ g= @y (8.2)
and its mean time to failure (MTTF) is:

3y + A
2y + A)(y+ )

that, after substituting A and v with the values in Table is MTTF =
12104.7 hours.

In order to consider the whole system in Figure [8.1} we assume statisti-
cal independence among the three parallel modules and use a hierarchical
approach whose structure is depicted in Figure [8.3]

The highest level of the hierarchy is implemented with a multivalued
Fault tree, in which the top event is the system failure; it is the output of

MTTF = / N R(t)dt = : (8.3)
0

131



Chapter 8. Parametric sensitivity to study epistemic uncertainty
propagation

Failure

Figure 8.3: Hierarchical model of the multi-voltage system.

an AND gate whose inputs are the module failures. At the lower level of
the hierarchy there are the CTMCs of Figure [8.2] modeling each module’s
failures. The top event occurs when all the inputs occur, i.e., all the three
modules have failed.

Each module can be in one of the three 7 states of Figure [8.2] (i.e., i =
{0, 1, 2}), and the total number of modules in state ¢ is referred to as n;,
where 0 < ng,nq,no < 3 and ng + n1 + ny = 3. Hence, the state of
the top event can be described by a triple {ng, n1, 72} indicating how many
modules are in state 0, in state 1 and in state 2, respectively.

The probability of each possible output configuration is derived as:

SR S B BN N

o ,3T'll, L) (8.4)
= —n()! nl! n2! . [772] 2, [71] 1, [WO] 0

where the 7; in Eq. (8.4) have been derived in Eq. (8.1).
Given the hierarchical model of the multi-voltage propulsion system, its
reliability is computed as

Rsys <t> =1- 73,0,0
where 730 is the down state and is obtained from Eq. (8.4). Solving the
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previous equation, the reliability of the multi-voltage propulsion system is:

Reys(t) =11 — 2e~ (Mt e*(Q’er/\)t]B

— 126—(3’y+2)\)t + 66—(5’y+3>\)t . 126—(4’y+3>\)t
o 367(2’y+)\)t o 3672(2’y+)\)t o 673(2’y+/\)t (85)

F Ge—(HNE _ 19020040t | g3 N

Thus, the MTTF of the whole system is computed integrating its reliability
as follows:

MTTF = / Ryo(t)dt
0

8 >
S 3(v A 6(2y +N) (8.6

12 12 6

BTy @y T By sy

and substituting \ and ~ to the values given in Table[8.1] we obtain MTTF =
21662.9 hours.

8.3 Parametric sensitivity for epistemic uncertainty propaga-
tion

In this section parametric sensitivity is considered in order to find a fast
strategy for epistemic uncertainty propagation. For this purpose, the input
parameters that most affect a chosen output measure (in this case the MTTF
of the system) are identified through parametric sensitivity, then epistemic
uncertainty propagation is used to study how lack of knowledge on input
parameters is affecting the chosen metric. Finally, a possible relationship
between parametric sensitivity and epistemic uncertainty is investigated.

8.3.1 Parametric sensitivity

Parametric sensitivity is a technique used to identify the components that
most affect an output measure. In this chapter we focus on the MTTF whose
expression is given in Eq. (8.6).

Differential analysis [66,91] is the basis of many sensitivity analysis
techniques. The MTTF sensitivity with respect to a generic input param-
eter 0, referred to as Sy(MTTF'), is obtained by computing the partial
derivative of the metric of interest with respect to the parameter considered
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as follows:

OMTTF

So(MTTF) = ——-—.

0 - {)\Ta)\F7A17>\M7/Y} (87)
The dimensionless scaled sensitivity is defined for each input parameter

6 as [51]:

OMTTF 0

00 MTTF

Adoption of scaled or unscaled sensitivity depends on several factors
(e.g., type of the output metrics, the range of values of the input and output
parameters, etc.). In this chapter we use the scaled sensitivity as in Eq.

For each series component with failure rate Ax, where X = {7, I, F, M },
the scaled sensitivity in Eq. (8.8 becomes:

SSy(MTTF) = (8.8)

SOy (MTTF) =
8 29 24 36 18
Ny . B0 T G0 * G T ez T Gy (89)
T AXC B 29 12 12 6

3(vFA)  6(2y+N) ™ 37+2X  4y+3X + 5y+3\

Instead, expanding Eq. (8.8) for the parallel converters with failure rate +,
we obtain:

SS.(MTTF) =
8 29 36 48 30
30402 3+ T Bren? T @tsnE T Graane (8.10)
’ 8§ 20 13 12 6
310 62 +N) T 37+2x  dy+8x | 5y+aa

In Table[8.2] the numerical values of MTTF scaled sensitivity computed
through Eqgs. (8.9) and (8.10) are reported. They have been sorted from the
most to the least sensitive. Note that all the values are negative meaning
that if the value of the parameter ¢ increases, the MTTF decreases. The
component that most affect the MTTF is the inverter which is the one with
the largest failure rate.

Figure depicts the MTTF of the system as a function of the failure
rate of a single component, thus assuming that the failure rates of all the
other components are constant. In particular, the larger the absolute para-
metric sensitivity with respect to a component, the greater the gain that is
obtained if the failure rate of that component is decreased. The straight
gray line in Figure[8.4]is the MTTF of the whole system as derived through
Eq. (8.6) with the failure rates given in Table[8.1]
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Table 8.2: Scaled sensitivity of the MTTF metric. The parameters are ordered from the
one that most affect the output measure to the one to which MTTF is less sensitive.

0 SSy(MTTF)
Ar | —4.16997 - 101
Av | —3.51155- 1071

v | —2.03316 - 10!
A | —2.41419 - 102
Ap | —4.38944 .10

.
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0.00000 0.00001 0.00002 0.00003 0.00004 0.00005 0.00006

Figure 8.4: MTTF of the system computed varying the failure rate of one component at a
time. Each curve is obtained varying the considered parameter between 0 and 6-1075,
and keeping constant all the other failure rates. The straight line is the current value
of MTTE, as computed from Eq. (8.6).
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8.3.2 Epistemic uncertainty

As said, the multi-dimensional integral technique proposed in [98}125]] and
described in Section [2.3.1] is adopted to propagate epistemic uncertainty
into the model.

However, in this chapter, only the variance of the output measure is taken
into account since it is strictly related to the accuracy of the same metric.
In fact, the smaller the variance, the tighter the confidence interval. In
order to make the variance account for epistemic uncertainty, its definition
is required:

Var[MTTF) = E[IMTTF? — (E[MTTF))? (8.11)

where the first and second moments are computed as in Eqs. (2.13) and
(2.14), respectively, thus taking into consideration epistemic uncertainty.

As already shown in Chapters [6] and [7] and proved in [98]], since the
failure times of each component are exponentially distributed, the proba-
bility density function of each input random variable O is a k-stage Erlang
distribution with rate parameter s:

ek—lske—Hs
(k—1)!

where £ is the number of collected samples and s is their sum.

Figure[8.5]depicts the variance of the MTTF as a function of the number
of samples collected for each input parameter, assuming the same number
of samples is observed for all the input parameters. Note that, if the number
of observations for each parameter tends to infinity (i.e., & — 00), thus
the variance of the MTTF tends to zero. Indeed, in that case, the input
parameters are exactly know and no epistemic uncertainty is introduced
into the model.

The epistemic uncertainty of each input parameter # may be evaluated
assuming that all the input parameters are exactly known (i.e., infinite sam-
ples have been collected for their estimation), except the one of which we
want to study uncertainty. This way, MTTF expected values is computed
as:

fos(0]s) = (8.12)

9] 6k9—18k66—959
E[MTTF] = / MTTF - ——20° __qp (8.13)
0 (kg — 1)!
and its variance can still be derived through Eq. (8.11)) after computing its
second moment as:

9’69 —1 S’ge 67989

wd@ (8.14)

E[MTTF? = / MTTF?-
0
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Figure 8.5: Variance of the MTTF of the multi-voltage propulsion system as a function of
the number of observations collected for each input parameter.

Figure [8.6]depicts the MTTF variance as a function of the number of sam-
ples collected for the single parameter ¢ that is assumed to introduce epis-
temic uncertainty into the model. Note that, the more uncertain a parameter,
the larger the amount of observations required for that parameter to make
the MTTF variance close to zero. As in the previous case, the variance of
the MTTF tends to zero when ky — oo.

8.3.3 Parametric sensitivity vs. epistemic uncertainty

The closed-form approach to uncertainty propagation requires the computa-
tion of an n-dimensional integral, where n depends on the number of input
parameters. Both symbolic and numerical computations of such integral
become impractical for complex and large models [97].

Moreover, that technique also requires to compute the joint epistemic
density of all the input parameters. However, this task may be simplified
by assuming that all the parameters are independent (as it has been done in
this chapter and in the previous ones).

Sections [8.3.1] and [8.3.2] show that a relationship between parametric
sensitivity and uncertainty propagation exists. Indeed, from Table and
Figure [8.6] it may be observed that for the input parameters with a larger
absolute value of parametric sensitivity, also a larger amount of samples
is required to estimate the output measure (i.e., MTTF) with a given con-
fidence. The partial derivatives performed to derive parametric sensitivity
are easier and quicker to be carried out than the multi-dimensional integral
required to propagate epistemic uncertainty through a model.
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Figure 8.6: Variance of the MTTF as a function of the number of samples collected for
the single input parameter that is assumed to introduce uncertainty into the model.

The above mentioned relationship allows us to use parametric sensitivity
analysis to identify the parameters that need tighter confidence interval to
get more accurate output measures. This method is less affected by the
largeness and complexity of the system than the multi-dimensional integral
technique.

However, the partial derivatives cannot predict how many samples are
required to attain a given level of accuracy since the parametric sensitiv-
ity does not depend on the number of samples collected for the input pa-
rameters. For this reason, after using parametric sensitivity to identify the
input parameters that are more affecting the model’s output measure, epis-
temic uncertainty propagation may be applied to a simplified version of the
model, i.e., the one that accounts only for the most important parameters.
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Other applications: IoT and
Mobile CrowdSensing
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CHAPTER

Evaluation of Mobile CrowdSensing
performance

9.1 Motivation

Internet of Things (IoT) is gaining more and more importance thanks to
the recent advancements in mobile, pervasive sensing and communication
technologies. It aims at connecting several physical objects into a unique
and larger space, the cyberspace [64,90]], opening up new application sce-
narios that may involve billions of devices and users, a big challenge that
must be properly addressed.

A promising attempt in this direction is Mobile CrowdSensing (MCS),
which proposes to deploy and run IoT applications on mobiles by actively
involving their owners in a volunteer/crowd-based fashion [56]]. In fact,
MCS allows to reach a large number of users, who may also act as contrib-
utors sharing their devices to mainly provide sensing facilities.

Several success stories confirm the effectiveness of the crowdsensing ap-
proach in IoT contexts [31,46,101], thus attracting interests from both aca-
demic and business communities that are investing resources and efforts to
implement middleware mechanisms [ 115]/144]] and to investigate on a com-
mercial exploitation for MCS. This imposes to revise the MCS paradigm,
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extending its scope to business contexts where SLLAs on functional and non
functional properties have to be enforced to meet quality of service (QoS)
requirements. Therefore, proper mechanisms and tools for supporting the
design and the operation of MCS services are required. In particular, mod-
eling and evaluation techniques dealing with MCS contribution dynamics
issues, such as churning (i.e., the random and unpredictable join and leave
processes characterizing the contributors), must be developed.

The contributors’ arrival and service processes, that identify the tempo-
ral behavior of an MCS system, have to be properly characterized recurring
to stochastic models able to adequately represent their fluctuations.

The resulting model is often not memoryless and the corresponding
stochastic process is non-Markovian, implying to take into account related
memory issues in its analysis. This is particularly true in MCS systems
where the service requests are first split into simple tasks, then assigned to
contributor nodes whose processing could be interrupted and rescheduled
due to churning. Sometimes, the results obtained by the partial processing
of an interrupted task are not wasted, e.g., for purely sensing activities, or
also in the case the MCS services implement checkpointing policies to limit
the impact of rescheduling on QoS and performance. To take into account
this aspect while modeling the system, i.e., to properly represent recovery
from the conditions before the interruptions or from checkpoints, specific
memory preservation mechanisms are required.

State space based solutions have been mainly proposed in literature to
address these issues [32,42/68.,69./95]]. However, their main drawback is the
well known state space explosion, when dealing with large-complex prob-
lems, limiting their applicability especially in MCS-1oT contexts, where the
number of requests and contributors could easily reach thousands or even
millions. Furthermore, none of them except [42] takes into account check-
pointing policies and related issues, enabling the representation of contri-
bution dynamics and churning, but not dealing with the memory problem.

9.2 A close-up view of MCS

MCS [56] is a computing paradigm where contributors share their mobile
devices (e.g., smartphones, tablets, PDAs, laptops, etc.) with specific ap-
plications in order to gather and aggregate their data for further process-
ing. From a high level perspective, the architecture of an MCS applica-
tion mainly implements a client-server model as shown in Figure[0.1] The
MCS application client deployed on each involved node (usually after it
has been explicitly downloaded and installed by the contributor on his/her
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Figure 9.1: MCS application scenario.

device) produces, (pre-)processes and sends data to the server that collects,
aggregates, further processes (if required) and stores such data, providing
information and results to the end-users. More specifically, three different
stakeholders can be identified:

e contributors, i.e., the owners of the devices that are shared to build up
the MCS sensing infrastructure;

e the service provider, which manages the whole system and applica-
tion by gathering, aggregating and processing data and results from
contributing nodes;

e end-users, which use the MCS application to access the services and
the information it provides.

These roles are not mutually exclusive and, for instance, contributors may
also act as end-users and vice-versa.

In the MCS application processing, the main activities are decomposed
into simpler tasks to be independently executed by the nodes. Each client
may elaborate zero, one or many tasks, whose results are collected and
recomposed by the application server. To prevent and minimize churning
issues due to random and unpredictable joins and leaves of the contributors,
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Table 9.1: Metrics of interests for the three stakeholders of an MCS system.

PERSPECTIVE || Contributor | Service End
METRIC Provider User
Resource Node Server -
Utilization
Energy Battery Server -
Consumption
Response - Task Service
Time
Throughput - Task

an active contributing node may periodically send partially processed data
(i.e., checkpoints) to restart future elaborations on other available nodes
in the case of its departure. Indeed, the application client can sometimes
predict the leave of a contributor (e.g., in the case of low battery).

The MCS paradigm has been already successfully adopted in several
applications such as OpenStreetmap [65], as an effective solution for prob-
lems related to mobility [31,/46,/146], traffic monitoring [[100,101]], public
safety [3]], smart cities [[19]] environment and pollution monitoring [[146],
emergency and crowd management [[89], to mention but a few. Neverthe-
less, most of the potential of MCS is still untapped due to the limits of the
contribution-based approach, often unreliable and unpredictable and there-
fore reflecting as high uncertainty in service fruition.

Thus, it is of strategic importance to focus on the overall MCS system
rather than on a specific application, since the performance of the MCS ap-
plication is strongly and mainly affected by the MCS system performance,
reliability and energy related metrics, which are governed by the contribu-
tion dynamics.

Specifically, several metrics of interest for each stakeholder mentioned
above may be identified and they are reported in Table 0.I] A contribu-
tor is mainly interested in knowing the impact of contribution on his/her
device or node in terms of computing resource utilization (CPU, memory,
storage) and battery charge. Instead, service provider is mainly interested
in managing the system’s resources, i.e., maximizing their utilization and
reducing power consumption, while reducing the time for processing a task
and increasing the system throughput. This also affects the time required
for processing a request, which is the main metric of interest for the end-
users.

A model or a modeling technique can provide a valid support to the
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design, deployment and assessment of the MCS applications. However,
several aspects must be taken into account to properly represent an MCS
system. As said above, the most challenging one is the fluctuation of the
number of contributors, which strongly impacts on the MCS underlying in-
frastructure reflecting on the non functional properties of the applications.
Thus, an MCS system model has to primarily accounts for the contribution
dynamics in the stochastic characterization of both arrival (join) and depar-
ture (leave) times of the contributors, by using specific probability distri-
butions. Moreover, a stochastic characterization is required for the whole
system, including the end-user’s requests arrival process and service time.
In general these are not Markovian, since their stochastic behavior is not
memoryless. Furthermore, the model has also to deal with the complexity
of an MCS system, for example, taking into account queuing effects as well
as checkpointing policies.

9.3 Modeling MCS

The description given in Section [9.2] about the scenario considered in this
chapter shows the need of a modeling technique that allows to evaluate the
metrics of interest identified in Table 9.1 while dealing with churning is-
sues. This strongly suggests to address the problem in a hierarchical and
layered way, separating contribution aspects and concerns from provision-
ing and fruition ones.

For this purpose, considering the scenario in Figure 0.1] a two-layer
modeling technique is proposed splitting the contribution and the process-
ing subsystems. In the former the contribution dynamics due to node fluctu-
ations joining and leaving the MCS system is mainly represented. Instead,
the latter focuses on the processing of requests and tasks, therefore on the
service dynamics.

However, the two subsystems are not independent since contributors
mainly serve the requests and their tasks. Indeed, when a contributor joins
the contribution network, a server in the processing subsystem is turned on
and can serve the incoming requests. The server is turned off when the asso-
ciated contributor leaves the contribution network. The connection between
a server and a contributor lasts until the latter leaves the MCS system.

If there are not contributors associated to a server, then it may be turned
on by the next incoming contributor. In fact, a contributor is connected
to only a server during all its life, whereas several contributors may be
associated to the same server during the whole simulation.

Another aspect to take into account in the MCS modeling is the sys-
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Figure 9.3: The processing queuing network sub-model.

tem complexity. Indeed, the number of users and contributors in an MCS
system is commonly in the order of thousands, which excludes state space-
based models. For this reason, QN formalism has been chosen due to its
well known capability in dealing with complexity.

9.3.1 The contribution QN

The QN sub-model representing the MCS contribution dynamics is shown
in Figure The contributors can join and leave the MCS system ran-
domly and the time they spend in the system is the contribution time. There-
fore, they are stochastically represented by general distributions.

A jobin the Delay station (i.e., a G/G /oo queue) represents a contrib-
utor node that is sharing its resources. The arrival rate to the Delay and
the time spent by a job in it are characterized by general density. They rep-
resent the arrivals of contributors in the system and their contribution times
(i.e., the time they are available to serve the end-users’ requests), respec-
tively. As discussed above, the De1ay station of this network is connected
tothe Service Center resource in processing QN shown in Figure(9.3
In fact, the number of servers in the processing sub-model is equal to the
number of jobs in the Delay station of the contribution QN.

9.3.2 The processing QN

The processing sub-model represents the incoming end-user requests that
must be processed by the contributor nodes. Figure[9.3|shows the proposed
QN sub-model for the processing part of the MCS system. As said, the
overall QN model is composed of the two sub-models depicted in Figures
9.2]and [9.3] that are strictly interconnected.
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The tasks arrival process is characterized by a general density, does not
depend on the contribution QN and is modeled by the Source station.
Also the Application Server station does not depend on the contri-
bution QN and its service time is generally distributed, thus resulting in a
G/G/1 queue. This resource models the commit of a request after all its
tasks have been processed. Indeed, a request of an end-user is decomposed
by the Fork into n tasks that are served by the contributors in the MCS sys-
tem. After all the tasks belonging to the same end-user’s request have been
processed, they go to the Application Server where they are fur-
ther processed and finally joint (by the Join station) to provide the expected
output.

The processing in the Service Center station depends on the con-
tribution QN. To represent such a dependency, the Service Center is
referred to as a G/G/x queue with generally distributed arrival and service
times and a variable number of servers = € [0, 00), specifically representing
the contribution churning dynamics. The number of servers z is associated
with the number of contributors that are in the contribution QN of Figure
9.2] Indeed, in order to represent the fluctuations of the number of servers
in Service Center, a server is tuned on/off every time a contributor
joins/leaves the contribution sub-model.

A task is served by only one server at a time but, since it could be
rescheduled due to churning, it may be served by different servers until
it is completed. Indeed, a task can exit the Service Center either after
completion or if the i-th server that is processing that task is turned off,
meaning that the associated contributor left the system. In the former case,
the completed task is sent to the Application Server bythe Router
to be aggregated with the other n — 1 tasks of the same end-user’s request.
In the latter case, the task is rescheduled, thus sent back by the Router to
the Service Center, waiting to be processed by an idle server.

Priority policies may be applied to the Service Center in order to
prioritize dropped tasks. Since the number of available servers may be
lower than the number of tasks that need to be served, only z tasks can be
served at the same time by the Service Center. This way, a task that
has been interrupted can be rescheduled for processing with a higher prior-
ity. The rescheduling has also to take into account possible memory policies
and strategies adopted to improve performance, such as the checkpointing
one, thus implementing proper memory mechanisms to restart from check-
points.
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9.3.3 Output measures

Once the model has been specified, the performance and energy consump-
tion metrics of interest may be identified in terms of QN measurements.
Referring to Table 0.1] an end-user is interested in the average Push
time, i.e., the time required by the system to process an end-user request,
that has been split into n tasks. Therefore, this is the time for processing
the n tasks and their further elaboration in the Application Server
after aggregation. Considering a generic end-user request ¢, its push time is
derived as: _
PushTime; = max =1, . (R]) 9.1)

where n is the number of tasks that the system collects before returning
some results to the end-user and R/ is the response time of the j-th task
of the i-th request, obtained by analyzing the processing QN. Thus, the
average Push time is:

I .
>0 PushTime;

Imam

PushTime =

9.2)

where [,,,. 1s the number of requests processed by the system.

The service provider may be interested in the average system response
time R and throughput X. The former is obtained monitoring the time
spent by each request into the system, evaluating how long it spends in the
system, the latter as X = C'/T where T is the observation time and C' is
the number of requests that have been completed in that time.

Finally, a contributor is interested in knowing the impact of contribution
on his/her devices, quantified by the utilization U and the battery energy
consumed by the MCS application during contribution. For this purpose,
the average utilization U of each node is evaluated as:

Yo ActivityTime;
Yoimee OnTime;

where ActivityTime; is the time spent by server ¢ processing a tasks,
OnTime; is the total time that server ¢« was available for the MCS appli-
cation (either busy serving a task or idle, waiting for a task to be served),
and x,,4, 1S the maximum number of server in the Service Center.

Assuming that each device is mainly used for computations, the aver-
age power consumption P(U) of each node is evaluated through the linear
power model described in Eq. (2.7). Once the power consumption has been
computed, the average energy consumption £ is derived as:

E=P(U)-S¢ (9.4)

U= 9.3)
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where S is the contributors’ average service time, i.e., the average time
each contributor spends into the system.
The average battery charge used by each contributor for sharing his/her
resources with the MCS system is estimated as:
, E
Battery consumption = 5 9.5)

where 7 is the average battery capacity of the contributors’ devices.

9.4 Validation and Evaluation

To explain in details the proposed technique, an MCS case study is ana-
lyzed in this section. Therefore, the parameters and configuration settings
adopted for the analysis — they have been taken from existing literature
when available — are discussed. In order to prove the validity of the QN
model, it is compared with an analytic one. In particular, since a CTMC
is used for comparison, the scope of the QN model has been restricted to
the exponential case and the number of entities involved has been capped.
These assumptions are relaxed for further investigations about the MCS
system’s performance and energy aspects.

9.4.1 Parameters and Configurations

As discussed in Section [09.3] each request submitted by end-users is split
into n simpler tasks that are assigned to and processed by contributor nodes.
Once the n tasks have been processed, the Application Server ag-
gregates the results and sends the obtained outcomes to the end-users. To
take into account checkpointing-restart policies, the MCS systems are in-
vestigated with and without memory strategies. In the former case, the
checkpoint strategy lets the system recovers the work already done on each
task when they are restarted, in the latter one the task processing restarts
from scratch.

As stated above, the parameters used in the experiments have been taken
from literature when possible. In particular, the arrival times of contributors
and requests are exponentially distributed, as well as the service times of
the Delay and Application Server stations. The service time of
each server in the Service Center station is characterized by a 3-stage
Erlang density, similarly to [42].

The average service time of the Application Server, Sag, and
Delay, S¢, are the same in all the experiments, i.e., 10 seconds and 30
minutes, respectively. The inter-arrival times of the two networks (i.e.,
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Figure 9.4: Part of the CTMC modeling the MCS system used for validation.

Ac and Ap for the contribution sub-model and the processing one, re-
spectively) and the average service time of each server in the Service
Center, Sgc, are changed for each experiment as follows: Ac = {1, 10,
20,30} minutes; Agr = {100, 200,300} minutes; Ssc = {5, 10, 15, 20, 25,
30, 35,40} minutes.

The strategy used in the Service Center to select the next task to
be processed is FCFS with priority. The priority of a task is increased by
the system every time the task is sent from the server back to the queue
(i.e., it has not been completed by the current contributor). The task with
the highest priority is the first to be served. If two or more tasks have
identical priority, FCFS strategy is adopted. The number of tasks that must
be committed before the system returns some results to end-user is n = 10
(i.e., the number of tasks generated by each request).

9.4.2 Model Validation

To validate the proposed model, we compare it against the analytic results
obtained using the CTMC model, thus restricting the validation scope to the
exponential case. Part of the CTMC model used for validation is depicted
in Figure 0.4]

Each state of this CTMC is characterized by a pair (¢, j) where ¢ and
j are the number of contributors and requests in the system, respectively.
When the number of contributors changes, the system goes to state (i—1, )
at rate i/Sc if a contributor leaves the system or to state (i + 1, j) at rate
1/A¢ if a new one joins the MCS system. The state can move from (3, j)
to (4, j — 1) with rate min(i, j)/Ssc if a task is completed, or to (7, + 1)
with rate 1/Ap, if a new task enters the Service Center.

As said, in order to validate the QN model against the CTMC, the inter-
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arrival and service times of contributors and requests are assumed to be
exponentially distributed. This way, also the service time of each server in
Service Center follows an exponential distributions and its average is
Ssc.

The Fork/Join stations of the processing QN are neglected and the
original Ap is divided by the number n of tasks generated by each request
(i.e.,n = 10).

In particular, only the case where Ar = 20 minutes (i.e., 200 min./10)
and A = 10 minutes (i.e., 3 contributors into the system on average, since
Sc = 30 minutes) has been evaluated.

The state space has been truncated assuming the number of contribu-
tors and requests cannot be larger than 20. Note that, that last assumption
does not affect the results, since the system that is considered for validation
rarely has a number of contributors and requests larger than 20.

Two different discrete event simulation tools have been used for the val-
idation phase. OMNeT++ [137]], an extensible, modular, component-based
C++ simulation library and framework used for network simulations, and
JMT [[11]. All the performance indexes have been estimated with 99% con-
fidence intervals.

The results obtained by analyzing the simulative and analytic models
are shown in Figure [0.5] that depicts the average contributors’ utilization,
the system response time and the average number of tasks in the Service
Center. The Q-Q plots in Figures [9.5a] [9.5b| and [0.5¢| show that the per-
formance of the MCS system obtained by the CTMC and the QN model
are almost the same. The mean absolute percentage error made by the QN
model with respect to the CTMC one is plotted in Figure is computed
as

|©crme — Ogn]|

© ={U, R, Nsc}

Ocrmc

and is always lower than 4%.

In particular, the average relative error for utilization and system re-

sponse time is lower than 1%, and it is lower than 1.26% when considering

the number of tasks in Service Center. Similar results are obtained
when JMT is used to evaluate the QN model.

9.4.3 Evaluation

After validation, the QN model has been used to perform parametric experi-
ments by varying either Ao or Ay and relaxing the exponential assumption.
In particular, when A (Ag) varies, Ag is set to 200 minutes (A is set to 20
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Figure 9.5: Q-Q plots and relative error analysis to compare the performance indexes
of the MCS system obtained with the QN model against the results obtained with the
CTMC one. In particular, they depict (a) the average contributor’s utilization, (b) sys-
tem response time, (c) number of tasks in Service Center and (d) relative errors
of ON model with respect to the CTMC one for the three metrics considered.
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minutes). In the experiments also Sg¢ varies, assuming the tasks processed
in Service Center may have different complexity and service demands. In
fact, for each test performed and analyzed, two out of three parameters are
varying.

With regard to the energy measurements, in the experiments we assume
Py = 0.268 watt and P,,,, = 1 watt for each node, as estimated in
[20] while analyzing the power consumption of smartphones. The battery
capacity is assumed to be v = 7.77 watthour for all the devices.

In order to evaluate the QN model presented in Section[9.3] considering
the non-exponential parameters and the performance indexes there speci-
fied, OMNeT++ has been extended implementing the dependency between
the contribution and the processing sub-models and modifying the Job im-
plementation to consider different memory strategies as discussed in Sec-
tion The MCS system here described is simulated for an observation
time 7' = 7 days and the results obtained are discussed in the following,
taking into account the different MCS stakeholders perspectives.

Contributor

Contributors are mainly interested in quantifying the impact of the contri-
bution on their resources. After deriving the average utilization of their
devices through Eq. (9.3), energy and battery consumption may be com-
puted using Eqgs. (9.4) and (9.5).

The results are shown in Figure [0.6] where the average utilization per
contributor as a function of the average service time of Service Center
1s depicted.

In Figures and different contributors’ inter-arrival times are
considered, whereas the average arrival time of the requests is Az = 200
minutes and the number of tasks generated by each new job is n = 10, Both
checkpoint and no memory strategies are considered and compared in this
analysis.

As expected, the nodes utilization decreases with the contribution inter-
arrival time since the total number of contributors (i.e., No = Sc¢/Ac)
increases when the inter-arrival time A decreases, being the average con-
tribution time constant, i.e., S¢ = 30 minutes. Furthermore, if a checkpoint
memory strategy is adopted, the utilization of each device is lower than the
service without memory, since contributors have to work more in the latter
case.

In Figures and [0.6d| the inter-arrival time of contributors is set to
20 minutes, whereas the requests’ arrival time varies. Also in this case,
the contributors’ utilization with checkpoint strategy is lower than the one
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Figure 9.6: Average utilization per contributor as a function of service time Ssc, with
fixed average requests’ inter-arrival time and either (a) checkpoints or (b) without
memory, and fixed average contributors’ inter-arrival time and either (c) checkpoints
or (d) without memory.
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Figure 9.7: Number of contributors in the MCS system in the case of Ac = 1 minute and
Sc = 30 minutes, during a 24 hours observation window.

with no memory. A higher utilization is also observed when the requests’
average inter-arrival time is shorter since the number of requests into the
system increases.

The utilization is then used to estimate the power consumption through
the linear model described in Eq. (2.7), thus for computing the devices’
energy consumption as described in Eq. (9.4). For this reason, energy
consumption curves have the same trend of the utilization ones and they
have not been plotted for the sake of order. However, using the parameters
previously presented in this section, the battery depletion for a 30 minutes
contribution is never larger than 7% of its capacity 5, when U = 100%.

Service provider

Several metrics of interest for the service provider can be obtained using
the QN model. One of them is the number of contributors in the system,
since the number of end-users’ requests served by the MCS system depends
on it. Figure[9.7 shows the contribution dynamic for Ac = 1 minute and
Sc¢ = 30 minutes. The evolution of the contribution QN is represented only
for a day in stationary conditions. In this case, the number of contributors
is in the range between 14 and 47, and its average is 30.

Monitoring the system response time is important in order to check if the
performance are degrading and the pledged QoS cannot be satisfied leading
to SLAs violations. This metric is plotted in Figure 9.8] against the service
time of the Service Center, still considering different memory strate-
gies. In Figures [9.8a]and [9.8b|the average arrival time of the requests is set
to 200 minutes and the contributors’ one varies. In the former figure, the
checkpoint memory strategy is used, whereas in the latter one no memory
strategies are adopted. As expected, the system response time stands in
inverse proportion to the number of contributors into the system.

In fact, when enough contributors are sharing their resources, the tasks
are served without interruption and they are completed in a shorter time.
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Figure 9.8: Average system response time for tasks as a function of service time Sgc,
with fixed average requests’ inter-arrival time and either (a) checkpoints or (b) without
memory, and fixed average contributors’ inter-arrival time and either (c) checkpoints

or (d) without memory.
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On the contrary, when the number of contributors is too small, each task
may spend several time waiting to be served. This behavior is intensified
without checkpointing, since a task must be processed from scratch every
time it is rescheduled.

Figures [9.8c| and show the requests’ system response time when
the contributors’ average arrival time is 20 minutes and the requests’ one
varies. Similar considerations to the previous case can be drawn. In fact, the
system response time is also in inverse proportion to the requests’ arrival
time.

To be sure not to incur any penalty, the provider is also interested in
system throughput, since the provisioning is often constrained by SLAs on
this performance metric. The system throughput is shown in Figure 9.9] as
a function of the service time Sg¢, where the checkpoint memory strategy
is compared to the no memory one, also considering different inter-arrival
time for contributors and requests. A larger number of contributors (i.e.,
shorter contributors’ inter-arrival time) lets the system provide the largest
throughput also when complex tasks (i.e., tasks that need a long time to
be served) are processed. In particular, if the system is not saturating,
the throughput of the requests is equal to the requests’ arrival rate. The
throughput has its maximum value when the tasks to be completed are sim-
ple, whereas it decreases when the tasks are more complex. Also in this
case the checkpoint memory strategy positively impacts on the MCS sys-
tem, ensuring larger throughput than MCS systems without memory.

End-user

End-users are mainly interested in push time, i.e., the time elapsed from the
submission of a request to its completion. In the case-study considered in
this section, the system has to process n = 10 tasks before returning the
results to the users. The average push time obtained through the QN model
analysis, as described in Eqs. (9.1)) and (9.2)), is shown in Figure [9.10]as a
function of the service time Ss¢, comparing the checkpoint and no memory
strategies and considering different values for the average inter-arrival times
of either the contributors or the requests.

In Figures [9.10a) and [9.10b] the contributors’ inter-arrival time is vary-
ing. Assuming the average inter-arrival time of the requests is 200 minutes,
the push time behavior is similar to the response time one. The push time
increases when the tasks are complex (i.e., for larger service time values)
or when the number of available contributors is low (i.e., for larger val-
ues of Ap). It is worth noticing that the larger the number of requests in
the system, the faster the push time increases. Indeed, tasks with the same
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Figure 9.9: Average system throughput as a function of service time Sgsc, with fixed aver-
age requests’ inter-arrival time and either (a) checkpoints or (b) without memory, and
fixed average contributors’ inter-arrival time and either (c) checkpoints or (d) without
Memory.
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Figure 9.11: Comparison of the system response time obtained with exponential and non-
exponential models.

complexity can easily affect the system performance when many other re-
quests are already in the system. In both the considered cases, checkpoint
strategy provides the best results.

Further results

The likelihood of exponential and non exponential models is here inves-
tigated by comparing the CTMC validation results to the results obtained
with the non-Markovian QN model, where the service time of each server
in Service Center is Erlang distributed and the Fork /Join stations
are used to represent the end-users’ requests decomposition.

For this purpose, we compare the system response times of the two mod-
els with Ac = 10 minutes and A%’ = 200 minutes, where the requests
are split into n = 10 tasks (A% = AY’~“"/n = 20 minutes, for the expo-
nential model). While studying the non-exponential model both the case
with checkpoint memory strategy and the one without memory have been
considered. They are compared to the exponential model that, being mem-
oryless, cannot implement any memory policy.

Figure [9.11] depicts the system response time obtained with exponential
and non-exponential models, showing that the QN model is required to get
more accurate output measures.
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Conclusion and future work

In this thesis, we have summarized our researches on data-center’s energy
consumption and new technologies for decreasing its impact on environ-
ment and organizations’ costs. Different aspects have been considered, tak-
ing into consideration both modeling and estimation related problems.

A power model for CPU has been introduced; differently from the avail-
able ones, it takes into consideration how DVFS and SMT - two very
widespread technologies used to improve the components’ energy efficiency
— affect the power consumption of the central processing unit. The results
show that the proposed power model provides more accurate estimates than
the already available ones that do no account for the two energy saving
strategies.

A new metric, the energy per time-unit of execution, has been proposed
to evaluate the energy efficiency of a system that executes a multi-class
workload. In fact, many available metrics do not consider the different
characteristics of the jobs while dealing with multi-class systems. The en-
ergy per time-unit of execution metric accounts for the heterogeneity of the
jobs executed by the system, as well as the existing energetic relationship
among all the components involved in the applications processing.

The Pool depletion systems — a new framework for studying perfor-
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Chapter 10. Conclusion and future work

mance and energy consumption of Big Data applications — has been pre-
sented. It is used to analyze the applications that generates a large number
of tasks that are then executed by parallel subsystems with a limited ca-
pacity. The most important metric for this kind of framework is Depletion
time, 1.e., the time required to complete the execution of all the tasks. In-
deed, Depletion time minimization allows the application to be executed in
a shorter time, thus service provider may decrease the energy consumption
of the system and the users can reduce their fees.

While developing the Pool depletion systems framework, a new schedul-
ing strategy has been investigated. It is the Optimal population mix strategy,
that minimizes the Depletion time of an application making each subsystem
work with its optimal population mix (i.e., the operating point for which the
system provides its best performance). Such a strategy is interesting since
it can decrease the Depletion time just modifying the execution sequence
of the tasks. For this reason, the Optimal population mix strategy can be
adopted together with already available policies to further decrease the ex-
ecution time of Big Data applications. Some examples of such policies are
the auto-scaling technique or the Completely Fair scheduler, that have been
already used for optimizing the system utilization through optimal jobs al-
location and minimization of the execution time of each single tasks. The
results obtained through simulative analysis of Pool depletion systems have
been validated with analytic models and experimental results on a private
cloud infrastructure.

We have also taken into consideration epistemic uncertainty while us-
ing power models to study data-centers’ energy efficiency. It is a kind of
uncertainty due to a lack of knowledge and may be reduced observing a
larger number of samples for each input parameter. In this thesis, epis-
temic uncertainty has been also considered with regard to M/M/1 queue —
a model often adopted to represent servers and the data-center’s compo-
nents — in order to evaluate how uncertainty on the input parameters (i.e.,
inter-arrival and service rates) affects its average response time and num-
ber of customers. Moreover, an interesting relationship between epistemic
uncertainty and parametric sensitivity has been discovered. Since the lat-
ter analysis requires shorter time and fewer computational power than the
former one, it may help system designers in taking decisions about their
systems.

Besides data-centers, also small devices’ performance and energy con-
sumption have been briefly taken into account. In fact, Internet of Things
and sensors are one of the main reasons energy consumption has gained
such importance in the last few years. In particular, a queuing network
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model has been proposed to investigate the performance of Mobile Crowd-
Sensing, a paradigm that allows to reach a large number of users that may
also act as contributors by sharing their devices.

Since several aspects have been considered in this thesis, also future
work may follow different directions in order to improve the work here
presented.

Pool depletion systems may be extended accounting for multiple (i.e.,
more than two) classes of tasks and subsystems’ resources. This way, fur-
ther optimizations and limits of the system considered may be discovered
and exploited. Moreover, it is also interesting to investigate how multi-core
resources (e.g., multi-core CPU) are affecting the depletion time of this
type of applications.

The Optimal population mix strategy should be integrated into some ex-
isting frameworks (e.g., Apache Spark, MapReduce) in order to evaluate
the gains provided by that strategy in a real cloud environment. Since Op-
timal population mix strategy is strictly related to Pool depletion systems,
the scheduling strategy should be also improved taking into consideration
the results obtained by extending the Pool depletion systems framework as
previously described.

Finally, the results on epistemic uncertainty may be extended taking into
account different epistemic probability density functions for the input pa-
rameters. Indeed, in this thesis only Uniform and Erlang distributed input
random variables have been considered. Moreover, also the relationship
between epistemic uncertainty and parametric sensitivity should be further
investigated considering different system configurations and input parame-
ters’ distribution.
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