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Abstract. Fog Computing (FC) systems represent a novel and promis-
ing generation of computing systems aiming at moving storage and com-
putation close to end-devices so as to reduce latency, bandwidth and
energy-efficiency. Despite their gaining importance, the literature about
capacity planning studies for FC systems is very limited only consider-
ing very simplified technological cases. This paper considers a model for
the capacity planning of a FC system for smart monitoring applications.
More specifically, this paper considers a FC-based rock collapse fore-
casting system based on a hybrid wired-wireless architecture deployed in
the Swiss-Ttalian Alps. The system is composed by sensing units deployed
on rock faces to gather environmental data and FC-units providing high-
performance computing for smart monitoring purposes.

Capacity planning studies will be designed for this FC-based system as
well as for extensions of the original system (by varying the number of
sensing units, sampling rates, the number of FC-units, the Radio Band-
width and the Cloud capacity). The proposed multi-formalism model for
capacity planning is based on the integrated use of Queuing Networks
and Petri Nets. Some preliminary results concerning the potential use of
the proposed model are described and commented.
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1 Introduction

The rapid improvement of pervasive system technologies has led to the advent of
a new range of applications with very different and challenging requirements. The
large amounts of data that are acquired with high sampling rate and transmitted
within strict performance constraints, require the adoption of novel computing
architectures. To minimize the data to be transmitted, and therefore decrease
the energy consumption and the bandwidth required, data must be processed
as close as possible to the distributed devices that generate and transmit them.
This would allow to support latency-sensitive applications by reducing the deci-
sion/reaction times.

In this direction, Fog Computing (FC) has been specifically design to ad-
dresses the above issues [4, 6]. The architecture of a FC system is composed by
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End-Devices, FC-units and Cloud. Here, End-devices process most of the data
acquired locally executing (whenever possible) most of the tasks of the envis-
aged application. Other tasks, typically requiring more complex computation,
are transferred to FC-units in the Fog layer. These FC-units typically have high
computational power and large storage capacity. The results of these processing
are sent back to the end-devices to activate the needed reactions/actions. In ad-
dition, a Cloud computing layer can be seen as the set of systems that provides
end-device applications with high-performance computations but unfortunately
with high latency. Hence, only a few high resource-demanding tasks and some
specific applications, should be sent to the Cloud layer.

Such a FC-architecture allows to reduce latency as well as energy-consumption
and bandwidth required.

Despite the performance and applicability about FC-systems, the literature
about FC models for the performance evaluation is very limited and, to the
best of our knowledge, only a FC system based on Queuing Networks has been
proposed in the literature [7].

In this paper we considered FC architectures for smart monitoring. More
specifically, among the wide range of smart monitoring applications, we focused
on a FC-based system for the forecasting of rock collapses that represent harm-
ful natural hazards in mountain regions. This is a particularly interesting ap-
plication scenario due to the strict application and technological constraints the
FC-based system has to fulfil. For the purpose of capacity planning, the model
we are introducing in this paper to describe such monitoring system is based on
the integrated use of Queuing Networks and Petri Nets. More specifically, we
designed our model referring to the technological and application parameters of
the considered forecasting system deployed in the Swiss-Italian Alps (see [4]). In
addition, we considered extended versions of the system by varying the number
of FC-units, the sampling rate, the Radio bandwidth and the Cloud capacity.

Adopting formal models instead of simulation tools (e.g., EmuFog [10] and
iFogSim [9]) allows to exploit the analytical results of the considered formalism
(e.g., asymptotic results for Queuing Networks). The JSIMgraph simulator of
the JMT tools! [5] has been used to implement and solve the considered multi-
formalism model.

The paper is organized as follows: the description of the considered FC-based
system for rock collapse forecasting is given in Section 2; the implemented models
and the what-if analyses used to investigate the scalability issues are shown in
Section 3; finally, Section 4 concludes the paper.

2 A Fog Computing system for rock-collapse forecasting

The collapse of rock faces represents one of the most sudden and harmful natu-
ral hazards in mountain regions with potentially catastrophic effects on people,
settlements and infrastructures. For these reasons, following the path of smart

! nttp://jmt.sourceforge.net/



Capacity planning of fog computing infrastructures for smart monitoring 3

monitoring systems, the research on the forecasting of rock collapses signifi-
cantly increased in recent years. To be effective and efficient, such systems must
be able to address several technological challenges such as the ability to operate
autonomously in remote and potentially dangerous environments, locally process
acquired information to reduce the required bandwidth, manage a large number
of sensors acquiring at mid-high sampling rates (up to 2kHz or more). To ac-
count for all the aforementioned challenges, the rock-collapse forecasting system
described in [1-3] encompasses a FC-based technological architecture where a set
of sensing units is deployed in the environment acquiring micro-acoustic emis-
sions through tri-axial MEMS accelerometers (sampled at 2kHz) as well as other
environmental information (i.e., temperature, humidity, inclination, enlargement
of fractures). The detection of such micro-acoustic emissions is particularly rel-
evant since they represent possible forerunners of the collapse of a rock face. A
preliminary analysis of such micro-acoustic emissions is carried out directly at
the sensing units (through a simple-yet-effective analysis of the signal energy)
to identify those that might be potentially of interest for the geologists or geo-
physicists [3]. Such emissions are then transmitted to a FC-unit whose goal is
to collect and process micro-acoustic emissions coming from the sensing units as
well as other environmental information. Here, a second level of analysis is car-
ried out to distinguish between true micro-acoustic emissions and false positive
detections (e.g., induced by the surface fall of little stones, or the presence of wild
animals in the neighbourhood of the sensors) [1]. For this step more powerful
and energy/time-consuming techniques (based on machine learning algorithms)
are considered. True micro-acoustic emissions are then remotely transmitted to
the Cloud system (through an ad-hoc radio link or GPRS network) for the fi-
nal storage and analysis [11]. The transmission between FC-unit and Cloud is
typically carried out in a periodic manner (i.e., following a duty-cycle where the
transmission period is Dperiodgic). Such a transmission can be also triggered by
the reception of a high amount of true micro-acoustic emissions from the sensing
units filling the buffer of size 8 within the FC-unit in a given amount of time (i.e.,
representing a potential harmful situation within the rock face). Hence, in such
an “alarm” scenario, the transmission between Fog-Computing Unit and Cloud
occurs as soon as a given number of true micro-acoustic emissions is recorder
without the need to wait the duty-cycle for the remote transmission.

3 Capacity planning

The multi-formalism model proposed to analyse the system described in Section
2 is here presented and commented. It will also be used to study the perfor-
mance and forecast the behaviour of the rock-collapse system by modifying its
application/technological parameters.

3.1 The model

We implement the model of the considered system with the mixed Queuing
Network / Petri Net shown in Fig. 1. As stated in [8], the adoption of multi-
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formalism models allows the exploitation of different modelling primitives to
represent each concept in the easiest and most adequate way. In particular, in
this work, we use the Queuing Networks formalism to model resources of the FC
system and jobs execution, while a Petri Net is adopted to model the dynamic
behaviour of the buffer where notifications from true micro-acoustic emissions
are stored. Sensing units acquire data in parallel, and send them to the FC-unit
according to a single aggregated Poisson process of rate A modelled with the
source Sensors. The parameter A represents the workload generated during a
burst of requests, caused by an event being detected, i.e., the micro-acoustic
emissions. Its rate is thus proportional to both the number of sensing units and
the data rate at which micro-acoustic emissions are detected by the sensing
units. Notifications of events are evenly distributed among the n FC-servers,
modelled by the queuing stations in the subnet Fog Computing Unit. These
stations correspond to the processing units installed in the FC-unit and are
characterised by exponentially distributed service times of average D;. Remark
that each single FC-server could manage hundred/thousand sensors depending
on the sampling rates and the frequency of micro-acoustic emissions.

Drop
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Fig. 1: The multi-formalism model of the considered scenario.

Each FC-server has its own queue of events and must be able to distinguish
between the detection of true micro-acoustic emissions and false positive. On
the one hand, the events classified as false positive are directly routed to the
sink station FP. On the other hand, events corresponding to the detection of a
true micro-acoustic emission occur with probability p and are sent to the Cloud
for storage and further processing. The transmission of events to the Cloud is
defined by the periodic/triggered mechanism that aims at both providing a good
throughput and saving as much energy as possible: this is modelled by a Petri
Net sub-system.
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The detections classified as “true micro-acoustic emission” by the FC-servers
are buffered in place Buffer. They are then routed through the transmission
channel if one of the following two conditions occurs: a given number (here called
B) of elements in the buffer is reached, or a periodic keep-alive timer has expired.
The former action is modelled by the immediate transition Trigger that is con-
nected to place Buffer with an input arc of weight f: in this way, whenever the
threshold is reached, detections stored in the buffer are immediately transferred
to the communication channel for the transmission to Cloud. Note that also the
arc that exits transition Trigger has weight [ since all detections are sent in
batch to the radio channel. Periodic transmission is instead modelled by the loop
between places and transitions Waiting, Periodic, Transmitting and Reset.
In particular, the deterministic firing time of transition Periodic, specified by
parameter D periodic, represents the duration of the clock. As soon as it expires,
a token is transferred into place Transferring: from here two alternatives are
possible. If there are detections stored in the buffer, the immediate transition
Deplete will be enabled and will transfer them to the communication channel.
When the buffer is empty, either because all detections have been transferred
or because no detection occurred in the periodic time frame, immediate transi-
tion Reset fires thanks to an inhibitor arc that connects it to the Buffer, and
restarts the timer.

Communication is modelled by the finite capacity queuing station Radio, whose
exponentially distributed service times, characterised by average Dgqqio, repre-
sents the time required to send one detection to Cloud. The radio sub-system
has a finite buffer of size k: in case of overflow, newly arriving detections are
lost. Remote processing is then represented by queuing station Cloud, whose
service time models the analysis and storage of the detections. The service time
is assumed to be exponential distributed with average Dc¢jouq. The end of the
elaboration of one detection is modelled by sink Alert, where data processed by
the Cloud end.

Table 1 summarises the parameters of the entities used in the model.

Table 1: Parameters of the entities used in the model and throughout the paper.
Symbol Meaning

A Events arrival rate

n Number of active FC-servers

P Probability of having true micro-acoustic emissions
B8 Number of detections to trigger the transmission

k Capacity of the Radio component

D; Service demand of the ¢-th FC-server

DRradio Service demand of resource Radio

Dciouwa Service demand of resource Cloud

Dperiodgic Transmission period
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3.2 Results

We considered different configurations of the system described in Section 2 by
modifying arrival rate A, trigger threshold S and number of active FC-servers
n. In this section, the service demands of each component have been set to
Dz' = 200 ms Vi, DRadio = 400 ms, DCloud = 50 ms and Dperiodic = 2 hours.
These parameters refer to the technological and applications scenario of the
system described in Section 2.

Figs. 2-5 depict the results obtained from the capacity planning analysis using
the simulator JSIMgraph [5], which supports multi-formalism models with Petri
Nets and Queuing Networks. All the results, which have been obtained with a
99% confidence interval, are discussed in the following.

When A increases (hence modelling an increase in the number of sensing
units or in the sampling rates), the workload that must be managed by the
resources identified in Section 3.1 (i.e., FC-servers, Radio and Cloud) also grows.
In particular, Fig. 2 shows the average time R required by an event to raise an
alert, as a function of the arrival rate A and for different number, n, of available
FC-servers in the FC-unit. In other words, R is the period of time between the
instant at which the sensing units detect a possible collapse of a rock face and
the time instant a notification of such an event is stored in the Cloud and made
available to the final-user (e.g. an expert in the field). Note that, R does not
account for the false positive detections.

Initially, R decreases for all n FC-servers due to the increase in the events
arrival rate. In fact, the buffer within the FC-unit must collect 8 = 3 events (or
wait for the transmission period Dperioq) before forwarding them to the Cloud.
For this reason, the time spent by each event in the FC-unit’s buffer is shorter
when a larger amount of events is collected. Unfortunately, with an extremely
high number of detected events, the system may saturate and R tends to infinity.
However, the FC-unit can handle larger arrival rates increasing the number, n,
of FC-server, i.e., its computational power. Indeed, as shown in Fig. 2, if more
FC-servers are active, the value of A for which R tends to infinity is larger.

Since the trigger threshold g plays a major role when studying the perfor-
mance of this system, R is depicted also in Fig. 3 for different buffer capacities
as a function of arrival rate A, assuming the FC-unit is composed by only one
FC-server. For small values of 8, R is short, since the time spent by the events
waiting in the FC-unit’s buffer is close to zero. The optimal case is for § = 1
(i.e., no buffer), since each request is forwarded as soon as it has been processed
by the FC-server. As expected, R goes up with A when 5 = 1 due to the larger
amount of events that must be transmitted to the cloud. On the contrary, the
system response time behaves differently for 5 # 1. Indeed, high values of R are
measured for large 8 and small \; as said, if few events are into the buffer, they
must wait Dperioq before being forwarded to the Cloud. However, when studying
the buffer size, R should be considered together with energy consumption for
requests transmission in order to provide more accurate analyses. Indeed, the
greater the number of requests transmitted at the same time, the better the
energy efficiency of the system.
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Fig.2: Time R to raise an alert as a function of the arrival rate and for different
numbers of active FC-servers.
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Fig.3: Time R to raise an alert as a function of arrival rate and for different
trigger thresholds.
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Fig. 4 depicts R as a function of the number n of active FC-servers. The
arrival rate of each FC-server i, \; = \/n, is assumed to be 2, 3 or 4 events/sec.
In this case, since FC-servers’ service rate is 1/D; = 5 events/sec (i.e., larger
than all );), they never saturate and the requests are transmitted to the Cloud
through the Radio. Once again, R is long for small values of A, and it decreases
when a larger amount of events arrives to the system. However, if too many
events arrive to the system, the Radio saturates and R grows.
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Fig.4: Time R to raise an alert for different arrival rates A; to each FC-server,
w.r.t. the number of active FC-servers.

Differently from Fig. 2, R tends to horizontal asymptotes when Radio sat-
urates, since this resource has been modelled as an M/M/1/k queue with drop
strategy (new incoming requests are dropped when the queue is full), with & = 16
events. This limit may be due, e.g., to some bandwidth capacity constraints. The
Radio’s drop rate is depicted in Fig. 5 as a function of the number of FC-servers
and for the three different \; previously defined. As expected, it increases with
the number of requests arriving to the system since the radio is the bottleneck
(i.e., DRradio > Di > Dcioud) and cannot handle as many events as the FC-
servers.

4 Conclusions

Based on the experience acquired in the design and development of real-working
systems, we have developed a model for the capacity planning of a Fog Com-



Capacity planning of fog computing infrastructures for smart monitoring 9

Drop [ev/s]

— Ai=2ev/s I
L 7/
5L  mmm=-- Ai=3evis /
r 7/
I ——= Ai=4evls /
4l
3l
2|

Fig.5: Radio’s drop rate, for different arrival rates \; to each FC-server, w.r.t.
the number of active FC-servers.

puting system for the rock-collapse forecasting. Among the performance indices
provided by the model are the mean end-to-end Response Time R, i.e., the time
elapsed since the detection of a sequence of events to the generation of the cor-
responding Alert signal, and the drop rate of the remote communication to the
Cloud.

The structure of the model has been designed quite general so that it can be used
for capacity planning studies to assess the scalability of this and more general
Fog Computing infrastructures.

Limitations of FC-based rock collapse forecasting systems and similar tech-
nological infrastructures will be taken into account in future works by exploiting
asymptotic techniques. In fact, the multi-formalism model presented in this pa-
per may be adopted to study similar systems (e.g., video surveillance, flooding
monitoring, fire detection, etc.), where several sensors are connected to FC-units
and Cloud to analyze the controlled phenomenon.
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