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a b s t r a c t

The extent of epistemic uncertainty in modeling and analysis of complex systems is ever growing,
mainly due to increasing levels of the openness, heterogeneity and versatility in cloud-based applica-
tions that are being adopted in critical sectors, like banking and finance. State-of-the-art approaches
for model-based performance assessment do not embed such uncertainty in analytic models, hence the
predicted results do not account for the parametric uncertainty. In this paper, we develop a method
for incorporating epistemic uncertainty of the input parameters (i.e., the arrival rate λ and the service
rate µ) to the M/M/1 queueing models, that are commonly used to analyze system performance.
We consider two steady state and average output measures: the number of entities in the system
and the response time. We start with closed-form solutions for these measures that enable us to
study the propagation of epistemic uncertainty in input parameters to these output measures. We
demonstrate the suitability of our method for the performance analysis of a cloud-based system,
where the epistemic uncertainty comes from continuous re-deployment of applications across servers
of different computational capabilities. System simulation results validate the ability of our models to
produce satisfactorily accurate predictions of system performance indices under epistemic uncertainty.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The ever growing complexity of computer-based critical sys-
tems is directly attributable to modern application domains (like
banking, finance, and e-health) that are required to dynamically
adapt due to changing workloads, scenarios and objectives. This
puts the onus on the underlying software and hardware that
need to fulfill end users’ requirements [1]. However, due to the
openness, heterogeneity and versatility of such systems, very
often system developers and analysts have to make decisions in
presence of a type of uncertainty, frequently called ‘‘epistemic’’.

In this paper, we revisit the well-known M/M/1 queue com-
monly used to model system performance. Uncertainty in the
time between arrivals and service times that are inherent in the
system dynamics are captured by the homogeneous continuous
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time Markov chain that is used to solve for the performance
indices of the M/M/1 queue. This type of uncertainty is known as
aleatory uncertainty. Two input parameters of this model, namely
the arrival rate λ and the service rate µ, are generally consid-
ered as fixed values while solving the queueing model. However,
the two input parameter values are not known (or accurately
estimated) at the analysis time. Variability or uncertainty in the
values of these input parameters is of concern in this paper.

There are three types of variability in parameters depending
on time scale. If the parametric variation is dynamic with the
system operation and fits some well-known stochastic pattern,
then such queues have been studied under the aegis of queues
in a random environment [2–4]. Examples include queues with
server failure and repair [5], and queues with vacations [6]. If the
parametric variation is semi-dynamic then the arrival rate and/or
the service rate can be seen as a time varying function. For exam-
ple, arrival rate to a server can be dependent on the time of the
day [7], or the service rate of the server may gradually decrease
due to onset of the software aging phenomena [8]. The underlying
stochastic model can be considered a non-homogeneous contin-
uous time Markov chain (or Non-Homogeneous Poisson Process
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— NHPP) in this case [7–9]. In the two cases, dynamic and semi-
dynamic, the aleatory model is thus modified to account for the
variation in parameter values. The third case is the parametric
variation that is not dynamic, i.e., parameter values are fixed but
unknown a priori. This type of parametric variation is known as
epistemic uncertainty and it represents the focus of the paper.
Note that modeling techniques such as NHPP, Markov Modulated
Poisson Processes (MMPP) or Markov Arrival Processes (MAP)
would not be suitable in this context, since they inherently ac-
count for the cases in which parameters change is somehow
known and can be explicitly modeled.

In practice, the input parameters to aleatory models are esti-
mated from measurements, and thus can be considered as ran-
dom variables. It behooves the analyst to consider the effects
that this randomness of the input parameters have on the output
results of the queueing model. The objective of this paper is to
show how to carry out such parametric uncertainty propagation
to derive confidence intervals on the steady state outputs of the
M/M/1 queue. Two examples of such outputs are the average
number of entities in the system, and the average response time
both in the steady state. Parametric uncertainty propagation has
been studied for reliability models [10–13] but, to the best of
our knowledge, its application to queueing systems is relatively
unexplored [14]. In fact, very few papers have considered para-
metric uncertainty that arises from the finite number of samples
used to estimate the input parameters. Assuming a consistent
estimator [15], this uncertainty can be reduced by increasing the
sample size or eliminated altogether by an infinite sample size.
Hence this parametric uncertainty is called reducible.

In carrying out such uncertainty propagation, the arrival and
the service rates for the M/M/1 queue are now considered to
be random variables. As they vary over their respective support,
not only the stability condition needs to be maintained, but
also computational instability arises when the values of the two
parameters are nearly equal. An important contribution of this
paper is to show how to deal with this problem.

In this paper, we consider epistemic uncertainty and, to the
best of our knowledge, the present work represents the first
systematic effort to develop a method accounting for parametric
uncertainty in a queueing system. Our contributions include de-
veloping basic equations for dealing with parameters uncertainty
as a double integral, and solving the double integral in closed
form in some cases while using numerical integration otherwise.
One key difficulty in dealing with such queues is that, as the input
parameters vary their values, not only the stability condition
ought to be maintained but also need to avoid near instability.
This makes the problem of integration somewhat delicate. We
investigate and show two different approaches to solve this prob-
lem. We are thus able to provide confidence intervals on the two
considered outputs of an M/M/1 queue on the basis of epistemic
variations in the two input parameters.

This theoretical result can help system designers to tackle
many interesting issues of system design and analysis. Below we
present three motivating examples that include the one we use
in this paper for sake of validation of our approach.

First, assume that we are designing a system that still does
not exist. We are in the early life-cycle phases, where we deal
with specifications, but not all the system characteristics have
been defined. There is a margin of uncertainty that is intrinsically
due to the lack of knowledge (i) either about the future decisions
that will be taken about the system, (ii) or about the environment
where the system will be working in (e.g., adaptive systems are
designed to run within different environments without degrading
‘‘too much’’ their quality attributes). If the system is modeled as
an M/M/1 queue – as done here –, then it may be the case that
we can only establish lower and upper bounds on the service rate

(an endogenous system variable, case i above), and on the arrival
rate (an environmental variable, case ii above).

Another issue relates to early decisions about the system
design. For example, assume that we have a requirement on the
response time. With the techniques that we discuss in this paper,
we can study what is the risk of violating that requirement under
the current uncertainty in the system and environment parame-
ters. In fact, we can calculate the width of the (resulting) response
time interval that fits with the corresponding requirement. This
evaluation can lead, for example, to two types of considerations
about the system design: first, do not place the system in an
environment where the arrival rate is larger than a threshold λ̄;
second, make design decisions that lead the service rate to be
higher than another threshold µ̄.

We demonstrate the suitability of our approach within the
cloud computing domain. In particular, we consider the uncer-
tainty related to the characteristics of the platform where a
cloud-based application runs. In fact, these characteristics de-
rive from decisions taken by the cloud manager that, for the
sake of global system optimization, may decide to (continuously)
re-deploy an application across the cloud (i.e., epistemic uncer-
tainty), thus leading to change multiple times the running context
during the application lifetime. This aspect induces variability in
the performance parameters of the application (i.e., the mean ar-
rival rate λ and the mean service rate µ mentioned above), which
are difficult to be precisely defined in advance, and therefore they
contribute to the system epistemic uncertainty to be taken into
account. To be more specific, a cloud application can be affected
by two types of variability: one determined by the specific type
of server assigned to host the virtual machine, and another due to
random environment inherently represented by the data center.
For example, in [16] the distribution of the speed of the Virtual
Machines (VMs) assigned on the Amazon EC2 platform is stud-
ied, and it is shown that users might experience very different
performance (depending on the physical architecture of the host
on which the VM is executed). If a VM is migrated on another host
during its execution, then the performance expected from the
application may vary. While the variability induced on the VMs
from the data center can be addressed using classical techniques
to support random environment such as MMPP, in this paper we
focus on the variability determined by the host selected to run
the VM. This cannot be anticipated with prior information, but it
can be efficiently handled with the techniques proposed in this
work.

The paper is structured as follows. Section 2 reviews related
work. Section 3 states the problem, and the equations for uni-
formly distributed input parameters are given. In Section 4 the
analytical results are shown and discussed. In Section 5 we apply
our approach to a cloud-based application, and we validate our
results against simulation. Finally, Section 6 concludes the paper
and provides future research directions.

2. Related work

Uncertainty has been classified in two main categories, i.e.,
aleatory and epistemic [17,18]. The former is also known as
irreducible uncertainty, it represents randomness inherent in sys-
tem dynamics; the latter may be reduced [19] and is due to a
limited sample size of measurements needed to estimate the sys-
tem parameters. In literature, the aleatory uncertainty only has
been accounted [2–4]. This paper instead focuses on epistemic
uncertainty and most relevant related work is discussed in the
following.

In [20] a numerical method for M/G/1/K (finite state) queues
with vacation is proposed, and the vacation parameter only is
affected by epistemic uncertainty. In [21] parametric uncertainty
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Fig. 1. Case (3): λL < µL < µU < λU .

Fig. 2. Effect of different distributions for input parameters on output measures.

is studied targeting Geo/Geo/1/K queues, and input parameter
values are regulated by pre-defined bounds. Our work differs
from [20] and [21] for several reasons: (i) we consider the case
where two input parameters show epistemic uncertainty; (ii)

since arrival and service rates are the uncertain input parameters
and we are dealing with an infinite state system (i.e., M/M/1
queue), we need also to take into account its stability condition;
(iii) we use both closed form expressions and a numerical ap-
proach to propagate the uncertainty through the queueing model.

In [22] uncertainty is analyzed by introducing a new class of
models that capture the parameters’ variability over time. This
approach is based on [23], where DTMCs have been extended
with transition probabilities that are regulated by lower and
upper bounds. Time Interval Petri Nets have been introduced
in [24] to express temporal uncertainty in inputs (i.e., system
states) and outputs (i.e., simulation results). However, all these
approaches [22–24] deal with uncertain parameters that are not
regulated by distribution functions, on the contrary in this paper
we exploit the distributions to derive closed form formulas for
the performance metrics (e.g., average number of entities in the
system and response time).

In [10] parametric epistemic uncertainty propagation through
analytic dependability models is presented. Closed-form expres-
sions for the distribution function, expected value and variance
of model outputs are derived for calculating the system reliabil-
ity. As opposite, in this paper we are interested in the system
performance. In [25] inverse uncertainty propagation on input
parameters is used to find those uncertainties that satisfy a given
bound on the simulation output uncertainty. Deducing the exact
values of input parameters from observations of the system’s
results has been tackled in [26]. Our approach, instead, starts from
a range of values for uncertain input parameters and determines
how such uncertainty propagates to the output results.

In [27,28] multidimensional integration is adopted to analyze
the uncertainty propagation, but this is unfeasible when dealing
with complex and large systems. Alternative techniques have
been proposed in literature: (i) Monte Carlo sampling [12], (ii)
parametric sensitivity [29] to identify the input parameters that
propagate more uncertainty on the output metrics. The Monte
Carlo sampling method is also used for calculating: (i) reliabil-
ity in [30], where a set of parameter range distributions self-
regulate the number of architectural evaluations to the desired
significance level; (ii) performance in [14], where parameters
uncertainties are sampled from probability distribution functions
and propagated in multiple software architectural models.

More recently, few approaches [31,32] take into account the
uncertainty related to the availability of resources. This is mainly
due to the adoption of preemptible cloud instances [33] that
exhibit lower prices but do not guarantee continuity in the com-
putation. However, to the best of our knowledge, none of the
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Fig. 3. Migration mechanism for a generic VM.

Fig. 4. Logical representation (top) and queueing model (bottom) of our
cloud-based application.

existing approaches exploit this uncertainty as mean to drive the
automated resource provisioning. When dealing with uncertainty,
many approaches are based on sensitivity analysis techniques
that aim to identify the parameter ranges affecting the software
non-functional properties, e.g., [34]. In software performance,
one of the seminal works in this direction is [35], where the
concepts of uncertainty, performance conditions and implications
first appeared.

3. Embedding epistemic uncertainty in performance models

In this section, we provide the mathematical calculations for
analyzing an M/M/1 queueing system, with a certain degree of
uncertainty on the arrival and service rates. In particular, we
know by M/M/1 definition that interarrival and service times are
exponentially distributed, but we assume uncertainty on their
respective rates.

M/M/1 queues are usually adopted to analyze queueing mod-
els [36]. Some examples of current applications include data
centers and cloud resources [37–39].

Hence, we introduce a probability space (Ω,F, P), where Ω

is the set of all possible outcomes, F is a set of events and each
event contains zero or more outcomes, P is the assignment of
probabilities to the events. In this probability space, Λ and M are
two random variables respectively defined as the arrival and the
service rates of an M/M/1 system. When we assume that these
two random variables are independent, their joint probability
density can be written as a product of their marginal densities:
fΛ,M (λ, µ) = fΛ(λ)fM (µ).

In this setting, if we denote by N the average number of
entities in the system in the steady-state, this is itself a random
variable, depending on the pair (Λ,M). That is to say that we
know N only conditionally on the values of the pair of random
variables (Λ,M)

N|Λ=λ,M=µ=
λ

µ − λ
.

In a similar way, we denote by R the average steady-state re-
sponse time of the system, that is again a random variable de-
pending on the values of the same pair (Λ,M):

R|Λ=λ,M=µ=
1

µ − λ
.

We wish to study the system under stability condition, namely
when the arrival rate is lower than the service rate, so that the
average number of entities and the average response time do
not tend to infinity in the long run. Hence, in order to limit the
divergence of N and R on the random variables joint region (when
λ and µ are very close), we introduce two different limiting
assumptions, namely multiplicative and additive, respectively.
These assumptions lead to two regions of (λ, µ) parameter values
that are defined as follows:

Bk = {(λ, µ) : µ > kλ}, for some k > 1.

or

Bϵ = {(λ, µ) : µ > λ + ϵ}, for some ϵ > 0.

We remark that the condition µ > kλ is equivalent to the

condition N|Λ=λ,M=µ<
1

k − 1
. Similarly, the condition µ > λ + ϵ

is equivalent to the condition R|Λ=λ,M=µ<
1
ϵ
. Furthermore, both

regions are independent of the values of Λ and M and we denote
the two events as:

Ak = {(Λ,M) ∈ Bk} =

{
N <

1
k − 1

}
, and

Aϵ = {(Λ,M) ∈ Bϵ} =

{
R <

1
ϵ

}
.

Taking this into account, we compute

E[N|Ak] =
1

P(Ak)
E[N1Ak ], or E[N|Aϵ] =

1
P(Aϵ)

E[N1Aϵ ],

and

E[R|Ak] =
1

P(Ak)
E[R1Ak ], or E[R|Aϵ] =

1
P(Aϵ)

E[R1Aϵ ],

which reduces to computing the two numerators and the two
denominators separately. For the denominators, we have:

P(Ak) = P((Λ,M) ∈ Bk) =

∫∫
Bk

fΛ,M (λ, µ)dλdµ,

P(Aϵ) = P((Λ,M) ∈ Bϵ) =

∫∫
Bϵ

fΛ,M (λ, µ)dλdµ

To simplify the presentation in the following we focus on the
average number of entities in the system only. For the numerators
we use the theorem of total expectation [15] by which we get:

E[N1Ak ] = E[
Λ

M − Λ
1Ak ] = E[

Λ

M − Λ
1Bk (Λ,M)]

=

∫
R

∫
R

λ

µ − λ
1Bk (λ, µ)fΛ,M (λ, µ)dλdµ

=

∫ ∫
Bk

λ

µ − λ
fΛ,M (λ, µ)dλdµ,
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Table 1
Simulations input parameters and Analytic model accuracy for the five cases
identified.

Case 1 Case 2 Case 3 Case 4 Case 5

c low1 [r/s] 3.6 0.198 0.036 2.7 0.198

cup1 [r/s] 4.5 0.72 0.765 5.4 0.603

c low2 [r/s] 5.49 0.09 0.549 0.9 0.549

cup2 [r/s] 6.57 0.657 0.657 6.57 0.657

ϵ [r/s] 0.36 0.36 0.36 0.36 0.036

1/α = 1/β [i/r] 4 · 105 4 · 105 4 · 105 4 · 105 4 · 105

T [h] 12 123 123 12 246

migration_time [min] 30 30 30 30 60

Nanalytic [r] 2.161 0.592 0.327 3.431 2.909

Ranalytic [s] 0.529 2.553 2.187 0.877 6.480

MAPEN [%] 2.40 2.13 4.86 3.20 4.43

MAPER [%] 1.20 0.70 4.82 0.81 12.26

where the second equality is justified by the random variable 1Ak
that is measurable with respect to the σ−algebra generated by
(Λ,M).

Also we can compute the variance of the same random vari-
able:

Var[N|Ak] = E[N2
|Ak]−[E[N|Ak]]

2
=

1
P(Ak)

E[N21Ak ]−[E[N|Ak]]
2,

therefore reducing the problem to computing:

E[N21Ak ] = E[E[N21Ak |Λ,M]] = E[
Λ2

(M − Λ)2
1{M>kΛ}].

We may also formalize the expectation and the variance of this
random variable, when we restrict to the second type of region:

E[N1Aϵ ] = E[
Λ

M − Λ
1Aϵ ]

= E[
Λ

M − Λ
1Bϵ (Λ,M)] =

∫ ∫
Bϵ

λ

µ − λ
fΛ,M (λ, µ)dλdµ,

and the variance expression is written accordingly. Analogous
expressions can be written also for the response time random
variable R.

Several choices can be made for the marginal densities of Λ

and M: Uniform, Gaussian, Erlang, Lognormal. In the following we
present how to apply the above formulation while considering
Uniform and Gaussian densities. The former distribution repre-
sents the natural choice to account for the epistemic uncertainty
in the M/M/1 input parameters (i.e., the only available informa-
tion on rates is their respective ranges of possible values). The
latter distribution corresponds to having a possible estimate of
the area of the most likely values, assuming to be exponentially
unlikely to be outside this area.

In the first case, the double integrals can be carried out
to obtain explicit closed-form expressions for E[N1Ak ], E[N1Aϵ ],
E[R1Ak ], and E[R1Aϵ ] (see Section 3.1). In the second case, we
can only obtain semi-explicit expressions that require numerical
evaluation. To get more accurate calculations, we modify and
truncate the Gaussian density to limit its values to the positive
quadrant (λ > 0, µ > 0), more details are reported in Section 3.2.

3.1. The uniform distribution

We assume that Λ and M are both uniformly distributed on
some known lower (L) and upper (U) bound intervals, that we
denote respectively as [λL, λU ] and [µL, µU ]. In this case, the two

random variables are automatically independent and their joint
probability density is given by

fΛ,M (λ, µ) = fΛ(λ)fM (µ)

=
1

(µU − µL)(λU − λL)
1[λL,λU ]×[µL,µU ](λ, µ)

=:
1
C
1B(λ, µ),

where C = (λU −λL) · (µU −µL) denotes the area of the rectangle
B = [λL, λU ] × [µL, µU ], where the joint density is concentrated.

Thus

P(Ak) =
Ck

C
, P(Aϵ) =

Cϵ

C
,

where by Ck and Cϵ respectively denote the areas of the regions
Bk ∩ B and Bϵ ∩ B.

As a consequence, we have

E[N1Ak ] =
1
C

∫ ∫
Bk∩B

λ

µ − λ
dλdµ

E[N|Ak] =
1
Ck

∫ ∫
Bk∩B

λ

µ − λ
dλdµ

and

E[N21Ak ] =
1
C

∫ ∫
Bk∩B

λ2

(µ − λ)2
dλdµ

E[N2
|Ak] =

1
Ck

∫ ∫
Bk∩B

λ2

(µ − λ)2
dλdµ

Both integrals can be computed, and the results will depend on
the relative positions of the endpoints of the [λL, λU ] and [µL, µU ]

intervals. We have derived explicit expressions in all the cases,
but we show only one case in Section 4, for which we stepwise
evaluate the integrals.

Clearly, all integrals result in closed-form expressions thanks
to the choice of uniform densities for our random variables.

3.2. The Gaussian distribution

Let us denote by φ the distribution function of a standard
normal random variable and let us consider two normal random
variables, i.e., N (µ0, σ

2) and N (λ0, η
2), for some given positive

parameters µ0, λ0, σ , η. Taking into account that the rates should
take only positive values, we assume that the random variables
Λ and M have the following modified Gaussian joint probability
density

fΛ,M (λ, µ) =
1

C(µ0, σ , λ0, η)

×
1

2πση
√
1 − ρ2

× e
−

1
2(1−ρ2)

[
(µ−µ0)

2

σ2 +
(λ−λ0)

2

η2
−

2ρ(µ−µ0)(λ−λ0)
ση

]
1{µ>0,λ>0},

where ρ ∈ [−1, 1] is the correlation coefficient between M and

Λ, the covariance matrix is given by Σ =

(
σ 2 ρση

ρση η2

)
and the

normalizing constant C(µ0, σ , λ0, η) by∫
+∞

−
µ0
σ

1
√
2π

e−
z2
2 Φ

( µ0

σ
√
1 − ρ2

+
ρ√

1 − ρ2
z
)
dz,

with Φ denoting the cumulative distribution function of a stan-
dard Normal. Considering dependent random variables makes
sense, for example, in a cloud environment such us the one
motivating the results proposed in this paper. Specifically, the
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Fig. 5. Number of customers (left), and system response time (right), for case 1 (top) and case 5 (bottom).

correlation among service time can occur due for example to
autoscaling (that induce dependency) or to failures that can affect
several servers at the same time in a data center. Nevertheless, for
ease of exposition and to simplify computations, in what follows
we consider the independent case, hence

fΛ,M (λ, µ) = fΛ(λ)fM (µ) =
1

Φ(µ0
σ
)

1

Φ( λ0
η
)

×
1

2πση
e−

(µ−µ0)
2

2σ2 e
−

(λ−λ0)
2

2η2 1{µ>0,λ>0}.

In this case may compute

P(Ak) =

∫
+∞

0

∫
+∞

kλ

1
Φ(µ0

σ
)

1

Φ( λ0
η
)

1
√
2πσ

e−
(µ−µ0)

2

2σ2
1

√
2πη

× e
−

(λ−λ0)
2

2η2 dµdλ

=
1

Φ(µ0
σ
)Φ( λ0

η
)

∫
+∞

0
Φ

(µ0 − kλ
σ

) 1
√
2πη

e
−

(λ−λ0)
2

2η2 dλ,

P(Aϵ) =
1

Φ(µ0
σ
)Φ( λ0

η
)

∫
+∞

0
Φ

(µ0 − λ − ϵ

σ

) 1
√
2πη

e
−

(λ−λ0)
2

2η2 dλ

and as a consequence, we have

E[N1Ak ] =
1

Φ(µ0
σ
)

1

Φ( λ0
η
)

∫
+∞

0

∫
+∞

kλ

λ

µ − λ

×
1

√
2πσ

e−
(µ−µ0)

2

2σ2
1

√
2πη

e
−

(λ−λ0)
2

2η2 dµdλ,

E[N|Ak] =
1

P(Ak)
1

Φ(µ0
σ
)

1

Φ( λ0
η
)

∫
+∞

0

∫
+∞

kλ

λ

µ − λ

×
1

√
2πσ

e−
(µ−µ0)

2

2σ2
1

√
2πη

e
−

(λ−λ0)
2

2η2 dµdλ

and

E[N21Ak ] =
1

Φ(µ0
σ
)

1

Φ( λ0
η
)

∫
+∞

0

∫
+∞

kλ

λ2

(µ − λ)2

×
1

√
2πσ

e−
(µ−µ0)

2

2σ2
1

√
2πη

e
−

(λ−λ0)
2

2η2 dµdλ,

E[N2
|Ak] =

1
P(Ak)

1
Φ(µ0

σ
)

1

Φ( λ0
η
)

∫
+∞

0

∫
+∞

kλ

λ2

(µ − λ)2

×
1

√
2πσ

e−
(µ−µ0)

2

2σ2
1

√
2πη

e
−

(λ−λ0)
2

2η2 dλdµ.

All the integrals in this subsection require numerical integra-
tion, that we carry out with the aid of Mathematica (1). Similar
calculations can be run for the additive bound case.

4. Theoretical issues around specific modeling cases

We provide here details of the derivations of E[N|Ak,ϵ],
E[R|Ak,ϵ], Var[N|Ak,ϵ], and Var[R|Ak,ϵ], while considering different
relative positions of λ’s and µ’s lower and upper bounds (i.e., λL,
λU , µL, µU ). From now on to simplify notation we will indicate
those as E[N], E[R], Var[N], and Var[R]. In order to cope with all
possibilities, five different cases have to be considered, i.e.:

(1) λL < λU < µL < µU ;
(2) µL < λL < µU < λU ;
(3) λL < µL < µU < λU ;
(4) µL < λL < λU < µU ;
(5) λL < µL < λU < µU .

For the sake of order, their graphic representations are given
in this section only for case (3), and in Appendix A for all other
cases.

1 https://www.wolfram.com/mathematica/.

https://www.wolfram.com/mathematica/
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Fig. A.6. Case (1): λL < λU < µL < µU .

Fig. 1 illustrates case (3), where on the (x, y)-axes we report
λ’s and µ’s lower and upper bounds, knowing that λL < µL <

µU < λU . Dashed lines denote the bisector (µ = λ), whereas solid
lines represent our two limiting assumptions (i.e., multiplicative
and additive). In Fig. 1 we can notice that solid lines intersect the
integration area, thus further elaborations are needed to evaluate
the integral. Specifically, this case is analyzed by considering the
limitations defined in Section 3, i.e.: (i) µ > kλ, that will be
referred as prod, and (ii) µ > λ + ϵ, that will be referred as
sum. In Fig. 1(a) we report the prod case, where we can notice
that the intersection with the line µ = kλ occurs in points (µL/k,
µL) and (µU/k, µU ). In Fig. 1(b) we report the sum case, where
we can notice that the intersection with the line µ = λ + ϵ

occurs in points (µL − ϵ, µL) and (µU − ϵ, µU ). These points are
then used in the formulas for E[N], E[R], Var[N], and Var[R] since
they delimit the area of interest. We remark that, in both cases,
the approximation parameter (i.e., λ or µ) has to be limited so
that the cutting line does not overcome the closest vertex of the
integration region. For example, in Fig. 1(b) we must ensure that
ϵ < µL/λL, otherwise the shape of integration area changes.

In the following we run explicit computation for case (3). In

this case, the area of the integration region is Ck =
1
2
(µU −

µL)(µU/k−λL+µL/k−λL), and the integral introduced in Section 3
becomes:∫ ∫

Bk∩B

λ

µ − λ
dλdµ =

∫ ∫
Bk∩B

(
µ

µ − λ
− 1)dλdµ

=

∫ µU

µL

∫ µ
k

λL

µ

µ − λ
dλdµ − Ck

= −

∫ µU

µL

µ ln(µ − λ)
⏐⏐⏐ µ
k

λL
dµ − Ck

= −

∫ µU

µL

µ ln(
k − 1
k

µ)dµ

+

∫ µU

µL

µ ln(µ − λL)dµ − Ck.

All the above integrals are easily computable in an explicit man-
ner, leading to∫ ∫

Bk∩B

λ

µ − λ
dλdµ =

1
2
ln(

k
k − 1

)[µ2
U − µ2

L ]

−

[µ2

2
lnµ

⏐⏐⏐µU

µL
−

µ2

4

⏐⏐⏐µU

µL

]

Fig. A.7. Case (2): µL < λL < µU < λU .

+ [
µ2

2
ln(µ − λL)

⏐⏐⏐µU

µL

−
1
2

∫ µU

µL

µ2

(µ − λL)
dµ − Ck]

=

[1
2
ln(

k
k − 1

) +
1
4

]
[µ2

U − µ2
L ]

−

[µ2
U

2
ln
(

µU

µU − λL

)
−

µ2
L

2
ln
(

µL

µL − λL

)]
−

1
2

∫ µU

µL

(µ − λL)2 + 2λL(µ − λL) + λ2
L

(µ − λL)
dµ

− Ck

=

[1
2
ln(

k
k − 1

) +
1
4

]
[µ2

U − µ2
L ]

−

[µ2
U

2
ln
(

µU

µU − λL

)
−

µ2
L

2
ln
(

µL

µL − λL

)]
−

1
2

[1
2
[µ2

U − µ2
L ] + λL[µU − µL]

+ λ2
L ln

(
µU − λL

µL − λL

)]
− Ck

=
1
2
ln(

k
k − 1

)[µ2
U − µ2

L ]
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Table B.2
Summary of closed formulas obtained for E[N].

E[N]

1
−(a−b)(c−d)+c2Log

[
b−c
a−c

]
−b2Log[−b+c]+a2Log

[
a−c
a−d

]
+d2Log[−a+d]+(b−d)(b+d)Log[−b+d]

2(a−b)(c−d)

2-prod
d(−d+ak)+d2kLog

[
(−a+d)k
d(−1+k)

]
+a2kLog

[
a−ak
a−d

]
(d−ak)2

2-sum (
(a+3d−ϵ)(a−d+ϵ)+2(a−d)(a+d)Log

[
−

ϵ
a−d

]
2(a−d+ϵ)2

)

3-prod
−(c−d)(c+d−ak)+a2kLog

[
a−d
a−c

]
−c2kLog

[
c(−1+k)
(−a+c)k

]
+d2kLog

[
d(−1+k)
(−a+d)k

]
(c−d)(c+d−2ak)

3-sum (−
2
(
a2−c2

)
Log[−a+c]−2

(
a2−d2

)
Log[−a+d]+(c−d)(−2a+3c+3d−4ϵ+2(c+d)Log[ϵ])

2(c−d)(−2a+c+d−2ϵ) )

4-prod −
−ad+bd+d2Log

[
b−d
a−d

]
−a2Log

[
a−ak
a−d

]
+b2Log

[
b−bk
b−d

]
(a−b)(−2d+(a+b)k)

4-sum (−
−(a−b)(a+b+2d)+2d2Log

[
b−d
a−d

]
−2a2Log

[
−

ϵ
a−d

]
+2b2Log

[
−

ϵ
b−d

]
2(a−b)(a+b−2d+2ϵ) )

5-prod

((2k( 1
2k2

(cdk − bdk2 + (b2 − d2)k2Log[−b + d] + (−c2 + d2k2)Log[d −
c
k ] − b2k2Log[b(−1 + k)]+

c2Log[ c(−1+k)
k ]) +

1
2k2

(c2k − cdk − ack2 + adk2 + (a2 − c2)k2Log[−a + c] +
(
−a2 + d2

)
k2Log[−a + d]−

d2k2Log[d −
c
k ] − c2Log[c(−1 + k)] + c2k2Log[ c(−1+k)

k ] + c2Log[−c + dk])))/(2(−c + d)(c − ak)+

(−c + 2d − bk)(−c + bk)))

5-sum

((2( 14 (−(b + c + 2d − ϵ)(b − c + ϵ) + 2(b − d)(b + d)Log[ −b+d
ϵ

] + 2(c − d − ϵ)(c + d − ϵ)

Log[ ϵ
−c+d+ϵ

]) +
1
2 (−(c − d)(a − c + ϵ) − c2Log[−a + c] + a2Log[ a−c

a−d ]+

d2Log[−a + d] + (2c − ϵ)ϵLog[ϵ] + (c − d − ϵ)(c + d − ϵ)

Log[−c + d + ϵ])))/(2(−c + d)(−a + c − ϵ) + (−b − c + 2d − ϵ)(b − c + ϵ)))

−

[µ2
U

2
ln
(

µU

µU − λL

)
−

µ2
L

2
ln
(

µL

µL − λL

)]
−

1
2

[
λL[µU − µL] + λ2

L ln
(

µU − λL

µL − λL

)]
− Ck.

Alternatively written∫ ∫
Bk∩B

λ

µ − λ
dλdµ =

µ2
U

2
ln
(k(µU − λL)
(k − 1)µU

)
−

µ2
L

2
ln
(k(µL − λL)
(k − 1)µL

)
−

λL

2
(µu − µL) −

λ2
L

2
ln
(µU − λL

µL − λL

)
− Ck.

With similar calculations we obtain∫ ∫
Bk∩B

λ2

(µ − λ)2
dλdµ = Ck + µ2

U ln
( (k − 1)µU

k(µU − λL)

)
− µ2

L ln
( (k − 1)µL

k(µL − λL)

)
−

k − 2
k − 1

(µ2
U − µ2

L )

We obtain an explicit expression for the expectation and the
variance of the steady state average number of entities in the
system.

Computations run along the same lines also when we wish to
compute∫

R

∫
R

λ

µ − λ
1{µ>λ+ϵ}fΛ,M (λ, µ)dλdµ =

∫ λU

λL

∫ µU

λ+ϵ

λ

µ − λ
dµdλ

= . . .

=
(µ2

U − λ2
L )

2
ln(µU − λL) −

(µ2
U − λ2

U )
2

ln(µU − λU )

− (λU − λL)
[
1
4
(λU + λL) +

µU

2
+ ln ϵ

]
.

We refer the reader to Appendix B for E[N], E[R], Var[N],
and Var[R] formulas of all cases that have been derived using
Mathematica (2). Different approximations can be introduced
for sake of stability guarantee, depending whether prod or sum
case is adopted, and the consequent settings of their respective
parameters k or ϵ. The choice is in the hands of performance
analyzers, and it is typically application-based. In fact, for critical
systems that require to be analyzed in proximity of their limit
conditions, smaller k’s or ϵ’s shall be set. It is out of this paper
scope to analyze applications on such basis, however in Table B.8
we report closed formulas for the errors incurred by prod and sum
in our cases.

Although some cases have more complex formulas than oth-
ers, it is worth noting that while considering Λ and M as uni-
formly distributed in the ranges (λL, λU ) and (µL, µU ), we are able
to obtain the average number of entities and the average response
time along with their variances as closed-form formulas in all
cases, as claimed in Section 3. For other distributions (e.g., Nor-
mal, Hyperexponential), it is not possible to derive closed-form
formulas and the double integral presented in Section 3 is solved
via numerical integration.

Fig. 2 illustrates the effect of different distributions for input
parameters when the five cases defined in this section are an-
alyzed. The values of the input parameters are given in Table 1
(see Section 5). Both the input parameters follow the same dis-
tribution. The mean of all the distributions is always the same
(i.e., λ̄ = (λL + λU )/2 and µ̄ = (µL + µU )/2). However,

2 Formulas are available for download at the following url: http://tiny.cc/
c1kk8y.

http://tiny.cc/c1kk8y
http://tiny.cc/c1kk8y
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Table B.3
Summary of closed formulas obtained for Var[N].

Var[N]

1 (
(a−b)(c−d)−c2Log

[
b−c
a−c

]
+d2Log

[
b−d
a−d

]
(−a+b)(−c+d) −

1
4(−a+b)2(−c+d)2

(−(a − b)(c − d) + c2Log[ b−c
a−c ]−

b2Log[−b + c] + a2Log[ a−c
a−d ] + d2Log[−a + d] + (b − d)(b + d)Log[−b + d])2)

2-prod (−

((
−a2+d2

)
kLog[−a+d]+a2kLog[a(−1+k)]−d

(
d−ak+dkLog

[
d(−1+k)

k

]))2
(d−ak)4

+

2k
(

(d−ak)(ak+d(−1+2k))
2(−1+k)k +d2Log

[
d(−1+k)
(−a+d)k

])
(d−ak)2

)

2-sum (−

(
(a+3d−ϵ)(a−d+ϵ)+2(a−d)(a+d)Log

[
−

ϵ
a−d

])2
4(−a+d−ϵ)4

+

(−a+d−ϵ)
(
2
(
a2+ad+d2

)
+(a+5d)ϵ−ϵ2

)
+6d2ϵLog

[
−

ϵ
a−d

]
3(−a+d−ϵ)2ϵ

)

3-prod
(− 1

(−c+d)2(c+d−2ak)2
(c2 − d2 − ack + adk + c2kLog[c] + (a2 − c2)kLog[−a + c]−

d2kLog[d] − a2kLog[−a + d] + d2kLog[−a + d] + c2kLog
[

−1+k
k

]
− d2kLog

[
−1+k

k

]
)
2
+

c2−d2−2(c−d)(a+c+d)k+2a(c−d)k2+2(−1+k)k(−c2Log[ c(−1+k)
(−a+c)k ]+d2Log[ d(−1+k)

(−a+d)k ])

(−c+d)(−1+k)(c+d−2ak) )

3-sum (−

(
2
(
a2−c2

)
Log[−a+c]−2

(
a2−d2

)
Log[−a+d]+(c−d)(−2a+3c+3d−4ϵ+2(c+d)Log[ϵ])

)2
4(−c+d)2(−2a+c+d−2ϵ)2

+

−2c3+2d3−3(c−d)(−2a+c+d)ϵ+6(c−d)ϵ2−6c2ϵLog[− ϵ
a−c ]+6d2ϵLog

[
−

ϵ
a−d

]
3(−c+d)(−2a+c+d−2ϵ)ϵ )

4-prod (
2
(
−

(a−b)(2d(−1+k)+(a+b)k)
2(−1+k) −d2Log

[
a−d
b−d

])
(−a+b)(2d−ak−bk) −(

ad−bd+d2Log
[
a−d
b−d

]
+a2Log

[
a−ak
a−d

]
+b2Log

[
b−d
b−bk

])2
(−a+b)2(2d−ak−bk)2

)

4-sum (
−3(a−b)(a+b+2d)− 2a3

ϵ +
2b3
ϵ +6d2Log

[
b−d
a−d

]
3(−a+b)(−a−b+2d−2ϵ) −(

(a−b)(a+b+2d)+2
(
−a2+d2

)
Log

[
−a+d

ϵ

]
+2(b−d)(b+d)Log

[
−b+d

ϵ

])2
4(−a+b)2(−a−b+2d−2ϵ)2

)

5-prod

(
2k

(
−

(c−bk)(c+2d(−1+k)+bk)
2(−1+k)k +

(−c+d)(c−ak)+c2kLog
[
(−a+c)k
c(−1+k)

]
+d2kLog

[
c−dk
ak−dk

]
k −d2Log

[
c−dk
bk−dk

])
2(−c+d)(c−ak)+(−c+2d−bk)(−c+bk) −

(4k2(
cdk−bdk2+

(
b2−d2

)
k2Log[−b+d]+(−c2+d2k2)Log[d− c

k ]−b2k2Log[b(−1+k)]+c2Log[ c(−1+k)
k ]

2k2
+

1
2k2

(c2k − cdk − ack2 + adk2 +
(
a2 − c2

)
k2Log[−a + c] +

(
−a2 + d2

)
k2Log[−a + d] − d2k2Log

[
d −

c
k

]
−

c2Log[c(−1 + k)] + c2k2Log
[ c(−1+k)

k

]
+ c2Log[−c + dk]))

2
)/(2(−c + d)(c − ak) + (−c + 2d − bk)(−c + bk))2)

5-sum

((2(ac − c2 − ad + cd +
b3−(c−ϵ)3

3ϵ + cϵ − dϵ +
1
2 (b + c + 2d − ϵ)(b − c + ϵ) + c2Log[−a + c]−

d2Log[−a + d] − c2Log[ϵ] + d2Log
[

−b+d
−c+d+ϵ

]
+ d2Log[−c + d + ϵ]))/(2(−c + d)(−a + c − ϵ)+

(−b − c + 2d − ϵ)(b − c + ϵ)) − (4( 14 ((b − c + ϵ)(−b − c − 2d + ϵ) + 2(b − d)(b + d)Log[ −b+d
ϵ

]+

2(c − d − ϵ)(c + d − ϵ)Log[ ϵ
−c+d+ϵ

]) +
1
2 ((−c + d)(a − c + ϵ) − c2Log[−a + c] + a2Log[ a−c

a−d ] + d2Log[−a + d]+

(2c − ϵ)ϵLog[ϵ] + (c − d − ϵ)(c + d − ϵ)Log[−c + d + ϵ]))2)/(2(−c + d)(−a + c − ϵ) + (−b − c + 2d − ϵ)(b − c + ϵ))2)

each distribution has a different variance. Fig. 2(a) depicts E[N]

for each case and for each input parameter distribution. E[N]

is affected by multiple parameters: the analyzed case with the
same distribution, e.g., see cases (1) and (2) with Uniform dis-
tribution; the distribution type, e.g., see case (1) when Uniform
and Hyperexponential distributions are considered; the variance
of the distribution, e.g., see case (4) when the input parameters
follow Normal(µunif , σunif ) and Normal(µunif , 2·σunif ) distributions.
Similar considerations can be drawn for E[R] depicted in Fig. 2(b).

5. Application to cloud computing

Cloud applications may need to be re-deployed or migrated
multiple times on different VMs to continuously comply with
Service Level Agreements (SLAs). Performance of a VM may de-
teriorate, during its execution, due to many different factors.

For example, Amazon Web Services (3) has recently introduced
burstable instances, a new type of on-demand and low-cost in-
stances that can burst their performance above the baseline for
a limited period. In order to burst the VM performance some
CPU credits are required. Each instance is instantiated with a
given amount of initial CPU credits. Moreover, CPU credits are
also generated when the VM is idle. Since the initial amount of
credit is free, researchers have tried to make them last longer
with different techniques [40,41] (e.g., injecting delay, throttling
CPU utilization). A framework [42] has also been proposed to
autonomically adapt the CPU credits consumption to the user’s
SLAs, and determine the time the application must be migrated to
minimize SLAs violations. Another reason to re-deploy an appli-
cation on a new VM is software rejuvenation [43]. Aging-related

3 aws.amazon.com.

http://www.aws.amazon.com
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Fig. A.8. Case (4): µL < λL < λU < µU .

bugs have been observed in many open-source cloud computing
systems [44]. In [45] shutting down, rebooting and migrating a
VM are investigated as three different rejuvenation techniques to
reduce the impact of aging-related issues.

In order to experiment with the epistemic uncertainty propa-
gation technique proposed in Sections 3 and 4, we use CloudSim
[46], i.e., a framework that models and tests cloud computing
infrastructures and services. For this purpose, given a request’s
interarrival and service times, CloudSim schedules the request
on one of the available VM in the simulated data center. Then,
it returns performance indexes (e.g., response time). We patch
CloudSim to periodically change arrival and service rates of the
incoming requests. In particular, these two rates follows a Uni-
form distribution, hence we can simulate an M/M/1 queue with
uniform distributed arrival and service rates. The simulated cloud
environment is presented in Fig. 3. Each VM is created with
1 vCPU, 512 MB memory, and 10 GB image size. Periodically,
the application deployed in the cloud must be moved on new
VMs to restore its original performance. When the application is
migrated on new VMs, its arrival and service rates may change
due to different characteristics of the hosting physical machine.

Two different VMs (i.e., VM1 and VM2) are instantiated in a
cloud system, and they must process requests consisting of an
exponentially distributed number of instructions. On the average,
there are 1/α instructions per request (i/r) in VM1 and 1/β i/r

Fig. A.9. Case (5): λL < µL < λU < µU .

in VM2. The two VMs can process instructions with CVM1 and
CVM2 speeds, respectively. The speed of a VM depends on the
physical machines on which they are deployed. In particular,
we assume to know the speed range for both the VMs, that is,
CVM1 ∼ Uniform(c low1 , cup1 ) and CVM2 ∼ Uniform(c low2 , cup2 ). Thus,
the average service time of VM1 (VM2) can be derived as the ratio
of number of instructions 1/α (1/β) to the VM speed cVM1 (cVM2).
Such service time follows an exponential distribution with rate
α · cVM1 (β · cVM2). When all the instructions of a request are
executed by VM1, the request is completed and can go to VM2.
After being processed also by the second VM, the request leaves
the system. The logical representation and queueing model of the
cloud system are given in Fig. 4.

To simulate the VMs migration (i.e., the change of physical
constraints), we specify a migration_time parameter, that is
the period between two migration events. In fact, after such a
time the two VMs are migrated to new physical hosts, and the
requests are processed with restored performance. The migration
does not affect the average number of instructions each VM
must serve to complete a requests. However, the VM speeds
change, so their average service times do. In order to avoid VM2
saturation we assume the cloud system is provided with an oracle
that checks if VM2 is faster than VM1 after each migration. For
this purpose, the oracle may adopt either the additive or the
multiplicative limiting assumption (i.e., λ < µ − ϵ or λ < µ/k)
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Table B.4
Summary of closed formulas obtained for E[R].

E[R]

1
−cLog

[
a−c
b−c

]
+aLog[−a+c]−bLog[−b+c]+dLog

[
a−d
b−d

]
−aLog[−a+d]+bLog[−b+d]

(a−b)(c−d)

2-prod
2k
(
(−a+d)Log[−a+d]+aLog[a(−1+k)]−dLog

[
d(−1+k)

k

])
(d−ak)2

2-sum (
2
(
a−d+ϵ+(a−d)Log

[
−

ϵ
a−d

])
(a−d+ϵ)2

)

3-prod −
2k
(
cLog[c]−dLog[d]+aLog

[
(−a+c)k
−1+k

]
+cLog

[
1−k
ak−ck

]
+aLog

[
1−k

ak−dk

]
−dLog

[
1−k

ak−dk

])
(c−d)(c+d−2ak)

3-sum ( 2(−c+d−aLog[−a+c]+(a−d)Log[−a+d]+cLog[ −a+c
ϵ ]+dLog[ϵ])

(c−d)(−2a+c+d−2ϵ) )

4-prod −
2
(
dLog

[
b−d
a−d

]
+aLog

[
a−d
a−ak

]
+bLog

[
b−bk
b−d

])
(a−b)(−2d+(a+b)k)

4-sum (−
2
(
−a+b+dLog

[
b−d
a−d

]
+aLog

[
−a+d

ϵ

]
+bLog

[
−

ϵ
b−d

])
(a−b)(a+b−2d+2ϵ) )

5-prod
((2k( (b−d)kLog[−b+d]+(−c+dk)Log[d− c

k ]−bkLog[b(−1+k)]+cLog[ c(−1+k)
k ]

k +

(a−c)kLog[−a+c]−akLog[−a+d]−cLog[c(−1+k)]+ckLog[c(−1+k)]−ckLog[k]+dkLog
[
(−a+d)k
−c+dk

]
+cLog[−c+dk]

k ))
/(2(−c + d)(c − ak) + (−c + 2d − bk)(−c + bk)))

5-sum
((2(−b + c − ϵ − cLog[−a + c] + aLog[ a−c

a−d ] − dLog[−b + d] + bLog[ −b+d
ϵ

]+

(c − ϵ)Log[ϵ] + ϵLog[ϵ] + dLog[ −a+d
−c+d+ϵ

] + (c − ϵ)Log[−c + d + ϵ]+

(−c + d + ϵ)Log[−c + d + ϵ]))/(2(−c + d)(−a + c − ϵ) + (−b − c + 2d − ϵ)(b − c + ϵ)))

to add a safety margin to the stability condition. If VM2 has been
deployed on a physical host that is slower than the VM1’s one,
then the oracle immediately migrates both the VMs. This way,
the system only operates in the five areas described in Section 4.

In order to derive the point estimates of the output measures
and their confidence intervals, we use the regenerative simula-
tion [47]. It consists in dividing each simulation run into a series
of cycles such that, from a probabilistic point of view, the system
evolution is the same in any cycle.

For the sake of clarity, in this section we analyze the perfor-
mance output measures of only VM2. Fig. 5 compares simulation
and analytic results for two of the five cases identified in Section 4
(i.e., case 1 and case 5). We set the same average number of
instructions per request for both cases, that is, 1/α = 1/β =

400000, whereas the period between two migrations of the VMs
(i.e., the migration_time parameter) is 30 and 60 min for case
1 and case 5, respectively.

In Fig. 5, top graphs depict case 1 – that is, the case in
which arrival rate is always smaller than service rate – is con-
sidered, and the VM speeds are distributed as follows: CVM1 ∼

Uniform(3.6 r/s, 4.5 r/s) and CVM2 ∼ Uniform(5.49 r/s, 6.57 r/s).
Additive limitation is adopted by the oracle of the cloud system,
and ϵ = 0.36 r/s. Using the formulas shown in Appendix B,
we can analytically derive E[N] = 2.161 r and E[R] = 0.529 s
(see Tables B.2 and B.4, respectively). Such values are represented
in the two case 1 graphs in Fig. 5 by dashed lines. During a
12-hours long simulation, we collect the average values of the
output measures (red line) and their 95% confidence intervals
(blue lines). In order to estimate the goodness of our analytic
formulas with respect to the results obtained through simulation

we compute the Mean Absolute Percentage Error — MAPE (4) as:

MAPEN =
|Nanalytic − Nsimulation|

Nsimulation

where Nanalytic is the E[N] derived with our methodology and
Nsimulation is the average number of customers in the system esti-
mated via simulation. MAPER is defined in a similar way. For case
1, MAPEN = 2.40% and MAPER = 1.20%.

Bottom graphs of Fig. 5 depict case 5 results. CVM1 ∼ Uniform
(0.198 r/s, 0.603 r/s) and CVM2 ∼ Uniform(0.549 r/s, 0.657 r/s)
and we simulate 246 h to get more accurate results since the
oracle adopts a smaller ϵ (i.e., ϵ = 0.036 r/s) (5). The analytic
values obtained with our formulas are E[N] = 2.91 r and E[R] =

6.48 s, and the percentage errors with respect to the simulation
are MAPEN = 4.43% and MAPER = 12.26%. The comparison is also
performed for the other three cases. For the sake of brevity, we
report only numerical values in Table 1.

The analysis of the five cases shows that our methodology is
providing accurate results with respect to parameters estimation
performed via simulation. In particular, the error made by our
methodology is never larger than 15%. Moreover, it is faster than
any simulation since it works with closed-form equations. In-
stead, the time required to complete the CloudSim simulations on
a private cloud environment (6) takes from 12 to 24 h depending
on the values of input parameters.

4 Note that the denominator is intentionally represented by the simulative
results, since we are interested to study the goodness of our methodology w.r.t.
the results of the simulation.
5 Note that such a smaller ϵ is required to make the cloud system work in

the desired case and to not incur in the problem, illustrated in Section 4, of
overcoming the closest vertex of the integration region.
6 policloud.polimi.it.

http://www.policloud.polimi.it
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Table B.5
Summary of closed formulas obtained for Var[R].

Var[R]

1 (
Log

[
(a−c)(b−d)
(b−c)(a−d)

]
(−a+b)(−c+d) −

(−cLog
[
a−c
b−c

]
+aLog[−a+c]−bLog[−b+c]+dLog

[
a−d
b−d

]
−aLog[−a+d]+bLog[−b+d])2

(−a+b)2(−c+d)2
)

2-prod (−
4k2

(
(−a+d)Log[−a+d]+aLog[a(−1+k)]−dLog

[
d(−1+k)

k

])2
(d−ak)4

+

2k(−Log[−a+d]+Log[a(−1+k)]+ k(Log[d]−Log[ak])
−1+k )

(d−ak)2
)

2-sum (−
4
(
a−d+ϵ−aLog[−a+d]+dLog

[
−a+d

ϵ

]
+aLog[ϵ]

)2
(−a+d−ϵ)4

−

2(a−d+ϵ+ϵLog[−a+d]−ϵLog[ϵ])
(−a+d−ϵ)2ϵ

)

3-prod (
2k

(
Log

[
a−c
a−d

]
+

kLog
[
d
c
]

−1+k

)
(−c+d)(c+d−2ak) −

1
(−c+d)2(c+d−2ak)2

4k2(−c + d + cLog[c] + (a − c)Log[−a + c]−
dLog[d] + (−a + d)Log[−a + d] + (c − d)(1 + Log[−1 + k] − Log[k]))2)

3-sum (
2
(
−c+d+ϵLog

[
a−c
a−d

])
(−c+d)(−2a+c+d−2ϵ)ϵ −

4
(
c−d+(a−c)Log[−a+c]−aLog[−a+d]+dLog

[
−a+d

ϵ

]
+cLog[ϵ]

)2
(−c+d)2(−2a+c+d−2ϵ)2

)

4-prod (
2

(
Log

[
b
a
]

−1+k +Log
[
b−d
a−d

])
(−a+b)(2d−ak−bk) −

4(−a+b+aLog[a]−bLog[b]+(−a+d)Log[−a+d]+(b−d)Log[−b+d]+(a−b)(1+Log[−1+k]))2

(−a+b)2(2d−ak−bk)2
)

4-sum (
2
(
−a+b+ϵLog

[
b−d
a−d

])
(−a+b)(−a−b+2d−2ϵ)ϵ −

4
(
a−b+(−a+d)Log[−a+d]−dLog[−b+d]+bLog

[
−b+d

ϵ

]
+aLog[ϵ]

)2
(−a+b)2(−a−b+2d−2ϵ)2

)

5-prod

(
2k

(
Log

[
a−c
a−d

]
+

Log
[
bk
c
]

−1+k +Log
[
c−dk
c−ck

]
+Log

[
(−b+d)k
−c+dk

])
2(−c+d)(c−ak)+(−c+2d−bk)(−c+bk) −

(4k2( (b−d)kLog[−b+d]+(−c+dk)Log[d− c
k ]−bkLog[b(−1+k)]+cLog[ c(−1+k)

k ]

k +

(a−c)kLog[−a+c]−akLog[−a+d]−cLog[c(−1+k)]+ckLog[c(−1+k)]−ckLog[k]+dkLog[ (−a+d)k
−c+dk ]+cLog[−c+dk]

k )
2

)/
(2(−c + d)(c − ak) + (−c + 2d − bk)(−c + bk))2)

5-sum

(−((4(−b + c − ϵ − cLog[−a + c] + aLog
[ a−c
a−d

]
− dLog[−b + d] + bLog

[
−b+d

ϵ

]
+

(c − ϵ)Log[ϵ] + ϵLog[ϵ] + dLog
[

−a+d
−c+d+ϵ

]
+

(c − ϵ)Log[−c + d + ϵ] + (−c + d + ϵ)Log[−c + d + ϵ])2)/(2(−c + d)(−a + c − ϵ)+

(−b − c + 2d − ϵ)(b − c + ϵ))2) +

2

(
Log

[
a−c
a−d

]
+

b−c+ϵ+ϵLog
[

−b+d
−c+d+ϵ

]
ϵ +Log

[
−c+d+ϵ

ϵ

])
2(−c+d)(−a+c−ϵ)+(−b−c+2d−ϵ)(b−c+ϵ) )

6. Conclusions and future directions

In this paper, we have derived basic equations to deal with
the epistemic uncertainty propagation on the steady state mean
number of entities in the system and the steady state mean
response time. The problem is cast as a two-dimensional in-
tegration after multiplication by the joint density of the two
parameters, namely, the arrival rate Λ and the service rate M .
With the assumption the uniform distribution of the two pa-
rameters we obtain the results in a closed-form. We have also
shown that with the assumption normal densities, the integration
can be carried out numerically. Even in the seemingly simple
case of uniform densities, difficulty in the integration arises from
the values of the integrand that can become very large lead-
ing to numerical instability. We proposed two different limiting
assumptions to avoid the numerical instability. The equations
developed here can be directly applied to a tandem network of
M/M/1 queues since the average number of entities in the system
and the average response time are additive in this case [15,48]. To

demonstrate the applicability of our approach, we presented the
performance analysis of a cloud-based application that is contin-
uously migrated onto different VMs. This migration implies that
the speed of the VM changes leading to epistemic uncertainty in
the performance characteristics of the application. Results assess
that our analytical formulas accurately capture the propagation
of uncertainty from input parameters to output measures. To
further assess the validity of our formulation, we are interested to
investigate preemptible cloud resources [33] in the near future.
This implies that we set the lower bound of service rates M to
zero, thus to model the risk of having resources that are claimed
back by the cloud provider. To consider any open product-form
network, we also plan to compare these results while considering
further types of the densities, e.g., Erlang. Moreover, we aim
to generalize our equations to the cases of M/M/m, M/G/1, and
G/M/1 queues, for which closed form analytical solutions exist.
Then we also plan to handle the uncertainty in the branching
probabilities, as branches are allowed in Jackson networks [15,
48].
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Table B.6
Summary of closed formulas obtained for confidence intervals on N.

Prob(N > n) Range of n

All cases 1 n ≤
a

d−a

1 1 −
[(d−a)n−a]2

2n(n+1)(d−c)(b−a)
a

d−a < n ≤
a

c−a

[ d
c ≤

b
a

] b
b−a −

(d+c)n
2(b−a)(n+1)

a
c−a < n ≤

b
d−b

[(c−b)n−b]2
2n(n+1)(d−c)(b−a)

b
d−b < n ≤

b
c−b

0 n > b
c−b

1 1 −
[(d−a)n−a]2

2n(n+1)(d−c)(b−a)
a

d−a < n ≤
b

d−b

[ d
c > b

a

] (a+b)(n+1)
2(d−c)n −

c
d−c

b
d−b < n ≤

a
c−a

[(c−b)n−b]2
2n(n+1)(d−c)(b−a)

a
c−a < n ≤

b
c−b

0 n > b
c−b

2 nd2−(n+1)a2

n(n+1)(d−a)2
n > a

d−a

3
n(d2−a2)−n(n+1)(c−a)2−a2

n(n+1)(d−c)(d+c−2a)
a

d−a < n ≤
a

c−a

c+d
(n+1)(d+c−2a) n > a

c−a

4
n(2bd−a2−b2)−n2(d−b)2−a2

n(n+1)(b−a)(2d−b−a)
a

d−a < n ≤
b

d−b

b+a
n(2d−b−a) n > b

d−b

5 x = 2
(
bd − da + ac −

b2
2 −

c2
2

)
[ d
c ≤

b
a

] 2(ac+bd)−(b2+c2)
x −

[(n+1)a2]

nx −
nd2

(n+1)x
a

d−a < n ≤
a

c−a

1
x

(2db−b2−c2)−n(b−d)2
(n+1)

a
c−a < n ≤

b
d−b

1
x

n(b2−c2)+b2
n(n+1) n > b

d−b

5 x = 2
(
bd − da + ac −

b2
2 −

c2
2

)
[ d
c > b

a

] 2(ac+bd)−(b2+c2)
x −

[(n+1)a2]

nx −
nd2

(n+1)x
a

d−a < n ≤
b

d−b

1
x

(b2−a2)(n+1)−n[2c(b−a)+(b−c)2]

n
b

d−b < n ≤
a

c−a

1
x

n(b2−c2)+b2
n(n+1) n > a

c−a
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Appendix A. Representation of the five possible cases

The graphical representations of the cases (1), (2), (4) and (5)
identified in Section 4 are shown in Figs. A.6, A.7, A.8 and A.9,
respectively.

As already said, case (1) is the only one where the integration
area does not intersect the line λ = µ, thus the integral on
the area is calculated without further assumption. Instead, in all
the other cases a limitation assumption must be adopted (i.e., k-
limitation referred to as prod and ϵ-limitation referred to as
sum).

As for case (3) – discussed in Section 4 and depicted in Fig. 1
– the points of intersection between the integration areas and

the line λ = µ are then used to compute E[N], E[R], var[N] and
Var[R].

Appendix B. List of formulas for the uniform case

For the sake of simplicity we adopt here the following variable
renaming: λL ↦→ a, λU ↦→ b, µL ↦→ c , µU ↦→ d.

Table B.2 reports the formulas obtained for E[N], Table B.3 the
ones for Var[N] and, similarly, Tables B.4 and B.5 for E[R] and
Var[R], respectively.

Table B.2 is structured as follows. The first column lists all the
cases presented above and, except for case (1), all cases include
the prod and sum scenarios that determine different limits in the
calculation of the integral. The second column of the Table reports
the outputs obtained while calculating E[N]. For example, case (1)
is obtained by calculating the expectation of Λ

M−Λ
and assuming

that Λ and M are both uniformly distributed on the interval [a, b]
and [c, d] and their joint probability density is given by 1

b−a
1

d−c .



F. Antonelli, V. Cortellessa, M. Gribaudo et al. / Future Generation Computer Systems 102 (2020) 746–761 759

Table B.7
Summary of closed formulas obtained for confidence intervals on R.

Prob(R > r) Range of r

All cases 1 r ≤
1

d−a

1 1 −

(
d−a− 1

r

)
2

2(d−c)(b−a)
1

d−a < r ≤
1

c−a

[d − c ≤ b − a]

[
2
(
b+ 1

r

)
−(d+c)

]
2(b−a)

1
c−a < r ≤

1
d−b(

b+ 1
r −c

)
2

2(d−c)(b−a)
1

d−b < r ≤
1

c−b

0 r > 1
c−b

1 1 −

(
d−a− 1

r

)
2

2(d−c)(b−a)
1

d−a < r ≤
1

d−b

[d − c > b − a]

[
2
(

1
r −c

)
+(a+b)

]
2(d−c)

1
d−b < r ≤

1
c−a(

b+ 1
r −c

)
2

2(d−c)(b−a)
1

c−a < r ≤
1

c−b

0 r > 1
c−b

2 1
r

(
2d−2a− 1

r

)
(d−a)2

r > 1
d−a

3

[
2 (d−a)

r −(c−a)2−
1
r2

]
(d−c)(d+c−2a)

1
d−a < r ≤

1
c−a

2
r(d+c−2a) r > 1

c−a

4

(
b+d− 1

r −2a
)(

b−d+ 1
r

)
+2(d−b)(b−a)

(b−a)(2d−b−a)
1

d−a < r ≤
1

d−b

2
r(2d−a−b) r > 1

d−b

5 x = 2(b − a)(d − c) − (b − c)2

[d − c ≤ b − a]
1
x

[ 2
r (d − a) − (d − b)2 − (c − a)2 −

1
r2
] 1

d−a < r ≤
1

c−a

1
x

[ 2
r (d − c) − (b − d)2

] 1
c−a < r ≤

1
d−b

1
x

1
r

[
2(b − c) +

1
r

]
r > 1

d−b

5 x = 2(b − a)(d − c) − (b − c)2

[d − c > b − a]
1
x

[ 2
r (d − a) − (d − b)2 − (c − a)2 −

1
r2
] 1

d−a < r ≤
1

d−b

1 −
1
x

[
2(d −

1
r ) − (a + b)

]
(b − a) 1

d−b < r ≤
1

c−a

1
x

1
r

[
2(b − c) +

1
r

]
r > 1

c−a

−(a − b)(c − d) + c2Log
[ b−c
a−c

]
− b2Log[−b + c] + a2Log

[ a−c
a−d

]
+ d2Log[−a + d] + (b − d)(b + d)Log[−b + d]

2(a − b)(c − d)

Box I.

−cLog
[ a−c
b−c

]
+ aLog[−a + c] − bLog[−b + c] + dLog

[ a−d
b−d

]
− aLog[−a + d] + bLog[−b + d]

(a − b)(c − d)

Box II.
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Table B.8
Summary of closed formulas obtained for errors.

error

2-prod
(−1+k)

(
d2−ka2

)
(−a+d)2k

2-sum (−2a+2d−ϵ)ϵ
(−a+d)2

3-prod (c+d)(−1+k)
(−2a+c+d)k

3-sum 2ϵ
−2a+c+d

4-prod (k−1)(b+a)
(2d−b−a)

4-sum 2ϵ
(2d−a−b)

5-prod c2(1−k)+b2(−1+k)k
−(b−c)2k+2(−a+b)(−c+d)k

5-sum ϵ(2b−2c+ϵ)
2(b−a)(d−c)−(d−c)2

The assumption of case (1) is that the following relationship
holds, i.e., a < b < c < d, and the outcome of the average number
of customers (i.e., E[N]) calculated with such bounds results to be
given in Box I, as reported in Table B.2.

Similarly Table B.3 reports the outputs obtained while calcu-
lating Var[N].

For example, case (1) is obtained by applying the formula of
the variance related to the value λ

µ−λ
. The same assumptions used

for calculating E[N] hold here, in fact we assume that λ and µ
are both uniformly distributed on the interval [a, b] and [c, d]
and their joint probability density is given by 1

b−a and 1
d−c . We

recall that for case (1) the lower and bounds have the following
ordering, i.e., a < b < c < d. The outcome of the variance
calculation on the average number of customers (i.e., Var[N])
results to be:

(a − b)(c − d) − c2Log
[ b−c
a−c

]
+ d2Log

[ b−d
a−d

]
(−a + b)(−c + d)

−
1

4(−a + b)2(−c + d)2
(−(a − b)(c − d) + c2Log[

b − c
a − c

]−

b2Log[−b + c] + a2Log[
a − c
a − d

] + d2Log[−a + d]

+ (b − d)(b + d)Log[−b + d])2

as reported in Table B.3. Also for the calculation of Var[N], there
are some cases where the formulas appear to be more elaborated
than others, for example both the 5-prod and 5-sum scenarios are
associated with a quite complex formula. However, it is worth to
remark that in all cases we are able to derive a closed formula
that allows us to calculate the actual values of Var[N].

Instead, Tables B.4 and B.5 report closed-form formulas for
E[R] and Var[R], respectively, for all cases.

Similarly to Table B.2, Table B.4 reports the outputs obtained
while calculating E[R]. For example, case (1) is obtained by ap-
plying the formula of the average response time of the system to
the value 1

µ−λ
. The same assumptions used for calculating E[N]

hold here, in fact we assume that λ and µ are both uniformly dis-
tributed on the interval [a, b] and [c, d] and their joint probability
density is given by 1

b−a and 1
d−c . We recall that for case (1) the

lower and bounds have the following ordering, i.e., a < b < c <
d. The outcome of the average system response time calculation
(i.e., E[R]) results to be given in Box II, as reported in Table B.4.

Also for the calculation of E[R], we found that the formulas for 5-
prod and 5-sum appear to be more complex than others. However,
also for the calculation of E[R] all cases are expressed by means
of closed formulas that allow us to calculate the actual values of
E[R].

In Tables B.6 and B.7 we reported the formulas of Prob(X > x)
where X is N and R, respectively, while varying the range of x. In
the first row of each table we reported the condition under which
Prob(X > x) is equal to one, because such condition holds in all
the other cases.

Finally, the formulas to compute the error made by ϵ and k
limitations – when the input parameters have Uniform density –
are reported in Table B.8.
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