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Abstract This paper fosters the analysis of performance properties of
collective adaptive systems (CAS) since such properties are of paramount
relevance practically in any application. We compare two recently pro-
posed approaches: the first is based on generalised stochastic petri nets
derived from the system specification; the second is based on queueing
networks derived from suitable behavioural abstractions. We use a case
study based on a scenario involving autonomous robots to discuss the
relative merit of the approaches. Our experimental results assess a mean
absolute percentage error lower than 4% when comparing model-based
performance analysis results derived from two different quantitative ab-
stractions for CAS.

1 Introduction

Increasingly collective adaptive systems (CAS) crop up in many application do-
mains, spanning critical systems, smart cities, systems assisting humans during
their working or daily live activities, etc. A paradigmatic example is the use of
artificial autonomous agents in rescue contexts that may put operators lives at
stake [3]. The components of these systems execute in a cyber-physical context
and are supposed to exhibit an adaptive behaviour. This adaptation should be
driven by the changes occurring in the components’ operational environments
as well as the changes in the local computational state of each component, “col-
lectively taken”. Also, the global behaviour of CAS should emerge from the local
behaviour of its components. Let us explain this considering the coordination of
a number of robots patrolling some premises to make sure that aid is promptly
given to human operators in case of accidents.

A plausible local behaviour of each robot can be:

(1) to identify accidents,
(2) to assess the level of gravity of the situation (so to choose an appropriate

course of action),
(3) to alert the rescue centre and nearby robots (so to e.g., divert traffic to let

rescue vehicles reach the location of the accident more quickly), and
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(4) to ascertain how to respond to alerts from other robots (e.g., if already
involved in one accident or on a low battery, a robot may simply forward
the alert to other nearby robots).

Note that robots’ behaviour depends on the physical environment (tasks (1)
to (3)) as well as their local computational state (task (4)).

A possible expected global behaviour is that robots try to maximise the
patrolled area while trying to avoid remaining isolated and to minimise the
battery consumption. It is worth remarking that the global behaviour is not
typically formalised explicitly ; it should rather emerge from combining the be-
haviour of the single components. For instance, when designing the algorithm
for the roaming of robots one could assume that a robot does not move towards
an area where there are already a certain number of robots.

This paper applies behavioural specifications to the quantitative analysis of
CAS. Using a simple, yet representative, robots scenario inspired by the example
above, we show how to use behavioural specifications to study non-functional
properties of CAS (emergent) behaviour. This exercise is instrumental for our
contribution, which is a study of the relation between two complementary ap-
proaches to the performance analysis of CAS recently proposed. More precisely,
we compare the approach based on generalised stochastic petri nets proposed
in [28] with the one based on behavioural specifications proposed in [16]. These
approaches support two rather different methodologies for the quantitative mod-
elling and analysis of CAS.

The main difference between these two approaches is the following. The
former is based on the analysis proposed in [28] where the designer must directly
come up with a performance model using generalised stochastic petri nets. In this
sense this is a model-based methodology. Instead, for the latter approach [16], the
designer does not have to directly develop a model for the quantitative analysis;
such model —a queueing network— is indeed “compiled” from the behavioural
specification of the CAS. Hence, this is a language-based methodology.

This paper aims to compare such methodologies and to study their relative
merits. More precisely we address the following two research questions:

RQ1 To what extent the approaches in [16] and in [28] support performance-
aware design of CAS?

RQ2 How do the features of the approaches in [16] and in [28] compare?

For this comparison we will use a robot scenario that will allow us to highlight
the respective strengths and weaknesses of the methodologies. As we will see,
our analysis suggests an hybrid combination hinging on both approaches.

Outline. Section 2 describes the scenario used in the rest of the paper. We will
consider two different architectures (i.e., independent and collaborative) for this
scenario. Section 3 provides the models based on the specification language in [16]
for both the architectures. Section 4 shows the performance analysis based on
the proposed models of Section 3. The comparison between the approach in [28]
and the one illustrated in Section 3 is discussed in Section 5. Final comments,
related, and future work are in Section 6.
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2 A Robot Scenario

Our analysis is conducted on a scenario where robots have the task to transport
some equipment necessary in an emergency from an initial zone to a target
location. In order to reach the target location, robots need to pass through two
doors, or take an alternative longer route. Robots take the alternative route only
if they find a door closed. When this happens on the second door, it will take
more time for robots to reach the destination than if the alternative route had
been taken at the start of the journey. After the delivery, robots return to the
initial zone trying to follow the reverse path and the same constraints apply.

It is commonly accepted that the performance of a cyber-physical system
varies with changes in the physical environment. Moreover, as experimentally
confirmed in [28], it is possible to measure the impact of architectural patterns
and dynamic space changes on the performance of cyber-physical systems. This
type of analysis suggests that in this domain it is useful to factor performance
at design time. Following [28], we will consider two architectural scenarios:

Independent Robots do not cooperate with each other. In this architecture,
robots simply detect the state of doors and behave as described above.

Collaborative Robots behave exactly as above on open doors; instead, on
closed doors, they send a message to nearby robots before taking the al-
ternative route. In this way, every robot that receives such message can
directly follow the alternative route.

The approach proposed in [28] is new and it hinges on Generalised Stochastic
Petri Nets (GSPN) [4] as suitable models of cyber-physical systems. In this
paper we apply such approach by adopting (i) a different modelling language,
hinging on behavioural specifications and (ii) relying on queueing networks [18]
for performance analysis. The modelling language used here has been advocated
in [16] for specifying global behaviour of CAS. As shown in [16], this modelling
language has a natural connection with queueing networks, therefore enabling
performance analysis of CAS.

3 A Behavioural Specification Model

The behavioural specifications in [16] are inspired by AbC, a calculus of attribute-
based communication [1]. The key feature of AbC is an abstract mechanism of
addressing partners of communications by letting the specification of many-to-
many communication between dynamically formed groups of senders and receiv-
ers. Informally, components expose domain-specific attributes used to address
senders and receivers of communications according to predicate on such attrib-
utes. For instance, the robots in the scenarios in Sections 1 and 2, may expose
an attribute recording their physical position. This attribute can be used to spe-
cify communications among “nearby” robots through a suitable predicate so to
determine the communication group as the set of robots satisfying such predic-
ate. This mechanism is abstracted in [16] by interactions defined, in their most
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general form, as

Apρ e e′−−−→ Bpρ′ (1)

where A and B are role names, ρ and ρ′ are logical formulae, e is a tuple of
expressions, and e′ is a tuple of patterns, that is expressions possibly including
variables. The intuitive meaning of the interaction in (1) is

“any agent, say A, satisfying ρ generates an expression e for any agents
satisfying ρ′, dubbed B, provided that expression e′ matches e.” [16]

The conditions ρ and ρ′ predicate over components’ attributes. The payload of
an output is a tuple of values e to be matched by receivers with the (tuple of)
patterns e′; when e and e′ match, the effect of the communication is that the
variables in e′ are instantiated with the corresponding values in e.

As said, a send operation targets components satisfying a given predicate on
such attributes. For instance, if pos is the position attribute exposed by robots,
the predicate

ρ ≡ abs(self.pos− pos) < 5mt

is satisfied by a receiving robot which is less than five meters away from the
sending robot (i.e., the difference between the position self.pos of the receiver
and the one pos of the sender is below five meters). Messages are disregarded if
they do not satisfy ρ.

Role names A and B in (1) are pleonastic: they are used just for succinctness

and may be omitted for instance writing ρ
e e′−−−→ Bpρ′ or ρ

e e′−−−→ ρ′. Also, we
abbreviate Apρ with A when ρ is a tautology.

Interactions are the basic elements of an algebra of protocols [29] featuring
iteration as well as non-deterministic and parallel composition. This algebra has
an intuitive graphical presentation which we use here to avoid technicalities. In
fact, we use gates to identify control points1 of protocols:

– entry and exit points of loops are represented by 	 -gates,
– branching and merging points of a non-deterministic choice are represented

by + -gates.

We remark that our behavioural model does not require fix in advance to the
number of instances of agents. In fact, in our model:

– several agents can embody the same role at the same time; for instance, in
our case study, an unspecified number of devices impersonate the robot role;

– instead of addressing senders and receivers by name, attribute-based commu-
nication by definition uses constraints to identify communication partners.

Therefore our model allows us to specify complex multiparty scenarios regardless
the number of agents’ instances.

The next sections give the architectures of our scenario in terms of the graph-
ical notation sketched above.
1 We do not consider forking and joining points of parallel composition (represented

by | -gates) since this feature is not used in our case study.
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Figure 1. A model for the independent architecture

3.1 Independent architecture

Fig. 1 gives a possible model capturing the independent architecture described
in Section 2 in the graphical notation of our specification language. The model
consists of a loop whose body is made by the sequential composition of the
behaviour for the forward and the backward journey of robots. Robots try to go
through the first door and then through the second one on their forward journey
and try the opposite on their backward journey.

The model in Fig. 1 is rather simplistic and we will refine it soon; we use
it to introduce our graphical notation. Interactions among doors and robots do
not involve value passing; for instance, robots detect the status of the first door
when they pattern match on the tuples Lst1, oM and Lst1, cM for open and closed
doors respectively (an likewise for the second door). Robots detect the status
of a door according to the format of the messages they intercept. For instance,
on its forward journey a robot either pattern matches the tuple Lst1, oM or the
tuple Lst1, cM from the first door. This choice is represented in Fig. 1 by + -gate
immediately below the topmost 	 -gate. If the robot receives a Lst1, cM tuple
from the first door, it continues its journey on the alternative route after which
it starts the backward journey. Otherwise, the robot approaches the second door
and again goes through if Lst2, oM is received otherwise takes the alternative
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route. The behaviour on the return journey is similar modulo the order in which
robots approach doors.

As said, this model is simplistic. Let us refine it. In Fig. 1, we used role
names D1, D2, and R for simplicity. However, this is not very precise. In fact,
we would like to express that robots detect the status of a door only when they
are “close enough” to it. To capture this behaviour let us assume that robots
and doors expose the attribute ID yielding their identity. Then, we can define
the conditions

ρd(x) ≡ abs(self.pos− pos(x)) < d

where pos(x) is the position of the component with identifier x. Then we can

replace in Fig. 1 the interactions D1
Lst1,oM Lst1,oM−−−−−−−−−−→ R with

ID = d1
Lself.ID,oM Lx,oM−−−−−−−−−−−→ ρd(x) (2)

and similarly for the interactions D1
Lst1,cM Lst1,cM−−−−−−−−−−→ R and those involving D2.

Interaction (2) and the one for the closed status state that the door2 with ID
set to d1 emits a tuple with their identity and the status. These tuples are
intercepted by components whose state satisfy ρd(x) where x is the variable
instantiated with the identity of the sender. Other components would simply
disregard those messages.

3.2 Collaborative architecture

The collaborative architecture can be obtained by simply extending the inde-
pendent one with the interactions among robots. A possible solution is given
in Fig. 2 where for readability we only show the body of the loop and shorten
Lself.ID, oM and Lself.ID, cM with oID and cID respectively, and Lx, oM and Lx, cM
with xo and co respectively.

As in the independent architecture, there are a forward and a backward
phase. The only difference is that each time a robot detects a closed door, it
will inform nearby robots that the door is closed. Once this communication is
performed, the robot continues its journey on the alternative root. The fact that
the adaptation is quite straightforward is due to the features offered by our
modelling language. The attributes of components are indeed allowing us to just
reuse the condition ρd also for coordinating inter-robots interactions.

There is however a crucial remark to be made. The behaviour of robots is
to wait for three possible messages: the two sent by the door and one possibly
coming from a robot which detected that the door was closed. In fact, there
might be robots satisfying condition ρ′(y, x) in Fig. 2, that is they are not close
enough to the door but have a nearby robot, say r, aware that the door is closed.
These robots should therefore be ready to receive the communication from robot
r. Our model accounts for this type of robots but the graphical notion “hides”

2 The fact that identifiers are unique is not built-in in our model; in principle there
could be more doors with the same identifier.
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R
Ld2,self.pos,cM Ld2,y,cM−−−−−−−−−−−−−−−−→ ρ′(y, x)

+

ID = d1
oID xo−−−−−→ ρd(x) ID = d1

cID xc−−−−−→ Rpρd(x)

R
Ld1,self.ID,cM Ld1,y,cM−−−−−−−−−−−−−−−→ ρ′(y, x)

+

+

+

where ρ′(y, x) ≡ (abs(self.pos− y) < d) ∧ ¬ρd(x)

Figure 2. A model for the collaborative architecture

this since there are only two possibilities on branching + -gates. As we will see
in Section 4, this is a key observation for our performance analysis.

4 Quantitative Analysis

In [16] we relate our modelling language to Queueing Networks (QNs) [19], a
widely used mathematical model to study waiting lines of systems represented as
a network of queues [11,14]. Two main elements of QNs are customers (i.e., jobs,
requests, or transactions) that need to be served by service centres (i.e., system
resources). When a service centre is busy serving a customer, other jobs to be
processed by the same resource wait in a queue for their turn. Also, QNs feature
routers to dispatch customers to different centres and delay stations in order
to model e.g., lags in the processing or “internal” computations not requiring
further system resources. In [16], we provided some rules to automatically get
QN performance models from a behavioural specification. The basic idea is to
transform (i) an interaction into a service centre and (ii) a non-deterministic
choice into a router. We will apply this construction to our robot scenario and
its architectures.
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D1 closed

FORWARD
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Figure 3. QN of the independent architecture

We build on our recent experience [28] on using GSPN [4] performance mod-
els. A GSPN consists of places (represented as circles), tokens (represented as
dots), transitions (represented as rectangles), and arcs that connect places to
transitions and vice-versa. A token is removed from a place (and possibly added
to another one) every time a transition fires. A transition is enabled when all the
input places contain a number of tokens larger or equal to a pre-defined multi-
plicity (if not expressed it is equal to 1). There are two types of transitions in
GSPN: immediate transitions and timed transitions. The former are graphically
represented as thin black rectangles and fire when enabled, no timing is asso-
ciated to the transition. The latter are graphically represented as thick white
rectangles and fire following a randomly distributed time (in this paper we use
exponential distributions), meaning that the transition implies some timing.

The analysis conducted in [28] shows that it is possible to measure the im-
pact of architectural patterns and dynamic space changes on the performance of
cyber-physical systems.

In the following we are interested in studying the applicability of GSPN in
CAS and compare this approach to the one based on QNs. Both GSPN and
QNs are analysed using JSIMgraph, i.e., the simulator of Java Modelling Tools
(JMT) [7]. JSIMgraph discards the initial transient system behaviour and auto-
matically stops when the desired confidence interval (i.e., the probability that
the sample data lie within it, set to 99% for our experiments) is observed for all
performance indices under analysis.

4.1 Independent architecture

To address RQ1, we start by describing the approaches defined in [16] and in [28]
to support performance-aware design of CAS. Let us focus on the independent
architecture first.

The application of the rules introduced in [16] to the behavioural specification
of Fig. 1 yields the QN depicted in Fig. 3. Specifically, the first and second non-
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Figure 4. GSPN of the independent architecture

deterministic choices in the forward box of Fig. 1 become respectively the D1

status and D2 status router in the FORWARD box of Fig. 3. Interactions on
the left (resp.right) branch of each choice in the forward box of Fig. 1 become the
D1 open and D2 open (resp. D1 closed and D2 closed) service centres in the
FORWARD box of Fig. 3. Similarly, the BACKWARD box in Fig. 3 is derived
from the backward box in Fig. 1. A delay centre (i.e., Robots Fig. 3) represents
the number of robots in the system and their think time is also added to the QN
model as suggested in [16].

We assess the usefulness of the QN derived from the behavioural specification
and rules defined in [16] by comparing it with the GSPN introduced in [28], and
depicted in Fig. 4. Initially, there are N robots waiting for task assignment.
When transition wait fires after an exponentially distributed time (i.e., when a
task is assigned to a robot), a token is moved to the next place. This represents
the fact that the robot starts moving towards the first door D1 reach. After
some time, the robot reaches the door. If the door is closed (D1 fail) the robot
has to take the alternative (and longer) route (D1 alt.); otherwise the robot
goes through the first door (D1 succ.) and continues its journey towards the
second door (D1 straight). After some time the robot approaches the second
door (D2 reach). The status of each door is controlled by two places (e.g., D1
open and D1 closed for the first door) and two transitions. The door is initially
closed (i.e., a token is in the D1 closed place). When the enabled transition
fires, the token is removed from the D1 closed place and added to the D1 open

place. Hence, the door stays open until the new enabled transition fires and the
door status changes again.
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Table 1. Numerical values used for GSPN and QN models of independent and
collaborative architectures. Direction indicates Forward (F) or Backward (B),
the parameter and its value are used. SD∗ open (QN) is obtained by summing
SD∗ reach and SD∗ straight (GSPN). All timing parameters are in second.

GSPN QN
Parameter Direction Value Parameter Direction Value

N 100 N 100
Swait 10 Z 10

SD∗ closing + SD∗ opening 60 – – –
SD∗ reach F / B 5
SD∗ straight F / B 5

SD∗ open F / B 10

SD1 alt. F 45 SD1 closed F 45
SD2 alt. F 60 SD2 closed F 60
SD1 alt. B 60 SD1 closed B 60
SD2 alt. B 45 SD2 closed B 45
SD∗ follow F / B 46 SD∗ msg. F / B 46
SD∗ send F / B 1 SD∗ send F / B 1

The two models are parameterized with values from the literature [32] as
shown in Table 1. In our model the system response time is the time spent by
each robot to complete a task and go back to the initial room.

To answer RQ2, we estimate the response time using both models against the
probability that each door is open. The results of this analysis are given in the left
histogram of Fig. 5 together with the confidence interval. Notice that extreme
cases of 0.01 and 0.99 probabilities are reported instead of 0 and 1 since the
latter ones are not probabilistic by definition, these values would imply doors
are always either closed or open. We point out that our experimental results
show high agreement in the performance predictions. The QN derived from the
behavioural specification predicts the system response time with values similar
to those predicted by the GSPN. As expected, the shortest response time of the
system is observed when there is a high probability that both doors are open and
robots can almost always take the fastest route. The longest system response
time is observed for 0.2 ≤ Pr(Door is Open) ≤ 0.3, when the probability of
finding the first door open and the second one closed (or the second door open
and the first on the backward journey) is higher. In this case, robots spend a
longer time taking the alternative route, see Table 1. The QN predictions are
further assessed in the right histogram of Fig. 5 via mean absolute percentage
error (MAPE) calculated as

MAPE[%] =
|RGSPN −RQN |

RGSPN
· 100

where RGSPN and RQN are the system response time estimated using GSPN and
QN, respectively. The value of MAPE is always smaller than 4%, an excellent
result when estimating the system response time [27].
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Figure 5. Independent architecture – System response time (left) and MAPE
(right) vs. Probability door is open
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Figure 6. QN of the collaborative architecture

4.2 Collaborative architecture

We now repeat the previous exercise focusing on the collaborative architecture.
The application of the rules defined in [16] yields the QN from the behavi-

oural specification of the collaborative scenario depicted in Fig. 6. In this case,
routers have three branches. As discussed in Section 3.2, besides finding an open
or a closed door, robots can also receive a message from their peers when a
door is closed. This is modelled by D1 msg. and D2 msg. service centres. Now,
robots can take the alternative route without spending extra time checking the
door status. Moreover, the robot finding the closed door has to communicate its
finding to other robots (D1 send and D2 send).

We now compare the performance measures on the QN in Fig. 6 with the
ones obtained using the GSPN presented in [28] and depicted in Fig. 7. The two
models are parameterized with numerical values reported in Table 1 except for
probabilities used in the QN routers (i.e., D1 status and D2 status). Since the
probability of receiving a message from a peer depends on other characteristics of
the system (e.g., the probability that doors are open, robots’ position, and their
speed), there is not an easy way to set router probabilities. To fairly compare
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QN results to GSPN ones, it is necessary to first analyse the GSPN model of
the collaborative architecture given in Fig. 7. From this analysis we infer the
probability values (i.e., for receiving a message from a peer under certain system
circumstances) that are needed to properly parametrise the QN model.

We now reconsider RQ2 for the collaborative architecture. Similarly to the in-
dependent architecture, we estimate the system response time using both models
against the probability of doors being open. The response times of the system
obtained with GSPN and QN are shown in Fig. 8. Also for the collaborative
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Figure 8. Collaborative architecture – System response time (left) and MAPE
(right) vs. Probability door is open

architecture, the QN parameterized as previously described allows us to obtain
results that are close to those obtained with the GSPN. The response time of
collaborative systems is generally shorter than the one observed for independent
architectures since robots share knowledge about the state of the environment.
The only exception to this observation is for Pr(Door is Open) ≥ 0.9; in this
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case, a robot finding a closed door affects negatively the performance of its
peers. Indeed, other robots take the alternative route after receiving the mes-
sage. However, there is a high probability that the door will be open again when
they will approach it. In this case, the value of MAPE is even smaller (i.e.,
less than 1%, see the right histogram of Fig. 8) than the one observed for the
independent architecture. This is due to the router probabilities being directly
derived from the GSPN used for comparison.

5 Discussion

Answering to our research questions, we can state that both QNs and GSPN
are suitable for the performance analysis of CAS. Our experience shows that
there is a trade-off between simplicity and expressiveness in the use of these
models (RQ1). An interesting outcome of our simulations is that the two different
model-based performance predictions match, the error is never larger than 4%
denoting high agreement between the proposed performance abstractions (RQ2).
Our experimental results confirm the expectation on the analysed scenarios. For
instance, the system response time is minimised in case of doors open with a high
probability. Collaboration among robots pays off, the collaborative architecture
shows shorter response times since robots are informed before reaching doors
and gain from promptly taking alternative paths.

The two modelling approaches offer different advantages which we discuss
herafter. A main advantage of QNs is that they are conceptually simple: per-
formance analysis is based on the probabilities assigned to observable events
(e.g., door open). Moreover, QNs can be automatically derived from our beha-
vioural specification of the system. A key observation is that our behavioural
specification models introduce a clear separation of concerns: the modelling of
the system is orthogonal to its performance analysis that is done by using the
derived QNs; hence one just needs to fix the probabilities for the observable
events. However, this comes with a cost: it is not usually easy to determine such
probabilities.

Instead, the modelling with GSPN does not require to directly specify prob-
abilities, a clear advantage over QNs. Indeed, with GSPN one has to simply select
a suitable time distribution: this is therefore a more reliable approach compared
to QNs. Besides, GSPN allow for controlling events with a same process; for in-
stance, if a door is open in a direction, it must also be open in the other direction;
this cannot be modelled using probabilities only. Overall, GSPN requires more
expertise on building the performance model, but its parameterisation includes
timing values only, hence they may also be used for monitoring (see e.g., [25]).

However, GSPN are more “rigid” than QNs because certain characteristics
of the system are hardwired in the model itself. For instance, changing the num-
ber of doors robots have to traverse would require a more complex performance
model. Moreover, this kind of generalisation will make the size of the model
much larger, which can severely affect the performance of the analysis as the
state space grows exponentially [4]. This is not the case for QNs derived from
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our behavioural specification because they permit to easily abstract away from
the number of system components. On the other hand, GSPN allow to easily
model other types of sophisticate coordination policies. For instance, in the col-
laborative architecture it is easy to let the robot first noticing the closed door
wait for all nearby robots to take the alternative route before continuing its
journey. This is not simple to model with our behavioural specification language
or with QNs.

6 Conclusions, Related & Future Work

We proposed two approaches for the performance analysis of CAS. Our experi-
mental observations are conducted on a simple case study of autonomous robots
for which we consider two architectures. Our first approach is based on beha-
vioural abstraction and QNs while the second is based on GSPN. Finally, we
compare the two approaches by exploiting the models of the two architectures
and observe a high level of agreement on model-based performance predictions.
Behavioural Abstractions. Coreographic models have been applied to Cyber-
Phisical Systems [21,22], IoT [20] and robotics [24]. These papers focus on veri-
fication of correctness properties (e.g., deadlock freedom and session fidelity)
and are not concerned with quantitative aspects or performance analysis. Some
works in the literature exploits behavioural abstraction for cost analysis of mes-
sage passing systems. Cost-aware session types [10] are multiparty session types
annotated with size types and local cost, and can estimate upper-bounds of the
execution time of participants of a protocol. Temporal session types [12] extend
session types with temporal primitives that can be exploited to reason about
quantitative properties like the response time. A parallel line of research studies
timed session types [5,8,9], that is session types annotated with timed constraint
in the style of timed automata [2]. They have been used for verification of timed
distributed programs by means of static type checking [8,9] and runtime monitor-
ing [6,25]. Despite the presence of timed constraints, which makes timed session
types appealing for performance analysis, they have never been applied in such
setting. Session types have been extended with probabilities [15] for verification
of concurrent probabilistic programs, which is potentially useful for the CAS
analysis. A common limitation of these approaches is that they do not easily
permit to define the number of agents’ instances embodying a specific role in
the system specification. Our behavioural model instead allows it, as explained
in the final remark of Section 3, hence it is suitable for performance analysis
that indeed requires such a system workload information.
Quantitative Abstractions. Rigorous engineering of collective adaptive systems
calls for quantitative approaches that drive the design and management of co-
ordination actions, as recently advocated in [13]. Verification tools for CAS form-
ation are surveyed in [17] and analysis techniques are considered still immature
to deal with possible changes in decision-making, hence quantitative approaches
that keep track of behavioural alternatives and their impact on system perform-
ance are of high relevance for CAS. Ordinary differential equations (ODEs) have
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been proposed in [30] as quantitative abstractions for CAS. The use of ODEs
allows one to express large-scale systems that are analyzed through reaction net-
work bisimulations. A limitation of the approach is that results are not reliable
when the population of agents is small. A quantitative analysis of CAS is also
pursued in [23] where the focus is on investigating the probabilistic behaviour of
agents, and a specific language (i.e., CARMA) is introduced along with a sim-
ulation environment that provides quantitative information on CAS, however
the scalability is limited and alternative (quantitative) semantics are claimed to
be desirable to speed up the analysis. Performance characteristics of CAS are
tackled in [31] where the goal is to select optimal (from a performance perspect-
ive) implementations of collective behaviour while preserving system function-
alities and resiliency properties, however various implementations are required
and the switch of identified alternatives cannot be executed at runtime. More
recently, in [26] a design pattern, i.e., self-organising coordination regions, is pro-
posed to partition system devices into regions and enable internal coordination
activities. This supports our investigation of independent and collaborative ar-
chitectures since their optimality relies on the physical space, as emerged by our
quantitative analysis on the probability of doors being open/closed. As opposed
to these approaches, we aim to automatically derive quantitative abstractions
from the behavioural specification of CAS, thus simplifying the process to get
performance indicators of interest.
Future work. We plan to consider more complex application scenarios and in-
vestigate generalisations of our model-based performance analysis. In particular,
we are interested to explore the possibility to automatically derive the structure
of GSPN from our behavioural specifications. We conjecture that this could al-
low us to overcome some of the drawbacks of GSPN while avoiding the need to
determine probabilities.

An interesting research direction to explore is the performance analysis of
CAS in presence of dependencies among input parameters. For instance, in our
scenario one could think of a synchronised behaviour of doors so that they change
state in a coordinated way. This implies that the probability for a robot to find
the second door open (after it crossed the first one) depends on its speed and
the time when the robot went through the first door.
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