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Abstract. Emerging applications such as collaborative and autonomous
cyber-physical systems (CPS) seek for innovative techniques that support
Quality-of-Service (QoS) analysis as key concern to be considered. The
objective of this paper is to complement the software design models with
an approach that provides a set of modules that are (i) representative of
multiple QoS-based properties, and (ii) equipped with strategies aimed
to establish rules of interaction among them in a feedback loop fashion.
We propose a novel methodology that builds upon the specification of
QoS-based modules and enables the generation of design alternatives as
outcome of an internal intertwining of different QoS analysis results for
CPS. The approach is applied to a collaborative and autonomous net-
work of sensors, and experimental results show that software designers
are supported in the selection of design alternatives by quantitative in-
formation. A comparison with an integrated model is performed to show
the advantages of our novel modular QoS-based analysis.

Keywords: Software Design Models · Quality-of-Service Analysis · Mod-
ularity · Cyber-Physical Systems.

1 Introduction

Cyber-physical systems (CPS) are complex systems where both hardware and
software components interact together in a tight way to offer the required ser-
vices. This complexity exacerbates when considering CPS that are collabora-
tive [18] (i.e., components collaborate and establish new services for mutual
benefit) and autonomous [20] (i.e., components take the initiative of interact-
ing with other components for mutual advantage). These characteristics of CPS
may reveal a major impact when evaluating the quality of applications, since
quality-of-service (QoS) attributes (e.g., energy consumption and performance)
are affected by collaborative and autonomous behaviours of system components.

In the literature, early validation of QoS-based requirements and their con-
tinuous monitorability has been assessed as fundamental in the software devel-
opment process [23], and several methodologies have been defined to analyze
services enriched with annotations about their QoS attributes [29]. However,
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the problem to combine the behaviour of system components (and their quality)
in an appropriate way is still challenging [26], even more so if we consider that
each QoS attribute may bring its own specification. Hence, it becomes necessary
to integrate multiple formalisms and supporting their heterogeneity.

In this paper, we investigate the problem of bridging multiple and heteroge-
neous QoS attributes to support their collaborative and autonomous analysis,
thus reflecting the characteristics of CPS, with the underlying goal of achieving
a mutual profit among the attributes. Consider as an example, camera devices
that operate in different modes on the basis of their battery levels. Dependen-
cies arise between QoS attributes, e.g., battery charge impacts the quality of the
pictures, and consequently the system performance. State-of-the-art approaches
separately derive the QoS attributes and combine them afterward by analyzing
the Pareto front, adopting ad-hoc weighted sums, or studying their trade-off
[7,16,25]. Instead, we pursue an approach that aims to establish rules of interac-
tion among components and their QoS analysis results. This means to decide, in
a feedback loop fashion, when a QoS-based model (due to its analysis results) is
supposed to trigger design changes required by another QoS-based specification.

To evaluate the quality of collaborative and autonomous CPS we need a
change of perspective w.r.t. more traditional systems. We claim the need for
a modular multi-view approach, namely MODULO (MODular qUaLity-of-service
mOdels), that adopts different connected models to help the software designer in
selecting alternatives for collaborative and autonomous CPS. The main advan-
tages of this approach are as follows: (i) it puts together different aspects of the
system still maintaining a separation of concerns; (ii) it avoids the complexity of
defining a unique flat model including all the system aspects; (iii) the adoption
of QoS-based modules (i.e., models of a specific QoS characteristics of the sys-
tems) allows the plug-and-play of different models that focus on the attribute of
interest, or that reflect the different knowledge about the system itself.

Our approach allows the continuous interaction of collaborative and au-
tonomous QoS-based modules, where the results of a module can feed a dif-
ferent one in a feedback loop fashion to empower the system quality evalua-
tion. Similarly to all model-based analysis approaches, numerical values of input
parameters can be customized by software designers (reflecting end-users ex-
pectation) to grasp different operational profiles and/or varying software and
hardware characteristics. The main advantage of the proposed approach is to
provide quantitative information to software designers that are supported in the
selection of design alternatives. This is achieved through a novel modular anal-
ysis technique that considers the intertwining of different QoS-based modules
interacting on the basis of model-based analysis results.

The rest of the paper is organized as follows. Section 2 motivates our in-
vestigation through an illustrative scenario. Section 3 describes our approach,
and Section 4 reports the experimental results of a case study3. Section 5 dis-
cusses the main limitations of the approach. Section 6 presents related work, and
Section 7 concludes the paper by outlining future research directions.

3 Replication package: https://doi.org/10.5281/zenodo.7773975

https://doi.org/10.5281/zenodo.7773975
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Fig. 1: The analyzed application: a collaborative and autonomous smart parking
system where the camera resolution depends on the battery charge.

2 Motivating Example

Inspired by [4], we consider the case of a collaborative and autonomous smart
parking as a motivating scenario. We assume that, in the analyzed system, there
are battery-powered cameras that observe cars entering/leaving a parking lot.
Fig. 1(a) depicts the BPMN of the picture collection process.

When a car enters or leaves the parking lot, the system checks the camera
battery level. Cameras take HD or LD pictures of the car depending on their
battery level. Collected pictures are forwarded to a cloud application where they
are analyzed, e.g., to charge car owners based on the length of their staying
in the parking lot. Fig. 1(b) depicts camera working modes, i.e., low and high
definition modes (LD and HD, respectively). In the former case, cameras capture
LD pictures, while high-quality pictures (i.e., with more details) are taken in the
latter one. For example, when the cloud application analyzes LD pictures, it may
be able to extract only a few information, such as car color and body style (e.g.,
hatchback, sedan, wagon). The cloud application may get more data from HD
pictures, e.g., the registration plate and the car manufacturer.

When a new picture is captured, some energy is consumed and the battery
state-of-charge (SoC) decreases; taking a LD picture uses less energy than col-
lecting a HD one. The system battery is characterized by different states defined
by its available charge. For the sake of the presentation, in this section, we con-
sider only three battery states (i.e., high, medium, and low charge); more states
are considered when MODULO is evaluated in Section 4. Cameras autonomously
adapt their working mode to the battery SoC to make the battery live longer,
i.e., delay the discharge process. For example, when the battery is in the high
charge state, all cameras work in HD mode, see Fig. 1(c). When the battery SoC
decreases and less energy is available, some cameras work in HD mode while oth-
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ers operate in LD mode as in Fig. 1(d). If the battery is almost discharged, see
Fig. 1(e), all cameras capture LD pictures to reduce the required energy.

The smart parking goal is to maximize a score, i.e., low- and high-quality pic-
tures provide a reward ρld and ρhd, with ρld < ρhd, depending on the information
contained in each picture. If cameras work only in HD mode, they generate highly
rewarding pictures for a short time (i.e., the battery drains fast). If they work in
LD mode, the battery lasts longer, but collected pictures provide a small reward.
Reasons that make this application well-suited for our analysis are discussed in
the following: (i) the system is characterized by three main QoS attributes (i.e.,
battery depletion, system performance, and reward computation) that need to
be modeled with their interactions; (ii) the battery depletion and the system
performance affect each other in a complex feedback loop fashion; (iii) naive
(i.e., static) configurations of the considered system can be modeled by standard
approaches, hence allowing comparing MODULO to other modeling frameworks.

The smart parking system also emphasizes the strengths of using modular
approaches like MODULO instead of an integrated one. Specifically, MODULO al-
lows modeling systems whose components interact in a complex way, e.g., in the
smart parking, we analyze the system reward obtained by continuously adapt-
ing the performance of the system to the battery SoC. Moreover, MODULO gives
software designers the freedom to model each QoS-based module using the pre-
ferred solution, e.g., processes of the smart parking system are analyzed using
state-of-the-art models and algorithms.

3 Our Approach

The MODULO approach aims to empower the software designer with the ability to
assess the quality of the system in the early design stage. To this end, quality
assurance (QA) experts are involved to define modules and interactions based
on the system requirements.

CPS are composed of highly intertwined software and hardware components
that interact with the environment to offer their service and achieve their goal.
To guarantee the quality objectives of CPS, it is crucial to evaluate how differ-
ent QoS attributes influence each other. This calls for an interactive modular
approach that considers the intertwining of all QoS attributes. To this end, the
MODULO approach (see Fig. 2) devises the following main operational steps.

Step 1○ - System Modeling. The first step consists in modeling the software
system: services are specified, and key quality attributes Ai (i=0, . . . , N, where
the value of N depends on the specific software system) are identified. For ex-
ample, these attributes may be A1: performance and A2: energy consumption
for a battery powered system, or A1: reliability (to model possible component
malfunctions), A2: performance, and A3: security for a health-care system, or
A1: availability (to model the probability of invoking services conditioned by
environmental changes) and A2: performance for a wind-generator system.

Step 2○ - QoS-based Modules Modeling. A module Mi is associated with each
attribute Ai and will include the appropriate model(s) for the evaluation of Ai,
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Fig. 2: High-level vision of our MODULO approach.

defined according to the present level of knowledge. For example, if Ai denotes
the system performance and we have only a very high level description of the
system, a simple Queueing network (QN) model [14] can be defined and evalu-
ated. A deeper knowledge of the system allows the definition of a more detailed
and precise QN, Discrete/Continuous-time Markov models [5] (as illustrated in
Fig. 2), or any other software performance engineering formalism.

Step 3○ - Modular QoS Analysis. Each module Mi is evaluated and results
are fed to other modules Mj . Due to the modular nature of the approach, QA
experts can adopt different formalisms and analysis techniques for each module.
The rules of interaction among modules are meant to define how different aspects
of a system affect each other when the behavior depends on the state of the
environment or of the system itself [19]. MODULO offers trade-off and parametric
sensitivity analysis to identify the system configuration that allows optimizing
the satisfaction of quality objectives. This way, software designers are supported
with quantitative information on service quality analysis and trade-offs.

Step 4○ - Feedback to Software Designers. The software designer is informed
about the trade-off and sensitivity analysis of parameters that support their
design choices in the early stages of software development. After analysing the
received feedback, the QA expert can suggest updates to the software model that
represent design alternatives most likely not leading to QoS-based shortcomings.
This process enables the early detection and diagnosis of issues, and avoids
increased costs to fix errors later in the project life-cycle [12].

Step 5○ - Round-trip Analysis. The QoS evaluation can be repeated when the
knowledge about the whole system or part of it increases. This leads to the def-
inition of more precise models for the corresponding module(s) with subsequent
new analysis and evaluation steps. Rules of interaction among modules are not
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supposed to change at this stage. Instead, results of the model-based analysis
may vary and trigger different QoS attributes changes.

4 Evaluation

In the following, we use the MODULO approach (see Section 3) to analyse the
smart parking scenario presented in Section 2. We focus on steps 2○– 4○ which
constitute the key novelty of the MODULO. For step 1○ we plan to adopt state-of-
the art methods [6], whereas step 5○ is left for future work.

4.1 Step 2○ – QoS-based Modules Modeling

Here, we discuss all modules used to model the three identified QoS attributes
(i.e., battery depletion, system performance, and reward computation) of the
smart parking. Specifically, each QoS attribute is deployed with different models
or analysis techniques. This way, we aim to emphasize the plug-and-play capabil-
ity of MODULO, as well as its other benefits (i.e., adoption of different formalisms
for each module, independent model-based analysis techniques, and interaction
among analysis results of different modules). It is worth remarking that the se-
lection of QoS attributes (i.e., battery, performance, and reward) is one of the
possible interpretations of the smart parking scenario. The MODULO approach
allows implementing other modules and defining further interactions that may
differently describe the system and its requirements.

N, C

X, U
L

X, R

Battery
Depletion 

System
Performance 

Reward
Computation 

Fig. 3: Modules and their interactions developed
using MODULO to study the smart parking system.

Fig. 3 depicts the overview
of MODULO modules developed
for analyzing the smart park-
ing. The three modules are
drawn as boxes, their interac-
tions are shown using arrows.
Interactions are labeled with
metrics exchanged between
the modules. Specifically, the
Battery Depletion module
passes the number of low- and
high-quality requests, i.e., N⃗ =
(Nld, Nhd), and the number of active cameras C to the System Performance
module. This module computes the system throughput and response time for
the two types of request, i.e., X⃗ = (Xld, Xhd) and R⃗ = (Rld, Rhd), respectively,
as well as the overall sensor utilization, i.e., U . The system throughput and sen-
sor utilization are forwarded to the Battery Depletion module that uses these
metrics to determine the battery longevity (i.e., L) before reaching the new SoC.
This loop is repeated until the battery is fully discharged. X⃗, R⃗, and L are con-
tinuously communicated to the Reward Computation module that uses these
values to compute the system reward.
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Battery Models. We deploy the Battery Depletion module using two differ-
ent models, i.e., the Linear Model and the Kinetic Battery Model (KiBaM) [17].
These models analytically evaluate the longevity (i.e., L) before moving to the
new battery state when the system undergoes a given electrical current load
(i.e., I). The battery longevity can be studied using different models, e.g., those
discussed in [10]. Our choice of implementing the linear model and the KiBaM
aims to show that different existing models and their analysis affect the QoS.
Software designers can decide to adopt one of these alternatives based on sys-
tem requirements. The Linear Model is a naive implementation of the discharge
process of a battery, it does not account for two essential battery characteristics
(i.e., rate capacity and recovery). For a constant load I, it is defined as:

L =
SoCinit − SoCend

I
, (1)

where SoCinit and SoCend are two battery states, with SoCend ≤ SoCinit. In
the case of LD and HD requests, I is computed as:

I =
Xld · Eld +Xhd · Ehd + Pidle · (1− U) · C

V
, (2)

where the energy to capture low- and high-quality pictures is Eld and Ehd,
respectively, Pidle is the power required by cameras to stay on without taking
any picture, C is the number of active cameras, and V is the battery voltage.

Bound Charge Available Charge

k I(t)

QA(t)QB(t)

1 - c c

Fig. 4: The Kinetic Battery Model
(KiBaM) [17].

The KiBaM is a simple, non-linear, and
effective battery model that represents
the battery discharge process using two
connected tanks, see Fig. 4. The en-
ergy required to serve an external load,
i.e., I(t), is taken from the Available
Charge tank whose capacity at time t
is QA(t). The Bound Charge tank rep-
resents energy that is not directly avail-
able, but that can flow in the Avail-
able Charge tank (with rate k) to re-
cover the battery SoC. The capacity of
the Bound Charge at time t is QB(t). The initial available charge ratio is
c = QA(0)/[QA(0) + QB(0)]. The battery is considered fully discharged when
the Available Charge tank is empty, however the SoC can recover if some energy
is in the Bound Charge tank, i.e., QB > 0. Numerical values used with both
battery models are reported in Table 1.

Performance Model and Two Analysis Techniques. The smart parking
is modeled as a QN to be deployed in the System Performance module. Fixed
parameters of this module are the think time, Z⃗ = (Zld, Zhd), the camera service
time, ⃗Scam = (Scam

ld , Scam
hd ), and the cloud service times, ⃗Scloud =

(
Scloud
ld ,

Scloud
hd

)
, whose numerical values are given in Table 1.
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Table 1: Numerical values of models used for the three modules in Fig. 3. Energy
consumption of low- and high-quality requests, as well as their service time at
cameras are derived from [15] assuming 1 MP and 8 MP resolutions for low- and
high-quality pictures, respectively.

Module Parameter Value Parameter Value

Battery
Depletion

QA(0) 23220 Watt-sec Eld 0.0299 Watt-sec
QB(0) (only KiBaM) 23220 Watt-sec Ehd 0.1286 Watt-sec

c (only KiBaM) 0.5 Pidle 0.2254 Watt
k (only KiBaM) 2.5 Ampere V 3.8 Volt

System
Performance

Zld 0.1 sec Zhd 0.1 sec
Scam
ld 0.085 sec Scam

hd 0.4 sec
Scloud
ld 1.0 sec Scloud

hd 2.5 sec
N 100 – –

Reward ρld 1 ρhd 5
Computation SLA (only penalty) 2 sec – –

Table 2 reports the numerical value of input parameters that depends on the
battery SoC, i.e., the number of requests, N⃗ = (Nld, Nhd), and the number of
active cameras C. The performance analysis makes use of two widely adopted
techniques, i.e., Mean Value Analysis (MVA) and its approximate solution [14].
MVA is an iterative algorithm based on the Arrival theorem [2]. It allows retriev-
ing accurate performance metrics (e.g., system response time and throughput)
of closed QN with a contained computational cost. Its time and space complex-
ity depend on the number of service centers and the number of customers. A
faster and still accurate solution for closed QN is provided by the approximate
MVA technique (AMVA) whose complexity depends only on the number of ser-
vice centers. Note that we model the system performance with QN and solve it
using the (approximate) MVA since this is a standard technique in performance
engineering [28]. Other formalisms (e.g., Petri nets or Markov chains) can be
adopted to analyze different systems. Moreover, if the scenario is too complex
to be solved with MVA (e.g., the workload is dynamic [1]), other solution tech-
niques (e.g., simulation) can be used to analyze the system performance at the
cost of a longer computation time.

Reward Models. Two reward models (i.e., with and without penalties) are
envisioned for the Reward Computation module. The model without penalties
(namely W/O) always assigns the whole reward to the system, independently
of the time spent to capture and analyze a picture. This reward model may be
used when timeliness is not a crucial system aspect and is computed as:

ρ = (Xld · ρld +Xhd · ρhd) · L, (3)

where Xld and Xhd are the average throughput of low- and high-quality re-
quests (i.e., req/sec, from the System Performance module), ρld and ρhd are
the reward for every low- and high-quality request that is processed, and L
is the battery longevity (in seconds, from the Battery Depletion module).
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Table 2: System configurations with low-
and high-quality requests (Nld, Nhd),
and the number of active cameras C de-
pends on the battery SoC. Cameras are
turned on/off so that 96% ≤ U ≤ 98%.

Conf. Nld Nhd C SoCinit SoCend

c1 0 100 14 100% 90%
c2 10 90 13 90% 80%
c3 20 80 12 80% 70%
c4 30 70 12 70% 60%
c5 40 60 11 60% 55%
c6 50 50 10 55% 50%
c7 60 40 9 50% 40%
c8 70 30 9 40% 30%
c9 80 20 8 30% 20%
c10 90 10 8 20% 10%
c11 100 0 7 10% 0%

The reward model with penalties
(namely W/) allows penalizing slow
systems. To this end, a Service Level
Agreement (i.e., SLA) is provided and
the reward is computed as:

ρ = (Xld · ρld +Xhd · ρhd) · L·(
1− max(R̄− SLA, 0)

SLA

)
, (4)

where R̄ is the average system re-
sponse time of low- and high-quality
requests. Similar to the Battery and
Performance models, also in this case,
other models that better represent
system requirements can be imple-
mented and used. Our choice of mod-
eling the reward as in Eqs. (3) and (4)
intends to stress the plug-and-play features of the MODULO approach. Numerical
values of reward model parameters are reported in Table 1.

4.2 Steps 3○ and 4○ – Modular QoS Analysis and Feedback to
Software Designers

Results obtained by analyzing the smart parking using MODULO are shown in
Fig. 5. On the x-axis the system configuration identifier is reported, see first col-
umn of Table 2. Note that the Mix configuration means varying the numerical
values of parameters (Nld, Nhd, and C) during the analysis based on the battery
SoC. All other configurations (c1, . . . , c11) are fixed ones (i.e., Nld, Nhd, and C
are set at the beginning of the analysis and do not change). Every row of Fig. 5
depicts a different metric: (i) battery depletion time, (ii) reward percentage in-
crement over the configuration with the minimum reward, and (iii) time required
by MODULO to complete the analysis. Columns account for the effect of different
models and analysis techniques, e.g., the first column shows results obtained us-
ing the Linear model for the Battery Depletion module, the MVA algorithm
for the System Performance module, and the reward without penalties for the
Reward Computation module.

The battery longevity is depicted in Figs. 5(a)–(d). The largest variation is
observed when the Battery Depletion module uses the Linear model, Fig. 5(a),
or the KiBaM, Figs. 5(b)–(d). With the Linear model, the battery depletion time
is 4 to 15 minutes shorter than the one observed with the KiBaM due to the
recovery process modeled only by the latter approach. Models used to deploy
the System Performance and Reward Computation modules do not affect sig-
nificantly the battery life, i.e., the observed variation is less than 2 minutes.

Figs. 5(e)–(h) show the reward increment obtained by each configuration over
the minimum reward, i.e., Reward Gain [%] = [(ρ−ρmin)/ρmin] ·100, where ρ is
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Fig. 5: System behavior (i.e., battery life, reward gain), and scalability (i.e., ex-
ecution time) using MODULO with different models and analysis techniques.

the reward of the considered configuration and ρmin is the minimum reward. The
configuration whose Reward Gain is 0% scored ρ = ρmin. This is the metric that
depends the most on the deployed modules since some variations are observed
every time a model is changed. When penalties are not included in the reward,
i.e., Figs. 5(e)–(g), serving a large number of high-quality requests (i.e., c1, c2, c3)
allows maximizing the reward. The smaller gain observed when modeling the
battery with KiBaM is due to the longer battery life of configurations with
small Nhd (i.e., those with small rewards). Since the battery takes longer to run
out of energy, there is more time to process requests and increase the minimum
reward. The model used for the System Performance module slightly affects the
system reward, smaller rewards observed with the Approximate MVA are due
to the reduced accuracy w.r.t. the exact MVA. When the reward accounts also
for penalties, see Fig. 5(h) whose y-axis goes from 0% to 60%, there are new
configurations with the maximum gain (i.e., c4, c5, c6, c7). This is due to the
long response time of configurations serving mainly high-quality requests.



Modular Quality-of-Service Analysis of Software Design Models for CPS 11

Figs. 5(i)–(l) depict the time MODULO takes to analyze the smart parking with
considered configurations. The scalability of MODULO is highly affected by the
technique used to analyze the System Performance (i.e., MVA or Approximate
MVA). This is due to the different time complexity of the two algorithms, see
Section 4.1. Despite system results (i.e., battery life and reward gain) obtained
with the exact and approximate MVA are very similar, see Figs. 5(b)–(c) and
5(f)–(g), the approximate solution allows MODULO to complete its analysis in less
than a second, note the different y-axis scale.

4.3 Validation of MODULO

To evaluate the accuracy of MODULO, we analyze the smart parking using an in-
tegrated (i.e., non-modular) model. Specifically, we use a Queueing Petri Nets
(QPN) [13] due to its capability of modeling performance and reliability aspects.
The choice of using QPN as a benchmark method to compare MODULO is moti-
vated by our interest in highlighting the modular analysis as a key contribution,
and QPN nicely fits with the need of showing differences w.r.t. an integrated
model. Other related works (see Section 6) are excluded from comparison, since
they separately evaluate quality attributes and eventually combine them using
techniques such as Pareto analysis.

Fig. 6 depicts the QPN model used in this section for comparison, where
white (gray) transitions are driven by Exponential (Deterministic) processes,
and solid (dashed) arrows describe the performance (battery) workflow. Note
that QPN does not support the online adaptation of system configuration to the
observed battery SoC, only fixed configurations are analyzed. Moreover, for the
sake of simplicity, the developed QPN assumes a linear battery consumption.
These are two advantages of using MODULO, i.e., it allows analyzing collaborative
and autonomous systems, and enables an ease adoption of different models.

N

Trigger Delay Cameras Sampling

Cloud

Analyzing

ResetBatteryIdle

I D

E

Fig. 6: QPN model of the smart parking.

For a fair comparison,
MODULO is deployed with
the Linear battery model
and the MVA algorithm.
The performance aspect
is modeled as follows:
N⃗ = (Nld, Nhd) requests
are in the Trigger place
that, after an exponen-
tially distributed Delay
(with average Zld and Zhd, see Table 1), move to the Cameras place. Here,
requests are processed, low- and high-quality pictures are taken (i.e., Sampling
transition) and sent to the Cloud application to be analyzed (i.e., Analyzing
transition), before returning to the initial place. The system throughput is
measured observing the throughput of low- and high-quality requests at the
Analyzing transition. To model the battery consumption aspect in the pro-
posed QPN, every time a picture is captured, E⃗ = (Eld, Ehd) tokens are inserted
into the Battery place depending on the quality of the taken picture. Energy
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is consumed also when cameras are idle (i.e., Cameras is empty), in this case
I tokens are generated into the Battery place every SIdle = 1 second. When
D tokens are collected into the Battery place, the immediate transition Reset
fires. In this case, the average battery longevity is L = 1/ϕReset, where ϕReset

is the firing frequency of the Reset transition.
Comparison of the two approaches, i.e., MODULO and Integrated (in this case

a QPN) is shown in Fig. 7, where we consider prediction (i.e., battery life, low-
, and high-quality throughput) and scalability perspectives. Battery life, low-,
and high-quality throughput are the metrics of choice since they are used (to-
gether with the response time that is derived from the response time law [14]
through N , X, and Z) to compute the system reward, Eqs. (3) or (4). Since
MODULO uses analytical formulas to model the smart parking system, exact val-
ues are obtained by solving equations presented in Section 4.1. The QPN is
simulated on a commodity machine (Intel Core i7-10750H CPU @ 2.60GHz
and 16GB memory) using the discrete-event simulator of the Java Modelling
Tools [3], a widely used tool for performance analysis. Average values are col-
lected with 99% confidence interval. Fig. 7(a) depicts the battery life estimated

c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 c 9 c 1
0

c 1
10

2k
4k
6k
8k

10k

B
at

te
ry

 L
ife

 [s
ec

] Integrated
MODULO

(a) Battery Life

c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 c 9 c 1
0

c 1
10

20

40

60

80

Th
ro

ug
hp

ut
 [r

eq
/s

ec
]

(b) LD Throughput

c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 c 9 c 1
0

c 1
10

10

20

30

Th
ro

ug
hp

ut
 [r

eq
/s

ec
]

(c) HD Throughput

c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 c 9 c 1
0

c 1
10

100

200

300

E
xe

c.
 T

im
e 

[s
ec

]

(d) Execution Time

Fig. 7: MODULO vs. QPN integrated approach – prediction and scalability.

by the two approaches for different configurations. The observed error, i.e.,
Error [%] = (|MIntegrated −MMODULO|/MIntegrated) · 100, is always smaller
than 5%, and MODULO underestimates the battery depletion time. The through-
put of low- and high-quality requests estimated by the two approaches are very
similar and errors are negligible, see Figs. 7(b) and 7(c), respectively. Figure 7(d)
shows that the scalability of the two approaches largely differs. MODULO takes less
than a minute to generate results (and it is even shorter when the approximate
MVA is used for the System Performance module, see Fig. 5).
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4.4 Threats to Validity

Internal validity. Threats are caused by bias in establishing cause-effect rela-
tionships in our experiments. To limit these threats, we extensively experiment
with the considered system. We vary input parameters, look at different output
metrics, and compare MODULO to a widely used mathematical modeling language
(i.e., QPN). We also make code of MODULO and replication data publicly available.

External validity. Threats arise due to modeling assumptions. To mitigate
these threats and assess the appropriateness of claims in Section 4, we use models
and data inspired by established case studies in the literature [4,15]. We are aware
that the generalization of results is not guaranteed, the application of MODULO
to additional scenarios and other domains is left for future work.

Construct validity. Threats related to the design of experiments. We state
the purpose of our experimentation, i.e., (i) assessment of MODULO efficacy in
modeling collaborative and autonomous CPS and (ii) validation of MODULO re-
sults. We analyze different system configurations and show that MODULO can
model collaborative and autonomous CPS (e.g., the smart parking with the Mix
configuration). We compare MODULO to QPN on performance and energy metrics.

Conclusion validity. Threats are due to incorrect relationships between input
parameters and model outputs. Results obtained through MODULO are derived
from state-of-the-art equations and algorithms whose accuracy is assessed in
the literature [14,17]. Results simulated using the QPN are provided with 99%
confidence intervals and a maximum relative error of 3%.

5 Discussion

The choice of models for each module is an open issue in the QoS domain [11], and
there is no silver bullet for this scope. Modules can be implemented differently,
e.g., the system performance can be evaluated using Markov models or QN. Such
choices depend on the application domain and are delegated to QA experts. This
is a limitation of MODULO since the required expertise might not be available in
the development team. In the future, we want to explore the effect of different
models on the accuracy of our approach as well as on module interactions.

MODULO is applied to a case study concerned with battery depletion, system
performance, and reward computation. Other scenarios may call for different
QoS attributes (e.g., reliability and availability) and models. For instance, the
system reliability (i.e., malfunction of components) can be captured by Fault-
Tree Analysis [21], whereas environmental changes affecting the system (e.g., the
speed of the wind may activate different turbines, or the illumination may trigger
more/less powerful sensors) is modeled with Bayesian Networks in [24]. As future
work, we foresee an orchestrator component that is in charge of capturing the
system run-time changes by (i) sensing the environment, (ii) adding the proper
modules, and (iii) triggering QA experts for defining the corresponding models
and the interactions with other modules already specified.

When considering many QoS attributes, MODULO complexity inevitably in-
creases due to the large number of modules and the difficulty of defining their
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interactions. If non-analytic solutions are needed to study one or more mod-
ules, the execution time to solve the overall model may increase as well. In
Figures 5(i)–(l), we investigate the impact of different solution techniques on
MODULO execution time, relatively to the considered case study. In the future,
we plan to investigate the effect of increasing the number of modules and their
interactions on the scalability of our approach.

6 Related Work

The work presented in this paper relates to all the approaches concerned with
QoS-based analysis of software design models, e.g., [9,29]. Seminal work on non-
functional requirements and their correlation through softgoal interdependency
graphs is presented in [8]. MODULO extends [8] by enabling the definition of inter-
actions among different modules and their parameters. Here, we discuss recent
techniques that are closely related to MODULO, and we group them into those
more concerned with: (i) the relationships between quality attributes and design
choices, and (ii) the trade-off analysis between multiple QoS properties.

Relationships between quality attributes and design choices. Lytra et al. [16]
confirm that quality attributes are the major driver of the design process to
achieve high quality systems, and they investigate the relationships between
quality attributes and design decisions. They observe that performance is the
most frequently analyzed attribute, and the cost is also well perceived as a re-
warding factor. Differently from [16] we contribute to improve performance as ef-
fort from the analysis of other QoS-based system properties. Verginadis et al. [26]
consider applications with alternative architecture variants that can be optimized
only considering all their services. They extend two modeling frameworks (i.e.,
CAMEL and MDS) to improve the analysis of such applications in a multi-cloud
environment. Despite sharing similar goals, MODULO profoundly differs from the
approach discussed in [26]. Specifically, the approach proposed by Verginadis
et al. applies to a single domain (i.e., cloud applications) and allows software
developers to use the provided language to study concepts already implemented
in the modeling framework. MODULO allows using any modeling language to de-
fine different services, study their interactions, and analyze the effect of design
decisions on QoS attributes. Schneider et al. [22] consider informal knowledge
to improve design decisions in software architectures by annotating design mod-
els for qualitative-quantitative reasoning. Differently from [22], MODULO does not
explore the whole design space. It gets alternative decisions by analyzing results
obtained from the interaction of different QoS-based modules.

Trade-off analysis between multiple QoS properties. Vitali [27] presents the
Sustainable Application Design Process (SADP) to support software developers
in designing sustainable microservice applications. The proposed methodology
allows developers to specify different working modalities that account for the
trade-off between power consumption and other QoS attributes (e.g., system
performance). While the purpose of the SADP methodology is to draw the de-
velopers’ attention to the sustainability of their applications, MODULO allows an-
alyzing any set of QoS attributes and their interactions. Vale et al. [25] present
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an empirical study on quality trade-offs involving patterns when designing mi-
croservices, and performance emerges as a key concern in industry practice, in
conjunction with scalability that is also perceived as a major challenge in soft-
ware development. Our work inherits from [25] the goal of supporting software
designers when evaluating different QoS analysis results. Cámara et al. [7] explic-
itly link design decisions to satisfaction of quality requirements, while facilitating
the comprehension of trade-offs. Our work differs from [7] since we do not use
machine learning techniques to explore the design space, we generate specific
design alternatives out of QoS analysis results.

Summarizing, to the best of our knowledge, approaches in the literature con-
sider quality trade-offs design decisions that are supported by an integrated
analysis of system models. The MODULO novelty is in the underlying reasoning
engine that builds upon a modular analysis of different QoS-based properties.
The interaction of those properties driven by model-based results allows identi-
fying the most appropriate design alternative.

7 Conclusion and Future Work

In this paper we present MODULO, a modular approach that enables the inter-
action among different quality-of-service (QoS) properties. Its novelty relies on
the interplay of results from the model-based analysis of different modules. Our
approach is viable when studying intertwined QoS-based properties, each one
with its own model and showing interacting features. Experiments assess the
benefits of adopting MODULO to analyse the quality of cyber-physical systems. As
future work, we plan to (i) investigate the last step of MODULO (i.e., Round-trip
Analysis) and its integration with other steps; (ii) extend the modeling of other
interacting QoS properties since we are interested to consider a larger number
of relationships; (iii) apply the approach to industrial applications from different
domains, to further investigate its usability and scalability.
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