
Performance Modeling and Analysis of Design
Patterns for Microservice Systems

Riccardo Pinciroli
Gran Sasso Science Institute

L’Aquila, Italy
riccardo.pinciroli@gssi.it

Aldeida Aleti
Monash University
Clayton, Australia

aldeida.aleti@monash.edu

Catia Trubiani
Gran Sasso Science Institute

L’Aquila, Italy
catia.trubiani@gssi.it

Abstract—The adoption of design patterns in the microservice
architecture and cloud-native development scope was recently
reviewed to investigate the industry practice. Interestingly, when
considering performance-related aspects, practitioners focus on
specific metrics (e.g., the time taken to handle requests) to identify
sources of performance hindrance. This paper investigates a sub-
set of seven design patterns that industrial practitioners indicate
as relevant for system performance. We are interested to quantify
the impact of these patterns while considering heterogeneous
workloads, thus supporting software architects in understanding
the root causes of performance issues. We use queuing networks
to build the performance models of the seven design patterns
and extract quantitative insights from model-based performance
analysis. Our performance models are flexible in their input
parameterization and reusable in different application contexts.
We find that most design patterns confirm the expectation of
practitioners, and our experimental results assess the identified
performance gains and pains. One design pattern (i.e., Gateway
Offloading) shows the peculiar characteristic of contributing to
performance pains in some cases, leading to novel insights about
the impact of design patterns in microservice systems.

Index Terms—Software Architecture, Model-based Perfor-
mance Analysis, Microservices, Design Patterns.

I. INTRODUCTION

Microservices have grown increasingly popular in the last
years due to their key advantage of breaking down software
into modules that become independent processes interacting
via lightweight mechanisms [1]–[3]. Cloud-native applications
are commonly built as microservices by leveraging containers
since they have a smaller footprint than a full virtual machine,
thus isolating microservices and their dependencies from the
underlying infrastructure [4]–[6]. This peculiar aspect of mi-
croservices, along with the promises of larger agility, scal-
ability, maintainability, and performance [7], attracted major
vendors, e.g., Netflix, Amazon, and Uber [8]. Their experience
points out faster development and more flexible deployment of
applications. This leads to cost savings and inspires researchers
and practitioners to further investigate the benefits of the
microservice architecture.

Design patterns find their roots in [9] where the main
concepts of design principles have been sketched. The spec-
ification of design patterns has undergone many variations
across the years, especially the relationship between usage
of patterns and quality attributes [10]. More recently, Vale at
al. [11] presented an empirical study on how industry experts

perceive the impact of design patterns on quality attributes of
microservice systems, focusing on their relevance. The authors
state that there is a need for quantitative approaches that
support the evaluation of design patterns, and this constitutes
the motivation for our work. In this paper, we propose an
approach to quantify the performance characteristics of design
patterns, with the goal of understanding the system ability
to meet performance requirements when managing heteroge-
neous workloads [12]. Performance is recognized as a promi-
nent aspect of microservices [13], hence we extract the seven
design patterns deemed in [11] as relevant to performance. Our
research focuses on modeling and analyzing the performance
characteristics of these patterns.

Software performance engineering techniques aim to pro-
duce performance models [14], such as Queueing Net-
works [15], Stochastic Petri Nets [16], and Markov
Chains [17], early in the development cycle. These tech-
niques are unexplored in the context of microservices [18],
and performance modeling is a prominent research challenge
due to many difficulties, e.g., finding appropriate modeling
abstractions. This observation leads to formulating our first
research question RQ1: How can we model design patterns
with Queuing Network performance models? We answer RQ1

by modeling seven design patterns, and we find some system
characteristics triggering the adoption of hybrid performance
models for one design pattern. This investigation confirms
the difficulty of performance modeling and provides the first
contribution in this area of research.

Performance models are beneficial for guiding software
architects on the early detection and diagnosis of performance
problems, and reducing the waste of resources [19]. The
detection of performance issues in microservices is largely
advocated in the literature [20]–[22], however it is mainly
addressed with expensive monitoring techniques [23] or ma-
chine learning predictions [24]. On the other hand, model-
based performance analysis [25] is a promising technique in
this domain due to its flexibility in analyzing heterogeneous
workloads, i.e., multiple and variegate requests. This motivates
our second research question RQ2: How does the performance
of design patterns change with heterogeneous workloads?
We answer RQ2 by varying the numerical values of input
parameters in performance models and deriving metrics of
interest, i.e., the system response time and resource utilization



undergo a sensitivity analysis on the load or ratio of heteroge-
neous requests. This investigation demonstrates the relevance
of considering variegate workloads and supports the software
architects in understanding performance fluctuations.

In summary, the main contributions of this paper are: (i) we
develop performance models of seven design patterns that in-
dustrial practitioners indicate as relevant to performance [11];
(ii) we perform a model-based performance analysis to support
software architects in quantitatively understanding the perfor-
mance characteristics of design patterns. Performance models
and replication data are publicly available [26].

II. PRELIMINARIES

Design Patterns. Our selection of design patterns is mo-
tivated by industry relevance. As in [11], we select patterns
from the Azure Architecture Center (AAC), i.e., a repository
of software architectures hosted by Microsoft. In particular,
we investigate the seven design patterns that are indicated in
[11] as relevant for performance. The remaining seven design
patterns reported in [11] are excluded from our study since
they are explicitly associated with other quality attributes,
e.g., maintainability, reusability, or security rather than per-
formance.

The detailed description of the selected seven patterns is
reported in [27]. A brief description of their main performance
implications on microservice architectures is as follows:

(i) Anti-corruption Layer, an adapter manages requests be-
tween different microservices. This can result in performance
pain due to the overhead of translating requests;

(ii) Backends for Frontends avoids customizing a single
backend microservice for multiple interfaces. This is a pos-
sible performance gain since it improves the autonomy and
flexibility of the management w.r.t. generalized backends;

(iii) Command and Query Responsibility Segregation, i.e.,
separating read and update operations for a data store mi-
croservice. This can be a performance gain since it speeds up
read and write requests in case of no data overlap;

(iv) Gateway Aggregation, a gateway aggregates requests to
multiple microservices in a single inquiry. This can result in a
performance gain since communication overhead is reduced;

(v) Gateway Offloading offloads common functionalities of
multiple microservices to a proxy gateway. This is a perfor-
mance gain since some tasks are offloaded to the gateway;

(vi) Pipe and Filters decomposes a complex task (i.e., single
service) into separate elements (i.e., microservices) that can be
independently managed. This might represent a performance
gain due to the parallel computing of separate components;

(vii) Static Content Hosting deploys static content into
cloud-based storage microservice. This is perceived as a per-
formance gain since some requests are managed more rapidly.

Queuing Networks (QNs). This modeling formalism is
widely applied to represent and analyze resource-sharing
systems [15]. A QN model is composed of (i) interacting
service stations representing system resources and (ii) jobs
representing users’ requests that share the resources. Service
stations include at least a server and can be of two types: (i)

processing stations with a queue (whose length can be finite
or infinite) and a finite number of servers; (ii) delay stations
without a queue and an infinite number of servers. Service
stations are connected through links that form the network
topology. Each server of a service station picks the next job
from the queue (if not empty), processes it, and routes the
job to another service station. The time spent in every server
by each request (S) follows an exponential distribution [15].
A fork-join mechanism splits the jobs into several tasks that
are executed in parallel. No service time is allocated for this
operation, tasks are routed to the outgoing links of the fork
station and they reconvene in the join station.

For the modeling purpose of this paper, we consider closed
and heterogeneous workloads (i.e., multiple types of requests
that iterate in the network), and each type of requests is
specified through the number of users (N ) and their thinking
time (Z), i.e., the delay before re-iterating the request. The
QN representation can be considered as a direct graph whose
nodes are stations and their connections are represented by
the graph edges. Jobs go through graph edges based on the
required service.

III. PERFORMANCE MODELS OF DESIGN PATTERNS

In this section, we describe the seven design patterns
introduced by Vale et al. [11]; for each pattern, we discuss
the problem it tackles and the proposed solution as presented
in [27]. To answer RQ1, we consider the architectural diagrams
provided in [27], and we present the derived performance
models. Hereinafter, we describe the rationale behind the
performance models, along with the underlying assumptions.

A. Anti-corruption Layer

Problem. Applications leverage different systems for their
operations, which means that systems need to communicate to
provide value to the end customer. For example, a (recently)
migrated system might interact with legacy systems for func-
tion execution, or data warehousing tools may need relational
or NoSQL databases for managing a large amount of data. It
may happen that two systems are not compatible (e.g., due to
the usage of different technologies for their development) or
that legacy systems are affected by quality issues that threaten
the efficiency of other systems.

Solution. Systems should be isolated by means of an anti-
corruption layer, which takes care of mediating and translating
their communications. For example, let us consider the case of
two systems (e.g., new and legacy) that need to interact. The
anti-corruption layer translates all communications between
the two systems and allows (i) the legacy system to remain
unchanged and (ii) the new system to be developed using the
most modern techniques and approaches.

Performance model. The architectural diagram represent-
ing the deployment of an anti-corruption layer between a
microservice-based subsystem and a legacy one is shown in
Fig. 1(a).

Starting from this representation of the considered pattern,
we define the QN model presented in Fig. 1(b). Specifically,



μService 1DataStore

μService 2DataStore

μService 3DataStore

Subsystem 1

Subsystem 2 

Legacy
System 

DataStore

Anti-
corruption

Layer

(a) Architectural diagram [27]

SS1 ACL SS2
Delay

p

1− p

(b) QN model

Fig. 1: Architectural diagram and performance model of the
Anti-corruption Layer design pattern.

the two subsystems (i.e., SS1 and SS2) and the anti-corruption
layer (i.e., ACL) are modeled by three service stations with
their service time that depends on the hardware/software
implementation of the system.

For example, the performance of Subsystem 1 (SS1) is
affected by the number of microservices used for its de-
ployment since a greater number of microservices generally
requires more inter-service communication [11], whereas the
performance of Subsystem 2 (SS2) might depend on the
hardware used for its set up. We model each subsystem as
a service station to let software architects abstract from the
implementation of their system and only consider the time
required to process requests. We assume the analyzed system
serves unbalanced requests, e.g., Fast and Slow requests which
have different requirements. Specifically, Fast requests takes a
small amount of time to be processed by the three services,
whereas Slow ones need longer service times before being
completed.

All requests (initialized in the Delay station) are processed
at least once by SS1. After such processing, there is a
probability p that requests need to execute some actions (e.g.,
retrieve data or invoke a function) on the legacy system (i.e.,
SS2). In this case, requests are first managed by the anti-
corruption layer component, then they are served by SS2.
Hence, requests go back to SS1 where the processing is
completed with probability 1 − p (i.e., the request returns to
the Delay station) or repeated (i.e., the request visits ACL
and SS2 again for further execution).

B. Backends for Frontends

Problem. A single backend service processes heteroge-
neous requests, e.g., requests from Desktop and Mobile user-
interfaces. Therefore, requests with different requirements and
constraints compete for the same service, the single backend
service needs to frequently change and adapt to the different
requests. The backend service quickly becomes the bottleneck
and the performance of the system deteriorates.

Solution. Heterogeneous requests should be served by dif-
ferent backends. This way, requests do not compete for the
same service and the bottleneck is relaxed. Backends can also
be optimized to serve a specific type of requests to further
improve the system performance.

Performance model. Fig. 2(a) depicts the architectural dia-
gram of the Backends for Frontends design pattern, where each
frontend communicates only with the corresponding backend.

Backend 1 Backend 2 

Frontend 1 Frontend 2 

(a) Architectural diagram [27]

BE1

BE2

Delay

(b) QN model

Fig. 2: Architectural diagram and performance model of the
Backends for Frontends design pattern.

The performance model in Fig. 2(b) considers two types
of request (i.e., Desktop and Mobile requests) with different
requirements. Only backends (i.e., BE1 and BE2) are modeled
as service stations, whereas the behavior of frontends is
included in the Delay station since they are not the subject
of this performance analysis. Since this design pattern sug-
gests serving heterogeneous requests with different backends,
Desktop requests are always routed to (and processed by) BE1,
whereas Mobile requests are routed to BE2.

C. Command and Query Responsibility Segregation (CQRS)

Problem. Traditional architectures query and update a
database (DB) using the same (software and hardware) model.
While this may be efficient for simple applications, using this
approach with more complex applications can result in a waste
of resources due to different features (e.g., requirements and
volume) of Read and Write requests.

Solution. CQRS suggests using different models for read-
ing and updating a DB to isolate the two operations. This
allows simplifying the design and implementation of the DB.
Isolation can be software or hardware. In the former case,
queries and updates work on different data models located in
the same DB. In the latter case, one can physically separate
read data from write data (i.e., use different DBs). When
physical separation is implemented, the two DBs must be kept
synchronized, e.g., propagating updates from the write DB to
the read one every time data are written/updated.

Performance model. Since CQRS can be implemented in
two different ways, i.e., software and hardware, see Figs. 3(a)–
(b), respectively, we define two performance models.

Software separation is modeled, see Fig. 3(c), as a single
service (i.e., the DB) processing both Read and Write requests
(i.e., the heterogeneous requests in the system). Once DB
executes a request, the request returns to the Delay station
where it spends some time before visiting DB again.



Write

Read Model

Write Model

DataStore

Data
Service 

Users

Read
Read

Write

(a) Architectural diagram (SW
separation) [27]

Read
DataStore

Query
Service

Data Persistence 
Service

Users
Write

DataStore

Read

Write

(b) Architectural diagram
(HW separation) [27]

DB
Delay

(c) QN model (SW
separation)

DB read

Delay

DB write

can read?

writing

sync

W → R

(d) Multi-formalism (QN+PN) model (HW
separation)

Fig. 3: Architectural diagram and performance model of the
CQRS design pattern.

Hardware separation requires a mechanism that keeps the
two DBs (i.e., the one for queries, DB read, and the one for
updates, DB write) in sync when Read and Write requests
are processed by DB read and DB write, respectively.
To model such a mechanism, see Fig. 3(d), we need to
extend our QN model using Petri Nets (PN) [16], a mod-
eling abstraction suitable to handle synchronization among
requests [28]. Specifically, when a Write request is processed
by DB write, a token is generated into the writing place.
Immediately (i.e., after zero time units, as indicated by the thin
black transition between writing and sync places) a Write
request is returned to the Delay station and a token is placed
in the sync place. Such a token is removed from the sync
place only when the synchronization is completed, i.e., when
the transition W → R fires after an exponentially distributed
time defined by the user. Tokens in the sync place preclude
Read requests from being completed. Indeed, requests served
by DB read return immediately to the Delay station only
if the sync place is empty (see the inhibitor arc, i.e., the arc
with a circle head connecting the sync place to the immediate
transition). Otherwise, Read requests wait in the can read?
place to be completed until there are no token in the sync
place (i.e., when all updates are propagated).

D. Gateway Aggregation

Problem. An application might need to interact with mul-
tiple services before being able to return the desired result
to the end user. The number of interactions increases when
new services or features are added to the application. The
performance of the application is affected by the high number
of interactions, and the current trend of resorting to smaller
services makes such a problem even more relevant.

Solution. Interactions between the application and available
services can be reduced by placing a gateway in the middle.
This way, the performance of the application improves since
the gateway takes care of interacting with the microservices,
collecting their output, and returning aggregated results (i.e.,
reduced communication) to the application.

Performance model. All services considered by this design
pattern, i.e., Gateway and microservices, see Fig.4(a), are
modeled by a service station in the QN model, see Fig.4(b).

Gateway

μService 1

μService 2

μService 3

Users

(a) Architectural diagram [27]

Gateway

Fork Join

S1

S2

S3
Delay

(b) QN model

Fig. 4: Architectural diagram and performance model of the
Gateway Aggregation design pattern.

We assume these services are required to process hetero-
geneous requests, e.g., some requests spend a lot of time in
S3 (i.e., S3Intensive), while others wait a long time in S1
(i.e., S1Intensive). When the Gateway receives a request, it
determines which microservices need to be involved in the
request processing (i.e., S1, S2, and S3 in the example) and
sends to each of them a sub-request. In the QN, this is modeled
by means of a fork-join mechanism: (i) requests going through
the Fork are split into sub-requests, one for each outgoing
connection; (ii) sub-requests are merged back into the original
request when reaching the Join. After being served by all
the microservices, the request goes back to the Delay station
where it waits some time before starting a new process.

E. Gateway Offloading

Problem. Different services may need to include the same
type of feature (e.g., encryption, authentication, authorization)
in their operation pipeline. The requests processing is slowed
down if the same operation is executed multiple times, e.g, two
sequential microservices both needing to authenticate requests.

Solution. Features that are shared by all services should
be deployed in a gateway. This way, the processing time
of requests decreases since the gateway allows reducing the
number of invocations to the common features.

Performance model. Fig. 5(a) shows the analyzed scenario,
where users generate two types of request, e.g., Dashboard
and Monitoring requests.

The former request type (i.e., processed by µService 1, S1
in the QN) allows users to view their dashboard, the latter one
(i.e., processed by µService 2 and µService 3, S2 and S3 in
the QN, respectively) allows users to profile some processes
and download collected data. All these microservices (i.e.,
dashboard visualization, process profiling, and data download)



Gateway

μService 1

μService 2 μService 3

Users

(a) Architectural diagram [27]

Gateway

Delay S1

S2 S3

(b) QN model

Fig. 5: Architectural diagram and performance model of the
Gateway Offloading design pattern.

require users to authenticate before executing the requests.
When using the Gateway Offloading design pattern, the au-
thentication feature is deployed in the Gateway since such a
feature is invoked by all the involved microservices. The QN in
Fig. 5(b) is obtained by mapping every service (i.e., gateway
and microservices) with a service station. Gateway serves
all requests, S1 serves Dashboard requests, while S2 and S3
serve Monitoring requests.

F. Pipes and Filters

Problem. An application needs to execute some tasks on
requests generated from different sources (e.g., freemium
and premium users). If the application is implemented as
monolithic modules (i.e., one of them serving Freemium
requests, the other processing Premium ones), different quality
attributes of the system (including performance) experience
deterioration.

Solution. Code reuse should be facilitated to maximize the
efficiency of an application. Specifically, each monolithic mod-
ule should be broken down into a set of separated components,
each one performing a different task. This way, tasks that are
common to both request types can be reused.

Performance model. To model this design pattern, we con-
sider two different implementations. The former, see Fig. 6(a)
for its representation, is shown in [27]; such implementation
replicates Task 1 and Task 2 that are used to process both types
of requests, while uses Task 3 and Task 4 only for Freemium
and Premium requests, respectively.

The QN model of this implementation of Pipes and Filters
is shown in Fig. 6(c), where every task is represented by a
service station. All Freemium requests are processed by the
tasks on the top (i.e., T1, T2, and T3), while Premium requests
are routed to and served by tasks on the bottom of the figure
(i.e., T1, T2, and T4). We also envision and analyze another
possible implementation of this design pattern, see Fig. 6(b).
In this case, common tasks (i.e., Task 1 and Task 2) use the
same services and serve both request types. Therefore, in the
QN model, see Fig. 6(d), all requests go through T1 and T2.
After being processed by T2, Freemium requests are served
by T3, while T4 executes Premium requests.

Task 2 Task 3Task 1

Task 2 Task 4Task 1

Freemium

Premium

(a) Architectural diagram
(separated services) [27]

Task 3

Task 2

Task 4

Task 1
Freemium

Premium

(b) Architectural diagram (joint
services)

Delay

T1

T1 T2

T2 T3

T4

(c) QN model (separated
services)

Delay

T1 T2
T3

T4

(d) QN model (joint
services)

Fig. 6: Architectural diagram and performance model of the
Pipes and Filters design pattern.

G. Static Content Hosting

Problem. Requests might need to retrieve some static con-
tents besides running computations. If a single service is
in charge of computation and static content download, the
performance of the application may deteriorate due to the
excessive load of the service.

Solution. Static content should be placed in a storage
service that is accessed by requests without the need for extra
computation from other services. This way, the storage service
can handle downloading requests and relax the load of other
services that can focus on computation.

Performance model. A representation of this design pattern
is shown in Fig. 7(a), where users’ requests trigger two
services, i.e., the Computation Service, which is in charge of
all computations, and the Storage Service that contacts the
storage device to retrieve static contents.

Users Computation
Service 

DataStore
Storage
Service 

(a) Architectural diagram [27]

Delay

Fork Join

Computation

Storage

(b) QN model

Fig. 7: Architectural diagram and performance model of the
Static Content Hosting design pattern.

The QN model is depicted in Fig. 7(b). Heterogeneous
requests are considered, e.g., requests that need a lot of
computation (i.e., CompIntensive) and requests whose com-
putation is shorter, but need to download larger contents (i.e.,
StorIntensive). All requests are forked into sub-requests that
are concurrently processed by Storage and Computation
service stations. The Storage station models download
operations, while the Computation one represents the cal-
culation required by each request. Results are returned to the
users when the computation is completed and static contents
are downloaded.

Summarizing, the answer to RQ1 is as follows.



RQ1: Performance Models of Design Patterns

All design patterns that are identified to affect the per-
formance of an application in [11] can be modeled using
QN. The only exception is the CQRS design pattern
(only hardware separation, i.e., DBs for read and write
operations are physically separated). In that case, the
QN model needs to be extended using PN to account
for the synchronization of DB read when data in DB
write is added or updated. Performance models also
allow envisioning different implementations of the same
pattern, as we do for Pipes and Filters.

IV. MODEL-BASED PERFORMANCE ANALYSIS

To answer RQ2, we simulate the performance models de-
scribed in Section III. We collect the system response time
(R) and resource utilization (U ) as output metrics. Due to the
lack of space, we do not show the system throughput (X , i.e.,
another commonly used metric [29], [30]) since it can be easily
retrieved from the response time and the number of users in
the system (N ) using the Little’s law [15], i.e., X = N/R.

Simulations are performed using JSIMgraph [31] (i.e., the
simulator of Java Modelling Tools, a widely used and largely
validated framework for performance evaluation) and take
21.6 sec on average to converge. Simulations are executed
on a commodity machine with an Intel Core i7-10750H
CPU @ 2.60GHz and 16GB memory. The shortest simulation
terminates after 3.3 sec, the longest one needs 250.5 sec (i.e.,
4.2 min). For all output metrics, we show their average value
and 99% confidence interval (i.e., lines and shaded areas,
respectively). A replication package containing models, input
data, and obtained results is publicly available [26].

A. Anti-corruption Layer

Table I reports the input parameters of a microservice-
based application with an anti-corruption layer (ACL) placed
between two subsystems (SS1 and SS2). All time values are
in milliseconds (ms). Fig. 8 shows the performance analysis of
the system. The average system response time (i.e., the time
spent by a request into the system, or the time between the
request generation and its completion) is depicted in Fig. 8(a)
against the percentage of Slow requests in the system. We
remind the reader that Slow requests take longer time than
Fast ones to be processed by each service (i.e., SS1, ACL,
and SS2), see Section III-A.

The percentage of Slow requests in the system is computed
as NSlow/N , where N is the total amount of requests in the
system (e.g., N = NSlow + NFast). Note that the ratio of
Fast requests in the system when there are NSlow requests
is computed as NFast/N = 1 − NSlow/N . Unlike what one
would expect (i.e., the application is faster when only Fast
requests are into the system), the average system response time
is minimized when NSlow/N = 0.56. The system performance
deteriorates up to 80% and 34% when the application serves
only Fast and Slow requests, respectively. Although surprising,
this behavior is described in the literature [32] and is ascribable

TABLE I: Anti-corruption Layer – input parameters

Req. Type Slow Fast
N [0, 25] 25−NSlow
Z 20 100
p 20% 80%

SSS1 12 0.6
SACL 20 5
SSS2 32 4.25

0.0 0.2 0.4 0.6 0.8 1.0
NSlow / N

300

400

500

S
ys

te
m

R
es

p
on

se
T

im
e

[m
s]

(a) Response time

0.0 0.2 0.4 0.6 0.8 1.0
NSlow / N

20

40

60

80

100

U
ti

liz
at

io
n

[%
]

SS1

SS2

ACL

(b) Utilization

Fig. 8: Anti-corruption Layer – performance analysis

to different services becoming the system bottleneck (i.e., the
service with the largest utilization [15]) when the ratio of
heterogeneous requests in the system changes. To highlight
the bottleneck switch experienced by our application, Fig. 8(b)
depicts the utilization of the three services considered when
analyzing this design pattern (i.e., ACL, SS1, and SS2). For
NSlow/N ≤ 0.28, ACL is the system bottleneck since there are
many Fast requests in the system which often (i.e., p = 80%,
see Table I) need to be served by ACL and interact with SS2.
When 0.28 < NSlow/N ≤ 0.48 the bottleneck is SS2 due to a
large number of Slow requests in the system that occasionally
(i.e., p = 20%) need to be served by ACL and SS2. The
large percentage of Fast requests requiring service from SS2
and the long time (i.e., 32 ms) spent by few Slow requests
in the same service make SS2 the bottleneck of the system.
If NSlow/N > 0.48, SS1 becomes the bottleneck since Slow
requests mainly require to be processed only by this service.

Architectural implications. When adopting this design pat-
tern, software architects need to pay attention to heterogeneous
requests to optimize the performance of their applications. Our
parametrization shows that the ratio of unbalanced (e.g., Fast
and Slow) requests affects the bottleneck and, consequently,
the system response time.

B. Backends for Frontends

The performance of an application, parameterized as in
Table II (all time values are in ms), that serves incoming
requests with two different backends (i.e., BE1 and BE2, as
suggested by the considered design pattern), is shown in Fig. 9.

The average system response time of this application is de-
picted in Fig. 9(a) against the ratio of Desktop requests in the
system. We assume Mobile requests are served faster (11 ms)
than Desktop ones (13 ms) due to the considered design pattern
(e.g., BE2 is optimized for serving Mobile requests). However,
when the application serves a large number of Mobile requests
(i.e., NDesktop/N ≤ 0.1), the system response time is up to 86%
longer than its minimum value.



TABLE II: Backends for Frontends – input parameters

Req. Type Desktop Mobile
N [0, 100] 100−NDesktop
Z 100 100
SB1 13 –
SB2 – 11

0.0 0.2 0.4 0.6 0.8 1.0
NDesktop / N

600

800

1000

1200

S
ys

te
m

R
es

p
on

se
T

im
e

[m
s]

(a) Response time

0.0 0.2 0.4 0.6 0.8 1.0
NDesktop / N

0

25

50

75

100

U
ti

liz
at

io
n

[%
]

BE1

BE2

(b) Utilization

Fig. 9: Backends for Frontends – performance analysis

A similar behavior is observed if the application executes
a large number of Desktop requests (i.e., NDesktop/N ≥ 0.9)
with the system response time being up to 119% longer than
its minimum value. Fig. 9(b) shows that previous observations
are due to the system bottleneck switching from BE2 to BE1.
In this case, software architects have a large range of values
to optimize the performance of their applications (i.e., 0.1 <
NDesktop/N < 0.9) due to the two services (i.e., BE1 and BE2)
saturating at the same time.

Architectural implications. Software architects should em-
ploy this design pattern when different sources (e.g., frontends)
generate comparable amounts of requests. Experiments show
that the system response time deteriorates when the application
serves mainly requests from a single frontend.

C. CQRS

Fig. 10 depicts the performance of an application designed
using the CQRS pattern whose parameters are shown in
Table III (all time values are in ms). In Section III-C, we
stress that this design pattern can be deployed with SW or
HW separation.

TABLE III: CQRS – input parameters

Req. Type Read Write
N 90 10
Z 10 [200, 1000]
SDB 5 40

W → R – SDB,Write

200 400 600 800 1000
ZWrite [ms]

500

1000

1500

2000

2500

S
ys

te
m

R
es

p
on

se
T

im
e

[m
s]

HW

SW

(a) Response time

200 400 600 800 1000
ZWrite [ms]

25

50

75

100

U
ti

liz
at

io
n

[%
]

HW - DB read

HW - DB write

SW - DB

(b) Utilization

Fig. 10: CQRS – performance analysis

When SW separation is preferred, the application is de-
ployed with a single DB, see Fig. 3(a). In this case, effects
of the bottleneck switch are not observed since Read and
Write requests are served by a single service, see Fig. 3(c).
However, performance models can be used to evaluate which
implementation of CQRS (i.e., SW or HW) works better, e.g.,
when the frequency of Write requests (i.e., Zwrite) varies. For
this scenario, we consider a read-mostly workload, i.e., the
Read:Write ratio is 9:1. Fig. 10(a) depicts the average system
response time of SW and HW separations against Zwrite. When
Write requests are frequent in the system (i.e., Zwrite ≤ 350
ms), the best strategy from the performance perspective is to
have a single DB with two different data models (i.e., SW
separation), whereas HW separation is more convenient when
Write requests are rare.

This is due to the time DBs spend syncing when HW
separation is used. If many Write requests are in the system
or they are issued too frequently, Read requests might wait
a long time for an up-to-date version of the DB on which
to perform their queries. When the number or frequency of
Write requests is limited, sync operations are less common
and Read requests can query the DB without waiting for
synchronization. This allows observing a system response time
that is 28% shorter than the one obtained using SW separation,
where the only available DB needs to serve both Read and
Write requests. Fig. 10(b) shows the utilization of all services
(i.e., DB read and DB write for HW separation, DB for
SW separation). While the service deployed for SW separation
is always fully utilized, at least one of the services for HW
separation is under-utilized leaving some space for optimizing
the deployment of the application.

Architectural implications. When adopting this pattern, soft-
ware architects need to carefully choose between SW and
HW separation. Our parametrization shows that frequent Write
requests deteriorate the performance of HW separated systems.

D. Gateway Aggregation

The performance of an application designed using this
pattern is shown in Fig. 11, and input parameters are reported
in Table IV (all time values are in ms).

Multiple services (i.e., the gateway and 3 microservices)
are involved in processing users’ requests, and the system
response time shows a non-monotonic trend due to the bottle-
neck switch. Fig. 11(a) depicts the average system response
time when the percentage of S3Intensive requests in the
system varies. The shortest response time is observed when
NS3Intensive/N = 0.48. The system performance deteriorates
up to 31% and 46% when the number of S3Intensive and
S1Intensive requests in the system decreases, respectively.
Fig. 11(b) shows the services limiting the system performance
(i.e., the system bottlenecks) in the considered case. S1 is the
bottleneck of the system when NS3Intensive/N ≤ 0.36, S2 limits
the system performance when 0.36 < NS3Intensive/N ≤ 0.64,
and S3 is the most used service when NS3Intensive/N > 0.64.
The gateway is never the system bottleneck in this scenario.



TABLE IV: Gateway Aggregation – input parameters

Req. Type S3Intensive S1Intensive
N [0, 25] 25−NS3Intensive
Z 100 100

SGW 10 10
SS1 7 18
SS2 15 12
SS3 20 5

0.0 0.2 0.4 0.6 0.8 1.0
NS3Intensive / N

350

400

450

500

S
ys

te
m

R
es

p
on

se
T

im
e

[m
s]

(a) Response time

0.0 0.2 0.4 0.6 0.8 1.0
NS3Intensive / N

40

60

80

100

U
ti

liz
at

io
n

[%
]

GW

S1

S2

S3

(b) Utilization

Fig. 11: Gateway Aggregation – performance analysis

Architectural implications. Microservice-based applications
that process heterogeneous workloads are inclined to bottle-
neck switch. When an application processes requests with
different requirements, the service limiting the system perfor-
mance (i.e., the bottleneck) changes with the ratio of hetero-
geneous requests. For this reason, software architects need to
consider request requirements to optimize their applications.

E. Gateway Offloading

Performance models presented in Section III can be used
by software architects to tune their application and choose the
most efficient way to use a design pattern. This is observable
when considering the performance of an application designed
with the Gateway Offloading pattern, see Fig. 12.

TABLE V: Gateway Offloading – input parameters

Req. Type Dashboard Monitoring
N [0, 25] 25−NDashboard
Z 100 100

SGW [0, 10] SGW,Dashboard
SS1 20− SGW,Dashboard –
SS2 – 12− SGW,Monitoring
SS3 – 15− SGW,Monitoring

0.0 0.2 0.4 0.6 0.8 1.0
NDashboard / N

200

300

400

500

S
ys

te
m

R
es

p
on

se
T

im
e

[m
s]

SGW = 0 ms

SGW = 5 ms

SGW = 10 ms

(a) Response Time

0.0 0.2 0.4 0.6 0.8 1.0
NDashboard / N

0

25

50

75

100

U
ti

liz
at

io
n

[%
]

(b) Gateway Utilization

Fig. 12: Gateway Offloading – performance analysis

Specifically, here we try to identify which type of operation
should be offloaded, i.e., how long requests should spend in
the gateway. As shown in Table V (all time values are in ms),
SGW is the same for both request types (i.e., Dashboard and

Monitoring), and the time a request spends in the gateway
to execute the offloaded operation is taken away from other
services, e.g., SS1 = 20 − SGW with 20 ms being the time
spent in S1 when no operations are offloaded to the gateway.

For our analysis, we consider three offloading strategies,
i.e., no offloading (SGW = 0 ms), offloading short operations
(SGW = 5 ms), and offloading long operations (SGW = 10
ms). The effect of these three strategies on the average system
response time is depicted in Fig. 12(a) against NDashboard/N .
For the sake of readability, Fig. 12(b) shows only the gateway
utilization when the three strategies are used, the utilization
of other services (i.e., S1, S2, and S3) is omitted. If no
operations are offloaded to the gateway, this service is not
used (i.e., Utilization = 0%), the bottleneck switches among
other services and the system response time is U-shaped.

Similar observations are drawn when a short operation
is offloaded. In our scenario, the utilization of the gateway
service is between 33% and 75%, i.e., not enough to make
the gateway the system bottleneck. Therefore, the bottleneck
switches again among other services and the system response
time is still U-shaped. If a long operation is offloaded, the gate-
way is always the bottleneck of the system since its utilization
is 100% due to the long operation that it executes. In this case,
there is not bottleneck switch and the system response time
is flat when NDashboard/N varies. These observations should
influence software architects’ decisions.

Depending on the ratio of Dashboard and Monitoring re-
quests, it is preferable offloading short operations (i.e., SGW =
5 ms) if NDashboard/N ≤ 0.84, or long ones (i.e., SGW = 10
ms) when NDashboard/N > 0.84 to minimize the response time
of the application. Moreover, if short operations cannot be
offloaded (e.g., they are not shared by all requests [27]), it
might be more beneficial not using this design pattern, e.g.,
in our scenario the no offloading strategy performs better than
offloading long operations when 0.2 ≤ NDashboard/N ≤ 0.64.

Architectural implications. Software architects should
wisely choose which operations to offload to the gateway.
Differently from [11] in which this design pattern is perceived
as a performance gain, our results show that offloading long
operations may deteriorate the system performance to the
extent of invalidating the usage of this pattern.

F. Pipes and Filters

The average system response time observed when applica-
tions (tuned as in Table VI where all time values are in ms)
are designed using this pattern is depicted in Fig. 13 against
the percentage of Freemium requests in the system.

For the sake of readability, the service utilization of this
design pattern is omitted. The response time of the implemen-
tation suggested in [27] is labeled as Separated since services
that process different requests are deployed multiple times,
e.g., see Task 1 and Task 2 in Fig. 6(a). We label with Joint
the response time of implementations where common tasks
are executed by the same service, see Fig. 6(b). Specifically,
we use Joint (×1) if only 1 CPU is allocated to each service
that executes common tasks, while we use Joint (×2) if 2



TABLE VI: Pipes and Filters – input parameters

Req. Type Freemium Premium
N [0, 50] 50−NFreemium
Z 100 100
ST1 12 8
ST2 15 9
ST3 11 –
ST4 – 10

0.0 0.2 0.4 0.6 0.8 1.0
NFreemium / N

300

400

500

600

700

S
ys

te
m

R
es

p
on

se
T

im
e

[m
s]

Joint (×1)

Joint (×2)

Separated

Fig. 13: System response time of an application designed using
the Pipes and Filters pattern.

CPUs are allocated to these services. Results show that the
Joint (×1) implementation does not perform as well as others,
the response time observed in this case is always the longest
one due to Task 1 and Task 2 processing all requests (i.e.,
Freemium and Premium) with limited power. Separated and
Joint (×2) provides similar performance as long as some
Premium requests are in the system, i.e., NFreemium/N ≤ 0.7.
When the number of Freemium requests is prevalent, the
Joint (×2) implementation performs up to 27% better than the
Separated one. Software architects can use these performance
models to determine which implementation of the Pipes and
Filters pattern is more convenient for their applications.

Architectural implications. When adopting this design pat-
tern, software architects need to be aware that using additional
resources (e.g., services with 2 CPUs) might be beneficial
when observing separate services showing bad performance.

G. Static Content Hosting

TABLE VII: Static Content Hosting – input parameters

Req. Type CompIntensive StorIntensive
N [0, 50] 50−NCompIntensive
Z 100 100

SComp 14 6
SStor 8 15

0.0 0.2 0.4 0.6 0.8 1.0
NCompIntensive / N

550

600

650

700

750

S
ys

te
m

R
es

p
on

se
T

im
e

[m
s]

(a) Response time

0.0 0.2 0.4 0.6 0.8 1.0
NCompIntensive / N

40

60

80

100

U
ti

liz
at

io
n

[%
]

Computation

Storage

(b) Utilization

Fig. 14: Static Content Hosting – performance analysis

The performance of this design pattern when the input
parameters are as in Table VII (all time values are in ms)
is shown in Fig. 14. The system response time is depicted as
a function of NCompIntensive/N , see Fig. 14(a). The bottleneck
switching between Computation and Storage services is visible
in Fig. 14(b) that shows the utilization of the two services. For
NCompIntensive/N ≤ 0.6 the Storage service is the bottleneck
of the system, whereas when NCompIntensive/N > 0.6 the
Computation service becomes the bottleneck. This affects the
average system response time that shows a non-monotonic
behavior and whose minimum value is up to 28% smaller
than the maximum one.

Architectural implications. When adopting this design pat-
tern, the load required for computation and storage determines
the bottleneck switch. Software architects should consider re-
implementing their applications to minimize computation and
storage requirements (e.g., more efficient access to database).

In summary, the answer to RQ2 is as follows:
RQ2: Performance Analysis of Design Patterns

The intrinsic characteristic of microservice applications
which make use of multiple services to process heteroge-
neous requests can be a threat to the system performance
due to the bottleneck switch. Our performance models
can support software architects in determining the best
pattern implementation (e.g., as shown for CQRS and
Pipes and Filters) or understanding when a pattern
provides a real advantage for the system performance
(e.g., as discussed for Gateway Offloading).

V. DISCUSSION

Here, we discuss the main limitations observed when mod-
eling and analyzing the performance of design patterns. We
also present threats to the validity of our approach.

A. Performance Modeling

The choice of using QN as the target notation for modeling
the performance is motivated by the application of this formal-
ism to many real-world systems, e.g., Industry 4.0 warehouse
automation [33], Apache Cassandra [34], cloud applications
[35]. This choice does not reduce the applicability of our
approach. However as future work, we plan to experiment
with further notations (e.g., Markov Chains [17]) to investigate
the usability and scalability of other performance notations, as
well as the modeling and analysis of other system attributes,
e.g., dependability [36]. We are aware that performance mod-
els are not guaranteed to be correct since they are built on
the basis of our interpretation of the specification of design
patterns [27]. This is an open issue that we aim to investigate
as part of our future research.

B. Performance Analysis

The choice of running simulations is motivated by our as-
sumption that the performance analysis is conducted at design
time. This means that performance-based analysis results are



reported to support software architects in studying different
design patterns and quantitatively understanding their perfor-
mance behavior. We are confident that the results returned
by JSIMgraph are accurate since the simulator accuracy is
assessed in multiple domains [37], [38]. The validation of
performance models calls for comparing simulation results
with measurements from real-world systems. As part of our
future work, we plan to measure the performance charac-
teristics of microservice-based systems (e.g., TeaStore [39],
TrainTicket [40], or Sock Shop [41]). This way, we can
parameterize the proposed performance models and compare
predicted results to measured values. At this stage, we aim
to raise the attention of software architects toward possible
performance fluctuations due to heterogeneous workloads and
operational profiles.

C. Threats to validity

Besides inheriting all limitations of design patterns and
software performance engineering research [42], [43], our
approach exhibits the following threats to validity [44].

External validity, i.e., generalization of results, is not guar-
anteed, since our models have been formulated for seven
design patterns only, and model-based performance results
highlight the conditions (i.e., heterogeneous workloads and
operational profiles) for bottleneck switches. To smooth these
threats, we consider large variations in workloads, but it is
still an open issue to demonstrate the applicability of design
patterns to real-world applications. We plan to further investi-
gate this point by experimenting the usage of design patterns
in industrial applications, possibly from multiple domains.

Internal validity, i.e., the settings used for performance
modeling and analysis, is tackled by designing experiments
with the purpose of having a direct manipulation on the
performance indices of interest. For instance, the seven design
patterns share some input parameter values to avoid misleading
effects that cannot be traced back to root causes. Setting
numerical values of input parameters is indeed an open issue
in the software performance engineering domain [45]. To
improve this point, the service time of microservices might be
derived with the introduction of a monitor that collects data
for a certain time frame and produce some statistics. Besides,
other parameters can be further detailed, e.g., different gate-
ways may show diverse performance characteristics (e.g., the
speed of aggregating data). We recall that performance models
are publicly available [26] and software architects can easily
change the numerical values of input parameters.

Construct validity, i.e., the statistical validity of the experi-
mental results, is smoothed by setting that all simulations un-
dergo a 99% confidence interval, thus to monitor the accuracy
of presented numerical results.

VI. RELATED WORK

The motivation for our work is supported by a large lit-
erature. Cloud design patterns and their quality attributes are
widely used by industrial practitioners due to their relevance
for microservice systems [46]. Di Francesco et al. [47] classify

103 studies on microservice architectures and observe that per-
formance grows quickly in popularity and importance among
microservice quality attributes. Nevertheless, architectures and
patterns are generally described via informal languages, which
makes modeling and analyzing their characteristics complex
for researchers and practitioners. Wijerathna et al. [48] observe
that performance is evaluated only at runtime, despite it
being the main concern of architecture design patterns. The
exponential growth of costs to fix errors at advanced stages of
the project life-cycle [49] motivates the need for performance
models that enable the early performance evaluation. As
further confirmation of the previous assertion, other studies
(e.g., Heinrich et al. [18]) indicate the performance modeling
of microservice applications and their patterns as a research
challenge and direction.

Li et al. [50] analyze 72 primary studies in a systematic
literature review and identify performance as one of the
most critical quality attributes when designing a microservice
application. This further stresses the need for performance
models to systematically study large-scale microservices. Vale
et al. [11] interview practitioners at 9 different companies on
which design patterns (belonging to the Design and Implemen-
tation category of Azure [27]) are generally adopted in real-
world applications. Out of 14 design patterns considered in
the survey and used by the interviewed practitioners, 7 affect
the system performance. The authors highlight the need for
empirical studies to evaluate the impact of design patterns on
microservice quality attributes. Soldani et al. [51] analyze the
industrial grey literature on microservice-based applications
and observe that performance testing is the most challenging
activity when developing these applications. Cortellessa et
al. [52] present an approach to trace relationships between the
performance monitored data of microservice-based systems
and their architectural models, thus supporting the idea of
exploiting models to evaluate the performance of microser-
vices. These studies stress the importance of modeling and
analyzing the performance of microservice applications in a
formal manner, i.e., the principal aspect of our paper.

The closest related methodologies are listed hereafter.
Khomh and Abtahizadeh [53] use a cloud-based application
to investigate the performance (and energy consumption) of 6
design patterns. Differently from our investigation, the authors
consider only one Azure Design and Implementation pattern
(i.e., Pipes and Filters) and do not define any performance
model. Akbulut and Perros [54] study the performance of 3
design patterns by deploying a microservice application on
a private virtual environment. Despite the authors stressing
that optimal design patterns depend on the considered sce-
nario and organization needs, no performance models of the
analyzed patterns are provided. Kousiouris [55] proposes the
Batch Request Aggregation pattern to reduce the latency and
monetary costs of cloud environments. A similar approach is
successfully adopted in [56], [57] to process homogeneous and
heterogeneous inference requests with the serverless paradigm.
Amiri et al. [58] investigate the system reliability and perfor-
mance trade-offs of 3 microservice architectures. They use



a Bernoulli model for reliability and a statistical model for
performance analysis. Design patterns modeled and analyzed
in our paper are not considered by the authors.

Long et al. [59] empirically study the effect of the Queue-
based Load Leveling pattern and assess its impact on the
performance of a serverless application. However, the authors
analyze only one design pattern and do not provide observa-
tions for different patterns. Ma et al. [60] develop a framework
that detects abnormal services; it makes use of a correlation
calibration mechanism to detect cloud design patterns and
eliminate their negative effects by root cause analysis. Instead
of monitoring the system performance, our models evaluate
the system behavior at design time, i.e., in the early phases of
the development cycle.

Summarizing, to the best of our knowledge, most of the
approaches in the literature stress the importance of modeling
and analyzing the performance of microservice applications
in a formal manner. However, there is no work quantifying
the performance implications of adopting design patterns and
supporting software architects in this task, i.e., one of the main
contributions of this paper.

VII. CONCLUSION

In this paper, we define performance models to analyze the
characteristics of seven design patterns that can be used in mi-
croservice systems. The main findings are: (i) QN performance
models are suitable abstractions, for only one pattern we
leverage a hybrid model (borrowing PN modeling constructs)
to handle synchronization among requests; (ii) model-based
analysis results support software architects in understanding
the impact of heterogeneous workloads on the performance
characteristics of design patterns.

In future work, we plan to address all the limitations
discussed as part of threats to validity. Besides, we are
interested to further investigate the effectiveness of our models.
Empirical studies involving industrial practitioners will allow
evaluating how they perceive our models as support to quantify
the impact of design patterns on the performance evaluation
of microservice systems.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
valuable feedback. This work has been partially funded by
MIUR PRIN project 2017TWRCNB SEDUCE (Designing
Spatially Distributed Cyber-Physical Systems under Uncer-
tainty).

REFERENCES

[1] N. Dragoni, S. Giallorenzo, A. Lluch-Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: Yesterday, Today, and
Tomorrow,” in Present and Ulterior Software Engineering. Springer,
2017, pp. 195–216.

[2] X. Larrucea, I. Santamaria, R. Colomo-Palacios, and C. Ebert, “Mi-
croservices,” IEEE Software, vol. 35, no. 3, pp. 96–100, 2018.

[3] A. Bucchiarone, N. Dragoni, S. Dustdar, P. Lago, M. Mazzara, V. Rivera,
and A. Sadovykh, Microservices: Science and Engineering. Springer,
2020.

[4] D. Liu, H. Zhu, C. Xu, I. Bayley, D. E. Lightfoot, M. Green, and
P. Marshall, “CIDE: An Integrated Development Environment for Mi-
croservices,” in Proceedings of the International Conference on Services
Computing (SCC). IEEE, 2016, pp. 808–812.

[5] S. Taherizadeh and M. Grobelnik, “Key influencing factors of the Ku-
bernetes auto-scaler for computing-intensive microservice-native cloud-
based applications,” Advances in Engineering Software, vol. 140, 2020.

[6] N. C. Mendonça, C. Box, C. Manolache, and L. Ryan, “The Monolith
Strikes Back: Why Istio Migrated From Microservices to a Monolithic
Architecture,” IEEE Software, vol. 38, no. 5, pp. 17–22, 2021.

[7] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov, “Mi-
croservices: The Journey So Far and Challenges Ahead,” IEEE Software,
vol. 35, no. 3, pp. 24–35, 2018.

[8] A. Rud, “Why and How Netflix, Amazon, and Uber
Migrated to Microservices: Learn from Their Experience,”
https://web.archive.org/web/20230104141759/https://www.hys-
enterprise.com/blog/why-and-how-netflix-amazon-and-uber-migrated-
to-microservices-learn-from-their-experience/, 2019.

[9] R. C. Martin, “Design Principles and Design Patterns,” Object Mentor,
vol. 1, no. 34, p. 597, 2000.

[10] D. Feitosa, A. Ampatzoglou, P. Avgeriou, A. Chatzigeorgiou, and
E. Y. Nakagawa, “What can violations of good practices tell about
the relationship between GoF patterns and run-time quality attributes?”
Information and Software Technology, vol. 105, pp. 1–16, 2019.

[11] G. Vale, F. F. Correia, E. M. Guerra, T. de Oliveira Rosa, J. Fritzsch, and
J. Bogner, “Designing Microservice Systems Using Patterns: An Empir-
ical Study on Quality Trade-Offs,” in Proceedings of the International
Conference on Software Architecture (ICSA). IEEE, 2022, pp. 69–79.

[12] X. Chang, R. Xia, J. K. Muppala, K. S. Trivedi, and J. Liu, “Effective
Modeling Approach for IaaS Data Center Performance Analysis under
Heterogeneous Workload,” IEEE Transactions on Cloud Computing,
vol. 6, no. 4, pp. 991–1003, 2018.

[13] M. Amaral, J. Polo, D. Carrera, I. Mohomed, M. Unuvar, and M. Stein-
der, “Performance Evaluation of Microservices Architectures Using
Containers,” in Proceedings of the International Symposium on Network
Computing and Applications (NCA). IEEE, 2015, pp. 27–34.

[14] H. Koziolek, “Performance evaluation of component-based software
systems: A survey,” Performance Evaluation, vol. 67, no. 8, pp. 634–
658, 2010.

[15] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik, Quan-
titative system performance - computer system analysis using queueing
network models. Prentice Hall, 1984.

[16] R. David and H. Alla, “Petri nets for modeling of dynamic systems: A
survey,” Automatica, vol. 30, no. 2, pp. 175–202, 1994.

[17] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi, Queueing Networks
and Markov Chains - Modeling and Performance Evaluation with
Computer Science Applications, Second Edition. Wiley, 2006.

[18] R. Heinrich, A. van Hoorn, H. Knoche, F. Li, L. E. Lwakatare,
C. Pahl, S. Schulte, and J. Wettinger, “Performance Engineering for
Microservices: Research Challenges and Directions,” in Proceedings
of the International Conference on Performance Engineering (ICPE).
ACM, 2017, pp. 223–226.

[19] A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “It’s not a Sprint, it’s a
Marathon: Stretching Multi-resource Burstable Performance in Public
Clouds,” in Proceedings of the International Middleware Conference
Industrial Track (Middleware). ACM, 2019, pp. 36–42.

[20] L. Wu, J. Tordsson, E. Elmroth, and O. Kao, “MicroRCA: Root Cause
Localization of Performance Issues in Microservices,” in Proceedings of
the Network Operations and Management Symposium (NOMS). IEEE,
2020, pp. 1–9.

[21] L. Meng, F. Ji, Y. Sun, and T. Wang, “Detecting anomalies in microser-
vices with execution trace comparison,” Future Generation Computer
Systems, vol. 116, pp. 291–301, 2021.

[22] R. K., P. Tammana, P. G. Kannan, and P. Naik, “A Case For Cross-
Domain Observability to Debug Performance Issues in Microservices,”
in Proceedings of the International Conference on Cloud Computing
(CLOUD). IEEE, 2022, pp. 244–246.

[23] R. Brondolin and M. D. Santambrogio, “A Black-box Monitoring Ap-
proach to Measure Microservices Runtime Performance,” ACM Trans-
actions on Architecture and Code Optimization, vol. 17, no. 4, pp. 34:1–
34:26, 2020.

[24] L. Wu, J. Bogatinovski, S. Nedelkoski, J. Tordsson, and O. Kao,
“Performance Diagnosis in Cloud Microservices Using Deep Learning,”
in AIOps – Workshop of the Conference on Service-Oriented Computing
(ICSOC), ser. Lecture Notes in Computer Science, vol. 12632. Springer,
2020, pp. 85–96.

https://web.archive.org/web/20230104141759/https://www.hys-enterprise.com/blog/why-and-how-netflix-amazon-and-uber-migrated-to-microservices-learn-from-their-experience/
https://web.archive.org/web/20230104141759/https://www.hys-enterprise.com/blog/why-and-how-netflix-amazon-and-uber-migrated-to-microservices-learn-from-their-experience/
https://web.archive.org/web/20230104141759/https://www.hys-enterprise.com/blog/why-and-how-netflix-amazon-and-uber-migrated-to-microservices-learn-from-their-experience/


[25] V. Cortellessa, A. D. Marco, and P. Inverardi, Model-Based Software
Performance Analysis. Springer, 2011.

[26] R. Pinciroli, A. Aleti, and C. Trubiani, “Replication Package: Perfor-
mance Modeling and Analysis of Design Patterns for Microservice
Systems,” https://doi.org/10.5281/zenodo.7503633, 2023.

[27] Microsoft Learn, “Cloud Design Patterns,” https://web.archive.org/web/
20221129210159/https://learn.microsoft.com/en-us/azure/architecture/
patterns/, 2022.

[28] I. Grobelna, R. Wisniewski, M. Grobelny, and M. Wisniewska, “Design
and Verification of Real-Life Processes With Application of Petri Nets,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47,
no. 11, pp. 2856–2869, 2017.

[29] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya,
“Software architecture optimization methods: A systematic literature
review,” IEEE Transactions on Software Engineering, vol. 39, no. 5,
pp. 658–683, 2012.

[30] D. Falessi, M. A. Babar, G. Cantone, and P. Kruchten, “Applying
empirical software engineering to software architecture: challenges and
lessons learned,” Empirical Software Engineering, vol. 15, no. 3, pp.
250–276, 2010.

[31] M. Bertoli, G. Casale, and G. Serazzi, “JMT: performance engineering
tools for system modeling,” ACM SIGMETRICS Performance Evaluation
Review, vol. 36, no. 4, pp. 10–15, 2009.

[32] E. Rosti, F. Schiavoni, and G. Serazzi, “Queueing network models
with two classes of customers,” in Proceedings of the International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS). IEEE, 1997, pp. 229–234.

[33] A. Kattepur, “Towards Structured Performance Analysis of Industry 4.0
Workflow Automation Resources,” in Proceedings of the International
Conference on Performance Engineering (ICPE). ACM, 2019, pp.
189–196.

[34] S. Dipietro, G. Casale, and G. Serazzi, “A Queueing Network Model
for Performance Prediction of Apache Cassandra,” in Proceedings of the
International Conference on Performance Evaluation Methodologies and
Tools (VALUETOOLS). ACM, 2016.

[35] G. Casale, J. F. Pérez, and W. Wang, “QD-AMVA: Evaluating systems
with queue-dependent service requirements,” Performance Evaluation,
vol. 91, pp. 80–98, 2015.

[36] R. Pinciroli, K. S. Trivedi, and A. Bobbio, “Parametric Sensitivity and
Uncertainty Propagation in Dependability Models,” in Proceedings of
the International Conference on Performance Evaluation Methodologies
and Tools (VALUETOOLS). ACM, 2016.

[37] P. Z. Sotenga, K. Djouani, and A. M. Kurien, “A virtual network model
for gateway media access control virtualisation in large scale internet of
things,” Internet of Things, p. 100668, 2022.

[38] A. Kumar, R. Krishnamurthi, A. Nayyar, K. Sharma, V. Grover, and
E. Hossain, “A novel smart healthcare design, simulation, and imple-
mentation using healthcare 4.0 processes,” IEEE Access, vol. 8, pp.
118 433–118 471, 2020.

[39] J. von Kistowski, S. Eismann, N. Schmitt, A. Bauer, J. Grohmann,
and S. Kounev, “TeaStore: A Micro-Service Reference Application
for Benchmarking, Modeling and Resource Management Research,” in
Proceedings of the International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS).
IEEE, 2018, pp. 223–236.

[40] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, “Fault
Analysis and Debugging of Microservice Systems: Industrial Survey,
Benchmark System, and Empirical Study,” IEEE Transactions on Soft-
ware Engineering, vol. 47, no. 2, pp. 243–260, 2021.

[41] Weaveworks, Inc., “Sock Shop: A Microservices Demo
Application,” https://web.archive.org/web/20230112131538/https:
//microservices-demo.github.io/, 2017.

[42] C. Zhang and D. Budgen, “What Do We Know about the Effectiveness of

Software Design Patterns?” IEEE Transactions on Software Engineering,
vol. 38, no. 5, pp. 1213–1231, 2012.

[43] C. M. Woodside, G. Franks, and D. C. Petriu, “The Future of Software
Performance Engineering,” in Proceedings of the International Workshop
on Future of Software Engineering (FSE). IEEE Computer Society,
2007, pp. 171–187.

[44] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, and B. Regnell,
Experimentation in Software Engineering. Springer, 2012.

[45] A. B. Bondi, Foundations of Software and System Performance Engi-
neering: Process, Performance Modeling, Requirements, Testing, Scala-
bility, and Practice. Pearson Education, 2014.

[46] T. B. Sousa, H. S. Ferreira, and F. F. Correia, “A Survey on the Adoption
of Patterns for Engineering Software for the Cloud,” IEEE Transactions
on Software Engineering, vol. 48, no. 6, pp. 2128–2140, 2022.

[47] P. Di Francesco, P. Lago, and I. Malavolta, “Architecting with microser-
vices: A systematic mapping study,” Journal of Systems and Software,
vol. 150, pp. 77–97, 2019.

[48] L. Wijerathna, A. Aleti, T. Bi, and A. Tang, “Mining and relating design
contexts and design patterns from Stack Overflow,” Empirical Software
Engineering, vol. 27, no. 1, pp. 8:1–8:53, 2022.

[49] B. Haskins, J. Stecklein, B. Dick, G. Moroney, R. Lovell, and J. Dabney,
“Error Cost Escalation Through the Project Life Cycle,” in Proceedings
of the Annual International Symposium. INCOSE, 2004, pp. 1723–
1737.

[50] S. Li, H. Zhang, Z. Jia, C. Zhong, C. Zhang, Z. Shan, J. Shen, and M. A.
Babar, “Understanding and addressing quality attributes of microservices
architecture: A Systematic literature review,” Information and Software
Technology, vol. 131, p. 106449, 2021.

[51] J. Soldani, D. A. Tamburri, and W. van den Heuvel, “The pains and
gains of microservices: A Systematic grey literature review,” Journal of
Systems and Software, vol. 146, pp. 215–232, 2018.

[52] V. Cortellessa, D. D. Pompeo, R. Eramo, and M. Tucci, “A model-driven
approach for continuous performance engineering in microservice-based
systems,” Journal of Systems and Software, vol. 183, p. 111084, 2022.

[53] F. Khomh and S. A. Abtahizadeh, “Understanding the impact of cloud
patterns on performance and energy consumption,” Journal of Systems
and Software, vol. 141, pp. 151–170, 2018.

[54] A. Akbulut and H. G. Perros, “Performance Analysis of Microservice
Design Patterns,” IEEE Internet Computing, vol. 23, no. 6, pp. 19–27,
2019.

[55] G. Kousiouris, “A self-adaptive batch request aggregation pattern for
improving resource management, response time and costs in microser-
vice and serverless environments,” in Proceedings of the International
Performance, Computing, and Communications Conference (IPCCC).
IEEE, 2021, pp. 1–10.

[56] A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “Batch: machine learning
inference serving on serverless platforms with adaptive batching,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC). IEEE/ACM, 2020,
pp. 69:1–69:15.

[57] ——, “Optimizing Inference Serving on Serverless Platforms,” Proceed-
ings of the VLDB Endowment, vol. 15, no. 10, pp. 2071–2084, 2022.

[58] A. Amiri, U. Zdun, and A. V. Hoorn, “Modeling and Empirical Valida-
tion of Reliability and Performance Trade-Offs of Dynamic Routing
in Service- and Cloud-Based Architectures,” IEEE Transactions on
Services Computing, 2021, (Early Access).

[59] K. L. Ngo, J. Mukherjee, Z. M. Jiang, and M. Litoiu, “Evaluating the
Scalability and Elasticity of Function as a Service Platform,” in Pro-
ceedings of the International Conference on Performance Engineering
(ICPE). ACM, 2022, pp. 117–124.

[60] M. Ma, W. Lin, D. Pan, and P. Wang, “ServiceRank: Root Cause
Identification of Anomaly in Large-Scale Microservice Architectures,”
IEEE Transanctions on Dependable and Secure Computing, vol. 19,
no. 5, pp. 3087–3100, 2022.

https://doi.org/10.5281/zenodo.7503633
https://web.archive.org/web/20221129210159/https://learn.microsoft.com/en-us/azure/architecture/patterns/
https://web.archive.org/web/20221129210159/https://learn.microsoft.com/en-us/azure/architecture/patterns/
https://web.archive.org/web/20221129210159/https://learn.microsoft.com/en-us/azure/architecture/patterns/
https://web.archive.org/web/20230112131538/https://microservices-demo.github.io/
https://web.archive.org/web/20230112131538/https://microservices-demo.github.io/

	Introduction
	Preliminaries
	Performance Models of Design Patterns
	Anti-corruption Layer
	Backends for Frontends
	Command and Query Responsibility Segregation (CQRS)
	Gateway Aggregation
	Gateway Offloading
	Pipes and Filters
	Static Content Hosting

	Model-based Performance Analysis
	Anti-corruption Layer
	Backends for Frontends
	CQRS
	Gateway Aggregation
	Gateway Offloading
	Pipes and Filters
	Static Content Hosting

	Discussion
	Performance Modeling
	Performance Analysis
	Threats to validity

	Related Work
	Conclusion
	References

