
Ermanno Righini

Voxel Cone Tracing

Introduction
Voxel Cone Tracing is a technique used to approximate Global Illuminations and related
effects, such as diffuse lighting, specular lighting and soft shadows.
In this project I implemented this technique, and a few others, using OpengGL 4.6 and C++.

Introduction 1

Pipeline 2

Shadow Mapping 2
Implementation 2
Shadow Acne 3
PCF 3

Normal Mapping 4

Physically Based Rendering 4
Normal Distribution Function 5
Fresnel Function 5
Geometry Attenuation Function 5
Metals and Dielectrics 6

Global Illumination 6

Voxel Cone Tracing 6
Voxelization 6

Primitive Reprojection 6
Conservative Rasterization 7
Light Injection & Opacity voxelization 7
Atomic Average 8
HDR Voxels 8
Voxel Pre-integration 9
Anisotropic Voxels 9

Cone Tracing 10
Diffuse Cones 11

Random Cones 11
Specular Cones 11

Putting Everything Together 12

Temporal Multibounce 12

Soft Shadows 13

Occlusion Culling 13

Particle Rendering 13

Performance 14

Conclusions 15

Pipeline
I organized my pipeline to work in 5 stages:

Shadow
Mapping ➜

Voxelization &
Light Injection ➜

MIP
mapping ➜

Occlusion
Culling ➜

Lighting &
Cone Tracing

1. Shadow Mapping - I render the scene from the point of view of the light source in
order to generate the shadow map that will later be used to calculate the direct
illumination in the scene.

2. Voxelization & Light Injection - I render the scene as a 3D texture, saving
information such as the luminance and the opacity of a particular voxel.

3. MIP mapping - I generate the mipmaps for all 3D textures, these will be used in
order to approximate the luminance integration over traced cones.

4. Occlusion culling - I do an additional rendering pass where I figure out if some
fragments are occluded, this will save some rendering time, since the most
expensive part of the last stage is the fragment shader.

5. Lighting & Cone Tracing - I calculate the direct lighting using the previously
generated shadow map, and the indirect lighting by performing cone tracing over the
3D textures.

Shadow Mapping
Shadow mapping is a technique used to efficiently render
shadows casted from an object inside the scene, onto other
objects (or themselves).
This is done by rendering the scene from the light point of view
and by generating a depth map, this enables us to determine if
a particular point is occluded by another one or not, and in the
case it is occluded, this means it is in shadow, from the light
point of view.

Implementation
In my case I decided to handle only spotlights, this type of light has a couple of advantages:

● Realistic for indoor scenes - simpler types of lights, such as directional lights, are
not suitable to handle indoor scenes, because at close distances the effect of
perspective is not negligible.

● No cube map needed - in the case of point lights the rendering process is more
involved, since we need to render our shadow map to a cube map, in order to handle
the 360° nature of the light, in this case we instead need a simple 2D Texture.

The first step is to generate the Projection Matrix of the light we wish to generate the shadow
map of. This is really easy in the case of spotlights, since we just rotate and translate based
on the direction and position of the light source, and apply a perspective transformation
based on the aperture angle.

vec3 up = abs(glm::dot(dir, vec3(0,0,1))) < 0.99f ? vec3(0,0,1): vec3(1,0,0);

up = normalize(cross(up, dir));

mat4 view = glm::lookAt(pos, pos+dir, up);

mat4 proj = glm::perspective(glm::radians(angle), 1.f, 0.01f, 3.0f);

return proj * view;

Projection Matrix generation for a Spotlight
Now that we have generated the Projection Matrix, we just need to render the scene to a
depth buffer using this transformation matrix, and we now have generated the Shadow Map.

vec3 coords = posLightSpace.xyz/posLightSpace.w * 0.5 + 0.5;

float shadowDepth = texture(u_shadowMap, coords.xy).r;

return shadowVal = coords.z >= shadowDepth + bias ? 1.0 : 0.0;

Shadow map sampling and depth comparison
In order to render the shadow we transform the fragment position into light space using the
appropriate projection matrix, and then we sample the shadow map to determine if our point
is occluded or not.

Shadow Acne
Because of the quantization process that goes into generating the
shadow map, if we just compare the point distance from the light to
the value extracted from the shadow map, we will incur into an
effect called shadow acne, in order to avoid this artifact we can just
add a bias when doing the comparison.

PCF
Percentage Closer Filtering is a technique used to improve shadow
quality, in particular if we only perform 1 sample per pixel, we will end up
with shadows with aliased and jagged edges, this happens because we
don’t perform any sort of antialiasing and because in most cases the
shadow map is of smaller resolution then the screen.

We can prevent both of these problems by performing multiple samplings from the shadow
map at an offset from the original coordinates.

float total = 0;

for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) {

vec2 cc = coords.xy + (vec2(i,j)/3 *2-1)*scale;

total += coords.z >= texture(u_shadowMap, cc).r + bias ? 1.0 : 0.0;

}}

return clamp(total/9, 0, 1);

PCF implementation with 9 samples per pixel

Normal Mapping
Normal mapping is a mesh optimization technique,
where we store the normals of a mesh inside an auxiliary
texture, this enables us to reduce the polygon count of
the original count without a noticeable loss in visual
quality. The simplified mesh will store the macro
geometry, while the normal map will represent the micro
geometry.

Traditionally a normal map is stored in an rgb texture, so that each pixel represents a 3D
vector, encoded as an RGB values as follows: 𝑒𝑛𝑐𝑜𝑑𝑒(𝑣) = (𝑣 + 1) / 2

Additionally it is possible to store these vectors in tangent space, this means that these
directions are not relative to world space, but with the z axis perpendicular to the surface of
the mesh, and with the x and y axis aligned with the flow of the uv texture coordinates.
By representing the normal map in tangent space, we can handle dynamic meshes.

An additional optimization that can be performed is to omit the z channel from the normal
map, because we can easily derive the third component of a 3D unit vector, knowing that

.𝑥2 + 𝑦2 + 𝑧2 = 1

vec2 tn = texture(u_bumpMap, a_uv).rg * 2 - 1;

vec3 tnormal = vec3(tn, sqrt(1 - dot(tn, tn)));

vec3 normal = mat3(a_xtan,a_ytan,a_normal) * tnormal;

Normal vector generation using compressed tangent space normal maps

Physically Based Rendering
Source: https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf

In order to achieve a realistic scene it is important to abide by the laws of physics, this is why
in this project I decided to implement a material and light model based on the idea of energy
conservation. Handling materials in a physically correct way brings more realistic results, but

https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf

is also more flexible, because if we want to change lights or materials, we can just do so
without tweaking any strange parameters.

In particular in this project I decided to use the Cook-Torrance BRDF which models only fully
opaque materials, with no effects such as subsurface scattering or translucency. The main
job of the BRDF is to determine how the light gets reflected by the surface of an object given
its surface microgeometry, and given the type of material, in this project we distinguish
between metals and dielectrics.

The Cook-Torrance BRDF tells us how much of the incoming light is reflected towards the
camera:
𝐵𝑅𝐷𝐹 = 𝑘

𝑑
· 𝑓

𝑑𝑖𝑓𝑓𝑢𝑠𝑒
 + 𝑘

𝑠
· 𝑓

𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟

(this is the lambertian model)𝑓
𝑑𝑖𝑓𝑓𝑢𝑠𝑒

= 𝑎𝑙𝑏𝑒𝑑𝑜 / π

𝑓
𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑟

=
𝐷(ℎ, 𝑛) 𝐹(𝑣, ℎ)𝐺(𝑙, 𝑣, ℎ)

4 (𝑛 · 𝑙) (𝑛 · 𝑣)

Where albedo is the color of the material, n the normal vector, l the light direction vector, v
the camera direction vector and h the halfway vector.

The specular component of the BRDF makes use of 3 other functions:
● D(h, n): The Normal Distribution Function models how much of the surface is

aligned with the halfway vector, so how strong is the reflected light.
● F(v, h): The Fresnel Function models how the reflectivity changes based on the

viewing angle. (we use a simplified model that handles only the air/solid interaction)
● G(l, v, n): The Geometry Attenuation Function models the light attenuation caused

by the self-shadowing and geometry obstruction effect of highly rough surfaces.

Normal Distribution Function
In this project I decided to use the GGX / Trowbridge-Reitz model which gives a good
approximation for both dielectrics and metallic materials:

𝐷(ℎ, 𝑛) =
α2

π(1 + (𝑛·ℎ)2+(α2−1)

Where is remapped asα α = 𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠2

Fresnel Function
For the Fresnel function I used the Schlick approximation

𝐹(𝑣, ℎ) = 𝐹
0

+ (1 − 𝐹
0
)(1 − ℎ · 𝑣)5

Geometry Attenuation Function
For this I used the Schlick model, with the Disney’s Roughness remapping:
𝐺(𝑙, 𝑣, 𝑛) = 𝐺

1
(𝑙, 𝑛)𝐺

1
(𝑣, 𝑛)

,𝐺
1
(𝑣, 𝑛) =

𝑣·𝑛
(𝑣·𝑛)(1−𝑘) + 𝑘 𝑘 = (𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 + 1)2 / 8

Metals and Dielectrics
The main difference between metals and dielectrics is that in the case of metals all refracted
light is absorbed, this means that in our BRDF when the material is metallic and is𝑘

𝑑
= 0

instead when it is a dielectric.𝑘
𝑑

= (1 − 𝐹)

Global Illumination
Global Illumination is a category of techniques that attempt to simulate or approximate all of
the light effects and interactions, such as indirect diffuse illumination, reflections and
shadows.

Voxel Cone Tracing

Voxel Cone Tracing is a technique to achieve global
illumination in real time, the main idea is to simplify the
scene geometry and light information by voxelizing it into
a 3D texture, and then to sample the incoming light by
performing cone tracing inside the 3D texture.

Voxelization

Diagram from: https://www.seas.upenn.edu/~pcozzi/OpenGLInsights/OpenGLInsights-SparseVoxelization.pdf

In this rendering pass I render the scene to a 3D texture by first reprojecting it along one of
the main axes, then inject into the 3D texture all the light that bounces off the rendered
surface. During the voxelization process we need to disable the depth test, and face culling
because we want to rasterize all triangles, even the ones occluded from view or pointing in
the other direction.

https://www.seas.upenn.edu/~pcozzi/OpenGLInsights/OpenGLInsights-SparseVoxelization.pdf

Primitive Reprojection
The first step is to resize the framebuffer to the size of the 3D texture, in my case I mostly

used and as volume sizes. This is done because we are rasterizing every triangle in1283 2563

2D, projected orthographically along its normal’s main axis. That is the axis between x, y, z
that maximizes the dot product with the normal vector of the triangle.
This step is performed inside a geometry shader, because we need to calculate the normal
vector of the triangle and this is the only step in the rendering pipeline where we have
information about all the vertices.

const vec3 p = abs(cross(pos[1] - pos[0], pos[2] - pos[0]);

for (uint i = 0; i < 3; ++i) {

if (p.z > p.x && p.z > p.y) gl_Position = vec4(pos[i].x, pos[i].y, 0, 1);

else if (p.x > p.y) gl_Position = vec4(pos[i].y, pos[i].z, 0, 1);

else gl_Position = vec4(pos[i].x, pos[i].z, 0, 1);

EmitVertex();

}

EndPrimitive();

Geometry Shader for reprojecting a triangle onto its main axis
This reprojection step is performed because we wish to rasterize the most possible
fragments for a given triangle as to not leave any “holes” in the rasterization of the surface.

Conservative Rasterization
If we rasterize our triangles with a traditional rasterizer, we will
incur in some artifacts, because when a triangle is smaller than the
resolution of our voxel grid it could end up being ignored
completely, and we would end up with holes in our voxelized geometry, this is where
conservative rasterization comes in. With this approach we want to rasterize all fragments
that “touch” the triangle being rendered. There are a few techniques that can be used to
achieve this, the first approach is to use a hardware implementation of a conservative
rasterizer, but this is available only on NVIDIA GPUs at the moment. Another approach is to
“expand” the geometry inside a geometry shader, but this approach is a bit more involved
and way slower.
In my case I decided to use a much simpler technique and that is to render all of the
geometry with MSAA activated, this ends up being not too expensive and produces on
average very few artifacts, that don’t end up being noticeable in complex scenes.

Light Injection & Opacity voxelization
We have now rasterized our geometry and we need to decide what to store inside the 3D
texture. In order to perform cone tracing we need only two information about the scene, how
much light is coming from a particular voxel and which voxels are empty and which are
opaque. I decided to use a RGBA texture, where the first 3 channels encode the light coming
from a particular voxel, and the 4th channel encodes the opacity of the voxel. It is important
to note that since we don’t store any information about the direction of light we can
approximate only indirect diffuse lighting and not indirect specular.

In this project I decided to generate both the lighting and opacity at the same time, so for
every surface, I set all the intersecting voxels to fully opaque and I calculate how much light
is reflected back into the scene by the surface.

There are three types of light sources that I consider in this stage, the first is direct lighting
from the spotlight, the second are emissive materials and the third is indirect diffuse lighting.
(this last type of lighting will be explained later)

In the case of the spotlight I just need to calculate the diffuse light coming off the surface
according to the lambertian model, the light falloff and the shadow map. As for emissive
materials I just add into the 3D texture the amount of light emitted by the surface.
Once all of the lighting has been computed I just store the RGBA value into the 3D texture
by using the OpenGL command imageStore(). This command lets us access memory
inside shaders. So in essence we are tricking the rasterizer, telling him we want to render
something onto the screen, but actually discard every fragment and output our voxels into
the 3D texture.

This is the output of the voxelization stage:

As you can see the only lit voxels are the one directly hit by the spotlight (you can notice the
shadow casted by the statue), and the flames, that are emissive materials.

Atomic Average
One problem with simply using the imageStore() command is that if two primitives are
contending the same voxel, they will overwrite each other output, and this can cause
flickering because the order in which primitives are rendered changes every frame. In order
to resolve this issue we can use atomic operations, in particular we would like to perform an
average of all the values that are to be written to the same voxels. Sadly OpenGL doesn’t
have an atomic average function, but we can build our own by using the function
imageAtomicCompSwap() which writes to the image our new value, but also returns the
previous value. With this information we can check if the voxel we are trying to modify has
been modified, between the time we calculated the average and the time we called it, and in
this case we keep looping until we exhaust all conflicts.

HDR Voxels
Another modification I tried was to use a higher dynamic range for the voxel storage. So
instead of using a RGBA8 texture, where every channel has 8 bit and a range from 0 to 1, I
also experimented with RGBA16f textures, where every channel is a 16 bit floating point
number. This proved to be not too expensive but also produced much higher quality results,
here you can see a comparison:

As you can see on the left there is much more color banding, the image looks noisier and the
areas with low light are completely dark.
The only problem with using floating point values for the voxel storage is that at the moment
there is no functionality for performing atomic operations on floats but only on integers.

Voxel Pre-integration

An important step of this method is the
pre-integration of the lighting
information. Basically as the 3D texture
tells us how much light is coming from a
single voxel, we would also like to know
how much light is coming from areas of
all kinds of sizes. This is done by simply
generating a mipmap of the 3D texture.
In this way every level of the mipmap
gives us information about larger and
larger voxel sizes, and we can simply
sample this 4D texture, by using linear
interpolation to get a pretty good
approximation.

Anisotropic Voxels
Another experiment I did was with
anisotropic voxels, basically instead of
storing only one 3D texture, we store six
of them. Two for every orthogonal axis,
one going into the positive direction and
one going into the negative direction. In
this way every texture tells you how
much light you see by watching from a
particular direction. By doing this we get

a better integration, because when performing the mipmap generation we only average on
the two axis perpendicular to the direction we are considering and instead add the lighting
contribution on the third axis. To implement this step I used a compute shader.
And when we want to sample the value of an anisotropic voxel we just linearly interpolate
between the three closest directions to the view direction.
One important optimization is that we don’t need to store the base level of our mipmap for
every direction since this level is always the same, this brings down the memory cost from
6x to just 1.5x.
In the end I didn’t find much advantage in using this technique, because the results are very
similar but the cost is much higher.

Cone Tracing
Now that our 3D texture is ready it’s time to perform the cone
tracing. The basic idea behind cone tracing is that since the
equation of global illumination says that the light reflected from a
surface is the integral of the reflected light from all the directions in
the semi hemisphere of the surface, we can just subdivide the
semi hemisphere in cones, and the formulation changes to the
summation of the light contribution of every cone.

In order to calculate the light contribution of a cone we just need to march along its direction
and sample the 3D texture at ever higher mip levels since the cone grows in radius the
farther we get from its origin.
In particular if we know that the cone is of angle and we are currently at distance , weα 𝑡
know that the diameter of the cone is .𝑑 = 2𝑡 · 𝑡𝑎𝑛(α/2)
We can now sample the correct mipmap level and continue marching until we go out of the
3D texture or until we saturate the opacity.

float dist = offset;

vec4 color = vec4(0);

while (color.a < 1.0 && dist < 1.732) {

float diameter = max(voxelSize, 2 * dist * tan(angle/2));

float lod = log2(diameter / voxelSize);

vec3 pos = from + dir * dist;

color += (1 - color.a) * textureLod(voxels, pos, lod);

dist += diameter * quality;

}

return color.rgb;

As you can see, at every iteration step we accumulate light and opacity, masked by the
opacity we already accumulated on the previous iterations. That is because things that are
farther away are hidden by things that are closer. And at every iteration step we increment
the distance from the cone origin by some amount relative to the diameter of the cone, that
is because, the larger the diameter the larger the sampled area.

An important implementation detail is that we never want to start at distance zero, but we
want an offset, we add this offset because otherwise we would sample the very same voxel
of the surface we are trying to calculate the lighting for, causing artifacts such as
self-shadowing and self-lighting.

Diffuse Cones

To approximate indirect diffuse lighting I cast some diffuse cones, I found that 5 cones are
enough to achieve good quality. The cone distribution I use is one cone along the normal
vector and four at perpendicular angles. All of the cones have an aperture of 30°.

Random Cones
One artifact that comes from using so few cones is
that diffuse lighting looks a bit blocky, my solution to
this problem is to rotate the cones randomly around
the normal vector. This approach solves the issue but
introduces noise.

Specular Cones

Diagram from: https://on-demand.gputechconf.com/gtc/2015/presentation/S5670-Alexey-Panteleev.pdf

In order to generate specular reflection I just cast a cone in the direction of the reflected view
vector, and choose the cone aperture depending on the surface roughness. Highly rough
surfaces will have a high aperture, while smooth surfaces will have a small aperture. This
makes smooth surfaces more expensive to calculate since the smaller the cone aperture the
more steps we perform inside the cone marching routine.

https://on-demand.gputechconf.com/gtc/2015/presentation/S5670-Alexey-Panteleev.pdf

Putting Everything Together

Temporal Multibounce
As for what I’ve described until now, I’m only
performing one bounce of light: first the
direct lighting is injected inside the 3D
texture, then I calculate the first bounce
during the cone tracing step.
In order to achieve multiple bounces of light
I do what I call temporal multibounce, that is to use the information from the previous frames
to approximate indirect lighting during the voxelization stage.

During the voxelization stage, the only mipmap level that I am modifying is the base level,
this means that I can use all the other mipmap levels to perform voxel cone tracing on the
indirect lighting calculated in the previous stage.
Since the lighting is heavily approximated and not completely energy conservative, I decided
to add an attenuation factor in order to have the lighting converge over time to a stable level.

Attenuation = 0.0 Attenuation = 0.3 Attenuation = 0.5

Soft Shadows
Another effect that can be implemented with voxel
cone tracing are soft shadows. The idea is to simply
trace a cone in the direction of the light source and to
determine the intensity of the shadow based on the
amount of opacity accumulated during the cone
marching. This gives quite nice results, but it turns out
to be quite expensive, and is tricky to get shadows
without artifacts or light leaking.

Occlusion Culling
Since the fragment shader is very heavy to compute, I decided to implement a very simple
occlusion culling technique.
Basically before the real rendering pass, I render all the objects to the depth buffer, and then
perform the rendering as usual but with glDepthFunc(GL_LEQUAL);

This automatically discards all of the fragments that would have been otherwise rendered
and then hidden by a closer fragment.
This technique is not very scalable for scenes with an high polygon count, but in this case,
since the fragment shader is so much heavier than everything else it makes sense to use
this approach, and my experiments showed a noticeable speedup.

Particle Rendering
As for the rendering of the fire effect I decided to implement a very simple particle system.
In my particle system particles are never really instantiated in memory but are just seeds of
random number generator.
Every aspect of a particle such as position, speed, color, size, etc, are defined as a uniform
distribution, where random values are sampled from for each particular particle instance.
So in order to get the information of a given particle at a given time, I just need to initialize
the random number generator with the particle id, and interpolate all of its attributes,
between the start and end values. As for the position of the particle I just solve the equation
of the uniformly accelerated motion.
I think this approach is very interesting because it makes it possible to generate all the
particles directly inside a very simple shader.

As for the fire in the demo, I render it in a later pass than to all of the other geometry
because it is translucent, and rendering it in between other opaque objects would mess up
the z-buffer. Also, during the voxelization stage I need to add the light value instead of doing
an average since it is both translucent and additive.

Performance
I conducted all of my tests on a laptop with a Ryzen 3500U low power CPU equipped with a
Vega 8 integrated GPU with 2GB of VRAM. This is far from the ideal setup for an application
like this one and the tests are likely to be inaccurate due to thermal throttling. All times are in
milliseconds.

First I tested the time taken by the voxelization stage at different voxel resolutions and with
HDR and Temporal Multibounce enabled or disabled:

Grid Size No HDR, No TM HDR, No TM HDR + TM

32 10.30 ms 10.75 ms 11.19 ms

64 12.82 ms 12.98 ms 15.87 ms

128 22.22 ms 24.39 ms 35.71 ms

256 100.40 ms 112.17 ms 142.85 ms

It can be seen that HDR voxels and Temporal Multibounce are not too expensive in relation
to the voxelization process as a whole.

Then I tested how much time it takes to perform Cone Tracing at different voxel resolutions:

Size 32 64 128 256

Time (HDR) 30.38 ms 29.55 ms 49.52 ms 71.85 ms

Here it can be seen that the time taken by the cone tracing algorithm increases at higher
voxel resolutions, this is probably due to worse cache usage.

Then I tested the difference in time between anisotropic or isotropic voxels at the same voxel
resolution:

Isotropic Anisotropic

62.5 ms 184.2 ms

This shows how the most expensive part of the algorithm is the cone tracing step, and in
particular, the texture accesses, in the version with the anisotropic voxels, we need to
perform 3 times the amount of texture accesses, and if fact the time is roughly 3 times the
one of the isotropic version.

Lastly I wanted to test the impact on performance of the occlusion culling step, on a scene
where a lot of geometry occlusion occurs:

Time with NO Occlusion Culling Time with Occlusion Culling

104.23 ms 76.29 ms

It can be noticed that the time saved by Occlusion Culling can be quite substantial.

Conclusions
This technique has proven to be quite effective in approximating global illumination effects
and it would be interesting to expand the demo with other features such as cascaded voxel
textures and translucent materials rendered with refractive cones.
It is quite computationally intensive but as shown from my results, it is still usable even on
lower end hardware at interactive frame rates.
In the last few years and with the diffusion of specialized hardware for ray tracing,
techniques like this have been forgotten a little bit, but it is still an interesting approach for
someone that wants to implement some sort of simple global illumination on older hardware.

