RISC-V Bitmanip Extension
Document Version 0.91

Editor: Clifford Wolf
Symbiotic GmbH
clifford@symbioticeda.com
August 29, 2019

Contributors to all versions of the spec in alphabetical order (please contact editors to suggest
corrections): Jacob Bachmeyer, Allen Baum, Ari Ben, Alex Bradbury, Steven Braeger, Rogier
Brussee, Michael Clark, Ken Dockser, Paul Donahue, Dennis Ferguson, Fabian Giesen, John Hauser,
Robert Henry, Bruce Hoult, Po-wei Huang, Ben Marshall, Rex McCrary, Lee Moore, Jifi Moravec,
Samuel Neves, Markus Oberhumer, Christopher Olson, Nils Pipenbrinck, Joseph Rahmeh, Xue
Saw, Tommy Thorn, Avishai Tvila, Andrew Waterman, Thomas Wicki, and Clifford Wolf.

This document is released under a Creative Commons Attribution 4.0 International License.

Contents

1_Introduction| 1
[1.1 ISA Extension Proposal Design Criterial 1
1.2 B Extension Adoption Strategy|o 2
[1.3 Next steps|. o o o o e 2

2 RISC-V Bitmanip Extension| 3
[2.1 Basic bit manipulation instructions| 4

[2.1.1 Count Leading/Trailing Zeros (clz, ctz)[. 4
[2.1.2 Count Bits Set (pent)| 5
[2.1.3 Logic-with-negate (andn, orn, xnor)| 5
[2.1.4 Pack two XLEN/2 words in one register (pack)[. 6
[2.1.5 Min/max instructions (min, max, minu, maxu)| 7
[2.1.6 Single-bit instructions (sbset, sbclr, sbinv, sbext) 8
[2.1.7 Shift Ones (Left/Right) (slo, sloi, sro, sroi)| 9
2.2 Bit permutation instructions| Lo 10
[2.2.1 Rotate (Left/Right) (rol, ror, rori)| 10
[2.2.2 Generalized Reverse (grev, grevi, rev) 11
[2.2.3 Generalized Shuffle (shfl, unshfl, shfli, unshfli, zip, unzip)| 14
[2.3 Generalized OR-Combine (gorc, gorci)| 22
[2.4 Bit-Field Place (bfp)|. 23
[2.5 Bit Extract/Deposit (bext, bdep)| 24

ii RISC-V Bitmanip Extension V0.91
[2.6 Carry-Less Multiply (clmul, clmulh, clmulr)[. 25
[2.7 CRC Instructions (crc32. [bhwd], crc32c.[bhwd]l)[. 27
[2.8 Bit-Matrix Instructions (bmatxor, bmator, bmatflip, RV64 only) 28
2.9 Ternary Bit-Manipulation Instructions| 30

[2.9.1 Conditional Mix (cmix)[. oo 30
[2.9.2 Conditional Move (cmov)| o000 31
[2.9.3 Funnel Shift (fs1, fsr, fsri)|. L. 32
[2.10 Unsigned address calculation instructions| 33
[2.10.1 Add/sub with postfix zero-extend (addwu, subwu, addiwu) 33
[2.10.2 Add/sub/shift with prefix zero-extend (addu.w, subu.w, slliu.w) 34

[2.11 Opcode Encodings| e 35
[2.12 Future compressed instructions|o Lo 40
[2.13 Micro architectural considerations and macro-op fusion for bit-manipulation|. 40
[2.13.1 TFast MUL, MULH, MULHSU, MULHU| v v oot 40
[2.13.2 Fused load-immediate sequences|o 40
[2.13.3 Fused *-bfp sequences|. oL 42
[2.13.4 Fused *-not sequences|. 42
[2.13.5 Fused *-srli and *-srai sequences| 42
[2.13.6 Fused sequences for logic operations| 43
[2.13.7 Fused ternary ALU sequences|. 44
[2.13.8 Pseudo-ops for fused sequences| L. 44

) <rvi i 5 44

[3 Reference Implementations| 47
[3.1 Verilog reference implementations|. L. 47
3.2 Fast C reference implementations| 49

4__Evaluationl 53

4.1 Basic Bitmanipulation| oo 53

RISC-V Bitmanip Extension V(.91 iii

[41.1 Bitfieldextract] 53
[4.1.2 Parity checkl. 53
413 Rankandselect]. 54
4.1.4 Packing bytesin word| 54
|4.1.5 Counting trailing non-zero bytes| 54
4.1.6 Fill right of most significant set bit| 99
4.1.7 Round to next power of two|. 57

42 Funnelshiftd o o 57
[4.2.1 Bigint shift|o 58
4.2.2 Parsing bit-streams|.o 58
[4.2.3 Fixed-point multiply] 60

4.3 Arbitrary bit permutations| 60
[4.3.1 Using butterfly operations| 60
[4.3.2 Using omega-flip networks| 61
[4.3.3 Using baseline networks| o oo 62
[4.3.4 Using sheep-and-goats| 62
4.3.5 Using bit-matrix multiply| 63

4.4 Mirroring and rotating bitboards| o oL 63
[4.4.1 Mirroring bitboards] o 63
[4.4.2 Rotating bitboards| 64
4.4.3 Explanation|. 65
[4.4.4 Rotating Bitcubes| 65

4.5 Inverting Xorshitt RNGs|. 0 o 66
[4.6 Cyclic redundency checks (CRC)| 67
4.7 Decoding RISC-V Immediates|. 70
[Change History]| 73

(Bibliography| 75

iv

RISC-V Bitmanip Extension V0.91

Chapter 1

Introduction

This is the RISC-V Bitmanip Extension draft spec.

1.1

ISA Extension Proposal Design Criteria

Any proposed changes to the ISA should be evaluated according to the following criteria.

Architecture Consistency: Decisions must be consistent with RISC-V philosophy. ISA changes
should deviate as little as possible from existing RISC-V standards (such as instruction encod-
ings), and should not re-implement features that are already found in the base specification
or other extensions.

Threshold Metric: The proposal should provide significant savings in terms of clocks or
instructions. As a heuristic, any proposal should replace at least three instructions. An
instruction that only replaces two may be considered, but only if the frequency of use is very
high and/or the implementation very cheap.

Data-Driven Value: Usage in real world applications, and corresponding benchmarks showing
a performance increase, will contribute to the score of a proposal. A proposal will not be
accepted on the merits of its theoretical value alone, unless it is used in the real world.

Hardware Simplicity: Though instructions saved is the primary benefit, proposals that dra-
matically increase the hardware complexity and area, or are difficult to implement, should
be penalized and given extra scrutiny. The final proposals should only be made if a test
implementation can be produced.

Compiler Support: ISA changes that can be natively detected by the compiler, or are already
used as intrinsics, will score higher than instructions which do not fit that criteria.

1

2 RISC-V Bitmanip Extension V0.91

1.2 B Extension Adoption Strategy

The overall goal of this extension is pervasive adoption by minimizing potential barriers and en-
suring the instructions can be mapped to the largest number of ops, either direct or pseudo, that
are supported by the most popular processors and compilers. By adding generic instructions and
taking advantage of the RISC-V base instructions that already operate on bits, the minimal set of
instructions need to be added while at the same time enabling a rich of operations.

The instructions cover the four major categories of bit manipulation: Count, Extract, Insert, Swap.
The spec supports RV32, RV64, and RV128. “Clever” obscure and/or overly specific instructions
are avoided in favor of more straightforward, fast, generic ones. Coordination with other emerg-
ing RISC-V ISA extensions groups is required to ensure our instruction sets are architecturally
consistent.

1.3 Next steps

e Assign concrete instruction encodings so that we can start implementing the extension in
processor cores and compilers.

e Add support for this extension to processor cores and compilers so we can run quantitative
evaluations on the instructions.

e Create assembler snippets for common operations that do not map 1:1 to any instruction in
this spec, but can be implemented easily using clever combinations of the instructions. Add
support for those snippets to compilers.

Chapter 2

RISC-V Bitmanip Extension

In the proposals provided in this chapter, the C code examples are for illustration purposes only.
They are not optimal implementations, but are intended to specify the desired functionality.

The final standard will likely define a range of Z-extensions for different bit manipulation instruc-
tions, with the “B” extension itself being a mix of instructions from those Z-extensions. It is unclear
as of yet what this will look like exactly, but it will probably look something like this:

?

B
Zbb’ clz, ctz, pecnt sbset [i] Zbs
(base) slo[i], sroli] sbclr[i] (single bit)
min[u], max[u] sbinv[i]
add[ilwu, subwu sbext [i]
addu.w, subu.w
slliu.w
andn, orn Zbp
xnor, pack (permutation)
rol, ror[i]
rev8, rev grev[i]
jorc.b gorc[i]
[un] shfl[i]
Zbe bext, bdep bfp 7Zbf
Zbc clmul [hr] crc32[c] Zbr
Zbm bmat [x] or cmov, cmix Zbt
(matrix) bmatflip fsl, fsr[il (ternary)

The main open questions of course relate to what should and shouldn’t be included in “B”, and

3

4 RISC-V Bitmanip Extension V0.91

what should or shouldn’t be included in “Zbb”. These decisions will be informed in big part by
evaluations of the cost and added value for the individual instructions.

The main open questions are:

e Should clmul [hr] be included in “B”, or crc32. [bhwd] /crc32c. [bhwd], or neither, or both?
e Should “Zbe” be included in “B”? Should “Zbm be included in “B”?
e Which “Zbp” pseudo-ops should be included in “B”? Which in “Zbb”? Should “Zbp” be
included in “B” as a whole?
For the purpose of tool-chain development “B” is currently everything.

For extensions that only implement certain pseudo-instructions (such as “Zbb” implements rev8
and rev, which are pseudo-instructions for grevi rd, rsl, -8 and grevi rd, rsl, -1 respec-
tively, the same binary encoding is used for those instructions as are used on a core with full support
for the grev[i] instruction.

2.1 Basic bit manipulation instructions

2.1.1 Count Leading/Trailing Zeros (clz, ctz)

RISC-V Bitmanip ISA

RV32, RV64:
clz rd, rs
ctz rd, rs

RV64 only:
clzw rd, rs
ctzw rd, rs

The clz operation counts the number of 0 bits at the MSB end of the argument. That is, the
number of 0 bits before the first 1 bit counting from the most significant bit. If the input is 0, the
output is XLEN. If the input is -1, the output is 0.

The ctz operation counts the number of 0 bits at the LSB end of the argument. If the input is 0,
the output is XLEN. If the input is -1, the output is 0.

uint_xlen_t clz(uint_xlen_t rsi)
{
for (int count = 0; count < XLEN; count++)
if ((rsl << count) >> (XLEN - 1))
return count;
return XLEN;

RISC-V Bitmanip Extension V(.91 5

uint_xlen_t ctz(uint_xlen_t rsl)

{
for (int count = 0; count < XLEN; count++)
if ((rsl >> count) & 1)
return count;
return XLEN;
}

The expression XLEN-1-clz(x) evaluates to the index of the most significant set bit, also known
as integer base-2 logarithm, or -1 if x is zero.

2.1.2 Count Bits Set (pcnt)

RISC-V Bitmanip ISA

RV32, RV64:
pcnt rd, rs

RV64 only:
pcntw rd, rs

This instruction counts the number of 1 bits in a register. This operations is known as population
count, popcount, sideways sum, bit summation, or Hamming weight. [22], 20]

uint_xlen_t pcnt(uint_xlen_t rsi)

{
int count = 0;
for (int index = 0; index < XLEN; index++)
count += (rsl1 >> index) & 1;
return count;
}

2.1.3 Logic-with-negate (andn, orn, xnor)

RISC-V Bitmanip ISA

RV32, RV64:
andn rd, rsl, rs2
orn rd, rsl, rs2
xnor rd, rsl, rs2

This instructions implement AND, OR, and XOR with the 2nd arument inverted.

uint_xlen_t andn(uint_xlen_t rsl, uint_xlen_t rs2)
{

return rsl & “rs2;

6 RISC-V Bitmanip Extension V0.91

uint_xlen_t orn(uint_xlen_t rsl, uint_xlen_t rs2)

{
return rsl | “rs2;
}
uint_xlen_t xnor(uint_xlen_t rsl, uint_xlen_t rs2)
{
return rsl =~ “rs2;
}

This can use the existing inverter on rs2 in the ALU that’s already there to implement subtract.

Among other things, those instructions allow implementing the “trailing bit manipulation” code
patterns in two instructions each. For example, (x - 1) & ~x produces a mask from trailing zero
bits in x.

2.1.4 Pack two XLEN/2 words in one register (pack)

RISC-V Bitmanip ISA

RV32, RV64:
pack rd, rsi, rs2

RV64 only:
packw rd, rsl, rs2

This instruction packs the XLEN/2-bit lower halves of rsl and rs2 into rd, with rsl in the lower
half and rs2 in the upper half.

uint_xlen_t pack(uint_xlen_t rsl, uint_xlen_t rs2)

{
uint_xlen_t lower = (rsl << XLEN/2) >> XLEN/2;
uint_xlen_t upper = rs2 << XLEN/2;
return upper | lower;

}

Applications include XLEN /2-bit funnel shifts, zero-extend XLEN /2 bit values, duplicate the lower
XLEN/2 bits (e.g. for mask creation), and loading unsigned 32 constants on RV64.

; Load Oxff£ff0000£f££f0000 on RV64
lui rd, OxffffO
pack rd, rd, rd

; Same as FSLW on RV64
pack rd, rsl, rs3

rol rd, rd, rs2

addiw rd, rd, O

; Clear the upper half of rd
pack rd, rd, zero

RISC-V Bitmanip Extension V(.91 7

Paired with shfli/unshfli and the other bit permutation instructions, pack can interleave arbi-
trary power-of-two chunks of rs1 and rs2. For example, interleaving the bytes in the lower halves
of rs1 and rs2:

pack rd, rsl, rs2

zip8 rd, rd

pack is most commonly used to zero-extend words <XLEN. For this purpose we define the following
assembler pseudo-ops:

RV32:
zext.b rd, rs -> andi rd, rs, 255
zext.h rd, rs -> pack rd, rs, zero
RV64:
zext.b rd, rs -> andi rd, rs, 255
zext.h rd, rs -> packw rd, rs, zero
zext.w rd, rs -> pack rd, rs, zero
RV128:.
zext.b rd, rs -> andi rd, rs, 255
zext.h rd, rs -> packw rd, rs, zero
zext.w rd, rs -> packd rd, rs, zero
zext.d rd, rs -> pack rd, rs, zero

2.1.5 Min/max instructions (min, max, minu, maxu)

RISC-V Bitmanip ISA

RV32, RV64:
min rd, rsl, rs2
max rd, rsl, rs2
minu rd, rsl, rs2
maxu rd, rsl, rs2

We define 4 R-type instructions min, max, minu, maxu with the following semantics:

uint_xlen_t min(uint_xlen_t rsl, uint_xlen_t rs2)

{
return (int_xlen_t)rsl < (int_xlen_t)rs2 7 rsl : rs2;
}
uint_xlen_t max(uint_xlen_t rsil, uint_xlen_t rs2)
{
return (int_xlen_t)rsl > (int_xlen_t)rs2 ? rsl : rs2;
}
uint_xlen_t minu(uint_xlen_t rsl, uint_xlen_t rs2)
{

return rsl < rs2 7 rsl : rs2;

8 RISC-V Bitmanip Extension V0.91

uint_xlen_t maxu(uint_xlen_t rsl, uint_xlen_t rs2)
{
return rsl > rs2 ? rsl : rs2;

}

Code that performs saturated arithmetic on a word size < XLEN needs to perform min/max opera-
tions frequently. A simple way of performing those operations without branching can benefit those
programs.

SAT solvers spend a lot of time calculating the absolute value of a signed integer due to the way
CNF literals are commonly encoded [10]. With max (or minu) this is a two-instruction operation:

neg al, a0
max a0, a0, al

2.1.6 Single-bit instructions (sbset, sbclr, sbinv, sbext)

RISC-V Bitmanip ISA

RV32, RV64:
sbset rd, rsl, rs2
sbclr rd, rsl, rs2
sbinv rd, rsl, rs2
sbext rd, rsl, rs2
sbseti rd, rsl, imm
sbclri rd, rsl, imm
sbinvi rd, rsl, imm
sbexti rd, rsl, imm

RV64:
sbsetw 1rd, rsl, rs2
sbclrw rd, rsl, rs2
sbinvw rd, rsl, rs2
sbextw rd, rsl, rs2
sbsetiw rd, rsl, imm
sbclriw rd, rsl, imm
sbinviw rd, rsl, imm

We define 4 single-bit instructions sbset (set), sbclr (clear), sbinv (invert), and sbext (extract),
and their immediate-variants, with the following semantics:

uint_xlen_t sbset(uint_xlen_t rsl, uint_xlen_t rs2)

{
int shamt = rs2 & (XLEN - 1);
return rsl | (uint_xlen_t(1) << shamt);

RISC-V Bitmanip Extension V(.91 9

uint_xlen_t sbclr(uint_xlen_t rsl, uint_xlen_t rs2)

{
int shamt = rs2 & (XLEN - 1);
return rsl & ~(uint_xlen_t(1) << shamt);
}
uint_xlen_t sbinv(uint_xlen_t rsl, uint_xlen_t rs2)
{
int shamt = rs2 & (XLEN - 1);
return rsl - (uint_xlen_t(1) << shamt);
}
uint_xlen_t sbext(uint_xlen_t rsl, uint_xlen_t rs2)
{
int shamt = rs2 & (XLEN - 1);
return 1 & (rsl >> shamt);
}

2.1.7 Shift Ones (Left/Right) (slo, sloi, sro, sroi)

RISC-V Bitmanip ISA

RV32, RV64:
slo rd, rsl, rs2
sro rd, rsl, rs2
sloi rd, rsl, imm
sroi rd, rsl, imm

RV64 only:
slow rd, rsl, rs2
srow rd, rsl, rs2
sloiw rd, rsi1, imm
sroiw rd, rsl, imm

These instructions are similar to shift-logical operations from the base spec, except instead of
shifting in zeros, they shift in ones.

uint_xlen_t slo(uint_xlen_t rsil, uint_xlen_t rs2)

{
int shamt = rs2 & (XLEN - 1);
return ~“("rsl << shamt);
}
uint_xlen_t sro(uint_xlen_t rsl, uint_xlen_t rs2)
{
int shamt = rs2 & (XLEN - 1);
return ~("rsl >> shamt);
}

ISAs with flag registers often have a ”Shift in Carry” or ”"Rotate through Carry” instruction.

10 RISC-V Bitmanip Extension V0.91

Arguably a ”Shift Ones” is an equivalent on an ISA like RISC-V that avoids such flag registers.

The main application for the Shift Ones instruction is mask generation.

When implementing this circuit, the only change in the ALU over a standard logical shift is that
the value shifted in is not zero, but is a 1-bit register value that has been forwarded from the high
bit of the instruction decode. This creates the desired behavior on both logical zero-shifts and

logical ones-shifts.

2.2 Bit permutation instructions

2.2.1 Rotate (Left/Right) (rol, ror, rori)

RISC-V Bitmanip ISA
RV32, RV64:

ror rd, rsl, rs2
rol rd, rsl, rs2
rori rd, rsl, imm

RV64 only:
rorw rd, rsl, rs2
rolw rd, rsl, rs2
roriw rd, rsl, imm

These instructions are similar to shift-logical operations from the base spec, except they shift in

the values from the opposite side of the register, in order. This is also called ‘circular shift’.

uint_xlen_t rol(uint_xlen_t rsl, uint_xlen_t rs2)

{
int shamt = rs2 & (XLEN - 1);
return (rsl << shamt) | (rs1l >> ((XLEN - shamt) & (XLEN - 1)));
}
uint_xlen_t ror(uint_xlen_t rsil, uint_xlen_t rs2)
{

int shamt = rs2 & (XLEN - 1);
return (rsl >> shamt) | (rsl << ((XLEN - shamt) & (XLEN - 1)));

RISC-V Bitmanip Extension V(.91 11

T

O
O
O
O
O
O
O
O
O

= m

OEOE0=0=0=0=0)

=

é
o:?:oé
L
e
o
os%

)
{
i
)

WA
0
"
0
\

\o
\’
§0‘0‘2
§o‘:’:’:‘
e
)
o
i
?’M‘o

il
/ il

i
/ |
: /

O
%
‘ @)
A
%
«N‘
g
o
e

f
t

W
|
|
)

|
\

)
o:
)

)

)

)
B
O

)

o:

)

)

)

O
)
:o
)
)
i

)

)
i

)

i

)
M
AL

S

ror stage 3
(shamt [3])

ror stage 2
(shamt [2])

/”‘““i\iﬁi\’\“ TR

ror stage 0
(shamt [0])

Figure 2.1: ror permutation network

2.2.2 Generalized Reverse (grev, grevi, rev)

RISC-V Bitmanip ISA

RV32, RV64:
grev rd, rsl, rs2
grevi rd, rsl, imm

RV64 only:
grevw rd, rsl, rs2
greviw rd, rsl, imm

This instruction provides a single hardware instruction that can implement all of byte-order swap,
bitwise reversal, short-order-swap, word-order-swap (RV64), nibble-order swap, bitwise reversal in
a byte, etc, all from a single hardware instruction.

The Generalized Reverse (GREV) operation iteratively checks each bit i in the 2nd argument from
i =0 to loga(XLEN) — 1, and if the corresponding bit is set, swaps each adjacent pair of 2° bits.

12

RISC-V Bitmanip Extension V0.91

N
S

@)
@)
@)
@)
0
@)
@)
O
@)
@)

=

W //4
N
i,
i
%/& §

Q
4
@

}
o

W

i

)
)
o:o
)

s

M

NS
o
i
i
)

i
0
)
)

o
e
B

|

|

o

o

Q

5
%)
%

SIS
Fo20%0%0 %% RS0 %0 %% %!
SEZSTSIIIIIES S

5
:0
%
5
%

(N
$
X
Z
7
o
O
O
O
4.;\
\ KK
QN
\-Wo‘o‘
SR
%v
2
‘Q/
O
O
O

0‘:{‘{?&%}% S

A

Figure 2.2: grev permutation network

uint32_t grev32(uint32_t rsl, uint32_t rs2)

{

uint32_t x = rsi;

int shamt = rs2 & 31;

if (shamt & 1) x = ((x & 0x55555555) << 1) |
if (shamt & 2) x = ((x & 0x33333333) << 2) |
if (shamt & 4) x = ((x & OxOFOFOFOF) << 4) |
if (shamt & 8) x = ((x & OxOOFFOOFF) << 8) |
if (shamt & 16) x = ((x & OxO00O0FFFF) << 16) |
return Xx;

grev stage 4
(shamt [4])

grev stage 3
(shamt [3])

grev stage 2
(shamt [2])

grev stage 1
(shamt [1])

grev stage 0
(shamt [0])

((x & OxAAAAAAAA) >> 1);
((x & OxCCcCCCCCC) >> 2);
((x & O0xFOFOFOF0) >> 4);
((x & OxFFOOFF00) >> 8);
((x & OxFFFF0000) >> 16);

RISC-V Bitmanip Extension V(.91

uint64_t grev64(uint64_t rsi,

{

uint64_t x

int shamt

if

if

if

if

if

if

(shamt

(shamt

(shamt

(shamt

(shamt

(shamt

return Xx;

}

rsi;
rs2 &
1) x
2) x
4) x
8) x

16) x

32) x

63;
= ((x
((x
= ((x
((x
= ((x
((x
= ((x
((x
= ((x
((x
= ((x
((x

FRRRIRIRIIIIRIIRIIRIER

uint64_t rs?2)

0x5555555555555555LL)
OxAAAAAAAAAAAAAAAALL)
0x3333333333333333LL)
0xCCCCCCCCCCCCCCCCLL)
0xOFOFOFOFOFOFOFOFLL)
0xFOFOFOFOFOFOFOFOLL)
0x00FFOOFFOOFFOOFFLL)
0xFFOOFFOOFFOOFFOOLL)
0x0000FFFFOOOOFFFFLL)
OxFFFFOOOOFFFFOOOOLL)
0x00000000FFFFFFFFLL)
OxFFFFFFFFO0000000LL)

<<
>>
<<
>>
<<
>>
<<
>>
<<
>>
<<
>>

|
1;
2) |
2);
4) |
4);
8) |
8);
16) |
16);
32) |
32);

13

The above pattern should be intuitive to understand in order to extend this definition in an obvious

manner for RV128.

The grev operation can easily be implemented using a permutation network with logs(XLEN)

stages. Figure shows the permutation network for ror for reference. Figure shows the

permutation network for grev.

Pseudo-instructions are provided for the most common GREVTI use-cases. Their names consist of
a prefix and and optional suffix. Each prefix and suffix corresponds to a bit mask. The GREVI
control word is obtained by AND-ing the two masks together.

Prefix Mask Suffix Mask
rev 111111 — 111111
rev2 111110 wo 011111
revd 111100 .h 001111
rev8 111000 .b 000111
revié 110000 .n 000011
rev32 100000 .p 000001

In other words, the prefix controls the number of zero bits at the LSB end of the control word, and

the suffix controls the number of zeros at the MSB end of the control word.

rev8 reverses the order of bytes in a word, thus performs endianness conversion. This is equivalent
to the ARM REV instructions or BSWAP on x86. ARM also has instructions for swapping the bytes
in 16-bit and 32-bit words, and reversing the bit order (see table [2.2)).

14 RISC-V Bitmanip Extension V0.91

RV32 RV64
shamt Instruction shamt Instruction shamt Instruction
0: 00000 — 0: 000000 — 32: 100000 rev32
1: 00001 rev.p 1: 000001 rev.p 33: 100001 —
2: 00010 rev2.n 2: 000010 rev2.n 34: 100010 —
3: 00011 rev.n 3: 000011 rev.n 35: 100011 —
4: 00100 revd.b 4: 000100 rev4.b 36: 100100 —
5: 00101 — 5: 000101 — 37: 100101 —
6: 00110 rev2.b 6: 000110 rev2.b 38: 100110 —
7: 00111 rev.b 7: 000111 rev.b 39: 100111 —
8: 01000 rev8.h 8: 001000 rev8.h 40: 101000 —
9: 01001 — 9: 001001 — 41: 101001 —
10: 01010 — 10: 001010 — 42: 101010 —
11: 01011 — 11: 001011 — 43: 101011 —
12: 01100 rev4d.h 12: 001100 rev4.h 44: 101100 —
13: 01101 — 13: 001101 — 45: 101101 —
14: 01110 rev2.h 14: 001110 rev2.h 46: 101110 —
15: 01111 rev.h 15: 001111 rev.h 47. 101111 —
16: 10000 revi6 16: 010000 revi6.w 48: 110000 revi6
17: 10001 — 17: 010001 — 49: 110001 —
18: 10010 — 18: 010010 — 50: 110010 —
19: 10011 — 19: 010011 — 51: 110011 —
20: 10100 — 20: 010100 — 52: 110100 —
21: 10101 — 21: 010101 — 53: 110101 —
22: 10110 — 22: 010110 — 54: 110110 —
23: 10111 — 23: 010111 — 55: 110111 —
24: 11000 rev8 24: 011000 rev8.w 56: 111000 rev8
25: 11001 — 25: 011001 — 57: 111001 —
26: 11010 — 26: 011010 — 58: 111010 —
27 11011 — 27: 011011 — 59: 111011 —
28: 11100 rev4d 28: 011100 revéd.w 60: 111100 rev4
29: 11101 — 29: 011101 — 61: 111101 —
30: 11110 rev2 30: 011110 rev2.w 62: 111110 rev2
31: 11111 rev 31: 011111 rev.w 63: 111111 rev

Table 2.1: Pseudo-instructions for grevi instruction

2.2.3 Generalized Shuffle (shfl, unshfl, shfli, unshfli, zip, unzip)

RISC-V Bitmanip ISA

RV32, RV64:
shfl rd, rsl, rs2
unshfl rd, rsil, rs2
shfli rd, rsl, imm
unshfli rd, rsi, imm

RV64 only:
shflw rd, rsl, rs2
unshflw rd, rsl, rs2

RISC-V Bitmanip Extension V(.91 15

RISC-V | ARM | X86
rev RBIT —
rev8.h | REV16 | —
rev8.w | REV32 | —
rev8 REV BSWAP

Table 2.2: Comparison of bit/byte reversal instructions

Shuffle is the third bit permutation instruction in the RISC-V Bitmanip extension, after rotary shift
and generalized reverse. It implements a generalization of the operation commonly known as perfect
outer shuffle and its inverse (shuffle/unshuffle), also known as zip/unzip or interlace/uninterlace.

Bit permutations can be understood as reversible functions on bit indices (i.e. 5 bit functions on
RV32 and 6 bit functions on RV64).

Operation Corresponding function on bit indices
Rotate shift Addition modulo XLEN

Generalized reverse XOR with bitmask

Generalized shuffle Bitpermutation

A generalized (un)shuffle operation has logs(XLEN) — 1 control bits, one for each pair of neigh-
bouring bits in a bit index. When the bit is set, generalized shuffle will swap the two index bits.
The shfl operation performs this swaps in MSB-to-LSB order (performing a rotate left shift on
contiguous regions of set control bits), and the unshfl operation performs the swaps in LSB-to-
MSB order (performing a rotate right shift on contiguous regions of set control bits). Combining
up to loga(XLEN) of those shfl/unshfl operations can implement any bitpermutation on the bit
indices.

The most common type of shuffle/unshuffle operation is one on an immediate control value that
only contains one contiguous region of set bits. We call those operations zip/unzip and provide
pseudo-instructions for them. The naming scheme for those pseudo-instructions is similar to the
naming scheme for the grevi pseudo-instructions.

Shuffle/unshuffle operations that only have individual bits set (not a contiguous region of two or
more bits) are their own inverse.

Like GREV and rotate shift, the (un)shuffle instruction can be implemented using a short sequence
of elementary permutations, that are enabled or disabled by the shamt bits. But (un)shuffle has one
stage fewer than GREV. Thus shfli+unshfli together require the same amount of encoding space
as grevi.

uint32_t shuffle32_stage(uint32_t src, uint32_t maskL, uint32_t maskR, int N)
{

uint32_t x = src & ~“(maskL | maskR);

x |= ((src << N) & maskL) | ((src >> N) & maskR);

return x;

16

uint32_t shf132(uint32_t rsi,

{

RISC-V Bitmanip Extension

shamt inv Bit index rotations Pseudo-Instruction
0: 00000 0 no-op —
0000 1 mno-op —
1: 0001 0 4i[1] -> i[o0] zip.n, unzip.n
0001 1 equivalent to 0001 0 —
2: 0010 0 if[2] -> i[1] zip2.b, unzip2.b
0010 1 equivalent to 0010 0 —
3: 0011 0 i[2] -> i[0] zip.b
0011 1 if[2] <- i[0] unzip.b
4: 0100 0 1[3] -> i[2] zip4.h, unzip4.h
0100 1 equivalent to 0100 0 —
5: 0101 0 i[3] -> i[2], i[1] -> i[0] —
0101 1 equivalent to 0101 0 —
6: 0110 0 i[3] -> i[1] zip2.h
0110 1 i[3] <- i[1] unzip2.h
7: 0111 0 i[3] -> i[0] zip.h
0111 1 i[3] <- i[0] unzip.h
8:1000 0 i[4] -> i[3] zip8, unzip8
1000 1 equivalent to 1000 0 —
9: 1001 0 i[4] -> i[3], il[1] -> i[0] —
1001 1 equivalent to 1001 0 —
10: 1010 0 i[4] -> i[3], i[2] -> il[1] —
1010 1 equivalent to 1010 0 —
11: 1011 0 i[4] -> i[3]1, i[2] -> i[0] —
1011 1 i[4] <- i[3], i[2] <- i[0] —
12: 1100 0 i[4] -> i[2] zip4
1100 1 if[4] <- i[2] unzip4
13: 1101 0 i[4] -> i[2], i[1] -> i[0] —
1101 1 i[4] <- if[2], i[1] <= i[0] —
14: 1110 0 i[4] -> i[1] zip2
1110 1 i[4] <- i[1] unzip2
15: 1111 0 i[4] -> i[o0] zip
1111 1 i[4] <- i[0] unzip
Table 2.3: RV32 modes and pseudo-instructions for shfli/unshfli instruction

uint32_t x
int shamt

if
if
if
if

(shamt
(shamt
(shamt
(shamt

return Xx;

= rsi;

= rs2 & 15;

& 8) x = shuffle32_stage(x,
& 4) x = shuffle32_stage(x,
& 2) x = shuffle32_stage(x,
& 1) x = shuffle32_stage(x,

uint32_t rs2)

0x00££0000,
0x0£000£00,
0x30303030,
0x44444444,

0x0000££00,
0x00£000£0,
0x0c0c0cOc,
0x22222222,

8);
4);
2);
1;

V0.91

RISC-V Bitmanip Extension V(.91

shamt inv Pseudo-Instruction
0: 00000 0 —
00000 1 —
1: 00001 0 =zip.n, unzip.n
00001 1 —
2: 00010 0 zip2.b, unzip2.b
00010 1 —
3: 00011 0 zip.b
00011 1 wunzip.b
4: 00100 0 zip4.h, unzip4.h
00100 1 —
5: 00101 0 —
00101 1 —
6: 00110 0 =zip2.h
00110 1 wunzip2.h
7: 00111 0 zip.h
00111 1 unzip.h
8: 01000 0 =zip8.w, unzip8.w
01000 1 —
9: 01001 0 —
01001 1 —
10: 01010 0 —
01010 1 —
11: 01011 0 —
01011 1 —
12: 01100 0 zip4.w
01100 1 unzip4.w
13: 01101 0 —
01101 1 —
14: 01110 0 zip2.w
01110 1 unzip2.w
15: 01111 0 zip.w
01111 1 unzip.w

17
shamt inv Pseudo-Instruction

16: 10000 0 =zipl6, unzipl6
10000 1 —

17: 10001 0 —
10001 1 —

18: 10010 0 —
10010 1 —

19: 10011 0 —
10011 1 —

20: 10100 0 —
10100 1 —

21: 10101 0 —
10101 1 —

22: 10110 0 —
10110 1 —

23: 10111 0 —
10111 1 —

24: 11000 0 =zip8
11000 1 unzip8

25: 11001 0 —
11001 1 —

26: 11010 0 —
11010 1 —

27: 11011 0 —
11011 1 —

28: 11100 0 =zip4
11100 1 unzip4

29: 11101 0 —
11101 1 —

30: 11110 0 =zip2
11110 1 unzip2

31: 11111 0 zip
11111 1 unzip

Table 2.4: RV64 modes and pseudo-instructions for shfli/unshfli instruction

uint32_t unshfl132(uint32_t rsl, uint32_t rs2)

{

}

uint32_t x
int shamt

if (shamt
if (shamt
if (shamt
if (shamt

return Xx;

Or for RV64:

= rsi;

= rs2 & 15;

& 1) x = shuffle32_stage(x,
& 2) x shuffle32_stage(x,
& 4) x = shuffle32_stage(x,
& 8) x = shuffle32_stage(x,

0x44444444, 0x22222222, 1);
0x30303030, 0x0c0c0cOc, 2);
0x0f000£00, 0x00f000£f0, 4);
0x00££f0000, 0x0000f£f00, 8);

18

mode [0]

mode[1]

mode [2]

mode [3]

RISC-V Bitmanip Extension V0.91

mode [3]

mode [2]

mode [1]

mode [0]

inv

Figure 2.3: (un)shuffle permutation network without “flip” stages

uint64_t shuffle64_stage(uint64_t src, uint64_t maskL, uint64_t maskR, int N)

N) & maskR);

0x0000££££00000000LL,
0x00000000££££0000LL,
0x00££000000££0000LL,
0x0000££000000££f00LL,
0x0£000£000£000£f00LL,
0x00£000£000£000£0LL,
0x3030303030303030LL,
0x0c0c0c0c0c0c0cOcLL,
0x4444444444444444] L,
0x2222222222222222LL,

{
uint64_t x = src & ~(maskL | maskR);
x |= ((src << N) & maskL) | ((src >>
return x;
}
uint64_t shfl64(uint64_t rsi, uint64_t rs2)
{
uint64_t x = rsi;
int shamt = rs2 & 31;
if (shamt & 16) x = shuffle64_stage(x,
if (shamt & 8) x = shuffle64_stage(x,
if (shamt & 4) x = shuffle64_stage(x,
if (shamt & 2) x = shuffle64_stage(x,
if (shamt & 1) x = shuffle64_stage(x,
return x;

16);
8);
4);
2);

1);

RISC-V Bitmanip Extension V(.91 19

uint64_t unshfl64(uint64_t rsl, uint64_t rs2)

{
uint64_t x = rsi;
int shamt = rs2 & 31;
if (shamt & 1) x = shuffle64_stage(x, 0x4444444444444444LL,
0x2222222222222222LL, 1);
if (shamt & 2) x = shuffle64_stage(x, 0x3030303030303030LL,
0x0c0c0c0c0c0cOcOcLL, 2);
if (shamt & 4) x = shuffle64_stage(x, 0x0f000f000f000f00LL,
0x00f000f000f000f0LL, 4);
if (shamt & 8) x = shuffle64_stage(x, 0x00£ff000000ff0000LL,
0x0000ff000000ffO0LL, 8);
if (shamt & 16) x = shuffle64_stage(x, 0x0000ffff00000000LL,
0x00000000ff£f0000LL, 16);
return Xx;
}

The above pattern should be intuitive to understand in order to extend this definition in an obvious
manner for RV128.

Alternatively (un)shuffle can be implemented in a single network with one more stage than GREV,
with the additional first and last stage executing a permutation that effectively reverses the order
of the inner stages. However, since the inner stages only mux half of the bits in the word each, a
hardware implementation using this additional “flip” stages might actually be more expensive than
simply creating two networks.

uint32_t shuffle32_flip(uint32_t src)

{
uint32_t x = src & 0x88224411;
x |= ((src << 6) & 0x22001100)
x |= ((src << 9) & 0x00440000)
x |= ((src << 15) & 0x44110000)
x |= ((src << 21) & 0x11000000)
return x;

((src >> 6) & 0x00880044) ;
((src >> 9) & 0x00002200) ;
((src >> 15) & 0x00008822) ;

|
I
|
| ((src >> 21) & 0x00000088) ;

20 RISC-V Bitmanip Extension V0.91

flip

stage 3

stage 2

stage 1

stage 0

flip

Figure 2.4: (un)shuffle permutation network with “flip” stages

uint32_t unshfl32alt(uint32_t rsl, uint32_t rs2)
{
uint32_t shfl_mode = 0;
if (rs2 & 1) shfl_mode |
if (rs2 & 2) shfl_mode |
if (rs2 & 4) shfl_mode |
if (rs2 & 8) shfl_mode |

uint32_t x = rsi;
shuffle32_flip(x);
shf132(x, shfl_mode);
shuffle32_flip(x);

X

X

X

return X;

}

Figure shows the (un)shuffle permutation network with “flip” stages and Figure shows the
(un)shuffle permutation network without “flip” stages.

The zip instruction with the upper half of its input cleared performs the commonly needed “fan-
out” operation. (Equivalent to bdep with a 0x55555555 mask.) The zip instruction applied twice
fans out the bits in the lower quarter of the input word by a spacing of 4 bits.

For example, the following code calculates the bitwise prefix sum of the bits in the lower byte of a

RISC-V Bitmanip Extension V(.91

32 bit word on RV32:

andi a0, a0, Oxff
zip a0, a0

zip a0, a0

slli al, a0, 4
c.add a0, a1l

slli al, a0, 8
c.add a0, ail

slli al, a0, 16
c.add a0, ail

The final prefix sum is stored in the 8 nibbles of the a0 output word.

21

Similarly, the following code stores the indices of the set bits in the LSB nibbles of the output word

(with the LSB bit having index 1), with the unused MSB nibbles in the output set to zero:

andi a0, a0, Oxff
zip a0, a0

zip a0, a0

slli al, a0, 1

or a0, a0, ail
slli al, a0, 2

or a0, a0, ail

1i al, 0x87654321
and al, a0, al
bext a0, al, a0

Other zip modes can be used to “fan-out” in blocks of 2, 4, 8, or 16 bit. zip can be combined

with grevi to perform inner shuffles. For example on RV64:

1i a0, 0x0000000012345678

zip4 t0, a0 ; <- 0x0102030405060708
rev4d.b t1, t0O ; <- 0x1020304050607080
zip8 t2, a0 ; <— 0x0012003400560078
rev8.h t3, t2 ; <- 0x1200340056007800
zipl6 t4, a0 ; <— 0x0000123400005678

revli6.w t5, t4 ; <- 0x1234000056780000

Another application for the zip instruction is generating Morton code [23].

The x86 PUNPCK [LH] * MMX/SSE/AVX instructions perform similar operations as zip8 and zip16.

22 RISC-V Bitmanip Extension V0.91

2.3 Generalized OR-Combine (gorc, gorci)

RISC-V Bitmanip ISA
RV32, RV64:

gorc rd, rsl, rs2
gorci rd, rsl, imm

RV64 only:
gorcw rd, rsl, rs2
gorciw rd, rsl, imm

The GORC operation is similar to GREV, except that instead of swapping pairs of bits, GORC
ORs them together, and writes the new value in both positions.

uint32_t gorc32(uint32_t rsl, uint32_t rs2)

{
uint32_t x = rsi;
int shamt = rs2 & 31;
if (shamt & 1) x |= ((x & 0x55555555) << 1) | ((x & OxAAAAAAAA) >> 1);
if (shamt & 2) x |= ((x & 0x33333333) << 2) | ((x & 0xCCCCCCCC) >> 2);
if (shamt & 4) x |= ((x & 0xOFOFOFOF) << 4) | ((x & O0xFOFOFOF0) >> 4);
if (shamt & 8) x |= ((x & 0xOOFFOOFF) << 8) | ((x & OxFFOOFF00) >> 8);
if (shamt & 16) x |= ((x & 0x0000FFFF) << 16) | ((x & OxFFFF0000) >> 16);
return X;
}
uint64_t gorc64(uint64_t rsl, uint64_t rs2)
{
uint64_t x = rsi;
int shamt = rs2 & 63;
if (shamt & 1) x |= ((x & 0x5555555555555555LL) << 1) |
((x & OxAAAAAAAAAAAAAAAALL) >> 1);
if (shamt & 2) x |= ((x & 0x3333333333333333LL) << 2) |
((x & 0xCCCCCCCCCCCCCCCCLL) >> 2);
if (shamt & 4) x |= ((x & 0xOFOFOFOFOFOFOFOFLL) << 4) |
((x & O0xFOFOFOFOFOFOFOFOLL) >> 4);
if (shamt & 8) x |= ((x & 0xOOFFOOFFOOFFOOFFLL) << 8) |
((x & OxFFOOFFOOFFOOFFOOLL) >> 8);
if (shamt & 16) x |= ((x & 0x0000FFFFOOOOFFFFLL) << 16) |
((x & OxFFFFOOOOFFFFOOOOLL) >> 16);
if (shamt & 32) x |= ((x & 0x00000000FFFFFFFFLL) << 32) |
((x & OxFFFFFFFFO0000000LL) >> 32);
return X;
}

GORC can be usefull for copying naturally aligned fields in a word, and testing such fields for being
equal zero.

RISC-V Bitmanip Extension V(.91 23

gorci pseudo-instructions follow the same naming scheme as grevi pseudo-instructions, except
the prefix orc is used instead of rev.

2.4 Bit-Field Place (bfp)

RISC-V Bitmanip ISA

RV32, RV64:
bfp rd, rsl, rs2

RV64 only:
bfpw rd, rsi, rs2

The bit field place (bfp) instruction places up to 16 LSB bit from rs2 into the value in rs1. The
upper bits of rs2 control the length of the bit field and target position.

uint_xlen_t bfp(uint_xlen_t rsl, uint_xlen_t rs2)

{

int len (rs2 >> 24) & 15;

int off (rs2 >> 16) & (XLEN-1);

len = len ? len : 16;

uint_xlen_t mask = rol(slo(0, len), off);
uint_xlen_t data = rol(rs2, off);

return (data & mask) | (rsil & “mask);

}

The layout of the control word in rs2 is as follows. LEN=0 encodes for LEN=16.

| 3 2 1 |
1 0987654321098765432109876543210]

Placing bits from a0 in al, with results in t0:

addi t0, zero, {length[3:0], offset[7:0]}
pack tO, a0, tO
bfp t0, al, tO

(On RV64 packw would be used as second instruction in that sequence.)

Placing up to 16 constant bits in any contiguous region:

lui tO,
addi t0, tO,
bfp t0, al, tO

Note that either above sequence only modifies one register, which makes them fuse-able sequences.

24 RISC-V Bitmanip Extension V0.91

2.5 Bit Extract/Deposit (bext, bdep)

RISC-V Bitmanip ISA

RV32, RV64:
bext rd, rsl, rs2
bdep rd, rsl, rs2

RV64 only:
bextw rd, rsl, rs2
bdepw rd, rsl, rs2

This instructions implement the generic bit extract and bit deposit functions. This operation is
also referred to as bit gather/scatter, bit pack/unpack, parallel extract/deposit, compress/expand,
or right_compress/right_expand.

bext collects LSB justified bits to rd from rsl using extract mask in rs2.

bdep writes LSB justified bits from rsl to rd using deposit mask in rs2.

uint_xlen_t bext(uint_xlen_t rsl, uint_xlen_t rs2)

{
uint_xlen_t r = 0O;
for (int i = 0, j = 0; i < XLEN; i++)
if ((rs2 >> i) & 1) {
if ((rs1 >> i) & 1)
r |= uint_xlen_t(1) << j;
Jjtts
}
return r;
}
uint_xlen_t bdep(uint_xlen_t rsl, uint_xlen_t rs2)
{
uint_xlen_t r = O;
for (int i = 0, j = 0; i < XLEN; i++)
if ((rs2 >> i) & 1) {
if ((rs1 >> j) & 1)
r |= uint_xlen_t(1) << i;
j++s
}
return r;
}

Implementations may choose to use smaller multi-cycle implementations of bext and bdep, or even
emulate the instructions in software.

Even though multi-cycle bext and bdep often are not fast enough to outperform algorithms that
use sequences of shifts and bit masks, dedicated instructions for those operations can still be of
great advantage in cases where the mask argument is not constant.

RISC-V Bitmanip Extension V(.91 25

For example, the following code efficiently calculates the index of the tenth set bit in a0 using bdep:

1i a1, 0x00000200
bdep a0, al, a0l
ctz a0, a0

For cases with a constant mask an optimizing compiler would decide when to use bext or bdep
based on the optimization profile for the concrete processor it is optimizing for. This is similar to
the decision whether to use MUL or DIV with a constant, or to perform the same operation using
a longer sequence of much simpler operations.

The bext and bdep instructions are equivalent to the x86 BMI2 instructions PEXT and PDEP. But
there is much older prior art. For example, the soviet BESM-6 mainframe computer, designed and
built in the 1960s, had APX/AUX instructions with almost the same semantics. [I] (The BESM-6
APX/AUX instructions packed/unpacked at the MSB end instead of the LSB end. Otherwise it is
the same instruction.)

Efficient hardware implementations of bext and bdep are described in [13] and demonstrated in [24].

2.6 Carry-Less Multiply (clmul, clmulh, clmulr)

RISC-V Bitmanip ISA

RV32, RV64:
clmul rd, rsl, rs2
clmulh rd, rsl, rs2
clmulr rd, rsl, rs2

RV64 only:
clmulw rd, rsil, rs2
clmulhw rd, rsil, rs2
clmulrw rd, rsil, rs2

Calculate the carry-less product [21] of the two arguments. clmul produces the lower half of the
carry-less product and clmulh produces the upper half of the 2-XLEN carry-less product.

clmulr produces bits 2-XLEN—2:XLEN-1 of the 2-XLEN carry-less product. That means clmulh
is equivalent to clmulr followed by a 1-bit right shift. (The MSB of a clmulh result is always
zero.) Another equivalent definition of clmulr is that is clmulr(a,b) := rev(clmul(rev(a),
rev(b))). (The “r” in clmulr means reversed.)

Unlike mulh[[s]ul, we add a *W variant of clmulh. This is because we expect some code to use
32-bit clmul intrisics, even on 64-bit architectures. For example in cases where data is processed in
32-bit chunks.

26 RISC-V Bitmanip Extension V0.91

uint_xlen_t clmul(uint_xlen_t rsl, uint_xlen_t rs2)

{
uint_xlen_t x = 0;
for (int i = 0; i < XLEN; i++)
if ((rs2 >> i) & 1)
X "= rsl << i;
return X;
}
uint_xlen_t clmulh(uint_xlen_t rsl, uint_xlen_t rs2)
{
uint_xlen_t x = 0O;
for (int i = 1; i < XLEN; i++)
if ((rs2 > i) & 1)
x "= rsl >> (XLEN-i);
return x;
}
uint_xlen_t clmulr(uint_xlen_t rsl, uint_xlen_t rs2)
{
uint_xlen_t x = 0;
for (int i = 0; i < XLEN; i++)
if ((rs2 >> i) & 1)
x "= rsl >> (XLEN-i-1);
return x;
}

The classic applications for clmul are CRC [11],25] and GCM, but more applications exist, including
the following examples.

There are obvious applications in hashing and pseudo random number generations. For exam-
ple, it has been reported that hashes based on carry-less multiplications can outperform Google’s
CityHash [17].

clmul of a number with itself inserts zeroes between each input bit. This can be useful for generating
Morton code [23].

clmul of a number with -1 calculates the prefix XOR operation. This can be useful for decoding
gray codes.

Another application of XOR prefix sums calculated with clmul is branchless tracking of quoted
strings in high-performance parsers. [10]

Carry-less multiply can also be used to implement Erasure code efficiently. [14]
SPARC introduced similar instructions (XMULX, XMULXHI) in SPARC T3 in 2010. [6]

TI C6000 introduced a similar instruction (XORMPY) in C64x+. [7]

RISC-V Bitmanip Extension V(.91

2.7 CRC Instructions (crc32. [bhwd], crc32c. [bhwd])

RV32, RV64:
crc32.b rd, rs
crc32.h rd, rs
crc32.w rd, rs
crc32c.b rd, rs
crc32c.h rd, rs
crc32c.w rd, rs

RV64 only:
crc32.d rd, rs
crc32c.d rd, rs

RISC-V Bitmanip ISA

27

Unary CRC instructions that interpret the bits of rsl as a CRC32/CRC32C state and perform a
polynomial reduction of that state shifted left by 8, 16, 32, or 64 bits.

The instructions return the new CRC32/CRC32C state.

The crc32.w/crc32c.w instructions are equivalent to executing crc32.h/crc32c.h twice, and

crc32.h/crc32c.h instructions are equivalent to executing crc32.b/crc32c.b twice.

All 8 CRC instructions operate on bit-reflected data.

uint_xlen_t crc32(uint_xlen_t x, int nbits)

{
for (int i = 0; i < nbits; i++)
x = (x > 1) -~ (0xEDB88320 & ~((x&1)-1));
return x;
}
uint_xlen_t crc32c(uint_xlen_t x, int nbits)
{
for (int 1 = 0; i < nbits; i++)
x = (x > 1) -~ (0x82F63B78 & ~((x&1)-1));
return Xx;
}

uint_xlen_t crc32_b(uint_xlen_t rsl) { return crc32(rsil, 8); }
uint_xlen_t crc32_h(uint_xlen_t rsl) { return crc32(rsi, 16); }
uint_xlen_t crc32_w(uint_xlen_t rsl) { return crc32(rsi, 32); }

uint_xlen_t crc32c_b(uint_xlen_t
uint_xlen_t crc32c_h(uint_xlen_t
uint_xlen_t crc32c_w(uint_xlen_t

#if XLEN > 32

uint_xlen_t crc32_d (uint_xlen_t
uint_xlen_t crc32c_d(uint_xlen_t
#endif

rsl) {
rs1) {
rsl) {

rsl) {
rs1) {

return
return
return

return
return

crc32c(rsi,
crc32c(rsi,
crc32c(rsi,

crc32 (rsi,
crc32c(rsi,

8); }
16);
32); }
64); }
64); }

28 RISC-V Bitmanip Extension V0.91

Payload data must be XOR’ed into the LSB end of the state before executing the CRC instruction.
The following code demonstrates the use of crc32.b:

uint32_t crc32_demo(const uint8_t *p, int len)

{
uint32_t x Oxffffffff;
for (int i = 0; i < len; i++) {
x = x " plil;
x = crc32_b(x);

}

return “x;

}

In terms of binary polynomial arithmetic those instructions perform the operation
rd'(z) = (rst'(z) - V) mod {1, P'}(z),

with N € {8,16,32,64}, P = 0xEDB8.8320 for CRC32 and P = 0x82F6_3B78 for CRC32C, d
denoting the XLEN bit reversal of a, and {a, b} denoting bit concatenation. Note that for example
for CRC32 {1, P’} = 0x1_04C1_1DB7 on RV32 and {1, P’} = 0x1_04C1_1DB7_0000_0000 on RV64.

These dedicated CRC instructions are meant for RISC-V implementations without fast multiplier
and therefore without fast clmul [h]. For implementations with fast clmul [h] it is recommended
to use the methods described in [I1] and demonstrated in [25] that can process XLEN input bits
using just one carry-less multiply for arbitrary CRC polynomials.

In applications where those methods are not applicable it is possible to emulate the dedicated CRC
instructions using two carry-less multiplies that implement a Barrett reduction. The following
example implements a replacement for crec32.w (RV32).

crc32_w:
1i t0, O0xF7011641
1i t1, OxEDB88320
clmul a0, a0, tO
clmulr a0, a0, ti1
ret

2.8 Bit-Matrix Instructions (bmatxor, bmator, bmatflip, RV64
only)

RISC-V Bitmanip ISA
RV64 only:

bmator rd, rsl, rs2
bmatxor rd, rsil, rs2
bmatflip rd, rs

These are 64-bit-only instruction that are not available on RV32. On RV128 they ignore the upper

RISC-V Bitmanip Extension V(.91 29

half of operands and sign extend the results.
This instructions interpret a 64-bit value as 8x8 binary matrix.

bmatxor performs a matrix-matrix multiply with boolean AND as multiply operator and boolean
XOR as addition operator.

bmator performs a matrix-matrix multiply with boolean AND as multiply operator and boolean
OR as addition operator.

bmatflip is a unary operator that transposes the source matrix. It is equivalent to zip; zip; zip
on RV64.

uint64_t bmatflip(uint64_t rsil)

{
uint64_t x = rsi;
x = shfl64(x, 31);
x = shfl64(x, 31);
x = shfl64(x, 31);
return Xx;
}
uint64_t bmatxor(uint64_t rsi, uint64_t rs2)
{

// transpose of rs2
uint64_t rs2t = bmatflip(rs2);

uint8_t ul[8]; // rows of rsl
uint8_t v[8]; // cols of rs2

for (int i = 0; i < 8; i++) {
uli] = rs1 >> (ix*8);
v[i] = rs2t >> (i*8);

uint64_t x = 0;
for (int 1 = 0; i < 64; i++) {
if (pent(uli / 8] & v[i % 8]) & 1)
x |= 1LL << i;

return Xx;

30 RISC-V Bitmanip Extension V0.91

uint64_t bmator (uint64_t rsl, uint64_t rs2)
{

// transpose of rs2

uint64_t rs2t = bmatflip(rs2);

uint8_t ul[8]; // rows of rsi
uint8_t v[8]; // cols of rs2

for (int i = 0; i < 8; i++) {
uli] = rs1l >> (ix*8);
v[i] = rs2t >> (i*8);

uint64_t = 0;
for (int i 0; i < 64; i++) {
if ((uli / 8] & v[i % 8]) '= 0)
x |= 1LL << i;

ke
|

return X;

}

Among other things, bmatxor/bmator can be used to perform arbitrary permutations of bits within
each byte (permutation matrix as 2nd operand) or perform arbitrary permutations of bytes within
a 64-bit word (permutation matrix as 1st operand).

There are similar instructions in Cray XMT [5]. The Cray X1 architecture even has a full 64x64
bit matrix multiply unit [4].

The MMIX architecture has MOR and MXOR instructions with the same semantic. [15], p. 182f]

The x86 EVEX/VEX/SSE instruction GF2PSAFFINEQB is equivalent to bmatxor.

The bmm. 8 instruction proposed in [12] is also equivalent to bmatxor.

2.9 Ternary Bit-Manipulation Instructions

2.9.1 Conditional Mix (cmix)

RISC-V Bitmanip ISA
RV32, RV64:

cmix rd, rs2, rsl, rs3

(Note that the assembler syntax of cmix has the rs2 argument first to make assembler code more
readable. But the reference C code code below uses the “architecturally correct” argument order
rsl, rs2, rs3.)

RISC-V Bitmanip Extension V(.91 31

The cmix rd, rs2, rsl, rs3 instruction selects bits from rs1 and rs3 based on the bits in the
control word rs2.

uint_xlen_t cmix(uint_xlen_t rsl, uint_xlen_t rs2, uint_xlen_t rs3)

{
return (rsl & rs2) | (rs3 & “rs2);
}

It replaces sequences like the following.

and rd, rsl, rs2
andn tO, rs3, rs2
or rd, rd, tO

Using cmix a single butterfly stage can be implemented in only two instructions. Thus, arbitrary
bit-permutations can be implemented using only 18 instruction (32 bit) or 22 instructions (64 bits).

2.9.2 Conditional Move (cmov)

RISC-V Bitmanip ISA

RV32, RV64:
cmov rd, rs2, rsl, rs3

(Note that the assembler syntax of cmov has the rs2 argument first to make assembler code more
readable. But the reference C code code below uses the “architecturally correct” argument order
rsl, rs2, rs3.)

The cmov rd, rs2, rsl, rs3 instruction selects rsi if the control word rs2 is non-zero, and rs3
if the control word is zero.

uint_xlen_t cmov(uint_xlen_t rsl, uint_xlen_t rs2, uint_xlen_t rs3)

{

return rs2 ? rsl : rs3;

}

The cmov instruction helps avoiding branches, which can lead to better performance, and helps
with constant-time code as used in some cryptography applications.

32 RISC-V Bitmanip Extension V0.91

2.9.3 Funnel Shift (fsl, fsr, fsri)

RISC-V Bitmanip ISA

RV32, RV64:
fsl 1rd, rsl, rs3, rs2
fsr rd, rsl, rs3, rs2
fsri rd, rsil, rs3, imm

RV64 only:
fslw rd, rsl, rs3, rs2
fsrw rd, rsl, rs3, rs2
fsriw rd, rsl, rs3, imm

(Note that the assembler syntax for funnel shifts has the rs2 argument last to make assembler code
more readable. But the reference C code code below uses the “architecturally correct” argument
order rs1, rs2, rs3.)

The fsl1 rd, rsl, rs3, rs2 instruction creates a 2 - XLEN word by concatenating rsl and rs3
(with rs1 in the MSB half), rotate-left-shifts that word by the amount indicated in the logs (XLEN)-+
1 LSB bits in rs2, and then writes the MSB half of the result to rd.

The fsr rd, rsl, rs3, rs2 instruction creates a 2 - XLEN word by concatenating rsl and
rs3 (with rsl in the LSB half), rotate-right-shifts that word by the amount indicated in the
loga(XLEN) + 1 LSB bits in rs2, and then writes the LSB half of the result to rd.

uint_xlen_t fsl(uint_xlen_t rsl, uint_xlen_t rs2, uint_xlen_t rs3)
{
int shamt = rs2 & (2*XLEN - 1);
uint_xlen_t A = rsl, B = rs3;
if (shamt >= XLEN) {
shamt -= XLEN;
A = rs3;
B = rsi;
}
return shamt ? (A << shamt) | (B >> (XLEN-shamt)) : A;
}

uint_xlen_t fsr(uint_xlen_t rsl, uint_xlen_t rs2, uint_xlen_t rs3)
{

int shamt = rs2 & (2*XLEN - 1);

uint_xlen_t A = rsl, B = rs3;

if (shamt >= XLEN) {

shamt -= XLEN;
A = rs3;
B = rsi;

}
return shamt ? (A >> shamt) | (B << (XLEN-shamt)) : A;

RISC-V Bitmanip Extension V(.91 33

A shift unit capable of either £s1 or fsr is capable of performing all the other shift functions,
including the other funnel shift, with only minimal additional logic.

For any values of A, B, and C:
fsl1(A, B, C) = fsr(A, -B, C)

And for any values x and 0 < shamt < XLEN:

sll1(x, shamt) == fsl(x, shamt, 0)

srl(x, shamt) == fsr(x, shamt, 0)
sra(x, shamt) == fsr(x, shamt, sext_x)
slo(x, shamt) == fsl(x, shamt, ~0)
sro(x, shamt) == fsr(x, shamt, ~0)
ror(x, shamt) == fsr(x, shamt, x)
rol(x, shamt) == fsl(x, shamt, x)

Furthermore an RV64 implementation of either £s1 or f£sr is capable of performing the *W versions
of all shift operations with only a few gates of additional control logic.

On RV128 there is no fsri instruction. But there is fsriw and fsrid.

2.10 Unsigned address calculation instructions

Consider C code that’s using unsigned 32-bit ints as array indices. For example:

char addiwu_demo(char *p, unsigned int i) {
return pli-1];

}

int slliuw_demo(int *p, unsigned int i, unsigned int j) {
return pl[i~j];

}

In both cases the expression within p[...] must overflow according to 32-bit arithmetic, then be
zero-extended, and then this zero-extended result must be used in the address calculation.

The instructions below make sure that no explicit zext.w instruction is needed in those cases, to
make sure there is no systematic performance penalty for code like shown above on RV64 compared
to RV32.

2.10.1 Add/sub with postfix zero-extend (addwu, subwu, addiwu)

RISC-V Bitmanip ISA
RV64:

addwu rd, rsil, rs2
subwu rd, rsl, rs2
addiwu rd, rsl, imm

34 RISC-V Bitmanip Extension V0.91

These instructions are identical to addw, subw, addiw, except that bits XLEN-1:32 of the result
are cleared after the addition. L.e. these instructions zero-extend instead of sign-extend the 32-bit
result.

uint_xlen_t addwu(uint_xlen_t rsl, uint_xlen_t rs2)

{
uint_xlen_t result = rsl + rs2;
return (uint32_t)result;
}
uint_xlen_t subwu(uint_xlen_t rsl, uint_xlen_t rs2)
{
uint_xlen_t result = rsl - rs2;
return (uint32_t)result;
}

2.10.2 Add/sub/shift with prefix zero-extend (addu.w, subu.w, slliu.w)

RISC-V Bitmanip ISA
RV64:

addu.w rd, rsl, rs2
subu.w rd, rsl, rs2
slliu.w rd, rsl, imm

slliu.w is identical to s11i, except that bits XLEN-1:32 of the rs1 argument are cleared before
the shift.

addu.w and subu.w are identical to add and sub, except that bits XLEN-1:32 of the rs2 argument
are cleared before the add/subtract.

uint_xlen_t slliuw(uint_xlen_t rsil, int imm)
{

uint_xlen_t rslu = (uint32_t)rsi;

int shamt = imm & (XLEN - 1);

return rslu << shamt;

uint_xlen_t adduw(uint_xlen_t rsl, uint_xlen_t rs2)

{
uint_xlen_t rs2u = (uint32_t)rs2;
return rsl + rs2u;
}
uint_xlen_t subuw(uint_xlen_t rsl, uint_xlen_t rs2)
{

uint_xlen_t rs2u = (uint32_t)rs2;
return rsl - rs2u;

RISC-V Bitmanip Extension V(.91 35

2.11 Opcode Encodings

This chapter contains proposed encodings for most of the instructions described in this document.
DO NOT IMPLEMENT THESE OPCODES YET. We are trying to get official opcodes
assigned and will update this chapter soon with the official opcodes.

The andn, orn, and xnor instruction are encoded the same way as and, or, and xor, but with
op [30] set, mirroring the encoding scheme used for add and sub.

All shift instructions use funct3=001 for left shifts and funct3=101 for right shifts.

op [26]=1 selects funnel shifts. For funnel shifts op[30:29] is part if the 3rd operand and therefore
unused for encoding the operation. For all other shift operations op [26]=0.

fsri is also encoded with op[26]1=1, leaving a 6 bit immediate. The 7th bit, that is necessary to
perform a 128 bit funnel shift on RV64, can be emulated by swapping rsl and rs3.

There is no shfliw instruction. The slliu.w instruction occupies the encoding slot that would be
occupied by shfliw.

On RV128 op[26] contains the MSB of the immediate for the shift instructions. Therefore there
is no FSRI instruction on RV128. (But there is FSRIW/FSRID.)

SLL SRL SRA | SLO SRO | ROL ROR | FSL FSR

|
op[30] | 0 0 1| 0 0| 1 1| - -
op[29] | 0 0 0 | 1 1| 1 1| - -
opl26] | 0 0 0| 0 o0 | 0 0| 1 1
funct3 | 001 101 101 | 001 101 | 001 101 | 001 101

Only an encoding for RORI exists, as ROLI can be implemented with RORI by negating the
immediate. Unary functions are encoded in the spot that would correspond to ROLI, with the
function encoded in the 5 LSB bits of the immediate.

The CRC instructions are encoded as unary instructions with op[24] set. The polynomial is
selected via op[23], with op[23]=0 for CRC32 and op[23]=1 for CRC32C. The width is selected
with op[22:20], using the same encoding as is used in funct3 for load/store operations.

cmix and cmov are encoded using the two remaining ternary operator encodings in funct3=001
and funct3=101. (There are two ternary operator encodings per minor opcode using the op [26]=1
scheme for marking ternary OPs.)

The single-bit instructions are also encoded within the shift opcodes, with op[27] set, and using
op[30] and op[29] to select the operation:

SBCLR SBSET SBINV | SBEXT GORC GREV

I I
op[30] | 1 0 1 1 0 1
op[29] | 0 1 1| 0 1 1
opl[27] | 1 1 1 1 1 1
funct3 | 001 001 001 | 101 101 101

There is no sbextiw instruction as it can be emulated trivially using sbexti. However, there is

36 RISC-V Bitmanip Extension V0.91

sbsetiw, sbclriw, and sbinviw as changing bit 31 would change the sign extend. There are non-
immediate *W instructions of all single-bit instructions, including sbextw, because the number of
used bits in rs2 is different in sbext and sbextw.

GORC and GREV are encoded in the two remaining slots in the single-bit instruction encoding
space.

The remaining instructions are encoded within funct7=0000100 and funct7=0000101.
The funct7=0000101 block contains clmul [hr], min[u], and max [u].

The encoding of clmul, clmulr, clmulh is identical to the encoding of mulh, mulhsu, mulhu,
except that op[27]=1.

The encoding of min [u] /max [u] uses funct3=100..111. The funct3 encoding matches op [31:29]
of the AMO min/max functions.

The remaining instructions are encoded within funct7=0000100. The shift-like shfl/unshfl in-
structions uses the same funct3 values as the shift operations. bdep and bext are encoded in a
way so that funct3[2] selects the “direction”, similar to shift operations.

bmat [x] or use funct3=011 and funct3=111 in funct7=0000100.

pack occupies funct3=100 in funct7=0000100.

addwu and subwu are encoded like addw and subw, except that op[25]=1 and op[27]=1.
addu.w and subu.w are encoded like addw and subw, except that op[27]=1.

addiwu is encoded using funct3=100 (XOR) instead of funct3=000 in OP-32.

Finally, RV64 has *W instructions for all bitmanip instructions, with the following exceptions:

andn, cmix, cmov, min[ul], max[u] have no *W variants because they already behave in the way a
*W instruction would when presented with sign-exteded 32-bit arguments.

bmatflip, bmatxor, bmator have no *W variants because they are 64-bit only instructions.
crc32. [bhwd], crc32c. [bhwd] have no *W variants because crc32[c] .w is deemed sufficient.

There is no [un]shfliw, as a perfect outer shuffle always preserves the MSB bit, thus [un]shfli
preserves proper sign extension when the upper bit in the control word is set. There’s still
[un] shflw that masks that upper control bit and sign-extends the output.

Relevant instruction encodings from the base ISA are included in the table below and are marked
with a *.

RISC-V Bitmanip Extension V(.91

| 3 2 1 I
11 0987654321098765432109876543210]|

[funct7 | rs2 | rsl | £3 | rd | opcode |
| rs3 | f2] rs2 | rsi | £3 | rd | opcode |
[imm | rsl | £3 | rd | opcode |
I I
0000000	rs2	rs1	111	rd	0110011
0000000	rs2	rs1	110	rd	0110011
0000000	rs2	rsit	100	rd	0110011
0100000	rs2	rsi	111	rd	0110011
0100000	rs2	rst	110	rd	0110011
0100000	rs2	rsi	100	rd	0110011
=== I					
0000000	rs2	rsi	001	rd	0110011
0000000	rs2	rsi1	101	rd	0110011
0100000	rs2	rsi	101	rd	0110011
0010000	rs2	rsi1	001	rd	0110011
0010000	rs2	rsi1	101	rd	0110011
0110000	rs2	rs1	001	rd	0110011
| 0110000 | rs2 | rsit | 101 | rd | 0110011 |
|- |
| 0100100 | rs2 | rsit | 001 | rd | 0110011 |
| 0010100 | rs2 | rsi | 001 | rd | 0110011 |
| 0110100 | rs2 | rst | 001 | rd | 0110011 |
| 0100100 | rs2 | rsi | 101 | rd | 0110011 |
| 0010100 | rs2 | rs1 | 101 | rd | 0110011 |
| 0110100 | rs2 | rsi1 | 101 | rd | 0110011 |
[-——— e —————————— I
00000	imm	rs1	001	rd	0010011
00000	imm	rs1	101	rd	0010011
01000	imm	rsi	101	rd	0010011
00100	imm	rs1	001	rd	0010011
00100	imm	rsi	101	rd	0010011
01100	imm	rs1	101	rd	0010011
——==——— e I					
01001	imm	rsi	001	rd	0010011
00101	imm	rs1	001	rd	0010011
01101	imm	rsi	001	rd	0010011
01001	imm	rs1	101	rd	0010011
00101	imm	rs1	101	rd	0010011
01101	imm	rs1	101	rd	0010011
=== I					
rs3	11] rs2	rsi	001	rd	0110011
rs3	11	rs2	rsi	101	rd
[rs3	10] rs2	rsi	001	rd	0110011
rs3	10 rs2	rsi	101	rd	0110011
I I I I I I I

0010011

R-type
R4-type
I-type

ANDx*
ORx*
XOR*
ANDN
ORN
XNOR

SLLx*
SRLx*
SRA*
SLO
SRO
ROL
ROR

SBCLR
SBSET
SBINV
SBEXT
GORC
GREV

SLLI*
SRLI*
SRAT*
SLOI
SROI
RORI

SBCLRI
SBSETI
SBINVI
SBEXTI
GORCI
GREVI

CMIX
CMOV
FSL
FSR
FSRI

37

38

| 3

2

1

[10987654321098765432109876543210]|

[funct7 | rs2 I rsl | £3 | rd | opcode

| rs3 | f2] rs2 | rsi | £3 | rd | opcode

[imm | rsl | £3 | rd | opcode

|

| 0110000 | 00000 | rsi | 001 | rd | 0010011

| 0110000 | 00001 | rsl | 001 | rd | 0010011

| 0110000 | 00010 | rsi | 001 | rd | 0010011

| 0110000 | 00011 | rsl | 001 | rd | 0010011

| e
| 0110000 | 10000 | rsl | 001 | rd | 0010011

| 0110000 | 10001 | rsi | 001 | rd | 0010011

| 0110000 | 10010 | rsi | 001 | rd | 0010011

| 0110000 | 10011 | rsl | 001 | rd | 0010011

| 0110000 | 11000 | rsi | 001 | rd | 0010011

| 0110000 | 11001 | rsl | 001 | rd | 0010011

| 0110000 | 11010 | rsi | 001 | rd | 0010011

| 0110000 | 11011 | rsl | 001 | rd | 0010011

|
| 0000101 | rs2 | rsl | 001 | rd | 0110011

| 0000101 | rs2 | rsi | 010 | rd | 0110011

| 0000101 | rs2 | rsl | 011 | rd | 0110011

| 0000101 | rs2 | rsi | 100 | rd | 0110011

| 0000101 | rs2 | rsl | 101 | rd | 0110011

| 0000101 | rs2 | rsl | 110 | rd | 0110011

| 0000101 | rs2 | rsi | 111 | rd | 0110011

I ___
| 0000100 | rs2 | rsi | 001 | rd | 0110011

| 0000100 | rs2 | rsl | 101 | rd | 0110011

| 0000100 | rs2 | rsi | 010 | rd | 0110011

| 0000100 | rs2 | rsi | 110 | rd | 0110011

| 0000100 | rs2 | rsi | 100 | rd | 0110011

| 0000100 | rs2 | rsl | 011 | rd | 0110011

| 0100100 | rs2 | rsi | 011 | rd | 0110011

| 0000100 | rs2 | rsi | 111 | rd [0110011

I ___
| 000010 | imm | rsi | 001 | rd | 0010011

| 000010 | imm | rsl | 101 | rd | 0010011

I —_

| immediate | rst | 000 | rd | 0011011

| immediate I rsl | 100 | rd | 0011011

| 00001 | imm | rsl | 001 | rd | 0011011

| e
| 0000000 | rs2 | rsi | 000 | rd | 0111011

| 0100000 | rs2 | rsi | 000 | rd | 0111011

| 0000101 | rs2 | rsi | 000 | rd | 0111011

| 0100101 | rs2 | rsi | 000 | rd | 0111011

| 0000100 | rs2 | rsi | 000 | rd | 0111011

| 0100100 | rs2 | rsl | 000 | rd | 0111011

RISC-V Bitmanip Extension V0.91

R-type
R4-type
I-type

CLZ

CTzZ

PCNT
BMATFLIP

CRC32.B
CRC32.H
CRC32.W
CRC32.D
CRC32C.B
CRC32C.H
CRC32C.W
CRC32C.D

CLMUL
CLMULR
CLMULH
MIN
MAX
MINU
MAXU

SHFL
UNSHFL
BDEP
BEXT
PACK
BMATOR
BMATXOR
BFP

SHFLI
UNSHFLI

ADDIW*
ADDIWU
SLLIU.W

ADDW=*
SUBW=*
ADDWU
SUBWU
ADDU.W
SUBU.W

RISC-V Bitmanip Extension V(.91

| 3

[10987654321098765432109876543210]|

| funct7 | rs2 | rsit | £3 | rd | opcode

| rs3 | f2] rs2 | rsi | £3 | rd | opcode

[imm | rsl | £3 | rd | opcode

|

| 0010000 | rs2 | rsi | 001 | rd | 0111011

| 0010000 | rs2 | rsi | 101 | rd | 0111011

| 0110000 | rs2 | rsi | 001 | rd | 0111011

| 0110000 | rs2 | rsi | 101 | rd | 0111011

|
| 0100100 [rs2 | rsi | 001 | rd | 0111011

| 0010100 | rs2 | rsi | 001 | rd | 0111011

| 0110100 | rs2 | rsi | 001 | rd | 0111011

| 0100100 | rs2 | rsl | 101 | rd | 0111011

| 0010100 | rs2 | rsi | 101 | rd | 0111011

| 0110100 | rs2 | rsl | 101 | rd | 0111011

I ___
| 0010000 | imm | rsi | 001 | rd | 0011011

| 0010000 | imm | rsi | 101 | rd | 0011011

| 0110000 | imm | rsi | 101 | rd | 0011011

|
| 0100100 | imm | rsi | 001 | rd | 0011011

| 0010100 | imm | rsi | 001 | rd | 0011011

| 0110100 | imm | rsi | 001 | rd | 0011011

| 0010100 | imm | rsl | 101 | rd | 0011011

| 0110100 | imm | rsi | 101 | rd | 0011011

I ___
| rs3 | 10l rs2 | rsi | 001 | rd | 0111011

| rs3 | 10l rs2 | rsi | 101 | rd | 0111011

| rs3 | 10 dimm | rsi | 101 | rd | 0011011

I ___
| 0110000 | 00000 | rsi | 001 | rd | 0011011

| 0110000 | 00001 | rsi | 001 | rd | 0011011

| 0110000 | 00010 | rsi | 001 | rd | 0011011

I ___
| 0000101 | rs2 | rsl | 001 | rd | 0111011

| 0000101 | rs2 | rsi | 010 | rd | 0111011

| 0000101 | rs2 | rsl | 011 | rd | 0111011

I ___
| 0000100 | rs2 | rsi | 001 | rd | 0111011

| 0000100 | rs2 | rsi | 101 | rd | 0111011

| 0000100 | rs2 | rsi | 010 | rd | 0111011

| 0000100 | rs2 | rsi | 110 | rd | 0111011

| 0000100 [rs2 | rsi | 100 | rd | 0111011

| 0000100 | rs2 | rsi | 111 | rd | 0111011

R-type
R4-type
I-type

SLOW
SROW
ROLW
RORW

SBCLRW
SBSETW
SBINVW
SBEXTW
GORCW
GREVW

SLOIW
SROIW
RORIW

SBCLRIW
SBSETIW
SBINVIW
GORCIW
GREVIW

FSLW
FSRW
FSRIW

CLZW
CTZW
PCNTW

CLMULW
CLMULRW
CLMULHW

SHFLW
UNSHFLW
BDEPW
BEXTW
PACKW
BFPW

39

40 RISC-V Bitmanip Extension V0.91

2.12 Future compressed instructions

The RISC-V ISA has no dedicated instructions for bitwise inverse (not). Instead not is implemented
as xori rd, rs, -1 and neg is implemented as sub rd, x0, rs.

In bitmanipulation code not is a very common operation. But there is no compressed encoding for
those operation because there is no c.xori instruction.

On RV64 (and RV128) zext.w and zext.d (pack and packw) are commonly used to zero-extend
unsigned values <XLEN.

It presumably would make sense for a future revision of the “C” extension to include compressed
opcodes for those instructions.

An encoding with the constraint rd = rs would fit nicely in the reserved space in
c.addil6sp/c.lui.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
011 nzimm(9] 2 nzimm[4[6|8:7]5] | 01 | C.ADDI16SP @ss—msimm=—)
011 nzimm|[17) rd#{0, 2} nzimm|[16:12] 01 | C.LUI (rBs—msimm=6; HINT, rd=0)
011 0 00 rsl’/rd’ 0 01 C.NOT
011 0 01 rsl’/rd’ 0 01 C.ZEXT.W (rve/128)
011 0 11 rsl’/rd’ 0 01 C.ZEXT.D (rvizs)

The entire RVC encoding space is 15.585 bits wide, the remaining reserved encoding space in RVC
is 11.155 bits wide, not including space that is only reserved on RV32/RV64. This means that
above encoding would use 0.0065% of the RVC encoding space, or 1.4% of the remaining reserved
RVC encoding space. Preliminary experiments have shown that NOT instructions alone make up
approximately 1% of bitmanipulation code size. [26]

2.13 Micro architectural considerations and macro-op fusion for
bit-manipulation

2.13.1 Fast MUL, MULH, MULHSU, MULHU

A lot of bit manipulation code depends on “multiply with magic number”-tricks. Often those
tricks need the upper half of the 2 - XLEN product. Therefore decent performance for the MUL and
especially MULH[[S]U] instructions is important for fast bit manipulation code.

2.13.2 Fused load-immediate sequences

Bit manipulation code, even more than other code, requires a lot of “magic numbers”, bitmasks,
and other (usually large) constants. On some microarchitectures those can easily be loaded from a

RISC-V Bitmanip Extension V(.91 41

nearby data section using load instructions. On other microarchitectures however this comes at a
high cost, and it is more efficient to load immediates using a sequence of instructions.

Loading a 32-bit constant:

lui rd, imm
addi rd, rd, imm

On RV64 a 64 bit constant can be loaded by loading two 32-bit constants and combining them with
a PACK instruction:

lui tmp, imm

addi tmp, tmp, imm
lui rd, imm

addi rd, rd, imm
pack rd, rd, tmp

(Without the temporary register and without the PACK instruction more complex/diverse sequences
are used to load 64-bit immediates. But the PACK instruction streamlines the pattern and thus
simplifies macro-op fusion.)

A 32-bit core should be capable of fusing the 1ui+addi pattern.

In addition to that, a 64 bit core may consider fusing the following sequences as well:

lui rd, imm
addi rd, rd, imm
pack rd, rd, rs2

lui rd, imm
pack rd, rd, rs2

addi rd, zero, imm
pack rd, rd, rs2

Furthermore, a core may consider fusing 32-bit immediate loads with any ALU instruction, not
just pack:

lui rd, imm
addi rd, rd, imm
alu_op rd, rd, rs2

lui rd, imm
alu_op rd, rd, rs2

addi rd, zero, imm
alu_op rd, rd, rs2

And finally, a 64-bit core should fuse sequences with addiwu as well as addi, for loading unsigned
32-bit numbers that have their MSB set. This is often the case with masks in bit manipulation
code.

42 RISC-V Bitmanip Extension V0.91

2.13.3 Fused *-bfp sequences

The bfp instruction is most commonly used in one of the following sequences:

addi rd, zero,
pack rd, rs2, rd
bfp rd, rsi, rd

lui rd,
addi rd, rd,
bfp rd, rsil, rd

Either sequence only reads at most two registers and only writes one register, making them ideal
candidates for macro-op fusion.

2.13.4 Fused *-not sequences

Preliminary experiments have shown that NOT instructions make up approximately 1% of bitma-
nipulation code size, more when looking at dynamic instruction count. [26]

Therefore it makes sense to fuse NOT instructions with other ALU instructions, if possible.

The most important form of NOT fusion is postfix fusion:

alu_op rd, rsi, rs2
not rd, rd

A future compressed NOT instruction would help keeping those fused sequences short.

2.13.5 Fused *-srli and *-srai sequences

Pairs of left and right shifts are common operations for extracting a bit field.

To extract the contiguous bit field starting at pos with length len from rs (with pos > 0, len > 0,
and pos + len < XLEN):

s1li rd, rs, (XLEN-len-pos)
srli rd, rd, (XLEN-len)

Using srai instead of srli will sign-extend the extracted bit-field.

Similarly, placing a bit field with length len at the position pos:

s11i rd, rs, (XLEN-len-pos)
srli rd, rd, (XLEN-len)

If possible, an implementation should fuse the following macro ops:

RISC-V Bitmanip Extension V(.91 43

alu_op rd, rsi, rs2
srli rd, rd, imm

alu_op rd, rsl, rs2
srai rd, rd, imm

Note that the postfix right shift instruction can use a compressed encoding, yielding a 48-bit fused
instruction if alu_op is a 32-bit instruction.

For generating masks, i.e. constants with one continous run of 1 bits, a sequence like the following
can be used that would utilize postfix fusion of right shifts:

sroi rd, zero, len
c.srli rd, (XLEN-len-pos)

This can be a useful sequence on RV64, where loading an arbitrary 64-bit constant would usually
require at least 96 bits (using c.1d).

2.13.6 Fused sequences for logic operations

RISC-V has dedicated instructions for branching on equal/not-equal. But C code such as the
following would require set-equal and set-not-equal instructions, similar to s1t.

int is_equal = (a == b);
int is_noteq = (c != d);

Those can be implemented using the following fuse-able sequences:
sub rd, rsl, rs2
sltui rd, rd, 1
sub rd, rsi, rs2
sltu rd, zero, rd
Likewise for logic OR:
int logic_or = (c || d);

or rd, rsl, rs2
sltu rd, zero, rd

And for logic AND, if rd == rsi:
int logic_and = (c && d);
beq rd, zero, skip_sltu

sltu rd, zero, rs2
skip_sltu:

Note that the first instruction can be compressed in all four cases if rd == rsi.

44 RISC-V Bitmanip Extension V0.91

2.13.7 Fused ternary ALU sequences

Architectures with support for ternary operations may want to support fusing two ALU operations.

alu_op rd,
alu_op rd, rd,

This would be a postfix-fusion pattern, extending the postfix shift-right fusion described in the
previous section.

Candidates for this kind of postfix fusion would be simple ALU operations, specifically AND/OR/X-
OR/ADD/SUB and ANDI/ORI/XORI/ADDI/SUBL

2.13.8 Pseudo-ops for fused sequences

Assembler pseudo-ops for not postfix fusion:

nand rd, rsl, rs2 -> and rd, rsl, rs2; not rd, rd
nor rd, rsl, rs2 -> or rd, rsl, rs2; not rd, rd

Assembler bitfield pseudo-ops for sr[lali postfix fusion:

bfext rd, rs, len, pos -> s11i rd, rs, (XLEN-len-pos); srai rd, rd, (XLEN-len)
bfextu rd, rs, len, pos -> slli rd, rs, (XLEN-len-pos); srli rd, rd, (XLEN-len)
bfmak rd, len, pos -> sroi rd, zero, len; srli rd, rd, (XLEN-len-pos)

The names bfext, bfextu, and bfmak are borrowed from m88k, that had dedicated instructions of
those names (without bf-prefix) with equivalent semantics. [3, p. 3-28]

Sign-extending bytes and half-words are special cases of bfext:

sext.b rd, rs -> s1lli rd, rs, (XLEN-8); srai rd, rd, (XLEN-8)
sext.h rd, rs -> slli rd, rs, (XLEN-16); srai rd, rd, (XLEN-16)

2.14 C intrinsics via <rvintrin.h>

A C header file <rvintrin.h> is provided that contains assembler templates for directly creating
assembler instructions from C code.

The header defines _rv_x(...) functions that operate on the long data type, rv32_*(...) func-
tions that operate on the int32_t data type, and _rv64_*(...) functions that operate on the
int64_t data type. The _rv64 x(...) functions are only available on RV64. See table for a
complete list of intrinsics defined in <rvintrin.h>.

Usage example:

RISC-V Bitmanip Extension V(.91 45
#include <rvintrin.h>

int find_nth_set_bit(unsigned int value, int cnt) {
return _rv32_ctz(_rv32_bdep(l << cnt, value));

}

Defining RVINTRIN_EMULATE before including <rvintrin.h> will define plain C functions that em-
ulate the behavior of the RISC-V instructions. This is useful for testing software on non-RISC-V
platforms.

46

Instruction

rv%

RV32

_rv32_x%

rv*

RISC-V Bitmanip Extension V0.91

RV64

rv32%

_rv64_x*

clz
ctz
pent

pack
min
minu
max
maxu

sbset
sbclr
sbinv
sbext

sll
srl
sra
slo
sro
rol
ror

grev
gorc
shfl
unshfl

bfp

bext
bdep

clmul
clmulh
clmulr

SCNKNKKSKNSKSSSKSSSKSEKIRSSK]ISSSSEKSXN

SSKSKKRSKSSKIRSSSSSEKISSSKISSKSKSERXS

SSKISKKRSSKIRSKSSSSSEKISSSKISSKSKSERXS

bmatflip
bmator
bmatxor

fsl
fsr

AN

AN

SRR NSNS YSISSSKISKSSSSKSSESISSSSIRSSSK]RNS

cmix
cmov

crc32.b
crc32_h
crc32_w
crc32.d

crc32c b
crc32c_h
crc32c.w
crc32c.d

SN S8R XN

SRS S SRS N SRS RS SSNISKISSSSSRSSSSSESSSSSISSSSESISNS™

Table 2.5: C intrinsics defined in <rvintrin.h>

Chapter 3

Reference Implementations

3.1 Verilog reference implementations

We have implemented Verilog cores for all instructions proposed in this specification. These cores
are permissively licensed under the ISC license and can be obtained from https://github.com/
riscv/riscv-bitmanip/tree/master/verilog.

For evaluation purposes we synthesized these cores for RV32 and RV64 to the following mockup
ASIC cell library:

Cell Gate Count Cell Gate Count
NOT 0.5 AOI3 1.5

NAND 1 OAI3 1.5

NOR 1 AOI4 2

XOR 3 OAl4 2

XNOR 3 NMUX 2.5

DFF 4 MUX 3

For comparison we also synthesized the rocket-chip MulDiv cores obtained using the following
rocket-chip configurations

class MulDivConfig64 extends Config(
new WithFastMulDiv ++
new DefaultConfig

)

class MulDivConfig32 extends Config(
new WithRV32 ++
new WithFastMulDiv ++
new DefaultConfig

47

https://github.com/riscv/riscv-bitmanip/tree/master/verilog
https://github.com/riscv/riscv-bitmanip/tree/master/verilog

48

Rocket MulDiv
5208 gates

RISC-V Bitmanip Extension V0.91

rvb_simple rvb_clmul

825 gates 1947 gates
rvb_shifter
1827 gates
rvb_bextdep
2026 gates
rvb_bitcnt
509 gates

Figure 3.1: Area of 32-bit Rocket MulDiv core (left) compared to a complete implementation of all
32-bit instructions proposed in this specification except CRC instructions (right).

The following table lists the verilog reference cores and the instructions they implement:

Module

Instructions

rvb_bextdep
rvb_clmul
rvb_shifter

rvb_bmatxor

rvb_simple

rvb_bitcnt
rvb_full

bext bdep grev gorc shfl unshfl
clmul clmulr clmulh

sll srl sra slo sro rol ror fsl fsr slliu.w
sbset sbclr sbinv sbext bfp
bmatxor bmator

min max minu maxu andn orn
xnor pack cmix cmov addiwu addwu
subwu adduw subuw

clz ctz pent bmatflip

All of the above

On RV64 these cores also implement all *W instruction variants of the above instructions.

Note that rvb_shifter also implements the base ISA s11, srl, and sra instructions. Thus it can
replace an existing implementation of the base ISA shift instructions.

Fig.[3.1]shows the area comparison for RV32 and fig. [3.2| shows the comparison for RV64. The area
of the red frame surrounding the blue rvb_* modules accurately represents the added area by the

rvb_full wrapper module.

Regarding timing we evaluate the longest paths for rvb_full and rocket-chip MulDiv, measured in

gate delays:

RV32 RV64

rvb_full 30 57
MulDiv 43 68

RISC-V Bitmanip Extension V(.91

rvb_simple
2680 gates

Rocket MulDiv
12564 gates

rvb_shifter
4051 gates

rvb_bextdep
4988 gates

49

rvb_clmul
4202 gates

rvb_bmatxor
2691 gates

rvb_bitcnt
1271 gates

Figure 3.2: Area of 64-bit Rocket MulDiv core (left) compared to a complete implementation of all
64-bit instructions proposed in this specification except CRC instructions (right).

All rvb_* reference cores provide single-cycle implementations of their functions, with the exception
of rvb_clmul which requires 4 cycles for a 32-bit carry-less multiply and 8 cycles for a 64-bit carry-

less multiply.

3.2 Fast C reference implementations

GCC has intrinsics for the bit counting instructions clz, ctz, and pcnt. So a performance-sensitive

application (such as an emulator) should probably just use those:

uint32_t fast_clz32(uint32_t rsl)

{
if (rs1 == 0)
return 32;
assert(sizeof (int) == 4);
return __builtin_clz(rsl);
}
uint64_t fast_clz64(uint64_t rsil)
{

if (rs1 == 0)

return 64;
assert(sizeof (long long) == 8);
return __builtin_clzll(rsl);

50

uint32_t fast_ctz32(uint32_t rsi)
{
if (rs1 == 0)
return 32;
assert(sizeof (int) == 4);
return __builtin_ctz(rsl);

}

uint64_t fast_ctz64(uint64_t rsil)
{
if (rs1 == 0)
return 64;
assert(sizeof (long long) == 8);
return __builtin_ctzll(rsl);

}

uint32_t fast_pcnt32(uint32_t rsil)
{
assert(sizeof (int) == 4);
return __builtin_popcount(rsl);

}

uint64_t fast_pcnt64(uint64_t rsil)

{
assert(sizeof (long long) == 8);
return __builtin_popcountll(rsl);

}

RISC-V Bitmanip Extension V0.91

For processors with BMI2 support GCC has intrinsics for bit extract and bit deposit instructions

(compile with -mbmi2 and include <x86intrin.h>):

uint32_t fast_bext32(uint32_t rsl, uint32_t
{

return _pext_u32(rsl, rs2);

}

uint64_t fast_bext64(uint64_t rsl, uint64_t
{

return _pext_u64(rsl, rs2);

}

uint32_t fast_bdep32(uint32_t rsl, uint32_t
{

return _pdep_u32(rsl, rs2);
}

uint64_t fast_bdep64(uint64_t rsl, uint64_t
{

return _pdep_u64(rsl, rs2);
}

rs2)

rs2)

rs2)

rs2)

For other processors we need to provide our own implementations. The following implementation

RISC-V Bitmanip Extension V(.91

is a good compromise between code complexity and runtime:

uint_xlen_t fast_bext(uint_xlen_t rsl, uint_xlen_t rs2)

{

}

uint_xlen_t ¢ = 0, i = 0, mask = rs2;
while (mask) {
uint_xlen_t b = mask & ~“((mask | (mask-1)) + 1);
c |= (rs1 & b) >> (fast_ctz(b) - i);
i += fast_pcnt(b);
mask -= b;
}

return c;

uint_xlen_t fast_bdep(uint_xlen_t rsl, uint_xlen_t rs2)

{

}

uint_xlen_t ¢ = 0, i = 0, mask = rs2;
while (mask) {
uint_xlen_t b = mask & ~“((mask | (mask-1)) + 1);
c |= (rsl << (fast_ctz(b) - i)) & b;
i += fast_pcnt(b);
mask —-= b;
}

return c;

o1

For the other Bitmanip instructions the C reference functions given in Chapter [2| are already
reasonably efficient.

52

RISC-V Bitmanip Extension V0.91

Chapter 4

Evaluation

This chapter contains a collection of short code snippets and algorithms using the Bitmanip exten-
sion for evaluation purposes. For the sake of simplicity we assume RV32 for most examples in this
chapter.

4.1 Basic Bitmanipulation

4.1.1 Bitfield extract

Extracting a bit field of length len at position pos can be done using two shift operations.

s11i a0, a0, (XLEN-len-pos)
srli a0, a0, (XLEN-len)

Or using srai for a signed bit-field.

s1li a0, a0, (XLEN-len-pos)
srai a0, a0, (XLEN-len)

4.1.2 Parity check

The parity of a word (xor of all bits) is the LSB of the population count.

pcnt a0, a0
andi a0, a0, 1

93

54 RISC-V Bitmanip Extension V0.91

4.1.3 Rank and select

Rank and select are fundamental operations in succinct data structures [19].

select (a0, al) returns the position of the alth set bit in a0. It can be implemented efficiently
using bdep and ctz:

select:
1li a2, 1
sll al, a2, al
bdep a0, al, a0
ctz a0, a0
ret

rank (a0, al) returns the number of set bits in a0 up to and including position al.

rank:
not al, al
sll a0, al
pcnt a0, a0
ret

4.1.4 Packing bytes in word

The following code packs the lower 8 bits from a0, al, a2, a3 into a 32-bit word returned in a0,
ignoring other bits in the input values.

pack a0, a0, al
pack al, a2, a3
shfl a0, a0, 8
shfl a1, al, 8
pack a0, a0, al

This replaces either 4 store-byte instructions followed by one load-word instruction, or something
like the following sequence.

andi a0, a0, 255
andi al, al, 255
andi a2, a2, 255
pack a0, a0, a2
pack al, al, a3
slli al, al, 8
or a0, a0, ail

4.1.5 Counting trailing non-zero bytes

Counting the trailing (LSB-end) non-zero bytes in a 64-bit word is a helpful operation in optimized
implementations of strlen and strcpy:

RISC-V Bitmanip Extension V(.91 55

int count_trailing_nonzero_bytes(long x)

{
uint64_t m = 0x0101010101010101L;
return ctz("bmatflip(bmator(x, m)));

¥

Because 0x0101010101010101LL is bmatflip(255), and (AB)T = (BT)(AT), we can also write
this as following;:

int count_trailing_nonzero_bytes(long x)
{

return ctz(“bmator (255, bmatflip(x)));
}

Or, less elegant, but with better utilization of compressed instructions:

int count_trailing_nonzero_bytes(long x)

{
return ctz("“bmator(x, -1L)) >> 3;
}

And the following code can be used to simply check if all 8 bytes in a 64-bit word are nonzero:

bool all_bytes_nonzero(long x)
{
return bmator(x, -1L) == -1L;

+
And without bit-matrix multiply:

int count_trailing_nonzero_bytes(long x)

{
x |= grev(x, 1);
x |= grev(x, 2);
x |= grev(x, 4);
return ctz("x) >> 3;
}
int all_bytes_nonzero(long x)
{
x |= grev(x, 1);
x |= grev(x, 2);
x |= grev(x, 4);
return x == -1L;
}

4.1.6 Fill right of most significant set bit

The “fill right” or “fold right” operation is a pattern commonly used in bit manipulation code. [§]

The straight-forward RV64 implementation requires 12 instructions:

56 RISC-V Bitmanip Extension V0.91

uint64_t rfill(uint64_t x)

{
x |=x > 1; // SRLI, OR
x |= x> 2; // SRLI, OR
x |=x > 4; // SRLI, OR
x |=x > 8; // SRLI, OR
x |=x > 16; // SRLI, OR
x |= x > 32; // SRLI, OR
return Xx;

}

With clz it can be implemented in only 4 instructions. Notice the handling of the case where x=0
using sltiu+addi.

uint64_t rfill_clz(uint64_t x)

{
uint64_t t;
t = clz(x); // CLZ
x = (1x)-1; // SLTIU, ADDI
x =x> (t & 63); // SRL
return Xx;
}

Alternatively, a Trailing Bit Manipulation (TBM) code pattern can be used together with rev to
implement this function in 4 instructions:

uint64_t rfill_rev(uint64_t x)

{
x = rev(x); // GREVI
x=x | “(x - 1); // ADDI, ORN
x = rev(x); // GREVI
return x;

}

Finally, there is another implementation in 4 instructions using BMATOR, if we do not count the
extra instructions for loading utility matrices.

RISC-V Bitmanip Extension V(.91 57

uint64_t rfill_bmat (uint64_t x)

{
uint64_t mO, ml, m2, t;
mO0 = OxFF7F3F1FOF070301LL; // LD
ml = bmatflip(m0 << 8); // SLLI, BMATFLIP
m2 = -1LL; // ADDI
t = bmator(x, m0); // BMATOR
x = bmator(x, m2); // BMATOR
x = bmator(ml, x); // BMATOR
X |=t; // OR
return x;

}

4.1.7 Round to next power of two

One common application of r£il1() is rounding up to the next power of two:

uint64_t round_pow2(uint64_t x)
{
return rfill(x-1)+1;

}

This can also be implemented in just 4 instructions, if we don’t care about the case where the
above code overflows because x is already larger than the largest power-of-two representable in an
uint64._t.

uint64_t round_pow2(uint64_t x)

{
uintb64_t t;
t = clz(x-1); // ADDI, CLZ
x = ror(!'x, t); // SLTU, ROR
return x;

}

Note that this code handles 0 — 0 and 1 — 1 correctly, i.e. equivialent to rfill(x-1)+1.

4.2 Funnel shifts

A funnel shift takes two XLEN registers, concatenates them to a 2 x XLEN word, shifts that by a
certain amount, then returns the lower half of the result for a right shift and the upper half of the
result for a left shift.

The fsl, fsr, and fsri instructions perform funnel shifts.

58 RISC-V Bitmanip Extension V0.91

4.2.1 Bigint shift

A common application for funnel shifts is shift operations in bigint libraries.

For example, the following functions implement rotate-shift operations for bigints made from n

XLEN words.

void bigint_rol(uint_xlen_t datal], int n, int shamt)
{
if (n <= 0)
return;

uint_xlen_t buffer = datal[n-1];
for (int i = n-1; i > 0; i--)

datal[i] = fsl(datalil], shamt, datal[i-1]);
data[0] = fsl(data[0], shamt, buffer);

void bigint_ror(uint_xlen_t datal], int n, int shamt)
{
if (n <= 0)
return;

uint_xlen_t buffer = datal[0];
for (int i = 0; 1 < n-1; i++)

datali] fsr(datal[i], shamt, datal[i+1]);
data[n-1] fsr(data[n-1], shamt, buffer);

}

These version only works for shift-amounts <XLEN. But functions supporting other kinds of shift

operations, or shifts >XLEN can easily be built with £s1 and fsr.

4.2.2 Parsing bit-streams

The following function parses n 27-bit words from a packed array of XLEN words:

RISC-V Bitmanip Extension V(.91

void parse_27bit(uint_xlen_t *idata, uint_xlen_t *odata, int n)
{

uint_xlen_t lower = O, upper = O;
0;

int reserve

while (n--) {

if (reserve < 27) {
uint_xlen_t buf = *x(idata++);
lower |= sll(buf, reserve);
upper = reserve 7 srl(buf, -reserve) : O;
reserve += XLEN;

}

*(odata++) = lower & ((1 << 27)-1);

lower = fsr(lower, 27, upper);
upper = srl(upper, 27);
reserve -= 27;

}

}
And here the same thing in RISC-V assembler:

parse_27bit:

1i t1, O ; lower
1i t2, O ; upper
1i t3, O ; reserve
1i t4, 27 ; shamt
slo tb5, zero, t4 ; mask
beqz a2, endloop ; while (n--)
loop:
addi a2, a2, -1
bge t3, t4, output ; if (reserve < 27)
lw t6, 0(a0l) ; buf = *(idata++)
addi a0, a0, 4
sll t7, t6, t3 ; lower |= sll(buf, reserve)
or t1, ti1, t7
sub t7, zero, t3 ; upper = reserve 7 srl(buf, -reserve)

srl t7, t6, t7
cmov t2, t3, t7, zero

addi t3, t3, 32 ; reserve += XLEN;
output:
and t6, tl, t5 ; *(odata++) = lower & ((1 << 27)-1)
sw t6, 0(al)
addi a1, al, 4
fsr t1, t1, t2, t4 ; lower = fsr(lower, 27, upper)
srl t2, t2, t4 ; upper = srl(upper, 27)
sub t3, t3, t4 ; reserve —-= 27
bnez a2, loop ; while (n--)
endloop:

ret

60 RISC-V Bitmanip Extension V0.91

A loop iteration without fetch is 9 instructions long, and a loop iteration with fetch is 17 instructions
long.

Without ternary operators that would be 13 instructions and 22 instructions, i.e. assuming one
cycle per instruction, that function would be about 30% slower without ternary instructions.

4.2.3 Fixed-point multiply

A fixed-point multiply is simply an integer multiply, followed by a right shift. If the entire dynamic
range of XLEN bits should be useable for the factors, then the product before shift must be 2*XLEN
wide. Therefore mul+mulh is needed for the multiplication, and funnel shift instructions can help
with the final right shift. For fixed-point numbers with N fraction bits:

mul_fracN:
mulh a2, a0, ail
mul a0, a0, al
fsri a0, a0, a2, N
ret

4.3 Arbitrary bit permutations

This section lists code snippets for computing arbitrary bit permutations that are defined by data
(as opposed to bit permutations that are known at compile time and can likely be compiled into
shift-and-mask operations and/or a few instances of bext/bdep).

4.3.1 Using butterfly operations

The following macro performs a stage-N butterfly operation on the word in a0 using the mask in
al.

grevi a2, a0, (1 << N)
cmix a0, al, a2, a0

The bitmask in al must be preformatted correctly for the selected butterfly stage. A butterfly
operation only has a XLEN/2 wide control word. The following macros format the mask assuming
those XLEN/2 bits in the lower half of al on entry:

bfly_msk_O:
pack al, al, al
zip al, al

bfly _msk_1:
pack al, al, al

RISC-V Bitmanip Extension V(.91 61

zip2 al, al

bfly_msk_2:
pack al, al, al
zip4 al, al

A sequence of 2 - loga(XLEN) — 1 butterfly operations can perform any arbitrary bit permutation
(Benes network):

butterfly (LOG2_XLEN-1)
butterfly (LOG2_XLEN-2)

butterfly(0)

butterfly (LOG2_XLEN-2)
butterfly(LOG2_XLEN-1)

Many permutations arising from real-world applications can be implemented using shorter se-
quences. For example, any sheep-and-goats operation (SAG, see section [4.3.4) with either the
sheep or the goats bit reversed can be implemented in logs(XLEN) butterfly operations.

Reversing a permutation implemented using butterfly operations is as simple as reversing the order
of butterfly operations.

4.3.2 Using omega-flip networks
The omega operation is a stage-0 butterfly preceded by a zip operation:

zip a0, a0
grevi a2, a0, 1
cmix a0, al, a2, a0

The flip operation is a stage-0 butterfly followed by an unzip operation:

grevi a2, a0, 1
cmix a0, al, a2, a0
unzip a0, a0

A sequence of loga(XLEN) omega operations followed by logs(XLEN) flip operations can implement
any arbitrary 32 bit permutation.

As for butterfly networks, permutations arising from real-world applications can often be imple-
mented using a shorter sequence.

62 RISC-V Bitmanip Extension V0.91
4.3.3 Using baseline networks

Another way of implementing arbitrary 32 bit permutations is using a baseline network followed
by an inverse baseline network.

A baseline network is a sequence of logs(XLEN) butterfly(0) operations interleaved with unzip
operations. For example, a 32-bit baseline network:

butterfly(0)
unzip
butterfly(0)
unzip.h
butterfly(0)
unzip.b
butterfly(0)
unzip.n
butterfly(0)

An inverse baseline network is a sequence of loge(XLEN) butterfly(0) operations interleaved with
zip operations. The order is opposite to the order in a baseline network. For example, a 32-bit
inverse baseline network:

butterfly(0)
zip.n
butterfly(0)
zip.b
butterfly(0)
zip.h
butterfly(0)
zip
butterfly(0)

A baseline network followed by an inverse baseline network can implement any arbitrary bit per-
mutation.

4.3.4 Using sheep-and-goats

The Sheep-and-goats (SAG) operation is a common operation for bit permutations. It moves all
the bits selected by a mask (goats) to the LSB end of the word and all the remaining bits (sheep)
to the MSB end of the word, without changing the order of sheep or goats.

The SAG operation can easily be performed using bext (data in a0 and mask in al):

bext a2, a0, al

RISC-V Bitmanip Extension V(.91 63

not al, ail

bext a0, a0, al
pent al, al

ror a0, a0, al
or a0, a0, a2

Any arbitrary bit permutation can be implemented in logs(XLEN) SAG operations.

The Hacker’s Delight describes an optimized standard C implementation of the SAG operation.
Their algorithm takes 254 instructions (for 32 bit) or 340 instructions (for 64 bit) on their reference
RISC instruction set. [9, p. 152f, 162f]

4.3.5 Using bit-matrix multiply

bat [x] or performs a permutation of bits within each byte when used with a permutation matrix
in rs2, and performs a permutation of bytes when used with a permutation matrix in rsi.

4.4 Mirroring and rotating bitboards

Bitboards are 64-bit bitmasks that are used to represent part of the game state in chess engines
(and other board game Als). The bits in the bitmask correspond to squares on a 8 x 8 chess board:

56 57 58 59 60 61 62 63
48 49 50 51 52 53 54 55
40 41 42 43 44 45 46 47
32 33 34 35 36 37 38 39
24 25 26 27 28 29 30 31
16 17 18 19 20 21 22 23
8 910 11 12 13 14 15
01 2 3 4 5 6 7

Many bitboard operations are simple straight-forward operations such as bitwise-AND, but mir-
roring and rotating bitboards can take up to 20 instructions on x86.

4.4.1 Mirroring bitboards

Flipping horizontally or vertically can easily done with grevi:

Flip horizontal:

63 62 61 60 59 58 57 56 RISC-V Bitmanip:
55 54 53 52 51 50 49 48 rev.b

47 46 45 44 43 42 41 40

64 RISC-V Bitmanip Extension V0.91

39 38 37 36 35 34 33 32

31 30 29 28 27 26 25 24 x86:

23 22 21 20 19 18 17 16 13 operations
15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Flip vertical:
01 2 3 4 5 6 7 RISC-V Bitmanip:
8 910 11 12 13 14 15 rev8
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 x86:
40 41 42 43 44 45 46 47 bswap
48 49 50 51 52 53 54 55
56 57 58 59 60 61 62 63

Rotating by 180 (flip horizontal and vertical):

Rotate 180:
7T 6 5 4 3 2 1 0 RISC-V Bitmanip:
15 14 13 12 11 10 9 8 rev

23 22 21 20 19 18 17 16

31 30 29 28 27 26 25 24

39 38 37 36 35 34 33 32 x86:

47 46 45 44 43 42 41 40 14 operations
55 54 53 52 51 50 49 48

63 62 61 60 59 58 57 56

4.4.2 Rotating bitboards

Using zip a bitboard can be transposed easily:

Transpose:

7 15 23 31 39 47 55 63 RISC-V Bitmanip:
14 22 30 38 46 54 62 zip, zip, zip
13 21 29 37 45 53 61
12 20 28 36 44 52 60
11 19 27 35 43 51 59 x86:

10 18 26 34 42 50 58 18 operations
9 17 25 33 41 49 57
8 16 24 32 40 48 56

O~ N W oo

A rotation is simply the composition of a flip operation and a transpose operation. This takes 19
operations on x86 [2]. With Bitmanip the rotate operation only takes 4 operations:

RISC-V Bitmanip Extension V(.91 65

rotate_bitboard:
rev8 a0, a0
zip a0, a0
zip a0, a0
zip a0, a0

4.4.3 Explanation

The bit indices for a 64-bit word are 6 bits wide. Let i[5:0] be the index of a bit in the input,
and let i’[5:0] be the index of the same bit after the permutation.

As an example, a rotate left shift by N can be expressed using this notation as i’[5:0] = i [5:0] +
N (mod 64).

The GREV operation with shamt N is i’[5:0] = i[5:0] XOR N.

And a GZIP operation corresponds to a rotate left shift by one position of any contiguous region
of 1 [5:0]. For example, zip is a left rotate shift of the entire bit index:

i’[5:0] = {i[4:0], i[6]}

And zip4 performs a left rotate shift on bits 5:2:

i’[5:0] ={il[4:2],1i[5], i[1:0]}

In a bitboard, i [2:0] corresponds to the X coordinate of a board position, and i [5:3] corresponds
to the Y coordinate.

Therefore flipping the board horizontally is the same as negating bits i [2: 0], which is the operation
performed by grevi rd, rs, 7 (rev.b).

Likewise flipping the board vertically is done by grevi rd, rs, 56 (rev8).

Finally, transposing corresponds by swapping the lower and upper half of i [6:0], or rotate shifting
i[5:0] by 3 positions. This can easily done by rotate shifting the entire i [6:0] by one bit position
(zip) three times.

4.4.4 Rotating Bitcubes

Let’s define a bitcube as a 4 x 4 x 4 cube with z = i[1:0], y = 1[3:2], and z = i[5:4]. Using
the same methods as described above we can easily rotate a bitcube by 90° around the X-, Y-, and
Z-axis:

66

rotate_x:

revl6 a0, a0l
zip4 a0, a0
zip4 a0, a0

RISC-V Bitmanip Extension V0.91

rotate_y: rotate_z:
rev.n a0, a0 revd.h
zip a0, a0 zip.h a0, a0
zip a0, a0 zip.h a0, a0
zip4 a0, a0
zip4 a0, a0

4.5 Inverting Xorshift RNGs

Xorshift RNGs are a class of fast RNGs for different bit widths. There are 648 Xorshift RNGs for
32 bits, but this is the one that the author of the original Xorshift RNG paper recommends. [I8,

p. 4]

uint32_t

xorshift32(uint32_t x)

<<
>>
<<

X3

13;
17;
5;

This function of course has been designed and selected so it’s efficient, even without special bit-
manipulation instructions. So let’s look at the inverse instead. First, the naive form of inverting

this function:

uint32_t xorshift32_inv(uint32_t x)

<<
<<
<<
<<
<<
<<
>>
<<
<<

{
uint32_t t;
t=x " (x
t=x" (¢t
t=x" (t
t=x" (¢
t=x" (t
x=x " (&
x=x" (x
t=x" (x
x=x" (t
return x;

}

5);
5);
5);
5);
5);
5);
17);
13);
13);

This translates to 18 RISC-V instructions, not including the function call overhead.

Obviously the C expression x ~ (x >> 17) is already its own inverse (because 17 > XLEN/2)
and therefore already has an effecient inverse. But the two other blocks can easily be implemented
using a single clmul instruction each:

RISC-V Bitmanip Extension V(.91 67

uint32_t xorshift32_inv(uint32_t x)

{
x = clmul(x, 0x42108421);
x =x " (x> 17);
x = clmul(x, 0x04002001);
return x;

}

This are 8 RISC-V instructions, including 4 instructions for loading the constants, but not including
the function call overhead.

An optimizing compiler could easily generate the clmul instructions and the magic constants from
the C code for the naive implementation. (0x04002001 = (1 << 2%13) | (1 << 13) | 1 and
0x42108421 = (1 << 6%5) | (1 << 5%5) | ...| (1 << 5) | 1)

The obvious remaining question is “if clmul(x, 0x42108421) is the inverse of x = (x << 5),
what’s the inverse of x =~ (x >> 5)7” It’s clmulr(x, 0x84210842), where 0x84210842 is the
bit-reversal of 0x42108421.

A special case of xorshift is x ~ (x >> 1), which is a gray encoder. The corresponding gray
decoder is clmulr(x, Oxffffffff).

4.6 Cyclic redundency checks (CRC)
There are special instructions for performing CRCs using the two most widespread 32-bit CRC
polynomials, CRC-32 and CRC-32C.

CRCs with other polynomials can be computed efficiently using CLMUL. The following examples
are using CRC32Q.

The easiest way of implementing CRC32Q with clmul is using a Barrett reduction. On RV32:

uint32_t crc32q_simple(const uint32_t #*data, int length)

{
uint32_t P = 0x814141AB; // CRC polynomial (implicit x~32)
uint32_t mu = OxFEFF7F62; // x"64 divided by CRC polynomial
uint32_t mul = OxFF7FBFB1; // "mu" with leading 1, shifted right by 1 bit
uint32_t crc = 0;
for (int i = 0; i < length; i++) {
crc "= rev8(datalil);
crc = clmulr(crc, mul);
crc = clmul(crc, P);
}
return crc;
}

The following python code calculates the value of mu for a given CRC polynomial:

68 RISC-V Bitmanip Extension V0.91

def polydiv(dividend, divisor):
quotient = 0
while dividend.bit_length() >= divisor.bit_length():
i = dividend.bit_length() - divisor.bit_length()
dividend = dividend ~ (divisor << i)
quotient |= 1 << i
return quotient

P = 0x1814141AB
print ("0x%X" % (polydiv(1<<64, P))) # prints Ox1FEFF7F62

A more efficient method would be the following, which processes 64-bit at a time (RV64):

RISC-V Bitmanip Extension V(.91

uint32_t crc32q_fast(const uint64_t *p, int len)

{

uint64_t P

uint64_t ki
uint64_t k2
uint64_t k3
uint64_t mu

0x1814141ABLL; // CRC polynomial

OxA1FA6BECLL; // rest of x~128 divided by CRC polynomial
0x9BE9878FLL; // rest of x"96 divided by CRC polynomial
OxB1EFCS5F6LL; // rest of x"64 divided by CRC polynomial
Ox1FEFF7F62LL; // x"64 divided by CRC polynomial

uint64_t a0, al, a2, t1, t2;

assert(len >= 2);

a0
al

//

= rev8(p[0]);
= rev8(pl[1]);

Main loop: Reduce to 2x 64 bits

for (const uint64_t *t0 = p+2; t0 != p+len; tO++)

{

//

tl
t2

a0
al

t2
al

//

t1
t2
a0

a2 = rev8(*t0);

t1 = clmulh(a0, k1);
t2 = clmul(a0, k1);
a0 = al ~ t1;

al = a2 =~ t2;

Reduce to 64 bit, add 32 bit zero padding

clmulh(a0, k2);
clmul (a0, k2);

(a1 >> 32) ~ t1;
(a1l << 32) = t2;

clmul (a0, k3);
= al = t2;

Barrett Reduction

clmul(al >> 32, mu);
clmul(tl >> 32, P);
= al = t2;

return ao;

}

69

The main idea is to transform an array of arbitrary length to an array with the same CRC that’s
only two 64-bit elements long. (That’s the “Main loop” portion of above code.)

Then we further reduce it to just 64-bit. And then we use a Barrett reduction to get the final 32-bit

70 RISC-V Bitmanip Extension V0.91

result.

The following python code can be used to calculate the “magic constants” k1, k2, and k3:

def polymod(dividend, divisor):
quotient = 0O
while dividend.bit_length() >= divisor.bit_length():
i = dividend.bit_length() - divisor.bit_length()
dividend = dividend ~ (divisor << i)
quotient |[= 1 << i
return dividend

print ("0x%X" % (polymod(1<<128, P))) # prints OxA1FA6BEC
print ("0x%X" 7% (polymod(1<< 96, P))) # prints 0x9BE9878F
print ("0x%X" % (polymod(1<< 64, P))) # prints OxB1EFC5F6

The above example code is taken from [25]. A more detailed descriptions of the algorithms employed
can be found in [I1].

4.7 Decoding RISC-V Immediates

The following code snippets decode and sign-extend the immediate from RISC-V S-type, B-type,
J-type, and CJ-type instructions. They are nice “nothing up my sleeve”-examples for real-world
bit permutations.

31 27 26 25 24 20 19 15 14 12 11 7 6 0
imm|[11:5] imm|[4:0] S-type
imm|[12[10:5] imm|[4:1]11] B-type
imm|[20[10:1]11]19:12] J-type

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

] \ imm[11]4]9:8/10(6]7]3:1|5] \ \ Cl-type
decode_s: decode_b:
1i t0, 0xfe000£80 1i t0, Oxeaa800aa
bext a0, a0, tO rori a0, a0, 8
c.slli a0, 20 grevi a0, a0, 8
c.srai a0, 20 shfli a0, aO, 7
ret bext a0, a0, tO

c.slli a0, 20
c.srai a0, 19
ret

RISC-V Bitmanip Extension V(.91 71

decode_j: // variant 2 (without RISC-V Bitmanip)

1i t0, 0x800003ff
1i t1, 0x800££000
bext al, a0, ti1
c.slli a1, 23
rori a0, a0, 21
bext a0, a0, tO
c.slli a0, 12
c.or a0, al
c.srai a0, 11

ret

// variant 1 (with RISC-V Bitmanip)
decode_cj:

1i t0, 0x28800001
1i t1, 0x000016b8
1i t2, 0xb4e00000
1i t3, 0x4b000000
bext al, a0, ti1
bdep al, al, t2
rori a0, a0, 11
bext a0, a0, tO
bdep a0, a0, t3
c.or a0, ail
c.srai a0, 20

ret

decode_cj:
srli ab, a0, 2
srli a4, a0, 7
c.andi a4, 16
slli a3, a0, 3
c.andi ab, 14
c.add ab, a4
andi a3, a3, 32
srli a4, a0, 1
c.add a5, a3
andi a4, a4, 64
slli a2, a0, 1
c.add ab, a4
andi a2, a2, 128
srli a3, a0, 1
slli a4, a0, 19
c.add ab, a2
andi a3, a3, 768
c.slli a0, 2
c.add a5, a3
andi a0, a0, 1024
c.srai a4, 31
c.add ab, a0
slli a0, a4, 11
c.add a0, a5
ret

72

RISC-V Bitmanip Extension V0.91

Change History

Date

Rev

Changes

2017-07-17

0.10

Initial Draft

2017-11-02

0.11

Remove roli, assembler can convert it to use a rori
Remove bitwise subset and replace with andc

Doc source text same base for study and spec.
Fix typos

2017-11-30

0.32

Jump rev number to be on par with associated Study
Move pdep/pext into spec draft and called it scatter-gather

2018-04-07

0.33

Move to github, throw out study, convert from .md to .tex
Fix typos and fix some reference C implementations
Rename bgat /bsca to bext/bdep

Remove post-add immediate from clz

Clean up encoding tables and code sections

2018-04-20

0.34

Add GREV, CTZ, and compressed instructions
Restructure document: Move discussions to extra sections
Add FAQ, add analysis of used encoding space

Add Pseudo-Ops, Macros, Algorithms

Add Generalized Bit Permutations (shuffle)

2018-05-12

0.35

Replace shuffle with generalized zip (gzip)
Add additional XBitfield ISA Extension
Add figures and tables, Clean up document
Extend discussion and evaluation chapters
Add Verilog reference implementations

Add fast C reference implementations

73

74

Date Rev

RISC-V Bitmanip Extension V0.91

Changes

2018-10-05 0.36

XBitfield is now a proper extension proposal
Add bswaps. [hwd] instructions

Add cmix, cmov, fsl, fsr

Rename gzip to shfl/unshfl

Add min, max, minu, maxu

Add clri, maki, join

Add cseln, cselz, mvnez, mveqz

Add clmul, clmulh, bmatxor, bmator, bmatflip
Remove bswaps. [hwd], clri, maki, join
Remove cseln, cselz, mvnez, mveqz

2019-06-10 0.90

Add dedicated CRC instructions

Add proposed opcode encodings

Rename from XBitmanip to RISC-V Bitmanip
Remove chapter on bfxpl[c] instruction
Refactor proposal into one big chapter
Remove c.brev and c.neg instructions

Add fsri, pack, addiwu, slliu.w

Add addwu, subwu, addu.w, subu.w

Rename andc to andn, Add orn and xnor
Add sbset[i], sbclr[i], sbinv[i], sbext[i]
New naming scheme for grevi pseudo-ops
Add clmulr instruction (reversed clmul)
Jump to Rev 0.90 to indicate spec matureness

2019-08-29 0.91

Change encodings of bmatxor and grev[i] [w]
Add gorc[i] [w] and bfp[w] instructions

Bibliography

[1]

[10]

[11]

Apx/aux (pack/unpack) instructions on besm-6 mainframe computers. http://www.mailcom.
com/besm6/instset.shtml#pack. Accessed: 2019-05-06.

Chess programming wiki, flipping mirroring and rotating. https://chessprogramming.
wikispaces.com/Flipping/%20Mirroring},20and’,20Rotating. Accessed: 2017-05-05.

MC88110 Second Generation RISC Microprocessor User’s Manual. Motorola Inc., 1991.

Cray Assembly Language (CAL) for Cray X1 Systems Reference Manual. Cray Inc., 2003.
Version 1.1, S-2314-50.

Cray XMT Principles of Operation. Cray Inc., 2009. Version 1.3, S-2473-13.
SPARC T8 Supplement to the UltraSPARC Architecture 2007 Specification. Oracle, 2010.

TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (Rev. J). Texas Instru-
ments, 2010.

The Aggregate. The aggregate magic algorithms. http://aggregate.org/MAGIC/. Accessed:
2019-05-26.

Sean Eron Anderson. Bit twiddling hacks. http://graphics.stanford.edu/~seander/
bithacks.html. Accessed: 2017-04-24.

Armin Biere. private communication, October 2018.

Vinodh Gopal, Erdinc Ozturk, Jim Guilford, Gil Wolrich, Wajdi Feghali, Martin Dixon,
and Deniz Karakoyunlu. Fast crc computation for generic polynomials using pclmulqdq
instruction. https://www.intel.com/content/dam/www/public/us/en/documents/
white-papers/fast-crc-computation-generic-polynomials-pclmulqgdq-paper.pdf,
2009. Intel White Paper, Accessed: 2018-10-23.

Y. Hilewitz, C. Lauradoux, and R. B. Lee. Bit matrix multiplication in commodity proces-
sors. In 2008 International Conference on Application-Specific Systems, Architectures and
Processors, pages 7-12, July 2008.

Yedidya Hilewitz and Ruby B. Lee. Fast bit compression and expansion with parallel extract
and parallel deposit instructions. In Proceedings of the IEEE 17th International Conference
on Application-specific Systems, Architectures and Processors, ASAP 06, pages 656—72, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

75

http://www.mailcom.com/besm6/instset.shtml#pack
http://www.mailcom.com/besm6/instset.shtml#pack
https://chessprogramming.wikispaces.com/Flipping%20Mirroring%20and%20Rotating
https://chessprogramming.wikispaces.com/Flipping%20Mirroring%20and%20Rotating
http://aggregate.org/MAGIC/
http://graphics.stanford.edu/~seander/bithacks.html
http://graphics.stanford.edu/~seander/bithacks.html
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf

[20]
[21]

[22]

RISC-V Bitmanip Extension V0.91
James Hughes. Using carry-less multiplication (clmul) to implement erasure code. Patent
US13866453, 2013.
Donald E. Knuth. The Art of Computer Programming, Volume 4A. Addison-Wesley, 2011.

Geoff Langdale and Daniel Lemire. Parsing gigabytes of JSON per second. CoRR,
abs/1902.08318, 2019.

Daniel Lemire and Owen Kaser. Faster 64-bit universal hashing using carry-less multiplications.
CoRR, abs/1503.03465, 2015.

George Marsaglia. Xorshift rngs. Journal of Statistical Software, Articles, 8(14):1-6, 2003.

Prashant Pandey, Michael A. Bender, and Rob Johnson. A fast x86 implementation of select.
CoRR, abs/1706.00990, 2017.

Henry S. Warren. Hacker’s Delight. Addison-Wesley Professional, 2nd edition, 2012.

Wikipedia. Carry-less product. https://en.wikipedia.org/wiki/Carry-less_product.
Accessed: 2018-10-05.

Wikipedia. Hamming weight. https://en.wikipedia.org/wiki/Hamming_weight. Accessed:
2017-04-24.

Wikipedia. Morton code (z-order curve, lebesgue curve). https://en.wikipedia.org/wiki/
Z-order_curve. Accessed: 2018-10-12.

Clifford Wolf. Reference hardware implementations of bit extract/deposit instructions. https:
//github.com/cliffordwolf/bextdep. Accessed: 2017-04-30.

Clifford Wolf. Reference implementations of various crcs using carry-less multiply. http:
//svn.clifford.at/handicraft/2018/clmulcrc/. Accessed: 2018-11-06.

Clifford Wolf. A simple synthetic compiler benchmark for bit manipulation operations. http:
//svn.clifford.at/handicraft/2017/bitcode/. Accessed: 2017-04-30.

https://en.wikipedia.org/wiki/Carry-less_product
https://en.wikipedia.org/wiki/Hamming_weight
https://en.wikipedia.org/wiki/Z-order_curve
https://en.wikipedia.org/wiki/Z-order_curve
https://github.com/cliffordwolf/bextdep
https://github.com/cliffordwolf/bextdep
http://svn.clifford.at/handicraft/2018/clmulcrc/
http://svn.clifford.at/handicraft/2018/clmulcrc/
http://svn.clifford.at/handicraft/2017/bitcode/
http://svn.clifford.at/handicraft/2017/bitcode/

	Introduction
	ISA Extension Proposal Design Criteria
	B Extension Adoption Strategy
	Next steps

	RISC-V Bitmanip Extension
	Basic bit manipulation instructions
	Count Leading/Trailing Zeros (clz, ctz)
	Count Bits Set (pcnt)
	Logic-with-negate (andn, orn, xnor)
	Pack two XLEN/2 words in one register (pack)
	Min/max instructions (min, max, minu, maxu)
	Single-bit instructions (sbset, sbclr, sbinv, sbext)
	Shift Ones (Left/Right) (slo, sloi, sro, sroi)

	Bit permutation instructions
	Rotate (Left/Right) (rol, ror, rori)
	Generalized Reverse (grev, grevi, rev)
	Generalized Shuffle (shfl, unshfl, shfli, unshfli, zip, unzip)

	Generalized OR-Combine (gorc, gorci)
	Bit-Field Place (bfp)
	Bit Extract/Deposit (bext, bdep)
	Carry-Less Multiply (clmul, clmulh, clmulr)
	CRC Instructions (crc32.[bhwd], crc32c.[bhwd])
	Bit-Matrix Instructions (bmatxor, bmator, bmatflip, RV64 only)
	Ternary Bit-Manipulation Instructions
	Conditional Mix (cmix)
	Conditional Move (cmov)
	Funnel Shift (fsl, fsr, fsri)

	Unsigned address calculation instructions
	Add/sub with postfix zero-extend (addwu, subwu, addiwu)
	Add/sub/shift with prefix zero-extend (addu.w, subu.w, slliu.w)

	Opcode Encodings
	Future compressed instructions
	Micro architectural considerations and macro-op fusion for bit-manipulation
	Fast MUL, MULH, MULHSU, MULHU
	Fused load-immediate sequences
	Fused *-bfp sequences
	Fused *-not sequences
	Fused *-srli and *-srai sequences
	Fused sequences for logic operations
	Fused ternary ALU sequences
	Pseudo-ops for fused sequences

	C intrinsics via <rvintrin.h>

	Reference Implementations
	Verilog reference implementations
	Fast C reference implementations

	Evaluation
	Basic Bitmanipulation
	Bitfield extract
	Parity check
	Rank and select
	Packing bytes in word
	Counting trailing non-zero bytes
	Fill right of most significant set bit
	Round to next power of two

	Funnel shifts
	Bigint shift
	Parsing bit-streams
	Fixed-point multiply

	Arbitrary bit permutations
	Using butterfly operations
	Using omega-flip networks
	Using baseline networks
	Using sheep-and-goats
	Using bit-matrix multiply

	Mirroring and rotating bitboards
	Mirroring bitboards
	Rotating bitboards
	Explanation
	Rotating Bitcubes

	Inverting Xorshift RNGs
	Cyclic redundency checks (CRC)
	Decoding RISC-V Immediates

	Change History
	Bibliography

