
RISC-V Debug Support

Version 1.0.0-STABLE

9dc1ee4e4653730f1b318731f9ea8e97f116670a

Editors:
Ernie Edgar <ernie.edgar@sifive.com>, SiFive, Inc.

Tim Newsome <tim@sifive.com>, SiFive, Inc.

Sat Sep 3 01:49:45 2022 +0800

Contributors to all versions of the spec in alphabetical order (please contact editors to suggest cor-
rections): Bruce Ableidinger, Krste Asanović, Peter Ashenden, Allen Baum, Mark Beal, Alex Brad-
bury, Chuanhua Chang, Zhong-Ho Chen, Monte Dalrymple, Paul Donahue, Vyacheslav Dyachenko,
Peter Egold, Marc Gauthier, Markus Goehrle, Robert Golla, John Hauser, Richard Herveille, Yung-
ching Hsiao, Po-wei Huang, Scott Johnson, L. J. Madar, Grigorios Magklis, Jan Matyas, Kai
Meinhard, Jean-Luc Nagel, Aram Nahidipour, Rishiyur Nikhil, Gajinder Panesar, Deepak Pan-
war, Antony Pavlov, Klaus Kruse Pedersen, Ken Pettit, Darius Rad, Joe Rahmeh, Gavin Stark,
Ben Staveley, Wesley Terpstra, Megan Wachs, Jan-Willem van de Waerdt, Philipp Wagner, Stefan
Wallentowitz, Ray Van De Walker, Andrew Waterman, Thomas Wicki, Andy Wright, and Bryan
Wyatt.

Preface

Warning! This draft specification will change before being accepted as standard, so
implementations made to this draft specification will likely not conform to the future
standard.

i

Contents

Preface i

1 Introduction 1

1.1 Terminology . 1

1.2 Context . 3

1.2.1 Versions . 3

1.2.1.1 Bugfixes from 0.13 to 1.0 . 3

1.2.1.2 Incompatible Changes from 0.13 to 1.0 3

1.2.1.3 Minor Changes from 0.13 to 1.0 . 4

1.2.1.4 New Features from 0.13 to 1.0 . 4

1.2.1.5 Incompatible Changes During 1.0 Stable 5

1.3 About This Document . 5

1.3.1 Structure . 5

1.3.2 ISA vs. non-ISA . 5

1.3.3 Register Definition Format . 5

1.3.3.1 Long Name (shortname, at 0x123) 6

1.4 Background . 6

1.5 Supported Features . 7

2 System Overview 9

3 Debug Module (DM), non-ISA 11

ii

RISC-V Debug Support Version 1.0.0-STABLE iii

3.1 Debug Module Interface (DMI) . 12

3.2 Reset Control . 12

3.3 Selecting Harts . 13

3.3.1 Selecting a Single Hart . 13

3.3.2 Selecting Multiple Harts . 13

3.4 Hart DM States . 14

3.5 Run Control . 14

3.6 Halt Groups, Resume Groups, and External Triggers 15

3.7 Message Registers . 16

3.8 Abstract Commands . 16

3.8.1 Abstract Command Listing . 18

3.8.1.1 Access Register . 18

3.8.1.2 Quick Access . 20

3.8.1.3 Access Memory . 20

3.9 Program Buffer . 22

3.10 Overview of Hart Debug States . 23

3.11 System Bus Access . 23

3.12 Minimally Intrusive Debugging . 25

3.13 Security . 25

3.14 Version Detection . 26

3.15 Debug Module Registers . 26

3.15.1 Debug Module Status (dmstatus, at 0x11) 28

3.15.2 Debug Module Control (dmcontrol, at 0x10) 30

3.15.3 Hart Info (hartinfo, at 0x12) . 34

3.15.4 Hart Array Window Select (hawindowsel, at 0x14) 35

3.15.5 Hart Array Window (hawindow, at 0x15) . 36

3.15.6 Abstract Control and Status (abstractcs, at 0x16) 36

3.15.7 Abstract Command (command, at 0x17) . 37

iv RISC-V Debug Support Version 1.0.0-STABLE

3.15.8 Abstract Command Autoexec (abstractauto, at 0x18) 38

3.15.9 Configuration Structure Pointer 0 (confstrptr0, at 0x19) 39

3.15.10Configuration Structure Pointer 1 (confstrptr1, at 0x1a) 39

3.15.11Configuration Structure Pointer 2 (confstrptr2, at 0x1b) 39

3.15.12Configuration Structure Pointer 3 (confstrptr3, at 0x1c) 40

3.15.13Next Debug Module (nextdm, at 0x1d) . 40

3.15.14Abstract Data 0 (data0, at 0x04) . 40

3.15.15Program Buffer 0 (progbuf0, at 0x20) . 41

3.15.16Authentication Data (authdata, at 0x30) . 41

3.15.17Debug Module Control and Status 2 (dmcs2, at 0x32) 41

3.15.18Halt Summary 0 (haltsum0, at 0x40) . 42

3.15.19Halt Summary 1 (haltsum1, at 0x13) . 43

3.15.20Halt Summary 2 (haltsum2, at 0x34) . 43

3.15.21Halt Summary 3 (haltsum3, at 0x35) . 44

3.15.22System Bus Access Control and Status (sbcs, at 0x38) 44

3.15.23System Bus Address 31:0 (sbaddress0, at 0x39) 46

3.15.24System Bus Address 63:32 (sbaddress1, at 0x3a) 46

3.15.25System Bus Address 95:64 (sbaddress2, at 0x3b) 47

3.15.26System Bus Address 127:96 (sbaddress3, at 0x37) 47

3.15.27System Bus Data 31:0 (sbdata0, at 0x3c) . 47

3.15.28System Bus Data 63:32 (sbdata1, at 0x3d) 48

3.15.29System Bus Data 95:64 (sbdata2, at 0x3e) 49

3.15.30System Bus Data 127:96 (sbdata3, at 0x3f) 49

3.15.31Custom Features (custom, at 0x1f) . 49

3.15.32Custom Features 0 (custom0, at 0x70) . 49

4 Sdext ISA Extension 50

4.1 Debug Mode . 50

RISC-V Debug Support Version 1.0.0-STABLE v

4.2 Load-Reserved/Store-Conditional Instructions . 51

4.3 Wait for Interrupt Instruction . 51

4.4 Single Step . 51

4.4.1 Step Bit In Dcsr . 51

4.4.2 Icount Trigger . 52

4.5 Reset . 52

4.6 Resume . 53

4.7 XLEN . 53

4.8 Core Debug Registers . 53

4.8.1 Debug Control and Status (dcsr, at 0x7b0) 53

4.8.2 Debug PC (dpc, at 0x7b1) . 57

4.8.3 Debug Scratch Register 0 (dscratch0, at 0x7b2) 58

4.8.4 Debug Scratch Register 1 (dscratch1, at 0x7b3) 58

4.9 Virtual Debug Registers . 58

4.9.1 Privilege Mode (priv, at virtual) . 58

5 Sdtrig ISA Extension 60

5.1 Enumeration . 60

5.2 Actions . 61

5.3 Priority . 61

5.4 Native Triggers . 62

5.5 Trigger Registers . 63

5.5.1 Trigger Select (tselect, at 0x7a0) . 65

5.5.2 Trigger Data 1 (tdata1, at 0x7a1) . 65

5.5.3 Trigger Data 2 (tdata2, at 0x7a2) . 67

5.5.4 Trigger Data 3 (tdata3, at 0x7a3) . 67

5.5.5 Trigger Info (tinfo, at 0x7a4) . 67

5.5.6 Trigger Control (tcontrol, at 0x7a5) . 68

vi RISC-V Debug Support Version 1.0.0-STABLE

5.5.7 Hypervisor Context (hcontext, at 0x6a8) . 68

5.5.8 Supervisor Context (scontext, at 0x5a8) . 69

5.5.9 Machine Context (mcontext, at 0x7a8) . 69

5.5.10 Machine Supervisor Context (mscontext, at 0x7aa) 70

5.5.11 Match Control (mcontrol, at 0x7a1) . 70

5.5.12 Match Control Type 6 (mcontrol6, at 0x7a1) 76

5.5.13 Instruction Count (icount, at 0x7a1) . 83

5.5.14 Interrupt Trigger (itrigger, at 0x7a1) . 84

5.5.15 Exception Trigger (etrigger, at 0x7a1) . 86

5.5.16 External Trigger (tmexttrigger, at 0x7a1) 87

5.5.17 Trigger Extra (RV32) (textra32, at 0x7a3) 88

5.5.18 Trigger Extra (RV64) (textra64, at 0x7a3) 89

6 Debug Transport Module (DTM), non-ISA 91

6.1 JTAG Debug Transport Module . 91

6.1.1 JTAG Background . 92

6.1.2 JTAG DTM Registers . 92

6.1.3 IDCODE (at 0x01) . 92

6.1.4 DTM Control and Status (dtmcs, at 0x10) 93

6.1.5 Debug Module Interface Access (dmi, at 0x11) 94

6.1.6 BYPASS (at 0x1f) . 95

6.1.7 Recommended JTAG Connector . 96

A Hardware Implementations 98

A.1 Abstract Command Based . 98

A.2 Execution Based . 98

A.3 Debug Module Interface Signals . 99

B Debugger Implementation 101

RISC-V Debug Support Version 1.0.0-STABLE vii

B.1 C Header File . 101

B.2 External Debugger Implementation . 101

B.2.1 Debug Module Interface Access . 101

B.2.2 Checking for Halted Harts . 102

B.2.3 Halting . 102

B.2.4 Running . 102

B.2.5 Single Step . 102

B.2.6 Accessing Registers . 102

B.2.6.1 Using Abstract Command . 102

B.2.6.2 Using Program Buffer . 103

B.2.7 Reading Memory . 103

B.2.7.1 Using System Bus Access . 103

B.2.7.2 Using Program Buffer . 104

B.2.7.3 Using Abstract Memory Access . 105

B.2.8 Writing Memory . 106

B.2.8.1 Using System Bus Access . 106

B.2.8.2 Using Program Buffer . 106

B.2.8.3 Using Abstract Memory Access . 107

B.2.9 Triggers . 108

B.2.10 Handling Exceptions . 109

B.2.11 Quick Access . 109

B.3 Native Debugger Implementation . 110

B.3.1 Single Step . 110

Index 111

C Change Log 114

List of Figures

2.1 RISC-V Debug System Overview . 10

3.1 Run/Halt Debug State Machine . 24

viii

List of Tables

1.2 Register Access Abbreviations . 6

3.1 Use of Data Registers . 17

3.2 Meaning of cmdtype . 18

3.3 Abstract Register Numbers . 19

3.7 System Bus Data Bits . 23

3.8 Debug Module Debug Bus Registers . 26

3.8 Debug Module Debug Bus Registers . 27

3.8 Debug Module Debug Bus Registers . 28

4.1 Core Debug Registers . 53

4.2 Priority of reasons for entering Debug Mode from highest to lowest. 54

4.4 Virtual address in DPC upon Debug Mode Entry . 57

4.5 Virtual Core Debug Registers . 58

4.6 Privilege Mode and Virtualization Mode Encoding 59

5.1 action encoding . 61

5.2 Synchronous exception priority in decreasing priority order. 62

5.3 Trigger Registers . 64

5.3 Trigger Registers . 65

5.10 Suggested Trigger Timings . 76

6.1 JTAG DTM TAP Registers . 92

ix

x RISC-V Debug Support Version 1.0.0-STABLE

6.5 MIPI-10 Connector Diagram . 96

6.6 MIPI-20 Connector Diagram . 96

6.7 JTAG Connector Pinout . 97

A.1 Signals for the suggested DMI between one DTM and one DM 100

Chapter 1

Introduction

When a design progresses from simulation to hardware implementation, a user’s control and un-
derstanding of the system’s current state drops dramatically. To help bring up and debug low level
software and hardware, it is critical to have good debugging support built into the hardware. When
a robust OS is running on a core, software can handle many debugging tasks. However, in many
scenarios, hardware support is essential.

This document outlines a standard architecture for debug support on RISC-V hardware platforms.
This architecture allows a variety of implementations and tradeoffs, which is complementary to
the wide range of RISC-V implementations. At the same time, this specification defines common
interfaces to allow debugging tools and components to target a variety of hardware platforms based
on the RISC-V ISA.

System designers may choose to add additional hardware debug support, but this specification
defines a standard interface for common functionality.

1.1 Terminology

AMO
Atomic Memory Operation.

BYPASS
JTAG instruction that selects a single bit data register, also called BYPASS.

component
A RISC-V core, or other part of a hardware platform. Typically all components will be
connected to a single system bus.

CSR
Control and Status Register.

DM Debug Module (see Section 3.8).

DMI
Debug Module Interface (see Section 3.1).

1

2 RISC-V Debug Support Version 1.0.0-STABLE

DR JTAG Data Register.

DTM
Debug Transport Module (see Section 6).

DXLEN
Debug XLEN, which is the widest XLEN a hart supports, ignoring the current value of MXL
in misa.

GPR
General Purpose Register.

hardware platform
A single system consisting of one or more components.

hart
A hardware thread in a RISC-V core.

IDCODE
32-bit Identification CODE, and a JTAG instruction that returns the IDCODE value.

IR JTAG Instruction Register.

JTAG
Refers to work done by IEEE’s Joint Test Action Group, described in IEEE 1149.1.

MR Message Register, described in Section 3.7.

NAPOT
Naturally Aligned Powers-Of-Two.

NMI
Non-Maskable Interrupt.

physical address
An address that is directly usable on the system bus.

SBA
System Bus Access (see Section 3.11).

TAP
Test Access Port, defined in IEEE 1149.1.

TM Trigger Module (see Section 5).

virtual address
An address as a hart sees it. If the hart is using address translation this may be different
from the physical address. If there is no translation then it will be the same.

xepc

The exception program counter CSR (e.g. mepc) that is appropriate for the mode being
trapped to.

RISC-V Debug Support Version 1.0.0-STABLE 3

1.2 Context

This document is written to work with:

1. The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document Version 2.2 (the
ISA Spec)

2. The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Version 1.12 (the
Privileged Spec)

1.2.1 Versions

Version 0.13 of this document was ratified by the RISC-V Foundation’s board. Versions 0.13.x are
bug fix releases to that ratified specification.

Version 0.14 was a working version that was never officially ratified.

Version 1.0.0 is almost entirely forwards and backwards compatible with Version 0.13.

1.2.1.1 Bugfixes from 0.13 to 1.0

Changes that fix a bug in the spec:

1. Fix order of operations described in sbdata0. #392
2. Resume ack is set after resume, in Section 3.5. #400
3. sselect applies to svalue. #402
4. mte only applies when action=0. #411
5. aamsize does not affect Argument Width. #420
6. Clarify that harts halt out of reset if haltreq =1. #419

1.2.1.2 Incompatible Changes from 0.13 to 1.0

Changes that are not backwards-compatible. Debuggers or hardware implementations that imple-
ment 0.13 will have to change something in order to implement 1.0:

1. Make haltsum0 optional if there is only one hart. #505
2. System bus autoincrement only happens if an access actually takes place. (sbdata0) #507
3. Bump version to 3. #512
4. Require debugger to poll dmactive after lowering it. #566
5. Add pending to icount. #574
6. When a selected trigger is disabled, tdata2 and tdata3 can be written with any value sup-

ported by any of the types this trigger supports. #721
7. tcontrol fields only apply to breakpoint traps, not any trap. #723

https://github.com/riscv/riscv-debug-spec/pull/392
https://github.com/riscv/riscv-debug-spec/pull/400
https://github.com/riscv/riscv-debug-spec/pull/402
https://github.com/riscv/riscv-debug-spec/pull/411
https://github.com/riscv/riscv-debug-spec/pull/420
https://github.com/riscv/riscv-debug-spec/pull/419
https://github.com/riscv/riscv-debug-spec/pull/505
https://github.com/riscv/riscv-debug-spec/pull/507
https://github.com/riscv/riscv-debug-spec/pull/512
https://github.com/riscv/riscv-debug-spec/pull/566
https://github.com/riscv/riscv-debug-spec/pull/574
https://github.com/riscv/riscv-debug-spec/pull/721
https://github.com/riscv/riscv-debug-spec/pull/723

4 RISC-V Debug Support Version 1.0.0-STABLE

1.2.1.3 Minor Changes from 0.13 to 1.0

Changes that slightly modify defined behavior. Technically backwards incompatible, but unlikely
to be noticeable:

1. stopcount only applies to hart-local counters. #405
2. version may be invalid when dmactive =0. #414
3. Address triggers (mcontrol) may fire on any accessed address. #421
4. All trigger registers (Section 5.3) are optional. #431
5. When extending IR, bypass still is all ones. #437
6. ebreaks and ebreaku are WARL. #458
7. NMIs are disabled by stepie. #465
8. R/W1C fields should be cleared by writing every bit high. #472
9. Specify trigger priorities in Table 5.2 relative to exceptions. #478
10. Time may pass before dmactive becomes high. #500
11. Clear MPRV when resuming into lower privilege mode. #503
12. Halt state may not be preserved across reset. #504
13. Hardware should clear trigger action when dmode is cleared and action is 1. #501
14. Change quick access exceptions to halt the target in Section 3.8.1.2. #585
15. Writing 0 to tdata1 forces a state where tdata2 and tdata3 are writable. #598
16. Solutions to deal with reentrancy in Section 5.4 prevent triggers from matching, not merely

firing. This primarily affects icount behavior. #722

1.2.1.4 New Features from 0.13 to 1.0

New backwards-compatible feature that did not exist before:

1. Add halt groups and external triggers in Section 3.6. #404
2. Reserve some DMI space for non-standard use. See custom, and custom0 through custom15.

#406
3. Reserve trigger type values for non-standard use. #417
4. Add nmi bit to itrigger. #408 and #709
5. Recommend matching on every accessed address. #449
6. Add resume groups in Section 3.6. #506
7. Add relaxedpriv. #536
8. Move scontext, renaming original to mscontext, and create hcontext. #535
9. Add mcontrol6, deprecating mcontrol. #538
10. Add hypervisor support: ebreakvs, ebreakvu, v, hcontext, mcontrol, mcontrol6, and priv.

#549
11. Optionally make anyunavail and allunavail sticky, controlled by stickyunavail. #520
12. Add tmexttrigger to support trigger module external trigger inputs. #543
13. Describe mcontrol and mcontrol6 behavior with atomic instructions. #561
14. Trigger hit bits must be set on fire, may be set on match. #593
15. Add sbytemask and sbytemask to textra32 and textra64. #588
16. Allow debugger to request harts stay alive with keepalive bit in Section 3.15.2. #592
17. Add ndmresetpending to allow a debugger to determine when ndmreset is complete. #594

https://github.com/riscv/riscv-debug-spec/pull/405
https://github.com/riscv/riscv-debug-spec/pull/414
https://github.com/riscv/riscv-debug-spec/pull/421
https://github.com/riscv/riscv-debug-spec/pull/431
https://github.com/riscv/riscv-debug-spec/pull/437
https://github.com/riscv/riscv-debug-spec/pull/458
https://github.com/riscv/riscv-debug-spec/pull/465
https://github.com/riscv/riscv-debug-spec/pull/472
https://github.com/riscv/riscv-debug-spec/pull/478
https://github.com/riscv/riscv-debug-spec/pull/500
https://github.com/riscv/riscv-debug-spec/pull/503
https://github.com/riscv/riscv-debug-spec/pull/504
https://github.com/riscv/riscv-debug-spec/pull/501
https://github.com/riscv/riscv-debug-spec/pull/585
https://github.com/riscv/riscv-debug-spec/pull/598
https://github.com/riscv/riscv-debug-spec/pull/722
https://github.com/riscv/riscv-debug-spec/pull/404
https://github.com/riscv/riscv-debug-spec/pull/406
https://github.com/riscv/riscv-debug-spec/pull/417
https://github.com/riscv/riscv-debug-spec/pull/408
https://github.com/riscv/riscv-debug-spec/pull/709
https://github.com/riscv/riscv-debug-spec/pull/449
https://github.com/riscv/riscv-debug-spec/pull/506
https://github.com/riscv/riscv-debug-spec/pull/536
https://github.com/riscv/riscv-debug-spec/pull/535
https://github.com/riscv/riscv-debug-spec/pull/538
https://github.com/riscv/riscv-debug-spec/pull/549
https://github.com/riscv/riscv-debug-spec/pull/520
https://github.com/riscv/riscv-debug-spec/pull/543
https://github.com/riscv/riscv-debug-spec/pull/561
https://github.com/riscv/riscv-debug-spec/pull/593
https://github.com/riscv/riscv-debug-spec/pull/588
https://github.com/riscv/riscv-debug-spec/pull/592
https://github.com/riscv/riscv-debug-spec/pull/594

RISC-V Debug Support Version 1.0.0-STABLE 5

18. Add intctl to support triggers from an interrupt controller. #599

1.2.1.5 Incompatible Changes During 1.0 Stable

Backwards-incompatible changes between two versions that are both called 1.0 stable.

1. nmi was moved from etrigger to itrigger, and is now subject to the mode bits in that
trigger.

2. DM data registers are now Message Registers (see Section 3.7). Debuggers must not assume
they can read back the same value that they wrote, and must not assume that the result of
the last abstract command is available as argument to the next abstract command. #728

3. It may not be possible to read the contents of the Program Buffer using the progbuf registers.
#731

1.3 About This Document

1.3.1 Structure

This document contains two parts. The main part of the document is the specification, which is
given in the numbered chapters. The second part of the document is a set of appendices. The
information in the appendices is intended to clarify and provide examples, but is not part of the
actual specification.

1.3.2 ISA vs. non-ISA

This specification contains both ISA and non-ISA parts. The ISA parts define self-contained
ISA extensions. The remainder of the document describes the non-ISA external debug extension.
Chapters whose contents are solely one or the other are labeled as such in their title. Chapters
without such a label apply to both ISA and non-ISA.

1.3.3 Register Definition Format

All register definitions in this document follow the format shown below. A simple graphic shows
which fields are in the register. The upper and lower bit indices are shown to the top left and top
right of each field. The total number of bits in the field are shown below it.

After the graphic follows a table which for each field lists its name, description, allowed accesses,
and reset value. The allowed accesses are listed in Table 1.2. The reset value is either a constant
or “Preset.” The latter means it is an implementation-specific legal value.

Parts of the register which are currently unused are labeled with the number 0. Software must only
write 0 to those fields, and ignore their value while reading. Hardware must return 0 when those

https://github.com/riscv/riscv-debug-spec/pull/599
https://github.com/riscv/riscv-debug-spec/pull/728
https://github.com/riscv/riscv-debug-spec/pull/731

6 RISC-V Debug Support Version 1.0.0-STABLE

fields are read, and ignore the value written to them.

This behavior enables us to use those fields later without having to increase the values in the
version fields.

Names of registers and their fields are hyperlinks to their definition, and are also listed in the index
on page 111.

1.3.3.1 Long Name (shortname, at 0x123)

31 8 7 0

0 field

24 8

Field Description Access Reset

field Description of what this field is used for. R/W 15

Table 1.2: Register Access Abbreviations
R Read-only.

R/W Read/Write.

R/W1C Read/Write Ones to Clear. Writing 0 to every bit has
no effect. Writing 1 to every bit clears the field. The

result of other writes is undefined.

WARZ Write any, read zero. A debugger may write any
value. When read this field returns 0.

W1 Write-only. Only writing 1 has an effect. When read
the returned value should be 0.

WARL Write any, read legal. A debugger may write any
value. If a value is unsupported, the implementation

converts the value to one that is supported.

1.4 Background

There are several use cases for dedicated debugging hardware, both internal to a CPU core and with
an external connection. This specification addresses the use cases listed below. Implementations
can choose not to implement every feature, which means some use cases might not be supported.

� Debugging low-level software in the absence of an OS or other software.

� Debugging issues in the OS itself.

� Bootstrapping a hardware platform to test, configure, and program components before there
is any executable code path in the hardware platform.

RISC-V Debug Support Version 1.0.0-STABLE 7

� Accessing hardware on a hardware platform without a working CPU.

In addition, even without a hardware debugging interface, architectural support in a RISC-V
CPU can aid software debugging and performance analysis by allowing hardware triggers and
breakpoints.

1.5 Supported Features

The debug interface described in this specification supports the following features:

1. All hart registers (including CSRs) can be read/written.

2. Memory can be accessed either from the hart’s point of view, through the system bus directly,
or both.

3. RV32, RV64, and future RV128 are all supported.

4. Any hart in the hardware platform can be independently debugged.

5. A debugger can discover almost1 everything it needs to know itself, without user configuration.

6. Each hart can be debugged from the very first instruction executed.

7. A RISC-V hart can be halted when a software breakpoint instruction is executed.

8. Hardware single-step can execute one instruction at a time.

9. Debug functionality is independent of the debug transport used.

10. The debugger does not need to know anything about the microarchitecture of the harts it is
debugging.

11. Arbitrary subsets of harts can be halted and resumed simultaneously. (Optional)

12. Arbitrary instructions can be executed on a halted hart. That means no new debug function-
ality is needed when a core has additional or custom instructions or state, as long as there
exist programs that can move that state into GPRs. (Optional)

13. Registers can be accessed without halting. (Optional)

14. A running hart can be directed to execute a short sequence of instructions, with little overhead.
(Optional)

15. A system bus master allows memory access without involving any hart. (Optional)

16. A RISC-V hart can be halted when a trigger matches the PC, read/write address/data, or
an instruction opcode. (Optional)

1Notable exceptions include information about the memory map and peripherals.

8 RISC-V Debug Support Version 1.0.0-STABLE

17. Harts can be grouped, and harts in the same group will all halt when any of them halts.
These groups can also react to or notify external triggers. (Optional)

This document does not suggest a strategy or implementation for hardware test, debugging or error
detection techniques. Scan, built-in self test (BIST), etc. are out of scope of this specification, but
this specification does not intend to limit their use in RISC-V systems.

It is possible to debug code that uses software threads, but there is no special debug support for
it.

Chapter 2

System Overview

Figure 2.1 shows the main components of Debug Support. Blocks shown in dotted lines are optional.

The user interacts with the Debug Host (e.g. laptop), which is running a debugger (e.g. gdb). The
debugger communicates with a Debug Translator (e.g. OpenOCD, which may include a hardware
driver) to communicate with Debug Transport Hardware (e.g. Olimex USB-JTAG adapter). The
Debug Transport Hardware connects the Debug Host to the hardware platform’s Debug Transport
Module (DTM). The DTM provides access to one or more Debug Modules (DMs) using the Debug
Module Interface (DMI).

Each hart in the hardware platform is controlled by exactly one DM. Harts may be heterogeneous.
There is no further limit on the hart-DM mapping, but usually all harts in a single core are
controlled by the same DM. In most hardware platforms there will only be one DM that controls
all the harts in the hardware platform.

DMs provide run control of their harts in the hardware platform. Abstract commands provide
access to GPRs. Additional registers are accessible through abstract commands or by writing
programs to the optional Program Buffer.

The Program Buffer allows the debugger to execute arbitrary instructions on a hart. This mech-
anism can also be used to access memory. An optional system bus access block allows memory
accesses without using a RISC-V hart to perform the access.

Each RISC-V hart may implement a Trigger Module. When trigger conditions are met, harts will
halt and inform the debug module that they have halted.

9

10 RISC-V Debug Support Version 1.0.0-STABLE

Figure 2.1: RISC-V Debug System Overview

Chapter 3

Debug Module (DM), non-ISA

The Debug Module implements a translation interface between abstract debug operations and their
specific implementation. It might support the following operations:

1. Give the debugger necessary information about the implementation. (Required)
2. Allow any individual hart to be halted and resumed. (Required)
3. Provide status on which harts are halted. (Required)
4. Provide abstract read and write access to a halted hart’s GPRs. (Required)
5. Provide access to a reset signal that allows debugging from the very first instruction after

reset. (Required)
6. Provide a mechanism to allow debugging harts immediately out of reset (regardless of the

reset cause). (Optional)
7. Provide abstract access to non-GPR hart registers. (Optional)
8. Provide a Program Buffer to force the hart to execute arbitrary instructions. (Optional)
9. Allow multiple harts to be halted, resumed, and/or reset at the same time. (Optional)
10. Allow memory access from a hart’s point of view. (Optional)
11. Allow direct System Bus Access. (Optional)
12. Group harts. When any hart in the group halts, they all halt. (Optional)
13. Respond to external triggers by halting each hart in a configured group. (Optional)
14. Signal an external trigger when a hart in a group halts. (Optional)

In order to be compliant with this specification an implementation must:

1. Implement all the required features listed above.
2. Implement at least one of Program Buffer, System Bus Access, or Abstract Access Memory

command mechanisms.

3. Do at least one of:

(a) Implement the Program Buffer.
(b) Implement abstract access to all registers that are visible to software running on the

hart including all the registers that are present on the hart and listed in Table 3.3.
(c) Implement abstract access to at least all GPRs, dcsr, and dpc, and advertise the imple-

mentation as conforming to the “Minimal RISC-V Debug Specification 1.0.0-STABLE”,

11

12 RISC-V Debug Support Version 1.0.0-STABLE

instead of the “RISC-V Debug Specification 1.0.0-STABLE”.

A single DM can debug up to 220 harts.

3.1 Debug Module Interface (DMI)

Debug Modules are slaves to a bus called the Debug Module Interface (DMI). The master of the
bus is the Debug Transport Module(s). The Debug Module Interface can be a trivial bus with
one master and one slave (see A.3), or use a more full-featured bus like TileLink or the AMBA
Advanced Peripheral Bus. The details are left to the system designer.

The DMI uses between 7 and 32 address bits. It supports read and write operations. The bottom
of the address space is used for the first (and usually only) DM. Extra space can be used for custom
debug devices, other cores, additional DMs, etc. If there are additional DMs on this DMI, the base
address of the next DM in the DMI address space is given in nextdm.

The Debug Module is controlled via register accesses to its DMI address space.

3.2 Reset Control

There are two methods that allow a debugger to reset harts. ndmreset resets all the harts in
the hardware platform, as well as all other parts of the hardware platform except for the Debug
Modules, Debug Transport Modules, and Debug Module Interface. Exactly what is affected by
this reset is implementation dependent, but it must be possible to debug programs from the first
instruction executed. hartreset resets all the currently selected harts. In this case an implementation
may reset more harts than just the ones that are selected. The debugger can discover which other
harts are reset (if any) by selecting them and checking anyhavereset and allhavereset.

To perform either of these resets, the debugger first asserts the bit, and then clears it. The actual
reset may start as soon as the bit is asserted, but may start an arbitrarily long time after the bit
is deasserted. The reset itself may also take an arbitrarily long time. While the reset is on-going,
harts are either in the running state, indicating it’s possible to perform some abstract commands
during this time, or in the unavailable state, indicating it’s not possible to perform any abstract
commands during this time. Once a hart’s reset is complete, havereset becomes set. When a hart
comes out of reset and haltreq or resethaltreq are set, the hart will immediately enter Debug Mode
(halted state). Otherwise, if the hart was initially running it will execute normally (running state)
and if the hart was initially halted it should now be running but may be halted.

There is no general, reliable way for the debugger to know when reset has actually begun.

The Debug Module’s own state and registers should only be reset at power-up and while dmactive
in dmcontrol is 0. If there is another mechanism to reset the DM, this mechanism must also reset
all the harts accessible to the DM.

Due to clock and power domain crossing issues, it might not be possible to perform arbitrary DMI
accesses across hardware platform reset. While ndmreset or any external reset is asserted, the only

RISC-V Debug Support Version 1.0.0-STABLE 13

supported DM operations are reading and writing dmcontrol. The behavior of other accesses is
undefined.

When harts have been reset, they must set a sticky havereset state bit. The conceptual havereset
state bits can be read for selected harts in anyhavereset and allhavereset in dmstatus. These bits
must be set regardless of the cause of the reset. The havereset bits for the selected harts can
be cleared by writing 1 to ackhavereset in dmcontrol. The havereset bits might or might not be
cleared when dmactive is low.

3.3 Selecting Harts

Up to 220 harts can be connected to a single DM. Commands issued to the DM only apply to the
currently selected harts.

To enumerate all the harts, a debugger must first determine HARTSELLEN by writing all ones to
hartsel (assuming the maximum size) and reading back the value to see which bits were actually
set. Then it selects each hart starting from 0 until either anynonexistent in dmstatus is 1, or the
highest index (depending on HARTSELLEN) is reached.

The debugger can discover the mapping between hart indices and mhartid by using the interface
to read mhartid, or by reading the hardware platform’s configuration structure.

3.3.1 Selecting a Single Hart

All debug modules must support selecting a single hart. The debugger can select a hart by writing
its index to hartsel. Hart indexes start at 0 and are contiguous until the final index.

3.3.2 Selecting Multiple Harts

Debug Modules may implement a Hart Array Mask register to allow selecting multiple harts at
once. The nth bit in the Hart Array Mask register applies to the hart with index n. If the bit is 1
then the hart is selected. Usually a DM will have a Hart Array Mask register exactly wide enough
to select all the harts it supports, but it’s allowed to tie any of these bits to 0.

The debugger can set bits in the hart array mask register using hawindowsel and hawindow, then
apply actions to all selected harts by setting hasel. If this feature is supported, multiple harts can
be halted, resumed, and reset simultaneously. The state of the hart array mask register is not
affected by setting or clearing hasel.

Execution of Abstract Commands ignores this mechanism and only applies to the hart selected by
hartsel.

14 RISC-V Debug Support Version 1.0.0-STABLE

3.4 Hart DM States

Every hart that can be selected is in exactly one of the following four DM states: non-existent,
unavailable, running, or halted. Which state the selected harts are in is reflected by allnonexistent,
anynonexistent, allunavail, anyunavail, allrunning, anyrunning, allhalted, and anyhalted.

Harts are nonexistent if they will never be part of this hardware platform, no matter how long a
user waits. E.g. in a simple single-hart hardware platform only one hart exists, and all others are
nonexistent. Debuggers may assume that a hardware platform has no harts with indexes higher
than the first nonexistent one.

Harts are unavailable if they might exist/become available at a later time, or if there are other harts
with higher indexes than this one. Harts may be unavailable for a variety of reasons including being
reset, temporarily powered down, and not being plugged into the hardware platform. That means
harts might become available or unavailable at any time, although these events should be rare in
hardware platforms built to be easily debugged. There are no guarantees about the state of the
hart when it becomes available.

Hardware platforms with very large number of harts may permanently disable some during manu-
facturing, leaving holes in the otherwise continuous hart index space. In order to let the debugger
discover all harts, they must show up as unavailable even if there is no chance of them ever becoming
available.

Harts are running when they are executing normally, as if no debugger was attached. This includes
being in a low power mode or waiting for an interrupt, as long as a halt request will result in the
hart being halted.

Harts are halted when they are in Debug Mode, only performing tasks on behalf of the debugger.

Which states a hart that is reset goes through is implementation dependent. Harts may be un-
available while reset is asserted, and some time after reset is deasserted. They might transition
to running for some time after reset is deasserted. Finally they end up either running or halted,
depending on haltreq and resethaltreq.

3.5 Run Control

For every hart, the Debug Module tracks 4 conceptual bits of state: halt request, resume ack, halt-
on-reset request, and hart reset. (The hart reset and halt-on-reset request bits are optional.) These
4 bits reset to 0, except for resume ack, which may reset to either 0 or 1. The DM receives halted,
running, and havereset signals from each hart. The debugger can observe the state of resume ack in
allresumeack and anyresumeack, and the state of halted, running, and havereset signals in allhalted,
anyhalted, allrunning, anyrunning, allhavereset, and anyhavereset. The state of the other bits cannot
be observed directly.

When a debugger writes 1 to haltreq, each selected hart’s halt request bit is set. When a running
hart, or a hart just coming out of reset, sees its halt request bit high, it responds by halting,
deasserting its running signal, and asserting its halted signal. Halted harts ignore their halt request

RISC-V Debug Support Version 1.0.0-STABLE 15

bit.

When a debugger writes 1 to resumereq, each selected hart’s resume ack bit is cleared and each
selected, halted hart is sent a resume request. Harts respond by resuming, clearing their halted
signal, and asserting their running signal. At the end of this process the resume ack bit is set.
These status signals of all selected harts are reflected in allresumeack, anyresumeack, allrunning, and
anyrunning. Resume requests are ignored by running harts.

When halt or resume is requested, a hart must respond in less than one second, unless it is unavail-
able. (How this is implemented is not further specified. A few clock cycles will be a more typical
latency).

The DM can implement optional halt-on-reset bits for each hart, which it indicates by setting
hasresethaltreq to 1. This means the DM implements the setresethaltreq and clrresethaltreq bits.
Writing 1 to setresethaltreq sets the halt-on-reset request bit for each selected hart. When a hart’s
halt-on-reset request bit is set, the hart will immediately enter debug mode on the next deassertion
of its reset. This is true regardless of the reset’s cause. The hart’s halt-on-reset request bit remains
set until cleared by the debugger writing 1 to clrresethaltreq while the hart is selected, or by DM
reset.

If the DM is reset while a hart is halted, it is unspecified whether that hart resumes. Debuggers
should use resumereq to explicitly resume harts before clearing dmactive and disconnecting.

3.6 Halt Groups, Resume Groups, and External Triggers

An optional feature allows a debugger to place harts into two kinds of groups: halt groups and
resume groups. It is also possible to add external triggers to a halt and resume groups.

When any hart in a halt group halts, or an external trigger that’s a member of the halt group fires:

1. All the harts in that group will quickly halt, even if they are currently in the process of
resuming.

2. Any external triggers in that group are notified.

Adding a hart to a halt group does not automatically halt that hart, even if other harts in the
group are already halted.

When any hart in a resume group resumes, or an external trigger that’s a member of the resume
group fires:

1. All the other harts in that group will quickly resume as soon as any currently executing
abstract commands have completed, except for the harts that are in the process of halting.
Each hart in the group sets its resume ack bit as soon as it has resumed.

2. Any external triggers in that group are notified.

Adding a hart to a resume group does not automatically resume that hart, even if other harts in
the group are currently running.

16 RISC-V Debug Support Version 1.0.0-STABLE

External triggers are abstract concepts that can signal the DM and/or receive signals from the
DM. This configuration is done through dmcs2, where external triggers are referred to by a num-
ber. Commonly, external triggers are capable of sending a signal from the hardware platform into
the DM, as well as receiving a signal from the DM to take their own action on. It is also allow-
able for an external trigger to be input-only or output-only. By convention external triggers 0–7
are bidirectional, triggers 8–11 are input-only, and triggers 12–15 are output-only but this is not
required.

External triggers could be used to implement near simultaneous halting/resuming of all cores in
a hardware platform, when not all cores are RISC-V cores.

In both halt and resume groups, group 0 is special. Harts in group 0 halt/resume as if groups aren’t
implemented at all.

When the DM is reset, all harts must be placed in the lowest-numbered halt and resume groups
that they can be in. (This will usually be group 0.)

Some designs may choose to hardcode hart groups to a group other than group 0, meaning it is
never possible to halt or resume just a single hart. This is explicitly allowed. In that case it must be
possible to discover the groups by using dmcs2 even if it’s not possible to change the configuration.

3.7 Message Registers

Message Registers (MRs) are registers that are only used in a limited way, allowing for different
implementations. They exist to let two sides communicate when the two sides already know who
is the sender and who is the receiver.

An MR implements read and write operations on two sides. When one side reads an MR, and the
last write was by the other side, then the result value of the read is the value last written by the
other side. When one side reads an MR, and the last write was by that same side, then the result
value of the read is unspecified. Thus the MR can be used to exchange data with the other side,
but not as storage to be accessed later.

A regular register can be used to implement an MR. In some FPGAs it is cheaper to trade off
storage for muxes, and in that case the storage can be duplicated (one set of bits for sending and
one for receiving) to avoid having to implement muxes to read/write data from/to the correct
side.

3.8 Abstract Commands

The DM supports a set of abstract commands, most of which are optional. Depending on the
implementation, the debugger may be able to perform some abstract commands even when the
selected hart is not halted. Debuggers can only determine which abstract commands are supported
by a given hart in a given state (running, halted, or held in reset) by attempting them and then
looking at cmderr in abstractcs to see if they were successful. Commands may be supported with
some options set, but not with other options set. If a command has unsupported options set or if
bits that are defined as 0 aren’t 0, then the DM must set cmderr to 2 (not supported).

RISC-V Debug Support Version 1.0.0-STABLE 17

Example: Every DM must support the Access Register command, but might not support accessing
CSRs. If the debugger requests to read a CSR in that case, the command will return “not
supported.”

Debuggers execute abstract commands by writing them to command. They can determine whether
an abstract command is complete by reading busy in abstractcs. If the debugger starts a new
command while busy is set, cmderr becomes 1 (busy), the currently executing command still gets
to run to completion, but any error generated by the currently executing command is lost. After
completion, cmderr indicates whether the command was successful or not. Commands may fail
because a hart is not halted, not running, unavailable, or because they encounter an error during
execution.

If the command takes arguments, the debugger must write them to the data MRs before writing to
command. If a command returns results, the Debug Module must ensure they are placed in the data
MRs before busy is cleared. Which data MRs are used for the arguments is described in Table 3.1.
In all cases the least-significant word is placed in the lowest-numbered data MR. The argument
width depends on the command being executed, and is DXLEN where not explicitly specified.

Table 3.1: Use of Data Registers
Argument Width arg0/return value arg1 arg2

32 data0 data1 data2

64 data0, data1 data2, data3 data4, data5

128 data0–data3 data4–data7 data8–data11

The Abstract Command interface is designed to allow a debugger to write commands as fast as
possible, and then later check whether they completed without error. In the common case the
debugger will be much slower than the target and commands succeed, which allows for maximum
throughput. If there is a failure, the interface ensures that no commands execute after the failing
one. To discover which command failed, the debugger has to look at the state of the DM (e.g.
contents of data0) or hart (e.g. contents of a register modified by a Program Buffer program)
to determine which one failed.

Before starting an abstract command, a debugger must ensure that haltreq, resumereq, and
ackhavereset are all 0.

While an abstract command is executing (busy in abstractcs is high), a debugger must not change
hartsel, and must not write 1 to haltreq, resumereq, ackhavereset, setresethaltreq, or clrresethaltreq.

If an abstract command does not complete in the expected time and appears to be hung, the
debugger can try to reset the hart (using hartreset or ndmreset). If that doesn’t clear busy, then it
can try resetting the Debug Module (using dmactive).

If an abstract command is started while the selected hart is unavailable or if a hart becomes
unavailable while executing an abstract command, then the Debug Module may terminate the
abstract command, setting busy low, and cmderr to 4 (halt/resume). Alternatively, the command
could just appear to be hung (busy never goes low).

18 RISC-V Debug Support Version 1.0.0-STABLE

3.8.1 Abstract Command Listing

This section describes each of the different abstract commands and how their fields should be
interpreted when they are written to command.

Each abstract command is a 32-bit value. The top 8 bits contain cmdtype which determines the
kind of command. Table 3.2 lists all commands.

Table 3.2: Meaning of cmdtype
cmdtype Command Page

0 Access Register Command 18

1 Quick Access 20

2 Access Memory Command 20

3.8.1.1 Access Register

This command gives the debugger access to CPU registers and allows it to execute the Program
Buffer. It performs the following sequence of operations:

1. If write is clear and transfer is set, then copy data from the register specified by regno into the
arg0 region of data, and perform any side effects that occur when this register is read from
M-mode.

2. If write is set and transfer is set, then copy data from the arg0 region of data into the register
specified by regno, and perform any side effects that occur when this register is written from
M-mode.

3. If aarpostincrement and transfer are set, increment regno. regno may also be incremented if
aarpostincrement is set and transfer is clear.

4. Execute the Program Buffer, if postexec is set.

If any of these operations fail, cmderr is set and none of the remaining steps are executed. An
implementation may detect an upcoming failure early, and fail the overall command before it
reaches the step that would cause failure. If the failure is that the requested register does not exist
in the hart, cmderr must be set to 3 (exception).

Debug Modules must implement this command and must support read and write access to all GPRs
when the selected hart is halted. Debug Modules may optionally support accessing other registers,
or accessing registers when the hart is running. It is recommended that if one register in a group
is accessible, then all registers in that group are accessible, but each individual register (aside from
GPRs) may be supported differently across read, write, and halt status.

Registers might not be accessible if they wouldn’t be accessible by M mode code currently running.
(E.g. fflags might not be accessible when mstatus.FS is 0.) If this is the case, the debugger is
responsible for changing state to make the registers accessible. The Core Debug Registers (Sec-
tion 4.8) should be accessible if abstract CSR access is implemented.

The encoding of aarsize was chosen to match sbaccess in sbcs.

RISC-V Debug Support Version 1.0.0-STABLE 19

Table 3.3: Abstract Register Numbers
Numbers Group Description

0x0000 – 0x0fff CSRs. The “PC” can be accessed here through dpc.

0x1000 – 0x101f GPRs

0x1020 – 0x103f Floating point registers

0xc000 – 0xffff Reserved for non-standard extensions and internal use.

This command modifies arg0 only when a register is read. The other data registers are not changed.

31 24 23 22 20 19

cmdtype 0 aarsize aarpostincrement

8 1 3 1

18 17 16 15 0

postexec transfer write regno

1 1 1 16

Field Description

cmdtype This is 0 to indicate Access Register Command.

aarsize 2 (32bit): Access the lowest 32 bits of the register.
3 (64bit): Access the lowest 64 bits of the register.
4 (128bit): Access the lowest 128 bits of the reg-
ister.
If aarsize specifies a size larger than the register’s
actual size, then the access must fail. If a reg-
ister is accessible, then reads of aarsize less than
or equal to the register’s actual size must be sup-
ported. Writing less than the full register may be
supported, but what happens to the high bits in
that case is unspecified.
This field controls the Argument Width as refer-
enced in Table 3.1.

aarpostincrement 0 (disabled): No effect. This variant must be sup-
ported.
1 (enabled): After a successful register access,
regno is incremented. Incrementing past the high-
est supported value causes regno to become un-
specified. Supporting this variant is optional. It
is undefined whether the increment happens when
transfer is 0.

postexec 0 (disabled): No effect. This variant must be
supported, and is the only supported one if
progbufsize is 0.
1 (enabled): Execute the program in the Program
Buffer exactly once after performing the transfer,
if any. Supporting this variant is optional.

Continued on next page

20 RISC-V Debug Support Version 1.0.0-STABLE

Field Description

transfer 0 (disabled): Don’t do the operation specified by
write.
1 (enabled): Do the operation specified by write.
This bit can be used to just execute the Pro-
gram Buffer without having to worry about plac-
ing valid values into aarsize or regno.

write When transfer is set:
0 (arg0): Copy data from the specified register
into arg0 portion of data.
1 (register): Copy data from arg0 portion of data
into the specified register.

regno Number of the register to access, as described in
Table 3.3. dpc may be used as an alias for PC if
this command is supported on a non-halted hart.

3.8.1.2 Quick Access

Perform the following sequence of operations:

1. If the hart is halted, the command sets cmderr to “halt/resume” and does not continue.
2. Halt the hart. If the hart halts for some other reason (e.g. breakpoint), the command sets

cmderr to “halt/resume” and does not continue.
3. Execute the Program Buffer. If an exception occurs, cmderr is set to “exception,” the Program

Buffer execution ends, and the hart is halted with cause set to 3.
4. If the Program Buffer executed without an exception, then resume the hart.

Implementing this command is optional.

This command does not touch the data registers.

31 24 23 0

cmdtype 0

8 24

Field Description

cmdtype This is 1 to indicate Quick Access command.

3.8.1.3 Access Memory

This command lets the debugger perform memory accesses, with the exact same memory view and
permissions as the selected hart has. This includes access to hart-local memory-mapped registers,
etc. The command performs the following sequence of operations:

RISC-V Debug Support Version 1.0.0-STABLE 21

1. Copy data from the memory location specified in arg1 into the arg0 portion of data, if write
is clear.

2. Copy data from the arg0 portion of data into the memory location specified in arg1, if write
is set.

3. If aampostincrement is set, increment arg1.

If any of these operations fail, cmderr is set and none of the remaining steps are executed. An
access may only fail if the hart, running M-mode code, might encounter that same failure when it
attempts the same access. An implementation may detect an upcoming failure early, and fail the
overall command before it reaches the step that would cause failure.

Debug Modules may optionally implement this command and may support read and write access to
memory locations when the selected hart is running or halted. If this command supports memory
accesses while the hart is running, it must also support memory accesses while the hart is halted.

The encoding of aamsize was chosen to match sbaccess in sbcs.

This command modifies arg0 only when memory is read. It modifies arg1 only if aampostincrement
is set. The other data registers are not changed.

31 24 23 22 20 19

cmdtype aamvirtual aamsize aampostincrement

8 1 3 1

18 17 16 15 14 13 0

0 write target-specific 0

2 1 2 14

Field Description

cmdtype This is 2 to indicate Access Memory Command.

aamvirtual An implementation does not have to implement
both virtual and physical accesses, but it must
fail accesses that it doesn’t support.
0 (physical): Addresses are physical (to the hart
they are performed on).
1 (virtual): Addresses are virtual, and translated
the way they would be from M-mode, with MPRV
set.
Debug Modules on systems without address trans-
lation (i.e. virtual addresses equal physical) may
optionally allow aamvirtual set to 1, which would
produce the same result as that same abstract
command with aamvirtual cleared.

Continued on next page

22 RISC-V Debug Support Version 1.0.0-STABLE

Field Description

aamsize 0 (8bit): Access the lowest 8 bits of the memory
location.
1 (16bit): Access the lowest 16 bits of the memory
location.
2 (32bit): Access the lowest 32 bits of the memory
location.
3 (64bit): Access the lowest 64 bits of the memory
location.
4 (128bit): Access the lowest 128 bits of the mem-
ory location.

aampostincrement After a memory access has completed, if this bit
is 1, increment arg1 (which contains the address
used) by the number of bytes encoded in aamsize.
Supporting this variant is optional, but highly rec-
ommended for performance reasons.

write 0 (arg0): Copy data from the memory location
specified in arg1 into the low bits of arg0. The
value of the remaining bits of arg0 are unspeci-
fied.
1 (memory): Copy data from the low bits of arg0
into the memory location specified in arg1.

target-specific These bits are reserved for target-specific uses.

3.9 Program Buffer

To support executing arbitrary instructions on a halted hart, a Debug Module can include a Pro-
gram Buffer that a debugger can write small programs to. DMs that support all necessary func-
tionality using abstract commands only may choose to omit the Program Buffer.

A debugger can write a small program to the Program Buffer, and then execute it exactly once
with the Access Register Abstract Command, setting the postexec bit in command. The debugger
can write whatever program it likes (including jumps out of the Program Buffer), but the program
must end with ebreak or c.ebreak. An implementation may support an implicit ebreak that is
executed when a hart runs off the end of the Program Buffer. This is indicated by impebreak. With
this feature, a Program Buffer of just 2 32-bit words can offer efficient debugging.

If progbufsize is 1, impebreak must be 1. It is possible that the Program Buffer can hold only one 32-
or 16-bit instruction, so the debugger must only write a single instruction in this case, regardless
of its size. This instruction can be a 32-bit instruction, or a compressed instruction in the lower 16
bits accompanied by a compressed nop in the upper 16 bits.

The slightly inconsistent behavior with a Program Buffer of size 1 is to accommodate hardware
designs that prefer to stuff instructions directly into the pipeline when halted, instead of having
the Program Buffer exist in the address space somewhere.

While these programs are executed, the hart does not leave Debug Mode (see Section 4.1). If

RISC-V Debug Support Version 1.0.0-STABLE 23

an exception is encountered during execution of the Program Buffer, no more instructions are
executed, the hart remains in Debug Mode, and cmderr is set to 3 (exception error). If the
debugger executes a program that doesn’t terminate with an ebreak instruction, the hart will
remain in Debug Mode and the debugger will lose control of the hart.

Executing the Program Buffer may cause the value of dpc to become unspecified. If that is the
case, it must be possible to read/write dpc using an abstract command with postexec not set. The
debugger must attempt to save dpc between halting and executing a Program Buffer, and then
restore dpc before leaving Debug Mode.

Allowing dpc to become unspecified upon Program Buffer execution allows for direct imple-
mentations that don’t have a separate PC register, and do need to use the PC when executing
the Program Buffer.

The Program Buffer may be implemented as RAM which is accessible to the hart. A debugger
can determine if this is the case by executing small programs that attempt to write and read back
relative to pc while executing from the Program Buffer. If so, the debugger has more flexibility in
what it can do with the program buffer.

3.10 Overview of Hart Debug States

Figure 3.1 shows a conceptual view of the states passed through by a hart during run/halt debugging
as influenced by the different fields of dmcontrol, abstractcs, abstractauto, and command.

3.11 System Bus Access

A debugger can access memory from a hart’s point of view using a Program Buffer or the Abstract
Access Memory command. (Both these features are optional.) A Debug Module may also include a
System Bus Access block to provide memory access without involving a hart, regardless of whether
Program Buffer is implemented. The System Bus Access block uses physical addresses.

The System Bus Access block may support 8-, 16-, 32-, 64-, and 128-bit accesses. Table 3.7 shows
which bits in sbdata are used for each access size.

Table 3.7: System Bus Data Bits
Access Size Data Bits

8 sbdata0 bits 7:0

16 sbdata0 bits 15:0

32 sbdata0

64 sbdata1, sbdata0

128 sbdata3, sbdata2, sbdata1, sbdata0

Depending on the microarchitecture, data accessed through System Bus Access might not always
be coherent with that observed by each hart. It is up to the debugger to enforce coherency if the
implementation does not. This specification does not define a standard way to do this. Possibilities

24 RISC-V Debug Support Version 1.0.0-STABLE

Figure 3.1: Run/Halt Debug State Machine for single-hart hardware platforms. As only a small
amount of state is visible to the debugger, the states and transitions are conceptual.

RISC-V Debug Support Version 1.0.0-STABLE 25

may include writing to special memory-mapped locations, or executing special instructions via the
Program Buffer.

Implementing a System Bus Access block has several benefits even when a Debug Module also
implements a Program Buffer. First, it is possible to access memory in a running system with
minimal impact. Second, it may improve performance when accessing memory. Third, it may
provide access to devices that a hart does not have access to.

3.12 Minimally Intrusive Debugging

Depending on the task it is performing, some harts can only be halted very briefly. There are
several mechanisms that allow accessing resources in such a running system with a minimal impact
on the running hart.

First, an implementation may allow some abstract commands to execute without halting the hart.

Second, the Quick Access abstract command can be used to halt a hart, quickly execute the contents
of the Program Buffer, and let the hart run again. Combined with instructions that allow Program
Buffer code to access the data registers, as described in hartinfo, this can be used to quickly
perform a memory or register access. For some hardware platforms this will be too intrusive, but
many hardware platforms that can’t be halted can bear an occasional hiccup of a hundred or less
cycles.

Third, if the System Bus Access block is implemented, it can be used while a hart is running to
access system memory.

3.13 Security

To protect intellectual property it may be desirable to lock access to the Debug Module. To allow
access during a manufacturing process and not afterwards, a reasonable solution could be to add a
fuse bit to the Debug Module that can be used to be permanently disable it. Since this is technology
specific, it is not further addressed in this spec.

Another option is to allow the DM to be unlocked only by users who have an access key. Be-
tween authenticated, authbusy, and authdata arbitrarily complex authentication mechanism can be
supported. When authenticated is clear, the DM must not interact with the rest of the hardware
platform, nor expose details about the harts connected to the DM. All DM registers should read
0, while writes should be ignored, with the following mandatory exceptions:

1. authenticated in dmstatus is readable.
2. authbusy in dmstatus is readable.
3. version in dmstatus is readable.
4. dmactive in dmcontrol is readable and writable.
5. authdata is readable and writable.

26 RISC-V Debug Support Version 1.0.0-STABLE

Implementations where it’s not possible to unlock the DM by using authdata should not implement
that register.

3.14 Version Detection

To detect the version of the Debug Module with a minimum of side effects, use the following
procedure:

1. Read dmcontrol.
2. If dmactive is 0 or ndmreset is 1:

(a) Write dmcontrol, preserving hartreset, hasel, hartsello, and hartselhi from the value that
was read, setting dmactive, and clearing all the other bits.

(b) Read dmcontrol until dmactive is high.
3. Read dmstatus, which contains version.

If it was necessary to clear ndmreset, this might have the following unavoidable side effects:

1. haltreq is cleared, potentially preventing a halt request made by a previous debugger from
taking effect.

2. resumereq is cleared, potentially preventing a resume request made by a previous debugger
from taking effect.

3. ndmreset is deasserted, releasing the hardware platform from reset if a previous debugger had
set it.

4. dmactive is asserted, releasing the DM from reset. This in itself is not observable by any
harts.

This procedure is guaranteed to work in future versions of this spec. The meaning of the dmcontrol
bits where hartreset, hasel, hartsello, and hartselhi currently reside might change, but preserving them
will have no side effects. Clearing the bits of dmcontrol not explicitly mentioned here will have no
side effects beyond the ones mentioned above.

3.15 Debug Module Registers

The registers described in this section are accessed over the DMI bus. Each DM has a base address
(which is 0 for the first DM). The register addresses below are offsets from this base address.

When read, unimplemented or non-existent Debug Module DMI Registers return 0. Writing them
has no effect.

Table 3.8: Debug Module Debug Bus Registers

Address Name Page

0x04 Abstract Data 0 (data0) 40
0x05 Abstract Data 1 (data1)

Continued on next page

RISC-V Debug Support Version 1.0.0-STABLE 27

Table 3.8: Debug Module Debug Bus Registers

Address Name Page

0x06 Abstract Data 2 (data2)
0x07 Abstract Data 3 (data3)
0x08 Abstract Data 4 (data4)
0x09 Abstract Data 5 (data5)
0x0a Abstract Data 6 (data6)
0x0b Abstract Data 7 (data7)
0x0c Abstract Data 8 (data8)
0x0d Abstract Data 9 (data9)
0x0e Abstract Data 10 (data10)
0x0f Abstract Data 11 (data11)
0x10 Debug Module Control (dmcontrol) 30
0x11 Debug Module Status (dmstatus) 28
0x12 Hart Info (hartinfo) 34
0x13 Halt Summary 1 (haltsum1) 43
0x14 Hart Array Window Select (hawindowsel) 35
0x15 Hart Array Window (hawindow) 36
0x16 Abstract Control and Status (abstractcs) 36
0x17 Abstract Command (command) 37
0x18 Abstract Command Autoexec (abstractauto) 38
0x19 Configuration Structure Pointer 0 (confstrptr0) 39
0x1a Configuration Structure Pointer 1 (confstrptr1) 39
0x1b Configuration Structure Pointer 2 (confstrptr2) 39
0x1c Configuration Structure Pointer 3 (confstrptr3) 40
0x1d Next Debug Module (nextdm) 40
0x1f Custom Features (custom) 49
0x20 Program Buffer 0 (progbuf0) 41
0x21 Program Buffer 1 (progbuf1)
0x22 Program Buffer 2 (progbuf2)
0x23 Program Buffer 3 (progbuf3)
0x24 Program Buffer 4 (progbuf4)
0x25 Program Buffer 5 (progbuf5)
0x26 Program Buffer 6 (progbuf6)
0x27 Program Buffer 7 (progbuf7)
0x28 Program Buffer 8 (progbuf8)
0x29 Program Buffer 9 (progbuf9)
0x2a Program Buffer 10 (progbuf10)
0x2b Program Buffer 11 (progbuf11)
0x2c Program Buffer 12 (progbuf12)
0x2d Program Buffer 13 (progbuf13)
0x2e Program Buffer 14 (progbuf14)
0x2f Program Buffer 15 (progbuf15)
0x30 Authentication Data (authdata) 41
0x32 Debug Module Control and Status 2 (dmcs2) 41
0x34 Halt Summary 2 (haltsum2) 43

Continued on next page

28 RISC-V Debug Support Version 1.0.0-STABLE

Table 3.8: Debug Module Debug Bus Registers

Address Name Page

0x35 Halt Summary 3 (haltsum3) 44
0x37 System Bus Address 127:96 (sbaddress3) 47
0x38 System Bus Access Control and Status (sbcs) 44
0x39 System Bus Address 31:0 (sbaddress0) 46
0x3a System Bus Address 63:32 (sbaddress1) 46
0x3b System Bus Address 95:64 (sbaddress2) 47
0x3c System Bus Data 31:0 (sbdata0) 47
0x3d System Bus Data 63:32 (sbdata1) 48
0x3e System Bus Data 95:64 (sbdata2) 49
0x3f System Bus Data 127:96 (sbdata3) 49
0x40 Halt Summary 0 (haltsum0) 42
0x70 Custom Features 0 (custom0) 49
0x71 Custom Features 1 (custom1)
0x72 Custom Features 2 (custom2)
0x73 Custom Features 3 (custom3)
0x74 Custom Features 4 (custom4)
0x75 Custom Features 5 (custom5)
0x76 Custom Features 6 (custom6)
0x77 Custom Features 7 (custom7)
0x78 Custom Features 8 (custom8)
0x79 Custom Features 9 (custom9)
0x7a Custom Features 10 (custom10)
0x7b Custom Features 11 (custom11)
0x7c Custom Features 12 (custom12)
0x7d Custom Features 13 (custom13)
0x7e Custom Features 14 (custom14)
0x7f Custom Features 15 (custom15)

3.15.1 Debug Module Status (dmstatus, at 0x11)

This register reports status for the overall Debug Module as well as the currently selected harts, as
defined in hasel. Its address will not change in the future, because it contains version.

This entire register is read-only.

31 25 24 23 22 21 20 19

0 ndmresetpending stickyunavail impebreak 0 allhavereset

7 1 1 1 2 1

18 17 16 15 14 13

anyhavereset allresumeack anyresumeack allnonexistent anynonexistent allunavail

1 1 1 1 1 1

RISC-V Debug Support Version 1.0.0-STABLE 29

12 11 10 9 8 7

anyunavail allrunning anyrunning allhalted anyhalted authenticated

1 1 1 1 1 1

6 5 4 3 0

authbusy hasresethaltreq confstrptrvalid version

1 1 1 4

Field Description Access Reset

ndmresetpending 0 (false): Unimplemented, or ndmreset is zero and
no ndmreset is currently in progress.
1 (true): ndmreset is currently nonzero, or there
is an ndmreset in progress.

R -

stickyunavail 0 (current): The per-hart unavail bits reflect the
current state of the hart.
1 (sticky): The per-hart unavail bits are sticky.
Once they are set, they will not clear until the
debugger acknowledges them using ackunavail.

R Preset

impebreak If 1, then there is an implicit ebreak instruction
at the non-existent word immediately after the
Program Buffer. This saves the debugger from
having to write the ebreak itself, and allows the
Program Buffer to be one word smaller.
This must be 1 when progbufsize is 1.

R Preset

allhavereset This field is 1 when all currently selected harts
have been reset and reset has not been acknowl-
edged for any of them.

R -

anyhavereset This field is 1 when at least one currently selected
hart has been reset and reset has not been ac-
knowledged for that hart.

R -

allresumeack This field is 1 when all currently selected harts
have their resume ack bit set.

R -

anyresumeack This field is 1 when any currently selected hart
has its resume ack bit set.

R -

allnonexistent This field is 1 when all currently selected harts do
not exist in this hardware platform.

R -

anynonexistent This field is 1 when any currently selected hart
does not exist in this hardware platform.

R -

allunavail This field is 1 when all currently selected harts
are unavailable, or (if stickyunavail is 1) were un-
available without that being acknowledged.

R -

anyunavail This field is 1 when any currently selected hart is
unavailable, or (if stickyunavail is 1) was unavail-
able without that being acknowledged.

R -

allrunning This field is 1 when all currently selected harts
are running.

R -

Continued on next page

30 RISC-V Debug Support Version 1.0.0-STABLE

Field Description Access Reset

anyrunning This field is 1 when any currently selected hart is
running.

R -

allhalted This field is 1 when all currently selected harts
are halted.

R -

anyhalted This field is 1 when any currently selected hart is
halted.

R -

authenticated 0 (false): Authentication is required before using
the DM.
1 (true): The authentication check has passed.
On components that don’t implement authentica-
tion, this bit must be preset as 1.

R Preset

authbusy 0 (ready): The authentication module is ready to
process the next read/write to authdata.
1 (busy): The authentication module is busy. Ac-
cessing authdata results in unspecified behavior.
authbusy only becomes set in immediate response
to an access to authdata.

R 0

hasresethaltreq 1 if this Debug Module supports halt-on-reset
functionality controllable by the setresethaltreq
and clrresethaltreq bits. 0 otherwise.

R Preset

confstrptrvalid 0 (invalid): confstrptr0–confstrptr3 hold in-
formation which is not relevant to the configura-
tion structure.
1 (valid): confstrptr0–confstrptr3 hold the
address of the configuration structure.

R Preset

version 0 (none): There is no Debug Module present.
1 (0.11): There is a Debug Module and it con-
forms to version 0.11 of this specification.
2 (0.13): There is a Debug Module and it con-
forms to version 0.13 of this specification.
3 (1.0): There is a Debug Module and it conforms
to version 1.0 of this specification.
15 (custom): There is a Debug Module but it does
not conform to any available version of this spec.

R 3

3.15.2 Debug Module Control (dmcontrol, at 0x10)

This register controls the overall Debug Module as well as the currently selected harts, as defined
in hasel.

Throughout this document we refer to hartsel, which is hartselhi combined with hartsello. While the
spec allows for 20 hartsel bits, an implementation may choose to implement fewer than that. The
actual width of hartsel is called HARTSELLEN. It must be at least 0 and at most 20. A debugger
should discover HARTSELLEN by writing all ones to hartsel (assuming the maximum size) and reading
back the value to see which bits were actually set. Debuggers must not change hartsel while an

RISC-V Debug Support Version 1.0.0-STABLE 31

abstract command is executing.

There are separate setresethaltreq and clrresethaltreq bits so that it is possible to write dmcontrol
without changing the halt-on-reset request bit for each selected hart, when not all selected harts
have the same configuration.

On any given write, a debugger may only write 1 to at most one of the following bits: resumereq,
hartreset, ackhavereset, setresethaltreq, and clrresethaltreq. The others must be written 0.

resethaltreq is an optional internal bit of per-hart state that cannot be read, but can be written
with setresethaltreq and clrresethaltreq.

keepalive is an optional internal bit of per-hart state. When it is set, it suggests that the hardware
should attempt to keep the hart available for the debugger, e.g. by keeping it from entering a
low-power state once powered on. Even if the bit is implemented, hardware might not be able to
keep a hart available. The bit is written through setkeepalive and clrkeepalive.

For forward compatibility, version will always be readable when bit 1 (ndmreset) is 0 and bit 0
(dmactive) is 1.

31 30 29 28 27

haltreq resumereq hartreset ackhavereset ackunavail

1 1 1 1 1

26 25 16 15 6 5 4

hasel hartsello hartselhi setkeepalive clrkeepalive

1 10 10 1 1

3 2 1 0

setresethaltreq clrresethaltreq ndmreset dmactive

1 1 1 1

Field Description Access Reset

haltreq Writing 0 clears the halt request bit for all cur-
rently selected harts. This may cancel outstand-
ing halt requests for those harts.
Writing 1 sets the halt request bit for all currently
selected harts. Running harts will halt whenever
their halt request bit is set.
Writes apply to the new value of hartsel and hasel.

WARZ -

resumereq Writing 1 causes the currently selected harts to
resume once, if they are halted when the write
occurs. It also clears the resume ack bit for those
harts.
resumereq is ignored if haltreq is set.
Writes apply to the new value of hartsel and hasel.

W1 -

Continued on next page

32 RISC-V Debug Support Version 1.0.0-STABLE

Field Description Access Reset

hartreset This optional field writes the reset bit for all the
currently selected harts. To perform a reset the
debugger writes 1, and then writes 0 to deassert
the reset signal.
While this bit is 1, the debugger must not change
which harts are selected.
If this feature is not implemented, the bit always
stays 0, so after writing 1 the debugger can read
the register back to see if the feature is supported.
Writes apply to the new value of hartsel and hasel.

WARL 0

ackhavereset 0 (nop): No effect.
1 (ack): Clears havereset for any selected harts.
Writes apply to the new value of hartsel and hasel.

W1 -

ackunavail 0 (nop): No effect.
1 (ack): Clears unavail for any selected harts
that are currently available.
Writes apply to the new value of hartsel and hasel.

W1 -

hasel Selects the definition of currently selected harts.
0 (single): There is a single currently selected
hart, that is selected by hartsel.
1 (multiple): There may be multiple currently se-
lected harts – the hart selected by hartsel, plus
those selected by the hart array mask register.
An implementation which does not implement the
hart array mask register must tie this field to 0.
A debugger which wishes to use the hart array
mask register feature should set this bit and read
back to see if the functionality is supported.

WARL 0

hartsello The low 10 bits of hartsel: the DM-specific index
of the hart to select. This hart is always part of
the currently selected harts.

WARL 0

hartselhi The high 10 bits of hartsel: the DM-specific index
of the hart to select. This hart is always part of
the currently selected harts.

WARL 0

setkeepalive This optional field sets keepalive for all currently
selected harts, unless clrkeepalive is simultane-
ously set to 1.
Writes apply to the new value of hartsel and hasel.

W1 -

clrkeepalive This optional field clears keepalive for all currently
selected harts.
Writes apply to the new value of hartsel and hasel.

W1 -

Continued on next page

RISC-V Debug Support Version 1.0.0-STABLE 33

Field Description Access Reset

setresethaltreq This optional field writes the halt-on-reset re-
quest bit for all currently selected harts, unless
clrresethaltreq is simultaneously set to 1. When
set to 1, each selected hart will halt upon the next
deassertion of its reset. The halt-on-reset request
bit is not automatically cleared. The debugger
must write to clrresethaltreq to clear it.
Writes apply to the new value of hartsel and hasel.
If hasresethaltreq is 0, this field is not imple-
mented.

W1 -

clrresethaltreq This optional field clears the halt-on-reset request
bit for all currently selected harts.
Writes apply to the new value of hartsel and hasel.

W1 -

ndmreset This bit controls the reset signal from the DM
to the rest of the hardware platform. The signal
should reset every part of the hardware platform,
including every hart, except for the DM and any
logic required to access the DM. To perform a
hardware platform reset the debugger writes 1,
and then writes 0 to deassert the reset.

R/W 0

Continued on next page

34 RISC-V Debug Support Version 1.0.0-STABLE

Field Description Access Reset

dmactive This bit serves as a reset signal for the Debug
Module itself. After changing the value of this bit,
the debugger must poll dmcontrol until dmactive
has taken the requested value before performing
any action that assumes the requested dmactive
state change has completed. Hardware may take
an arbitrarily long time to complete activation or
deactivation and will indicate completion by set-
ting dmactive to the requested value.
0 (inactive): The module’s state, including au-
thentication mechanism, takes its reset values
(the dmactive bit is the only bit which can be
written to something other than its reset value).
Any accesses to the module may fail. Specifically,
version might not return correct data.
1 (active): The module functions normally.
No other mechanism should exist that may result
in resetting the Debug Module after power up.
To place the Debug Module into a known state,
a debugger may write 0 to dmactive, poll until
dmactive is observed 0, write 1 to dmactive, and
poll until dmactive is observed 1.
Implementations may pay attention to this bit to
further aid debugging, for example by preventing
the Debug Module from being power gated while
debugging is active.

R/W 0

3.15.3 Hart Info (hartinfo, at 0x12)

This register gives information about the hart currently selected by hartsel.

This register is optional. If it is not present it should read all-zero.

If this register is included, the debugger can do more with the Program Buffer by writing programs
which explicitly access the data and/or dscratch registers.

This entire register is read-only.

31 24 23 20 19 17 16 15 12 11 0

0 nscratch 0 dataaccess datasize dataaddr

8 4 3 1 4 12

RISC-V Debug Support Version 1.0.0-STABLE 35

Field Description Access Reset

nscratch Number of dscratch registers available for the
debugger to use during program buffer execution,
starting from dscratch0. The debugger can make
no assumptions about the contents of these regis-
ters between commands.

R Preset

dataaccess 0 (csr): The data registers are shadowed in the
hart by CSRs. Each CSR is DXLEN bits in size,
and corresponds to a single argument, per Ta-
ble 3.1.
1 (memory): The data registers are shadowed in
the hart’s memory map. Each register takes up 4
bytes in the memory map.

R Preset

datasize If dataaccess is 0: Number of CSRs dedicated to
shadowing the data registers.
If dataaccess is 1: Number of 32-bit words in the
memory map dedicated to shadowing the data

registers.
If this value is non-zero, then the tt data registers
must go beyond being MRs and guarantee they
each store a single value, that is readable/writable
by either side.
Since there are at most 12 data registers, the
value in this register must be 12 or smaller.

R Preset

dataaddr If dataaccess is 0: The number of the first CSR
dedicated to shadowing the data registers.
If dataaccess is 1: Address of RAM where the
data registers are shadowed. This address is sign
extended giving a range of -2048 to 2047, easily
addressed with a load or store using x0 as the
address register.

R Preset

3.15.4 Hart Array Window Select (hawindowsel, at 0x14)

This register selects which of the 32-bit portion of the hart array mask register (see Section 3.3.2)
is accessible in hawindow.

31 15 14 0

0 hawindowsel

17 15

36 RISC-V Debug Support Version 1.0.0-STABLE

Field Description Access Reset

hawindowsel The high bits of this field may be tied to 0, de-
pending on how large the array mask register is.
E.g. on a hardware platform with 48 harts only
bit 0 of this field may actually be writable.

WARL 0

3.15.5 Hart Array Window (hawindow, at 0x15)

This register provides R/W access to a 32-bit portion of the hart array mask register (see Sec-
tion 3.3.2). The position of the window is determined by hawindowsel. I.e. bit 0 refers to hart
hawindowsel ∗ 32, while bit 31 refers to hart hawindowsel ∗ 32 + 31.

Since some bits in the hart array mask register may be constant 0, some bits in this register may
be constant 0, depending on the current value of hawindowsel.

31 0

maskdata

32

3.15.6 Abstract Control and Status (abstractcs, at 0x16)

Writing this register while an abstract command is executing causes cmderr to become 1 (busy)
once the command completes (busy becomes 0).

datacount must be at least 1 to support RV32 harts, 2 to support RV64 harts, or 4 to support
RV128 harts.

31 29 28 24 23 13 12

0 progbufsize 0 busy

3 5 11 1

11 10 8 7 4 3 0

relaxedpriv cmderr 0 datacount

1 3 4 4

Field Description Access Reset

progbufsize Size of the Program Buffer, in 32-bit words. Valid
sizes are 0 - 16.

R Preset

busy 0 (ready): There is no abstract command cur-
rently being executed.
1 (busy): An abstract command is currently being
executed.
This bit is set as soon as command is written, and
is not cleared until that command has completed.

R 0

Continued on next page

RISC-V Debug Support Version 1.0.0-STABLE 37

Field Description Access Reset

relaxedpriv This optional bit controls whether program buffer
and abstract memory accesses are performed with
the exact and full set of permission checks that
apply based on the current architectural state
of the hart performing the access, or with a re-
laxed set of permission checks (e.g. PMP restric-
tions are ignored). The details of the latter are
implementation-specific. When set to 0, full per-
missions apply; when set to 1, relaxed permissions
apply.

WARL Preset

cmderr Gets set if an abstract command fails. The bits in
this field remain set until they are cleared by writ-
ing 1 to them. No abstract command is started
until the value is reset to 0.
This field only contains a valid value if busy is 0.
0 (none): No error.
1 (busy): An abstract command was executing
while command, abstractcs, or abstractauto

was written, or when one of the data or progbuf
registers was read or written. This status is only
written if cmderr contains 0.
2 (not supported): The command in command is
not supported. It may be supported with different
options set, but it will not be supported at a later
time when the hart or system state are different.
3 (exception): An exception occurred while ex-
ecuting the command (e.g. while executing the
Program Buffer).
4 (halt/resume): The abstract command couldn’t
execute because the hart wasn’t in the required
state (running/halted), or unavailable.
5 (bus): The abstract command failed due to a
bus error (e.g. alignment, access size, or timeout).
6 (reserved): Reserved for future use.
7 (other): The command failed for another rea-
son.

R/W1C 0

datacount Number of data registers that are implemented
as part of the abstract command interface. Valid
sizes are 1 – 12.

R Preset

3.15.7 Abstract Command (command, at 0x17)

Writes to this register cause the corresponding abstract command to be executed.

Writing this register while an abstract command is executing causes cmderr to become 1 (busy)

38 RISC-V Debug Support Version 1.0.0-STABLE

once the command completes (busy becomes 0).

If cmderr is non-zero, writes to this register are ignored.

cmderr inhibits starting a new command to accommodate debuggers that, for performance rea-
sons, send several commands to be executed in a row without checking cmderr in between. They
can safely do so and check cmderr at the end without worrying that one command failed but then
a later command (which might have depended on the previous one succeeding) passed.

31 24 23 0

cmdtype control

8 24

Field Description Access Reset

cmdtype The type determines the overall functionality of
this abstract command.

WARZ 0

control This field is interpreted in a command-specific
manner, described for each abstract command.

WARZ 0

3.15.8 Abstract Command Autoexec (abstractauto, at 0x18)

This register is optional. Including it allows more efficient burst accesses. A debugger can detect
whether it is supported by setting bits and reading them back.

If this register is implemented then bits corresponding to implemented progbuf and data registers
must be writable. Other bits must be hard-wired to 0.

If this register is written while an abstract command is executing then the write is ignored and
cmderr becomes 1 (busy) once the command completes (busy becomes 0).

31 16 15 12 11 0

autoexecprogbuf 0 autoexecdata

16 4 12

Field Description Access Reset

autoexecprogbuf When a bit in this field is 1, read or write accesses
to the corresponding progbuf word cause the DM
to act as if the current value in command was writ-
ten there again after the access to progbuf com-
pletes.

WARL 0

Continued on next page

RISC-V Debug Support Version 1.0.0-STABLE 39

Field Description Access Reset

autoexecdata When a bit in this field is 1, read or write accesses
to the corresponding data word cause the DM to
act as if the current value in command was written
there again after the access to data completes.

WARL 0

3.15.9 Configuration Structure Pointer 0 (confstrptr0, at 0x19)

When confstrptrvalid is set, reading this register returns bits 31:0 of the configuration structure
pointer. Reading the other confstrptr registers returns the upper bits of the address.

When system bus mastering is implemented, this must be an address that can be used with the
System Bus Access module. Otherwise, this must be an address that can be used to access the
configuration structure from the hart with ID 0.

If confstrptrvalid is 0, then the confstrptr registers hold identifier information which is not further
specified in this document.

The configuration structure itself is a data structure of the same format as the data structure
pointed to by mconfigptr as described in the Privileged Spec.

This entire register is read-only.

31 0

addr

32

3.15.10 Configuration Structure Pointer 1 (confstrptr1, at 0x1a)

When confstrptrvalid is set, reading this register returns bits 63:32 of the configuration structure
pointer. See confstrptr0 for more details.

This entire register is read-only.

31 0

addr

32

3.15.11 Configuration Structure Pointer 2 (confstrptr2, at 0x1b)

When confstrptrvalid is set, reading this register returns bits 95:64 of the configuration structure
pointer. See confstrptr0 for more details.

This entire register is read-only.

40 RISC-V Debug Support Version 1.0.0-STABLE

31 0

addr

32

3.15.12 Configuration Structure Pointer 3 (confstrptr3, at 0x1c)

When confstrptrvalid is set, reading this register returns bits 127:96 of the configuration structure
pointer. See confstrptr0 for more details.

This entire register is read-only.

31 0

addr

32

3.15.13 Next Debug Module (nextdm, at 0x1d)

If there is more than one DM accessible on this DMI, this register contains the base address of the
next one in the chain, or 0 if this is the last one in the chain.

This entire register is read-only.

31 0

addr

32

3.15.14 Abstract Data 0 (data0, at 0x04)

data0 through data11 are Message Registers, whose behavior is described in Section 3.7, that may
be read or changed by abstract commands. datacount indicates how many of them are implemented,
starting at data0, counting up. Table 3.1 shows how abstract commands use these MRs.

Accessing these MRs while an abstract command is executing causes cmderr to be set to 1 (busy)
if it is 0.

Attempts to write them while busy is set does not change their value.

The values in these MRs might not be preserved after an abstract command is executed. The only
guarantees on their contents are the ones offered by the command in question. If the command
fails, no assumptions can be made about the contents of these registers.

31 0

data

32

RISC-V Debug Support Version 1.0.0-STABLE 41

3.15.15 Program Buffer 0 (progbuf0, at 0x20)

progbuf0 through progbuf15 must provide write access to the optional program buffer. It may
also be possible for the debugger to read from the program buffer through these registers. If reading
is not supported, then all reads return 0.

progbufsize indicates how many progbuf registers are implemented starting at progbuf0, counting
up.

Accessing these registers while an abstract command is executing causes cmderr to be set to 1
(busy) if it is 0.

Attempts to write them while busy is set does not change their value.

31 0

data

32

3.15.16 Authentication Data (authdata, at 0x30)

This register serves as a 32-bit serial port to/from the authentication module.

When authbusy is clear, the debugger can communicate with the authentication module by reading
or writing this register. There is no separate mechanism to signal overflow/underflow.

31 0

data

32

3.15.17 Debug Module Control and Status 2 (dmcs2, at 0x32)

This register contains DM control and status bits that didn’t easily fit in dmcontrol and dmstatus.
All are optional.

If halt groups are not implemented, then group will always be 0 when grouptype is 0.

If resume groups are not implemented, then grouptype will remain 0 even after 1 is written there.

The DM external triggers available to add to halt groups may be the same as or distinct from the
DM external triggers available to add to resume groups.

31 12 11 10 7 6 2 1 0

0 grouptype dmexttrigger group hgwrite hgselect

20 1 4 5 1 1

42 RISC-V Debug Support Version 1.0.0-STABLE

Field Description Access Reset

grouptype 0 (halt): The remaining fields in this register con-
figure halt groups.
1 (resume): The remaining fields in this register
configure resume groups.

WARL 0

dmexttrigger This field contains the currently selected DM ex-
ternal trigger.
If a non-existent trigger value is written here, the
hardware will change it to a valid one or 0 if no
DM external triggers exist.

WARL 0

group When hgselect is 0, contains the group of the hart
specified by hartsel.
When hgselect is 1, contains the group of the DM
external trigger selected by dmexttrigger.
The value written to this field is ignored unless
hgwrite is also written 1.
Group numbers are contiguous starting at 0,
with the highest number being implementation-
dependent, and possibly different between differ-
ent group types. Debuggers should read back this
field after writing to confirm they are using a hart
group that is supported.
If groups aren’t implemented, then this entire field
is 0.

WARL preset

hgwrite When 1 is written and hgselect is 0, for every se-
lected hart the DM will change its group to the
value written to group, if the hardware supports
that group for that hart. Implementations may
also change the group of a minimal set of unse-
lected harts in the same way, if that is necessary
due to a hardware limitation.
When 1 is written and hgselect is 1, the DM
will change the group of the DM external trig-
ger selected by dmexttrigger to the value written
to group, if the hardware supports that group for
that trigger.
Writing 0 has no effect.

W1 -

hgselect 0 (harts): Operate on harts.
1 (triggers): Operate on DM external triggers.
If there are no DM external triggers, this field
must be tied to 0.

WARL 0

3.15.18 Halt Summary 0 (haltsum0, at 0x40)

Each bit in this read-only register indicates whether one specific hart is halted or not. Unavail-
able/nonexistent harts are not considered to be halted.

RISC-V Debug Support Version 1.0.0-STABLE 43

This register might not be present if fewer than 2 harts are connected to this DM.

The LSB reflects the halt status of hart {hartsel[19:5],5’h0}, and the MSB reflects halt status of
hart {hartsel[19:5],5’h1f}.

This entire register is read-only.

31 0

haltsum0

32

3.15.19 Halt Summary 1 (haltsum1, at 0x13)

Each bit in this read-only register indicates whether any of a group of harts is halted or not.
Unavailable/nonexistent harts are not considered to be halted.

This register might not be present if fewer than 33 harts are connected to this DM.

The LSB reflects the halt status of harts {hartsel[19:10],10’h0} through {hartsel[19:10],10’h1f}. The
MSB reflects the halt status of harts {hartsel[19:10],10’h3e0} through {hartsel[19:10],10’h3ff}.

This entire register is read-only.

31 0

haltsum1

32

3.15.20 Halt Summary 2 (haltsum2, at 0x34)

Each bit in this read-only register indicates whether any of a group of harts is halted or not.
Unavailable/nonexistent harts are not considered to be halted.

This register might not be present if fewer than 1025 harts are connected to this DM.

The LSB reflects the halt status of harts {hartsel[19:15],15’h0} through {hartsel[19:15],15’h3ff}. The
MSB reflects the halt status of harts {hartsel[19:15],15’h7c00} through {hartsel[19:15],15’h7fff}.

This entire register is read-only.

31 0

haltsum2

32

44 RISC-V Debug Support Version 1.0.0-STABLE

3.15.21 Halt Summary 3 (haltsum3, at 0x35)

Each bit in this read-only register indicates whether any of a group of harts is halted or not.
Unavailable/nonexistent harts are not considered to be halted.

This register might not be present if fewer than 32769 harts are connected to this DM.

The LSB reflects the halt status of harts 20’h0 through 20’h7fff. The MSB reflects the halt status
of harts 20’hf8000 through 20’hfffff.

This entire register is read-only.

31 0

haltsum3

32

3.15.22 System Bus Access Control and Status (sbcs, at 0x38)

31 29 28 23 22 21 20

sbversion 0 sbbusyerror sbbusy sbreadonaddr

3 6 1 1 1

19 17 16 15 14 12 11 5

sbaccess sbautoincrement sbreadondata sberror sbasize

3 1 1 3 7

4 3 2 1 0

sbaccess128 sbaccess64 sbaccess32 sbaccess16 sbaccess8

1 1 1 1 1

Field Description Access Reset

sbversion 0 (legacy): The System Bus interface conforms to
mainline drafts of this spec older than 1 January,
2018.
1 (1.0): The System Bus interface conforms to
this version of the spec.
Other values are reserved for future versions.

R 1

sbbusyerror Set when the debugger attempts to read data
while a read is in progress, or when the debug-
ger initiates a new access while one is already in
progress (while sbbusy is set). It remains set until
it’s explicitly cleared by the debugger.
While this field is set, no more system bus accesses
can be initiated by the Debug Module.

R/W1C 0

Continued on next page

RISC-V Debug Support Version 1.0.0-STABLE 45

Field Description Access Reset

sbbusy When 1, indicates the system bus master is busy.
(Whether the system bus itself is busy is related,
but not the same thing.) This bit goes high im-
mediately when a read or write is requested for
any reason, and does not go low until the access
is fully completed.
Writes to sbcs while sbbusy is high result in un-
defined behavior. A debugger must not write to
sbcs until it reads sbbusy as 0.

R 0

sbreadonaddr When 1, every write to sbaddress0 automatically
triggers a system bus read at the new address.

R/W 0

sbaccess Select the access size to use for system bus ac-
cesses.
0 (8bit): 8-bit
1 (16bit): 16-bit
2 (32bit): 32-bit
3 (64bit): 64-bit
4 (128bit): 128-bit
If sbaccess has an unsupported value when the
DM starts a bus access, the access is not per-
formed and sberror is set to 4.

R/W 2

sbautoincrement When 1, sbaddress is incremented by the access
size (in bytes) selected in sbaccess after every sys-
tem bus access.

R/W 0

sbreadondata When 1, every read from sbdata0 automatically
triggers a system bus read at the (possibly auto-
incremented) address.

R/W 0

sberror When the Debug Module’s system bus master en-
counters an error, this field gets set. The bits in
this field remain set until they are cleared by writ-
ing 1 to them. While this field is non-zero, no
more system bus accesses can be initiated by the
Debug Module.
An implementation may report “Other” (7) for
any error condition.
0 (none): There was no bus error.
1 (timeout): There was a timeout.
2 (address): A bad address was accessed.
3 (alignment): There was an alignment error.
4 (size): An access of unsupported size was re-
quested.
7 (other): Other.

R/W1C 0

sbasize Width of system bus addresses in bits. (0 indi-
cates there is no bus access support.)

R Preset

sbaccess128 1 when 128-bit system bus accesses are supported. R Preset

Continued on next page

46 RISC-V Debug Support Version 1.0.0-STABLE

Field Description Access Reset

sbaccess64 1 when 64-bit system bus accesses are supported. R Preset

sbaccess32 1 when 32-bit system bus accesses are supported. R Preset

sbaccess16 1 when 16-bit system bus accesses are supported. R Preset

sbaccess8 1 when 8-bit system bus accesses are supported. R Preset

3.15.23 System Bus Address 31:0 (sbaddress0, at 0x39)

If sbasize is 0, then this register is not present.

When the system bus master is busy, writes to this register will set sbbusyerror and don’t do anything
else.

If sberror is 0, sbbusyerror is 0, and sbreadonaddr is set then writes to this register start the following:

1. Set sbbusy.
2. Perform a bus read from the new value of sbaddress.
3. If the read succeeded and sbautoincrement is set, increment sbaddress.
4. Clear sbbusy.

31 0

address

32

Field Description Access Reset

address Accesses bits 31:0 of the physical address in
sbaddress.

R/W 0

3.15.24 System Bus Address 63:32 (sbaddress1, at 0x3a)

If sbasize is less than 33, then this register is not present.

When the system bus master is busy, writes to this register will set sbbusyerror and don’t do anything
else.

31 0

address

32

RISC-V Debug Support Version 1.0.0-STABLE 47

Field Description Access Reset

address Accesses bits 63:32 of the physical address in
sbaddress (if the system address bus is that
wide).

R/W 0

3.15.25 System Bus Address 95:64 (sbaddress2, at 0x3b)

If sbasize is less than 65, then this register is not present.

When the system bus master is busy, writes to this register will set sbbusyerror and don’t do anything
else.

31 0

address

32

Field Description Access Reset

address Accesses bits 95:64 of the physical address in
sbaddress (if the system address bus is that
wide).

R/W 0

3.15.26 System Bus Address 127:96 (sbaddress3, at 0x37)

If sbasize is less than 97, then this register is not present.

When the system bus master is busy, writes to this register will set sbbusyerror and don’t do anything
else.

31 0

address

32

Field Description Access Reset

address Accesses bits 127:96 of the physical address in
sbaddress (if the system address bus is that
wide).

R/W 0

3.15.27 System Bus Data 31:0 (sbdata0, at 0x3c)

If all of the sbaccess bits in sbcs are 0, then this register is not present.

48 RISC-V Debug Support Version 1.0.0-STABLE

Any successful system bus read updates sbdata. If the width of the read access is less than the
width of sbdata, the contents of the remaining high bits may take on any value.

If either sberror or sbbusyerror isn’t 0 then accesses do nothing.

If the bus master is busy then accesses set sbbusyerror, and don’t do anything else.

Writes to this register start the following:

1. Set sbbusy.
2. Perform a bus write of the new value of sbdata to sbaddress.
3. If the write succeeded and sbautoincrement is set, increment sbaddress.
4. Clear sbbusy.

Reads from this register start the following:

1. “Return” the data.
2. Set sbbusy.

3. If sbreadondata is set:
(a) Perform a system bus read from the address contained in sbaddress, placing the result

in sbdata.
(b) If sbautoincrement is set and the read was successful, increment sbaddress.

4. Clear sbbusy.

Only sbdata0 has this behavior. The other sbdata registers have no side effects. On systems that
have buses wider than 32 bits, a debugger should access sbdata0 after accessing the other sbdata
registers.

31 0

data

32

Field Description Access Reset

data Accesses bits 31:0 of sbdata. R/W 0

3.15.28 System Bus Data 63:32 (sbdata1, at 0x3d)

If sbaccess64 and sbaccess128 are 0, then this register is not present.

If the bus master is busy then accesses set sbbusyerror, and don’t do anything else.

31 0

data

32

RISC-V Debug Support Version 1.0.0-STABLE 49

Field Description Access Reset

data Accesses bits 63:32 of sbdata (if the system bus
is that wide).

R/W 0

3.15.29 System Bus Data 95:64 (sbdata2, at 0x3e)

This register only exists if sbaccess128 is 1.

If the bus master is busy then accesses set sbbusyerror, and don’t do anything else.

31 0

data

32

Field Description Access Reset

data Accesses bits 95:64 of sbdata (if the system bus
is that wide).

R/W 0

3.15.30 System Bus Data 127:96 (sbdata3, at 0x3f)

This register only exists if sbaccess128 is 1.

If the bus master is busy then accesses set sbbusyerror, and don’t do anything else.

31 0

data

32

Field Description Access Reset

data Accesses bits 127:96 of sbdata (if the system bus
is that wide).

R/W 0

3.15.31 Custom Features (custom, at 0x1f)

This optional register may be used for non-standard features. Future version of the debug spec will
not use this address.

3.15.32 Custom Features 0 (custom0, at 0x70)

The optional custom0 through custom15 registers may be used for non-standard features. Future
versions of the debug spec will not use these addresses.

Chapter 4

Sdext ISA Extension

This chapter describes the Sdext ISA extension. It must be implemented to make external debug
work, and is only useful in conjunction with external debug.

Modifications to the RISC-V core to support debug are kept to a minimum. There is a special
execution mode (Debug Mode) and a few extra CSRs. The DM takes care of the rest.

In order to be compliant with this specification an implementation must implement everything
described in this section that is not explicitly listed as optional.

4.1 Debug Mode

Debug Mode is a special processor mode used only when a hart is halted for external debugging.
Because the hart is halted, there is no forward progress in the normal instruction stream. How
Debug Mode is implemented is not specified here.

When executing code due to an abstract command, the hart stays in Debug Mode and the following
apply:

1. All operations are executed with machine mode privilege, except that MPRV in mstatus may
be ignored according to mprven. Full permission checks, or a relaxed set of permission checks,
will apply according to relaxedpriv.

2. All interrupts (including NMI) are masked.
3. Exceptions don’t update any registers. That includes cause, epc, tval, dpc, and mstatus.

They do end execution of the Program Buffer.
4. No action is taken if a trigger matches.
5. If stopcount is 0 then counters continue. If it is 1 then counters are stopped.
6. If stoptime is 0 then time continues to update. If it is 1 then time will not update. It will

resynchronize with mtime after leaving Debug Mode.
7. The wfi instruction acts as a nop.
8. Almost all instructions that change the privilege mode have unspecified behavior. This

includes ecall, mret, sret, and uret. (To change the privilege mode, the debugger can

50

RISC-V Debug Support Version 1.0.0-STABLE 51

write prv and v in dcsr). The only exception is ebreak, which ends execution of the Program
Buffer when executed.

9. All control transfer instructions may act as illegal instructions if their destination is in the
Program Buffer. If one such instruction acts as an illegal instruction, all such instructions
must act as illegal instructions.

10. All control transfer instructions may act as illegal instructions if their destination is outside
the Program Buffer. If one such instruction acts as an illegal instruction, all such instructions
must act as illegal instructions.

11. Instructions that depend on the value of the PC (e.g. auipc) may act as illegal instructions.
12. Effective XLEN is DXLEN.
13. Forward progress is guaranteed.

When mprven =1, the external debugger can set MPRV and MPP appropriately to have hard-
ware perform memory accesses with the appropriate endianness, address translation, permission
checks, and PMP/PMA checks (subject to relaxedpriv). This is also the only way to access all of
physical memory when 34-bit physical addresses are supported on a Sv32 hart. If hardware ties
mprven to 0 then the external debugger is expected to simulate all the effects of MPRV, including
any extensions that affect memory accesses. For these reasons it is recommended to tie mprven
to 1.

4.2 Load-Reserved/Store-Conditional Instructions

The reservation registered by an lr instruction on a memory address may be lost when entering
Debug Mode or while in Debug Mode. This means that there may be no forward progress if Debug
Mode is entered between lr and sc pairs.

This is a behavior that debug users must be aware of. If they have a breakpoint set between a lr

and sc pair, or are stepping through such code, the sc may never succeed. Fortunately in general
use there will be very few instructions in such a sequence, and anybody debugging it will quickly
notice that the reservation is not occurring. The solution in that case is to set a breakpoint on
the first instruction after the sc and run to it. A higher level debugger may choose to automate
this.

4.3 Wait for Interrupt Instruction

If halt is requested while wfi is executing, then the hart must leave the stalled state, completing
this instruction’s execution, and then enter Debug Mode.

4.4 Single Step

4.4.1 Step Bit In Dcsr

This method is only available to external debuggers, and is the preferred way to single step.

52 RISC-V Debug Support Version 1.0.0-STABLE

An external debugger can cause a halted hart to execute a single instruction or trap and then
re-enter Debug Mode by setting step before resuming. If step is set when a hart resumes then it
will single step, regardless of the reason for resuming.

If control is transferred to a trap handler while executing the instruction, then Debug Mode is
re-entered immediately after the PC is changed to the trap handler, and the appropriate tval and
cause registers are updated. In this case none of the trap handler is executed, and if the cause was
a pending interrupt no instructions might be executed at all.

If executing or fetching the instruction causes a trigger to fire with action=1, Debug Mode is re-
entered immediately after that trigger has fired. In that case cause is set to 2 (trigger) instead of 4
(single step). Whether the instruction is executed or not depends on the specific configuration of
the trigger.

If the instruction that is executed causes the PC to change to an address where an instruction
fetch causes an exception, that exception does not occur until the next time the hart is resumed.
Similarly, a trigger at the new address does not fire until the hart actually attempts to execute that
instruction.

If the instruction being stepped over is wfi and would normally stall the hart, then instead the
instruction is treated as nop.

4.4.2 Icount Trigger

Native debuggers won’t have access to dcsr, but can use the icount trigger by setting count to 1.

This approach does have some limitations:

1. Interrupts will fire as usual. Debuggers that want to disable interrupts while stepping must
disable them by changing mstatus, and specially handle instructions that read mstatus.

2. wfi instructions are not treated specially and might take a very long time to complete.

This mechanism cleanly supports a system which supports multiple privilege levels, where the OS
or a debug stub runs in M-Mode while the program being debugged runs in a less privileged mode.
Systems that only support M-Mode can use icount as well, but count must be able to count several
instructions (depending on the software implementation). See Section B.3.1.

4.5 Reset

If the halt signal (driven by the hart’s halt request bit in the Debug Module) or resethaltreq are
asserted when a hart comes out of reset, the hart must enter Debug Mode before executing any
instructions, but after performing any initialization that would usually happen before the first
instruction is executed.

RISC-V Debug Support Version 1.0.0-STABLE 53

4.6 Resume

When a hart resumes:

1. pc changes to the value stored in dpc.
2. The current privilege mode and virtualization mode are changed to that specified by prv and

v.
3. If the new privilege mode is less privileged than M-mode, MPRV in mstatus is cleared.
4. The hart is no longer in debug mode.

4.7 XLEN

While in Debug Mode, XLEN is DXLEN. It is up to the debugger to determine the XLEN during
normal program execution (by looking at misa) and to clearly communicate this to the user.

4.8 Core Debug Registers

The supported Core Debug Registers must be implemented for each hart that can be debugged.
They are CSRs, accessible using the RISC-V csr opcodes and optionally also using abstract debug
commands.

These registers are only accessible from Debug Mode.

Table 4.1: Core Debug Registers

Address Name Page

0x7b0 Debug Control and Status (dcsr) 53
0x7b1 Debug PC (dpc) 57
0x7b2 Debug Scratch Register 0 (dscratch0) 58
0x7b3 Debug Scratch Register 1 (dscratch1) 58

4.8.1 Debug Control and Status (dcsr, at 0x7b0)

Upon entry into Debug Mode, v and prv are updated with the privilege level the hart was previously
in, and cause is updated with the reason for Debug Mode entry. Other than these fields and nmip,
the other fields of dcsr are only writable by the external debugger.

Table 4.2 shows the priorities of reasons for entering Debug Mode. Implementations should imple-
ment priorities as shown in the table. For compatibility with old versions of this spec, resethaltreq
and haltreq are allowed to be at different positions than shown as long as:

1. resethaltreq is higher priority than haltreq

54 RISC-V Debug Support Version 1.0.0-STABLE

2. the relative order of the other four causes is maintained

Table 4.2: Priority of reasons for entering Debug Mode from highest to lowest.
cause encoding Cause

5 resethaltreq

6 halt group

3 haltreq

2 trigger (See table 5.2 for detailed priority)

1 ebreak

4 step

Note that mcontrol/mcontrol6 triggers with timing=after are considered to be high priority causes
on the subsequent instruction. Therefore, an execute trigger with timing=after on an ebreak
instruction is lower priority than the ebreak itself because the trigger will fire after the ebreak
instruction. For the same reason, if a single instruction is stepped with both icount and step
then the step has priority. See table 5.2 for the relative priorities of triggers with respect to the
ebreak instruction.

This CSR is read/write.

31 28 27 18 17 16 15 14 13 12 11

debugver 0 ebreakvs ebreakvu ebreakm 0 ebreaks ebreaku stepie

4 10 1 1 1 1 1 1 1

10 9 8 6 5 4 3 2 1 0

stopcount stoptime cause v mprven nmip step prv

1 1 3 1 1 1 1 2

Field Description Access Reset

debugver 0 (none): There is no debug support.
4 (1.0): Debug support exists as it is described in
this document.
15 (custom): There is debug support, but it does
not conform to any available version of this spec.

R Preset

ebreakvs 0 (exception): ebreak instructions in VS-mode
behave as described in the Privileged Spec.
1 (debug mode): ebreak instructions in VS-mode
enter Debug Mode.
This bit is hardwired to 0 if the hart does not
support virtualization mode.

WARL 0

Continued on next page

RISC-V Debug Support Version 1.0.0-STABLE 55

Field Description Access Reset

ebreakvu 0 (exception): ebreak instructions in VU-mode
behave as described in the Privileged Spec.
1 (debug mode): ebreak instructions in VU-mode
enter Debug Mode.
This bit is hardwired to 0 if the hart does not
support virtualization mode.

WARL 0

ebreakm 0 (exception): ebreak instructions in M-mode be-
have as described in the Privileged Spec.
1 (debug mode): ebreak instructions in M-mode
enter Debug Mode.

R/W 0

ebreaks 0 (exception): ebreak instructions in S-mode be-
have as described in the Privileged Spec.
1 (debug mode): ebreak instructions in S-mode
enter Debug Mode.
This bit is hardwired to 0 if the hart does not
support S-mode.

WARL 0

ebreaku 0 (exception): ebreak instructions in U-mode be-
have as described in the Privileged Spec.
1 (debug mode): ebreak instructions in U-mode
enter Debug Mode.
This bit is hardwired to 0 if the hart does not
support U-mode.

WARL 0

stepie 0 (interrupts disabled): Interrupts (including
NMI) are disabled during single stepping.
1 (interrupts enabled): Interrupts (including
NMI) are enabled during single stepping.
Implementations may hard wire this bit to 0. In
that case interrupt behavior can be emulated by
the debugger.
The debugger must not change the value of this
bit while the hart is running.

WARL 0

stopcount 0 (normal): Increment counters as usual.
1 (freeze): Don’t increment any hart-local coun-
ters while in Debug Mode or on ebreak instruc-
tions that cause entry into Debug Mode. These
counters include the instret CSR. On single-hart
cores cycle should be stopped, but on multi-hart
cores it must keep incrementing.
An implementation may hardwire this bit to 0 or
1.

WARL Preset

Continued on next page

56 RISC-V Debug Support Version 1.0.0-STABLE

Field Description Access Reset

stoptime 0 (normal): Increment time as usual.
1 (freeze): Don’t increment time while in Debug
Mode. If all harts have stoptime =1 and are in
Debug Mode then mtime is also allowed to stop
incrementing.
An implementation may hardwire this bit to 0 or
1.

WARL Preset

cause Explains why Debug Mode was entered.
When there are multiple reasons to enter Debug
Mode in a single cycle, hardware should set cause
to the cause with the highest priority. See ta-
ble 4.2 for priorities.
1 (ebreak): An ebreak instruction was executed.
2 (trigger): A Trigger Module trigger fired with
action=1.
3 (haltreq): The debugger requested entry to De-
bug Mode using haltreq.
4 (step): The hart single stepped because step was
set.
5 (resethaltreq): The hart halted directly out of
reset due to resethaltreq. It is also acceptable to
report 3 when this happens.
6 (group): The hart halted because it’s part of
a halt group. Harts may report 3 for this cause
instead.
Other values are reserved for future use.

R 0

v Extends the prv field with the virtualization mode
the hart was operating in when Debug Mode was
entered. The encoding is described in Table 4.6.
A debugger can change this value to change the
hart’s virtualization mode when exiting Debug
Mode. This bit is hardwired to 0 on harts that
do not support virtualization mode.

WARL 0

mprven 0 (disabled): MPRV in mstatus is ignored in De-
bug Mode.
1 (enabled): MPRV in mstatus takes effect in De-
bug Mode.
Implementing this bit is optional. It may be tied
to either 0 or 1.

WARL Preset

nmip When set, there is a Non-Maskable-Interrupt
(NMI) pending for the hart.
Since an NMI can indicate a hardware error condi-
tion, reliable debugging may no longer be possible
once this bit becomes set. This is implementation-
dependent.

R 0

Continued on next page

RISC-V Debug Support Version 1.0.0-STABLE 57

Field Description Access Reset

step When set and not in Debug Mode, the hart will
only execute a single instruction and then enter
Debug Mode. See Section 4.4.1 for details.
The debugger must not change the value of this
bit while the hart is running.

R/W 0

prv Contains the privilege mode the hart was operat-
ing in when Debug Mode was entered. The en-
coding is described in Table 4.6. A debugger can
change this value to change the hart’s privilege
mode when exiting Debug Mode.
Not all privilege modes are supported on all harts.
If the encoding written is not supported or the
debugger is not allowed to change to it, the hart
may change to any supported privilege mode.

WARL 3

4.8.2 Debug PC (dpc, at 0x7b1)

Upon entry to debug mode, dpc is updated with the virtual address of the next instruction to be
executed. The behavior is described in more detail in Table 4.4.

Table 4.4: Virtual address in DPC upon Debug Mode Entry
Cause Virtual Address in DPC

ebreak Address of the ebreak instruction

single step Address of the instruction that would be executed
next if no debugging was going on. Ie. pc+ 4 for
32-bit instructions that don’t change program flow,
the destination PC on taken jumps/branches, etc.

trigger module The address of the next instruction to be executed at
the time that debug mode was entered. If the trigger

is mcontrol or mcontrol6 and timing is 0, this
corresponds to the address of the instruction which

caused the trigger to fire.

halt request Address of the next instruction to be executed at the
time that debug mode was entered

When resuming, the hart’s PC is updated to the virtual address stored in dpc. A debugger may
write dpc to change where the hart resumes.

This CSR is read/write.

DXLEN-1 0

dpc

DXLEN

58 RISC-V Debug Support Version 1.0.0-STABLE

4.8.3 Debug Scratch Register 0 (dscratch0, at 0x7b2)

Optional scratch register that can be used by implementations that need it. A debugger must
not write to this register unless hartinfo explicitly mentions it (the Debug Module may use this
register internally).

4.8.4 Debug Scratch Register 1 (dscratch1, at 0x7b3)

Optional scratch register that can be used by implementations that need it. A debugger must
not write to this register unless hartinfo explicitly mentions it (the Debug Module may use this
register internally).

4.9 Virtual Debug Registers

A virtual register is one that doesn’t exist directly in the hardware, but that the debugger exposes
as if it does. Debug software should implement them, but hardware can skip this section. Virtual
registers exist to give users access to functionality that’s not part of standard debuggers without
requiring them to carefully modify debug registers while the debugger is also accessing those same
registers.

Table 4.5: Virtual Core Debug Registers

Address Name Page

virtual Privilege Mode (priv) 58

4.9.1 Privilege Mode (priv, at virtual)

Users can read this register to inspect the privilege mode that the hart was running in when the
hart halted. Users can write this register to change the privilege mode that the hart will run in
when it resumes.

This register contains prv and v from dcsr, but in a place that the user is expected to access. The
user should not access dcsr directly, because doing so might interfere with the debugger.

2 1 0

v prv

1 2

RISC-V Debug Support Version 1.0.0-STABLE 59

Table 4.6: Privilege Mode and Virtualization Mode Encoding
H extension

v prv Abbreviation Name
supported

No 0 0 U-mode User mode
No 0 1 S-mode Supervisor mode
No 0 3 M-mode Machine mode

Yes 0 0 U-mode User mode
Yes 0 1 HS-mode Hypervisor-enabled supervisor mode
Yes 0 3 M-mode Machine mode
Yes 1 0 VU-mode Virtual user mode
Yes 1 1 VS-mode Virtual supervisor mode

Field Description Access Reset

v Contains the virtualization mode the hart was op-
erating in when Debug Mode was entered. The
encoding is described in Table 4.6, and matches
the virtualization mode encoding from the Privi-
leged Spec. A user can write this value to change
the hart’s virtualization mode when exiting De-
bug Mode.

WARL 0

prv Contains the privilege mode the hart was operat-
ing in when Debug Mode was entered. The en-
coding is described in Table 4.6, and matches the
privilege mode encoding from the Privileged Spec.
A user can write this value to change the hart’s
privilege mode when exiting Debug Mode.

R/W 0

Chapter 5

Sdtrig ISA Extension

This chapter describes the Sdtrig ISA extension, which can be implemented independently of func-
tionality described in the other chapters. It consists exclusively of the Trigger Module (TM).

Triggers can cause a breakpoint exception, entry into Debug Mode, or a trace action without having
to execute a special instruction. This makes them invaluable when debugging code from ROM.
They can trigger on execution of instructions at a given memory address, or on the address/data
in loads/stores.

A hart can be compliant with this specification without implementing any trigger functionality at
all, but if it is implemented then it must conform to this section. If triggers aren’t implemented,
the CSRs might not exist at all and accessing them results in an illegal instruction exception.

Triggers do not fire while in Debug Mode.

5.1 Enumeration

Each trigger may support a variety of features. A debugger can build a list of all triggers and their
features as follows:

1. Write 0 to tselect. If this results in an illegal instruction exception, then there are no
triggers implemented.

2. Read back tselect and check that it contains the written value. If not, exit the loop.
3. Read tinfo.
4. If that caused an exception, the debugger must read tdata1 to discover the type. (If type is

0, this trigger doesn’t exist. Exit the loop.)
5. If info is 1, this trigger doesn’t exist. Exit the loop.
6. Otherwise, the selected trigger supports the types discovered in info.
7. Repeat, incrementing the value in tselect.

The above algorithm reads back tselect so that implementations which have 2n triggers only
need to implement n bits of tselect.

60

RISC-V Debug Support Version 1.0.0-STABLE 61

The algorithm checks tinfo and type in case the implementation has m bits of tselect but
fewer than 2m triggers.

5.2 Actions

Triggers can be configured to take one of several actions when they fire. Table 5.1 lists all options.

Table 5.1: action encoding
Value Description

0 Raise a breakpoint exception. (Used when software
wants to use the trigger module without an external
debugger attached.) xepc must contain the virtual

address of the next instruction that must be executed
to preserve the program flow.

1 Enter Debug Mode. dpc must contain the virtual
address of the next instruction that must be executed

to preserve the program flow.
This action is only legal when the trigger’s dmode is
1. Since the tdata registers are WARL, hardware

should clear the action field whenever the action field
is 1, the new value of dmode would be 0, and the new

value of the action field would be 1.

2 Trace on, described in the trace specification.

3 Trace off, described in the trace specification.

4 Trace notify, described in the trace specification.

5 Reserved for use by the trace specification.

8 – 9 Signal the firing of the trigger to other blocks within
the hart (e.g. as countable events to hpmcounters).

Use external debug trigger output 0 or 1
(respectively).

other Reserved for future use.

5.3 Priority

Table 5.2 lists the synchronous exceptions from the Privileged Spec, and where the various types
of triggers fit in. The first 3 columns come from the Privileged Spec, and the final column shows
where triggers fit in. Priorities in the table are separated by horizontal lines, so e.g. etrigger and
itrigger have the same priority. If this table contradicts the table in the Privileged Spec, then the
latter takes precedence.

This table only applies if triggers are precise. Otherwise triggers will fire some indeterminate time
after the event, and the priority is irrelevant. When triggers are chained, the priority is the lowest
priority of the triggers in the chain.

62 RISC-V Debug Support Version 1.0.0-STABLE

Priority Exception Description Trigger
Code

Highest 3 etrigger
3 icount
3 itrigger
3 mcontrol/mcontrol6 after

(on previous instruction)

3 Instruction address breakpoint mcontrol/mcontrol6 execute address before

12 Instruction page fault

1 Instruction access fault

3 mcontrol/mcontrol6 execute data before

2 Illegal instruction
0 Instruction address misaligned

8, 9, 11 Environment call
3 Environment break
3 Load/Store/AMO address breakpoint mcontrol/mcontrol6 load/store address before
3 mcontrol/mcontrol6 store data before

6 Store/AMO address misaligned
4 Load address misaligned

15 Store/AMO page fault
13 Load page fault

7 Store/AMO access fault
5 Load access fault

Lowest 3 mcontrol/mcontrol6 load data before

Table 5.2: Synchronous exception priority in decreasing priority order.

When multiple triggers in the same priority fire at once, hit (if implemented) is set for all of them.
If more than one of these triggers has action =0 then tval is updated in accordance with one of
them, but which one is unspecified. If one of these triggers has the “enter Debug Mode” action
(1) and another trigger has the “raise a breakpoint exception” action (0), the preferred behavior
is to have both actions take place. It is implementation-dependent which of the two happens first.
This ensures both that the presence of an external debugger doesn’t affect execution and that a
trigger set by user code doesn’t affect the external debugger. If this is not implemented, then the
hart must enter Debug Mode and ignore the breakpoint exception. In the latter case, hit of the
trigger whose action is 0 must still be set, giving a debugger an opportunity to handle this case.
What happens with trace actions when triggers with different actions are also firing is left to the
trace specification.

5.4 Native Triggers

Triggers can be used for native debugging when action =0. If supported by the hart and desired
by the debugger, triggers will often be programmed to have m =0 so that when they fire they
cause a breakpoint exception to trap to a more privileged mode. That breakpoint exception can
either be taken in M-mode or it can be delegated to a less privileged mode. However, it is possible
for triggers to fire in the same mode that the resulting exception will be handled in.

RISC-V Debug Support Version 1.0.0-STABLE 63

In particular, when action =0:
1. mcontrol and mcontrol6 triggers with m =1 can cause a breakpoint exception that is taken

from M-mode to M-mode (regardless of delegation).
2. mcontrol and mcontrol6 triggers with s =1 can cause a breakpoint exception that is taken

from S-mode to S-mode if medeleg [3]=1.
3. mcontrol6 triggers with vs =1 can cause a breakpoint exception that is taken from VS-mode

to VS-mode if medeleg [3]=1 and hedeleg [3]=1.
4. icount triggers with m =1 can cause a breakpoint exception that is taken from M-mode to

M-mode (regardless of delegation).
5. icount triggers with s =1 can cause a breakpoint exception that is taken from S-mode to

S-mode if medeleg [3]=1.
6. icount triggers with vs =1 can cause a breakpoint exception that is taken from VS-mode to

VS-mode if medeleg [3]=1 and hedeleg [3]=1.
7. etrigger and itrigger triggers will always be taken from a trap handler before the first

instruction of the handler. If etrigger/itrigger is set to trigger on exception/interrupt X
and if X is delegated to mode Y then the trigger will cause a breakpoint exception that
is taken from mode Y to mode Y unless breakpoint exceptions are delegated to a more
privileged mode than Y.

8. tmexttrigger triggers are asynchronous and may occur in any mode and at any time.

In these cases such a trigger may cause a breakpoint exception while already in a trap handler.
This might leave the hart unable to resume normal execution because state such as mcause and
mepc would be overwritten.

Harts that support triggers with action =0 should implement one of the following two solutions to
solve the problem of reentrancy:

1. The hardware prevents triggers with action =0 from matching while in M-mode and while
MIE in mstatus is 0. If medeleg [3]=1 then it prevents triggers with action =0 from matching
while in S-mode and while SIE in sstatus is 0. If medeleg [3]=1 and hedeleg [3]=1 then it
prevents triggers with action =0 from matching while in VS-mode and while SIE in vsstatus

is 0.
2. mte and mpte in tcontrol is implemented. medeleg [3] is hard-wired to 0.

The first option has the limitation that interrupts might be disabled at times when a user still
might want triggers to fire. It has the benefit that breakpoints are not required to be handled in
M-mode.

The second option has the benefit that it only disables triggers during the trap handler, though
it requires specific software support for this debug feature in the M-mode trap handlers. It can
only work if breakpoints are not delegated to less privileged modes and therefore targets primarily
implementations without S-mode.

Because tcontrol is not accessible to S-mode, the second option can not be extended to
accommodate delegation without adding additional S-mode and VS-mode CSRs.

Both options prevent etrigger and itrigger from having any effect on exceptions and interrupts
that are handled in M-mode. They also prevent triggering during some initial portion of each
handler. Debuggers should use other mechanisms to debug these cases, such as patching the
handler or setting a breakpoint on the instruction after MIE is cleared.

5.5 Trigger Registers

These registers are CSRs, accessible using the RISC-V csr opcodes and optionally also using
abstract debug commands.

64 RISC-V Debug Support Version 1.0.0-STABLE

Almost all trigger functionality is optional. All tdata registers follow write-any-read-legal seman-
tics. If a debugger writes an unsupported configuration, the register will read back a value that is
supported (which may simply be a disabled trigger). This means that a debugger must always read
back values it writes to tdata registers, unless it already knows already what is supported. Writes
to one tdata register must not modify the contents of other tdata registers, nor the configuration
of any trigger besides the one that is currently selected.

The combination of these rules means that a debugger cannot simply set a trigger by writing
tdata1, then tdata2, etc. The current value of tdata2 might not be legal with the new value of
tdata1. To help with this situation, it is guaranteed that writing 0 to tdata1 disables the trigger,
and leaves it in a state where tdata2 and tdata3 can be written with any value that makes sense
for any trigger type supported by this trigger.

As a result, a debugger can write any supported trigger as follows:

1. Write 0 to tdata1. (This will result in tdata1 containing a non-zero value, since the register
is WARL.)

2. Write desired values to tdata2 and tdata3.
3. Write desired value to tdata1.

Code that restores CSR context of triggers that might be configured to fire in the current privilege
mode must use this same sequence to restore the triggers. This avoids the problem of a partially
written trigger firing at a different time than is expected.

The trigger registers, except mscontext, scontext, and hcontext, are only accessible in machine
and Debug Mode to prevent untrusted user code from causing entry into Debug Mode without the
OS’s permission.

In this section XLEN means MXLEN when in M-mode, and DXLEN when in Debug Mode. On
systems where those values of XLEN can differ, this is handled as follows. Fields retain their values
regardless of XLEN, which only affects where in the register these fields appear (e.g. type). Some
fields are wider when XLEN is 64 than when it is 32 (e.g. svalue). The high bits in such fields
retain their value but are not readable when XLEN is 32. A modification of a register when XLEN
is 32 clears any inaccessible bits in that register.

Table 5.3: Trigger Registers

Address Name Page

0x5a8 Supervisor Context (scontext) 69
0x6a8 Hypervisor Context (hcontext) 68
0x7a0 Trigger Select (tselect) 65
0x7a1 Trigger Data 1 (tdata1) 65
0x7a1 Match Control (mcontrol) 70
0x7a1 Match Control Type 6 (mcontrol6) 76
0x7a1 Instruction Count (icount) 83
0x7a1 Interrupt Trigger (itrigger) 84
0x7a1 Exception Trigger (etrigger) 86
0x7a1 External Trigger (tmexttrigger) 87

Continued on next page

RISC-V Debug Support Version 1.0.0-STABLE 65

Table 5.3: Trigger Registers

Address Name Page

0x7a2 Trigger Data 2 (tdata2) 67
0x7a3 Trigger Data 3 (tdata3) 67
0x7a3 Trigger Extra (RV32) (textra32) 88
0x7a3 Trigger Extra (RV64) (textra64) 89
0x7a4 Trigger Info (tinfo) 67
0x7a5 Trigger Control (tcontrol) 68
0x7a8 Machine Context (mcontext) 69
0x7aa Machine Supervisor Context (mscontext) 70

5.5.1 Trigger Select (tselect, at 0x7a0)

This register determines which trigger is accessible through the other trigger registers. It is optional
if no triggers are implemented. The set of accessible triggers must start at 0, and be contiguous.

This register is WARL. Writes of values greater than or equal to the number of supported triggers
may result in a different value in this register than what was written or may point to a trigger
where type =0. To verify that what they wrote is a valid index, debuggers can read back the value
and check that tselect holds what they wrote and read tdata1 to see that type is non-zero.

Since triggers can be used both by Debug Mode and M-mode, the external debugger must restore
this register if it modifies it.

This CSR is read/write.

XLEN-1 0

index

XLEN

5.5.2 Trigger Data 1 (tdata1, at 0x7a1)

This register is optional if no triggers are implemented.

Writing 0 to this register must result in a trigger that is disabled. If this trigger supports multiple
types, then the hardware should disable it by changing type to 15.

This CSR is read/write.

XLEN-1 XLEN-4 XLEN-5 XLEN-6 0

type dmode data

4 1 XLEN - 5

66 RISC-V Debug Support Version 1.0.0-STABLE

Field Description Access Reset

type 0 (none): There is no trigger at this tselect.
1 (legacy): The trigger is a legacy SiFive address
match trigger. These should not be implemented
and aren’t further documented here.
2 (mcontrol): The trigger is an address/data
match trigger. The remaining bits in this register
act as described in mcontrol.
3 (icount): The trigger is an instruction count
trigger. The remaining bits in this register act as
described in icount.
4 (itrigger): The trigger is an interrupt trigger.
The remaining bits in this register act as de-
scribed in itrigger.
5 (etrigger): The trigger is an exception trig-
ger. The remaining bits in this register act as
described in etrigger.
6 (mcontrol6): The trigger is an address/data
match trigger. The remaining bits in this regis-
ter act as described in mcontrol6. This is similar
to a type 2 trigger, but provides additional func-
tionality and should be used instead of type 2 in
newer implementations.
7 (tmexttrigger): The trigger is a trigger source
external to the TM. The remaining bits in this
register act as described in tmexttrigger.
12–14 (custom): These trigger types are available
for non-standard use.
15 (disabled): This trigger is disabled. In this
state, tdata2 and tdata3 can be written with
any value that is supported for any of the types
this trigger implements. The remaining bits in
this register are ignored.
Other values are reserved for future use.

WARL Preset

dmode If type is 0, then this bit is hard-wired to 0.
0 (both): Both Debug and M-mode can write the
tdata registers at the selected tselect.
1 (dmode): Only Debug Mode can write the
tdata registers at the selected tselect. Writes
from other modes are ignored.
This bit is only writable from Debug Mode. In
ordinary use, external debuggers will always set
this bit when configuring a trigger. When clearing
this bit, debuggers should also set the action field
(whose location depends on type) to something
other than 1.

WARL 0

Continued on next page

RISC-V Debug Support Version 1.0.0-STABLE 67

Field Description Access Reset

data If type is 0, then this field is hard-wired to 0.
Trigger-specific data.

WARL Preset

5.5.3 Trigger Data 2 (tdata2, at 0x7a2)

Trigger-specific data. It is optional if no implemented triggers use it.

If the trigger is disabled, then this register can be written with any value supported by any of the
trigger types supported by this trigger.

If XLEN is less than DXLEN, writes to this register are sign-extended.

This CSR is read/write.

XLEN-1 0

data

XLEN

5.5.4 Trigger Data 3 (tdata3, at 0x7a3)

Trigger-specific data. It is optional if no implemented triggers use it.

If the trigger is disabled, then this register can be written with any value supported by any of the
trigger types supported by this trigger.

If XLEN is less than DXLEN, writes to this register are sign-extended.

This CSR is read/write.

XLEN-1 0

data

XLEN

5.5.5 Trigger Info (tinfo, at 0x7a4)

This register is optional if no triggers are implemented, or if type is not writable. In this case the
debugger can read the only supported type from tdata1.

Writing this read/write CSR has no effect.

XLEN-1 16 15 0

0 info

XLEN - 16 16

68 RISC-V Debug Support Version 1.0.0-STABLE

Field Description Access Reset

info One bit for each possible type enumerated in
tdata1. Bit N corresponds to type N. If the bit is
set, then that type is supported by the currently
selected trigger.
If the currently selected trigger doesn’t exist, this
field contains 1.

R Preset

5.5.6 Trigger Control (tcontrol, at 0x7a5)

This optional register is only accessible in M-mode and Debug Mode and provides various control
bits related to triggers.

This CSR is read/write.

XLEN-1 8 7 6 4 3 2 0

0 mpte 0 mte 0

XLEN - 8 1 3 1 3

Field Description Access Reset

mpte M-mode previous trigger enable field.
mpte and mte provide one solution to a problem
regarding triggers with action=0 firing in M-mode
trap handlers. See Section 5.4 for more details.
When a breakpoint trap into M-mode is taken,
mpte is set to the value of mte.

WARL 0

mte M-mode trigger enable field.
0 (disabled): Triggers with action=0 do not
match/fire while the hart is in M-mode.
1 (enabled): Triggers do match/fire while the hart
is in M-mode.
When a breakpoint trap into M-mode is taken,
mte is set to 0. When mret is executed, mte is set
to the value of mpte.

WARL 0

5.5.7 Hypervisor Context (hcontext, at 0x6a8)

This optional register is only accessible in S/HS-mode, M-mode and Debug Mode.

Accessibility of this CSR is controlled by mstateen0 [57] in the Smstateen extension.

If the H extension is not implemented then this register is not implemented, though the underlying
state may be accessible via the optional mcontext alias.

This CSR is read/write.

RISC-V Debug Support Version 1.0.0-STABLE 69

XLEN-1 0

hcontext

XLEN

Field Description Access Reset

hcontext Hypervisor mode software can write a context
number to this register, which can be used to set
triggers that only fire in that specific context.
An implementation may tie any number of upper
bits in this field to 0. If the H extension is not
implemented, it’s recommended to implement no
more than 6 bits on RV32 and 13 on RV64 (as vis-
ible through the mcontext register). If the H ex-
tension is implemented, it’s recommended to im-
plement no more than 7 bits on RV32 and 14 on
RV64.

WARL 0

5.5.8 Supervisor Context (scontext, at 0x5a8)

This optional register is only accessible in S/HS-mode, VS-mode, M-mode and Debug Mode.

Accessibility of this CSR is controlled by mstateen0 [57] and hstateen0 [57] in the Smstateen
extension. Enabling scontext can be a security risk in a virtualized system with a hypervisor that
does not swap scontext.

This CSR is read/write.

XLEN-1 0

data

XLEN

Field Description Access Reset

data Supervisor mode software can write a context
number to this register, which can be used to set
triggers that only fire in that specific context.
An implementation may tie any number of high
bits in this field to 0. It’s recommended to imple-
ment no more than 16 bits on RV32, and 34 on
RV64.

WARL 0

5.5.9 Machine Context (mcontext, at 0x7a8)

This optional register is an alias for hcontext and is only accessible in M-mode and Debug mode.

70 RISC-V Debug Support Version 1.0.0-STABLE

5.5.10 Machine Supervisor Context (mscontext, at 0x7aa)

This optional register is an alias for scontext. It is only accessible in S/HS-mode, M-mode and
Debug Mode. It is included for backward compatibility with version 0.13.

The encoding of this CSR does not conform to the CSR Address Mapping Convention in the
Privileged Spec. It is expected that new implementations will not support this encoding and that
new debuggers will not use this CSR if scontext is available.

5.5.11 Match Control (mcontrol, at 0x7a1)

This register is accessible as tdata1 when type is 2.

Address and data trigger implementation are heavily dependent on how the processor core is imple-
mented. To accommodate various implementations, execute, load, and store address/data triggers
may fire at whatever point in time is most convenient for the implementation. The debugger
may request specific timings as described in timing. Table 5.10 suggests timings for the best user
experience.

A chain of triggers that don’t all have the same timing value will never fire. That means to implement
the suggestions in Table 5.10, both timings should be supported on load address triggers.

This trigger type may be limited to address comparisons (select is always 0) only. If that is the
case and masking is not supported (match values 4, 5, 12, 13), then tdata2 must be able to hold
all valid virtual addresses but it need not be capable of holding other values.

The Privileged Spec says that breakpoint exceptions that occur on instruction fetches, loads, or
stores update the tval CSR with either zero or the faulting virtual address. The faulting virtual
address for an mcontrol trigger with action =0 is the address being accessed and which caused that
trigger to fire. If multiple mcontrol triggers are chained then the faulting virtual address is the
address which caused any of the chained triggers to fire.

If the A extension is supported, then trigger behavior is as follows for the load and store bits:

1. lr instructions are loads
2. successful sc instructions are stores
3. it is unspecified whether failing sc instructions are stores or not
4. Each AMO instruction is a load for the read portion of the operation. The address is always

available to trigger on, although the value loaded might not be, depending on the hardware
implementation.

5. Each AMO instruction is a store for the write portion of the operation. The address is always
available to trigger on, although the value stored might not be, depending on the hardware
implementation.

If the destination register of any load or AMO is zero then it is unspecified whether a load trigger
with select =1 will match. Whether store triggers with select =1 match on AMOs is unspecified.

If textra32 or textra64 are implemented for this trigger, it only matches when the conditions set
there are satisfied.

RISC-V Debug Support Version 1.0.0-STABLE 71

This CSR is read/write.

XLEN-1 XLEN-4 XLEN-5 XLEN-6 XLEN-11 XLEN-12 23 22 21 20 19

type dmode maskmax 0 sizehi hit select

4 1 6 XLEN - 34 2 1 1

18 17 16 15 12 11 10 7 6 5

timing sizelo action chain match m 0

1 2 4 1 4 1 1

4 3 2 1 0

s u execute store load

1 1 1 1 1

Field Description Access Reset

maskmax Specifies the largest naturally aligned powers-of-
two (NAPOT) range supported by the hardware
when match is 1. The value is the logarithm base
2 of the number of bytes in that range. A value of
0 indicates match 1 is not supported. A value of
63 corresponds to the maximum NAPOT range,
which is 263 bytes in size.

R Preset

sizehi This field only exists when XLEN is at least 64.
It contains the 2 high bits of the access size. The
low bits come from sizelo. See sizelo for how this
is used.

WARL 0

hit If this bit is implemented then it must become set
when this trigger fires and may become set when
this trigger matches. The trigger’s user can set or
clear it at any time. It is used to determine which
trigger(s) matched. If the bit is not implemented,
it is always 0 and writing it has no effect.

WARL 0

select This bit determines the contents of the XLEN-bit
compare values.
0 (address): There is at least one compare value
and it contains the lowest virtual address of the
access. It is recommended that there are ad-
ditional compare values for the other accessed
virtual addresses. (E.g. on a 32-bit read from
0x4000, the lowest address is 0x4000 and the other
addresses are 0x4001, 0x4002, and 0x4003.)
1 (data): There is exactly one compare value and
it contains the data value loaded or stored, or the
instruction executed. Any bits beyond the size of
the data access will contain 0.

WARL 0

Continued on next page

72 RISC-V Debug Support Version 1.0.0-STABLE

Field Description Access Reset

timing 0 (before): The action for this trigger will be
taken just before the instruction that triggered
it is committed, but after all preceding instruc-
tions are committed. xepc or dpc (depending on
action) must be set to the virtual address of the
instruction that matched.
If this is combined with load and select =1 then a
memory access will be performed (including any
side effects of performing such an access) even
though the load will not update its destination
register. Debuggers should consider this when set-
ting such breakpoints on, for example, memory-
mapped I/O addresses.
1 (after): The action for this trigger will be taken
after the instruction that triggered it is commit-
ted. It should be taken before the next instruction
is committed, but it is better to implement trig-
gers imprecisely than to not implement them at
all. xepc or dpc (depending on action) must be
set to the virtual address of the next instruction
that must be executed to preserve the program
flow.
Most hardware will only implement one timing or
the other, possibly dependent on select, execute,
load, and store. This bit primarily exists for the
hardware to communicate to the debugger what
will happen. Hardware may implement the bit
fully writable, in which case the debugger has a
little more control.
Data load triggers with timing of 0 will result in
the same load happening again when the debugger
lets the hart run. For data load triggers, debug-
gers must first attempt to set the breakpoint with
timing of 1.
If a trigger with timing of 0 matches, it is
implementation-dependent whether that prevents
a trigger with timing of 1 matching as well.

WARL 0

Continued on next page

RISC-V Debug Support Version 1.0.0-STABLE 73

Field Description Access Reset

sizelo This field contains the 2 low bits of the access size.
The high bits come from sizehi. The combined
value is interpreted as follows:
0 (any): The trigger will attempt to match against
an access of any size. The behavior is only well-
defined if select = 0, or if the access size is XLEN.
1 (8bit): The trigger will only match against 8-bit
memory accesses.
2 (16bit): The trigger will only match against
16-bit memory accesses or execution of 16-bit in-
structions.
3 (32bit): The trigger will only match against
32-bit memory accesses or execution of 32-bit in-
structions.
4 (48bit): The trigger will only match against ex-
ecution of 48-bit instructions.
5 (64bit): The trigger will only match against
64-bit memory accesses or execution of 64-bit in-
structions.
6 (80bit): The trigger will only match against ex-
ecution of 80-bit instructions.
7 (96bit): The trigger will only match against ex-
ecution of 96-bit instructions.
8 (112bit): The trigger will only match against
execution of 112-bit instructions.
9 (128bit): The trigger will only match against
128-bit memory accesses or execution of 128-bit
instructions.
An implementation must support the value of 0,
but all other values are optional. When an imple-
mentation supports address triggers (select =0),
it is recommended that those triggers support ev-
ery access size that the hart supports, as well as
for every instruction size that the hart supports.
Implementations such as RV32D or RV64V are
able to perform loads and stores that are wider
than XLEN. Custom extensions may also support
instructions that are wider than XLEN. Because
tdata2 is of size XLEN, there is a known lim-
itation that data value triggers (select =1) can
only be supported for access sizes up to XLEN
bits. When an implementation supports data
value triggers (select =1), it is recommended that
those triggers support every access size up to
XLEN that the hart supports, as well as for ev-
ery instruction length up to XLEN that the hart
supports.

WARL 0

Continued on next page

74 RISC-V Debug Support Version 1.0.0-STABLE

Field Description Access Reset

action The action to take when the trigger fires. The
values are explained in Table 5.1.

WARL 0

chain 0 (disabled): When this trigger matches, the con-
figured action is taken.
1 (enabled): While this trigger does not match,
it prevents the trigger with the next index from
matching.
A trigger chain starts on the first trigger with
chain = 1 after a trigger with chain = 0, or simply
on the first trigger if that has chain = 1. It ends
on the first trigger after that which has chain = 0.
This final trigger is part of the chain. The action
on all but the final trigger is ignored. The action
on that final trigger will be taken if and only if all
the triggers in the chain match at the same time.
Debuggers should not terminate a chain with a
trigger with a different type. It is undefined when
exactly such a chain fires.
Because chain affects the next trigger, hardware
must zero it in writes to mcontrol that set dmode
to 0 if the next trigger has dmode of 1. In addition
hardware should ignore writes to mcontrol that
set dmode to 1 if the previous trigger has both
dmode of 0 and chain of 1. Debuggers must avoid
the latter case by checking chain on the previous
trigger if they’re writing mcontrol.
Implementations that wish to limit the maximum
length of a trigger chain (eg. to meet timing re-
quirements) may do so by zeroing chain in writes
to mcontrol that would make the chain too long.

WARL 0

Continued on next page

RISC-V Debug Support Version 1.0.0-STABLE 75

Field Description Access Reset

match 0 (equal): Matches when any compare value
equals tdata2.
1 (napot): Matches when the top M bits of any
compare value match the top M bits of tdata2.
M is XLEN − 1 minus the index of the least-
significant bit containing 0 in tdata2. Debug-
gers should only write values to tdata2 such that
M+maskmax ≥ XLEN and M > 0 , otherwise
it’s undefined on what conditions the trigger will
match.
2 (ge): Matches when any compare value is
greater than (unsigned) or equal to tdata2.
3 (lt): Matches when any compare value is less
than (unsigned) tdata2.

4 (mask low): Matches when XLEN
2 − 1:0 of any

compare value equals XLEN
2 −1:0 of tdata2 after

XLEN
2 − 1:0 of the compare value is ANDed with

XLEN− 1:XLEN2 of tdata2.

5 (mask high): Matches when XLEN− 1:XLEN2 of

any compare value equals XLEN
2 − 1:0 of tdata2

after XLEN − 1:XLEN2 of the compare value is

ANDed with XLEN− 1:XLEN2 of tdata2.
8 (not equal): Matches when match = 0 would
not match.
9 (not napot): Matches when match = 1 would
not match.
12 (not mask low): Matches when match = 4
would not match.
13 (not mask high): Matches when match = 5
would not match.
Other values are reserved for future use.
All comparisons only look at the lower XLEN (in
the current mode) bits of the compare values and
of tdata2. When select =1 and access size is N,
this is further reduced, and comparisons only look
at the lower N bits of the compare values and of
tdata2.

WARL 0

m When set, enable this trigger in M-mode. WARL 0

s When set, enable this trigger in S/HS-mode. This
bit is hard-wired to 0 if the hart does not support
S-mode.

WARL 0

u When set, enable this trigger in U-mode. This
bit is hard-wired to 0 if the hart does not support
U-mode.

WARL 0

Continued on next page

76 RISC-V Debug Support Version 1.0.0-STABLE

Field Description Access Reset

execute When set, the trigger fires on the virtual address
or opcode of an instruction that is executed.

WARL 0

store When set, the trigger fires on the virtual address
or data of any store.

WARL 0

load When set, the trigger fires on the virtual address
or data of any load.

WARL 0

5.5.12 Match Control Type 6 (mcontrol6, at 0x7a1)

This register is accessible as tdata1 when type is 6.

This replaces mcontrol in newer implementations and serves to provide additional functionality.

Address and data trigger implementation are heavily dependent on how the processor core is imple-
mented. To accommodate various implementations, execute, load, and store address/data triggers
may fire at whatever point in time is most convenient for the implementation. The debugger
may request specific timings as described in timing. Table 5.10 suggests timings for the best user
experience.

Table 5.10: Suggested Trigger Timings
Match Type Suggested Trigger Timing

Execute Address Before
Execute Instruction Before

Execute Address+Instruction Before
Load Address Before

Load Data After
Load Address+Data After

Store Address Before
Store Data Before

Store Address+Data Before

A chain of triggers that don’t all have the same timing value will never fire. That means to implement
the suggestions in Table 5.10, both timings should be supported on load address triggers.

This trigger type may be limited to address comparisons (select is always 0) only. If that is the
case and masking is not supported (match values 4, 5, 12, 13), then tdata2 must be able to hold
all valid virtual addresses but it need not be capable of holding other values.

The Privileged Spec says that breakpoint exceptions that occur on instruction fetches, loads, or
stores update the tval CSR with either zero or the faulting virtual address. The faulting virtual
address for an mcontrol6 trigger with action =0 is the address being accessed and which caused
that trigger to fire. If multiple mcontrol6 triggers are chained then the faulting virtual address is
the address which caused any of the chained triggers to fire.

In implementations that support match mode 1 (NAPOT), not all NAPOT ranges may be sup-

RISC-V Debug Support Version 1.0.0-STABLE 77

ported. All NAPOT ranges between 21 and 2maskmax6 are supported where maskmax6 ≥ 1. The
value of maskmax6 can be determined by the debugger via the following sequence:

1. Set match =1.
2. Read match. If it is not 1 then NAPOT matching is not supported.
3. Write all ones to tdata2.
4. Read tdata2. The value of maskmax6 is the index of the most significant 0 bit plus 1.

If the A extension is supported, then trigger behavior is as follows for the load and store bits:

1. lr instructions are loads
2. successful sc instructions are stores
3. it is unspecified whether failing sc instructions are stores or not
4. Each AMO instruction is a load for the read portion of the operation. The address is always

available to trigger on, although the value loaded might not be, depending on the hardware
implementation.

5. Each AMO instruction is a store for the write portion of the operation. The address is always
available to trigger on, although the value stored might not be, depending on the hardware
implementation.

If the destination register of any load or AMO is zero then it is unspecified whether a load trigger
with select =1 will match. Whether store triggers with select =1 match on AMOs is unspecified.

If textra32 or textra64 are implemented for this trigger, it only matches when the conditions set
there are satisfied.

This CSR is read/write.

XLEN-1 XLEN-4 XLEN-5 XLEN-6 25 24 23 22 21

type dmode 0 vs vu hit select

4 1 XLEN - 30 1 1 1 1

20 19 16 15 12 11 10 7 6 5

timing size action chain match m 0

1 4 4 1 4 1 1

4 3 2 1 0

s u execute store load

1 1 1 1 1

Field Description Access Reset

vs When set, enable this trigger in VS-mode. This
bit is hard-wired to 0 if the hart does not support
virtualization mode.

WARL 0

vu When set, enable this trigger in VU-mode. This
bit is hard-wired to 0 if the hart does not support
virtualization mode.

WARL 0

Continued on next page

78 RISC-V Debug Support Version 1.0.0-STABLE

Field Description Access Reset

hit If this bit is implemented then it must become set
when this trigger fires and may become set when
this trigger matches. The trigger’s user can set or
clear it at any time. It is used to determine which
trigger(s) matched. If the bit is not implemented,
it is always 0 and writing it has no effect.

WARL 0

select This bit determines the contents of the XLEN-bit
compare values.
0 (address): There is at least one compare value
and it contains the lowest virtual address of the
access. In addition, it is recommended that there
are additional compare values for the other ac-
cessed virtual addresses match. (E.g. on a 32-bit
read from 0x4000, the lowest address is 0x4000
and the other addresses are 0x4001, 0x4002, and
0x4003.)
1 (data): There is exactly one compare value and
it contains the data value loaded or stored, or the
instruction executed. Any bits beyond the size of
the data access will contain 0.

WARL 0

Continued on next page

RISC-V Debug Support Version 1.0.0-STABLE 79

Field Description Access Reset

timing 0 (before): The action for this trigger will be
taken just before the instruction that triggered
it is committed, but after all preceding instruc-
tions are committed. xepc or dpc (depending on
action) must be set to the virtual address of the
instruction that matched.
If this is combined with load and select =1 then a
memory access will be performed (including any
side effects of performing such an access) even
though the load will not update its destination
register. Debuggers should consider this when set-
ting such breakpoints on, for example, memory-
mapped I/O addresses.
1 (after): The action for this trigger will be taken
after the instruction that triggered it is commit-
ted. It should be taken before the next instruction
is committed, but it is better to implement trig-
gers imprecisely than to not implement them at
all. xepc or dpc (depending on action) must be
set to the virtual address of the next instruction
that must be executed to preserve the program
flow.
Most hardware will only implement one timing or
the other, possibly dependent on select, execute,
load, and store. This bit primarily exists for the
hardware to communicate to the debugger what
will happen. Hardware may implement the bit
fully writable, in which case the debugger has a
little more control.
Data load triggers with timing of 0 will result in
the same load happening again when the debugger
lets the hart run. For data load triggers, debug-
gers must first attempt to set the breakpoint with
timing of 1.
If a trigger with timing of 0 matches, it is
implementation-dependent whether that prevents
a trigger with timing of 1 matching as well.

WARL 0

Continued on next page

80 RISC-V Debug Support Version 1.0.0-STABLE

Field Description Access Reset

size 0 (any): The trigger will attempt to match against
an access of any size. The behavior is only well-
defined if select = 0, or if the access size is XLEN.
1 (8bit): The trigger will only match against 8-bit
memory accesses.
2 (16bit): The trigger will only match against
16-bit memory accesses or execution of 16-bit in-
structions.
3 (32bit): The trigger will only match against
32-bit memory accesses or execution of 32-bit in-
structions.
4 (48bit): The trigger will only match against ex-
ecution of 48-bit instructions.
5 (64bit): The trigger will only match against
64-bit memory accesses or execution of 64-bit in-
structions.
6 (80bit): The trigger will only match against ex-
ecution of 80-bit instructions.
7 (96bit): The trigger will only match against ex-
ecution of 96-bit instructions.
8 (112bit): The trigger will only match against
execution of 112-bit instructions.
9 (128bit): The trigger will only match against
128-bit memory accesses or execution of 128-bit
instructions.
An implementation must support the value of 0,
but all other values are optional. When an imple-
mentation supports address triggers (select =0),
it is recommended that those triggers support ev-
ery access size that the hart supports, as well as
for every instruction size that the hart supports.
Implementations such as RV32D or RV64V are
able to perform loads and stores that are wider
than XLEN. Custom extensions may also support
instructions that are wider than XLEN. Because
tdata2 is of size XLEN, there is a known lim-
itation that data value triggers (select =1) can
only be supported for access sizes up to XLEN
bits. When an implementation supports data
value triggers (select =1), it is recommended that
those triggers support every access size up to
XLEN that the hart supports, as well as for ev-
ery instruction length up to XLEN that the hart
supports.

WARL 0

action The action to take when the trigger fires. The
values are explained in Table 5.1.

WARL 0

Continued on next page

RISC-V Debug Support Version 1.0.0-STABLE 81

Field Description Access Reset

chain 0 (disabled): When this trigger matches, the con-
figured action is taken.
1 (enabled): While this trigger does not match,
it prevents the trigger with the next index from
matching.
A trigger chain starts on the first trigger with
chain = 1 after a trigger with chain = 0, or simply
on the first trigger if that has chain = 1. It ends
on the first trigger after that which has chain = 0.
This final trigger is part of the chain. The action
on all but the final trigger is ignored. The action
on that final trigger will be taken if and only if all
the triggers in the chain match at the same time.
Debuggers should not terminate a chain with a
trigger with a different type. It is undefined when
exactly such a chain fires.
Because chain affects the next trigger, hardware
must zero it in writes to mcontrol6 that set
dmode to 0 if the next trigger has dmode of
1. In addition hardware should ignore writes to
mcontrol6 that set dmode to 1 if the previous
trigger has both dmode of 0 and chain of 1. De-
buggers must avoid the latter case by checking
chain on the previous trigger if they’re writing
mcontrol6.
Implementations that wish to limit the maximum
length of a trigger chain (eg. to meet timing re-
quirements) may do so by zeroing chain in writes
to mcontrol6 that would make the chain too long.

WARL 0

Continued on next page

82 RISC-V Debug Support Version 1.0.0-STABLE

Field Description Access Reset

match 0 (equal): Matches when any compare value
equals tdata2.
1 (napot): Matches when the top M bits of any
compare value match the top M bits of tdata2.
M is XLEN − 1 minus the index of the least-
significant bit containing 0 in tdata2. tdata2

is WARL and if bits maskmax6 − 1:0 are writ-
ten with all ones then bit maskmax6 − 1 will be
set to 0 while the values of bits maskmax6 − 2:0
are unspecified. Legal values for tdata2 require
M + maskmax6 ≥ XLEN and M > 0. See above
for how to determine maskmax6.
2 (ge): Matches when any compare value is
greater than (unsigned) or equal to tdata2.
3 (lt): Matches when any compare value is less
than (unsigned) tdata2.

4 (mask low): Matches when XLEN
2 − 1:0 of any

compare value equals XLEN
2 −1:0 of tdata2 after

XLEN
2 − 1:0 of the compare value is ANDed with

XLEN− 1:XLEN2 of tdata2.

5 (mask high): Matches when XLEN− 1:XLEN2 of

any compare value equals XLEN
2 − 1:0 of tdata2

after XLEN − 1:XLEN2 of the compare value is

ANDed with XLEN− 1:XLEN2 of tdata2.
8 (not equal): Matches when match = 0 would
not match.
9 (not napot): Matches when match = 1 would
not match.
12 (not mask low): Matches when match = 4
would not match.
13 (not mask high): Matches when match = 5
would not match.
Other values are reserved for future use.
All comparisons only look at the lower XLEN (in
the current mode) bits of the compare values and
of tdata2. When select =1 and access size is N,
this is further reduced, and comparisons only look
at the lower N bits of the compare values and of
tdata2.

WARL 0

m When set, enable this trigger in M-mode. WARL 0

s When set, enable this trigger in S/HS-mode. This
bit is hard-wired to 0 if the hart does not support
S-mode.

WARL 0

Continued on next page

RISC-V Debug Support Version 1.0.0-STABLE 83

Field Description Access Reset

u When set, enable this trigger in U-mode. This
bit is hard-wired to 0 if the hart does not support
U-mode.

WARL 0

execute When set, the trigger fires on the virtual address
or opcode of an instruction that is executed.

WARL 0

store When set, the trigger fires on the virtual address
or data of any store.

WARL 0

load When set, the trigger fires on the virtual address
or data of any load.

WARL 0

5.5.13 Instruction Count (icount, at 0x7a1)

This register is accessible as tdata1 when type is 3.

This trigger matches on every instruction completed or trap taken from a privilege mode where the
trigger is enabled.

When count is greater than 1 and the trigger matches, then count is decremented by 1. (This is
true even if the action configured in the trigger is inhibited for some reason.)

When count is 1 and the trigger matches, then pending becomes set. In addition count will become
0 unless it is hard-wired to 1.

The only exception to the above is when the instruction the trigger matched on is a write to the
icount trigger. In that case pending might or might not become set if count was 1. Afterwards
count contains the newly written value.

When count is 0 it stays at 0 until explicitly written.

When pending is set, the trigger fires just before any further instructions are executed in a mode
where the trigger is enabled. As the trigger fires, pending is cleared. In addition, if count is
hard-wired to 1 then m, s, u, vs, and vu are all cleared.

If the trigger fires with action =0 then zero is written to the tval CSR on the breakpoint trap.

The intent of pending is to cleanly handle the case where action is 0, m is 0, u is 1, count is 1,
and the U-mode instruction being executed causes a trap into M-mode. In that case we want the
entire M-mode handler to be executed, and the debug trap to be taken before the next U-mode
instruction.

This trigger type is intended to be used as a single step for software monitor programs or native
debug. Systems that support multiple privilege modes that want to debug software running in
lower privilege modes don’t need to support count greater than 1.

If textra32 or textra64 are implemented for this trigger, it only matches when the conditions set
there are satisfied.

This CSR is read/write.

84 RISC-V Debug Support Version 1.0.0-STABLE

XLEN-1 XLEN-4 XLEN-5 XLEN-6 27 26 25 24

type dmode 0 vs vu hit

4 1 XLEN - 32 1 1 1

23 10 9 8 7 6 5 0

count m pending s u action

14 1 1 1 1 6

Field Description Access Reset

vs When set, enable this trigger in VS-mode. This
bit is hard-wired to 0 if the hart does not support
virtualization mode.

WARL 0

vu When set, enable this trigger in VU-mode. This
bit is hard-wired to 0 if the hart does not support
virtualization mode.

WARL 0

hit If this bit is implemented, the hardware sets it
when this trigger fires. The trigger’s user can
set or clear it at any time. It is used to deter-
mine which trigger(s) fires. If the bit is not im-
plemented, it is always 0 and writing it has no
effect.

WARL 0

count The trigger will generally fire after count instruc-
tions in enabled modes have been executed. See
above for the precise behavior.

WARL 1

m When set, enable this trigger in M-mode. WARL 0

pending This bit becomes set when count is decremented
from 1 to 0. It is cleared when the trigger fires,
which will happen just before executing the next
instruction in one of the enabled modes.

R/W 0

s When set, enable this trigger in S/HS-mode. This
bit is hard-wired to 0 if the hart does not support
S-mode.

WARL 0

u When set, enable this trigger in U-mode. This
bit is hard-wired to 0 if the hart does not support
U-mode.

WARL 0

action The action to take when the trigger fires. The
values are explained in Table 5.1.

WARL 0

5.5.14 Interrupt Trigger (itrigger, at 0x7a1)

This register is accessible as tdata1 when type is 4.

This trigger may fire on any of the interrupts configurable in mie (described in the Privileged Spec)
or the NMI. The interrupts to fire on are configured by setting the same bit in tdata2 as would be
set in mie to enable the interrupt.

Hardware may only support a subset of interrupts for this trigger. A debugger must read back

RISC-V Debug Support Version 1.0.0-STABLE 85

tdata2 after writing it to confirm the requested functionality is actually supported.

The trigger only fires if the hart takes a trap because of the interrupt. (E.g. it does not fire when
a timer interrupt occurs but that interrupt is not enabled in mie.)

When the trigger fires, all CSRs are updated for the interrupt trap as defined by the Privileged Spec,
and the requested action is taken just before the first instruction of the trap handler is executed.
If the trigger fires with action =0 then zero is written to the tval CSR on the breakpoint trap (see
5.4).

If textra32 or textra64 are implemented for this trigger, it only matches when the conditions set
there are satisfied.

This CSR is read/write.

XLEN-1 XLEN-4 XLEN-5 XLEN-6 XLEN-7 13 12 11

type dmode hit 0 vs vu

4 1 1 XLEN - 19 1 1

10 9 8 7 6 5 0

nmi m 0 s u action

1 1 1 1 1 6

Field Description Access Reset

hit If this bit is implemented, the hardware sets it
when this trigger matches. The trigger’s user can
set or clear it at any time. It is used to deter-
mine which trigger(s) matched. If the bit is not
implemented, it is always 0 and writing it has no
effect.

WARL 0

vs When set, enable this trigger for interrupts that
are taken from VS mode. This bit is hard-wired
to 0 if the hart does not support virtualization
mode.

WARL 0

vu When set, enable this trigger for interrupts that
are taken from VU mode. This bit is hard-wired
to 0 if the hart does not support virtualization
mode.

WARL 0

nmi When set, non-maskable interrupts cause this
trigger to fire if the trigger is enabled for the cur-
rent mode.

WARL 0

m When set, enable this trigger for interrupts that
are taken from M mode.

WARL 0

s When set, enable this trigger for interrupts that
are taken from S/HS mode. This bit is hard-wired
to 0 if the hart does not support S-mode.

WARL 0

Continued on next page

86 RISC-V Debug Support Version 1.0.0-STABLE

Field Description Access Reset

u When set, enable this trigger for interrupts that
are taken from U mode. This bit is hard-wired to
0 if the hart does not support U-mode.

WARL 0

action The action to take when the trigger fires. The
values are explained in Table 5.1.

WARL 0

5.5.15 Exception Trigger (etrigger, at 0x7a1)

This register is accessible as tdata1 when type is 5.

This trigger may fire on up to XLEN of the Exception Codes defined in mcause (described in the
Privileged Spec, with Interrupt=0). Those causes are configured by writing the corresponding bit
in tdata2. (E.g. to trap on an illegal instruction, the debugger sets bit 2 in tdata2.)

Hardware may support only a subset of exceptions. A debugger must read back tdata2 after
writing it to confirm the requested functionality is actually supported.

When the trigger fires, all CSRs are updated for the exception as defined by the Privileged Spec,
and the requested action is taken just before the first instruction of the trap handler is executed.
If the trigger fires with action =0 then zero is written to the tval CSR on the breakpoint trap (see
5.4).

If textra32 or textra64 are implemented for this trigger, it only matches when the conditions set
there are satisfied.

This CSR is read/write.

XLEN-1 XLEN-4 XLEN-5 XLEN-6 XLEN-7 13 12 11

type dmode hit 0 vs vu

4 1 1 XLEN - 19 1 1

10 9 8 7 6 5 0

0 m 0 s u action

1 1 1 1 1 6

Field Description Access Reset

hit If this bit is implemented, the hardware sets it
when this trigger matches. The trigger’s user can
set or clear it at any time. It is used to deter-
mine which trigger(s) matched. If the bit is not
implemented, it is always 0 and writing it has no
effect.

WARL 0

vs When set, enable this trigger for exceptions that
are taken from VS mode. This bit is hard-wired
to 0 if the hart does not support virtualization
mode.

WARL 0

Continued on next page

RISC-V Debug Support Version 1.0.0-STABLE 87

Field Description Access Reset

vu When set, enable this trigger for exceptions that
are taken from VU mode. This bit is hard-wired
to 0 if the hart does not support virtualization
mode.

WARL 0

m When set, enable this trigger for exceptions that
are taken from M mode.

WARL 0

s When set, enable this trigger for exceptions that
are taken from S/HS mode. This bit is hard-wired
to 0 if the hart does not support S-mode.

WARL 0

u When set, enable this trigger for exceptions that
are taken from U mode. This bit is hard-wired to
0 if the hart does not support U-mode.

WARL 0

action The action to take when the trigger fires. The
values are explained in Table 5.1.

WARL 0

5.5.16 External Trigger (tmexttrigger, at 0x7a1)

This register is accessible as tdata1 when type is 7.

This trigger fires when any selected TM external trigger input signals. Up to 16 TM external
trigger inputs coming from other blocks outside the TM, (e.g. signaling an hpmcounter overflow)
can be selected. Hardware may support none or just a few TM external trigger inputs (starting
with TM external trigger input 0 and continuing sequentially). Unsupported inputs are hardwired
to be inactive.

If the trigger fires with action =0 then zero is written to the tval CSR on the breakpoint trap. This
trigger fires asynchronously but it is subject to delegation by medeleg[3] like the other triggers.

The external trigger input can signal when the trigger is prevented from firing due to one of the
mechanisms in section 5.4. An implementation may either ignore the signal altogether when it
cannot fire (dropping the trigger event) or it may hold the action as pending and fire the trigger
once it is legal to do so.

This CSR is read/write.

XLEN-1 XLEN-4 XLEN-5 XLEN-6 XLEN-7 23

type dmode hit 0

4 1 1 XLEN - 29

22 21 6 5 0

intctl select action

1 16 6

88 RISC-V Debug Support Version 1.0.0-STABLE

Field Description Access Reset

hit If this bit is implemented, the hardware sets it
when this trigger matches. The trigger’s user can
set or clear it at any time. It is used to deter-
mine which trigger(s) matched. If the bit is not
implemented, it is always 0 and writing it has no
effect.

WARL 0

intctl This optional bit, when set, causes this trigger
to fire whenever an attached interrupt controller
signals a trigger.

WARL 0

select Selects any combination of up to 16 external de-
bug trigger inputs that cause this trigger to fire.

WARL 0

action The action to take when the trigger fires. The
values are explained in Table 5.1.

WARL 0

5.5.17 Trigger Extra (RV32) (textra32, at 0x7a3)

This register is accessible as tdata3 when type is 2, 3, 4, 5, or 6 and XLEN=32.

All functionality in this register is optional. The value bits may tie any number of upper bits to 0.
The select bits may only support 0 (ignore).

Byte-granular comparison of scontext to svalue allows scontext to be defined to include more than
one element of comparison. For example, software instrumentation can program the scontext value
to be the concatenation of different ID contexts such as process ID and thread ID. The user can
then program byte compares based on sbytemask to include one or more of the contexts in the
compare.

Byte masking only applies to scontext comparison; i.e when sselect is 1.

Note that sselect and mhselect filtering apply in all modes, including M-mode and S-mode. If
desired, debuggers can use a trigger’s mode filtering bits to restrict the matching to modes where
it considers ASID/VMID/scontext/hcontext to be active.

This CSR is read/write.

31 26 25 23 22 20 19 18 17 2 1 0

mhvalue mhselect 0 sbytemask svalue sselect

6 3 3 2 16 2

Field Description Access Reset

mhvalue Data used together with mhselect. WARL 0

Continued on next page

RISC-V Debug Support Version 1.0.0-STABLE 89

Field Description Access Reset

mhselect 0 (ignore): Ignore mhvalue.
4 (mcontext): This trigger will only match if the
low bits of mcontext/hcontext equal mhvalue.
1, 5 (mcontext select): This trigger will only
match if the low bits of mcontext/hcontext equal
{mhvalue, mhselect[2]}.
2, 6 (vmid select): This trigger will only match
if VMID in hgatp equals the lower VMIDMAX
(defined in the Privileged Spec) bits of {mhvalue,
mhselect[2]}.
3, 7 (reserved): Reserved.
If the H extension is not supported, the only legal
values are 0 and 4.

WARL 0

sbytemask When the least significant bit of this field is 1, it
causes bits 7:0 in the comparison to be ignored,
when sselect =1. When the next most significant
bit of this field is 1, it causes bits 15:8 to be ig-
nored in the comparison, when sselect =1.

WARL 0

svalue Data used together with sselect.
This field should be tied to 0 when S-mode is not
supported.

WARL 0

sselect 0 (ignore): Ignore svalue.
1 (scontext): This trigger will only match if the
low bits of scontext equal svalue.
2 (asid): This trigger will only match if:

� the mode is VS-mode or VU-mode and
ASID in vsatp equals the lower ASID-
MAX (defined in the Privileged Spec) bits
of svalue.

� in all other modes, ASID in satp equals the
lower ASIDMAX (defined in the Privileged
Spec) bits of svalue.

This field should be tied to 0 when S-mode is not
supported.

WARL 0

5.5.18 Trigger Extra (RV64) (textra64, at 0x7a3)

This register is accessible as tdata3 when type is 2, 3, 4, 5, or 6 and XLEN=64. The fields are
defined above, in textra32.

Byte-granular comparison of scontext to svalue in textra64 allows scontext to be defined to
include more than one element of comparison. For example, software instrumentation can program
the scontext value to be the concatenation of different ID contexts such as process ID and thread
ID. The user can then program byte compares based on sbytemask to include one or more of the
contexts in the compare.

90 RISC-V Debug Support Version 1.0.0-STABLE

Byte masking only applies to scontext comparison; i.e when sselect is 1.

This CSR is read/write.

63 51 50 48 47 41

mhvalue mhselect 0

13 3 7

40 36 35 2 1 0

sbytemask svalue sselect

5 34 2

Field Description Access Reset

sbytemask When the least significant bit of this field is 1, it
causes bits 7:0 in the comparison to be ignored,
when sselect =1. Likewise, the second bit controls
the comparison of bits 15:8, third bit controls the
comparison of bits 23:16, fourth bit controls the
comparison of bits 31:24, and fifth bit controls the
comparison of bits 33:32.

WARL 0

Chapter 6

Debug Transport Module (DTM),
non-ISA

Debug Transport Modules provide access to the DM over one or more transports (e.g. JTAG or
USB).

There may be multiple DTMs in a single hardware platform. Ideally every component that com-
municates with the outside world includes a DTM, allowing a hardware platform to be debugged
through every transport it supports. For instance a USB component could include a DTM. This
would trivially allow any hardware platform to be debugged over USB. All that is required is that
the USB module already in use also has access to the Debug Module Interface.

Using multiple DTMs at the same time is not supported. It is left to the user to ensure this does
not happen.

This specification defines a JTAG DTM in Section 6.1. Additional DTMs may be added in future
versions of this specification.

An implementation can be compliant with this specification without implementing any of this
section. In that case it must be advertised as conforming to “RISC-V Debug Specification 1.0.0-
STABLE, with custom DTM.” If the JTAG DTM described here is implemented, it must be
advertised as conforming to the “RISC-V Debug Specification 1.0.0-STABLE, with JTAG DTM.”

6.1 JTAG Debug Transport Module

This Debug Transport Module is based around a normal JTAG Test Access Port (TAP). The JTAG
TAP allows access to arbitrary JTAG registers by first selecting one using the JTAG instruction
register (IR), and then accessing it through the JTAG data register (DR).

91

92 RISC-V Debug Support Version 1.0.0-STABLE

6.1.1 JTAG Background

JTAG refers to IEEE Std 1149.1-2013. It is a standard that defines test logic that can be included
in an integrated circuit to test the interconnections between integrated circuits, test the integrated
circuit itself, and observe or modify circuit activity during the component’s normal operation. This
specification uses the latter functionality. The JTAG standard defines a Test Access Port (TAP)
that can be used to read and write a few custom registers, which can be used to communicate with
debug hardware in a component.

6.1.2 JTAG DTM Registers

JTAG TAPs used as a DTM must have an IR of at least 5 bits. When the TAP is reset, IR must
default to 00001, selecting the IDCODE instruction. A full list of JTAG registers along with their
encoding is in Table 6.1. If the IR actually has more than 5 bits, then the encodings in Table 6.1
should be extended with 0’s in their most significant bits, except for the 0x1f encoding of BYPASS,
which must be extended with 1’s in the most significant bits. The only regular JTAG registers a
debugger might use are BYPASS and IDCODE, but this specification leaves IR space for many
other standard JTAG instructions. Unimplemented instructions must select the BYPASS register.

Table 6.1: JTAG DTM TAP Registers

Address Name Description Page

0x00 BYPASS JTAG recommends this encoding
0x01 IDCODE To identify a specific silicon version
0x10 DTM Control and Status (dtmcs) For Debugging 93
0x11 Debug Module Interface Access (dmi) For Debugging 94
0x12 Reserved (BYPASS) Reserved for future RISC-V debugging
0x13 Reserved (BYPASS) Reserved for future RISC-V debugging
0x14 Reserved (BYPASS) Reserved for future RISC-V debugging
0x15 Reserved (BYPASS) Reserved for future RISC-V standards
0x16 Reserved (BYPASS) Reserved for future RISC-V standards
0x17 Reserved (BYPASS) Reserved for future RISC-V standards
0x1f BYPASS JTAG requires this encoding

6.1.3 IDCODE (at 0x01)

This register is selected (in IR) when the TAP state machine is reset. Its definition is exactly as
defined in IEEE Std 1149.1-2013.

This entire register is read-only.

31 28 27 12 11 1 0

Version PartNumber ManufId 1

4 16 11 1

RISC-V Debug Support Version 1.0.0-STABLE 93

Field Description Access Reset

Version Identifies the release version of this part. R Preset

PartNumber Identifies the designer’s part number of this part. R Preset

ManufId Identifies the designer/manufacturer of this part.
Bits 6:0 must be bits 6:0 of the designer/manufac-
turer’s Identification Code as assigned by JEDEC
Standard JEP106. Bits 10:7 contain the modulo-
16 count of the number of continuation characters
(0x7f) in that same Identification Code.

R Preset

6.1.4 DTM Control and Status (dtmcs, at 0x10)

The size of this register will remain constant in future versions so that a debugger can always
determine the version of the DTM.

31 18 17 16 15

0 dmihardreset dmireset 0

14 1 1 1

14 12 11 10 9 4 3 0

idle dmistat abits version

3 2 6 4

Field Description Access Reset

dmihardreset Writing 1 to this bit does a hard reset of the DTM,
causing the DTM to forget about any outstand-
ing DMI transactions, and returning all registers
and internal state to their reset value. In gen-
eral this should only be used when the Debugger
has reason to expect that the outstanding DMI
transaction will never complete (e.g. a reset con-
dition caused an inflight DMI transaction to be
cancelled).

W1 -

dmireset Writing 1 to this bit clears the sticky error state,
but does not affect outstanding DMI transactions.

W1 -

idle This is a hint to the debugger of the minimum
number of cycles a debugger should spend in Run-
Test/Idle after every DMI scan to avoid a ‘busy’
return code (dmistat of 3). A debugger must still
check dmistat when necessary.
0: It is not necessary to enter Run-Test/Idle at
all.
1: Enter Run-Test/Idle and leave it immediately.
2: Enter Run-Test/Idle and stay there for 1 cycle
before leaving.
And so on.

R Preset

dmistat Read-only alias of op. R 0

abits The size of address in dmi. R Preset

Continued on next page

94 RISC-V Debug Support Version 1.0.0-STABLE

Field Description Access Reset

version 0 (0.11): Version described in spec version 0.11.
1 (1.0): Version described in spec versions 0.13
and 1.0.
15 (custom): Version not described in any avail-
able version of this spec.

R 1

6.1.5 Debug Module Interface Access (dmi, at 0x11)

This register allows access to the Debug Module Interface (DMI).

In Update-DR, the DTM starts the operation specified in op unless the current status reported in
op is sticky.

In Capture-DR, the DTM updates data with the result from that operation, updating op if the
current op isn’t sticky.

See Section B.2.1 for examples of how this is used.

The still-in-progress status is sticky to accommodate debuggers that batch together a number of
scans, which must all be executed or stop as soon as there’s a problem.

For instance a series of scans may write a Debug Program and execute it. If one of the writes
fails but the execution continues, then the Debug Program may hang or have other unexpected
side effects.

abits+33 34 33 2 1 0

address data op

abits 32 2

Field Description Access Reset

address Address used for DMI access. In Update-DR this
value is used to access the DM over the DMI.

R/W 0

data The data to send to the DM over the DMI during
Update-DR, and the data returned from the DM
as a result of the previous operation.

R/W 0

Continued on next page

RISC-V Debug Support Version 1.0.0-STABLE 95

Field Description Access Reset

op When the debugger writes this field, it has the
following meaning:
0 (nop): Ignore data and address.
Don’t send anything over the DMI during
Update-DR. This operation should never result in
a busy or error response. The address and data
reported in the following Capture-DR are unde-
fined.
1 (read): Read from address.
2 (write): Write data to address.
3 (reserved): Reserved.
When the debugger reads this field, it means the
following:
0 (success): The previous operation completed
successfully.
1 (reserved): Reserved.
2 (failed): A previous operation failed. The data
scanned into dmi in this access will be ignored.
This status is sticky and can be cleared by writing
dmireset in dtmcs.
This indicates that the DM itself responded with
an error. There are no specified cases in which
the DM would respond with an error, and DMI is
not required to support returning errors.
3 (busy): An operation was attempted while a
DMI request is still in progress. The data scanned
into dmi in this access will be ignored. This status
is sticky and can be cleared by writing dmireset in
dtmcs. If a debugger sees this status, it needs to
give the target more TCK edges between Update-
DR and Capture-DR. The simplest way to do that
is to add extra transitions in Run-Test/Idle.

R/W 0

6.1.6 BYPASS (at 0x1f)

1-bit register that has no effect. It is used when a debugger does not want to communicate with
this TAP.

This entire register is read-only.

0

0

1

96 RISC-V Debug Support Version 1.0.0-STABLE

6.1.7 Recommended JTAG Connector

To make it easy to acquire debug hardware, this spec recommends a connector that is compatible
with the MIPI-10 .05 inch connector specification, as described in the MIPI Alliance Recommen-
dation for Debug and Trace Connectors, Version 1.10.00, 16 March 2011.

The connector has .05 inch spacing, gold-plated male header with .016 inch thick hardened copper or
beryllium bronze square posts (SAMTEC FTSH or equivalent). Female connectors are compatible
20µm gold connectors.

Viewing the male header from above (the pins pointing at your eye), a target’s connector looks as
it does in Table 6.5. The function of each pin is described in Table 6.7.

Table 6.5: MIPI-10 Connector Diagram
VREF DEBUG 1 2 TMS

GND 3 4 TCK

GND 5 6 TDO

GND or KEY 7 8 TDI

GND 9 10 nRESET

If a hardware platform requires nTRST then it is permissible to reuse the nRESET pin as the
nTRST signal. If a hardware platform requires both hardware platform reset and TAP reset, the
MIPI-20 connector should be used. Its physical connector is virtually identical to MIPI-10, except
that it’s twice as long, supporting twice as many pins. Its connector is show in Table 6.6.

Table 6.6: MIPI-20 Connector Diagram
VREF DEBUG 1 2 TMS

GND 3 4 TCK

GND 5 6 TDO

GND or KEY 7 8 TDI

GND 9 10 nRESET

GND 11 12 RTCK

GND 13 14 nTRST PD

GND 15 16 nTRST

GND 17 18 TRIGIN

GND 19 20 TRIGOUT

The same connectors can be used for 2-wire cJTAG. In that case TMS is used for TMSC, and TCK
is used for TCKC.

RISC-V Debug Support Version 1.0.0-STABLE 97

Table 6.7: JTAG Connector Pinout
1 VREF DEBUG Reference voltage for logic high.

2 TMS JTAG TMS signal, driven by the debug adapter.

4 TCK JTAG TCK signal, driven by the debug adapter.

6 TDO JTAG TDO signal, driven by the target.

7 GND or KEY This pin may be cut on the male and plugged on the
female header to ensure the header is always plugged
in correctly. It is, however, recommended to use this
pin as an additional ground, to allow for fastest TCK

speeds. A shrouded connector should be used to
prevent the cable from being plugged in incorrectly.

8 TDI JTAG TDI signal, driven by the debug adapter.

10 nRESET Active-low reset signal, driven by the debug adapter.
Asserting reset should reset any RISC-V cores as well
as any other peripherals on the PCB. It should not

reset the debug logic. This pin is optional but
strongly encouraged.

If necessary, this pin could be used as nTRST instead.
nRESET should never be connected to the TAP reset,
otherwise the debugger might not be able to debug
through a reset to discover the cause of a crash or to

maintain execution control after the reset.

12 RTCK Return test clock, driven by the target. A target may
relay the TCK signal here once it has processed it,
allowing a debugger to adjust its TCK frequency in

response.

14 nTRST PD Test reset pull-down (optional), driven by the debug
adapter. Same function as nTRST, but with

pull-down resistor on target.

16 nTRST Test reset (optional), driven by the debug adapter.
Used to reset the JTAG TAP Controller.

18 TRIGIN Not used by this specification, to be driven by debug
adapter. (Can be used for extended functions like
UART or boot mode selection by some debug

adapters).

20 TRIGOUT Not used by this specification, driven by the target.

Appendix A

Hardware Implementations

Below are two possible implementations. A designer could choose one, mix and match, or come up
with their own design.

A.1 Abstract Command Based

Halting happens by stalling the hart execution pipeline.

Muxes on the register file(s) allow for accessing GPRs and CSRs using the Access Register abstract
command.

Memory is accessed using the Abstract Access Memory command or through System Bus Access.

This implementation could allow a debugger to collect information from the hart even when that
hart is unable to execute instructions.

A.2 Execution Based

This implementation only implements the Access Register abstract command for GPRs on a halted
hart, and relies on the Program Buffer for all other operations. It uses the hart’s existing pipeline
and ability to execute from arbitrary memory locations to avoid modifications to a hart’s datapath.

When the halt request bit is set, the Debug Module raises a special interrupt to the selected harts.
This interrupt causes each hart to enter Debug Mode and jump to a defined memory region that
is serviced by the DM and is only accessible to the harts in Debug Mode. When taking this trap,
pc is saved to dpc and cause is updated in dcsr.

The code in the Debug Module causes the hart to execute a “park loop.” In the park loop the hart
writes its mhartid to a memory location within the Debug Module to indicate that it is halted.
To allow the DM to individually control one out of several halted harts, each hart polls for flags
in a DM-controlled memory location to determine whether the debugger wants it to execute the

98

RISC-V Debug Support Version 1.0.0-STABLE 99

Program Buffer or perform a resume.

To execute an abstract command, the DM first populates some internal words of program buffer
according to command. When transfer is set, the DM populates these words with lw <gpr>,

0x400(zero) or sw 0x400(zero), <gpr>. 64- and 128-bit accesses use ld/sd and lq/sq respec-
tively. If transfer is not set, the DM populates these instructions as nops. If execute is set, execution
continues to the debugger-controlled Program Buffer, otherwise the DM causes a ebreak to execute
immediately.

When ebreak is executed (indicating the end of the Program Buffer code) the hart returns to
its park loop. If an exception is encountered, the hart jumps to a debug trap address within
the Debug Module. The code there causes the hart to write to the Debug Module indicating an
exception. Then the hart jumps back to the park loop. The DM infers from the write that there was
an exception, and sets cmderr appropriately. Typically the hart will execute a fence instruction
before entering the park loop, to ensure that any effects from the abstract command, such as a
write to data0, take effect before the DM returns busy to 0.

To resume execution, the debug module sets a flag which causes the hart to execute a dret. dret
is an instruction that only has meaning while in Debug Mode and not executing from the Program
Buffer. Its recommended encoding is 0x7b200073. When dret is executed, pc is restored from dpc

and normal execution resumes at the privilege set by prv.

data0 etc. are mapped into regular memory at an address relative to zero with only a 12-bit imm.
The exact address is an implementation detail that a debugger must not rely on. For example, the
data registers might be mapped to 0x400.

For additional flexibility, progbuf0, etc. are mapped into regular memory immediately preceding
data0, in order to form a contiguous region of memory which can be used for either program
execution or data transfer.

Note that for debug to be possible, the PMP must not disallow fetches, loads, or stores in the
address range associated with the Debug Module when the hart is in Debug Mode.

A.3 Debug Module Interface Signals

As stated in section 3.1 the details of the DMI are left to the system designer. It is quite often the
case that only one DTM and one DM is implemented. In this case it might be useful to comply with
the signals suggested in table A.1, which is the implementation used in the open-source rocket-chip
RISC-V core.

The DTM can start a request when the DM sets REQ READY to 1. When this is the case
REQ OP can be set to 1 for a read or 2 for a write request. The desired address is driven with
the REQ ADDRESS signal. Finally REQ VALID is set high, indicating to the DM that a valid
request is pending.

The DM must respond to a request from the DTM when RSP READY is high. The status of
the response is indicated by the RSP OP signal (see op). The data of the response is driven to
RSP DATA. A pending response is signalled by setting RSP VALID.

https://github.com/chipsalliance/rocket-chip/blob/375045a7db1bdc7b4f7851f1a59b3f10a2b922ff/src/main/scala/devices/debug/Debug.scala#L170

100 RISC-V Debug Support Version 1.0.0-STABLE

Signal Width Source Description

REQ VALID 1 DTM Indicates that a valid request is pending

REQ READY 1 DM Indicates that the DM is able to process a request

REQ ADDRESS abits DTM Requested address

REQ DATA 32 DTM Requested data

REQ OP 2 DTM Same meaning as the op field

RSP VALID 1 DM Indicates that a valid respond is pending

RSP READY 1 DTM Indicates that the DTM is able to process a respond

RSP DATA 32 DM Response data

RSP OP 2 DM Same meaning as the op field

Table A.1: Signals for the suggested DMI between one DTM and one DM

Appendix B

Debugger Implementation

B.1 C Header File

https://github.com/riscv/riscv-debug-spec contains instructions for generating a C header file that
defines macros for every field in every register/abstract command mentioned in this document.

B.2 External Debugger Implementation

This section details how an external debugger might use the described debug interface to perform
some common operations on RISC-V cores using the JTAG DTM described in Section 6.1. All
these examples assume a 32-bit core but it should be easy to adapt the examples to 64- or 128-bit
cores.

To keep the examples readable, they all assume that everything succeeds, and that they complete
faster than the debugger can perform the next access. This will be the case in a typical JTAG
setup. However, the debugger must always check the sticky error status bits after performing a
sequence of actions. If it sees any that are set, then it should attempt the same actions again,
possibly while adding in some delay, or explicit checks for status bits.

B.2.1 Debug Module Interface Access

To read an arbitrary Debug Module register, select dmi, and scan in a value with op set to 1, and
address set to the desired register address. In Update-DR the operation will start, and in Capture-
DR its results will be captured into data. If the operation didn’t complete in time, op will be 3
and the value in data must be ignored. The busy condition must be cleared by writing dmireset in
dtmcs, and then the second scan scan must be performed again. This process must be repeated
until op returns 0. In later operations the debugger should allow for more time between Update-DR
and Capture-DR.

To write an arbitrary Debug Bus register, select dmi, and scan in a value with op set to 2, and

101

https://github.com/riscv/riscv-debug-spec

102 RISC-V Debug Support Version 1.0.0-STABLE

address and data set to the desired register address and data respectively. From then on everything
happens exactly as with a read, except that a write is performed instead of the read.

It should almost never be necessary to scan IR, avoiding a big part of the inefficiency in typical
JTAG use.

B.2.2 Checking for Halted Harts

A user will want to know as quickly as possible when a hart is halted (e.g. due to a breakpoint).
To efficiently determine which harts are halted when there are many harts, the debugger uses the
haltsum registers. Assuming the maximum number of harts exist, first it checks haltsum3. For
each bit set there, it writes hartsel, and checks haltsum2. This process repeats through haltsum1

and haltsum0. Depending on how many harts exist, the process should start at one of the lower
haltsum registers.

B.2.3 Halting

To halt one or more harts, the debugger selects them, sets haltreq, and then waits for allhalted to
indicate the harts are halted. Then it can clear haltreq to 0, or leave it high to catch a hart that
resets while halted.

B.2.4 Running

First, the debugger should restore any registers that it has overwritten. Then it can let the selected
harts run by setting resumereq. Once allresumeack is set, the debugger knows the hart has resumed,
and it can clear resumereq. Harts might halt very quickly after resuming (e.g. by hitting a software
breakpoint) so the debugger cannot use allhalted/anyhalted to check whether the hart resumed.

B.2.5 Single Step

Using the hardware single step feature is almost the same as regular running. The debugger just
sets step in dcsr before letting the hart run. The hart behaves exactly as in the running case,
except that interrupts may be disabled (depending on stepie) and it only fetches and executes a
single instruction before re-entering Debug Mode.

B.2.6 Accessing Registers

B.2.6.1 Using Abstract Command

Read s0 using abstract command:

RISC-V Debug Support Version 1.0.0-STABLE 103

Op Address Value Comment

Write command aarsize = 2, transfer, regno =
0x1008

Read s0

Read data0 - Returns value that was in s0

Write mstatus using abstract command:

Op Address Value Comment

Write data0 new value

Write command aarsize = 2, transfer, write,
regno = 0x300

Write mstatus

B.2.6.2 Using Program Buffer

Abstract commands are used to exchange data with GPRs. Using this mechanism, other registers
can be accessed by moving their value into/out of GPRs.

Write mstatus using program buffer:

Op Address Value Comment

Write progbuf0 csrw s0, MSTATUS

Write progbuf1 ebreak

Write data0 new value

Write command aarsize = 2, postexec, transfer,
write, regno = 0x1008

Write s0, then execute pro-
gram buffer

Read f1 using program buffer:

Op Address Value Comment

Write progbuf0 fmv.x.s s0, f1

Write progbuf1 ebreak

Write command postexec Execute program buffer

Write command transfer, regno = 0x1008 read s0

Read data0 - Returns the value that was in
f1

B.2.7 Reading Memory

B.2.7.1 Using System Bus Access

With system bus access, addresses are physical system bus addresses.

Read a word from memory using system bus access:

104 RISC-V Debug Support Version 1.0.0-STABLE

Op Address Value Comment

Write sbcs sbaccess = 2, sbreadonaddr Setup

Write sbaddress0 address

Read sbdata0 - Value read from memory

Read block of memory using system bus access:

Op Address Value Comment

Write sbcs sbaccess = 2, sbreadonaddr,
sbreadondata, sbautoincrement

Turn on autoread and autoincrement

Write sbaddress0 address Writing address triggers read and increment

Read sbdata0 - Value read from memory

Read sbdata0 - Next value read from memory

...

Write sbcs 0 Disable autoread

Read sbdata0 - Get last value read from memory.

B.2.7.2 Using Program Buffer

Through the Program Buffer, the hart performs the memory accesses. Addresses are physical or
virtual (depending on mprven and other system configuration).

Read a word from memory using program buffer:

Op Address Value Comment

Write progbuf0 lw s0, 0(s0)

Write progbuf1 ebreak

Write data0 address

Write command write, postexec, regno =
0x1008

Write s0, then execute pro-
gram buffer

Write command regno = 0x1008 Read s0

Read data0 - Value read from memory

Read block of memory using program buffer:

RISC-V Debug Support Version 1.0.0-STABLE 105

Op Address Value Comment

Write progbuf0 lw s1, 0(s0)

Write progbuf1 addi s0, s0, 4

Write progbuf2 ebreak

Write data0 address

Write command write, postexec, regno =
0x1008

Write s0, then execute pro-
gram buffer

Write command postexec, regno = 0x1009 Read s1, then execute pro-
gram buffer

Write abstractauto autoexecdata [0] Set autoexecdata [0]

Read data0 - Get value read from memory,
then execute program buffer

Read data0 - Get next value read from
memory, then execute pro-
gram buffer

...

Write abstractauto 0 Clear autoexecdata [0]

Read data0 - Get last value read from
memory.

B.2.7.3 Using Abstract Memory Access

Abstract memory accesses act as if they are performed by the hart, although the actual implemen-
tation may differ.

Read a word from memory using abstract memory access:

Op Address Value Comment

Write data1 address

Write command cmdtype=2, aamsize =2

Read data0 - Value read from memory

Read block of memory using abstract memory access:

Op Address Value Comment

Write abstractauto 1 Re-execute the command
when data0 is accessed

Write data1 address

Write command cmdtype=2, aamsize =2,
aampostincrement =1

Read data0 - Read value, and trigger read-
ing of next address

...

Write abstractauto 0 Disable auto-exec

Read data0 - Get last value read from
memory.

106 RISC-V Debug Support Version 1.0.0-STABLE

B.2.8 Writing Memory

B.2.8.1 Using System Bus Access

With system bus access, addresses are physical system bus addresses.

Write a word to memory using system bus access:

Op Address Value Comment

Write sbcs sbaccess = 2 Configure access size

Write sbaddress0 address

Write sbdata0 value

Write a block of memory using system bus access:

Op Address Value Comment

Write sbcs sbaccess = 2, sbautoincrement Turn on autoincrement

Write sbaddress0 address

Write sbdata0 value0

Write sbdata0 value1

...

Write sbdata0 valueN

B.2.8.2 Using Program Buffer

Through the Program Buffer, the hart performs the memory accesses. Addresses are physical or
virtual (depending on mprven and other system configuration).

Write a word to memory using program buffer:

Op Address Value Comment

Write progbuf0 sw s1, 0(s0)

Write progbuf1 ebreak

Write data0 address

Write command write, regno = 0x1008 Write s0

Write data0 value

Write command write, postexec, regno =
0x1009

Write s1, then execute pro-
gram buffer

Write block of memory using program buffer:

RISC-V Debug Support Version 1.0.0-STABLE 107

Op Address Value Comment

Write progbuf0 sw s1, 0(s0)

Write progbuf1 addi s0, s0, 4

Write progbuf2 ebreak

Write data0 address

Write command write, regno = 0x1008 Write s0

Write data0 value0

Write command write, postexec, regno =
0x1009

Write s1, then execute pro-
gram buffer

Write abstractauto autoexecdata [0] Set autoexecdata [0]

Write data0 value1

...

Write data0 valueN

Write abstractauto 0 Clear autoexecdata [0]

B.2.8.3 Using Abstract Memory Access

Abstract memory accesses act as if they are performed by the hart, although the actual implemen-
tation may differ.

Write a word to memory using abstract memory access:

Op Address Value Comment

Write data1 address

Write data0 value

Write command cmdtype=2, aamsize =2,
write=1

Write a block of memory using abstract memory access:

Op Address Value Comment

Write data1 address

Write data0 value0

Write command cmdtype=2, aamsize =2,
write=1, aampostincrement
=1

Write abstractauto 1 Re-execute the command
when data0 is accessed

Write data0 value1

Write data0 value2

...

Write data0 valueN

Write abstractauto 0 Disable auto-exec

108 RISC-V Debug Support Version 1.0.0-STABLE

B.2.9 Triggers

A debugger can use hardware triggers to halt a hart when a certain event occurs. Below are some
examples, but as there is no requirement on the number of features of the triggers implemented by
a hart, these examples might not be applicable to all implementations. When a debugger wants to
set a trigger, it writes the desired configuration, and then reads back to see if that configuration is
supported.

Enter Debug Mode just before the instruction at 0x80001234 is executed, to be used as an instruc-
tion breakpoint in ROM:

tdata1 0x105c action=1, match=0, m=1, s=1, u=1, execute=1

tdata2 0x80001234 address

Enter Debug Mode right after the value at 0x80007f80 is read:

tdata1 0x4159 timing=1, action=1, match=0, m=1, s=1, u=1,
load=1

tdata2 0x80007f80 address

Enter Debug Mode right before a write to an address between 0x80007c80 and 0x80007cef (inclu-
sive):

tdata1 0 0x195a action=1, chain=1, match=2, m=1, s=1, u=1,
store=1

tdata2 0 0x80007c80 start address (inclusive)

tdata1 1 0x11da action=1, match=3, m=1, s=1, u=1, store=1

tdata2 1 0x80007cf0 end address (exclusive)

Enter Debug Mode right before a write to an address between 0x81230000 and 0x8123ffff (inclusive):

tdata1 0x10da action=1, match=1, m=1, s=1, u=1, store=1

tdata2 0x81237fff 16 bits to match exactly, then 0, then all ones.

Enter Debug Mode right after a read from an address between 0x86753090 and 0x8675309f or
between 0x96753090 and 0x9675309f (inclusive):

tdata1 0 0x41a59 timing=1, action=1, chain=1, match=4, m=1, s=1,
u=1, load=1

tdata2 0 0xfff03090 Mask for low half, then match for low half

tdata1 1 0x412d9 timing=1, action=1, match=5, m=1, s=1, u=1,
load=1

tdata2 1 0xefff8675 Mask for high half, then match for high half

RISC-V Debug Support Version 1.0.0-STABLE 109

B.2.10 Handling Exceptions

Generally the debugger can avoid exceptions by being careful with the programs it writes. Some-
times they are unavoidable though, e.g. if the user asks to access memory or a CSR that is not
implemented. A typical debugger will not know enough about the hardware platform to know
what’s going to happen, and must attempt the access to determine the outcome.

When an exception occurs while executing the Program Buffer, cmderr becomes set. The debugger
can check this field to see whether a program encountered an exception. If there was an exception,
it’s left to the debugger to know what must have caused it.

B.2.11 Quick Access

There are a variety of instructions to transfer data between GPRs and the data registers. They
are either loads/stores or CSR reads/writes. The specific addresses also vary. This is all specified
in hartinfo. The examples here use the pseudo-op transfer dest, src to represent all these
options.

Halt the hart for a minimum amount of time to perform a single memory write:

Op Address Value Comment

Write progbuf0 transfer arg2, s0 Save s0

Write progbuf1 transfer s0, arg0 Read first argument (address)

Write progbuf2 transfer arg0, s1 Save s1

Write progbuf3 transfer s1, arg1 Read second argument (data)

Write progbuf4 sw s1, 0(s0)

Write progbuf5 transfer s1, arg0 Restore s1

Write progbuf6 transfer s0, arg2 Restore s0

Write progbuf7 ebreak

Write data0 address

Write data1 data

Write command 0x10000000 Perform quick access

This shows an example of setting the m bit in mcontrol to enable a hardware breakpoint in M-
mode. Similar quick access instructions could have been used previously to configure the trigger
that is being enabled here:

Op Address Value Comment

Write progbuf0 transfer arg0, s0 Save s0

Write progbuf1 li s0, (1 << 6) Form the mask for m bit

Write progbuf2 csrrs x0, tdata1, s0 Apply the mask to mcontrol

Write progbuf3 transfer s0, arg2 Restore s0

Write progbuf4 ebreak

Write command 0x10000000 Perform quick access

110 RISC-V Debug Support Version 1.0.0-STABLE

B.3 Native Debugger Implementation

The spec contains a few features to aid in writing a native debugger. This section describes how
some common tasks might be achieved.

B.3.1 Single Step

Single step is straightforward if the OS or a debug stub runs in M-Mode while the program being
debugged runs in a less privileged mode. When a step is required, the OS or debug stub writes count
=1, action =0, m =0 before returning control to the lower user program with an mret instruction.

On tiny systems which only supports M-Mode single step is doable, but tricky to get right. To
single step, the debug stub would execute something like:

li t0, \FcsrIcountCount=4, \FcsrIcountAction=0, \FcsrIcountM=1

csrw tdata1, t0 /* Write the trigger. */

lw t0, 8(sp) /* Restore t0, count decrements to 3 */

lw sp, 0(sp) /* Restore sp, count decrements to 2 */

mret /* Return to program being debugged. count decrements to 1 */

Index

aampostincrement, 22

aamsize, 22

aamvirtual, 21

aarpostincrement, 19

aarsize, 19

abits, 93

abstractauto, 38

abstractcs, 36

Access Memory, 20

Access Register, 18

ackhavereset, 32

ackunavail, 32

action, 74, 80, 84, 86–88

address, 46, 47, 94

allhalted, 30

allhavereset, 29

allnonexistent, 29

allresumeack, 29

allrunning, 29

allunavail, 29

anyhalted, 30

anyhavereset, 29

anynonexistent, 29

anyresumeack, 29

anyrunning, 30

anyunavail, 29

authbusy, 30

authdata, 41

authenticated, 30

autoexecdata, 39

autoexecprogbuf, 38

busy, 36

BYPASS, 95

cause, 56

chain, 74, 81

clrkeepalive, 32

clrresethaltreq, 33

cmderr, 37

cmdtype, 19–21, 38

command, 37

confstrptr0, 39

confstrptr1, 39

confstrptr2, 39

confstrptr3, 40

confstrptrvalid, 30

control, 38

count, 84

custom, 49

custom0, 49

data, 48, 49, 67, 69, 94

data0, 40

dataaccess, 35

dataaddr, 35

datacount, 37

datasize, 35

dcsr, 53

debugver, 54

dmactive, 34

dmcontrol, 30

dmcs2, 41

dmexttrigger, 42

dmi, 94

dmihardreset, 93

dmireset, 93

dmistat, 93

dmode, 66

dmstatus, 28

dpc, 57

dscratch0, 58

dscratch1, 58

dtmcs, 93

ebreakm, 55

ebreaks, 55

ebreaku, 55

ebreakvs, 54

ebreakvu, 55

111

112 RISC-V Debug Support Version 1.0.0-STABLE

etrigger, 86
execute, 76, 83

field, 6

group, 42
grouptype, 42

haltreq, 31
haltsum0, 42
haltsum1, 43
haltsum2, 43
haltsum3, 44
hartinfo, 34
hartreset, 32
hartsel, 30
hartselhi, 32
hartsello, 32
hasel, 32
hasresethaltreq, 30
hawindow, 36
hawindowsel, 35, 36
hcontext, 68, 69
hgselect, 42
hgwrite, 42
hit, 71, 78, 84–86, 88

icount, 83
IDCODE, 92
idle, 93
impebreak, 29
info, 68
intctl, 88
itrigger, 84

keepalive, 31

load, 76, 83

m, 75, 82, 84, 85, 87
ManufId, 93
maskmax, 71
match, 75, 82
mcontext, 69
mcontrol, 70
mcontrol6, 76
mhselect, 89
mhvalue, 88
mprven, 56
mpte, 68

mscontext, 70
mte, 68

ndmreset, 33
ndmresetpending, 29
nextdm, 40
nmi, 85
nmip, 56
nscratch, 35

op, 95

PartNumber, 93
pending, 84
postexec, 19
priv, 58
progbuf0, 41
progbufsize, 36
prv, 57, 59

Quick Access, 20

regno, 20
relaxedpriv, 37
resethaltreq, 31
resume ack bit, 15, 29
resumereq, 31

s, 75, 82, 84, 85, 87
sbaccess, 45
sbaccess128, 45
sbaccess16, 46
sbaccess32, 46
sbaccess64, 46
sbaccess8, 46
sbaddress0, 46
sbaddress1, 46
sbaddress2, 47
sbaddress3, 47
sbasize, 45
sbautoincrement, 45
sbbusy, 45
sbbusyerror, 44
sbcs, 44
sbdata0, 47
sbdata1, 48
sbdata2, 49
sbdata3, 49
sberror, 45

RISC-V Debug Support Version 1.0.0-STABLE 113

sbreadonaddr, 45
sbreadondata, 45
sbversion, 44
sbytemask, 89, 90
scontext, 69
select, 71, 78, 88
setkeepalive, 32
setresethaltreq, 33
shortname, 6
size, 80
sizehi, 71
sizelo, 73
sselect, 89
step, 57
stepie, 55
stickyunavail, 29
stopcount, 55
stoptime, 56
store, 76, 83
svalue, 89

target-specific, 22
tcontrol, 68
tdata1, 65
tdata2, 67
tdata3, 67
textra32, 88
textra64, 89
timing, 72, 79
tinfo, 67
tmexttrigger, 87
transfer, 20
tselect, 65
type, 66

u, 75, 83, 84, 86, 87

v, 56, 59
Version, 93
version, 30, 94
vs, 77, 84–86
vu, 77, 84, 85, 87

write, 20, 22

Appendix C

Change Log

Revision Date Author(s) Description

9dc1ee4 2022-09-03 YenHaoChen Clarify ’dmode is cleared’ means ’the new value of
dmode would be 0’ (#748)

b71e15d 2022-08-24 Tim Newsome Elaborate on version detection. (#741)
d749752 2022-07-18 Tim Newsome Remove license from debug defines.h. (#743)
198ab7c 2022-06-27 Tim Newsome Remove clarifying information that is false. (#740)
e5ce2b2 2022-06-16 Paul Donahue Fix order of states to be consistent with a few sen-

tences earlier. (#738)
1744041 2022-06-17 Yanqi Yang Clarify the current version in readme. (#739)
d401f57 2022-06-09 Tim Newsome Rebuild PDF.
c26287e 2022-06-09 Paul Donahue Change dcsr.cause priorities (#693)
baaef96 2022-05-26 Jiuyang Liu Add GitHub Action to auto release. (#733)
182b9c4 2022-05-20 Tim Newsome List trigger actions described by the trace spec

(#734)
c40847a 2022-05-20 Tim Newsome Add trigger action values, for debug defines.h.

(#732)
efd25df 2022-05-19 Tim Newsome Add field values to XML register description. (#727)
3ae76ea 2022-05-18 Tim Newsome The program buffer may not be readable. (#731)
42224a6 2022-05-16 Tim Newsome Make data registers Message Registers. (#728)
df943f2 2022-05-12 Tim Newsome Describe debug defines.h. (#729)
1c095fd 2022-05-12 Tim Newsome Fix formatting error at the end of document. (#730)
9137a14 2022-05-11 Tim Newsome Add arguments to C macros that need them. (#724)
4c0859b 2022-05-11 Tim Newsome mte/mpte apply only to breakpoint traps (#723)
02a2793 2022-05-10 Tim Newsome Tighten up language around icount matching.

(#722)
127e223 2022-05-10 Tim Newsome Select and issue a command can be simultaneous

(#725)
8c22825 2022-05-09 Tim Newsome Rebuild PDF.
17187e4 2022-04-26 Tim Newsome Use trigger type 15 to indicate disabled. (#721)
8705fd1 2022-04-22 Paul Donahue Clarifications/bug fixes: mscontext and tselect

(#702)
12a3eb6 2022-04-07 Tim Newsome Rebuild PDF.

114

RISC-V Debug Support Version 1.0.0-STABLE 115

abefdcf 2022-04-07 Paul Donahue Clarify behavior of low bits of tdata2 when match=1.
(#680)

191c8bf 2022-04-07 Tim Newsome dtmcs.dmistat is a read-only alias of dmi.op. (#720)
70bdd3f 2022-04-06 Tim Newsome Define what 0 in register fields means. (#719)
598d4eb 2022-04-01 Paul Donahue constrptr points to the configuration structure, not

string. (#714)
ab0341e 2022-04-01 Paul Donahue hawindow/hawindowsel are WARL (#715)
eeef4d5 2022-03-29 Paul Donahue If masking is supported then tdata2 must be able to

hold all XLEN bits. (#716)
356feb1 2022-03-24 Tim Newsome Fix contradiction in icount description. (#665)
2676fa1 2022-03-24 Tim Newsome Mention textra in the trigger types that it affects.

(#711)
3b16253 2022-03-24 Tim Newsome Clarify writing to dmcs2.dmexttrigger. (#705)
9c52c14 2022-03-22 Tim Newsome Fix reset value of etrigger.type (#712)
e9994d7 2022-03-21 Tim Newsome Move nmi from etrigger to itrigger. (#709)
98203bb 2022-03-16 Paul Donahue Clarify tmexttrigger with action=0. (#707)
72ab3ae 2022-03-08 Paul Donahue ackunavail doesn’t clear unavail on harts that are still

unavailable (#706)
b659d7d 2022-02-10 Tim Newsome Rebuild PDF.
fe3d1e6 2022-02-09 Tim Newsome Clarify partial abstract reg writes. (#704)
5b219ed 2022-02-08 Tim Newsome Fix uses of \index macro. (#703)
6ea272f 2022-01-18 Paul Donahue Stoptime clarification per architecture review (#699)
e83441e 2022-01-10 Tim Newsome Rebuild PDF.
aa07a68 2022-01-10 Tim Newsome Clarify that tdata1 is WARL (#701)
f3323bb 2022-01-07 Paul Donahue Remove hcxe and scxe in tcontrol, using Smstateen

instead. (#700)
e350c4b 2022-01-07 Paul Donahue Define mtval behavior on action=0 triggers (#695)
106dd3c 2021-12-29 Paul Donahue ”privilege level” -¿ ”privilege mode” per architecture

review feedback (#698)
337b8a5 2021-12-29 Paul Donahue Clarify behavior of writes to abstractauto while

busy=1 (#696)
b187cff 2021-12-16 Paul Donahue Specify accessibility of mscontext (#694)
92aef97 2021-12-16 Tim Newsome Resume ack is set for any resume cause. (#692)
f7dcc8c 2021-12-13 Tim Newsome Label Ztrigger and Zdebug chapters. (#669)
3f44538 2021-12-09 Tim Newsome Rebuild PDF.
f3c0997 2021-11-09 Tim Newsome autoexec* is the same as writing command (#685)
df0ea10 2021-11-08 Tim Newsome Rebuild PDF.
e3bd339 2021-11-08 Paul Donahue Fix obvious error in dcsr.cause=2 description.

(#681)
017e943 2021-11-08 Paul Donahue Debuggers may set action!=1 when clearing dmode

(#679)
3dfe4f7 2021-10-26 Paul Donahue Make mcontrol6.hit description consistent with

mcontrol.hit (#687)
42b8be9 2021-10-20 A.M fixed wrong ref in Terminology section and rebuilt

PDF (#684)
1a72df3 2021-10-07 Tim Newsome Rebuild PDF.
b992bc5 2021-10-07 Paul Donahue Clarify that etrigger.nmi ignores vs and vu (not just

m, s, u) (#676)

116 RISC-V Debug Support Version 1.0.0-STABLE

55c492d 2021-09-17 Paul Donahue Clarify ASID filtering (#667)
031ff77 2021-09-15 Tim Newsome SBA write memory example: configure size (#673)
80563e2 2021-09-14 Tim Newsome Run ‘apt update‘ (#672)
fc52dc5 2021-09-14 Tim Newsome Don’t call read/write CSRs read-only. (#668)
57c1233 2021-09-13 Tim Newsome Rebuild PDF.
6e127fc 2021-08-16 Paul Donahue Native triggers and reentrancy (#660)
6a9b355 2021-08-13 Tim Newsome Clarify unused debug connector pins names/uses.

(#664)
f77291e 2021-08-12 Tim Newsome Rebuild PDF.
33cd3a6 2021-08-10 Paul Donahue Clarify dcsr.cause=2 (#663)
8f7873d 2021-07-28 Paul Donahue Clarify dpc for non-mcontrol triggers (#624)
70e3db2 2021-07-13 Daniel Mangum Update link to mailing list in README.md (#658)
63c985f 2021-07-12 Tim Newsome Rebuild PDF.
9ac6506 2021-07-08 Paul Donahue xepc instead of exception PC (#654)
e6b7b6c 2021-07-08 Tim Newsome Clarify postincrement/transfer behavior. (#655)
f393a8d 2021-07-08 Daniel Mangum Fix small grammatical error in suggested DMI signals

(#656)
d584f0f 2021-07-08 Tim Newsome Attempt to build the document using github actions.

(#657)
022d62f 2021-06-29 Paul Donahue Clarify hstatus when the H extension isn’t imple-

mented (#646)
c391ffe 2021-06-16 Paul Donahue MPRV is in mstatus, not mcontrol. (#651)
a1e05fb 2021-06-14 Paul Donahue Clarify what happens to halted harts upon DM reset

(#648)
0f4ea2f 2021-06-10 Tim Newsome Rebuild PDF.
641cd87 2021-06-09 Tim Newsome Unselected harts may change groups when hgwrite=1

(#642)
55333c4 2021-06-09 Tim Newsome hasel etc. are only ignored by abstract commands.

(#643)
3704486 2021-06-09 Tim Newsome Mention license in debug defines.h. (#641)
b68c265 2021-06-08 Paul Donahue Single stepping an instruction that fires a trigger

(#622)
fdecf04 2021-06-08 Tim Newsome Labels must come after (or in) their caption. (#640)
5350603 2021-06-04 Paul Donahue Traps caused by action=0 triggers can be delegated

via medeleg (#637)
11bf0db 2021-05-28 Tim Newsome Divide the spec into ISA and non-ISA. (#635)
3334910 2021-05-18 Tim Newsome Further diagram update. (#632)
b344c8f 2021-05-14 Tim Newsome External debuggers should set dmode. (#634)
d9434bc 2021-05-14 Paul Donahue Fix #630 (#633)
39fab4b 2021-05-10 Tim Newsome Rebuild PDF.
090eac8 2021-05-04 Tim Newsome Update Run/Halt Debug State Machine. (#629)
31a5f61 2021-04-08 Tim Newsome Rebuild PDF.
e3e408c 2021-03-25 Paul Donahue Clarify triggers (#628)
e0e0b4d 2021-03-23 Tim Newsome Remove latest draft link. (#627)
1b665f3 2021-03-22 Paul Donahue clarify abstractauto (#625)
7242fe1 2021-03-17 Paul Donahue Clarify DM behavior for non-existent registers

(#621)
9ae7560 2021-03-10 Paul Donahue Fix minor typos (#620)

RISC-V Debug Support Version 1.0.0-STABLE 117

bd786dc 2021-02-08 Tim Newsome Rebuild PDF.
132ffb8 2021-02-02 Thomas Wicki Clarify MCONTROL/MCONTROL6 ’timing’ de-

scription (#614)
075de11 2021-02-02 Paul Donahue Clarify aarpostincrement wrapping (#613)
fb15173 2021-01-25 Paul Donahue hartsel and hasel are WARL (#612)
fcc2a33 2021-01-11 Tim Newsome Rebuild PDF.
1b9caa1 2021-01-11 Tim Newsome Define some more terms/acronyms. (#610)
822f63b 2021-01-05 Tim Newsome Move dret completely into the appendix. (#611)
57e271d 2020-12-30 Tim Newsome Use A-mode instead of ”A mode” consistently.

(#609)
08e072a 2020-12-29 Ernie Edgar update version of priv spec to one with hypervisor

(#608)
bb578a4 2020-12-28 Tim Newsome Clarify details around fence and progbuf. (#601)
7e47254 2020-12-28 Tim Newsome Rebuild PDF.
90ba168 2020-12-21 Tim Newsome Clarify how many bits mcontrol/mcontrol6 compare.

(#604)
27d735c 2020-12-18 Tim Newsome Clarify maskmax corner cases. (#607)
2930c1d 2020-12-18 Tim Newsome Clarify that ASID might come from satp or vsatp.

(#606)
c98d7e6 2020-12-18 Tim Newsome Mark 1.0 as STABLE. (#605)
edd6482 2020-12-17 Tim Newsome Breakpoint in trap handler *might* be unrecoverable.

(#603)
c49e9c3 2020-12-16 Tim Newsome Rebuild PDF.
4772b19 2020-12-03 Ernie Edgar Add version 1.0 value to dtmcs.version field (#602)
393d965 2020-11-23 Tim Newsome Document changes since 0.13. (#600)
f2ff7a6 2020-11-16 Tim Newsome Rebuild PDF.
2d7190c 2020-11-16 Tim Newsome Add clic bit to tmexttrigger. (#599)
0198481 2020-11-16 Tim Newsome Explain how to simply write any trigger. (#598)
b35af12 2020-11-16 Tim Newsome Clarify trigger CSR behavior when XLEN changes.

(#597)
f116aea 2020-11-16 benscotstaveley add dmstatus.ndmresetpending to allow a debugger

to determine when ndmreset is complete (#594)
3dd952c 2020-11-13 Tim Newsome Chains should all have the same type. (#596)
34f80c6 2020-11-13 Tim Newsome AMO operations may be ignored by mcontrol trig-

gers. (#595)
9fea4c5 2020-11-13 Tim Newsome Add keepalive feature. (#592)
53191a4 2020-11-12 Bruce Ablei-

dinger
Added sbytemask field to textra32 and textra64
(#588)

26040fd 2020-11-11 Tim Newsome hit must be set on fire, may be set on match (#593)
a2cf8fc 2020-11-11 Tim Newsome Create LaTeX macros for fields without descriptions.

(#591)
2bde1e4 2020-11-10 Tim Newsome Change version number to 1.0. (#590)
75a7607 2020-11-10 Paul Donahue Fix #587 (#589)
cabb06d 2020-11-09 Tim Newsome Rebuild PDF.
c89895c 2020-11-06 Tim Newsome Change quick access exceptions to halt the target.

(#585)
46804a6 2020-11-04 Paul Donahue Recommend mprven=1 (#580)
219d105 2020-11-03 Tim Newsome Add pending state/bit to icount. (#574)

118 RISC-V Debug Support Version 1.0.0-STABLE

b860d53 2020-11-03 Tim Newsome RISC-V External Debug Support -¿ RISC-V Debug
Support (#581)

fd654d4 2020-11-02 Paul Donahue textra32/64 also affects the new mcontrol6 triggers
(#578)

3d24926 2020-10-30 Tim Newsome List all DM registers in Table 3.8. (#579)
971d0aa 2020-10-30 Paul Donahue Add support for the A extension (#561)
d589bc3 2020-10-30 Paul Donahue Remove all uses of the ambiguous term ”may not”

(#576)
db8e814 2020-10-29 Paul Donahue Triggers affect harts, not the system. For instance,

there may be (#575)
c877e9c 2020-10-29 Paul Donahue Added exttrigger capability as type 7 (#543)
0a81ec3 2020-10-28 Tim Newsome Debuggers should know when harts are unavailable.

(#520)
65af35f 2020-10-26 Ernie Edgar Update debug module.tex (#577)
99dfc98 2020-10-23 Scott Johnson Don’t decrement icount.count when exception is

blocked by tcontrol.mte (#557)
66481cf 2020-10-16 Paul Donahue Fix broken reference (#567)
0b42843 2020-10-16 benscotstaveley require polling of dmactive low as well as dmactive

high transitions (#566)
1e81d58 2020-10-16 Paul Donahue Use official RISC-V terminology (#564)
5c65dfe 2020-10-09 Tim Newsome Rebuild PDF.
9c083f1 2020-10-05 Ernie Edgar Clarify that PMP must allow access to DM for debug

to be possible (#554)
7aa5978 2020-09-22 Paul Donahue Hypervisor support (#549)
597281c 2020-09-16 Ernie Edgar Update rocket-chip link to specific commit for per-

manence (#552)
072affe 2020-09-16 Paul Donahue Follow suggestion in #544 (#548)
8345674 2020-09-15 Paul Donahue Add dret to rule 8. (#547)
175090c 2020-09-11 Paul Donahue Add mcontrol6. (#538)
de1ec1a 2020-09-10 Paul Donahue Fix links to point to fields in the correct registers.

(#546)
4f625ca 2020-09-03 Ernie Edgar Add scontext2 alias for scontext (#535)
7c0a6d5 2020-08-28 Jan Matyas aamvirtual: Clarification for systems without address

translations (#542)
30b1a97 2020-08-24 Tim Newsome Remove end-of-line whitespace in generated com-

ments. (#540)
6e90a60 2020-08-21 Tim Newsome Add header to debug defines.h (#539)
0200b27 2020-08-21 Tim Newsome Improve formatting of autogenerated C header files

(#537)
97d51c2 2020-08-11 Tim Newsome Rebuild PDF.
fcf4002 2020-08-11 Tim Newsome authdata should only should be implemented if used

(#521)
0570f14 2020-08-05 Paul Donahue Add abstractcs.relaxedpriv (#536)
2210002 2020-07-07 Tim Newsome Rebuild PDF.
b9959e5 2020-06-30 Tim Newsome Make explicit that aampostincrement is optional.

(#532)
67fed8f 2020-06-19 Tim Newsome Explicitly allow uni-directional external triggers.

(#526)

RISC-V Debug Support Version 1.0.0-STABLE 119

9c69bf3 2020-06-09 Tim Newsome Rebuild PDF.
85bf4df 2020-05-21 Tim Newsome Add Kai Meinhard to contributors list.
2f1c133 2020-05-21 Kai Meinhard Appendix B suggests signals for a DMI with one

DTM connected to one DM (#524)
708b1e0 2020-04-10 Tim Newsome Add Larry Madar.
e02a8b6 2020-04-07 Tim Newsome Rebuild PDF.
372b27f 2020-03-23 Tim Newsome All tdata functionality is optional... (#444)
50f5c8f 2020-03-11 Tim Newsome Explicitly allow hard-coded halt/resume groups.

(#517)
f4794bb 2020-03-10 Tim Newsome Rebuild PDF.
e3ec24e 2020-02-13 bdwyatt Adding version encoding for 0.14 spec. (#512)
cf9a884 2020-02-11 Tim Newsome Rebuild PDF.
fdd5ad6 2020-02-11 Philipp Wagner dcsr.prv should be WARL, not R/W (#498)
38b2794 2020-02-11 Tim Newsome sizehi only exists if Xlen¿64. (#514)
5a54283 2020-01-16 Tim Newsome Use exception, trap, and interrupt as in ISA spec

(#511)
a989a71 2020-01-13 Tim Newsome Clarify dmireset/dmihardreset. (#508)
d10d8d0 2020-01-06 Tim Newsome Rebuild PDF.
efc0143 2020-01-06 Tim Newsome Clarify action=1 (enter Debug Mode) with dmode=0

(#501)
439fb93 2020-01-06 Tim Newsome Fix conflict in sbdata0/sbautoincrement definition.

(#507)
d35ce10 2019-12-10 Tim Newsome Add resume groups. (#506)
2726f30 2019-12-06 Tim Newsome Rebuild PDF.
a310a37 2019-12-04 Tim Newsome Make haltsum0 optional if there is only one hart.

(#505)
349c826 2019-11-26 Tim Newsome Halt state may not be preserved across reset. (#504)
4ab79d7 2019-11-26 Tim Newsome Clear MPRV when resuming into lower privilege

mode. (#503)
c9c286b 2019-11-22 Tim Newsome Time may pass before dmactive becomes high.

(#500)
9d55a57 2019-11-21 Megan Wachs Make the emitted registers chisel3
014505f 2019-10-08 Tim Newsome Rebuild PDF.
62c63b8 2019-10-04 Tim Newsome Document forward progress guarantees in Debug

Mode. (#496)
d933bec 2019-10-02 Tim Newsome Rewrite/clarify DM Reset Control (#494)
039bd5a 2019-09-23 Philipp Wagner Fix wrong table reference (#484)
106b4f2 2019-09-16 Tim Newsome DM reset must also reset all the DM’s harts. (#493)
8bfcd17 2019-09-13 Tim Newsome Explicitly list cmderr=6 (reserved). (#491)
448de85 2019-09-12 Philipp Wagner dmcontrol.hartreset is WARL, not R/W (#490)
8637b3c 2019-09-10 Tim Newsome Rebuild PDF.
f00f436 2019-09-10 Philipp Wagner Tiny style fix for email ”link” on title page (#486)
3646788 2019-09-10 Philipp Wagner Fix page references in cmdtype table (#487)
99ae160 2019-09-09 Megan Wachs Update implementations.tex (#482)
f9c9ed4 2019-09-04 Philipp Wagner Update registers.py to use Python 3 (#483)
37d8ee1 2019-09-03 Philipp Wagner Git ignore intermediate and output files (#485)
1e99ce7 2019-08-13 Tim Newsome Tighten up trigger specification. (#478)
a121ee1 2019-08-13 Tim Newsome Rebuild PDF.

120 RISC-V Debug Support Version 1.0.0-STABLE

7d126a9 2019-07-16 Tim Newsome Mention the scontext reg number isn’t conventional
(#474)

b5df5bd 2019-07-16 Tim Newsome Explicitly document confstrptr[1-3]. (#475)
e6311af 2019-07-12 Tim Newsome Change R/W1C to reduce requirements on hardware.

(#472)
178e749 2019-07-11 Tim Newsome Define what we mean by virtual address. (#473)
340c302 2019-07-09 Tim Newsome Rebuild PDF.
77d58e6 2019-07-08 Tim Newsome Numerous tweaks, responding to Marc Gauthier

(#463)
ab89a86 2019-07-04 Tim Newsome Addressing more feedback from Marc Gauthier.

(#465)
624a6b8 2019-06-26 Tim Newsome Without S-mode, textra.svalue and .sselect should be

0 (#469)
1977166 2019-06-11 Tim Newsome Rebuild PDF.
b06eb70 2019-06-06 Tim Newsome Clarify mcontrol.size. (#460)
165f120 2019-05-29 Tim Newsome Fully qualify register/field macro names. (#457)
c47f0a0 2019-05-29 Paul Donahue Fix #452 (#459)
633ee13 2019-05-28 Paul Donahue Fixed #453 (#458)
96ef519 2019-05-20 Tim Newsome The *external* debugger must restore tselect.

(#456)
e11f777 2019-05-08 Tim Newsome Rebuild PDF.
034d0d6 2019-04-30 Tim Newsome Clarify that debuggers should honor maskmax.

(#440)
4369eb8 2019-04-30 pdonahue-

ventana
Finesse ligatures to work with Adobe Acrobat Reader
search and cut-and-paste (#442)

d125b9b 2019-04-30 pdonahue-
ventana

sberror and sbbusyerror don’t both have to be non-
zero to prevent (#447)

859e167 2019-04-30 Tim Newsome Tweak address matches. (#449)
96b2b28 2019-04-25 Tim Newsome Clarify not supported cmderr. (#446)
658417f 2019-04-16 Tim Newsome When extending IR, BYPASS still is all ones. (#437)
2e24bab 2019-04-16 Tim Newsome JTAG does not suggest any specific IDCODE encod-

ing (#439)
c50efcb 2019-04-09 Tim Newsome Rebuild PDF.
281e4ad 2019-03-21 Tim Newsome Don’t run text off a page when longtable is used.

(#434)
76874e9 2019-03-20 Tim Newsome Explain how to detect the version. (#433)
a543b76 2019-03-12 Tim Newsome Rebuild PDF.
a686747 2019-02-21 Tim Newsome All trigger registers are optional (#431)
d6e4cd8 2019-02-19 Josh Scheid Fix typo. (#426)
e773936 2019-02-19 Tim Newsome Try to get travis to build the release branch. (#430)
3621456 2019-02-19 Tim Newsome Abstract memory accesses use the low bits of arg0.

(#429)
94a5f9c 2019-02-12 Tim Newsome Clarify that harts halt out of reset if haltreq=1

(#419)
518e732 2019-02-12 Tim Newsome Rebuild PDF.
62f36e1 2019-02-11 Tim Newsome Errata go in 0.13.x, this is 0.14. (#424)
66c3117 2019-01-31 Tim Newsome Address triggers may fire on any accessed address.

(#421)

RISC-V Debug Support Version 1.0.0-STABLE 121

6102412 2019-01-31 Tim Newsome \Faamsize does not affect Argument Width. (#420)
1ea1a9b 2019-01-09 Tim Newsome Add nmi bit to etrigger. (#408)
d1c7a3f 2019-01-09 Tim Newsome Reserve trigger types for non-standard use. (#417)
83b12fb 2019-01-08 Tim Newsome Rebuild PDF.
b4b3b5c 2019-01-07 Tim Newsome \Fversion may be invalid when \Factive=0 (#414)
800450f 2019-01-01 Tim Newsome mte only applies when action=0 (#411)
67c7fe2 2018-12-13 Tim Newsome Add pre-built PDF of the 0.13 release.
5e7cb72 2018-12-12 Tim Newsome Stopcount only applies to hart-local counters. (#405)
e5902fc 2018-12-12 Tim Newsome Reserve some DMI space for non-standard use.

(#406)
3c0dc6a 2018-12-11 Tim Newsome Rebuild PDFs.
aeee8f3 2018-12-04 Tim Newsome Add halt groups and external triggers. (#404)
814406d 2018-11-13 Tim Newsome Clarify what the 4 states are. (#403)
cb64db0 2018-11-06 Tim Newsome Rebuild PDFs.
70da60c 2018-11-05 Tim Newsome sselect applies to svalue. (#402)
66fe38e 2018-11-05 Tim Newsome Fix trigger example value. (#401)
688ccaf 2018-11-05 Tim Newsome Resume ack is set after resume. (#400)
553dda7 2018-11-05 Tim Newsome Fix sbdata0 read order of operations. (#392)
b864f54 2018-10-31 Tim Newsome Add Compatibility section to the introduction.

(#399)
0b205b1 2018-10-31 Tim Newsome Create errata document. (#398)
5390063 2018-10-26 Tim Newsome Bump version to 0.13.1. (#391)
e46c2db 2018-10-08 bdwyatt Fix link to PDF (#387)
ed66f39 2018-10-02 Tim Newsome Rebuild PDF.
f2873e7 2018-10-02 Tim Newsome Run/Halt figure applies only to single-hart systems.

(#385)
a79945f 2018-10-02 Tim Newsome Add ASID and context compare for triggers (#363)
9bb7da6 2018-10-02 Tim Newsome Clean up language of #383. (#384)
fce4da5 2018-10-02 Tim Newsome Make haltreq and resumereq proper write-only.

(#383)
e5da11e 2018-10-02 Tim Newsome Minimal implementations can’t access all registers

(#381)
e1be8f4 2018-10-02 Tim Newsome Format quotes correctly. (#382)
e9103ba 2018-10-02 Tim Newsome Change from AVR debug connector to MIPI-10,20.

(#375)
8841a7a 2018-10-02 Tim Newsome Abstract reg access is independent of run/halt.

(#380)
71c54bb 2018-10-02 Tim Newsome Explicitly state what’s required for compliance.

(#379)
4edb285 2018-10-01 Tim Newsome Rebuild PDF.
b0420b3 2018-10-01 Tim Newsome Final cleanups! Mostly table formatting. (#377)
d43f5a4 2018-10-01 Tim Newsome Clarify W1. (#372)
72618f3 2018-10-01 Tim Newsome Leave space for trace, but don’t specify anything.

(#376)
b7db4ce 2018-10-01 Tim Newsome Add dcsr.cause for being halted out of reset. (#370)
42ab2a1 2018-09-28 Tim Newsome Clean up language, formatting, consistency. (#371)
7801874 2018-09-28 Tim Newsome Little language and formatting cleanups. (#366)
38ae12f 2018-09-27 Tim Newsome Reset dmi.op to 0 instead of 2. (#369)

122 RISC-V Debug Support Version 1.0.0-STABLE

b50dc0d 2018-09-27 Tim Newsome Formatting, language, consistency. (#373)
425e9b1 2018-09-27 Tim Newsome Distinguish draft and release builds. (#364)
c7b4e1c 2018-09-26 Tim Newsome Stepping over wfi does not enter wait state. (#368)
4725879 2018-09-25 Tim Newsome Language, formatting, and abstract cmd arguments.

(#367)
62bf89d 2018-09-25 Tim Newsome Rebuild PDF.
10dfa65 2018-09-24 Tim Newsome Allow global reset to reset the DM. (#350)
84ec8a5 2018-09-18 Tim Newsome Harts can be in exactly 1 of 4 states. (#354)
308eaf6 2018-09-17 Tim Newsome Mostly match ”official” style for credits. (#362)
b6187ff 2018-09-17 Tim Newsome Specify ackhavereset as W1. (#361)
41d9f06 2018-09-14 Tim Newsome Abstract commands might work on a hung hart.

(#360)
fa561bd 2018-09-14 Tim Newsome Can’t change harts during operations, and the cur-

rent hart becoming unavailable may terminate the
abstract command with error. (#322)

900cdbf 2018-09-11 Tim Newsome Rebuild PDF.
514ef6f 2018-09-07 Tim Newsome Clarify lack of notification for other reset harts

(#349)
e0ff31e 2018-09-07 Tim Newsome Clarify postexec when there is no Program Buffer

(#352)
3dacc00 2018-09-07 Florian Zaruba Move regno table to the actual access reg command

(#345)
5d25cd5 2018-09-06 Tim Newsome don’t set most bits of DMCONTROL during abstract

commands (#324)
12655e0 2018-09-06 Tim Newsome Document breakpoint exception + enter debug mode

(#299)
6894f4b 2018-09-05 Tim Newsome Define DXLEN as the widest supported XLEN.

(#298)
114a208 2018-09-04 Tim Newsome Restrict how many bits may be set in dmcontrol.

(#348)
4cd1563 2018-09-03 Tim Newsome Don’t change selected harts during hart reset. (#337)
1529c26 2018-09-03 Tim Newsome On trigger chains, only the last action is taken.

(#341)
18a3531 2018-08-31 Tim Newsome Authdata is bidirectional. (#347)
7d14f95 2018-08-27 Tommy Thorn m ”LaTeX/english issues: eg. -¿ e.g., etc” (#342)
0fb41b9 2018-08-27 Tim Newsome Don’t change step/stepie while running. (#340)
ff09418 2018-08-21 Tim Newsome Rebuild PDF.
6bd15ac 2018-08-20 Tim Newsome Be more clear about running signal. (#338)
e967b3b 2018-08-20 Tim Newsome mprven may be tied high or low. (#339)
0f120c0 2018-08-20 Tim Newsome Solution to native triggers in M mode only systems

(#309)
13d5c08 2018-08-17 Tim Newsome Thank John Hauser.
b52d9fe 2018-08-17 Tim Newsome Allow control xfers in progbuf to act as illegal.

(#331)
19058ef 2018-08-17 Tim Newsome Clarify that resumereq is not level-sensitive. (#321)
497352c 2018-08-16 Tim Newsome Side effects happen for abstract register accesses

(#334)
fd5cf62 2018-08-15 Tim Newsome Triggers do not fire in Debug Mode. (#335)

RISC-V Debug Support Version 1.0.0-STABLE 123

762d308 2018-08-15 Tim Newsome Add aarpostincrement to abstract register access.
(#333)

45b7636 2018-08-14 Tim Newsome Clearing hasel does not clear the ha mask reg. (#327)
2ca20aa 2018-08-13 Tim Newsome clrresethaltreq trumps setresethaltreq (#332)
57df3f3 2018-08-10 Tim Newsome \Rcommand is not readable. (#328)
81df032 2018-08-10 Tim Newsome Explain what we mean by Preset. (#323)
b51c6db 2018-08-10 Tim Newsome Clarify ebreak behavior when ebreak* are 0. (#311)
a14d868 2018-08-10 Tim Newsome Allow extra harts to be reset. (#330)
6d60ad9 2018-08-07 Tim Newsome Rebuild PDF
f4bd15f 2018-08-02 Tim Newsome Define cmderr for non-existent register access.

(#325)
2d7d3d0 2018-07-20 Tim Newsome Fix typo in data0 definition.
c8a64d1 2018-07-19 Tim Newsome Rebuild PDF.
9d2944f 2018-07-18 Tim Newsome Add size to mcontrol. (#310)
6bd1a4c 2018-07-16 Tim Newsome Put the description of dmstatus first. (#303)
25e81e5 2018-07-12 Tim Newsome Fix typo in trigger example. (#308)
8462c94 2018-07-09 Tim Newsome Rebuild pdf.
38fde94 2018-07-09 Tim Newsome datacount cannot be 0 (#286)
800ca8d 2018-07-06 Tim Newsome Clarifications requested by Jeremy Bennett (#280)
b363afa 2018-07-06 Tim Newsome Add missing .tex file to dependencies. (#302)
93340e4 2018-07-06 Tim Newsome Clarify that trigger registers are WARL. (#306)
95af58a 2018-07-06 Tim Newsome Force the register-address in place. (#304)
d83039d 2018-07-06 Tim Newsome \Fcause priority numbers: higher means higher

(#307)
921c6a3 2018-07-03 Tim Newsome Completing progbuf exec is I/O for fence insts.

(#305)
99e01fa 2018-06-27 Tim Newsome Add target-specific bits to abstract access memory.

(#295)
4a0152d 2018-06-19 Tim Newsome Only write busy to \Fcmderr if \Fcmderr is 0.

(#296)
b0dc615 2018-06-16 Tim Newsome Rebuild the PDF.
90873eb 2018-06-16 Tim Newsome Fix typo in abstract access memory examples.

(#297)
5fe8e08 2018-06-16 Tim Newsome dret is a section, not a subsection of reset (#294)
abfd8a0 2018-06-14 Tim Newsome Revert ”Only write busy to \Fcmderr if \Fcmderr is

0.”
7c66968 2018-06-14 Tim Newsome Only write busy to \Fcmderr if \Fcmderr is 0.
0f28f27 2018-06-08 Tim Newsome Abstract memory (#283)
7c840dd 2018-06-08 Tim Newsome Specify an Exception Trigger (#266)
9d0d8af 2018-06-06 Tim Newsome Clarify what address space these registers are in

(#281)
a7f293d 2018-06-03 Tim Newsome Add missing dependency to Makefile (#285)
37893aa 2018-05-30 Tim Newsome Make trigger types writable. (#279)
6730cc0 2018-05-29 Tim Newsome Explain priority assignment rationale. (#277)
b6d5d66 2018-05-25 Tim Newsome Prevent M mode triggers affecting D mode ones

(#282)
08ee84f 2018-05-22 Tim Newsome Reading tselect doesn’t guarantee a valid trigger.

(#271)

124 RISC-V Debug Support Version 1.0.0-STABLE

6dfe375 2018-04-18 Megan Wachs Debug Module should be capitalized
dac2120 2018-04-11 Megan Wachs resethaltreq: Proposal for forcing a hart into debug

mode out of reset
3b6442f 2018-05-16 Tim Newsome tdata2 need only hold valid addresses if select=0

(#278)
68501cb 2018-04-26 mwachs5 mprven: Add a bit to enable MPRV to take effect in

debug mode
9fcabe0 2018-05-03 Megan Wachs Appendix: correct and clarify what debugger vs DM

does
30773fd 2018-05-03 Tim Newsome Debuggers must not write sbcs while sbbusy is set

(#270)
50d8cd8 2018-05-03 Megan Wachs Remove merge commits from the changelog
3b7a296 2018-05-02 Tim Newsome Fix typo.
b26072b 2018-05-02 Tim Newsome Explain that 1 in hart array mask means selected
41f6026 2018-05-02 Megan Wachs Examples: Give an example of CSR access with

Quick Access (#268)
675bb14 2018-05-01 Tim Newsome Replace XLEN with MXLEN. #257
848cca1 2018-04-30 Megan Wachs Overview Diagram: increase number of Progbuf

words (#267)
a719ee6 2018-04-25 Megan Wachs fix misspelled name
097c701 2018-04-23 Tim Newsome Fix typo.
01dabd5 2018-04-23 Tim Newsome Incorporate review feedback.
ca7a9d0 2018-04-18 Tim Newsome Add trigger examples for match types 1, 4, and 5
cd5a15c 2018-04-16 Tim Newsome Give a few trigger examples.
4375927 2018-04-12 Tim Newsome Clarify that maskmax applies only to NAPOT trigger
acadfe9 2018-04-13 Megan Wachs NMI: debugging may not be possible if an NMI hap-

pens
8fb190c 2018-04-12 Tim Newsome Another attempt at SBA errors.
714c5d1 2018-04-11 Megan Wachs Core Debug: all interrupts are masked includes NMI
56fbd9d 2018-04-11 Megan Wachs DCSR: add nmip bit to indicate NMI is pending
fffe3c2 2018-04-10 Tim Newsome Clarify SBA unsupport access size error.
b4006ac 2018-04-10 Tim Newsome Clarify high bits of sbdata in narrow reads.
4ca83dd 2018-03-28 Tim Newsome Clarify progbuf=1 some more
3b62243 2018-03-26 Tim Newsome Clarify debugger requirements when progbufsize=1
ffba4d0 2018-03-26 Tim Newsome Explain why progbufsize=1 is special
6b88905 2018-03-19 Megan Wachs haltsum1: correct its address to be BWC and not

overlap with ABSTRACTAUTO
2382e2e 2018-03-06 Megan Wachs Correct some inaccuarices in the chisel generated files
3e88e11 2018-03-06 Megan Wachs travis: add ’make chisel’ target to regression
32cbb9b 2018-03-19 Tim Newsome Nonexistent/unavailable harts are not halted.
f8a7bb7 2018-03-19 Tim Newsome More clarification.
e21ae4c 2018-03-16 Tim Newsome Allow any bit in hart array mask to be tied to 0
efb7e45 2018-03-15 Tim Newsome Change dcsr.prv reset value to 3
f19946b 2018-03-15 Tim Newsome Clarify hart array mask register size.
ddec145 2018-03-14 Tim Newsome Be more precise about core vs hart
4e5f4ad 2018-03-14 Tim Newsome Review feedback.
8ac9273 2018-03-14 Tim Newsome Be more precise about processor vs hart
83c9774 2018-03-14 Tim Newsome Clarify abstract command errors.

RISC-V Debug Support Version 1.0.0-STABLE 125

4ebc177 2018-03-14 Tim Newsome hawindowsel can be smaller, depends on # of harts
11e1b5c 2018-03-14 Tim Newsome Split future ideas section into a notes doc
bafeeaa 2018-03-13 Tim Newsome Rebuild PDF
6a85d53 2018-03-13 Tim Newsome Incorporate review feedback.
f213315 2018-03-09 Tim Newsome Clarify user responsibilities when debugging lr/sc
3641305 2018-03-09 Tim Newsome Remove implemented features from Future Ideas.
1135bf3 2018-03-06 Tim Newsome Incorporate feedback.
8f35e7e 2018-03-05 Megan Wachs gt 1024: Clarify that some registers may not be

present for small numbers of harts
683ae37 2018-02-14 Megan Wachs hartsum-¿haltsum
ee51758 2018-02-14 Megan Wachs Modification of ¿ 1024 hart proposal that maintains

backwards compatibility
370d222 2018-03-05 Tim Newsome Rephrase description of hit bit.
eee5e0c 2018-03-05 Tim Newsome Clarify multiple DMs/harts
4d5acef 2018-02-28 Tim Newsome Clarify what happens when \Fauthenticated is clear
6a0c9ec 2018-02-27 Tim Newsome Move hit bit per review feedback.
097bd8e 2018-02-21 Tim Newsome Fix link to pre-built pdf
d21774b 2018-02-21 Omer Faruk IR-

MAK
Python interpreter to be used should default to
Python2

a8c10cf 2018-02-20 Tim Newsome Incorporate review feedback.
a0f947c 2018-02-20 Tim Newsome Make trigger hit bit optional.
77e4634 2018-02-08 Tim Newsome Add hit bit to hardware triggers.
140390a 2018-02-05 Tim Newsome Better wording.
e35b1ff 2018-02-05 Tim Newsome Move Reg Access Abbrev table after sample register
e887433 2018-02-05 Tim Newsome Use longtable instead of xtabular.
5c84437 2018-01-31 Tim Newsome Abstract Command data usage depends on the com-

mand
3d508ea 2018-01-25 Tim Newsome HARTSELBITS-¿HARTSELLEN and other feed-

back
eb653f7 2018-01-24 Tim Newsome Be explicit about the size of \Fhartsel.
822bd81 2018-01-24 Tim Newsome Revert incrementing version number.
4c755af 2018-01-24 Tim Newsome \Fsbbusyerror also inhibits new accesses.
457413d 2018-01-24 Tim Newsome Update how to enumerate all harts.
2180801 2018-01-18 Tim Newsome Fix ambiguity in busy error reporting.
3140efa 2018-01-09 Tim Newsome Re-apply e698a5001aa4583d31dde484d78f4f10e4e3148f

. No need to list out all the consecutive registers.
390daa7 2018-01-18 mwachs5 sbaddress: Only writes to address will actually cause

an error. Reads while busy are permitted.
5c820f3 2018-01-18 Megan Wachs Remove reference to ”caches”
4533648 2018-01-18 Megan Wachs correct access spelling
d37c1ac 2018-01-16 Tim Newsome Fix table column overruns by going full manual
e9100ea 2018-01-16 Tim Newsome Correct when sbbusy error is set for being busy.
c029cc7 2018-01-16 Tim Newsome Complete partial sentence.
494338a 2018-01-15 Tim Newsome Add clarifications about error handling.
e14c34e 2018-01-15 Tim Newsome Incorporate review feedback.
68720e5 2018-01-15 Tim Newsome Remove H bits from triggers.
b8eb62a 2018-01-15 Tim Newsome Clarify when sbaccess is checked for validity
8b50d29 2018-01-12 Tim Newsome Add \Fsbbusy, to avoid race clearing \Fsberror

126 RISC-V Debug Support Version 1.0.0-STABLE

50b1b41 2018-01-12 Tim Newsome Clarify: writes to \Rsbdata0 write the new data
7f26759 2018-01-12 Tim Newsome Clarify exactly which bits are used for SB access.
47a019c 2018-01-11 Tim Newsome Fix typo.
a49d6ad 2018-01-11 Tim Newsome sbreadonaddr is R/W
42195c2 2018-01-11 Tim Newsome Fix cut-and-paste error.
6c95235 2018-01-11 Tim Newsome Add sbaddress3, for future proofing.
e3345ea 2018-01-11 Tim Newsome Incorporate review feedback.
6da48f8 2018-01-11 Tim Newsome Remove dmerr.
e99c092 2018-01-10 Tim Newsome Add system bus version field.
a6aa531 2018-01-10 Tim Newsome Talk about all data and progbuf regs in first reg
af272db 2018-01-09 Megan Wachs Update dret font
3d579d8 2018-01-09 Tim Newsome Explicitly list data[1-10] and progbuf[1-15]
c6481ae 2018-01-09 Tim Newsome Revert ”Explicitly list data[1-10] and progbuf[1-15]”
e698a50 2018-01-09 Tim Newsome Explicitly list data[1-10] and progbuf[1-15]
e547ed5 2018-01-09 Tim Newsome Clarify that we deal in physical addresses only.
b377b89 2018-01-09 Tim Newsome Revert ”Clarify that we deal in physical addresses

only.”
f7da066 2018-01-09 Tim Newsome Clarify that we deal in physical addresses only.
99a1599 2018-01-09 Tim Newsome Clarify that \Fdatasize contains at most 12.
ae6e88a 2018-01-09 mwachs5 dret: Legal only in Debug Mode
18f392d 2017-11-24 Tim Newsome Get rid of sbsingleread in favor of sbreadonaddr
5754a3b 2018-01-05 Megan Wachs Use a different word than ”clobbered”
aca7e0b 2018-01-03 Megan Wachs Add missing ”to”s to abstractauto description
d59ddf3 2018-01-03 Megan Wachs Correct plurality of halted harts in haltsum
57c53ed 2017-12-22 Tim Newsome Put parens around all macros that need it.
7ded846 2017-12-18 Tim Newsome Refer to existing hart instead of ”valid”
68b8ac8 2017-12-15 Tim Newsome Make \Fhaltsel WARL.
6a72f45 2017-12-18 Tim Newsome Mark this as a draft, which it is.
dd8d871 2017-12-18 Tim Newsome Properly deal with \ chars in the changelog.
42f920c 2017-12-18 Tim Newsome Deal with \ chars in the changelog.
b13891c 2017-12-15 Tim Newsome Revert ”Make \Fhaltsel WARL.”
26d76a0 2017-12-15 Tim Newsome Make \Fhaltsel WARL.
afda8d7 2017-11-28 mwachs5 update PDF
134d310 2017-11-28 Megan Wachs Correct compressed version of ebreak
caa1258 2017-11-27 Megan Wachs badaddr -¿ tval (Priv Spec 1.9 -¿ 1.9.1)
32b0f08 2017-11-22 Tim Newsome Incorporate feedback.
2f7aa54 2017-11-22 Tim Newsome Simplify, and explain trigger behavior.
3e5887f 2017-11-21 Tim Newsome Clarify some single step corner cases.
f4b9ae2 2017-11-21 Tim Newsome Make ackhavereset write-only. (#178)
efe3dc8 2017-11-21 Tim Newsome Make hartreset R/W (#177)
ce1b359 2017-11-17 Megan Wachs Reset clarifications (#172)
852a70d 2017-11-16 Megan Wachs icount: remove warning (#173)
363348f 2017-11-16 Tim Newsome Explain cache coherency wrt to system bus access

(#171)
26ea898 2017-11-15 Tim Newsome Refer to ISA and priv docs.
ffc8c62 2017-11-03 Tim Newsome Mention the index in ”about this doc”
a4257ef 2017-11-02 Tim Newsome Add an index to the document.
f5f45a5 2017-10-30 Megan Wachs Add ’has reset’ status and control (#168)

RISC-V Debug Support Version 1.0.0-STABLE 127

46f3f54 2017-10-25 Tim Newsome Incorporate review feedback.
104247f 2017-10-24 Megan Wachs Update README.md
6dd5c80 2017-10-24 Megan Wachs Update README.md
cb1a847 2017-10-24 Megan Wachs Add a note to the README about the built PDF
e00625f 2017-10-18 Tim Newsome Include pdf.
c23e729 2017-10-18 Tim Newsome Clarify more.
83f9faf 2017-10-11 Tim Newsome Clarify what \Fimpebreak does.
78082b5 2017-10-11 Tim Newsome Mention \Fimpebreak in Program Buffer description.
0378324 2017-10-11 mwachs5 Add legend and update some transitions on the Ab-

stract Command State Machine diagram
fa2b600 2017-10-11 Megan Wachs add missing period
0610630 2017-10-11 Megan Wachs Just do simple hmode -¿ dmode replacement
16e11f3 2017-10-11 Tim Newsome Remove hmode reference, to fix build.
84b9a6a 2017-10-11 Tim Newsome Add \Fimpebreak, to support of implicit ebreak.
cc90b77 2017-10-11 mwachs5 Remove reference to ’H’ mode from the figure
cc6a9de 2017-10-11 Megan Wachs Change old reference to ’hmode’ to ’dmode’
ea2877d 2017-10-10 Tim Newsome Move how-to-debug into the relevant section.
486ecc6 2017-10-05 Tim Newsome Refuse unsupported bus accesses.
6ca221d 2017-10-05 Tim Newsome haltreq, resumereq, hartreset are per-hart bits
d4118ab 2017-09-30 Tim Newsome ndmreset can’t reset logic required to access DM.
c6bd8d1 2017-09-29 Tim Newsome and -¿ or
58c2441 2017-09-29 Tim Newsome Mention \Fstepie in Single Step
94c5f78 2017-09-29 Tim Newsome Clarify ndmreset.
12810b4 2017-09-29 Tim Newsome Clarify that sbaddress is physical.
5862fdf 2017-09-29 Tim Newsome Unify M mode and mprv comment.
aea1bd5 2017-09-29 Tim Newsome Define behavior when haltreq and resumereq are set
146b348 2017-09-28 Megan Wachs remove superflous ’an’
a5d16c4 2017-09-28 Megan Wachs remove superfluous ’a’
052a8ab 2017-09-28 Tim Newsome Clarify that a debugger can lose hart control.
cc52cff 2017-09-28 Tim Newsome Add \Fdmerr.
25685eb 2017-09-28 Tim Newsome Explain that bus master or progbuf is required.
f75ee7d 2017-09-28 Tim Newsome Clarify debugger can discover ”almost” everything
71e6788 2017-09-27 Tim Newsome Remove description of manual stepping.
9aea347 2017-09-27 Tim Newsome Move Running/Single Step near Halting.
2090d9b 2017-09-27 Tim Newsome data0 should be sbdata0 in this table.
5858cfe 2017-09-27 Tim Newsome Clarify why \Rpriv exists.
bc3c2aa 2017-09-27 Tim Newsome Mention where priv encoding comes from.
ef77cc4 2017-09-27 Tim Newsome One more attempt to clarify DPC after single step.
80a288e 2017-09-27 Tim Newsome Clarify instret not incrementing on ebreak.
c163d22 2017-09-20 Tim Newsome Remove ebreakh.
9971075 2017-09-20 Tim Newsome Clarify we’re talking about privilege
3fbe495 2017-09-20 Tim Newsome Clarify that we’re talking about *implementation*
3684854 2017-09-20 Tim Newsome Use steps environment in sbdata0.
d4eda18 2017-09-20 Tim Newsome Explain that only sbdata0 has side effects.
ae781c6 2017-09-20 Tim Newsome Don’t refer to internal system bus registers.
875922e 2017-09-20 Tim Newsome Explain sbdata0 being stale a bit more.
cd44fd5 2017-09-20 Tim Newsome Clarify autoread
194484b 2017-09-20 Tim Newsome Clarify hawindow.

128 RISC-V Debug Support Version 1.0.0-STABLE

02f1aac 2017-09-20 Tim Newsome Clarify that \Fdataaddr is relative to \Rzero.
0e9b6ae 2017-09-20 Tim Newsome Clarify nonexistent vs unavailable.
b55ff41 2017-09-20 Tim Newsome Fix devtreevalid.
2eccb86 2017-09-20 Tim Newsome Explicitly state which registers are read-only.
4af505c 2017-09-20 Tim Newsome Show section numbers for registers.
cbd5573 2017-09-20 Tim Newsome Thank Nikhil
19c206f 2017-09-20 Tim Newsome Clarify how to determine whether progbuf is RAM
0651f7d 2017-09-20 Tim Newsome Explain what happens if ebreak is missing.
e889dae 2017-09-20 Tim Newsome Move figure of states into its own section.
cff7b80 2017-09-20 Tim Newsome Explain when \Ftransfer might be used.
6b2ee61 2017-09-20 Tim Newsome Explain where \Fsize encoding came from.
c9f3b73 2017-09-14 Tim Newsome Fix typo.
4b25400 2017-09-13 Tim Newsome Mention dpc in CSRs abstract register numbers.
c3ee426 2017-09-13 Tim Newsome Move abstract regno table closer to its reference.
111b9a3 2017-09-13 Tim Newsome cycle -¿ operation
994afdc 2017-09-13 Tim Newsome Account for multiple selected harts.
aa4a297 2017-09-13 Tim Newsome Halt Control -¿ Run Control
e97c821 2017-09-13 Tim Newsome continuous -¿ contiguous
97f73ff 2017-09-13 Tim Newsome Clarify ndmreset behavior.
6078220 2017-09-13 Tim Newsome Explain ndmreset
a3d4f30 2017-09-13 Tim Newsome Describe ‘halt region‘
272b3d9 2017-09-13 Tim Newsome Clarify accessing unimplemented DM DMI regs
3e91f1b 2017-09-13 Tim Newsome Clarify either Prog Buf or Sys Bus Acc is required
e8a6145 2017-09-13 Tim Newsome Clarify CSR access; remove serial port
ce20766 2017-09-13 Tim Newsome Remove section referencing itself.
1195a61 2017-09-18 Tim Newsome Generate constants to be unsigned for clang.
8967b0a 2017-08-16 Megan Wachs Compressed instructions are c.foo, not foo.c
b5698a9 2017-08-16 Megan Wachs clarify progbufsize description
d221bab 2017-08-16 Megan Wachs Remove progbufsize enums from register description
0498102 2017-08-16 Megan Wachs appendix: Use standard assembly format for sw
4456d99 2017-08-09 Tim Newsome Rename progsize to progbufsize.
55d5b66 2017-08-09 Tim Newsome Clarify that trigger comparisons are unsigned.
21e35ef 2017-08-09 Tim Newsome Configuration String -¿ Device Tree
f044f45 2017-08-02 Tim Newsome Don’t require a target to provide 25mA on VCC.
c883943 2017-08-02 Tim Newsome Add table of Abstract Command Types
985a3df 2017-08-02 Tim Newsome Fix and speed up build.
95b9108 2017-08-02 mwachs5 DTM: Clarify that there are no cases when DMI

would actually return an error.
9c9e0c0 2017-08-02 mwachs5 SystemBus: No longer returns error. So DMI has no

’error’ return code.
5ba18f9 2017-07-27 Tim Newsome Fix more typos.
dbc65bf 2017-07-26 Tim Newsome Fix typos.
bba0ad9 2017-07-26 Tim Newsome Tighten up introduction lists.
e22d5eb 2017-07-26 Tim Newsome Add version constants for ”not compatible”.
c79038e 2017-07-26 Tim Newsome Small clarification.
9df0411 2017-07-21 Tim Newsome Incorporate review feedback.
d67419c 2017-07-21 Tim Newsome Clarify dpc contents.
9f50c05 2017-07-11 Tim Newsome Use LL instead of L for 64-bit constant suffix.

RISC-V Debug Support Version 1.0.0-STABLE 129

23fd24a 2017-07-10 Megan Wachs Cleaning up whitespaces
c5ab04c 2017-07-10 Megan Wachs Update abstract commands.xml
6e8cdf1 2017-07-10 Megan Wachs Update abstract commands.xml
cf6e3f2 2017-07-10 Megan Wachs clarify DCSR.cause
79ffbb9 2017-07-10 Megan Wachs Clarify implications of CSR read, write, halt
013e191 2017-07-10 Megan Wachs Clarify when you would get error halt/resume
231e457 2017-07-10 Megan Wachs Quick Access error clarification
c54c2f2 2017-07-03 mwachs5 serial: add the XML file, not the TEX file
ac77477 2017-07-03 mwachs5 serial: Fix compile errors after moving serial port to

appendix
6defcb8 2017-07-03 mwachs5 serial: Move serial ports out of main spec and into

Future Work appendix
a28f639 2017-06-30 mwachs5 remove trace dependencies from Makefile
52a122b 2017-06-30 mwachs5 remove trace section
d9e166b 2017-06-30 mwachs5 remove trace registers
7caf4e5 2017-06-30 mwachs5 remove trace appendix
4688988 2017-06-29 mwachs5 DCSR: define a ’stepie’ bit which may be hard-wired

to 0.
9a0492c 2017-06-13 Megan Wachs Add missing period and some other small text edits
13ccdbf 2017-06-13 Megan Wachs fix typo in ProgBuf register macro
b01f989 2017-06-13 mwachs5 implementations: be a bit more concrete about the

one example implementation we have.
a7b5f83 2017-06-13 mwachs5 jtagdtm: Move it out of the appendix as it is really

part of the specification
87aceb0 2017-06-13 Megan Wachs remove ”spontaneous”
50b9950 2017-06-13 Megan Wachs Forward reference for anynonexistent
adea3e2 2017-06-13 Megan Wachs More clarifications on dret
1b8dd0e 2017-06-13 Megan Wachs Define DRET instruction
617da4c 2017-06-08 Megan Wachs Update description of R/W1C
de2c56b 2017-06-08 Megan Wachs Clarify that DCSR is also not updated on ebreak
efa615d 2017-06-07 Tim Newsome Increase xdebugver field size to 4 bits. (#92)
a0e147a 2017-06-07 Tim Newsome Address some review comments.
89ffe50 2017-06-06 mwachs5 NDMRESET: Clarify what it may and may not do
1932da0 2017-06-06 mwachs5 DPC: Clarifications on its meaning
6470fdb 2017-06-06 mwachs5 ABSTRACTCS: Correct inconsistency on the num-

ber of data words.
3ca82b4 2017-06-06 Megan Wachs More corrections for R vs R/W1C on SERCS
9705fb8 2017-06-06 Megan Wachs Correct a bunch of W0 registers
1347371 2017-06-05 Tim Newsome Add intdisable to dcsr.
989c60d 2017-06-05 Tim Newsome Fix language. We can only halt harts, not cores.
517a08b 2017-06-05 Tim Newsome Incorporate review feedback.
802be28 2017-06-05 Tim Newsome Clarify/fix Quick Access example.
b8cc523 2017-06-02 Tim Newsome Add included tex files as dependencies. (#78)
15f864a 2017-06-01 Tim Newsome Language cleanups, consistency and typo fixes.
4ecae86 2017-06-01 Tim Newsome Add page numbers to list-of-register tables.
59b3e4a 2017-05-19 Megan Wachs Setting up a Travis regression to check for build errors

(#72)

130 RISC-V Debug Support Version 1.0.0-STABLE

124bf44 2017-05-17 mwachs5 Debug Module: CMDERR is Write-1-to clear, not
R/W0

bb6c7f0 2017-05-17 mwachs5 SW Registers file should be XML, not TEX
d360358 2017-05-10 Megan Wachs

(Temporary
Acct.)

Remove virtual register from core registers.xml

bfc64fb 2017-05-10 Megan Wachs
(Temporary
Acct.)

Add missing sw registers.tex file

0512f5d 2017-05-06 mwachs5 Move virtual ’prv’ register to a seperate section to
make it more clear it is not a real register.

6b3c9d7 2017-05-06 mwachs5 Clarify haltreq/resumereq/resumack
0a487eb 2017-04-26 mwachs5 jtag: Change specified JTAG pinout from Coretex to

AVR, to provide for TRSTn option.
93cdfaf 2017-04-26 mwachs5 DM : Clarify that DATA/PROGBUF can’t be writ-

ten while busy.
ef98f23 2017-04-19 mwachs5 jtag: Make it clear that a NOP is really a NOP.
a6f8efa 2017-04-17 mwachs5 single step: Exceptions count as the ’step’ comple-

tion.
bf11e9e 2017-04-17 mwachs5 resumeack: fix some LaTeX cross references
4afa081 2017-04-11 mwachs5 halt/resumereq: Clarify what setting them to 0 or 1

does
297a39b 2017-04-06 mwachs5 fix chisel build
082c499 2017-04-06 mwachs5 Rename resumed to resumeack, and add more text

about what these bits mean.
909d617 2017-04-06 mwachs5 Correct some cross references after removing all the

multiply listed registers
dd09914 2017-04-06 mwachs5 Add ’resumedall’ and ’resumedany’ bits to avoid race

condition on about to resume and just halted
feb88fc 2017-04-05 mwachs5 JTAG DTM: Clarify that leading bits are 0 for more

than 5-bit IR
75b96ea 2017-04-04 mwachs5 use renamed dm registers file
9f3ec7e 2017-04-04 mwachs5 debugger implementation: remove some old TODO

and commentary.
45dd5b5 2017-04-04 mwachs5 Don’t list out every single DM register for those that

are just indexed versions
b8b3aa2 2017-04-04 mwachs5 remove core-side register definitions from Debug

Module. Rename dm1 to dm
d979a13 2017-04-04 mwachs5 remove core-side serial port specification, as these

should look like implementation-specific devices with
appropriate drivers.

b56870b 2017-04-04 mwachs5 Remove the wording about ’debug exception’, as it is
called breakpoint exception in the RISC-V Spec.

1e9347d 2017-04-03 mwachs5 Add description of hasel
0dda84d 2017-04-03 mwachs5 JTAG DTM: Clean up TAP register descriptions
82ccde5 2017-04-03 mwachs5 JTAG DTM: Add a hard DMI bit which cancels the

outstanding DMI transaction
bd2a3d1 2017-04-03 mwachs5 remove preexec

RISC-V Debug Support Version 1.0.0-STABLE 131

02c733a 2017-04-03 mwachs5 remove preexec from Abstract State diagram.
1e271d6 2017-04-03 mwachs5 Update Debugger implementation for DMI register

access, and fix tex compile issues.
155dda4 2017-04-03 mwachs5 Rewrite HW Implementation examples to describe a

pure abstract command approach, and to not rely
on harts executing every instruciton which is fetched
from the Debug Module

556c2be 2017-04-03 mwachs5 minor wording edits about RISC-V core registers
523c64a 2017-04-03 mwachs5 Edits to the Debug Module section.
b9a371f 2017-04-03 mwachs5 add missing trace.tex file.
58b2396 2017-04-03 mwachs5 Re-order the JTAG DTM Sections
a8827e2 2017-04-03 mwachs5 Edits to the System Overview.
c5417ce 2017-04-03 mwachs5 add more sections as seperate files.
287d5c6 2017-04-03 mwachs5 moving more files to seperate tex files.
9e873f4 2017-04-03 mwachs5 move trigger info into seperate file.
2c89a86 2017-04-03 mwachs5 move risc-v core debug info into seperate file.
e676491 2017-04-03 mwachs5 Move System Overview to seperate file
03df6ee 2017-04-03 mwachs5 Move Debug Module description to a seperate file.
5faa430 2017-04-03 mwachs5 add back in JTAG DTM in appendix
7b28b11 2017-04-03 mwachs5 Move jtag DTM to appendix. Move some text to

commentary.
cc183ba 2017-04-03 mwachs5 move introduction to a seperate file. Comment out

reading order.
f727d14 2017-04-03 mwachs5 Use Chapters vs Sections. Needs reorganization.
815951d 2017-04-03 mwachs5 Formatting updates. Make this look more like the

RISC-V specs. Need to use chapter vs. section
69ffaf8 2017-03-31 mwachs5 Move XML files into a subdirectory.
b276384 2017-03-31 mwachs5 Remove debug rom.S
112bbac 2017-03-31 mwachs5 figures: reorganize the figures into directories.
1e5c068 2017-03-27 Megan Wachs Add LICENSE
fc17730 2017-03-22 Po-wei Huang Change some halt mode into debug mode.
8ccf029 2017-03-22 Po-wei Huang All halt mode changed to debug mode to synchronize

with the priv spec.
f143d9e 2017-03-21 mwachs5 Correct duplicated progbuf register names
0797ec1 2017-03-17 mwachs5 autoexec: make autoexec bits match the number of

data words there really are.
8e76d93 2017-03-17 mwachs5 dm1 registers: move a few more things around. Re-

duce abstract data words back to 12.
f8bf292 2017-03-17 mwachs5 dm1 registers: resolve some address conflicts and in-

consistencies
a74dff9 2017-03-17 mwachs5 access register: some small bit changes
2e6b0ca 2017-03-15 mwachs5 config string: Fix LaTeX compile errors.
f83260a 2017-03-10 mwachs5 Abstract Commands: clarify that 32-bit reads should

always work. This allows reading MISA.
6f9347a 2017-03-10 mwachs5 Config String: change the Abstract Command to

DMI registers. Allow the same registers to be used
for unspecified identifier information.

132 RISC-V Debug Support Version 1.0.0-STABLE

4ea10ff 2017-03-10 mwachs5 abstract: Make autoexec apply to all data and prog-
buf words. Make a seperate register which is optional.

5008436 2017-03-10 mwachs5 abstract: Allow up to 16 progbuf and/or data words.
Inform debugger about dscratch registers available
for its use.

aaa13e5 2017-03-06 mwachs5 Command: use the name ’cmdtype’ not ’type’ to al-
low easier auto-generation of Scala code.

e9bb72c 2017-03-06 mwachs5 Hart Array: Add registers for hart array.
5d17a35 2017-03-06 mwachs5 DM: Move addresses around for better seperation of

functionalities in HW
25ccaa8 2017-03-06 mwachs5 CONTROL: Rename control and status registers to

CS for consistency and to accurately reflect their
functionality.

45cf6c2 2017-03-06 mwachs5 Errors: fix up the bit assignments in SERSTATUS
with the addition of error bit.

38cb5a0 2017-03-06 mwachs5 Errors: Make errors write-1-to-clear.
b436d77 2017-03-03 mwachs5 triggers: Clarify that matches are against virtual ad-

dresses.
793bb85 2017-03-03 mwachs5 triggers: Add suggested timings for best user experi-

ence.
2669866 2017-03-03 mwachs5 stoptime/stopcycle: Make their functionality match

their name. Allow any reset value.
c85a1cf 2017-03-01 mwachs5 config string: Simplify the Config String Address ab-

stract command.
a303a6b 2017-03-02 Megan Wachs Update README.md
92a4923 2017-03-01 mwachs5 serial: tweak addresses.
b09f460 2017-03-01 mwachs5 serial: tweak addresses.
6477837 2017-03-01 mwachs5 chisel: tweaks to class names.
be83e3e 2017-02-28 Tim Newsome Clarify stoptime, stopcycle.
c17c17c 2017-02-27 Tim Newsome Abstract command that returns config string addr.
096dfbc 2017-02-27 Tim Newsome Acknowledge Alex.
c0253ab 2017-02-24 Tim Newsome Explain tdata1 type a bit more.
e43ac2e 2017-02-24 Tim Newsome Clarify how to enumerate triggers again.
c6e3e20 2017-02-23 Tim Newsome Revert previous commit.
ef770bf 2017-02-23 Tim Newsome mcontrol and icount mask tdata2, not tdata1.
27806f2 2017-02-23 mwachs5 rename ’type’ to ’cmdtype’ purely so my auto-

generation scripts work.
e46798d 2017-02-22 mwachs5 Add Abstract Commands to automatic chisel
b3bb939 2017-02-21 mwachs5 Generate Chisel headers as well for Debug Module.
c9db98c 2017-02-22 Tim Newsome Simplify description of op statuses.
bda39cc 2017-02-22 mwachs5 Add explicit type field to Abstract Command.
f83a1ca 2017-02-22 mwachs5 Finish up replacement of ibuf-¿progbuf
9666e51 2017-02-22 mwachs5 IBUF-¿PROGBUF
5308ecd 2017-02-22 mwachs5 Remove last references to ”Instruction Supply”
f6ebde9 2017-02-22 Tim Newsome Move authentication to a serial protocol.
0f079c8 2017-02-22 Tim Newsome Reserve bit for per-hart reset.
f2c93ac 2017-02-22 Tim Newsome Clarify that dmactive resets authentication.

RISC-V Debug Support Version 1.0.0-STABLE 133

f5e7b1c 2017-02-22 Alex Bradbury Clarify that the halt state of all harts is maintained
through reset

3dfe8fd 2017-02-22 Tim Newsome More Debug Mode -¿ Halt Mode.
d29fc1f 2017-02-22 Tim Newsome Debug Mode -¿ Halt Mode
55d6030 2017-02-21 Tim Newsome Generate debug defines.h as part of normal make
b0e6a7f 2017-02-21 Tim Newsome Minor clarifications.
0f9885c 2017-02-20 Tim Newsome Various clarifications.
0802d5a 2017-02-15 mwachs5 Use consistent ’Control and Status’ naming for CS

registers.
5accc7d 2017-02-15 Tim Newsome Change all the ”other” JTAG IRs to just reserved.
bcbd7da 2017-02-15 mwachs5 sm diagram: Show using resumereq bit to resume.
18f6e55 2017-02-14 Tim Newsome Introduce resumereq command, similar to haltreq.
4b62c40 2017-02-14 mwachs5 SystemBus: Clean up some formatting and error

specification notes.
bc97723 2017-02-14 mwachs5 quick-access: Update SM Diagram for Quick Access
d27066e 2017-02-14 Tim Newsome Clarify haltreq bit.
6f8ec43 2017-02-14 Tim Newsome Always generate long constants when required.
c6ac6bc 2017-02-13 Tim Newsome Include field descriptions in C header file.
b849213 2017-02-13 Tim Newsome Fix the build.
1cf8033 2017-02-12 mwachs5 jtag: More clarifications
6203bd6 2017-02-12 Megan Wachs Update requirements– W GPRs Required
f2b43a7 2017-02-12 Megan Wachs Remove double ’the’
2c64ef1 2017-02-12 Megan Wachs Remove comma
f84abce 2017-02-12 Megan Wachs Whitespace edits and address come comments
23c2648 2017-02-11 mwachs5 jtag dtm: ask for clarification on TAP sharing.
7020d23 2017-02-11 mwachs5 jtag dtm: Clarifications, DBUS-¿DMI
292d49c 2017-02-11 Megan Wachs fix indentation
b879b86 2017-02-11 Megan Wachs Add missing period
bbe0521 2017-02-11 mwachs5 Make comments on program buffer size match the

address map.
4ceaa37 2017-02-11 mwachs5 Flesh out and edit the introduction/background Add

a description of use cases this spec has in mind, and
what it doesn’t cover.

cbf89d6 2017-02-11 Tim Newsome Rewrite Quick Access.
170bff1 2017-02-10 Megan Wachs Allow size 4 for the program buffer
c911e6e 2017-02-10 Tim Newsome Clarify use of dmactive.
2ca296f 2017-02-09 Tim Newsome Reserve command register space for custom use.
e49666e 2017-02-09 Tim Newsome Clarify hart index change per Megan’s comments.
84865e9 2017-02-09 Tim Newsome Add header prefix for abstract commands.
2434f4f 2017-02-09 Tim Newsome Select harts by index instead of hart ID.
7bf112a 2017-02-09 Tim Newsome Generate correct headers for ¿32-bit registers.
7f0f09a 2017-02-08 Tim Newsome Reset dbus status to ”failure” to avoid confusion.
8b1c6f0 2017-02-08 Megan Wachs Fix line wrap issue
345c33f 2017-02-08 Megan Wachs Call out ”arg0” specifically.
9f080f5 2017-02-08 Megan Wachs Clarify ”arguments” to commands
259badd 2017-02-08 Tim Newsome Make haltsum/halt registers mandatory.
eb0f1d3 2017-02-07 Tim Newsome Allow for early abstract command failures.
bb49bd1 2017-02-07 Tim Newsome Clarify error handling a little.

134 RISC-V Debug Support Version 1.0.0-STABLE

3fc0a97 2017-02-07 Tim Newsome Explain when abstract data regs may be clobbered.
c37167e 2017-02-07 Tim Newsome Fix old language in description of halt registers.
6943c96 2017-02-07 Tim Newsome Generate more useful C header files from reg defs
98639df 2017-02-05 mwachs5 Include the SM Diagram as a figure. Also some minor

capitalization fixes.
a95e4c3 2017-02-05 mwachs5 Update State Machine diagram to show uncertainty

of halt bit during auto halt/resume.
ba76744 2017-02-05 Tim Newsome Combine loabits and hiabits.
02b1d92 2017-02-05 Tim Newsome DMI can get away with just 6 address bits.
35d6e33 2017-02-05 mwachs5 Update State machine diagram to show BUSY with-

out HALTED
f511b05 2017-02-04 Tim Newsome Clarify command busy bit.
d0f8961 2017-02-03 mwachs5 Update figures
e18a68d 2017-02-03 Tim Newsome Clarify prehalt/postresume failure.
ac3e2a9 2017-02-02 Tim Newsome Clarify abstract command failure behavior.
ce4baee 2017-02-02 Tim Newsome Add Quick Access section.
0490377 2017-02-02 Tim Newsome Add prehalt and postresume to reg command.
67515bd 2017-02-02 Tim Newsome Deal with a few minor TODOs.
96456fc 2017-02-02 Tim Newsome Turn register names into links.
317cd98 2017-02-02 Tim Newsome Explain what register access is required.
f3ad2f2 2017-02-01 Tim Newsome Revert Plain Exception implementation to be simple
a0ad281 2017-02-01 Tim Newsome execb -¿ preexec, execa -¿ postexec
1d4a2c3 2017-02-01 Tim Newsome Limit Program Buffer sizes to 0, 1, 8.
cc40815 2017-02-01 Tim Newsome Incorporate Po-wei’s feedback.
c8b45d6 2017-02-01 Tim Newsome Clarify how all autoexec bits work.
dbb1deb 2017-02-01 Tim Newsome Remove stale TODO.
c5f8f59 2017-02-01 Tim Newsome Explain why cmderr inhibits starting new commands.
5c69194 2017-02-01 Tim Newsome Fix editing error.
50f7c48 2017-02-01 Tim Newsome Remove empty hart info register.
781c68e 2017-02-01 Megan Wachs Update README.md
f46b32e 2017-02-01 mwachs5 Add a diagram of Abstract Command flow.
633bd63 2017-02-01 Tim Newsome Move Reading Order into About This Document
51ec4d1 2017-02-01 Tim Newsome Add reading order section.
03d20ad 2017-02-01 Tim Newsome autoexec0 applies to data0, not inst0.
c302353 2017-01-31 Tim Newsome Don’t rely on hart fetching instructions once.
2558c25 2017-01-31 Tim Newsome Change how exceptions in Halt Mode are handled.
a36ddce 2017-01-31 Tim Newsome Add size to abstract register command.
64de458 2017-01-31 Tim Newsome Detail bus master reads.
c08486f 2017-01-31 Megan Wachs reset: Add some comments (#5)
1558049 2017-01-30 Tim Newsome Automate Change Log.
51525a4 2017-01-29 Tim Newsome Update System Overview
7d39ac0 2017-01-29 Tim Newsome Update Supported Features.
9e7cbea 2017-01-29 Tim Newsome Update RISC-V Core section.
515188d 2017-01-29 Tim Newsome Update Hardware Implementations section.
4b19ed8 2017-01-29 mwachs5 system bus: be consistent and always call it ’System

Bus’. Even if some dislike the name, we should be
consistent and clear in the spec.

9ccef3d 2017-01-29 Tim Newsome Fleshed out some debugger implementation.

RISC-V Debug Support Version 1.0.0-STABLE 135

04b9176 2017-01-28 Tim Newsome Rename debug exception to breakpoint exception.
5ac4ea1 2017-01-27 Tim Newsome WIP on big update on instruction supply.
2d9c3e2 2017-01-27 Tim Newsome Reorganize dm registers.
de50ba8 2017-01-27 Tim Newsome Abstract command support is already addressed.
5085046 2017-01-26 mwachs5 Rename registers and fields like ’access’ that were

confusingly the same name.
10bbf6f 2017-01-26 Tim Newsome Fix #2: DM address space table
a05c582 2017-01-26 Tim Newsome Add debugger inspection as a feature.
4062681 2017-01-24 Tim Newsome Add publish target.
5c8bb83 2017-01-24 Tim Newsome Clarify use of data registers.
1504da6 2017-01-24 Tim Newsome Replace manual date with automatic git hash/date.
997f2a0 2017-01-23 Tim Newsome Deal with unsupported abstract commands.
cb6f2b8 2017-01-23 Tim Newsome Renumber registers to prevent duplicates.
8b4db96 2017-01-23 Tim Newsome Don’t print out addresses if they’re not provided.
b00cd21 2017-01-23 Tim Newsome Add an abstract command.
675b556 2017-01-23 Tim Newsome Reorganize DM bits into functional group regs.
5fc7512 2017-01-23 Tim Newsome Remove bits 33:32 from sbdata[23].
ceb5d66 2017-01-20 Tim Newsome Starting point for a comprehensive spec

	Preface
	Introduction
	Terminology
	Context
	Versions
	Bugfixes from 0.13 to 1.0
	Incompatible Changes from 0.13 to 1.0
	Minor Changes from 0.13 to 1.0
	New Features from 0.13 to 1.0
	Incompatible Changes During 1.0 Stable

	About This Document
	Structure
	ISA vs. non-ISA
	Register Definition Format
	Long Name (shortname, at 0x123)

	Background
	Supported Features

	System Overview
	Debug Module (DM), non-ISA
	Debug Module Interface (DMI)
	Reset Control
	Selecting Harts
	Selecting a Single Hart
	Selecting Multiple Harts

	Hart DM States
	Run Control
	Halt Groups, Resume Groups, and External Triggers
	Message Registers
	Abstract Commands
	Abstract Command Listing
	Access Register
	Quick Access
	Access Memory

	Program Buffer
	Overview of Hart Debug States
	System Bus Access
	Minimally Intrusive Debugging
	Security
	Version Detection
	Debug Module Registers
	Debug Module Status (dmstatus, at 0x11)
	Debug Module Control (dmcontrol, at 0x10)
	Hart Info (hartinfo, at 0x12)
	Hart Array Window Select (hawindowsel, at 0x14)
	Hart Array Window (hawindow, at 0x15)
	Abstract Control and Status (abstractcs, at 0x16)
	Abstract Command (command, at 0x17)
	Abstract Command Autoexec (abstractauto, at 0x18)
	Configuration Structure Pointer 0 (confstrptr0, at 0x19)
	Configuration Structure Pointer 1 (confstrptr1, at 0x1a)
	Configuration Structure Pointer 2 (confstrptr2, at 0x1b)
	Configuration Structure Pointer 3 (confstrptr3, at 0x1c)
	Next Debug Module (nextdm, at 0x1d)
	Abstract Data 0 (data0, at 0x04)
	Program Buffer 0 (progbuf0, at 0x20)
	Authentication Data (authdata, at 0x30)
	Debug Module Control and Status 2 (dmcs2, at 0x32)
	Halt Summary 0 (haltsum0, at 0x40)
	Halt Summary 1 (haltsum1, at 0x13)
	Halt Summary 2 (haltsum2, at 0x34)
	Halt Summary 3 (haltsum3, at 0x35)
	System Bus Access Control and Status (sbcs, at 0x38)
	System Bus Address 31:0 (sbaddress0, at 0x39)
	System Bus Address 63:32 (sbaddress1, at 0x3a)
	System Bus Address 95:64 (sbaddress2, at 0x3b)
	System Bus Address 127:96 (sbaddress3, at 0x37)
	System Bus Data 31:0 (sbdata0, at 0x3c)
	System Bus Data 63:32 (sbdata1, at 0x3d)
	System Bus Data 95:64 (sbdata2, at 0x3e)
	System Bus Data 127:96 (sbdata3, at 0x3f)
	Custom Features (custom, at 0x1f)
	Custom Features 0 (custom0, at 0x70)

	Sdext ISA Extension
	Debug Mode
	Load-Reserved/Store-Conditional Instructions
	Wait for Interrupt Instruction
	Single Step
	Step Bit In Dcsr
	Icount Trigger

	Reset
	Resume
	XLEN
	Core Debug Registers
	Debug Control and Status (dcsr, at 0x7b0)
	Debug PC (dpc, at 0x7b1)
	Debug Scratch Register 0 (dscratch0, at 0x7b2)
	Debug Scratch Register 1 (dscratch1, at 0x7b3)

	Virtual Debug Registers
	Privilege Mode (priv, at virtual)

	Sdtrig ISA Extension
	Enumeration
	Actions
	Priority
	Native Triggers
	Trigger Registers
	Trigger Select (tselect, at 0x7a0)
	Trigger Data 1 (tdata1, at 0x7a1)
	Trigger Data 2 (tdata2, at 0x7a2)
	Trigger Data 3 (tdata3, at 0x7a3)
	Trigger Info (tinfo, at 0x7a4)
	Trigger Control (tcontrol, at 0x7a5)
	Hypervisor Context (hcontext, at 0x6a8)
	Supervisor Context (scontext, at 0x5a8)
	Machine Context (mcontext, at 0x7a8)
	Machine Supervisor Context (mscontext, at 0x7aa)
	Match Control (mcontrol, at 0x7a1)
	Match Control Type 6 (mcontrol6, at 0x7a1)
	Instruction Count (icount, at 0x7a1)
	Interrupt Trigger (itrigger, at 0x7a1)
	Exception Trigger (etrigger, at 0x7a1)
	External Trigger (tmexttrigger, at 0x7a1)
	Trigger Extra (RV32) (textra32, at 0x7a3)
	Trigger Extra (RV64) (textra64, at 0x7a3)

	Debug Transport Module (DTM), non-ISA
	JTAG Debug Transport Module
	JTAG Background
	JTAG DTM Registers
	IDCODE (at 0x01)
	DTM Control and Status (dtmcs, at 0x10)
	Debug Module Interface Access (dmi, at 0x11)
	BYPASS (at 0x1f)
	Recommended JTAG Connector

	Hardware Implementations
	Abstract Command Based
	Execution Based
	Debug Module Interface Signals

	Debugger Implementation
	C Header File
	External Debugger Implementation
	Debug Module Interface Access
	Checking for Halted Harts
	Halting
	Running
	Single Step
	Accessing Registers
	Using Abstract Command
	Using Program Buffer

	Reading Memory
	Using System Bus Access
	Using Program Buffer
	Using Abstract Memory Access

	Writing Memory
	Using System Bus Access
	Using Program Buffer
	Using Abstract Memory Access

	Triggers
	Handling Exceptions
	Quick Access

	Native Debugger Implementation
	Single Step

	Index
	Change Log

