
"Smclic" Core-Local Interrupt Controller
(CLIC) RISC-V Privileged Architecture

Extension
Version 0.9-draft, 2/15/2022: This document is in the Development state. Assume anything can change. See

https://wiki.riscv.org/display/HOME/Specification+States



Table of Contents
Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
1. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2
2. Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

2.1. Existing RISC-V Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4
2.2. CLIC compared to PLIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4
2.3. CLIC compared to Original Basic Interrupt Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
2.4. CLIC compared to Advanced Interrupt Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

3. CLIC Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6
3.1. Interrupt Preemption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6
3.2. CLIC Interaction with Other Local Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

4. CLIC Memory-Mapped Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
4.1. CLIC Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7
4.2. CLIC Configuration (cliccfg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9
4.3. CLIC Information (clicinfo) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12
4.4. CLIC Interrupt Pending (clicintip) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13
4.5. CLIC Interrupt Enable (clicintie) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13
4.6. CLIC Interrupt Attribute (clicintattr) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14
4.7. CLIC Interrupt Input Control (clicintctl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15
4.8. CLIC Interrupt Trigger (clicinttrig) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

5. CLIC CSRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
5.1. Changes to xstatus CSRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
5.2. Changes to Delegation (xedeleg/xideleg) CSRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
5.3. Changes to xie/xip CSRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18
5.4. New xtvec CSR Mode for CLIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18
5.5. New xtvt CSRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21
5.6. Changes to xepc CSRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21
5.7. Changes to xcause CSRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21
5.8. Next Interrupt Handler Address and Interrupt-Enable CSRs (xnxti) . . . . . . . . . . . . . . . . . . . . . . . .  23
5.9. New Interrupt Status (xintstatus) CSRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25
5.10. New Interrupt-Level Threshold (xintthresh) CSRs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26
5.11. New CLIC Base (mclicbase) CSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

6. CLIC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28
7. CLIC Reset Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

7.1. CLIC mandatory reset state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
8. CLIC Interrupt Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

8.1. General Interrupt Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30
8.2. Critical Sections in Interrupt Handlers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30
8.3. CLIC events that cause the hart to resume execution after Wait for Interrupt (WFI) Instruction . . . . .  31
8.4. Synchronous Exception Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32
8.5. Returns from Handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32

9. Interrupt Handling Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33
9.1. Interrupt Stack Software Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33



9.2. Inline Interrupt Handlers and "Interrupt Attribute" for C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33
10. Calling C-ABI Functions as Interrupt Handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36

10.1. C-ABI Trampoline Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36
10.2. Revised C-ABI for Embedded RISC-V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39
10.3. Analysis of Worst-Case Interrupt Latencies for C-ABI Trampoline . . . . . . . . . . . . . . . . . . . . . . . . .  40

11. Interrupt-Driven C-ABI Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41
12. Alternate Interrupt Models for Software Vectoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43

12.1. gp Trampoline to Inline Interrupt Handlers in Single Privilege Mode . . . . . . . . . . . . . . . . . . . . . . .  43
12.2. Trampoline for Preemptible Inline Handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43

13. Managing Interrupt Stacks Across Privilege Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46
13.1. Software Privileged Stack Swap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46
13.2. Optional Scratch Swap CSR (xscratchcsw) for Multiple Privilege Modes . . . . . . . . . . . . . . . . . . .  48

14. Separating Stack per Interrupt Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52
14.1. Optional Scratch Swap CSR (xscratchcswl) for Interrupt Levels. . . . . . . . . . . . . . . . . . . . . . . . .  52

15. CLIC Interrupt ID ordering recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53
Appendix A: Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54

A.1. Prototype DTS Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54
16. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56



Preamble
Graphics used are either explicitly available for free, are property of RISC-V International, or were created using
Wavedrom.

Preamble | Page 1

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



Chapter 1. Revision History
Date            Description
02/15/2022  WFI text clarification
02/01/2022  issue #193 - xret/inhv text clarification
01/04/2022  issue #45 - remove new alignment constraint on CLINT mode when CLIC
added
01/04/2022  issue #188 - clarification that writes to xcause affect xstatus
12/21/2021  issue #109 - add smclic arch string to spec
12/21/2021  issue #180 - change processor references to hart
11/09/2021  issue #48 - indicate when edge-triggered interrupts are cleared
11/09/2021  issue #179 - set interrupt bit during nxti access
10/28/2021  issue #154 - inhv clarification
10/28/2021  issue #31/#120 - wfi clarification
10/12/2021  issue #177 - Reduced mandatory reset requirements
09/29/2021  Added link to development states definition on top page
09/14/2021  pull #169 - nxti clarification
09/14/2021  pull #168 - only 0 or 8 level bits currently supported (other values
reserved)
09/14/2021  issue #170 - clarified position of intthresh in CSR
08/31/2021  issue #86/#165 - Update mnxti pseudo-code to handle side-effects
correctly.
08/31/2021  pull #164 - moved clicintattr.mode reset value to reset section of
spec
08/17/2021  pull #163 - spec clarification that clicintie is held in bit 0 of
byte.
07/20/2021  pull #161 - spec clarification that only writes to xnxti have side
effects.
07/06/2021  issue #156,#77,#79 - more CLIC memory mapped text clarifications,
clicintctl typo fixes
06/22/2021  issue #156 - reverted text and added clarification on CLIC memory
mapped privilege regions.
05/25/2021  issue #149 - added text that 32-bit writes are legal but effects are
not defined.
05/25/2021  issue #142 - added text that MPRV and SUM are obeyed on vector table
accesses.
05/11/2021  issue #154 – added text that clarifies behavior when inhv is set when
returning from a ret instruction.
04/27/2021  clicintip[i] state is undefined when switching from level to edge
triggered mode
04/22/2021  updated adoc format to align with risc-v template, added revision
history
04/18/2021  Added Bibliography section
04/15/2021  issue #45 - for rev1.0 mtvec not xtvec controls enabling CLIC mode for
all priv
04/13/2021  issue #141 - N-extension vs Bare S-mode note added.

Chapter 1. Revision History | Page 2

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



04/13/2021  issue #117,#125 fix - change text to match table in M/S/U system if
nmbits==1
04/12/2021  issue #47 fix - add CLIC reset behavior section
04/12/2021  issue #26 fix - modify wording that defined micro-architectural
behavior of xINHV
04/12/2021  issue #91 - add DTS entry example
04/12/2021  added CLIC comparision to Advance Interupt Architecture (AIA)
04/12/2021  issue #111,#105 fix - For hardware vectoring access exceptions, both
{tval} and {epc} holds the faulting address
04/08/2021  issue #49, #79 - downplay M/S/U memory map requirements
03/30/2021  issue #29 - updated memory map table reserved section to give room for
clicinttrig
03/30/2021  issue #122 fix - remove wording referring to register
03/11/2021  issue #120 - update WFI wording
03/11/2021  typo fixing
03/11/2021  issue #51 - implementation of non CSRRW variants of
xscratchcsw/xscratchcswl explicitly not defined/reserved.
03/11/2021  issue #58 - xintthresh was missing from table summarizing overall
interrupt behavior
02/17/2021  issue #95 fix - removed N extension reference since not ratified.
02/17/2021  issue #90 fix - clarified that clicintip!=0 means interrupt pending
02/17/2021  issue #89 - updated CLIC interrupt ID ordering recommendations
02/17/2021  ihnv clarification - inhv bit has no effect except when returning from
a trap using an {ret} instruction
02/17/2021  ihnv clarification - inhv only written by hw during table vector read.
can be written by software.
02/02/2021  WFI wording change
01/19/2021  WFI wording change
01/07/2021  WFI section added
01/07/2021  Notes added clarifying clicintie and mstatus.xie
01/07/2021  interrupt priority clarification
12/17/2020  Added support for interrupt triggers
10/20/2020  clarified differences between level and priority
10/20/2020  fixed value range for CLICINTCTLBITS
10/20/2020  Clarified relationship among interrupt level, cliccfg.nlbits and
CLICINTCTLBITS
09/08/2020  clarified description for interrupt level

Chapter 1. Revision History | Page 3

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



Chapter 2. Background and Motivation
The "Smclic" Core-Local Interrupt Controller (CLIC) Privileged Architecture Extension is designed to provide
low-latency, vectored, pre-emptive interrupts for RISC-V systems. When activated the CLIC subsumes and
replaces the original RISC-V basic local interrupt scheme. The CLIC has a base design that requires minimal
hardware, but supports additional extensions to provide hardware acceleration. The goal of the CLIC is to
provide support for a variety of software ABI and interrupt models, without complex hardware that can impact
high-performance implementations.

The CLIC also supports a new Selective Hardware Vectoring feature that allow users to optimize each interrupt
for either faster response or smaller code size.


While the current CLIC provides only hart-local interrupt control, future additions might also
support directing interrupts to harts within a core, hence the name (also CLIC sounds better
than HLIC or HIC).

2.1. Existing RISC-V Interrupts
The existing RISC-V interrupt system already supports interrupt preemption, but only based on privilege mode.
At any point in time, a RISC-V hart is running with a current privilege mode. The global interrupt enable bits,
MIE/SIE/UIE, held in the mstatus/sstatus/ustatus registers respectively, control whether interrupts can be
taken for the current or higher privilege modes; interrupts are always disabled for lower-privileged modes. Any
enabled interrupt from a higher-privilege mode will stop execution at the current privilege mode, and enter the
handler at the higher privilege mode. Each privilege mode has its own interrupt state registers (mepc/mcause for
M-mode, sepc/scause for S-mode, uepc/ucause for U-mode) to support preemption, or generically xepc for
privilege mode x. Preemption by a higher-privilege-mode interrupt also pushes current privilege mode and
interrupt enable status onto the xpp and xpie stacks in the xstatus register of the higher-privilege mode.

The xtvec register specifies both the interrupt mode and the base address of the interrupt vector table. The low
bits of the WARL xtvec register indicate what interrupt model is supported. The original settings of xtvec
mode (*00 and *01) indicate use of the original basic interrupt model with either non-vectored or vectored
transfer to a handler function, with the 4-byte (or greater) aligned table base address held in the upper bits of
xtvec.


WARL means "Write Any, Read Legal" indicating that any value can be attempted to be
written but only some supported values will actually be written.

 CLIC mode is enabled using previously reserved values (*11) in the low two bits of mtvec.

2.2. CLIC compared to PLIC
The standard RISC-V platform-level interrupt controller (PLIC) provides centralized interrupt prioritization and
routing for shared platform-level interrupts, and sends only a single external interrupt signal per privilege mode
(meip/seip/ueip) to each hart.

The CLIC complements the PLIC. Smaller single-core systems might have only a CLIC, while multicore systems
might have a CLIC per-core and a single shared PLIC. The PLIC xeip signals are treated as hart-local interrupt
sources by the CLIC at each core.

2.1. Existing RISC-V Interrupts | Page 4

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



2.3. CLIC compared to Original Basic Interrupt Controller
The existing original basic interrupt controller was a small unit that provided local interrupts based on earlier
designs, and managed the software, timer, and external interrupt signals (xsip/xtip/xeip signals in the xip
register). This basic controller also allowed additional custom fast interrupt signals to be added in bits 16 and up
of the xip register.

New settings of xtvec mode as described below are used to enable CLIC modes instead of the original basic
interrupt modes. Platform profiles may require either or both of the original basic and CLIC interrupt modes.

2.4. CLIC compared to Advanced Interrupt Architecture
Advanced interrupt Architecture (AIA) supports message-signaled interrupts (MSIs) and an Advanced PLIC
(APLIC) and targeted to support multiple harts, and support for virtualization. Like CLIC, the relative priority of
all interrupts (not just external) can be configured. CLIC is targeted at CLIC per-core and has the option to give
each interrupt source a separate trap entry address, preemption (nesting) of interrupts with adjustable priority
threshold control, and support for software tailchaining.

2.3. CLIC compared to Original Basic Interrupt Controller | Page 5

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



Chapter 3. CLIC Overview
This section gives an overview for the Core-Local Interrupt Controller (CLIC) that receives interrupt signals and
presents the next interrupt to be processed by the hart.

The CLIC supports up to 4096 interrupt inputs per hart. Each interrupt input i has four 8-bit memory-mapped
control registers: an interrupt-pending bit (clicintip[i]), an interrupt-enable bit (clicintie[i]), interrupt
attributes (clicintattr[i]) to specify privilege mode and trigger type, and interrupt control bits to specify
level and priority (clicintctl[i]).

The first 16 interrupt inputs are reserved for the original basic mode interrupts present in the low 16 bits of the
xip and xie registers, so up to 4080 local external interrupts can be added.

3.1. Interrupt Preemption
The CLIC extends interrupt preemption to support up to 256 interrupt levels for each privilege mode, where
higher-numbered interrupt levels can preempt lower-numbered interrupt levels. Interrupt level 0 corresponds to
regular execution outside of an interrupt handler. Levels 1—255 correspond to interrupt handler levels. Platform
profiles will dictate how many interrupt levels must be supported.

Incoming interrupts with a higher interrupt level can preempt an active interrupt handler running at a lower
interrupt level in the same privilege mode, provided interrupts are globally enabled in this privilege mode.


Existing RISC-V interrupt behavior is retained, where incoming interrupts for a higher
privilege mode can preempt an active interrupt handler running in a lower privilege mode,
regardless of global interrupt enable in lower privilege mode.

3.2. CLIC Interaction with Other Local Interrupts
The CLIC subsumes the functionality of the basic local interrupts previously provided in bits 16 and up of xip/
xie, so these are no longer visible in xip/xie.

The existing timer (mtip/stip/utip), software (msip/ssip/usip), and external interrupt inputs (meip/seip
/ueip) are treated as additional local interrupt sources, where the privilege mode, interrupt level, and priority
can be altered using memory-mapped clicintattr[i] and clicintctl[i] registers.


In CLIC mode, interrupt delegation for these signals is achieved via changing the interrupt’s
privilege mode in the CLIC Interrupt Attribute Register (clicintattr), as with any other
CLIC interrupt input.

3.1. Interrupt Preemption | Page 6

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



Chapter 4. CLIC Memory-Mapped Registers
4.1. CLIC Memory Map
Each hart has a separate CLIC accessed by a separate address region. The M-mode CLIC memory map region
must be made accessible to the M-mode software running on the hart.


A bus memory map or locked PMP entries could prevent M-mode software on a particular
hart from reaching the CLIC memory map.

The base address of M-mode CLIC memory-mapped registers is specified at a new CLIC Base (mclicbase)
Control and Status Register (CSR).


The mclicbase register and clicinfo are likely to be replaced by the general discovery
mechanism that is in development.

The CLIC memory map supports up to 4096 total interrupt inputs.

M-mode CLIC memory map
  Offset
  ###   0x0008-0x003F              reserved    ###
  ###   0x00C0-0x07FF              reserved    ###
  ###   0x0800-0x0FFF              custom      ###

  0x0000         1B          RW        cliccfg
  0x0004         4B          R         clicinfo

  0x0040         4B          RW        clicinttrig[0]
  0x0044         4B          RW        clicinttrig[1]
  0x0048         4B          RW        clicinttrig[2]
  ...
  0x00B4         4B          RW        clicinttrig[29]
  0x00B8         4B          RW        clicinttrig[30]
  0x00BC         4B          RW        clicinttrig[31]

  0x1000+4*i     1B/input    R or RW   clicintip[i]
  0x1001+4*i     1B/input    RW        clicintie[i]
  0x1002+4*i     1B/input    RW        clicintattr[i]
  0x1003+4*i     1B/input    RW        clicintctl[i]
  ...
  0x4FFC         1B/input    R or RW   clicintip[4095]
  0x4FFD         1B/input    RW        clicintie[4095]
  0x4FFE         1B/input    RW        clicintattr[4095]
  0x4FFF         1B/input    RW        clicintctl[4095]

4.1. CLIC Memory Map | Page 7

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



Supervisor-mode CLIC regions only expose interrupts that have been configured to be supervisor-accessible via
the M-mode CLIC region.

Layout of Supervisor-mode CLIC regions
0x000+4*i   1B/input    R or RW   clicintip[i]
0x001+4*i   1B/input    RW        clicintie[i]
0x002+4*i   1B/input    RW        clicintattr[i]
0x003+4*i   1B/input    RW        clicintctl[i]

User-mode CLIC regions only expose interrupts that have been configured to be user-accessible via the M-mode
CLIC region.

The location of the S-mode and U-mode CLIC regions are independent of the location of the M-mode CLIC
region, and their base addresses are specified by the platform specification and made visible via the discovery
mechanism for that platform.

 Discovery mechanisms are still in development.

Layout of user-mode CLIC regions
0x000+4*i   1B/input    R or RW   clicintip[i]
0x001+4*i   1B/input    RW        clicintie[i]
0x002+4*i   1B/input    RW        clicintattr[i]
0x003+4*i   1B/input    RW        clicintctl[i]

A 32-bit write to {clicintctl,clicintattr,clicintie,clicintip} is legal. However, there is no specified order in which the
effects of the individual byte updates take effect.

If an input i is not present in the hardware, the corresponding clicintip[i], clicintie[i], clicintattr[i
], clicintctl[i] memory locations appear hardwired to zero.

All CLIC-memory mapped registers are visible to M-mode. Interrupt registers clicintip[i], clicintie[i],
clicintattr[i], clicintctl[i] configured as M-mode interrupts are not acessible to S-mode and U-mode.
Interrupt registers clicintip[i], clicintie[i], clicintattr[i], clicintctl[i] configured as S-mode
interrupts are not acessible to U-mode.

In S-mode, any interrupt i that is not accessible to S-mode appears as hard-wired zeros in clicintip[i],
clicintie[i], clicintattr[i], and clicintctl[i].

Likewise, in U-mode, any interrupt i that is not accessible to U-mode appears as hard-wired zeros in
clicintip[i], clicintie[i], clicintattr[i], and clicintctl[i].

The privilege mode of an interrupt is controlled by both cliccfg.nmbits and clicintattr[i].mode as
described in the Specifying Interrupt Privilege Mode section below.

It is not intended that the interconnect to the CLIC memory-mapped interrupt regions be required to carry the
privilege mode of the initiator. A possible implementation of the CLIC memory map would be to alias the same
physical CLIC memory-mapped registers to different address ranges, with each address range given different
permissions for each privilege mode. Interrupts configured as M-mode interrupts appear as hard-wired zeros in
the S-mode address range. Likewise interrupts configured as M-mode or S-mode would appear as hard-wired
zeros in the U-mode address range.

4.1. CLIC Memory Map | Page 8

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



The intent is that only the necessary address regions are made accessible to each privilege mode using the
system’s standard memory protection mechanisms. This can be done either using PMPs in microcontroller
systems, or page tables (and/or PMPs) in harts with virtual memory support.

The CLIC specification does not dictate how CLIC memory-mapped registers are split between M/S/U regions as
well as the layout of multiple harts as this is generally a platform issue and each platform needs to define a
discovery mechanism to determine the memory map locations. Some considerations for platforms to consider are
selecting regions that allow for efficient PMP and virtual memory configuration. For example, it may desired
that the bases of each S/U-mode CLIC region is VM page (4k) aligned so they can be mapped through the
TLBs.

4.2. CLIC Configuration (cliccfg)
The CLIC has a single memory-mapped 8-bit global configuration register, cliccfg, that defines how many
privilege modes are supported, how the clicintctl[i] registers are subdivided into level and priority fields, and
whether selective hardware vectoring is supported.

The cliccfg register has three WARL fields, a 2-bit nmbits field, a 4-bit nlbits field, and a 1-bit nvbits
field, plus a reserved bit WPRI-hardwired to zero in current spec.



WPRI means "Writes Preserve Values, Reads Ignore Values" indicating whole read/write
fields are reserved for future use. Software should ignore the values read from these fields,
and should preserve the values held in these fields when writing values to other fields of the
same register. For forward compatibility, implementations that do not furnish these fields
must hardwire them to zero.

  cliccfg register layout

  Bits    Field
  7       reserved (WPRI 0)
  6:5     nmbits[1:0]
  4:1     nlbits[3:0]
    0     nvbits

Detailed explanation for each field are described in the following sections.

4.2.1. Specifying Interrupt Privilege Mode
The 2-bit cliccfg.nmbits WARL field specifies how many bits are physically implemented in clicintattr[
i].mode to represent an input i's privilege mode. Although cliccfg.nmbits field is always 2-bit wide, the
physically implemented bits in this field can be fewer than two (depending how many interrupt privilege-modes
are supported).

For example, in M-mode-only systems, only M-mode exists so we do not need any extra bit to represent the
supported privilege-modes. In this case, no physically implemented bits are needed in the clicintattr.mode
and thus cliccfg.nmbits is 0 (i.e., cliccfg.nmbits can be hardwired to 0).

In M/U-mode systems with N-extension user-level interrupts support, cliccfg.nmbits can be set to 0 or 1. If
cliccfg.nmbits = 0, then all interrupts are treated as M-mode interrupts. If the cliccfg.nmbits = 1, then a
value of 1 in the most-significant bit (MSB) of a clicintattr[i].mode register indicates that interrupt intput
is taken in M-mode, while a value of 0 indicates that interrupt is taken in U-mode.

4.2. CLIC Configuration (cliccfg) | Page 9

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



Similarly, in systems that support all M/S/U-mode interrupts, cliccfg.nmbits can be set to 0, 1, or 2 bits to
represent privilege-modes. cliccfg.nmbits = 0 indicates that all local interrupts are taken in M-mode.
cliccfg.nmbits = 1 indicates that the MSB selects between M-mode (1) and S-mode (0). cliccfg.nmbits
= 2 indicates that the two MSBs of each clicintattr[i].mode register encode the interrupt’s privilege mode
using the same encoding as the mstatus.mpp field.



Bare S-mode (no MMU, satp=0) can be used in microcontrollers to allow hardware
delegation of interrupts out of M-mode. Bare S-mode has already been ratified as part of
privileged architecture. There are also proposals to add S-mode PMP support to allow an
RTOS running in S-mode to isolate itself from tasks running in U-mode. The proposed N-
extension would also add user-mode interrupts and traps, but has not been ratified and is not
currently being advanced.

 Encoding for RISC-V privilege levels (mstatus.mpp)

 Level  Encoding Name              Abbreviation
 0      00       User/Application  U
 1      01       Supervisor        S
 2      10       Reserved
 3      11       Machine           M

priv-modes nmbits clicintattr[i].mode  Interpretation
       M      0       xx               M-mode interrupt

     M/U      0       xx               M-mode interrupt
     M/U      1       0x               U-mode interrupt
     M/U      1       1x               M-mode interrupt

   M/S/U      0       xx               M-mode interrupt
   M/S/U      1       0x               S-mode interrupt
   M/S/U      1       1x               M-mode interrupt
   M/S/U      2       00               U-mode interrupt
   M/S/U      2       01               S-mode interrupt
   M/S/U      2       10               Reserved (or extended S-mode)
   M/S/U      2       11               M-mode interrupt

   M/S/U      3       xx               Reserved

4.2.2. Specifying Interrupt Level
The 4-bit cliccfg.nlbits WARL field indicates how many upper bits in clicintctl[i] are assigned to
encode the interrupt level.

Only 0 or 8 level bits are currently supported, with other values currently reserved.


In effect, this switches the control bits from being used only for level or only for priority. The
design supports a wider range of level-bit settings but this is not currently being standardized.

4.2. CLIC Configuration (cliccfg) | Page 10

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



Although the interrupt level is an 8-bit unsigned integer, the number of bits actually assigned or implemented
can be fewer than 8. As described above, the number of bits assigned is specified in cliccfg.nlbits. The
number of bits actually implemented can be derived from cliccfg.nlbits and a fixed parameter
clicinfo.CLICINTCTLBITS (with value between 0 to 8) which specifies bits implemented for both interrupt
level and priority.


The number of available level bits can be determined by subtracting the number of mode bits
from CLICINTCTLBITS.

If the actual bits assigned or implemented are fewer than 8, then these bits are left-justified and appended with
1’s for the lower missing bits. For example, if the nlbits > CLICINTCTLBITS, then the lower bits of the 8-bit
interrupt level are assumed to be all 1s. Similarly, if nlbits < 8, then the lower bits of the 8-bit interrupt level
are assumed to be all 1s. The following table shows how levels are encoded for these cases.

 #bits   encoding          interrupt levels
     0    ........                                                        255
     1    l.......                        127,                            255
     2    ll......           63,          127,            191,            255
     3    lll.....     31,   63,   95,    127,    159,    191,    223,    255
     4    llll....  15,31,47,63,79,95,111,127,143,159,175,191,207,223,239,255

 "l" bits are available variable bits in level specification
 "." bits are non-existent bits for level encoding, assumed to be 1

If nlbits = 0, then all interrupts are treated as level 255.

Examples of cliccfg settings:

CLICINTCTLBITS nlbits clicintctl[i] interrupt levels
      0         2      ........     255
      1         2      l.......     127,255
      2         2      ll......     63,127,191,255
      3         3      lll.....     31,63,95,127,159,191,223,255
      4         1      lppp....     127,255

"." bits are non-existent bits for level encoding, assumed to be 1
"l" bits are available variable bits in level specification
"p" bits are available variable bits in priority specification

4.2.3. Specifying Interrupt Priority
The least-significant bits in clicintctl[i] that are not configured to be part of the interrupt level are
interrupt priority, which are used to prioritize among interrupts pending-and-enabled at the same privilege mode
and interrupt level. The highest-priority interrupt at a given privilege mode and interrupt level is taken first. In
case there are multiple pending-and-enabled interrupts at the same highest priority, the highest-numbered
interrupt is taken first.

4.2. CLIC Configuration (cliccfg) | Page 11

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V




The highest numbered interrupt wins in a tie (when privilege mode, level and priority are all
identical). This is the same as the original basic interrupt mode, but different than the PLIC.

Notice that the 8-bit interrupt level is used to determine preemption (for nesting interrupts). In contrast, the 8-
bit interrupt priority does not affect preemption but is only used as a tie-breaker when there are multiple pending
interrupts with the same interrupt level.

Any implemented priority bits are treated as the most-significant bits of a 8-bit unsigned integer with lower
unimplemented bits set to 1. For example, with one priority bit (p111_1111), interrupts can be set to have
priorities 127 or 255, and with two priority bits (pp11_1111), interrupts can be set to have priorities 63, 127,
191, or 255.

4.2.4. Specifying Support for Selective Interrupt Hardware Vectoring
The single-bit read-only nvbits field in cliccfg specifies whether the selective interrupt hardware vectoring
feature is implemented or not.

This selective hardware vectoring feature gives users the flexibility to select the behavior for each interrupt:
either hardware vectoring or non-vectoring. As a result, it allows users to optimize each interrupt and enjoy the
benefits of both behaviors. More specifically, hardware vectoring has the advantage of faster interrupt response
at the price of slightly increasing the code size (to save/restore contexts). On the other hand, non-vectoring has
the advantage of smaller code size (by sharing and reusing one copy of common code to save/restore contexts)
at the price of slightly slower interrupt response.

When nvbits is 0, selective interrupt hardware vectoring is not implemented. In this case, all interrupts are non-
vectored and are directed to the common code at xtvec register.

When nvbits is 1, selective interrupt hardware vectoring is implemented. The bit clicintattr[i].shv
controls the vectoring behavior of interrupt i. If clicintattr[i].shv is 0, then the interrupt is non-vectored
and always jumps to the common code at xtvec. If clicintattr[i].shv is 1, then the interrupt is hardware
vectored to the trap-handler function pointer specified in xtvt CSR. This allows some interrupts to all jump to a
common base address held in xtvec, while the others are vectored in hardware via a table pointed to by the
additional xtvt CSR.

4.3. CLIC Information (clicinfo)
This is a read-only register to show information useful for debugging. NOTE: clicinfo is likely to be replaced
by the general discovery mechanism that is in development.

  clicinfo register layout

  Bits    Field
  31      reserved (WARL 0)
  30:25   num_trigger (number of maximum interrupt triggers supported)
  24:21   CLICINTCTLBITS
  20:13   version (for version control)
          20:17 for architecture version, 16:13 for implementation version
  12:0    num_interrupt (number of maximum interrupt inputs supported)

The num_interrupt field specifies the actual number of maximum interrupt inputs supported in this

4.3. CLIC Information (clicinfo) | Page 12

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



implementation.

The version field specifies the implementation version of CLIC. The upper 4-bit specifies the architecture
version, and the lower 4-bit specifies the implementation version.

The CLICINTCTLBITS field specifies how many hardware bits are actually implemented in the clicintctl
registers, with 0 ≤ CLICINTCTLBITS ≤ 8. The implemented bits are kept left-justified in the most-significant
bits of each 8-bit clicintctl[i] register, with the lower unimplemented bits treated as hardwired to 1.

The num_trigger field specifies the number of maximum interrupt triggers supported in this implementation.
Valid values are 0 to 32.

4.4. CLIC Interrupt Pending (clicintip)
Each interrupt input has a dedicated interrupt pending bit (clicintip[i]) and occupies one byte in the
memory map for ease of access. The pending bit is located in bit 0 of the byte. Software should assume
clicintip[i]=0 means no interrupt pending, and clicintip[i]!=0 indicates an interrupt is pending to
accomodate possible future expansion of the clicintip field.

When the input is configured for level-sensitive input, the clicintip[i] bit reflects the value of an input signal
to the interrupt controller after any conditional inversion specified by the clicintattr[i] field, and software
writes to the bit are ignored. Software clears the interrupt at the source device.

When the input is configured for edge-sensitive input, clicintip[i] is a read-write register that can be
updated both by hardware interrupt inputs and by software. The bit is set by hardware after an edge of the
appropriate polarity is observed on the interrupt input, as determined by the clicintattr[i] field. Hardware
clears the associated interrupt pending bit when an interrupt is serviced in vectored mode. See additional detail
on hardware clearing in the xtvec section. Software writes can set or clear edge-triggered pending bits directly
by writes to the memory-mapped register. Edge-triggered pending bits can also be cleared when a CSR
instruction that accesses xnxti includes a write.


To improve performance, when a vectored interrupt is selected and serviced, the hardware will
automatically clear a corresponding edge-triggered pending bit, so software doesn’t need to
clear the pending bit in the service routine.

In contrast, when a non-vectored (common code) interrupt is selected, the hardware will not automatically clear
an edge-triggered pending bit.


Software is expected to use a CSR instruction that accesses xnxti that includes a write to
clear an edge-triggered pending bit in non-vectored mode. Additional detail on this is
described in the xnxti section.

The value in the clicintip[i] is undefined when switching from level-sensitive mode to edge-triggered mode in
clicintattr[i].


Software cannot rely on the underlying clicintip[i] register bits used in edge-triggered
mode to hold state while in level-sensitive mode.

4.5. CLIC Interrupt Enable (clicintie)
Each interrupt input has a dedicated interrupt-enable bit (clicintie[i]) and occupies one byte in the memory
map for ease of access. This control bit is read-write to enable/disable the corresponding interrupt. The enable

4.4. CLIC Interrupt Pending (clicintip) | Page 13

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



bit is located in bit 0 of the byte. Software should assume clicintie[i]=0 means no interrupt enabled, and
clicintie[i]!=0 indicates an interrupt is enabled to accomodate possible future expansion of the clicintie field.


clicintie[i] is the individual enable bit while xstatus.xie is the global enable bit for the
current privilege mode. Therefore, for an interrupt i to be enabled in the current privilege
mode, both clicintie[i] and xstatus.xie have to be set.



In contrast, since xstatus.xie only takes effect in the current privilege mode according to
RISC-V convention, an interrupt i from a higher privilege mode is enabled as long as
clicintie[i] is set (regardless of the setting of xstatus.xie in the higher privilege
modes).

4.6. CLIC Interrupt Attribute (clicintattr)
This is an 8-bit WARL read-write register to specify various attributes for each interrupt.

  clicintattr register layout

  Bits    Field
  7:6     mode
  5:3     reserved (WPRI 0)
  2:1     trig
  0       shv

The 1-bit shv field is used for Selective Hardware Vectoring. If shv is 0, it assigns this interrupt to be non-
vectored and thus it jumps to the common code at xtvec. If shv is 1, it assigns this interrupt to be hardware
vectored and thus it automatically jumps to the trap-handler function pointer specified in xtvt CSR. This
feature allows some interrupts to all jump to a common base address held in xtvec, while the others are
vectored in hardware via a table pointed to by the additional xtvt CSR.


if cliccfg.nvbits is 0, the selective interrupt hardware vectoring feature is not
implemented and thus shv field appears hardwired to zero (WARL 0).

The 2-bit trig WARL field specifies the trigger type and polarity for each interrupt input. Bit 1, trig[0], is
defined as "edge-triggered" (0: level-triggered, 1: edge-triggered); while bit 2, trig[1], is defined as "negative-
edge" (0: positive-edge, 1: negative-edge). More specifically, there can be four possible combinations: positive
level-triggered, negative level-triggered, positive edge-triggered, and negative edge-triggered.


Some implementations may want to save these bits so only certain trigger types are
supported. In this case, these bits become hard-wired to fixed values (WARL).

The 2-bit mode WARL field specifies which privilege mode this interrupt operates in. This field uses the same
encoding as the mstatus.mpp (11: machine mode, 01: supervisor mode, 00 user mode). The valid length of this
field can be programmed with cliccfg.nmbits.


For security purpose, the mode field can only be set to a privilege level that is equal to or
lower than the currently running privilege level.

4.6. CLIC Interrupt Attribute (clicintattr) | Page 14

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



4.7. CLIC Interrupt Input Control (clicintctl)
clicintctl[i] is an 8-bit memory-mapped WARL control register to specify interrupt level and interrupt
priority. The number of bits actually implemented in this register is specified by a fixed parameter
CLICINTCTLBITS (in clicinfo), which has a value between 0 to 8. The implemented bits are kept left-justified
in the most-significant bits of each 8-bit clicintctl[i] register, with the lower unimplemented bits treated as
hardwired to 1. These control bits are interpreted as level and priority according to the setting in the CLIC
Configuration register (cliccfg.nlbits).

To select an interrupt to present to the core, the CLIC hardware combines the valid bits in clicintattr.mode
and clicintctl to form an unsigned integer, then picks the global maximum across all pending-and-enabled
interrupts based on this value. Next, the cliccfg setting determines how to split the clicintctl value into
interrupt level and interrupt priority. Finally, the interrupt level of this selected interrupt is compared with the
interrupt-level threshold of the associated privilege mode to determine whether it is qualified or masked by the
threshold (and thus no interrupt is presented).


Selecting an interrupt at a high privilege mode masks any interrupt at a lower privilege mode
since the higher-privilege mode causes the interrupt signal to appear more urgent than any
lower-privilege mode interrupt.

4.7.1. Interrupt Input Identification Number
The 4096 CLIC interrupt vectors are given unique identification numbers with xcause Exception Code (
exccode) values. To maintain backward compatibility, the original basic mode interrupts retain their original
cause values, while the new interrupts are numbered starting at 16.


When upgrading an earlier original basic interrupt controller that had local interrupts
attached directly to bits 16 and above, these local interrupts can be now attached as CLIC
inputs 16 and above to retain the same interrupt IDs.

4.8. CLIC Interrupt Trigger (clicinttrig)
Optional interrupt triggers (clicinttrig[i]) are used to generate a breakpoint exception, entry into Debug
Mode, or a trace action. The actual number of triggers supported is specified in clicinfo.num_trigger.

Each interrupt trigger is a 32-bit memory-mapped WARL register with the following layout:

  clicinttrig register layout

  Bits    Field
  31      enable
  30:13   reserved (WARL 0)
  12:0    interrupt_number

The interrupt_number field selects which number of interrupt input is used as the source for this interrupt
trigger.

The enable control bit is read-write to enable/disable this interrupt trigger.

The detailed behavior of the trigger is defined in the debug spec. For example, the trigger only fires if the

4.7. CLIC Interrupt Input Control (clicintctl) | Page 15

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



interrupt is actually taken (and not when the interrupt is masked, or not taken). In addition, the requested
action (e.g., breakpoint or trace) is taken just before the first instruction of the interrupt handler is executed.

4.8. CLIC Interrupt Trigger (clicinttrig) | Page 16

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



Chapter 5. CLIC CSRs
This section describes the CLIC-related hart-specific Control and Status Registers (CSRs). When in original basic
interrupt mode, the behavior is intended to be software compatible with basic-mode-only systems.

The interrupt-handling CSRs are listed below, with changes and additions for CLIC mode described in the
following sections.

       Number  Name         Description
       0xm00   xstatus      Status register
       0xm02   xedeleg      Exception delegation register
       0xm03   xideleg      Interrupt delegation register (INACTIVE IN CLIC MODE)
       0xm04   xie          Interrupt-enable register     (INACTIVE IN CLIC MODE)
       0xm05   xtvec        Trap-handler base address / interrupt mode
 (NEW) 0xm07   xtvt         Trap-handler vector table base address
       0xm40   xscratch     Scratch register for trap handlers
       0xm41   xepc         Exception program counter
       0xm42   xcause       Cause of trap
       0xm43   xtval        Bad address or instruction
       0xm44   xip          Interrupt-pending register    (INACTIVE IN CLIC MODE)
 (NEW) 0xm45   xnxti        Interrupt handler address and enable modifier
 (NEW) 0xm46   xintstatus   Current interrupt levels
 (NEW) 0xm47   xintthresh   Interrupt-level threshold
 (NEW) 0xm48   xscratchcsw  Conditional scratch swap on priv mode change
 (NEW) 0xm49   xscratchcswl Conditional scratch swap on level change
 (NEW) 0x3??   mclicbase    Base address for CLIC memory mapped registers

         m is the nibble encoding the privilege mode (M=0x3, S=0x1, U=0x0)

5.1. Changes to xstatus CSRs
When in original basic interrupt mode, the xstatus register behavior is unchanged (i.e., backwards-compatible
with original basic mode). When in CLIC mode, the xpp and xpie in xstatus are now accessible via fields in
the xcause register.

5.2. Changes to Delegation (xedeleg/xideleg) CSRs
In CLIC mode, the mode field in Interrupt Attribute Register (clicintattr[i].mode) specifies the privilege
mode in which each interrupt should be taken, so the xideleg CSR ceases to have effect in CLIC mode. The
xideleg CSR is still accessible and state bits retain their values when switching between CLIC and original basic
interrupt modes.

Exception delegation specified by xedeleg functions the same in CLIC mode as in original basic mode.

5.1. Changes to xstatus CSRs | Page 17

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



5.3. Changes to xie/xip CSRs
The xie CSR appears hardwired to zero in CLIC mode, replaced by separate memory-mapped interrupt enables
(clicintie[i]).

The xip CSR appears hardwired to zero in CLIC mode, replaced by separate memory-mapped interrupt pendings
(clicintip[i]).

Writes to xie/xip will be ignored and will not trap (i.e., no access faults). xie/xip always appear to be zero in
CLIC mode.

In systems that support both original basic and CLIC modes, the state bits in xie and xip retain their value
when switching between modes.

5.4. New xtvec CSR Mode for CLIC
The new CLIC interrupt-handling mode is encoded as a new state in the existing xtvec WARL register, where
xtvec.mode (the least-significant two bits) is 11. In this mode, the trap vector base address held in xtvec is
constrained to be aligned on a 64-byte or larger power-of-two boundary.

  xtvec register layout

  Bits          Field
  MXLEN-1:6     base (WARL)
  5:0           mode (WARL)


Systems implementing both CLIC and CLINT mode may, but are not required to, limit
alignment of mtvec to 64-byte boundaries in both modes.



Although future CLIC versions may allow privileges to have different xtvec.mode settings, for
now all privilege modes must run in either CLIC mode or all privilege modes must run in non-
CLIC mode. Bit 1 of xtvec is controlled by bit 1 of mtvec (i.e., lower privilege modes see this
bit as read-only. Bit 0 and bits[XLEN-1:6] of lower-privilege mode’s xtvec are unaffected by
changes to corresponding bits of mtvec. These constraints might change if there are future
additions to the CLIC or other new interrupt controller specs.

5.3. Changes to xie/xip CSRs | Page 18

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



 (xtvec[5:0])
 mode        Action on Interrupt
 aaaa00      pc := OBASE                       (original non-vectored basic mode)
 aaaa01      pc := OBASE + 4 * exccode         (original vectored basic mode)

 00001?                                        (CLIC mode)
             (non-vectored)
             pc := NBASE                                    if clicintattr[i].shv
= 0
                                                            || if cliccfg.nvbits =
0
                                                               (vector not
supported)
             (vectored)
             pc := M[TBASE + XLEN/8 * exccode)] & ~1        if clicintattr[i].shv
= 1

 xxxx1?      (xxxx!=0000)                             Reserved

 OBASE = xtvec[XLEN-1:2]<<2   # Original vector base was at least 4-byte aligned.
 NBASE = xtvec[XLEN-1:6]<<6   # New vector base is at least 64-byte aligned.
 TBASE = xtvt[XLEN-1:6]<<6    # Trap vector table base is at least 64-byte
aligned.

In CLIC mode, writing 0 to clicintattr[i].shv sets interrupt i to non-vectored, where the hart jumps to the
trap handler address held in the upper XLEN-6 bits of xtvec for all exceptions and interrupts in privilege mode
x. Similarly, if the selective hardware vectoring feature is not implemented (cliccfg.nvbits is 0), all interrupts
are non-vectored and behave the same.

On the other hand, writing 1 to clicintattr[i].shv sets interrupt i to vectored. When these interrupts are
taken, the hart switches to the handler’s privilege mode, sets the hardware vectoring bit xinhv in xcause of the
handler privilege mode, and clears xstatus.xie. At this time, if the associated interrupt pending bit is
configured for edge-sensitive input, it is cleared by hardware. The hart then fetches an XLEN-bit handler address
with permissions corresponding to the handler’s mode from the in-memory table whose base address (TBASE) is
in xtvt. The trap handler function address is fetched from TBASE+XLEN/8*exccode. If the fetch is successful,
the hart clears the low bit of the handler address, sets the PC to this handler address, then clears the xinhv bit
in xcause of the handler privilege mode. The overall effect is:

pc := M[TBASE + XLEN/8 * exccode] & ~1

5.4. New xtvec CSR Mode for CLIC | Page 19

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



           # Vector table layout for RV32 (4-byte function pointers)
  mtvt ->  0x800000 # Interrupt 0 handler function pointer
           0x800004 # Interrupt 1 handler function pointer
           0x800008 # Interrupt 2 handler function pointer
           0x80000c # Interrupt 3 handler function pointer

           # Vector table layout for RV64 (8-byte function pointers)
  mtvt ->  0x800000 # Interrupt 0 handler function pointer
           0x800008 # Interrupt 1 handler function pointer
           0x800010 # Interrupt 2 handler function pointer
           0x800018 # Interrupt 3 handler function pointer


The original basic vectored mode simply jumped to an address in the trap vector table, while
the new CLIC vectored mode reads a handler function address from the table, and jumps to it
in hardware.


The vector table contains vector addresses rather than instructions because it simplifies static
initialization in C. More specifically, the entries in the table are simple XLEN-bit function
pointers.


The hardware vectoring bit xinhv is provided to allow resumable traps on fetches to the trap
vector table.

The xinhv bits are only written by hardware during the table vector read operation. The xinhv bits can be
written by software, including when hardware vectoring is not in effect. The xinhv bit has no effect except when
returning from an exception using an xret instruction. Since successful hardware vector fetches clear xinhv, if
xinhv of the previous privilege mode is set, it implies an exception occurred during previous privilege mode table
vector read operation. So when xinhv of the previous privilege is set, xret should consider xepc as an address
instead of an instruction.

When returning from an xret instruction, the xinhv bit modifies behavior as follows:

If the xinhv bit of the previous privilege mode is set, the hart resumes the trap handler memory access to
retrieve the function pointer for vectoring with permissions corresponding to the previous privilege mode. The
trap handler function address is fetched from the current privilege mode’s xepc. If the fetch is successful, the
hart clears the low bit of the handler address, sets the PC to this handler address, then clears the xinhv bit in
xcause of the handler privilege mode.

if (xcause.inhv) //xcause here refers to the cause CSR of the previous privilege
mode
    pc := M[xepc] //xepc here refers to the current privilege mode
else
    pc := xepc

5.4. New xtvec CSR Mode for CLIC | Page 20

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V





The inhv bit when set at xRET informs hardware to repeat the table load using the address in
xEPC to obtain the address of the trap handler that is then written to the PC instead of
directly writing xEPC to the PC. One of the goals of this behavior is to avoid complicating
the critical code paths for handling virtual memory in the more-privileged layer. The more-
privileged layer does not have to distinguish CLIC vector table reads from other forms of data
page fault and can handle them using exactly the same code.



Horizontal traps (same privilege level) are unrecoverable. The interesting case is vertical traps,
where a more privileged layer is handling page faults or other synchronous faults on vector
table access. The regular code path in more privileged layer will want to use xtval to
determine what bad virtual address to page in, but will not normally restore xtval when
returning to faulting context (potentially after some time and other contexts have run)
However, it will restore xepc (using x for more privileged mode here) before using xret on
normal code path. This is a rationale for why both xtval and xepc are written with the
faulting address.

Implementations might support only one of original basic or CLIC mode. If only basic mode is supported, writes
to bit 1 are ignored and it is always set to zero (current behavior). If only CLIC mode is supported, writes to bit
1 are also ignored and it is always set to one. CLIC mode hardwires xtvec bits 2-5 to zero (assuming no further
CLIC extensions are supported).

For permissions-checking purposes, the memory access to retrieve the function pointer for vectoring is treated as
a load with the privilege mode (also obeying MPRV and SUM bits) and interrupt level of the interrupt handler.
If there is an access exception on the table load, both xtval and xepc holds the faulting address.

In CLIC mode, synchronous exception traps always jump to NBASE.

5.5. New xtvt CSRs
The xtvt WARL XLEN-bit CSR holds the base address of the trap vector table, aligned on a 64-byte or greater
power-of-two boundary. The actual alignment can be determined by writing ones to the low-order bits then
reading them back. Values other than 0 in the low 6 bits of xtvt are reserved.

In systems that support both original basic and CLIC modes, the xtvt CSR is still accessible in basic mode (but
does not have any effect).

5.6. Changes to xepc CSRs
The xepc CSRs behave the same in both modes, capturing the PC at which execution was interrupted.

5.7. Changes to xcause CSRs
In both original basic and CLIC modes, the xcause CSR is written at the time an interrupt or synchronous trap
is taken, recording the reason for the interrupt or trap. For CLIC mode, xcause is also extended to record more
information about the interrupted context, which is used to reduce the overhead to save and restore that context
for an xret instruction. CLIC mode xcause also adds state to record progress through the trap handling
process.

5.5. New xtvt CSRs | Page 21

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



mcause
Bits    Field      Description
XLEN-1 Interrupt    Interrupt=1, Exception=0
   30  minhv        Set by hardware at start of hardware vectoring, cleared by
hardware at end of successful hardware vectoring
29:28  mpp[1:0]     Previous privilege mode, same as mstatus.mpp
   27  mpie         Previous interrupt enable, same as mstatus.mpie
26:24  (reserved)
23:16  mpil[7:0]    Previous interrupt level
15:12  (reserved)
11:0  Exccode[11:0] Exception/interrupt code

The mcause.mpp and mcause.mpie fields mirror the mstatus.mpp and mstatus.mpie fields, and are aliased
into mcause to reduce context save/restore code.

Note: In a straightforward implementation, reading or writing mstatus fields mpp/mpie in mcause is equivalent
to reading or writing the homonymous field in mstatus.

If the hart is currently running at some privilege mode (pp) at some interrupt level (pil) and an enabled
interrupt becomes pending at any interrupt level in a higher privilege mode or if an interrupt at a higher
interrupt level in the current privilege mode becomes pending and interrupts are globally enabled in this privilege
mode, then execution is immediately transferred to a handler running with the new interrupt’s privilege mode (x)
and interrupt level (il).

The CSR xepc is set to the PC of the interrupted application code or preempted interrupt handler, while the
xcause register now captures the previous privilege mode (pp), interrupt level (pil) and interrupt enable (pie),
as well as the id of the interrupt in exccode.

In systems supporting both original basic and CLIC modes, the new CLIC-specific fields (minhv, mpp, mpil,
mpie) appear to be hardwired to zero in basic mode for backwards compatibilty. When basic mode is written to
xtvec, the new xcause state fields (mhinv and mpil) are zeroed. The other new xcause fields, mpp and mpie,
appear as zero in the xcause CSR but the corresponding state bits in the mstatus register are not cleared.

The supervisor scause register has only a single spp bit (to indicate user/supervisor) mirrored from
sstatus.spp, while the user ucause register has no upp bit as interrupts can only have come from user mode.

5.7. Changes to xcause CSRs | Page 22

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



 scause
 Bits    Field        Description
 XLEN-1 Interrupt     Interrupt=1, Exception=0
    30  sinhv         Set by hardware at start of hardware vectoring, cleared by
hardware at end of successful hardware vectoring
    29  (reserved)
    28  spp           Previous privilege mode, same as sstatus.spp
    27  spie          Previous interrupt enable, same as sstatus.spie
 26:24  (reserved)
 23:16  spil[7:0]     Previous interrupt level
 15:12  (reserved)
 11:0   exccode[11:0] Exception/interrupt code

 ucause
 Bits    Field       Description
 XLEN-1 Interrupt    Interrupt=1, Exception=0
    30  uinhv        Set by hardware at start of hardware vectoring, cleared by
hardware at end of successful hardware vectoring
 29:28  (reserved)
    27  upie         Previous interrupt enable, same as ustatus.upie
 26:24  (reserved)
 23:16  upil[7:0]    Previous interrupt level
 15:12  (reserved)
 11:0  exccode[11:0] Exception/interrupt code

For exceptions, in CLIC mode, the mcause has the new CLIC format. On the other hand, in other modes, the
mcause has the original format.

5.8. Next Interrupt Handler Address and Interrupt-Enable CSRs
(xnxti)
The xnxti CSR can be used by software to service the next horizontal interrupt for the same privilege mode
when it has greater level than the saved interrupt context (held in xcause`.pil`) and greater level than the
interrupt threshold of the corresponding privilege mode, without incuring the full cost of an interrupt pipeline
flush and context save/restore. The xnxti CSR is designed to be accessed using CSRRSI/CSRRCI instructions,
where the value read is a pointer to an entry in the trap handler table and the write back updates the interrupt-
enable status. In addition, writes to the xnxti have side-effects that update the interrupt context state.


This is different than a regular CSR instruction as the value returned is different from the
value used in the read-modify-write operation.


All CSR instructions may be used with xnxti. The operation will be the same as the
corresponding CSR instruction used with xstatus. The value read and the side-effects will be
as specified in this section.

A read of the xnxti CSR returns either zero, indicating there is no suitable interrupt to service or that the
highest ranked interrupt is SHV or that the system is not in a CLIC mode, or returns a non-zero address of the

5.8. Next Interrupt Handler Address and Interrupt-Enable CSRs (xnxti) | Page 23

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



entry in the trap handler table for software trap vectoring.


The xtvt CSR could be set to memory addresses such that a table entry was at address zero,
and this would be indistinguishable from the no-interrupt case.

If the CSR instruction that acccesses xnxti includes a write, the xstatus CSR is the one used for the read-
modify-write portion of the operation, while the xcause register’s exccode field, the xintstatus register’s xil
field and the pending bit of the accepted interrupt can also be updated with the new interrupt id, level, and clear
respectively.



Following the usual convention for CSR instructions, if the CSR instruction does not include
write side effects (e.g., csrr t0, xnxti), then no state update on any CSR occurs. This can
be used to determine if an interrupt could be taken without actually updating xil and
exccode.

The xnxti CSR is intended to be used inside an interrupt handler after an initial interrupt has been taken and
xcause and xepc registers updated with the interrupted context and the id of the interrupt.

If the pending interrupt is edge-triggered, hardware will automatically clear the corresponding pending bit when
the CSR instruction that accesses xnxti includes a write. However, if the CSR instruction does not include write
side effects (e.g., csrr t0, xnxti), then no state update on any CSR occurs and thus the interrupt pending bit
is not cleared. This behavior allows software to optimize the selection and execution of interrupts using xnxti.

5.8. Next Interrupt Handler Address and Interrupt-Enable CSRs (xnxti) | Page 24

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



 // Pseudo-code for csrrsi rd, mnxti, uimm[4:0] in M mode.
 mstatus |= uimm[4:0]; // Performed regardless of interrupt readiness.
 if (clic.priv==M && clic.level > mcause.pil && clic.level > mintthresh.th
     && (cliccfg.nvbits==0 || clicintattr.shv==0) ) {
   // There is an available, non-hardware-vectored interrupt.
   if (uimm[4:0] != 0) {  // Side-effects should occur.
     // Commit to servicing the available interrupt.
     mintstatus.mil = clic.level; // Update hart's interrupt level.
     mcause.exccode = clic.id;   // Update interrupt id in mcause.
     mcause.interrupt = 1;       // Set interrupt bit in mcause.
     if (clicintattr[clic.id][1] == 1) { // If edge interrupt,
       clicintip[clic.id] = 0;           // clear edge interrupt
     }
   }
   rd = TBASE + XLEN/8 * clic.id; // Return pointer to trap handler entry.
 } else {
   // No interrupt, or a selectively hardware vectored interrupt, or in non-CLIC
mode.
   rd = 0;
 }
 // When a different CSR instruction is used, the update of mstatus and the test
 // for whether side-effects should occur are modified accordingly.
 // When a different privileges xnxti CSR is accessed then clic.priv is compared
with
 // the corresponding privilege and xstatus, xintstatus.xil, xcause.exccode are
the
 // corresponding privileges CSRs.


Vertical interrupts to different privilege modes will be taken preemptively by the hardware, so
xnxti effectively only ever handles the next interrupt in the same privilege mode.

In original basic mode, reads of xnxti return 0, updates to xstatus proceed as in CLIC mode, but updates to
xintstatus and xcause do not take effect.

5.9. New Interrupt Status (xintstatus) CSRs
A new M-mode CSR, mintstatus, holds the active interrupt level for each supported privilege mode. These
fields are read-only. The primary reason to expose these fields is to support debug.

mintstatus fields
31:24 mil
23:16 (reserved) # To follow pattern of others.
15: 8 sil
 7: 0 uil

5.9. New Interrupt Status (xintstatus) CSRs | Page 25

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



Corresponding supervisor mode, sintstatus, and user, uintstatus, provide restricted views of mintstatus.

sintstatus fields
31:16 (reserved)
15: 8 sil
 7: 0 uil

uintstatus fields
31: 8 (reserved)
 7: 0 uil

The xintstatus registers are accessible in original basic mode for system that support both modes.

5.10. New Interrupt-Level Threshold (xintthresh) CSRs
The interrupt-level threshold (xintthresh) is a new read-write CSR, which holds an 8-bit field (th) for the
threshold level of the associated privilege mode. The th field is held in the least-significant 8 bits of the CSR,
and zero should be written to the upper bits.

A typical usage of the interrupt-level threshold is for implementing critical sections. The current handler can
temporarily raise its effective interrupt level to implement a critical section among a subset of levels, while still
allowing higher interrupt levels to preempt.

The current hart’s effective interrupt level would then be: effective_level = max(xintstatus.xil, xintthresh
.th)

The max is used to prevent a hart from dropping below its original level which would break assumptions in
design, and also makes it simple for software to remove threshold without knowing its own level by simply
writing zero.

The interrupt-level threshold is only valid when running in associated privilege mode and not in other modes.
This is because interrupts for lower privilege modes are always disabled, whereas interrupts for higher privilege
modes are always enabled. For example, machine-mode interrupts will not be masked by machine-mode
threshold setting when running in user mode. This is analogous to how mstatus.mie does not mask machine-
mode interrupts when running in lower privilege modes.



This behavior significantly reduces the hardware cost because it only needs to select one
global maximum interrupt and compare with the threshold of the associated privilege mode
(while ignoring thresholds in other modes). Otherwise, hardware would have to select multiple
maximum interrupts (one per privilege mode), compare and qualify with their associated
thresholds, then pick a qualified maximum interrupt with the highest privilege mode.

5.11. New CLIC Base (mclicbase) CSR
The machine mode mclicbase CSR is an XLEN-bit read-only register providing the base address of CLIC
memory mapped registers. Its value should be configured or set up at the platform level to indicate the starting
address of CLIC memory mapped registers.

Since the CLIC memory map must be aligned at a 4KiB boundary, the mclicbase CSR has its 12 least-

5.10. New Interrupt-Level Threshold (xintthresh) CSRs | Page 26

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



significant bits hardwired to zero. It is used to inform software about the location of CLIC memory mappped
registers.


The mclicbase register is likely to be replaced by the general discovery mechanism that is in
development.

5.11. New CLIC Base (mclicbase) CSR | Page 27

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



Chapter 6. CLIC Parameters
Name           Value Range                     Description
CLICANDBASIC   0-1                             Implements original basic mode
also?
CLICPRIVMODES  1-3                             Number privilege modes: 1=M, 2=M/U,
                                                                       3=M/S/U
CLICLEVELS     2-256                           Number of interrupt levels
including 0
NUM_INTERRUPT  4-4096                          Always has MSIP, MTIP, MEIP, CSIP
CLICMAXID      12-4095                         Largest interrupt ID
CLICINTCTLBITS 0-8                             Number of bits implemented in
                                                 clicintctl[i]
CLICCFGMBITS   0-ceil(lg2(CLICPRIVMODES))      Number of bits implemented for
                                                 cliccfg.nmbits
CLICCFGLBITS   0-ceil(lg2(CLICLEVELS))         Number of bits implemented for
                                                 cliccfg.nlbits
CLICSELHVEC    0-1                             Selective hardware vectoring
supported?
CLICMTVECALIGN 6-13                            Number of hardwired-zero least
                                                 significant bits in mtvec
address.
CLICXNXTI      0-1                             Has xnxti CSR implemented?
CLICXCSW       0-1                             Has xscratchcsw/xscratchcswl
                                                 implemented?


These parameters are likely to be available by the general discovery mechanism that is in
development.

Chapter 6. CLIC Parameters | Page 28

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



Chapter 7. CLIC Reset Behavior
In general in RISC-V, mandatory reset state is minimized but platform specifications or company policy might
add additional reset requirements. Since the general privileged architecture states that mstatus.mie is reset to
zero, interrupts will not be enabled coming out of reset.


For an S-mode execution environment, the EEI should specify that status.sie is also reset on
entry. It is then responsibility of the execution environment to ensure that is true before
beginning execution in S-mode. Similarly for other lower-mode execution environments.

7.1. CLIC mandatory reset state
xintstatus.xil fields reset to 0. Interrupt level 0 corresponds to regular execution outside of an interrupt
handler.

The reset behavior of other fields is platform-specific.

7.1. CLIC mandatory reset state | Page 29

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



Chapter 8. CLIC Interrupt Operation
This section describes the operation of CLIC interrupts.

8.1. General Interrupt Overview
At any time, a hart is running in some privilege mode with some interrupt level. The hart’s privilege mode is held
internally but is not visible to software running on a hart (to avoid virtualization holes), but the current interrupt
level is made visible in the xintstatus register.

Within a privilege mode x, if the associated global interrupt-enable xie is clear, then no interrupts will be taken
in that privilege mode, but a pending-enabled interrupt in a higher privilege mode will preempt current execution.
If xie is set, then pending-enabled interrupts at a higher interrupt level in the same privilege mode will preempt
current execution and run the interrupt handler for the higher interrupt level.

As with the existing RISC-V mechanism, when an interrupt or synchronous exception is taken, the privilege mode
and interrupt level are modified to reflect the new privilege mode and interrupt level. The global interrupt-enable
bit of the handler’s privilege mode is cleared, to prevent preemption by higher-level interrupts in the same
privilege mode.

The overall behavior is summarized in the following table: the Current p/ie/il fields represent the current
privilege mode P (not software visible), interrupt enable ie = (xstatus.xie & clicintie[i]) and interrupt
level L = max(xintstatus.xil, xintthresh.th); the CLIC priv,level, and id fields represent the highest-
ranked interrupt currently present in the CLIC with nP representing the new privilege mode, nL representing the
new interrupt level, and id representing the interrupt’s id; Current' shows the p/ie/il context in the handler’s
privilege mode; pc represents the program counter with V representing the result of any hardware vectoring; cde
represents the xcause exccode field; while the Previous pp/il/ie/epc columns represent previous context
fields in xcause and xepc.

 Current  |      CLIC          |->      Current'          Previous
 p/ie/il  | priv level   id    |->    p/ie/il  pc  cde   pp/il/ie epc
 P  ?  ?  | nP<P     ?      ?  |->    - -  -   -   -     -  -  -  -   # Interrupt ignored
 P  0  ?  | nP=P     ?      ?  |->    - -  -   -   -     -  -  -  -   # Interrupts disabled
 P  1  ?  | nP=P     0      ?  |->    - -  -   -   -     -  -  -  -   # No interrupt
 P  1  L  | nP=P   0<nL<=L  ?  |->    - -  -   -   -     -  -  -  -   # Interrupt ignored
 P  1  L  | nP=P   L<nL    id  |->    P 0  nL  V   id    P  L  1  pc  # Horizontal interrupt taken
 P  ?  ?  | nP>P     0      ?  |->    - -  -   -   -     -  -  -  -   # No interrupt
 P  e  L  | nP>P   0<nL    id  |->   nP 0  nL  V   id    P  L  e  pc  # Vertical interrupt taken

8.2. Critical Sections in Interrupt Handlers
To implement a critical section between interrupt handlers at different levels in the same privilege mode, an
interrupt handler at any interrupt level can temporarily raise the interrupt-level threshold (mintthresh.th) to
mask a subset of levels, while still allowing higher interrupt levels to preempt. Alternatively, although not
recommended due to worse system impacts, it can clear the mode’s global interrupt-enable bit (xie) to prevent
any interrupts with the same privilege mode from being taken.

8.1. General Interrupt Overview | Page 30

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



8.3. CLIC events that cause the hart to resume execution after
Wait for Interrupt (WFI) Instruction
As described in the privileged specification, the Wait for Interrupt instruction (WFI) provides a hint to the
implementation that the current hart can be stalled. The hart may optionally resume execution anytime. This
section describes CLIC events that must cause the hart to resume execution.


WFI can be a NOP and not actually pause hart execution. In addition, implementations can
resume execution after a WFI for any other reason.

As in the privileged specification, if an interrupt is taken while the hart is stalled, the interrupt trap will be taken
on the following instruction, i.e., execution resumes in the trap handler and mepc = pc + 4. If the event that
causes the hart to resume execution does not cause an interrupt to be taken, execution will resume at pc + 4.

In CLIC, similar to original mode, CLIC events causing the hart to resume execution after a Wait for Interrupt
instruction (WFI) are unaffected by the global interrupt-enable bits in xstatus.xie but should honor
clicintie[i] and xintthresh.

A pending-and-enabled interrupt i causes the hart to resume execution if interrupt i
• has a higher privilege mode than the current privilege mode and
• the interrupt priority reduction tree selects interrupt i as the maximum across all pending-and-enabled

interrupts and
• the interrupt i level is not equal to 0.

A pending-and-enabled interrupt i causes the hart to resume execution if interrupt i
• has the same privilege mode as the current privilege mode and
• the interrupt priority reduction tree selects interrupt i as the maximum across all pending-and-enabled

interrupts and
• the interrupt i level is greater than max(xintstatus.xil, xintthresh.th )

A pending-and-enabled interrupt i causes the hart to resume execution if interrupt i
• has a lower privilege mode than the current privilege mode and
• the interrupt priority reduction tree selects interrupt i as the maximum across all pending-and-enabled

interrupts and
• the interrupt i level is not equal to 0.



Interrupt i level is a function of CLICINTCTLBITS, cliccfg.nlbits, and clicintctl[i].
If CLICINTCTLBITS is 8 and cliccfg.nlbits = 8, it is possible to set clicintctl[i] to
0. Level 0 will behave as a locally disabled interrupt but can still mask lower-mode interrupts.
For example, if there is a non-zero level supervisor interrupt pending and a level-zero machine
interrupt pending, the machine interrupt will be the global maximum across all pending-and-
enabled interrupts but interrupt level 0 implies no interrupt. So programming clicintctl[i]
to 0 should not be used to disable interrupts. clicintie[i] should be used instead.



xintthresh only applies to the current privilege mode. There is a proposal to add a new
WFMI instruction ("wait for mode’s interrupts") to the privilege specification. This
instruction only has to wakeup for pending-and-enabled interrupts in the current mode, and is
not required to wakeup for pending-and-enabled interrupts in lower privilege modes. Pending-
enabled higher privilege-mode interrupts will interrupt/wakeup as usual.

8.3. CLIC events that cause the hart to resume execution after Wait for Interrupt (WFI) Instruction | Page 31

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



8.4. Synchronous Exception Handling
Horizontal synchronous exception traps, which stay within a privilege mode, are serviced with the same interrupt
level as the instruction that raised the exception.

Vertical synchronous exception traps, which are serviced at a higher privilege mode, are taken at interrupt level 0
in the higher privilege mode.


Traps should be avoided at any time when xepc/xcause are live because these CSRs will be
overwritten. Software should try to back them up if needed.

8.5. Returns from Handlers
The regular xret instructions are used to return from handlers in privilege mode x. Execution continues at the
saved privilege mode xcause.xpp, at PC xepc, with interrupt level xcause.xpil, and with the global interrupt
enable for the restored mode as xcause.xpie.

The xret instruction does not modify the xcause.xpil field in xcause. The xcause.xpp and xcause.xpie
fields are modified following the behavior previously defined for xstatus.xpp and xstatus.xpie respectively.

8.4. Synchronous Exception Handling | Page 32

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



Chapter 9. Interrupt Handling Software
9.1. Interrupt Stack Software Conventions
The CLIC supports multiple nested interrupt handlers, and each handler requires some working registers. To
make registers available, each handler typically saves and restores registers from the interrupted context on a
memory-resident stack. In addition, the memory-resident stack is used to hold other interrupted context
information, such as xepc and xcause, which are required by the xret instruction.

The standard RISC-V ABI convention is that stacks grow downwards, and that memory addresses below the
current stack pointer can be dynamically altered by another agent, such as an interrupt handler.

When interrupts are taken horizontally within the same privilege mode, the interrupt handler may be able to use
the same stack as the interrupted thread, by allocating a new stack frame below the current stack pointer.

When interrupts are taken vertically into a higher privilege mode, the stack pointer must be swapped to a stack
within the higher privilege mode to avoid a security hole. The xscratch registers can be used to hold the stack
pointer of a higher-privilege mode while lower-privilege code is executing, or xscratch can be used to point to
more extensive thread-local context that might contain a stack pointer.

9.2. Inline Interrupt Handlers and "Interrupt Attribute" for C
Inline interrupt handlers are small leaf functions that handle simple interrupts. To provide easy C coding for
inline interrupt handlers, while reducing register save/restore overhead, we use standard interrupt attributes,
which have the following syntax:

  /* Small ISR to poke device to clear interrupt and increment in-memory counter.
*/
  void __attribute__ ((interrupt))
  foo (void)
  {
    extern volatile int INTERRUPT_FLAG;
    INTERRUPT_FLAG = 0;
    extern volatile int COUNTER;
  #ifdef __riscv_atomic
    __atomic_fetch_add (&COUNTER, 1, __ATOMIC_RELAXED);
  #else
    COUNTER++;
  #endif
  }

The attribute tells the C compiler to use callee-save for all registers, so the handler has to "pay as it goes" to
use registers, and only save the full caller-save set if it makes a nested regular C call. The attribute also tells the
C compiler to align the function entry point on an 8-byte boundary.

9.1. Interrupt Stack Software Conventions | Page 33

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



   .align 3
      # Inline non-preemptible interrupt handler.
      # Only safe for horizontal interrupts.
   foo:
      addi sp, sp, -FRAMESIZE      # Create a frame on stack.
      sw a0, OFFSET(sp)            # Save working register.
      sw x0, INTERRUPT_FLAG, a0    # Clear interrupt flag.
      sw a1, OFFSET(sp)            # Save working register.
      la a0, COUNTER               # Get counter address.
      li a1, 1
      amoadd.w x0, (a0), a1        # Increment counter in memory.
      lw a1, OFFSET(sp)            # Restore registers.
      lw a0, OFFSET(sp)
      addi sp, sp, FRAMESIZE       # Free stack frame.
      mret                         # Return from handler using saved mepc.

With hardware vectoring, inline interrupt handlers can provide very rapid response for small tasks.



The above entire handler executes in 13 instructions. The INTERRUPT_FLAG store and the la
require two instructions each to build up a global address. A simple pipeline would encounter
two pipeline flushes (on entry and on exit), plus the cycles taken to fetch the hardware vector
entry.

These inline handlers can be used with the original basic mode as well as the new CLIC.

To take advantage of hardware preemption in the new CLIC, inline handlers must save and restore xepc and
xcause before enabling interrupts:

9.2. Inline Interrupt Handlers and "Interrupt Attribute" for C | Page 34

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



   .align 3
      # Inline preemptible interuppt handler.
      # Only safe for horizontal interrupts.
   foo:
      #----- Interrupts disabled on entry ---#
      addi sp, sp, -FRAMESIZE      # Create a frame on stack.
      sw a0, OFFSET(sp)            # Save working register.
      csrr a0, mcause              # Read cause.
      sw a1, OFFSET(sp)            # Save working register.
      csrr a1, mepc                # Read epc.
      csrrsi x0, mstatus, MIE      # Enable interrupts.
      #----- Interrupts enabled ---------#
      sw a0, OFFSET(sp)            # Save cause on stack.
      sw x0, INTERRUPT_FLAG, a0    # Clear interrupt flag.
      sw a1, OFFSET(sp)            # Save epc on stack.
      la a0, COUNTER               # Get counter address.
      li a1, 1
      amoadd.w x0, (a0), a1        # Increment counter in memory.
      lw a1, OFFSET(sp)            # Restore epc
      lw a0, OFFSET(sp)            # Restore cause
      csrrci x0, mstatus, MIE      # Disable interrupts.
      #----- Interrupts disabled  ---------#
      csrw mepc, a1                # Put epc back.
      lw a1, OFFSET(sp)            # Restore a1.
      csrw mcause, a0              # Put cause back.
      lw s0, OFFSET(sp)            # Restore s0.
      addi sp, sp, FRAMESIZE       # Free stack frame.
      mret                         # Return from handler.
      #------------------------------------#


This version requires 10 more instructions, but reduces the time a preempting interrupt has to
wait from a 13-instruction window to a 6-instruction window (the instruction that disables
interrupts can be preempted before committing).


This form cannot be used with the existing original basic scheme, unless the original interrupt
pending signal is cleared before re-enabling interrupts.

9.2. Inline Interrupt Handlers and "Interrupt Attribute" for C | Page 35

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



Chapter 10. Calling C-ABI Functions as Interrupt
Handlers
An alternative model is where all interrupt handler routines use the standard C ABI. In this case, the CLIC would
use no hardware vectoring for the C ABI handlers and instead use a common software trampoline, which uses
the xnxti instruction to obtain the trap-handler address. The code sequence below is annotated with an
explanation of its operation.

10.1. C-ABI Trampoline Code

  # Example Unix C ABI interrupt trampoline.
  # Only safe for horizontal interrupts.
  # FRAMESIZE should be defined appropriately to hold saved context with ABI-
specified alignment.
  # OFFSET should be replaced with individual stack frame locations.
  # Register save/restore pseudo-code should be expanded to individual
instructions.

  irq_enter:
  #----Interrupts disabled for 7 + SREGS instructions, where SREGS is number of
registers saved. ①
    addi sp, sp, -FRAMESIZE # Allocate space on stack. ②
    sw a1, OFFSET(sp)       # Save a1.
    csrr a1, mcause         # Get mcause of interrupted context.
    sw a0, OFFSET(sp)       # Save a0.
    csrr a0, mepc           # Get mepc of interrupt context.
    bgez a1, handle_exc     # Handle synchronous exception. ③
    sw a0, OFFSET(sp)       # Save mepc.
    sw a1, OFFSET(sp)       # Save mcause of interrupted context.
    sw a2-a7, OFFSET(sp)    # Save other argument registers.
    sw t0-t6, OFFSET(sp)    # Save temporaries.
    sw ra, OFFSET(sp)       # 1 return address ⑤
    csrrsi a0, mnxti, MIE   # Get highest current interrupt and enable interrupts.
                            # Will return original interrupt if no others appear.
⑥
  #----Interrupts enabled ---------------------⑦
    beqz a0, exit           # Check if original interrupt vanished. ⑧

  service_loop:             # 5 instructions in pending-interrupt service loop.
    lw a1, (a0)             # Indirect into handler vector table for function
pointer. ⑨
    csrrsi x0, mstatus, MIE # Ensure interrupts enabled. ⑩

    jalr a1                 # Call C ABI Routine, a0 has interrupt ID encoded. ⑪
                            # Routine must clear down interrupt in CLIC.
    csrrsi a0, mnxti, MIE   # Claim any pending interrupt at level > mcause.pil ⑫

10.1. C-ABI Trampoline Code | Page 36

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



    bnez a0, service_loop   # Loop to service any interrupt. ⑬

  #--- Restore ABI registers with interrupts enabled -⑭
    lw ra, OFFSET(sp)       # Restore return address
    lw t0-t6, OFFSET(sp)    # Restore temporaries.
    lw a2-a7, OFFSET(sp)    # Restore other arguments.
    lw a1, OFFSET(sp)       # Get saved mcause,
  exit:                     # Fast exit point.
    lw a0, OFFSET(sp)       # Get saved mepc.

    csrrci x0, mstatus, MIE # Disable interrupts ⑮
  #---- Critical section with interrupts disabled -----------------------
    csrw mcause, a1         # Restore previous context.

    lw a1, OFFSET(sp)       # Restore original a1 value.
    csrw mepc, a0           # Restore previous context.

    csrrci a0, mnxti, MIE   # Claim highest current interrupt. ⑯
    bnez a0, service_loop   # Go around if new interrupt.

    lw a0, OFFSET(sp)       # Restore original a0 value.
    addi sp, sp, FRAMESIZE  # Reclaim stack space.
    mret                    # Return from interrupt.
  #-----------------------------------------------------------------------
  #-----------------------------------------------------------------------
   handle_exc:
    # ...
    # Perform exception processing with interrupts disabled ④
    # ...
    addi sp, sp, FRAMESIZE   # Reclaim stack space.
    mret # Return from exception
  #----------------------------------------------------------------------

① An initial interrupt (II) causes entry to the handler with interrupts disabled, and xepc and xcause CSRs hold
values representing the original interrupted context (OIC), including the PC in xepc, the privilege mode in
xpp (visible in both xcause and xstatus), the interrupt level in xpil (in xcause) and the interrupt enable
state in xpie (visible in both xcause and xstatus). The xcause CSR and the xintstatus CSRs
additionally hold information on the interrupt to be handled, including exccode in xcause and xil in
xintstatus.

② The interrupt trampoline needs sufficient space to store the OIC’s caller-save registers as well as its epc and
cause values, which are saved in a frame on the memory stack to support preemption. This routine is M-
mode only so does not need to consider swapping stacks from other privilege modes. A simple constant bump
of the stack pointer sp is sufficient to provide space to store the OIC.

③ The trap handler could have been entered by a synchronous exception instead of an interrupt, which can be
determined by examining the sign bit of the returned xcause value. If the trap was for an exception (sign bit
zero), the code jumps to exception handler code while keeping interrupts disabled.

④ The exception handler code is located here out of line to reduce performance impact on interrupts. The main
body of the trampoline only handles interrupts.

10.1. C-ABI Trampoline Code | Page 37

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



⑤ If this was an interrupt, the trampoline entry code continues to save all the caller-save registers to the stack.
This is done with interrupts disabled, as even if an interrupt arrived with a higher interrupt level it would still
require all registers to be saved.

⑥ When xnxti is read here, the interrupt inputs to the CLIC might have changed from the time the handler
was initially entered. The return value of xnxti, which holds a pointer to an entry in the trap vector table, is
saved in register a0 so it can be passed as the first argument to the software-vectored interrupt handler,
where it can be used to reconstruct the original interrupt id in the case where multiple vector entries use a
common handler. There are multiple cases to consider, all of which are handled correctly by the definition of
xnxti:

• The II is still the ranking interrupt (no change). In this case, as the level of the II will still be higher than
pil from the OIC, xil and exccode will be rewritten with the same value that they already had
(effectively unchanged), and xnxti will return the table entry for the II.

• The II has been superceded by a higher-level non-SHV interrupt. In this case, xil will be set to the new
higher interrupt level, exccode will be updated to the new interrupt id, and xnxti will return the vector
table entry for the new higher-level interrupt. The OIC is not disturbed, retaining the original epc and
the original pil. This case reduces latency to service a more-important interrupt that arrives after the
state-save sequence was begun for the less-important II. The II, if still pending-enabled, will be serviced
sometime after the higher-level interrupt as described below.

• The II has been superceded by a higher-priority non-SHV interrupt at the same level. This operates
similarly to the previous case, with exccode updated to the new interrupt id. Because the lower-priority
interrupt had not begun to run its service routine, this optimization preserves the property that interrupt
handlers at the same interrupt level but different priorities execute atomically with respect to each other
(i.e., they do not preempt each other).

• The II has disappeared and a lower-ranked non-SHV interrupt, which has interrupt level greater than the
OIC’s pil is present in CLIC. In this case, the xil of the handler will be reduced to the lower-ranked
interrupt’s level, exccode will be updated with the new interrupt id, and xnxti will return a pointer to
the appropriate handler in table. In this case, the new lower-ranked interrupt would still have caused the
original context to have been interrupted to run the handler, and the disappearing II has simply caused
the lower-ranked interrupt’s entry and state-save sequence to begin earlier.

• The II has disappeared and either there is no current interrupt from the CLIC, or the current ranking
interrupt is a non-SHV interrupt with level lower than xpil. In this case, the xil and exccode are not
updated, and 0 is returned by xnxti. The following trampoline code will then not fetch a vector from
the table, and instead just restore the OIC context and mret back to it. This preserves the property that
the OIC completes execution before servicing any new interrupt with a lower or equal interrupt level.

• The II has been superceded by a higher-level SHV interrupt. In this case, the xil and exccode are not
updated, and 0 is returned by xnxti. Once interrupts are reenabled for the following instruction, the hart
will preempt the current handler and execute the vectored interrupt at a higher interrupt level using the
function pointer stored in the vector table.

⑦ Interrupts are now enabled. If a higher-level SHV interrupt had arrived while interrupts were disabled, then
the current handler will be preempted and execution starts at the SHV handler address. If a non-vectored
higher-level interrupt arrives now, it will also preempt the current handler and begin a nested state-save
sequence at the handler entry point irq_enter.

⑧ The branch checks if the II disappeared or if a higher priority SHV at the same level appeared, in which case
the current handler returns to the OIC. As most registers have not been touched, the routine can skip past
most of the register restore code. This preserves the property that interrupts (SHV or non-SHV) at the same
level do not preempt each other.

⑨ The value returned by xnxti is used to index the vector table and return the function pointer.

⑩ This csrrsi instruction enables interrupts and is redundant when proceeding sequentially from the first

10.1. C-ABI Trampoline Code | Page 38

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



xnxti read (6) or if looping back from the end of the service_loop (13). However, it is required on the
backward path from (16) to re-enable interrupts to allow preemption. It is scheduled after the table lookup
to use what will often be a load-use delay slot.

⑪ The jalr instruction actually calls the C ABI function that implements the handler. Interrupts are enabled at
this point, so the C function can be preempted at any time by an interrupt with a higher level than current
xil.

⑫ Once the handler returns, another read of xnxti checks if there are any more interrupts to service. Interrupts
remain enabled. The csrrsi includes a redundant set of the xie interrupt enable to force the CSR
instruction to update CSR state. Only non-SHV interrupts with a level greater than pil will be serviced in
this loop. Note that xil can decrease from its current value on the xnxti read. xil should not increase in
this code, as interrupts are enabled here and if a higher-level interrupt was ready, it should have preempted
this instruction.

⑬ If there was another appropriate interrupt to service, the code loops back to perform the next handler call.
The service_loop only contains 5 instructions, allowing multiple back-back interrupts to be handled
without saving and restoring contexts. On a simple pipeline with a one-cycle load-use penalty, single-cycle
CSR access, and a one-cycle taken-branch penalty, the service loop can initiate a new interrupt service with
only 7 clock cycles of overhead per handler call.

⑭ This instruction sequence restores the OIC. Interrupts are still enabled, so preemption is allowed during this
restore.

⑮ Interrupts are disabled for the final steps of restoring the OIC, which requires loading mcause and mepc from
the stacked values, and recovering the final register values from the OIC.

⑯ A final read of xnxti is performed before returning, to reduce the maximum interrupt latency. If a suitable
interrupt arrives, it can be serviced without saving context. The csrrci instruction includes a redundant
clear of the interrupt enable bit to ensure the CSR state updates occur. Interrupts must stay disabled until
after the following branch to maintain the critical section used to restore the OIC in the case that there is no
interrupt to service.

The following table summarizes the machine state changes that occur at the first xnxti:

IC    at entry |->           |       at first nxti (6)
il     CLIC                  |    CLIC
    level id V |->  mil code | level id V    |-> mil code rd
p    e<=p  ? ? |->           |                               # Shouldn't happen
p    e>p   i 0 |->   e    i  |   f>p  j 0    |->  f    j   T # Same or superceded interrupt
p    e>p   i 0 |->   e    i  |   f>p  j 1    |->  e    i   0 # Ignore vectored interrupt
p    e>p   i 0 |->   e    i  |   f<=p j ?    |->  e    i   0 # Interrupt disappeared
p    e>p   i 1 |->   e    i  |                               # Won't be in trampoline

10.2. Revised C-ABI for Embedded RISC-V
The overhead to save and restore registers in the interrupt trampoline can be reduced with a new embedded ABI
that reduces the number of caller-save registers. Work is underway to define such an ABI, but it is likely to
require around 7 integer registers to be saved/restored instead of 16 in the standard Unix ABI.

This will result in 18 instructions executed in the trampoline code before arriving at the correct handler function,
of which 9 are stores (saving 7 registers plus 2 words for xepc and xcause).

10.2. Revised C-ABI for Embedded RISC-V | Page 39

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



10.3. Analysis of Worst-Case Interrupt Latencies for C-ABI
Trampoline
The following analysis assumes a system with M-mode only and a new embedded ABI requiring 7 caller-save
registers to be saved and restored. For cycle timings, we assume a simple 3-stage pipeline that has a one-cycle
taken-branch or pipeline flush penalty, a one-cycle load-use delay, and single-cycle CSR access. This simple
model ignores effects from contention in shared memory structures, or pipeline hazards from continuing long-
latency operations in the interrupted code.

There are several cases to consider for the worst-case latency for a C-ABI higher-level interrupt handler that
preempts lower-level code.

If an interrupt arrives while interrupts are enabled, either inside or outside of a current handler, the hart will
jump directly to irq_enter at the new interrupt level. The system must flush the execution pipeline and then
execute 18 instructions, the last of which is the jalr that calls the handler function. These 18 instructions
execute in 20 cycles using the simple pipeline model.

When interrupts are disabled, the arriving preempting handler could be delayed. If the preempting interrupt
arrives while interrupts are disabled during the initial entry sequence (1)--(6), there will be no additional delay as
the first xnxti instruction (6) will cause the higher-level interrupt handler to be invoked, replacing the original
interrupt cause.

If the preempting interrupt arrives after interrupts are disabled (15) but before xnxti is read (16), then the
trampoline will observe the new interrupt during execution of the xnxti read (16), and take a short branch back
to the service_loop, which is lower latency than the interrupt-disabled case.

If the preempting interrupt arrives after the read of xnxti commits (16), then the interrupt has to wait an
additional 4 instructions until the mret reenables interrupts, at which point the interrupt will be taken and the
handler entered at irq_enter. In the simple pipeline model, mret adds an additional pipeline flush cycle, so the
preemption latency is 20+5 cycles, which represents the worst-case for a preempting C-ABI interrupt handler.

10.3. Analysis of Worst-Case Interrupt Latencies for C-ABI Trampoline | Page 40

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



Chapter 11. Interrupt-Driven C-ABI Model
For many embedded systems, after initialization, essentially all code is run in response to an interrupt, interrupt
levels are used to prioritize execution of different tasks, and the hart should sleep inbetween interrupt events to
save energy.

The following code can be used as the background code that runs at interrupt level 0 and which when there is
no active work to do, puts the hart to sleep with no active context, waiting for an interrupt using the wfi
instruction. The code is entered at the enter_loop location and never returns directly.

    # Source code for interrupt-driven model background code.
sleep:
    csrrci x0, mstatus, MIE # Disable interrupts.  ①
    wfi                     # Hart waits for next interrupt event.
    csrrsi a0, mnxti, MIE   # Gather interrupt details, and enable interrupts. ②
    beqz a0, sleep          # Go back to sleep if no interrupt (will be preempted
if SHV). ③

service_loop: ④
    lw a1, (a0)             # Get handler address.
    csrrsi x0, mstatus, MIE # Enable interrupts
    jalr a1                 # Call C-ABI handler routine
    csrrsi a0, mnxti, MIE   # Claim any pending interrupt at level > 0
    bnez a0, service_loop   # Loop to service any interrupt.

    # This is also entry point to begin sleeping.
enter_sleep: ⑤
    la a0, sleep
    csrci x0, mstatus, MIE  # Disable interrupts.
    #--- Interrupts disabled
    csrw mepc, a0           # Initialize mepc to point to sleep
    li a0, (MMODE)<<PP|(0)<<PIL|(1)<<PIE
    csrw mcause, a0         # Initialize mcause to have pp=M, pil=0, pie=1
    mret                    # Jump to sleep at level 0 with interrupts enabled.
    #--- Interrupts enabled

① The sleep loop is used to stall the hart while waiting for work and is always entered at interrupt level 0.
Interrupts are disabled, then a wfi is executed. The wfi will stall the hart until some event occurs. When an
event, including an interrupt occurs, the wfi retires. Because interrupts are disabled, the hart does not jump
to an interrupt handler but instead executes the next instruction, avoiding context save/restore overhead.

② The read of xnxti will determine if any non-SHV interrupt is available, and if so return a pointer to the
table entry. Interrupts are enabled by this instruction to allow SHV interrupts to be taken via preemption.

③ The value in a0 checked by the branch can be zero for two reasons. Either there was no interrupt detected or
an SHV interrupt was detected. If there was no interrupt, the branch loops back to put the hart to sleep.
Interrupts are enabled, so any SHV interrupt (which all have higher interrupt level than the current interrupt
level of 0) will preempt the branch’s execution and call the SHV handler. Once the SHV handler returns, the
branch will resume and cause execution to return back to the sleep_loop.

Chapter 11. Interrupt-Driven C-ABI Model | Page 41

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



④ The service loop is identical to that in the C-ABI interrupt handler, except that the previous interrupt level is
0, so all pending interrupts will be serviced in the loop before the loop exits. Interrupts are enabled, so
preemption is allowed for both C-ABI trampoline and SHV interrupts. When an SHV interrupt at the same or
lower interrupt level is the next to be serviced, the xnxti instruction will return 0 causing execution to drop
out of the loop. The following code will reinitialize the hart’s interrupt level to 0, and disable interrupts for
one instruction, to ensure the SHV interrupt will be taken.

⑤ This code initializes mepc and mcause then uses an mret to jump to the sleep loop while simultaneously
reseting interrupt level to 0 and enabling interrupts. This is also the entry point to initiate interrupt-driven
execution. Interrupts are enabled to allow SHV interrupts to preempt execution on the first instruction in
sleep (which disables interrupts again).

This code does not increase worst-case interrupt latency over that of the C-ABI trampoline.

Chapter 11. Interrupt-Driven C-ABI Model | Page 42

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



Chapter 12. Alternate Interrupt Models for Software
Vectoring
Platforms may only implement non-vectored CLIC mode without selective hardware vectoring
(cliccfg.nvbits=0), in which case, hardware vectoring can be emulated by a single software trampoline
present at NBASE using the separate vector table address in xtvt. There are several different software
approaches possible, depending on system requirements and constraints, as detailed in following subsections.

12.1. gp Trampoline to Inline Interrupt Handlers in Single
Privilege Mode
Where interrupts are known to be generated and handled in a single privilege mode (i.e., M-mode only systems,
or U-mode interrupt handlers), a three-instruction sequence using the gp register to hold the handler address can
be used to indirect to an inline interrupt handler of the type described in Inlines.

    # Software-vectored interrupt servicing.
    # Only safe for horizontal interrupts.
    # Must be placed three instructions back from gp.
irq_enter:
    csrrci gp, mnxti, MIE   # Overwrite gp, keep interrupts disabled.
    beqz gp, handle_exc     # Encountered exception.
    jalr gp, gp             # Recreate gp and jump to handler.
gp:                         # Must be right before system's gp location.
    # ... gp data section

    # Must be within range of beqz instruction.
handle_exc:
    # Has to recreate gp.

The three-instruction sequence relies on the jalr instruction recreating the value in the gp register, which is a
known constant pointing into the middle of the global data area, by placing the jalr directly before the gp
location in memory. The routine jumped to by the jalr does not return via a j ra but instead ends with an
mret.



This constraint on memory layout might not always be possible, particularly if the system
does not allow placing executable memory right next to read-write memory, for example if the
system does not allow a protection boundary to be placed at 'gp' and if executable code must
not be writeable.

The code can be used with preemptible inline interrupt handlers.

12.2. Trampoline for Preemptible Inline Handlers
This section describes a more general software-trampoline scheme for calling preemptible inline handlers, which
factors out the xepc/xcause save code into the trampoline, and which uses a different interrupt handler calling
convention.

12.1. gp Trampoline to Inline Interrupt Handlers in Single Privilege Mode | Page 43

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



The interrupt handlers for this scheme have a calling convention where there is one caller-save argument register
a0 that passes in the handler address to distinguish different interrupt inputs, and one temporary register a1 that
is also caller-save. These two registers had to be saved already by the trampoline. All other registers are callee-
save, except for the return address ra. The handler normally returns with a regular j ra.

  # Example handler with new calling convention.
  # Only safe for horizontal interrupts.
  # Handlers have two temporary registers available, a0, a1.
handler_example:
  sw x0, INTERRUPT_FLAG, a0     # Clear interrupt flag.
  la a0, COUNTER                # Get counter address.
  li a1, 1                      # Increment value.
  amoadd.w x0, (a0), a1         # Bump counter.
  j ra

  # Interrupt trampoline code.
irq_enter:
  #----- Interrupts disabled on entry ---#
  addi sp, sp, -FRAMESIZE      # Create a frame on stack.
  sw a0, OFFSET(sp)            # Save working register.
  csrr a0, mcause              # Read cause.
  bgez a0, handle_exc          # Handler exception.
  sw a1, OFFSET(sp)            # Save working register.
  csrr a1, mepc                # Read epc.
  sw a0, OFFSET(sp)            # Save cause
  csrrsi a0, mnxti, MIE        # Get highest interrupt, enable interrupts.
  #----- Interrupts enabled ---------#
  beqz a0, exit
  sw a1, OFFSET(sp)            # Save epc.
  sw ra, OFFSET(sp)            # Save return address.

irq_loop:
  lw a1, (a0)                  # Get function pointer.
  jalr a1                      # Call handler code.
  csrrsi a0, mnxti, MIE        # Get any next interrupt.
  bnez a0, irq_loop            # Service interrupt if any.

  lw ra, OFFSET(sp)            # Restore ra.
  lw a1, OFFSET(sp)            # Get epc.
exit:
  lw a0, OFFSET(sp)            # Get cause.
  csrrci x0, mstatus, MIE      # Disable interrupts.
  #----- Interrupts disabled  ---------#
  csrw mepc, a1                # Put epc back.
  lw a1, OFFSET(sp)            # Restore a1.
  csrw mcause, a0              # Put cause back.
  lw a0, OFFSET(sp)            # Restore a0.

12.2. Trampoline for Preemptible Inline Handlers | Page 44

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



  addi sp, sp, FRAMESIZE       # Free stack frame.
  mret                         # Return from handler.
  #------------------------------------#

handle_exc:
  # ...
  # Handle exception with interrupts disabled.
  # ...
  addi sp, sp, FRAMESIZE  # Deallocate stack space
  mret                    # Return from handler.
  #------------------------------------#

This interrupt handler can be used together with the wfi sleep background routine shown above.

12.2. Trampoline for Preemptible Inline Handlers | Page 45

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



Chapter 13. Managing Interrupt Stacks Across
Privilege Modes
Interrupt handlers need to have a place to save the previous context’s state to provide working registers for the
handler code. If a handler can be entered from a lower-privilege mode, a pointer to some safe memory for the
context save must be swapped in at entry to the higher-privileged handler to avoid security holes. The RISC-V
privileged architecture provides the xscratch register to hold this information for a higher-privilege mode while
executing in a lower-privilege mode. For the following discussion and code examples, the assumption is that
xscratch is used to hold the higher-privilege-mode stack pointer but other software conventions are possible
(e.g., xscratch points to a thread context block).

Existing RISC-V ABIs allow addresses immediately below the stack pointer to be overwritten by interrupt service
routines. The current stack pointer in sp (x2) should be swapped with xscratch whenever a handler is entered
from a lower-privilege mode, but should not be swapped if entered from another handler in the same privilege
mode, including when preempting an existing interrupt handler. At exit from a handler, the lower-privilege stack
pointer should be swapped back in if transitioning back to the lower-privilege mode.

13.1. Software Privileged Stack Swap
In this convention, when code is running in a lower privilege mode, xscratch holds the stack pointer for the
higher-privilege mode. When the higher-privilege mode is entered, xscratch is set to zero to signal to any
preempting handlers that the stack pointer has already been swapped.

The old stack pointer is saved to new stack frame before new frame is created by bumping stack pointer, but
this is done with interrupts disabled.

13.1. Software Privileged Stack Swap | Page 46

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



  # This code is out of line to reduce worst-case preemption latency.
enter_M:
  sw sp, OFFSET-FRAMESIZE(sp)  # Save previous mscratch (M-mode sp)
  addi sp, sp, -FRAMESIZE      # Create a frame on stack.
  sw a0, OFFSET(sp)            # Save a register.
  csrrw a0, mscratch, 0        # Get previous sp, and zero mscratch.
  sw a0, OFFSET(sp)            # Save previous sp (U-mode sp)
  j  continue                  # Jump back into handler

irq_enter:
  #----- Interrupts disabled on entry ---#
  csrrw sp, mscratch, sp       # Swap stack pointer and scratch.
  bnez sp, enter_M             # Check if entering M-mode
  csrrw sp, mscratch, sp       # Already in M-mode, so swap sp back.
  sw sp, OFFSET-FRAMESIZE(sp)  # Save previous sp to stack.
  addi sp, sp, -FRAMESIZE      # Create a frame on stack.
  sw x0, OFFSET(sp)            # Save previous mscratch to stack (was zero).
  sw a0, OFFSET(sp)            # Save a register.
continue:
  csrr a0, mcause              # Read cause.
  bgez a0, handle_exc          # Handle exception.
  sw a1, OFFSET(sp)            # Save working register.
  csrr a1, mepc                # Read epc.
  sw a0, OFFSET(sp)            # Save cause
  csrrsi a0, mnxti, MIE        # Get highest interrupt, enable interrupts.
  #----- Interrupts enabled ---------#
  beqz a0, exit
  ...

  #---- Critical section with interrupts disabled -----------------------
    ...

    lw a0, OFFSET(sp)          # Get previous mscratch.
    csrw mscratch, a0          # Put back in mscratch.
    lw a0, OFFSET(sp)          # Restore original a0 value.
    lw sp, OFFSET(sp)          # Restore previous sp
    mret                       # Return from interrupt.
  #-----------------------------------------------------------------------

This code can be used in a secure model where user-level code has one stack, and all interrupts and exceptions
are handled on a second M-mode-only stack. In addition, background non-handler code in M-mode can either
use the same M-mode stack as the interrupt handler, or a separate M-mode stack. The only difference is in the
value held in xscratch while the M-mode background thread is running (either 0 to indicate use the existing
stack pointer in sp or non-zero to indicate this stack pointer should be used in the handler.

13.1. Software Privileged Stack Swap | Page 47

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



13.2. Optional Scratch Swap CSR (xscratchcsw) for Multiple
Privilege Modes
The above software scheme adds 7 instructions to the interrupt code path when preempting the same privilege
mode, and adds an additional 6 instructions (13 total including two taken branches) for interrupts from a lower-
privilege mode into a higher-privileged mode.

To accelerate interrupt handling with multiple privilege modes, a new CSR xscratchcsw can be defined for all
but the lowest privilege mode to support conditional swapping of the xscratch register when transitioning
between privilege modes. The CSR instruction is used once at the entry to a handler routine and once at handler
exit, so only adds two instructions to the interrupt code path. Though designed to be used with csrrw
instructions, these CSRs can be accessed with any CSR instruction.

For all CSR instructions accessing xscratchcsw, the value written into rd is either xscratch if xpp is different
than the current privilege mode, or rs1 if xpp is the same as the current privilege mode. The xscratch register
is only written if there is a privilege mode difference, and if so, it is written obeying the usual CSR read-modify-
write conventions (e.g., swap/set/clear bits) using the original xscratch value as one source operand and the
other source operand specified as usual in the instruction.

In practice, only the read-modify-write (swap/CSRRW) operation is useful for xscratchcsw. In contrast, the
"pure read" and "pure write" operations are meaningless and not useful at all. The implementation of the non-
CSRRW variants (when either rd or rs1 is x0 or when rs1 is an immediate operand) on xscratchcsw is not
defined/reserved.


This is different than a regular CSR instruction as the value returned is different from the
value used in the read-modify-write operation.


The CSR instructions are defined to always copy a result (xscratch or rs1) to the rd
destination to simplify implementations using register renaming, and in normal use the
instructions set both rs1 = sp and rd = sp.

  csrrw rd, mscratchcsw, rs1

  // Pseudocode operation.
  if (mcause.mpp!=M-mode) then {
      t = rs1; rd = mscratch; mscratch = t;
  } else {
      rd = rs1; // mscratch unchanged.
  }

  // Usual use: csrrw sp, mscratchcsw, sp


To avoid virtualization holes, software cannot directly read the hart’s current privilege mode.
The swap instruction will trap if software tries to access a given mode’s xscratchcsw CSR
from a lesser-privileged mode, so the new CSR does not open a virtualization hole.

13.2. Optional Scratch Swap CSR (xscratchcsw) for Multiple Privilege Modes | Page 48

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



13.2.1. Stack Swap Example Code
Interrupt handlers running in the lowest privilege mode do not need to swap stack pointers, as they will only be
entered by a horizontal interrupt from the same privilege mode. In systems with multiple privilege modes,
handlers running in higher privilege modes must account for vertical interrupts taken from a lower privilege mode
(in which case the stack pointer must be swapped) as well as horizontal interrupts from the same privilege mode.

    # Example of inline interrupt with stack swapping.
   .align 3
   foo:
      csrrw sp, mscratchcsw, sp    # Conditionally swap in stack pointer.
      addi sp, sp, -FRAMESIZE      # Create a frame on stack.
      sw s0, OFFSET(sp)            # Save working register.
      sw x0, INTERRUPT_FLAG, s0    # Clear interrupt flag.
      sw s1, OFFSET(sp)            # Save working register.
      la s0, COUNTER               # Get counter address.
      li s1, 1
      amoadd.w x0, (s0), s1        # Increment counter in memory.
      lw s1, OFFSET(sp)            # Restore registers.
      lw s0, OFFSET(sp)
      addi sp, sp, FRAMESIZE       # Free stack frame.
      csrrw sp, mscratchcsw, sp    # Conditionally swap out stack pointer.
      mret                         # Return from handler using saved mepc.

13.2. Optional Scratch Swap CSR (xscratchcsw) for Multiple Privilege Modes | Page 49

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



    # Example of inline preemptible interrupt with stack swapping.
   .align 3
   foo:
      #----- Interrupts disabled on entry ---#
      csrrw sp, mscratchcsw, sp    # Conditionally swap in stack pointer.
      addi sp, sp, -FRAMESIZE      # Create a frame on stack.
      sw s0, OFFSET(sp)            # Save working register.
      sw s1, OFFSET(sp)            # Save working register.
      csrr s0, mcause              # Read cause.
      csrr s1, mepc                # Read epc.
      csrrsi x0, mstatus, MIE      # Enable interrupts.
      #----- Interrupts enabled ---------#
      sw s0, OFFSET(sp)            # Save cause on stack.
      sw x0, INTERRUPT_FLAG, s0    # Clear interrupt flag.
      sw s1, OFFSET(sp)            # Save epc on stack.
      la s0, COUNTER               # Get counter address.
      li s1, 1
      amoadd.w x0, (s0), s1        # Increment counter in memory.
      lw s1, OFFSET(sp)            # Restore epc
      lw s0, OFFSET(sp)            # Restore cause
      #----- Interrupts disabled  ---------#
      csrrci x0, mstatus, MIE      # Disable interrupts.
      csrw mepc, s1                # Put epc back.
      csrw mcause, s0              # Put cause back.
      lw s1, OFFSET(sp)            # Restore s1.
      lw s0, OFFSET(sp)            # Restore s0.
      addi sp, sp, FRAMESIZE       # Free stack frame.
      csrrw sp, mscratchcsw, sp    # Conditionally swap out stack pointer.
      mret                         # Return from handler.
      #------------------------------------#

13.2. Optional Scratch Swap CSR (xscratchcsw) for Multiple Privilege Modes | Page 50

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



  # Example C-ABI interrupt trampoline with stack swapping.

  irq_enter:
  #----
    csrrw sp, mscratchcsw, sp # Conditionally swap in stack pointer.
    addi sp, sp, -FRAMESIZE   # Allocate space on stack.
    # ...
    # Everything else same as above.
    # ...
    addi sp, sp, FRAMESIZE    # Reclaim stack space.
    csrrw sp, mscratchcsw, sp # Conditionally swap back stack pointer.
    mret                      # Return from interrupt.
  #-----------------------------------------------------------------------
  #-----------------------------------------------------------------------
   handle_exc:
    # ...
    # Perform exception processing with interrupts disabled
    # ...
    addi sp, sp, FRAMESIZE    # Reclaim stack space.
    csrrw sp, mscratchcsw, sp # Conditionally swap back stack pointer.
    mret                      # Return from exception
  #----------------------------------------------------------------------

In all cases, conditionally swapping the stack to account for potential privilege-mode changes adds two extra
instructions to all interrupt handlers.

13.2. Optional Scratch Swap CSR (xscratchcsw) for Multiple Privilege Modes | Page 51

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



Chapter 14. Separating Stack per Interrupt Level
Within a single privilege mode, it can be useful to separate interrupt handler tasks from application tasks to
increase robustness, reduce space usage, and aid in system debugging. Interrupt handler tasks have non-zero
interrupt levels, while application tasks have an interrupt level of zero.

14.1. Optional Scratch Swap CSR (xscratchcswl) for Interrupt
Levels
A new xscratchcswl CSR is added to support faster swapping of the stack pointer between interrupt and non-
interrupt code running in the same privilege mode.

  csrrw rd, mscratchcswl, rs1

  // Pseudocode operation.
  if ( (mcause.pil==0) != (mintstatus.mil==0) ) then {
      t = rs1; rd = mscratch; mscratch = t;
  } else {
      rd = rs1; // mscratch unchanged.
  }

  // Usual use: csrrw sp, mscratchcswl, sp

This new CSR operates similarly to xscratchcsw except that the swap condition is true when the interrupter
and interruptee are not both application tasks or not both interrupt handlers.

Similar to xscratchcsw, only the read-modify-write (swap/CSRRW) operation is defined for xscratchcswl.
The implementation of the non-CSRRW variants (when either rd or rs1 is x0 or when rs1 is an immediate
operand) on xscratchcswl is not defined/reserved.

14.1. Optional Scratch Swap CSR (xscratchcswl) for Interrupt Levels | Page 52

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



Chapter 15. CLIC Interrupt ID ordering
recommendations
There are a few CLIC interrupt ID ordering recommendations as part of a profile and are not mandatory in all
incarnations of the CLIC.

Original recommendation: The original basic mode interrupts retain their interrupt ID in CLIC mode. The
clicintctl settings are now used to delegate these interrupts as required.

An additional CLIC software interrupt bit (csip) is provided. This is generally available for software use, but is
usually used for the local background interrupt thread.

CLIC interrupt inputs are allocated IDs beginning at interrupt ID 16. Any fast local interrupts that would have
been connected at interrupt ID 16 and above should now be mapped into corresponding inputs of the CLIC.

ID  Interrupt   Note

 0  usip        User software Interrupt
 1  ssip        Supervisor software Interrupt
 2  reserved
 3  msip        Machine software interrupt

 4  utip        User timer interrupt
 5  stip        Supervisor timer interrupt
 6  reserved
 7  mtip        Machine timer interrupt

 8  ueip        User external (PLIC) interrupt
 9  seip        Supervisor external (PLIC) interrupt
10  reserved
11  meip        Machine external (PLIC) interrupt

12  csip        CLIC software interrupt
13  reserved
14  reserved
15  reserved

16+ inputs      CLIC external inputs

M-mode only or M/U mode interrupt map recommendation: (in M-only or M/U system without N extension) 0:
M-mode software interrupt 1: M-mode timer interrupt 2+: external (including legacy)

M-mode interrupt map in M/S/U system without N extension recommendation: 0: S-mode software interrupt 1:
S-mode timer interrupt 2: M-mode software interrupt 3: M-mode timer interrupt 4+: external (including legacy)

Interrupt map with PLIC recommendation: 0: S-mode software interrupt 1: S-mode timer interrupt 2: S-mode
external (PLIC) interrupt 3: M-mode software interrupt 4: M-mode timer interrupt 5: M-mode external (PLIC)
interrupt 6: external

Chapter 15. CLIC Interrupt ID ordering recommendations | Page 53

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V



Appendix A: Appendix
A.1. Prototype DTS Entry
Modified from Example at elinux.org/Device_Tree_Usage

/dts-v1/;

/ { …

interrupt-parent = <&intc>;

...

intc: interrupt-controller@MCLICBASE {
    compatible = "xxx,xxx";
    reg = <MCLICBASE 0x5000 >;
    interrupt-controller;
    #interrupt-cells = <NUM_INTERRUPT>;
};

...

};

A.1. Prototype DTS Entry | Page 54

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V

https://elinux.org/Device_Tree_Usage


Chapter 16. Bibliography
[CD3600] Interrupt and interrupt mask register with interrupt address based on interrupt number. Control Data
3600 Computer System Reference Manual, Chapter IV - Interrupt System bitsavers.org/pdf/cdc/3x00/48bit/
3600/60021300E_3600_SysRef_Sep64.pdf

[BiiN] Interrupt preemption, checking pending interrupts before returning, adjusting current priority level
(modpc). Chapter 12. Interrupts bitsavers.org/pdf/biin/BiiN_CPU_Architecture_Reference_Man_Jul88.pdf

Chapter 16. Bibliography | Page 55

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V

http://bitsavers.org/pdf/cdc/3x00/48bit/3600/60021300E_3600_SysRef_Sep64.pdf
http://bitsavers.org/pdf/cdc/3x00/48bit/3600/60021300E_3600_SysRef_Sep64.pdf
http://bitsavers.org/pdf/biin/BiiN_CPU_Architecture_Reference_Man_Jul88.pdf


Index
Index | Page 56

"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension | © RISC-V




	"Smclic" Core-Local Interrupt Controller (CLIC) RISC-V Privileged Architecture Extension
	Table of Contents
	Preamble
	Chapter 1. Revision History
	Chapter 2. Background and Motivation
	2.1. Existing RISC-V Interrupts
	2.2. CLIC compared to PLIC
	2.3. CLIC compared to Original Basic Interrupt Controller
	2.4. CLIC compared to Advanced Interrupt Architecture

	Chapter 3. CLIC Overview
	3.1. Interrupt Preemption
	3.2. CLIC Interaction with Other Local Interrupts

	Chapter 4. CLIC Memory-Mapped Registers
	4.1. CLIC Memory Map
	4.2. CLIC Configuration (cliccfg)
	4.3. CLIC Information (clicinfo)
	4.4. CLIC Interrupt Pending (clicintip)
	4.5. CLIC Interrupt Enable (clicintie)
	4.6. CLIC Interrupt Attribute (clicintattr)
	4.7. CLIC Interrupt Input Control (clicintctl)
	4.8. CLIC Interrupt Trigger (clicinttrig)

	Chapter 5. CLIC CSRs
	5.1. Changes to xstatus CSRs
	5.2. Changes to Delegation (xedeleg/xideleg) CSRs
	5.3. Changes to xie/xip CSRs
	5.4. New xtvec CSR Mode for CLIC
	5.5. New xtvt CSRs
	5.6. Changes to xepc CSRs
	5.7. Changes to xcause CSRs
	5.8. Next Interrupt Handler Address and Interrupt-Enable CSRs (xnxti)
	5.9. New Interrupt Status (xintstatus) CSRs
	5.10. New Interrupt-Level Threshold (xintthresh) CSRs
	5.11. New CLIC Base (mclicbase) CSR

	Chapter 6. CLIC Parameters
	Chapter 7. CLIC Reset Behavior
	7.1. CLIC mandatory reset state

	Chapter 8. CLIC Interrupt Operation
	8.1. General Interrupt Overview
	8.2. Critical Sections in Interrupt Handlers
	8.3. CLIC events that cause the hart to resume execution after Wait for Interrupt (WFI) Instruction
	8.4. Synchronous Exception Handling
	8.5. Returns from Handlers

	Chapter 9. Interrupt Handling Software
	9.1. Interrupt Stack Software Conventions
	9.2. Inline Interrupt Handlers and "Interrupt Attribute" for C

	Chapter 10. Calling C-ABI Functions as Interrupt Handlers
	10.1. C-ABI Trampoline Code
	10.2. Revised C-ABI for Embedded RISC-V
	10.3. Analysis of Worst-Case Interrupt Latencies for C-ABI Trampoline

	Chapter 11. Interrupt-Driven C-ABI Model
	Chapter 12. Alternate Interrupt Models for Software Vectoring
	12.1. gp Trampoline to Inline Interrupt Handlers in Single Privilege Mode
	12.2. Trampoline for Preemptible Inline Handlers

	Chapter 13. Managing Interrupt Stacks Across Privilege Modes
	13.1. Software Privileged Stack Swap
	13.2. Optional Scratch Swap CSR (xscratchcsw) for Multiple Privilege Modes

	Chapter 14. Separating Stack per Interrupt Level
	14.1. Optional Scratch Swap CSR (xscratchcswl) for Interrupt Levels

	Chapter 15. CLIC Interrupt ID ordering recommendations
	Appendix A: Appendix
	A.1. Prototype DTS Entry

	Chapter 16. Bibliography
	Index

