
PMP Enhancements for memory access and
execution prevention on Machine mode

(Smepmp)
Nick Kossifidis, Joe Xie, Bill Huffman, Allen Baum, Greg Favor, Tariq Kurd, Fumio

Arakawa, RISC-V TEE Task Group

Version 1.0, 12/2021: This document is Ratified. No changes are allowed. Any desired or needed changes can be
the subject of a follow-on new extension. Ratified extensions are never revised.



Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

1.1. Threat model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
2. Proposal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

2.1. Truth table when mseccfg.MML is set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
2.2. Visual representation of the proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4
2.3. Smepmp software discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

3. Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5



Chapter 1. Introduction
Being able to access the memory of a process running at a high privileged execution mode, such as the
Supervisor or Machine mode, from a lower privileged mode such as the User mode, introduces an obvious attack
vector since it allows for an attacker to perform privilege escalation, and tamper with the code and/or data of
that process. A less obvious attack vector exists when the reverse happens, in which case an attacker instead of
tampering with code and/or data that belong to a high-privileged process, can tamper with the memory of an
unprivileged / less-privileged process and trick the high-privileged process to use or execute it.

To prevent this attack vector, two mechanisms known as Supervisor Memory Access Prevention (SMAP) and
Supervisor Memory Execution Prevention (SMEP) were introduced in recent systems. The first one prevents the
OS from accessing the memory of an unprivileged process unless a specific code path is followed, and the second
one prevents the OS from executing the memory of an unprivileged process at all times. RISC-V already includes
support for SMAP, through the sstatus.SUM bit, and for SMEP by always denying execution of virtual memory
pages marked with the U bit, with Supervisor mode (OS) privileges, as mandated on the Privilege Spec.



Terms:

• PMP Entry: A pair of pmpcfg[i] / pmpaddr[i] registers.

• PMP Rule: The contents of a pmpcfg register and its associated pmpaddr register(s),
that encode a valid protected physical memory region, where pmpcfg[i].A != OFF, and
if pmpcfg[i].A == TOR, pmpaddr[i-1] < pmpaddr[i].

• Ignored: Any permissions set by a matching PMP rule are ignored, and all accesses to
the requested address range are allowed.

• Enforced: Only access types configured in the PMP rule matching the requested address
range are allowed; failures will cause an access-fault exception.

• Denied: Any permissions set by a matching PMP rule are ignored, and no accesses to the
requested address range are allowed.; failures will cause an access-fault exception.

• Locked: A PMP rule/entry where the pmpcfg.L bit is set.

• PMP reset: A reset process where all PMP settings of the hart, including locked
rules/settings, are re-initialized to a set of safe defaults, before releasing the hart (back)
to the firmware / OS / application.

1.1. Threat model
However, there are no such mechanisms available on Machine mode in the current (v1.11) Privileged Spec. It is
not possible for a PMP rule to be enforced only on non-Machine modes and denied on Machine mode, to only
allow access to a memory region by less-privileged modes. it is only possible to have a locked rule that will be
enforced on all modes, or a rule that will be enforced on non-Machine modes and be ignored by Machine
mode. So for any physical memory region which is not protected with a Locked rule, Machine mode has
unlimited access, including the ability to execute it.

Without being able to protect less-privileged modes from Machine mode, it is not possible to prevent the
mentioned attack vector. This becomes even more important for RISC-V than on other architectures, since
implementations are allowed where a hart only has Machine and User modes available, so the whole OS will run
on Machine mode instead of the non-existent Supervisor mode. In such implementations the attack surface is
greatly increased, and the same kind of attacks performed on Supervisor mode and mitigated through
SMAP/SMEP, can be performed on Machine mode without any available mitigations. Even on implementations
with Supervisor mode present attacks are still possible against the Firmware and/or the Secure Monitor running
on Machine mode.

1.1. Threat model | Page 1

PMP Enhancements for memory access and execution prevention on Machine mode (Smepmp) | © RISC-V



Chapter 2. Proposal
1. Machine Security Configuration (mseccfg) is a new RW Machine mode CSR, used for configuring

various security mechanisms present on the hart, and only accessible to Machine mode. It is 64 bits wide,
and is at address 0x747 on RV64 and 0x747 (low 32bits), 0x757 (high 32bits) on RV32. All mseccfg
fields defined on this proposal are WARL, and the remaining bits are reserved for future standard use and
should always read zero. The reset value of mseccfg is implementation-specific, otherwise if backwards
compatibility is a requirement it should reset to zero on hard reset.

2. On mseccfg we introduce a field on bit 2 called Rule Locking Bypass (mseccfg.RLB) with the following
functionality:
a. When mseccfg.RLB is 1 locked PMP rules may be removed/modified and locked PMP entries may be

edited.
b. When mseccfg.RLB is 0 and pmpcfg.L is 1 in any rule or entry (including disabled entries), then

mseccfg.RLB remains 0 and any further modifications to mseccfg.RLB are ignored until a PMP reset.



Note that this feature is intended to be used as a debug mechanism, or as a
temporary workaround during the boot process for simplifying software, and
optimizing the allocation of memory and PMP rules. Using this functionality under
normal operation, after the boot process is completed, should be avoided since it
weakens the protection of M-mode-only rules. Vendors who don’t need this
functionality may hardwire this field to 0.

3. On mseccfg we introduce a field in bit 1 called Machine Mode Whitelist Policy (mseccfg.MMWP).
This is a sticky bit, meaning that once set it cannot be unset until a PMP reset. When set it changes the
default PMP policy for M-mode when accessing memory regions that don’t have a matching PMP rule, to
denied instead of ignored.

4. On mseccfg we introduce a field in bit 0 called Machine Mode Lockdown (mseccfg.MML). This is a
sticky bit, meaning that once set it cannot be unset until a PMP reset. When mseccfg.MML is set the
system’s behavior changes in the following way:
a. The meaning of pmpcfg.L changes: Instead of marking a rule as locked and enforced in all modes, it

now marks a rule as M-mode-only when set and S/U-mode-only when unset. The formerly reserved
encoding of pmpcfg.RW=01, and the encoding pmpcfg.LRWX=1111, now encode a Shared-Region.

An M-mode-only rule is enforced on Machine mode and denied in Supervisor or User mode. It also
remains locked so that any further modifications to its associated configuration or address registers are
ignored until a PMP reset, unless mseccfg.RLB is set.

An S/U-mode-only rule is enforced on Supervisor and User modes and denied on Machine mode.

A Shared-Region rule is enforced on all modes, with restrictions depending on the pmpcfg.L and
pmpcfg.X bits:

▪ A Shared-Region rule where pmpcfg.L is not set can be used for sharing data between M-mode and
S/U-mode, so is not executable. M-mode has read/write access to that region, and S/U-mode has
read access if pmpcfg.X is not set, or read/write access if pmpcfg.X is set.

▪ A Shared-Region rule where pmpcfg.L is set can be used for sharing code between M-mode and
S/U-mode, so is not writeable. Both M-mode and S/U-mode have execute access on the region, and
M-mode also has read access if pmpcfg.X is set. The rule remains locked so that any further
modifications to its associated configuration or address registers are ignored until a PMP reset,
unless mseccfg.RLB is set.

Chapter 2. Proposal | Page 2

PMP Enhancements for memory access and execution prevention on Machine mode (Smepmp) | © RISC-V



▪ The encoding pmpcfg.LRWX=1111 can be used for sharing data between M-mode and S/U mode,
where both modes only have read-only access to the region. The rule remains locked so that any
further modifications to its associated configuration or address registers are ignored until a PMP
reset, unless mseccfg.RLB is set.

b. Adding a rule with executable privileges that either is M-mode-only or a locked Shared-Region is not
possible and such pmpcfg writes are ignored, leaving pmpcfg unchanged. This restriction can be
temporarily lifted e.g. during the boot process, by setting mseccfg.RLB.

c. Executing code with Machine mode privileges is only possible from memory regions with a matching M-
mode-only rule or a locked Shared-Region rule with executable privileges. Executing code from a
region without a matching rule or with a matching S/U-mode-only rule is denied.

d. If mseccfg.MML is not set, the combination of pmpcfg.RW=01 remains reserved for future standard use.

2.1. Truth table when mseccfg.MML is set
Bits on pmpcfg register Result

L R W X M Mode S/U Mode

0 0 0 0 Inaccessible region (Access Exception)

0 0 0 1 Access Exception Execute-only region

0 0 1 0 Shared data region: Read/write on M mode, read-only on S/U
mode

0 0 1 1 Shared data region: Read/write for both M and S/U mode

0 1 0 0 Access Exception Read-only region

0 1 0 1 Access Exception Read/Execute region

0 1 1 0 Access Exception Read/Write region

0 1 1 1 Access Exception Read/Write/Execute region

1 0 0 0 Locked inaccessible region* (Access Exception)

1 0 0 1 Locked Execute-only region* Access Exception

1 0 1 0 Locked Shared code region: Execute only on both M and S/U
mode.*

1 0 1 1 Locked Shared code region: Execute only on S/U mode,
read/execute on M mode.*

1 1 0 0 Locked Read-only region* Access Exception

1 1 0 1 Locked Read/Execute region* Access Exception

1 1 1 0 Locked Read/Write region* Access Exception

1 1 1 1 Locked Shared data region: Read only on both M and S/U mode.*

: *Locked rules cannot be removed or modified until a PMP reset, unless mseccfg.RLB is set.

2.1. Truth table when mseccfg.MML is set | Page 3

PMP Enhancements for memory access and execution prevention on Machine mode (Smepmp) | © RISC-V



2.2. Visual representation of the proposal

2.3. Smepmp software discovery
Since all fields defined on mseccfg as part of this proposal are locked when set (MMWP/MML) or locked when
cleared (RLB), software can’t poll them for determining the presence of Smepmp. It is expected that BootROM
will set mseccfg.MMWP and/or mseccfg.MML during early boot, before jumping to the firmware, so that the
firmware will be able to determine the presence of Smepmp by reading mseccfg and checking the state of
mseccfg.MMWP and mseccfg.MML.

2.2. Visual representation of the proposal | Page 4

PMP Enhancements for memory access and execution prevention on Machine mode (Smepmp) | © RISC-V



Chapter 3. Rationale
1. Since a CSR for security and / or global PMP behavior settings is not available with the current spec, we

needed to define a new one. This new CSR will allow us to add further security configuration options in the
future and also allow developers to verify the existence of the new mechanisms defined on this proposal.

2. There are use cases where developers want to enforce PMP rules in M-mode during the boot process, that
are also able to modify, merge, and / or remove later on. Since a rule that is enforced in M-mode also needs
to be locked (or else badly written or malicious M-mode software can remove it at any time), the only way
for developers to approach this is to keep adding PMP rules to the chain and rely on rule priority. This is a
waste of PMP rules and since it’s only needed during boot, mseccfg.RLB is a simple workaround that can
be used temporarily and then disabled and locked down.

Also when mseccfg.MML is set, according to 4b it’s not possible to add a Shared-Region rule with executable
privileges. So RLB can be set temporarily during the boot process to register such regions. Note that it’s still
possible to register executable Shared-Region rules using initial register settings (that may include
mseccfg.MML being set and the rule being set on PMP registers) on PMP reset, without using RLB.



Be aware that RLB introduces a security vulnerability if left set after the boot
process is over and in general it should be used with caution, even when used
temporarily. Having editable PMP rules in M-mode gives a false sense of security since it
only takes a few malicious instructions to lift any PMP restrictions this way. It doesn’t
make sense to have a security control in place and leave it unprotected. Rule Locking
Bypass is only meant as a way to optimize the allocation of PMP rules, catch errors
durring debugging, and allow the bootrom/firmware to register executable Shared-Region
rules. If developers / vendors have no use for such functionality, they should never set
mseccfg.RLB and if possible hard-wire it to 0. In any case RLB should be disabled and
locked as soon as possible.


If mseccfg.RLB is not used and left unset, it wil be locked as soon as a PMP rule/entry
with the pmpcfg.L bit set is configured.


Since PMP rules with a higher priority override rules with a lower priority, locked rules
must precede non-locked rules.

3. With the current spec M-mode can access any memory region unless restricted by a PMP rule with the
pmpcfg.L bit set. There are cases where this approach is overly permissive, and although it’s possible to
restrict M-mode by adding PMP rules during the boot process, this can also be seen as a waste of PMP
rules. Having the option to block anything by default, and use PMP as a whitelist for M-mode is considered
a safer approach. This functionality may be used during the boot process or upon PMP reset, using initial
register settings.

4. The current dual meaning of the pmpcfg.L bit that marks a rule as Locked and enforced on all modes is
neither flexible nor clean. With the introduction of Machine Mode Lock-down the pmpcfg.L bit distinguishes
between rules that are enforced only in M-mode (M-mode-only) or only in S/U-modes (S/U-mode-only).
The rule locking becomes part of the definition of an M-mode-only rule, since when a rule is added in M
mode, if not locked, can be modified or removed in a few instructions. On the other hand, S/U modes can’t
modify PMP rules anyway so locking them doesn’t make sense.
a. This separation between M-mode-only and S/U-mode-only rules also allows us to distinguish which

regions are to be used by processes in Machine mode (pmpcfg.L == 1) and which by Supervisor or User
mode processes (pmpcfg.L == 0), in the same way the U bit on the Virtual Memory’s PTEs marks
which Virtual Memory pages are to be used by User mode applications (U=1) and which by the

Chapter 3. Rationale | Page 5

PMP Enhancements for memory access and execution prevention on Machine mode (Smepmp) | © RISC-V



Supervisor / OS (U=0). With this distinction in place we are able to implement memory access and
execution prevention in M-mode for any physical memory region that is not M-mode-only.

An attacker that manages to tamper with a memory region used by S/U mode, even after successfully
tricking a process running in M-mode to use or execute that region, will fail to perform a successful
attack since that region will be S/U-mode-only hence any access when in M-mode will trigger an access
exception.

In order to support zero-copy transfers between M-mode and S/U-mode we need to either allow
shared memory regions, or introduce a mechanism similar to the sstatus.SUM bit to temporary
allow the high-privileged mode (in this case M-mode) to be able to perform loads and stores on the
region of a less-privileged process (in this case S/U-mode). In our case after discussion within the
group it seemed a better idea to follow the first approach and have this functionality encoded on a
per-rule basis to avoid the risk of leaving a temporary, global bypass active when exiting M-mode,
hence rendering memory access prevention useless.

Although it’s possible to use mstatus.MPRV in M-mode to read/write data on an S/U-mode-only
region using general purpose registers for copying, this will happen with S/U-mode permissions,
honoring any MMU restrictions put in place by S-mode. Of course it’s still possible for M-mode to
tamper with the page tables and / or add S/U-mode-only rules and bypass the protections put in
place by S-mode but if an attacker has managed to compromise M-mode to such extent, no
security guarantees are possible in any way. Also note that the threat model we present here
assumes buggy software in M-mode, not compromised software. We considered disabling
mstatus.MPRV but it seemed too much and out of scope.

Shared-region rules can be used both for zero-copy data transfers and for sharing code segments. The
latter may be used for example to allow S/U-mode to execute code by the vendor, that makes use of
some vendor-specific ISA extension, without having to go through the firmware with an ecall. This is
similar to the vDSO approach followed on Linux, that allows userspace code to execute kernel code
without having to perform a system call.

To make sure that shared data regions can’t be executed and shared code regions can’t be modified, the
encoding changes the meaning of the pmpcfg.X bit. In case of shared data regions, with the exception
of the pmpcfg.LRWX=1111 encoding, the pmpcfg.X bit marks the capability of S/U-mode to write to
that region, so it’s not possible to encode an executable shared data region. In case of shared code
regions, the pmpcfg.X bit marks the capability of M-mode to read from that region, and since
pmpcfg.RW=01 is used for encoding the shared region, it’s not possible to encode a shared writable code
region.



For adding Shared-region rules with executable privileges to share code segments
between M-mode and S/U-mode, mseccfg.RLB needs to be implemented, or else
such rules can only be added together with mseccfg.MML being set on PMP Reset.
That’s because the reserved encoding pmpcfg.RW=01 being used for Shared-region
rules is only defined when mseccfg.MML is set, and 4b prevents the adition of rules
with executable privileges on M-mode after mseccfg.MML is set unless mseccfg.RLB
is also set.

Chapter 3. Rationale | Page 6

PMP Enhancements for memory access and execution prevention on Machine mode (Smepmp) | © RISC-V



Using the pmpcfg.LRWX=1111 encoding for a locked shared read-only data region was decided later
on, its initial meaning was an M-mode-only read/write/execute region. The reason for that change
was that the already defined shared data regions were not locked, so r/w access to M-mode
couldn’t be restricted. In the same way we have execute-only shared code regions for both modes,
it was decided to also be able to allow a least-privileged shared data region for both modes. This
approach allows for example to share the .text section of an ELF with a shared code region and the
.rodata section with a locked shared data region, without allowing M-mode to modify .rodata. We
also decided that having a locked read/write/execute region in M-mode doesn’t make much sense
and could be dangerous, since M-mode won’t be able to add further restrictions there (as in the
case of S/U-mode where S-mode can further limit access to an pmpcfg.LWRX=0111 region through
the MMU), leaving the possibility of modifying an executable region in M-mode open.

For encoding Shared-region rules initially we used one of the two reserved bits on pmpcfg (bit 5)
but in order to avoid allocating an extra bit, since those bits are a very limited resource, it was
decided to use the reserved R=0,W=1 combination.

b. The idea with this restriction is that after the Firmware or the OS running in M-mode is initialized and
mseccfg.MML is set, no new code regions are expected to be added since nothing else is expected to run
in M-mode (everything else will run in S/U mode). Since we want to limit the attack surface of the
system as much as possible, it makes sense to disallow any new code regions which may include
malicious code, to be added/executed in M-mode.

c. In case mseccfg.MMWP is not set, M-mode can still access and execute any region not covered by a PMP
rule. Since we try to prevent M-mode from executing malicious code and since an attacker may manage
to place code on some region not covered by PMP (e.g. a directly-addressable flash memory), we need
to ensure that M-mode can only execute the code segments initialized during firmware / OS
initialization.

d. We are only using the encoding pmpcfg.RW=01 together with mseccfg.MML, if mseccfg.MML is not set
the encoding remains usable for future use.

Chapter 3. Rationale | Page 7

PMP Enhancements for memory access and execution prevention on Machine mode (Smepmp) | © RISC-V


	PMP Enhancements for memory access and execution prevention on Machine mode (Smepmp)
	Table of Contents
	Chapter 1. Introduction
	1.1. Threat model

	Chapter 2. Proposal
	2.1. Truth table when mseccfg.MML is set
	2.2. Visual representation of the proposal
	2.3. Smepmp software discovery

	Chapter 3. Rationale

