function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters) %GRADIENTDESCENT Performs gradient descent to learn theta % theta = GRADIENTDESENT(X, y, theta, alpha, num_iters) updates theta by % taking num_iters gradient steps with learning rate alpha % Initialize some useful values m = length(y); % number of training examples J_history = zeros(num_iters, 1); for iter = 1:num_iters % ====================== YOUR CODE HERE ====================== % Instructions: Perform a single gradient step on the parameter vector % theta. % % Hint: While debugging, it can be useful to print out the values % of the cost function (computeCost) and gradient here. % % theta = theta - alpha*(1/m)* sum(X*theta - y) * hy = X*theta-y; hyr = repmat(hy, [1, size(X,2)]); prodhyrx = hyr.*X; sumVec = sum(prodhyrx)'; theta = theta - alpha.*sumVec./m; % ============================================================ % Save the cost J in every iteration J_history(iter) = computeCost(X, y, theta); end end