
UavSim: An Open-Source Simulator for Multiple
UAV Path Planning

Kyle Thompson
Computer Science

California Polytechnic State University
San Luis Obispo, USA
rkthomps@calpoly.edu

Dominik Walter
Computer Science

California Polytechnic State University
San Luis Obispo, USA
dowalter@calpoly.edu

Roman Maksymiuk
Computer Science

California Polytechnic State University
San Luis Obispo, USA
rmaksymi@calpoly.edu

Roey Mevorach
Computer Science

California Polytechnic State University
San Luis Obispo, USA
rmevorac@calpoly.edu

Gaurav Joshi
Computer Science

California Polytechnic State University
San Luis Obispo, USA

gjoshi@calpoly.edu

Abstract—Though the primary method for evaluating multiple
UAV path planning algorithms is simulation, there is no open-
source software built to compare algorithms. As a result, most
researchers develop their own simulation environments. The
presence of many simulation environments makes evaluation of
separately developed algorithms difficult. To introduce standard-
ization into the multiple UAV path planning space, we have
created an open-source simulator for both development and
evaluation of path planning algorithms. Our simulator focuses
on the problem of small object detection using multiple UAVs.
Its careful object-oriented design allows users unlimited flexibility
in developing planning algorithms. UavSim is freely available on
GitHub (https://github.com/rmaksymiuk/UavSim).

Index Terms—Unmanned aerial vehicle, path planning, small-
object detection, simulation, open-source

I. INTRODUCTION

Increased quality of consumer grade drones, and continuous
improvement in computer vision have made it feasible to
use affordable UAVs to identify objects of interest through
aerial surveillance [1]. Object detection using UAVs lies at
the intersection of Computer Vision, and complete coverage
path planning. Both topics have been well-studied individually
[1], [2]. However, much less work has been done on the
problem of efficiently covering an area of interest while
achieving good performance in object detection. The most
recent developments in this field propose strategies not covered
in coverage path planning literature that sacrifice energy costs
for object detection performance [3], [4].

At Cal Poly, there is an effort to use UAVs to spot sharks
in the waters of the central coast. The first task for the shark-
spotting project to achieve good performance using a single
UAV, but there are plans to extend the scope of the project
and use multiple UAVs to observe a known area. Our original
goal was to investigate state of the art methods for small object
detection with UAVs. We wanted to compare these methods
through simulation. However, we were not able to find a
simulation tool built for the problem of small object detection.

We then had the idea of repurposing a simulation environment
built solely for path planning. We were very surprised when
we could not find a such an environment. After digging
deeper into the literature on path planning for coverage, it
was evident that there was no commonly used simulation
software. We recognized an opportunity in both the small
object detection and path planning spaces for a centralized
simulation environment. Such an environment would give
the topics’ researchers an excellent basis for investigating
strategies, and would especially help surveys like [2].

II. RELATED WORK

To find related work, we sought to identify coverage path
planning research that used simulation software that was not
self-developed. We figured that we could look for this kind
of research in a recent survey of path planning strategies.
Cabreira, Brisolara, and Paulo [2] list 17 methods for path
planning that either use no composition of the environment,
or exact cellular decomposition of the environment. Of the
17 methods listed, there were only two instances where
researchers used software that they did not develop themselves.

One research group at MgGill University published two
papers where they used a UAV simulation software called
Aviones [5], [6]. Both papers describe a Boustrophedon
Cellular Decomposition (BCD) algorithm for non-holonomic
vehicles that minimizes the distance travelled over previously
covered regions. The researchers use Aviones to measure flight
time and distance for UAVs in environments with and without
wind [5], [6]. Aviones is a UAV Flight Simulator developed
by the Brigham Young University Human Centered Machine
Intelligence and Multiple Agent Intelligent Coordination and
Control labs [7]. The software can accurately simulate au-
tonomous navigation of an environment by UAVs where the
environment can include wind [5]. However, the documenta-
tion for Aviones is severely limited, and their website has not
been updated since 2007 [7].

Additionally, a research group at the University of Pennsyl-
vania developed a leader-follower strategy for the localization
of UAVs [8]. To test their strategy, the group employed a
simulator developed in MATLAB [8]. The user interacts with
the simulator through an event script [8]. This script is a matrix
where each row represents a period of time [8]. Inside each
row is the thrust, pitch and role the UAV should apply during
that period of time [8]. A group at The University of Seville
leveraged this simulation tool to simulate a decentralized
multiple UAV coverage strategy [9]. The tool is able to handle
a setting with obstacles and multiple UAVs [9].

The software presented in [8] is very capable. It simulates
the motion of each UAV through its thrust and can model
obstacles. However, it has a similar problem to Aviones. There
is no central repository where a researcher could download or
learn about it. We predict that the group at the University
of Seville had direct communication with the group at the
University of Pennsylvania to obtain the software.

Our work is significantly different than the Aviones plat-
form, or the software used in [8]. We developed our tool
for broad use. Our simulator is hosted on a public GitHub
repository. Also on UavSim’s repository is documentation on
how to install and use the software. Our work focuses on
the problem of small object detection, but could be easily
used for coverage-focused applications. Neither Aviones, or
the software used in [8] have capabilities suitable for small
object detection.

III. SIMULATION IMPLEMENTATION

UavSim models the problem as an interaction between four
primary entities. The UAV entity is a representation of a
single UAV, or drone in the simulation. The object entity
is a representation of a single object in the simulation. This
object may or may not be the object of interest for a particular
UAV. The environment entity conducts the simulation. It has
knowledge about the setting of the simulation, and all other
entities. The environment entity uses the plan entity to generate
paths for the UAV entities. UavSim represents a path with
a stack of waypoints, [~p1, ~p2, ..., ~pn], and a stack of speeds,
[s1, s2, ..., sn]. Both stacks always have equal length. At any
point in time, if a UAV has a non-empty path, it pursues a
position of ~p0 and a speed of s0. We describe each entity in
more detail in the remaining portion of this section.

A. Environment Entity

The environment entity first directs the plan entity to pro-
duce an initial path for each UAV. It then increments through
time by a particular time step, ∆tstep. At each time step,
the environment entity updates its own state, and directs the
UAV and object entities to update their respective states. If
any of the UAVs in the environment detect an object while
they are updating their state, the environment entity probes the
plan entity to update the paths for each UAV. The simulation
proceeds until each UAV has an empty path. In Algorithm
1, the environment entity is assumed to have the following
attributes.

• Uavs: List of UAV entities in the environment.
• Objects: List of object entities in the environment.
• Plan: Plan entity.

Algorithm 1 Algorithm for Environment Entity
Paths = Plan.GetInitialPaths()
UpdateUAVPaths(Paths)
while Any UAV has a non-empty path do

for Object in Objects do
Object.Step(∆tstep)

end for
AllObjectsSpotted = []
for Uav in Uavs do

ObjectsSpotted = Uav.Step(∆tstep)
if NonEmpty(ObjectsSpotted) then

AllObjectsSpotted.append(uav, ObjectsSpotted)
end if

end for
if NonEmpty(AllObjectsSpotted) then

Paths = Plan.GetUpdatedPaths(AllObjectsSpotted)
UpdateUAVPaths(Paths)

end if
end while

B. UAV Entity

The UAV entity is the most complicated. It first needs to
update its thrust to ensure that it is both pursuing a position
of ~p0 and a speed of s0. In other words, if the UAV entity
has position ~pos, the UAV entity needs to adjust its thrust to
accelerate towards ~veldesired where ~veldesired is defined in
(1).

~veldesired = s0(
~p0 − pos

||p0 − pos||
) (1)

To simplify the calculation for finding a thrust that moves
the UAV entity’s velocity closer to ~veldesired, we define an
algorithm that pursues ~veldesired with the maximum possible
acceleration. This algorithm is not guaranteed to minimize the
thrust used between waypoints, but it is guaranteed to reach

~veldesired in the minimum time possible. Forsmo et al. [10]
provides a more computationally expensive way to find the
optimal trajectory between waypoints. In Algorithm 2, the
UAV entity is assumed to have the following attributes.
• ~vel: Current velocity of the UAV entity.
• ~Fenv: Force vector of the environment normally just

including gravity.
• ~Ftot: Combined force vector of the environment and drag.

If carea is the estimated cross-sectional area for the drone,
then ~Ftot is defined in (2). We use an estimate of 1.225
for ρ and and estimate of 1.2 for cd.

~Ftot = ~Fenv +
1

2
ρ(−1 ∗ ~vel)2cdcarea. (2)

• ~tMaxForward: Maximum forward thrust. Forward is the
direction of projsurface(~vel) as defined in (3).

projsurface(~vel) = ~vel

1 0 0
0 1 0
0 0 0

 (3)

• ~tMaxLeft: Maximum left thrust. Left is the direction of
projsurface(~vel) rotated °90 counter clockwise about the z
axis.

• ~tMaxBackward: Maximum backward thrust. Backward is the
direction of projsurface(~vel) rotated °180 counter clock-
wise about the z axis.

• ~tMaxRight: Maximum right thrust. Right is the direction of
projsurface(~vel) rotated °270 counter clockwise about the
z axis.

• ~tMaxUp: Maximum upward thrust. Upward is the direction
of the standard basis vector ~z.

• ~tMaxDown: Maximum downward thrust. Downward is the
direction of the standard basis vector ~z rotated °180 about
the x axis.

• TVecs:[~tMaxLeft, ~tMaxBackward, ..., ~tMaxDown]

Algorithm 2 Algorithm to update UAV Thrust

Thrust = ~0
VelDiff = ~veldesired − ~vel
ToCorrect = ~Ftot
EnvContrib = projVelDiff(~Ftot)
if EnvContrib · VelDiff > 0 then

ToCorrect = ToCorrect - EnvContrib
end if
for ~Tv in TVecs do

EnvProj = projToCorrect(~Tv)
if EnvProj · ToCorrect < 0 then

TvContrib = min (||EnvProj||, ||ToCorrect||) EnvProj
||EnvProj||

Thrust = Thrust + TvContrib
~Tv = ~Tv - TvContrib

ToCorrect = ToCorrect + TvContrib
end if
VelProj = projVelDiff(~Tv)
if VelProj · VelDiff > 0 then

Thrust = Thrust + VelProj
end if

end for
return Thrust

Algorithm 2 calculates the change in velocity needed be-
tween the current velocity and the desired velocity. Then it
checks whether environmental forces can contribute to neces-
sary change in velocity. If they can, then the algorithm does
not need to apply thrust to cancel out the entire environmental
force vector, only the component orthogonal to the necessary
change in velocity. The algorithm then iterates through thrust
vectors of the UAV entity. For each vector, it checks to see if
the vector can cancel out the outstanding environmental force.
If it can, the projection of the thrust vector onto the outstanding
environmental force vector is added to the UAV entity’s thrust
until either environmental force vector is ~0, or the projection

of the thrust vector is ~0. If what remains of the thrust vector
has a component in the direction of the necessary change in
velocity, then that component it is added to the UAV entity’s
thrust.

After the UAV entity calculates its thrust, its other opera-
tions at each time increment are relatively straight forward.
At a high level, the UAV needs to update its kinematics and
performance metrics with respect to the time increment. Then,
it needs to check if it reached p0, the waypoint at the top of its
path stack. It also needs to check if it spotted an object during
the time increment. Algorithm 3 outlines the operations for
a UAV entity. It assumes that the entity has the following
attributes.

• ~Thrust: UAV entity’s current thrust as calculated in
Algorithm 2.

• Path: The current path entity for the UAV entity.
• TimeSinceFrame: Total time elapsed since the UAV entity

last captured an image.
• FPS: Frames per second for the UAV entity.
• TotalEnergyExpended: Aggregator that keeps track of the

amount of energy used by a UAV.
• TotalAreaCovered: Polygon representing the union of all

surfaces captured by UAV images.
• TPs, FPs, FNs: Counts associated with true positives,

false positives, and false negatives respectively.
• SpeedCost: Function that takes a thrust vector as input

and returns a rate of energy consumption.
• ObjectDetected: Function that takes a UAV entity and

an object entity as input and returns one the four tuples
below.

– (”TP”, Object Position): A tuple indicating that the
UAV spotted the object, and the object was the object
of interest.

– (”FP”, Object Position): A tuple indicating that the
UAV spotted the object, but the object was not the
object of interest.

– (”FN”, Null): A tuple indicating that the UAV did
not spot the object, but the object was in the frame
of the UAV, and the object was the object of interest.

• θlat and θhor: Angles associated with the UAV entity’s
camera as shown in Fig. 1. The region of surface coverage
can be determined by pos, θlat and θhor.

• Objects: List of all object entities in the environment.

The UpdateUntilDesired function used in Algorithm 3 ac-
cepts a current vector, a desired vector, a rate of change
vector, and ∆tstep. If applying the rate of change vector to
the current vector over ∆tstep passes the desired vector, then
the function returns the desired vector. If the desired vector
was not passed, then the function returns the result of applying
the rate of change for ∆tstep. Using this function ensures that
a UAV entity does not overshoot its target position or velocity.
However, it introduces some inaccuracy. Essentially, the UAV
ignores the rate of change vector in favor of a rate of change
of ~0 for the portion of ∆tstep after the UAV reaches its desired
vector. This inaccuracy decreases as ∆tstep decreases, but as

Fig. 1. Diagram of θlat and θhor

∆tstep decreases, computational expenses increase.

C. Object Entity

The object entity is much simpler than the UAV entity or
the environment entity. Currently, we assume that an object
has a constant velocity. Therefore, the object entity only
needs to worry about maintaining its position throughout the
simulation. Algorithm 4 shows the algorithm for an object
entity assuming that it has the attributes ~vel and ~pos which
mirror the ~vel and ~pos attributes from the UAV entity.

D. Plan Entity

Unlike the environment, UAV, or object entities, the plan
entity is not defined by its behavior at each time increment in
the simulation. Rather, the plan entity can be thought of as an
interface between the user and the simulator. Like much of the
research in [2], UavSim implements path planning algorithms
by defining waypoints for UAVs. The purpose of the plan
entity is to define the initial waypoints for each UAV entity,
and to optionally redefine waypoints for each UAV entity
whenever any UAV entity spots an object.

IV. USAGE AND PRIMARY FEATURES

In this section, we describe the usability of UavSim. UavSim
allows the user to implement multiple UAV path planning
algorithms by implementing the GetInitialPaths and GetUp-
datedPaths functions for a plan entity. After the user defines
his or her plan, the user must configure his or her environment.
There are three steps to configuring the environment. First, the
user must provide the specifications of each UAV Entity in the
simulation. Specifically, the user must provide the following
attributes.
• A unique name for the UAV entity.
• The type of object that the UAV entity is attempting to

detect.
• The frames per second for the UAV entity.

Algorithm 3 Algorithm for UAV entity
Thrust = UpdateThrust()
~vel, ReachedVelGoal = UpdateUntilDesired(~vel, ~veldesired,

Thrust, ∆tstep)
~pos, ReachedPosGoal = UpdateUntilDesired(~pos, ~p0, ~vel,

∆tstep)
if ReachedPosGoal then

Pop(Path.points)
Pop(Path.speeds)

end if
TotalEnergyExpended = TotalEnergyExpended + ∆tstep ∗
SpeedCost(Thrust)
TimeSinceFrame = TimeSinceFrame + ∆tstep
if TimeSinceFrame > FPS then

TimeSinceFrame = 0
Frame = GetCurrentFrame(pos, θlat, θhor)
TotalAreaCovered = Union(TotalAreaCovered, Frame)
ObjectsSpotted = []
for Object in Objects do

DetectType, DetectPos = ObjectDetected(Object)
if DetectType = ”TP” then

TPs = TPs + 1
ObjectsSpotted.Append(DetectPos)

else if DetectType = ”FP” then
FPs = FPs + 1
ObjectsSpotted.Append(DetectPos)

else if DetectType = ”FN” then
Fns = FNs + 1

end if
end for

end if
return ObjectsSpotted

Algorithm 4 Algorithm for Object Entity

~pos = ~pos+ ∆tstep ∗ ~vel

• The lateral and horizontal camera angles, θlat and θhor,
for the UAV entity .

• The estimated cross-sectional area, carea, of the UAV
entity.

• The maximum up, down, left, right, forward, backward
thrusts as scalars for the UAV entity.

The user can optionally provide the SpeedCost, and ObjectDe-
tection functions described in the UAV Entity section. The user
must also create object entities for the simulation. Each object
entity requires a name, initial position, type, and velocity.
UavSim has a utility function to automatically generate a
given number of objects of a given type. Finally, the user
must specify the environment. The user must provide the
UAV entities, and the object entities that he or she created
in addition to the boundary of the environment, the location
of the control station, ∆tstep, and an instantiation of the user
defined plan.

After the user specifies and runs the simulation, UavSim

provides a number of statistics summarizing object detection
performance and energy usage in the simulation. Table I
shows an example of the statistics outputted by a sample
simulation with three UAVs. The precision, recall, and f1 score
are calculated with respect to the detection performance on
the object of interest for each UAV respectively. The total
precision, recall, and f1 score are found by summing true
positives, false positives, and false negatives over all UAVs
in the simulation. Covered is the calculated according to (4) if
cov is the abbreviation of TotalAreaCovered, and bound is the
polygon associated with the environmental boundary. Spotted
is the proportion of the objects of interest that were spotted
by the UAV.

Covered = Area(cov ∩ bound)/Area(bound) (4)

TABLE I
SAMPLE SIMULATION OUTPUT

Name Precision Recall F1 Energy Covered Spotted
uav1 0.951 0.868 0.908 893 0.351 0.400
uav2 0.934 0.768 0.843 1080 0.552 0.600
uav3 0.810 0.671 0.734 1220 0.552 0.600
Total 0.898 0.768 0.828 3190 0.912 1.00

UavSim also compiles a video that gives the user an
excellent sense of the behavior of each UAV in the simulation.
OpenCV compiles an .mp4 file from a series of MatPlotLib
figures saved during the simulation [11], [12]. We’ve chosen
to omit a still image of the video from this report because it
is difficult to track the objects unless the viewer can see them
moving. The reader can find a sample video on this project’s
Github repository.

V. EVALUATION

The obvious way to evaluate a simulation software is to
compare its reported metrics to measurements taken in field
tests. However, at this time, the Shark Spotting Project at Cal
Poly is not ready to conduct autonomous flight tests. In lieu of
a field test comparison, our team implemented three common
coverage algorithms to ensure that our software produced
sensible results. Each coverage algorithm is conducted with
3 UAVs that have identical specifications shown in Table II.
Each simulation is run in an 1000m x 1000m environment
with five sharks, three fish, and eight rocks. Fish and rocks
are included as objects to allow opportunity for false positives.
The ∆tstep for each simulation is 0.01. Each simulation is run
on a 2016 MacBook Pro with a 2.9Ghz Quad-Core Intel Core
i7 processor. Plotting is turned off for these simulations to
increase efficiency.

A. Boustrophedon Decomposition

BCD is a path planning strategy that divides an environment
into cells and directs the UAVs in the environment to visit
the cells in a snake-like fashion [13]. To implement BCD in
UavSim, we choose a height for the UAVs to traverse the

TABLE II
EVALUATION UAV CONFIGURATION

Attribute Value
Focus ”Shark”
FPS 30
Mass 2kg
θlat 0.785rad
θhor 0.785rad
carea 0.1m2

Forward Thrust 40
Backward Thrust 5
Upward Thrust 40

Downward Thrust 0
Left Thrust 40

Right Thrust 40

environment. At a given height, we can find the image size
for each UAV entity. We use this image size to decompose a
rectangle that is overlaid onto the environment’s surface. The
encompassing rectangle is broken into a grid of squares where
the edge length of a square is defined by (5).

Lengths = {Length(GetFrame(U))|U ∈ UAV s}
Widths = {Width(GetFrame(U))|U ∈ UAV s}

EdgeLength = min
e

(e ∈ Lengths ∪Widths)

(5)

We find the minimum set of squares that cover the environ-
ment’s surface by dropping all squares from the grid that do
not intersect with the environment’s surface. If each remaining
square can be represented by its row and column indices, [i, j],
then we can order the squares so that one square, s1 precedes
another square, s2 if and only if Algorithm 5 returns True.
We can then assign the squares to the UAVs such that if we
have n UAVs, and m squares, we assign dmn e squares from
the ordered list to each UAV until we run out of squares. We
then create a path for each UAV by using the centroids of the
squares as waypoints. For each waypoint we assign a constant
speed of 20 m/s.

Algorithm 5 s1 < s2
ComesFirst = s1i − s2i
if ComesFirst = 0 then

if IsEven(s1i) then
ComesFirst = s1j − s2j

else
ComesFirst = s2j − s1j

end if
end if
return ComesFirst < 0

This is a very basic implementation of BCD. We do not
decompose the region into convex polygons and calculate the
major axis of each polygon. Instead, we direct the UAVs
to always perform a snaking motion parallel to the y axis
for the sake of simplicity. This basic implementation suffices
for comparison because it is the basis for the following two

techniques. Table III contains the metrics UavSim recorded
for BCD.

TABLE III
BCD RESULTS

Name Precision Recall F1 Energy Covered Spotted
uav1 0.946 0.584 0.722 11001 0.325 0.600
uav2 0.943 0.637 0.760 12722 0.345 0.600
uav3 0.588 0.563 0.576 12906 0.348 0.200
Total 0.891 0.600 0.717 36629 0.949 1.00

B. Altitude Variant Boustrophedon Decomposition

Altitude Variant BCD (AVBCD) extends the cellular decom-
position strategy. BCD is not oriented towards the problem
of small object detection. It is solely focused on coverage
efficiency. However, the performance of aerial object detection
is related to the altitude of the UAV [3]. Therefore, if a UAV
detects an object with some degree of certainty at a high
altitude, it can decrease its altitude to obtain a higher degree
of certainty [3].

To implement AVBCD, we simply added an implementation
of the GetUpdatedPaths function to the BCD implementation.
The previous implementation of the function simply returned
an empty list which directs the UAVs in the simulation pursue
their initial paths to exhaustion. The new implementation
directs the UAV to drop to an altitude of 15m at a speed
of 20m/s whenever it detects an object of interest. We can
implement this behavior by letting UAVi be an arbitrary UAV
that spotted an object of interest at coordinates (x, y). All
we have to do is push the point (x, y, 15) onto the path for
UAVi with a corresponding speed of 20m/s. Table IV shows
the metrics UavSim recorded for AVBCD.

TABLE IV
ALTITUDE VARIANT BCD RESULTS

Name Precision Recall F1 Energy Covered Spotted
uav1 0.885 0.646 0.747 13085 0.325 0.600
uav2 0.603 0.660 0.630 14384 0.346 0.600
uav3 0.997 0.582 0.735 14085 0.348 0.600
Total 0.838 0.620 0.713 41555 0.944 1.00

C. Base Drone Boustrophedon Decomposition

Base Drone BCD (BDBCD) is a very loose interpretation
of the work done in [4]. Like the altitude variant strategy, the
role-based strategy is focused on optimizing both coverage,
and object detection performance [4]. However, unlike the
altitude variant strategy, the role-based strategy requires an
estimated object-density distribution over the environment [4].
The density distribution is used to segment the environment
into high-density areas and low-density areas [4]. ”Explore”
drones traverse low density areas at a high altitude to ensure
efficient coverage of a potentially large area [4]. ”Traverse”

drones navigate high-density areas at a moderate altitude
and direct ”Observe” drones to visit each potential object of
interest at a low altitude to ensure strong object detection
performance in high density regions [4].

We implement a loosely related strategy that includes just
two roles. The ”Observer” drones are assigned initial paths in
the exact same manner as BCD. However, the ”Base” drones
are not assigned paths upon instantiation of the simulation.
Rather, whenever an ”Observer” UAV detects an object of
interest, it directs a ”Base” drone that is not currently busy
to visit the object and then return to the control station. If we
let (xcont, ycont) be the coordinates of the control station, we
create a path for a non-busy ”Base Drone” consisting of the
points [(x, y, 15m), (xcont, ycont, 0)] at speeds [20m/s, 20m/s]
respectively. Table V shows the metrics UavSim recorded for
BDBCD where uav1 and uav2 are ”Observer” drones, and
uav3 is a ”Base” drone.

TABLE V
BASE DRONE BCD RESULTS

Name Precision Recall F1 Energy Covered Spotted
uav1 0.908 0.697 0.789 14545 0.475 0.400
uav2 0.844 0.493 0.623 15982 0.489 0.600
uav3 0.939 0.830 0.882 18640 0.081 0.600
Total 0.904 0.673 0.772 49168 0.949 0.800

D. Analysis

In comparing BCD, AVBCD, and BDBCD, we would
expect that BCD uses less energy than both AVBCD, and
BDBCD. When we mention energy, we really mean total
impulse, which is measured in newton-seconds. Total impulse
directly corresponds with the energy output of the drone.
However, this correspondence is specific to the drone, which
is why we provide a speed cost function for customization. In
any case, BCD reports a total impulse of 36,629 N·s which
is less than the 41,555 N·s reported by AVBCD and the
49,168 N·s reported by BDBCD. We would also expect BCD
to report an inferior object detection performance than the
other two strategies, but this is not necessarily the case. BCD
reports an f1 score of 0.717 which is worse than BDBCD’s
f1 score of 0.772, but better than AVBCD’s f1 score of 0.713.
This counterintuitive result is a product of the logic in our
ObjectDetected function. We compose a performance score
used to determine whether or not an object was detected
based on the height of the UAV, speed of the UAV, height
of the object, and location of the object in the frame. We
are currently unsure if this method is consistent with object
detection results gathered in field tests. We hope that the Shark
Spotting project at Cal Poly will give us an opportunity to
tune the simulator’s object detection logic. Users can always
provide a custom ObjectDetected function that is suited to
their model’s performance.

We can also evaluate the computational performance of our
model. The real time, simulation time, and steps per second

(SPS) are reported in Table VI. The most important measure
in this table is SPS because it generalizes to different values
of ∆tstep. The most interesting observation is that BDBCD
has a much lower SPS than BCD or AVBCD. There are only
two reasons for this discrepancy. Either the GetUpdatedPaths
function is more expensive for BDBCD, or the GetUpdated-
Paths function is called more often for BDBCD, or both. We
haven’t looked into either of these causes.

TABLE VI
COMPUTATIONAL EVALUATION

Plan Real Time Simulated Time Steps Per Second
BCD 701 358 51

AVBCD 783 388 49
BDBCD 1997 470 24

VI. CONCLUSIONS AND FUTURE WORK

UavSim offers a previously unavailable open-source sim-
ulation environment to researchers in both the small object
detection and coverage path planning spaces. An accessible
simulation software lowers the barrier to entry for doing
research in either space which enables faster progress in
both. Wide adoption of UavSim would simplify comparison
of separately-conducted research and help clarify the state of
the art.

While we have succeeded in our initial goal, there remain
features that would improve UavSim. First, we hope that the
Shark Spotting Project at Cal Poly will give us an opportunity
to tune the simulator’s object detection logic. We currently
recommend that the user provide his or her own ObjectDe-
tected function that corresponds well with the performance of
his or her model. However, for UavSim to be used to compare
research across groups, this logic must be standardized. If the
Shark Spotting Project does not give a sufficient opportunity
to tune the ObjectDetected function, we could just as well
adopt an implementation from a third party contributor to be
the standard.

We also used a highly object oriented implementation in
python. We worry that some of our design choices are slowing
down the speed of our simulator. We could increase the speed
of the simulator by reimplementing some aspects of the UAV
entity using pure numpy computation at the cost of readability.

Additionally, we have yet to include obstacles or wind in our
simulation. Wind is somewhat trivial to implement because it
just requires modification of the drag calculation, but obstacles
will require more consideration. Both are important for a
complete UAV simulation software.

Lastly, we would like to evaluate our software against field
tests to measure its accuracy. The Shark Spotting Project at
Cal Poly will likely give us an opportunity to perform this
evaluation.

REFERENCES

[1] P. Mittal, R. Singh, and A. Sharma, “Deep learning-based object detec-
tion in low-altitude UAV datasets: A survey,” Image and Vision Comput-
ing, vol. 104, p. 104046, Dec. 2020, doi: 10.1016/j.imavis.2020.104046.

[2] T. Cabreira, L. Brisolara, and P. R. Ferreira Jr., “Survey on Coverage
Path Planning with Unmanned Aerial Vehicles,” Drones, vol. 3, no. 1,
p. 4, Jan. 2019, doi: 10.3390/drones3010004.

[3] M. Krusniak, K. Leppanen, Z. Tang, F. Gao, Y. Wang, and Y. Shang,
“A Detection Confidence-Regulated Path Planning (DCRPP) Algorithm
for Improved Small Object Counting in Aerial Images,” in 2020 IEEE
International Conference on Consumer Electronics (ICCE), Las Vegas,
NV, USA, Jan. 2020, pp. 1–6. doi: 10.1109/ICCE46568.2020.9043152.

[4] M. Krusniak, A. James, A. Flores, and Y. Shang, “A Multiple UAV
Path-Planning Approach to Small Object Counting with Aerial Im-
ages,” in 2021 IEEE International Conference on Consumer Elec-
tronics (ICCE), Las Vegas, NV, USA, Jan. 2021, pp. 1–6. doi:
10.1109/ICCE50685.2021.9427712.

[5] A. Xu, C. Viriyasuthee, and I. Rekleitis, “Optimal complete terrain cov-
erage using an Unmanned Aerial Vehicle,” in 2011 IEEE International
Conference on Robotics and Automation, Shanghai, China, May 2011,
pp. 2513–2519. doi: 10.1109/ICRA.2011.5979707.

[6] A. Xu, C. Viriyasuthee, and I. Rekleitis, “Efficient complete coverage
of a known arbitrary environment with applications to aerial opera-
tions,” Auton Robot, vol. 36, no. 4, pp. 365–381, Apr. 2014, doi:
10.1007/s10514-013-9364-x.

[7] “Aviones: UAV Flight Simulator,” http://aviones.sourceforge.net. Ac-
cessed: 03/10/22.

[8] W. H. E. Jr, P. Martin, and R. Mangharam, “Cooperative Flight Guidance
of Autonomous Unmanned Aerial Vehicles,” p. 11.

[9] J. J. Acevedo, B. C. Arrue, I. Maza, and A. Ollero, “Distributed
Approach for Coverage and Patrolling Missions with a Team of Hetero-
geneous Aerial Robots under Communication Constraints,” International
Journal of Advanced Robotic Systems, vol. 10, no. 1, p. 28, Jan. 2013,
doi: 10.5772/52765.

[10] E. J. Forsmo, E. I. Grotli, T. I. Fossen, and T. A. Johansen, “Optimal
search mission with Unmanned Aerial Vehicles using Mixed Integer
Linear Programming,” in 2013 International Conference on Unmanned
Aircraft Systems (ICUAS), Atlanta, GA, May 2013, pp. 253–259. doi:
10.1109/ICUAS.2013.6564697.

[11] Gary Bradski, “The OpenCV Library,” Dr. Dobb’s Journal; San Mateo,
vol. 25, no. 11, pp. 120–125, Nov. 2000.

[12] J. D. Hunter, “Matplotlib: A 2D Graphics Environment,” Comput. Sci.
Eng., vol. 9, no. 3, pp. 90–95, 2007, doi: 10.1109/MCSE.2007.55.

[13] H. Choset, “Coverage of Known Spaces: The Boustrophedon Cellular
Decomposition,” p. 7.

