{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"\n",
"[*NBBinder test on a collection of notebooks about some thermodynamic properperties of water*](https://github.com/rmsrosa/nbbinder)"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"\n",
"


"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "skip"
}
},
"source": [
"\n",
"| [Water Contents](00.00-Water_Contents.ipynb) | [References](BA.00-References.ipynb) | [Introduction ->](01.00-Introduction.ipynb)\n",
"\n",
"---\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# Water Contents\n",
"\n",
"The purpose of these notes are solely to illustrate the use of the `nbbinder` library with notebooks that include not only pure-text markdown cells, but also pictures and code cells. \n",
"\n",
"They would normally fit into a single Jupyter notebook, but that would miss the point of the library, which is to bind several notebooks. Thus, the presentation is split into a number of them."
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"\n",
"## [Table of Contents](#)\n",
"\n",
"### [Water Contents](00.00-Water_Contents.ipynb)\n",
"\n",
"### [1. Introduction](01.00-Introduction.ipynb)\n",
"\n",
"### [2. Reading the Data](02.00-Data.ipynb)\n",
"\n",
"### [3. Low-Dimensional Fittings](03.00-Low_Dim_Fittings.ipynb)\n",
"\n",
"### [4. High-Dimensional Fittings](04.00-High_Dim_Fittings.ipynb)\n",
"\n",
"### [5. Choosing the Best Fit with AIC](05.00-Best_AIC_Fitting.ipynb)\n",
"\n",
"### [References](BA.00-References.ipynb)\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"\n",
"\n",
"---\n",
"| [Water Contents](00.00-Water_Contents.ipynb) | [References](BA.00-References.ipynb) | [Introduction ->](01.00-Introduction.ipynb)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}