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A complex variable method for solving the forces and displacements for multicentre circular arc (MCA) tunnels by using analytical
solutions is presented. The governing equations for the stresses and displacements are expressed in terms of series expression.
Combined with the boundary conditions at lining inner region, lining-surrounding rock-mass interface, and infinity area, the
undetermined coefficients of the analytic functions are obtained by solving a linear equation set. Forces solutions for linings are
also presented according to the tangential stress at the two boundaries. Conformal mapping function for the MCA tunnel is given
from the optimization method. Calculation results show that solutions with high accuracy can be obtained when the number of
terms of power series is greater than 30. The effects of the degrees from the tunnel crown to the invert, coefficient of the lateral
earth pressure, and distance from the rock-mass to the interface on regulations of the lining forces and rock-mass stresses are also
thoroughly investigated.

1. Introduction

The design of the cross-section shape for transportation
tunnels has undergone the development from a singer-centre
circular arc to a multicentre circular arc (MCA). Though the
singer-centred arc tunnel is simple for engineers to design,
the MCA tunnel is widely used for its advantage in the
reduction of the excavation volume. However, lining forces
and displacements, which are essential parameters during
every stages (i.e., design, construction, operation, and main-
taining [1–3]) of the tunnel life circle, are difficult to analyse
for a MCA tunnel. Therefore, suitable methods should be
established to give access to the forces and displacements
analysis of the MCA tunnels.

Very extensive numerical simulations have been per-
formed to determine stresses and deformations of tunnels
in recent year. Möller and Vermeer (2008) applied FEM to
simulate lining forces and the ground deformation of the
Steinhaldenfeld tunnel and Heinenoord tunnel [4]. Liu et al.
(2017) simulated the whole construction stages of the Gongti
North Road tunnel of Beijing Metro Line 10 built using the
PBA method [5]. Also, Avgerinos et al. (2017) performed a

series of three-dimensional finite-element analyses to discuss
the forces, bending moment, and lining deformation of the
future Crossrail tunnel [6]. However, these numerical results
are mostly applied to certain examples and are difficult to
give an understanding of how final solutions are influenced
by different parameters. Behnen et al. (2015) pointed out that
a design strategy based on comprehensible analytical models
in combination with the valuable knowledge of experienced
engineers should be preferred instead of relying on the
complex simulation models [7].

Many researchers have treated the tunnel lining struc-
tures as shallow arches to present theoretical analysis models
for its forces and displacements. Pi et al. (2001) applied
the energy method to investigate the stresses and buckling
of the shallow arches subjected to a radial load uniformly
distributed around the arch axis [8]. Gao et al. (2014)
combined the structure analysis and material uncertainties
of arches and presented the results of the axial compressive
force, bendingmoment, and axial displacement [9]. But these
shallow arches are still not well satisfiedwith the tunnel lining
boundary conditions in field.
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Figure 1: Conformal mapping of tunnel cross-section in 𝑧-plane into 𝜁-plane.

The theoretical methods for circular tunnels have also
fully developed. Lekhnitskii (1968) proposed a complex
variable-functionmethod for the accurate solution of stresses
around a circular hole under in-plane loading [10]. Hefny
and Lo (1999) obtained analytical solutions for stresses and
displacements around unlined circular tunnels excavated in
elastic transversely isotropic [11]. Vu et al. (2013) developed a
semianalytical solution for an unlined circular tunnel exca-
vated in a transversely isotropic formation with nonlinear
behaviour [12]. In addition, for lined circular tunnels [13–
15], ITA report (2000) recommended the elastic equation
method to determine the member forces and cross-section
deformation of the segmental ring [16]. Lu et al. (2011) applied
the complex method and presented the stress solutions for a
circular lined tunnel [17]. Yasuda et al. (2017) established a
two-dimensional elastic solution for a deep circular tunnel
under the far-field static loading [18]. It is still difficult
to determine the accurate solutions for the stresses and
displacements for the other irregular shapes.

An attempt is made in this study to find the forces and
displacements solutions for MCA tunnel linings by applying
Muskhelishvili’s complex variable method.

2. Complex Variable Method for Lined
Noncircular Tunnels

2.1. General Considerations. The problem can be considered
as a reinforced hole in an infinite plane subjected to a uniform
stress state at infinity, while the tunnel is located at a great
depth compared with the tunnel dimension. The infinite
plane on the complex plane is divided into two isotropic
homogenous regions considering both the lining and the
surrounding rock-mass. As shown in Figure 1, the two regions
are bounded by contours 𝛾1 and 𝛾2, which represents the inner
and outer boundaries of the lining, respectively. It is assumed
that the conformal mapping function can be expressed as
follows:

𝑧 = 𝜔 (𝜁) = 𝑅(𝜁 + 𝑛∑
𝑘=0

𝑐𝑘𝜁−𝑘) , (1)

where𝑅 is a real constant presenting the scale of themapping.
The stress components provided by Muskhelishvili and

Radok (1953) [19] based on the complex variable method is
as follows:

𝜎𝑥 + 𝜎𝑦 = 4Re𝜑󸀠 (𝑧)

𝜎𝑦 − 𝜎𝑥 + 2𝑖𝜏𝑥𝑦 = 2 [𝑧𝜑󸀠󸀠 (𝑧) + 𝜓󸀠 (𝑧)] ,
(2)

where 𝜎𝑥 and 𝜎𝑦 are the horizontal and vertical stress
components, respectively, 𝜏𝑥𝑦 is the shear stress. 𝜑(𝑧) and𝜓(𝑧) are two analytic complex functions, and Re{ } denotes
the real part of { }.

The displacement can be described as follows:

2𝐺 (𝑢 + iV) = 𝜅𝜑 (𝑧) − 𝑧𝜑󸀠 (𝑧) − 𝜓 (𝑧), (3)

where i = √−1, 𝐺 is the shear modulus, and 𝜅 is a parameter
related to Poisson’s ratio 𝜐 and is as follows:

𝜅 = {{{{{
3 − 4𝜐 planestrian
3 − 4𝜐1 + 𝜐 planestress. (4)

The surface tractions along the boundaries satisfy the
following equation:

i∫(𝑓𝑥 + i𝑓𝑦) d𝑠 = 𝜑 (𝑧) + 𝑧𝜑󸀠 (𝑧) + 𝜓 (𝑧), (5)

where 𝑓𝑥 and 𝑓𝑦 are components of the surface traction
vector in 𝑥 and 𝑦 directions, respectively.

The tunnel from the 𝑧-plane can be mapped into the𝜁-plane using (1). The analytic functions in 𝜁-plane can be
calculated by the following equations:

𝜑 (𝜁) = 𝜑1 (𝑧) = 𝜑1 [𝜔 (𝜁)]
𝜓 (𝜁) = 𝜓1 (𝑧) = 𝜓1 [𝜔 (𝜁)]
𝜑󸀠1 (𝑧) = 𝜑󸀠 (𝜁)𝜔󸀠 (𝜁)
𝜓󸀠1 (𝑧) = 𝜓󸀠 (𝜁)𝜔󸀠 (𝜁) .

(6)

Substituting (6) and (1) into (2), the stress components
in the orthogonal curvilinear coordinate system can be
rewritten as follows:

𝜎𝜌 + 𝜎𝜃 = 𝜎𝑥 + 𝜎𝑦 = 4Re[𝜑󸀠 (𝜁)𝜔󸀠 (𝜁)]
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𝜎𝜃 − 𝜎𝜌 + 2i𝜏𝜌𝜃 = 2𝜁2𝜌2
⋅ 1
𝜔󸀠 (𝜁) {𝜔 (𝜁)

𝜑󸀠󸀠 (𝜁) 𝜔󸀠 (𝜁) − 𝜑󸀠 (𝜁) 𝜔󸀠󸀠 (𝜁)
[𝜔󸀠 (𝜁)]2

+ 𝜓󸀠 (𝜁)} .
(7)

When the tunnel is unlined, the displacement of the
surrounding rock-mass can be expressed as follows:

2𝐺1 (𝑢1𝑅 + iV1
𝑅) = 𝜅1𝜑1 (𝜁) − 𝜔 (𝜁)

𝜔󸀠 (𝜁)𝜑󸀠1 (𝜁) − 𝜓1 (𝜁), (8)

where 𝑢1𝑅 and V1𝑅 are the displacement components in the 𝑥
and 𝑦 directions and 𝐺1 and 𝜅1 refer to the parameters of the
surrounding rock-mass.

Considering that the lining is installed when the displace-
ment is 𝜂 times the total displacement, the displacement of
the rock 𝑢2𝑅 + iV2

𝑅 occurs before the support of the lining
and can be expressed as follows:

𝑢2𝑅 + iV2
𝑅 = 𝜂 (𝑢1𝑅 + iV1

𝑅) . (9)

After the lining is applied, a part of the displacement
of the surrounding rock-mass is restricted and can be then
presented as follows:

2𝐺1 (𝑢3𝑅 + iV3
𝑅) = 𝜅1𝜑2 (𝜁) − 𝜔 (𝜁)

𝜔󸀠 (𝜁)𝜑󸀠2 (𝜁) − 𝜓2 (𝜁). (10)

From (8) to (10), the final displacement of the surround-
ing rock-mass 𝑢𝑅 + iV𝑅 can be obtained as follows:

𝑢𝑅 + iV𝑅

= (𝑢1𝑅 + iV1
𝑅) − (𝑢2𝑅 + iV2

𝑅) + (𝑢3𝑅 + iV3
𝑅)

= 1 − 𝜂2𝐺1 [𝜅1𝜑1 (𝜎) −
𝜔 (𝜎)
𝜔󸀠 (𝜎)𝜑󸀠1 (𝜎) − 𝜓1 (𝜎)]

+ 12𝐺1 [𝜅1𝜑2 (𝜎) −
𝜔 (𝜎)
𝜔󸀠 (𝜎)𝜑󸀠2 (𝜎) − 𝜓2 (𝜎)] .

(11)

The displacement of the lining can be derived by the
following equation:

2𝐺2 (𝑢𝐿 + 𝑖V𝐿) = 𝜅2𝜑3 (𝜁) − 𝜔 (𝜁)
𝜔󸀠 (𝜁)𝜑󸀠3 (𝜁) − 𝜓3 (𝜁), (12)

where 𝑢𝐿 and V𝐿 are the displacement components of any
point of the lining in the 𝑥 and 𝑦 directions and 𝐺2 and 𝜅2
refer to the parameters of the lining concrete.

The stress components of any point in the lining can be
then calculated by substituting (13) into (7).

𝜑 (𝜁) = 𝜑3 (𝜁)
𝜓 (𝜁) = 𝜓3 (𝜁) . (13)

In particular, the line 𝜌 = 1 denotes the interface of
the surrounding rock mass and the lining. The line 𝜌 = 𝑅0
denotes the lining inner boundary.

Similarly, the stress components of any point in the
surrounding rockmass can be solved by substituting (14) into
(7).

𝜑 (𝜁) = Γ𝜔 (𝜁) + 𝜑1 (𝜁) + 𝜑2 (𝜁)
𝜓 (𝜁) = Γ󸀠𝜔 (𝜁) + 𝜓1 (𝜁) + 𝜓2 (𝜁) . (14)

In (14), Γ = 𝑝(1 + 𝜆)/4 and Γ󸀠 = 𝑝(𝜆 − 1)/2. The first
term is the corresponding complex potential function before
excavation, and the remaining terms represent the effects of
the excavation and the lining support on the surrounding
rock-mass.

The stresses of the lining and surrounding rock mass can
be determined using (7) once the six analytic functions are
determined. And then the displacement can be determined
using (11) and (12).

2.2. Solutions for the Analytic Functions. The six analytic
functions can be expressed by power series as [20]

𝜑1 (𝜁) = 𝑛∑
𝑘=1

𝑎𝑘𝜁−𝑘 (15)

𝜓1 (𝜁) = −𝜔 (1/𝜁)𝜔󸀠 (𝜁) 𝜑󸀠1 (𝜁) +
𝑛−2∑
𝑘=1

𝑆𝑘𝜁𝑘 + 𝑆0
− 𝑝𝑅2 (1 + 𝜆) 𝜁−1 + 𝑝𝑅2 (1 − 𝜆) 𝑛∑

𝑘=1

𝑐𝑘𝜁−𝑘
(16)

𝜑2 (𝜁) = 𝑏0 + ∞∑
𝑘=1

𝑏𝑘𝜁−𝑘 (17)

𝜓2 (𝜁) = 𝑑0 + ∞∑
𝑘=1

𝑑𝑘𝜁−𝑘 (18)

𝜑3 (𝜁) = 𝑝0 + ∞∑
𝑘=1

𝑒𝑘𝜁−𝑘 + ∞∑
𝑘=1

𝑓𝑘𝜁𝑘 (19)

𝜓3 (𝜁) = 𝑞0 + ∞∑
𝑘=1

𝑔𝑘𝜁−𝑘 + ∞∑
𝑘=1

ℎ𝑘𝜁𝑘. (20)

Assume that

𝑏 (𝜁) = ∞∑
𝑘=1

𝑏𝑘𝜁−𝑘,

𝑑 (𝜁) = ∞∑
𝑘=1

𝑑𝑘𝜁−𝑘,

𝑒 (𝜁) = ∞∑
𝑘=1

𝑒𝑘𝜁−𝑘

𝑓 (𝜁) = ∞∑
𝑘=1

𝑓𝑘𝜁𝑘,
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𝑔 (𝜁) = ∞∑
𝑘=1

𝑔𝑘𝜁−𝑘,

ℎ (𝜁) = ∞∑
𝑘=1

ℎ𝑘𝜁𝑘.
(21)

The coefficients 𝑎𝑘 of the 𝜑1(𝜁) can be represented by the
following equations:

𝑎𝑖 = −2Γ𝑅𝑐𝑖, 𝑖 = 𝑛, 𝑛 − 1. (22)

Let a = {𝑎1 ⋅ ⋅ ⋅ 𝑎𝑛−2}T; 𝑎1, . . . , 𝑎𝑛−2 can be determined as
follows:

A𝑛−2×𝑛−2a1×𝑛−2 = B1×𝑛−2 (23)

when 𝑖 = 𝑗, 𝐴 𝑖𝑗 = 𝑗𝐿 𝑖+𝑗+1 − 1, and if 𝑖 + 𝑗 + 1 > 𝑛, 𝐴 𝑖𝑗 = −1;
when 𝑖 ̸= 𝑗, 𝐴 𝑖𝑗 = 𝑗𝐿 𝑖+𝑗+1, and if 𝑖 + 𝑗 + 1 > 𝑛, 𝐴 𝑖𝑗 = 0.
B𝑖

= [2Γ𝑅𝑐1 + Γ󸀠𝑅 2Γ𝑅𝑐2 3Γ𝑅𝑐3 ⋅ ⋅ ⋅ (𝑛 − 2) Γ𝑅𝑐𝑛−2]𝑇 . (24)

The coefficients 𝐿𝑘 can be computed by the following
equations:

𝐿𝑛 = 𝑐𝑛
𝐿𝑛−1 = 𝑐𝑛−1

𝐿𝑛−𝑗+1 =
𝑗−2∑
𝑘=1

(𝑗 − 1 − 𝑘) 𝑐𝑗−1−𝑘𝐿𝑛−𝑘+1 + 𝑐𝑛−𝑗−1,
𝑗 = 3, . . . , 𝑛.

(25)

Thus, the coefficients 𝑎𝑘 of analytic function 𝜑1(𝜁) can be
determined by combining (22)–(25).

For the analytic function 𝜓1(𝜁), the 𝑆𝑘 in (16) can be
calculated by the following equations:

𝑆𝑘 =
{{{{{{{{{{{

−𝑛−1∑
𝑗=1

𝑗𝐿𝑗+1𝑎𝑗, 𝑘 = 0
−𝑛−𝑘−1∑
𝑗=1

𝑗𝐿𝑗+𝑘+1𝑎𝑗, 𝑘 = 1, . . . , 𝑛 − 2.
(26)

The three boundary conditions used to solve the unde-
termined coefficients (𝑏0, 𝑏𝑘, 𝑑0, 𝑑𝑘, 𝑝0, 𝑞0, 𝑒𝑘, 𝑓𝑘, 𝑔𝑘, ℎ𝑘) from
the analytic functions (𝜑2(𝜁), 𝜓2(𝜁), 𝜑3(𝜁), 𝜓3(𝜁)) are listing:

(i) The surface tractions along the inner boundary of
lining at 𝐿1 are zero.

(ii) The surface tractions continue at the interface𝐿2 from
the both surrounding rock mass side and lining side.

(iii) The displacement continues at the interface 𝐿2 from
the both surrounding rock mass side and lining side.

The surface traction condition at inner boundary 𝐿1 can
be expressed as follows:

𝜑3 (𝜎1) + 𝜔 (𝜎1)
𝜔󸀠 (𝜎1)𝜑

󸀠
3 (𝜎1) + 𝜓3 (𝜎1) = 0. (27)

The surface condition at the interface 𝐿2 can be presented
as follows:

𝜑2 (𝜎) + 𝜔 (𝜎)
𝜔󸀠 (𝜎)𝜑󸀠2 (𝜎) + 𝜓2 (𝜎)

= 𝜑3 (𝜎) + 𝜔 (𝜎)
𝜔󸀠 (𝜎)𝜑󸀠3 (𝜎) + 𝜓3 (𝜎).

(28)

The displacement condition at the interface 𝐿2 can be
expressed as follows:

𝑢𝑅 + 𝑖V𝑅 = 𝑢𝐿 + 𝑖V𝐿. (29)

Substituting (11) and (12) into (29), the following equation
can be obtained:

1 − 𝜂2𝐺1 [𝜅1𝜑1 (𝜎) −
𝜔 (𝜎)
𝜔󸀠 (𝜎)𝜑󸀠1 (𝜎) − 𝜓1 (𝜎)]

+ 12𝐺1 [𝜅1𝜑2 (𝜎) −
𝜔 (𝜎)
𝜔󸀠 (𝜎)𝜑󸀠2 (𝜎) − 𝜓2 (𝜎)]

= 12𝐺2 [𝜅2𝜑3 (𝜎) −
𝜔 (𝜎)
𝜔󸀠 (𝜎)𝜑󸀠3 (𝜎) − 𝜓3 (𝜎)] .

(30)

Two functions can be derived using (27) and (28) based
on the Cauchy integration [20]:

𝜑󸀠3 (1𝜁) = −𝜔󸀠 (1/𝜁)𝜔 (𝑅20𝜁) [𝑝0 + 𝑞0 + 𝑝1 (𝑅
2
0𝜁)

+ 𝑝2 (𝑅20𝜁) + 𝑞1 (1𝜁) + 𝑞2 (1𝜁)]
(31)

𝜑󸀠3 (1𝜁) = 𝜔󸀠 (1/𝜁)𝜔 (𝜁) [𝑏0 + 𝑑0 − 𝑝0 − 𝑞0 + 𝑏 (𝜁)
− 𝑝1 (𝜁) − 𝑝2 (𝜁) − 𝑞1 (1𝜁) − 𝑞2 (1𝜁) + 𝑑(1𝜁)]
+ 𝑑󸀠 (1𝜁) .

(32)

Substituting (28) into (30), the following equation can be
obtained:

1 − 𝜂2𝐺1 [𝜅1𝜑1 (𝜎) −
𝜔 (𝜎)
𝜔󸀠 (𝜎)𝜑󸀠1 (𝜎) − 𝜓1 (𝜎)]

+ 𝜅1𝐺2 + 𝐺1𝐺1𝐺2 𝜑2 (𝜎) + 𝐺1 − 𝐺2𝐺1𝐺2
𝜔 (𝜎)
𝜔󸀠 (𝜎)𝜑󸀠2 (𝜎)

+ 𝐺1 − 𝐺2𝐺1𝐺2 𝜓2 (𝜎) = 1 + 𝜅2𝐺2 𝜑3 (𝜎) .
(33)
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Using the Cauchy integration, (33) can be expressed as
follows:

− (1 − 𝜂) 𝜅1𝐺1 𝜑1 (𝜁) + (1 − 𝜂)
𝐺1
𝑛−2∑
𝑘=1

𝑆𝑘𝜁−𝑘

− 𝜅1𝐺2 + 𝐺1𝐺1𝐺2 𝑏 (𝜁) − 𝐺1 − 𝐺2𝐺1𝐺2
𝑛−2∑
𝑘=1

𝑇𝑘𝜁−𝑘

= −1 + 𝜅2𝐺2 𝑝1 (𝜁) .

(34)

Substituting 𝜁 by 1/𝜁, the Cauchy integration of the
conjugate of (34) can be expressed as follows:

(1 − 𝜂)
𝐺1 [ 𝜔 (𝜁)𝜔󸀠 (1/𝜁)𝜑󸀠1 (1𝜁) − 𝑛−2∑

𝑘=1

𝑆𝑘𝜁−𝑘 − 𝑆0
+ 𝜓1 (1𝜁)] − 𝐺1 − 𝐺2𝐺1𝐺2 [ 𝜔 (𝜁)𝜔󸀠 (1/𝜁)𝑏󸀠 (1𝜁)

− 𝑛−2∑
𝑘=1

𝑇𝑘𝜁−𝑘 − 𝑇󸀠 + 𝑑(1𝜁)] = −1 + 𝜅2𝐺2 𝑝2 (𝜁) .

(35)

Substituting (16) into (35), the following equation can be
derived:

𝑝𝑅 (1 − 𝜂)
2𝐺1 [− (1 + 𝜆) 𝜁 + (1 − 𝜆) 𝑛∑

𝑘=1

𝑐𝑘𝜁𝑘]

− 𝐺1 − 𝐺2𝐺1𝐺2 [ 𝜔 (𝜁)𝜔󸀠 (1/𝜁)𝑏󸀠 (1𝜁) − 𝑛−2∑
𝑘=1

𝑇𝑘𝜁−𝑘 − 𝑇󸀠

+ 𝑑(1𝜁)] = −1 + 𝜅2𝐺2 𝑝2 (𝜁) .

(36)

Then (36) can be expressed as follows [20]:

𝑝𝑅 (1 − 𝜂)
2𝐺1 [− (1 + 𝜆) 𝜁 + (1 − 𝜆) 𝑛∑

𝑘=1

𝑐𝑘𝜁𝑘]

− 𝐺1 − 𝐺2𝐺1𝐺2 [∞∑
𝑘=2

𝑇󸀠𝑘𝜁𝑘−1 + 𝑑(1𝜁)]
= −1 + 𝜅2𝐺2 𝑝2 (𝜁) .

(37)

The following equation can be obtained by combining
(33)–(35):

𝜅1𝐺2 + 𝐺1𝐺1𝐺2 𝑏0 + 𝐺1 − 𝐺2𝐺1𝐺2 𝑑0
= (1 − 𝜂)𝐺1 𝑆󸀠0 − 𝐺1 − 𝐺2𝐺1𝐺2 𝑇󸀠1 + 1 + 𝜅2𝐺2 𝑝0.

(38)

The coefficients 𝑇𝑘 and 𝑇󸀠𝑘 in (34)–(38) can be calculated
using the following equations:

𝑇𝑘 = −𝑛−𝑘−1∑
𝑗=1

𝑗𝐿𝑗+𝑘+1𝑏𝑗, 𝑘 = 1, . . . , 𝑛 − 2 (39)

𝑇󸀠1 = −𝑛−1∑
𝑗=1

𝑗𝐿𝑗+1𝑏𝑗
𝑇󸀠2 = − 𝑛∑

𝑗=1

𝑗𝐿𝑗𝑏𝑗

𝑇󸀠𝑘 = −𝑘−2∑
𝑗=1

𝑗𝐿𝑘−𝑗−1𝑏𝑗 − 𝑛+𝑘−2∑
𝑗=𝑘−1

𝑗𝐿𝑗−𝑘+2𝑏𝑗, 𝑘 = 3, . . . ,∞.

(40)

The undetermined coefficients in 𝑏(𝜁), 𝑑(𝜁), 𝑒(𝜁), 𝑓(𝜁),𝑔(𝜁), and ℎ(𝜁) can be determined based on (31), (32), (34), and
(38). Linear simultaneous equations, which contain infinite
number of equations, can be obtained by comparing the
coefficient of the same order of variables 𝜁𝑘. But only finite
terms of 𝑏(𝜁), 𝑑(𝜁), 𝑒(𝜁), 𝑓(𝜁), 𝑔(𝜁), and ℎ(𝜁) are discussed
here in order to get the problem solved.The number of terms
of 𝑏𝑘, 𝑒𝑘, and ℎ𝑘 is denoted as𝑁𝑒, and number of terms of 𝑑𝑘,𝑓𝑘, and 𝑔𝑘 are denoted as𝑁𝑓.

Let 𝑝0 = 𝑥1, 𝑒𝑗 = 𝑥𝑗+1 (𝑗 = 1, . . . , 𝑁𝑒), 𝑞0 = 𝑥𝑁𝑒+2, ℎ𝑗 =𝑥𝑁𝑒+2+𝑗 (𝑗 = 1, . . . , 𝑁𝑒), 𝑓𝑘 = 𝑥2𝑁𝑒+2+𝑘, and 𝑔𝑘 = 𝑥2𝑁𝑒+𝑁𝑓+2+𝑘
(𝑗 = 1, . . . , 𝑁𝑓); the following linear simultaneous equations
can be obtained by comparing the constant and coefficients
of the positive power of 𝜁𝑘 in (31):

𝐶𝑖𝑗𝑥𝑗 + 𝐶𝑖(𝑁𝑒+1+𝑘)𝑥𝑁𝑒+1+𝑘 + 𝐶𝑖(2𝑁𝑒+2+𝐿)𝑥2𝑁𝑒+2+𝐿
+ 𝐶𝑖(2𝑁𝑒+𝑁𝑓+2+𝐿)𝑥2𝑁𝑒+𝑁𝑓+2+𝐿 = 0. (41)

𝑁𝑒 + 2 equations are included in (41).
Comparing negative powers of 𝜁𝑘 in (31), the following

linear simultaneous equations can be obtained:

𝐷𝑖𝑗𝑥𝑗 + 𝐷𝑖(𝑁𝑒+1+𝑘)𝑥𝑁𝑒+1+𝑘 + 𝐷𝑖(2𝑁𝑒+2+𝐿)𝑥2𝑁𝑒+2+𝐿
+ 𝐷𝑖(2𝑁𝑒+𝑁𝑓+2+𝐿)𝑥2𝑁𝑒+𝑁𝑓+2+𝐿 = 0. (42)

𝑁𝑓 − 1 equations are included in (42).
Let 𝑏𝑗 = 𝑥2𝑁𝑒+2𝑁𝑓+2+𝑗 (𝑗 = 1, . . . , 𝑁𝑒), 𝑑0 = 𝑥3𝑁𝑒+2𝑁𝑓+3,

and 𝑑𝑗 = 𝑥3𝑁𝑒+2𝑁𝑓+3+𝑗 (𝑗 = 1, . . . , 𝑁𝑓); the following linear
simultaneous equations can be obtained by comparing the
constant and the coefficients of the positive power of 𝜁𝑘 in
(32):

𝐸𝑖𝑗𝑥𝑗 + 𝐸𝑖(𝑁𝑒+1+𝑘)𝑥𝑁𝑒+1+𝑘 + 𝐸𝑖(2𝑁𝑒+2+𝐿)𝑥2𝑁𝑒+2+𝐿
+ 𝐸𝑖(2𝑁𝑒+𝑁𝑓+2+𝐿)𝑥2𝑁𝑒+𝑁𝑓+2+𝐿
+ 𝐸𝑖(2𝑁𝑒+2𝑁𝑓+2+𝑘)𝑥2𝑁𝑒+2𝑁𝑓+2+𝑘
+ 𝐸𝑖(3𝑁𝑒+2𝑁𝑓+2+𝑀)𝑥3𝑁𝑒+2𝑁𝑓+2+𝑀 = 0.

(43)

𝑁𝑒 + 2 equations are included in (43).
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Comparing negative powers of 𝜁𝑘 in (32), the following
linear simultaneous equations can be obtained:

𝐹𝑖𝑗𝑥𝑗 + 𝐹𝑖(𝑁𝑒+1+𝑘)𝑥𝑁𝑒+1+𝑘 + 𝐹𝑖(2𝑁𝑒+2+𝐿)𝑥2𝑁𝑒+2+𝐿
+ 𝐹𝑖(2𝑁𝑒+𝑁𝑓+2+𝐿)𝑥2𝑁𝑒+𝑁𝑓+2+𝐿
+ 𝐹𝑖(2𝑁𝑒+2𝑁𝑓+2+𝑘)𝑥2𝑁𝑒+2𝑁𝑓+2+𝑘
+ 𝐹𝑖(3𝑁𝑒+2𝑁𝑓+2+𝑀)𝑥3𝑁𝑒+2𝑁𝑓+2+𝑀 = 0.

(44)

𝑁𝑓 − 1 equations are included in (44).
Comparing the coefficients of the negative powers of 𝜁𝑘

in (34), the linear simultaneous equations can be derived as
follows:

𝐺𝑖𝑗𝑥𝑗 + 𝐺𝑖(2𝑁𝑒+2𝑁𝑓+2+𝑘)𝑥2𝑁𝑒+2𝑁𝑓+2+𝑘 = 𝐻𝑖. (45)

𝑁𝑓 − 1 equations are included in (45).𝐻𝑖 in (45) can be expressed as

𝐻𝑖 = {{{
− (1 − 𝜂) 𝑆𝑖 + (1 − 𝜂) 𝜅1𝑎𝑖 𝑖 = 1, . . . , 𝑛 − 2
(1 − 𝜂) 𝜅1𝑎𝑖 𝑖 = 𝑛 − 1, 𝑛. (46)

Comparing the coefficients of the negative powers of 𝜁𝑘
in (37), the linear simultaneous equations can be obtained as

𝑃𝑖(2𝑁𝑒+2+𝑗)𝑥2𝑁𝑒+2+𝑗 + 𝑃𝑖(2𝑁𝑒+𝑁𝑓+2+𝑘)𝑥2𝑁𝑒+𝑁𝑓+2+𝑘
+ 𝑃𝑖(3𝑁𝑒+2𝑁𝑓+2+𝐿)𝑥3𝑁𝑒+2𝑁𝑓+2+𝐿 = 𝑄𝑖. (47)

𝑁𝑓 − 1 equations are included in (47), where

𝑄𝑖

= {{{{{{{

𝑝𝑅 (1 − 𝜂)
2 [(1 + 𝜆) − (1 − 𝜆) 𝑐1] 𝑖 = 1

−𝑝𝑅 (1 − 𝜂)2 (1 − 𝜆) 𝑐𝑖 𝑖 = 2, . . . , 𝑛.
(48)

Therefore, there are totally 3𝑁𝑒 + 3𝑁𝑓 + 2 equations in
(41)–(48) for the 3𝑁𝑒+3𝑁𝑓+3 undetermined variables. One
more equation is still needed to solve all the variables.

The support effect of the lining to the rock-mass decreases
as the distance between them increases. Thus, (10) can be
expressed at infinity as

lim
𝜁→∞

[2𝐺1 (𝑢3𝑅 + iV3
𝑅)]

= lim
𝜁→∞

[𝜅1𝜑2 (𝜁) − 𝜔 (𝜁)
𝜔󸀠 (𝜁)𝜑󸀠2 (𝜁) − 𝜓2 (𝜁)] = 0. (49)

It can be obtained from (49) that

𝜅1 lim
𝜁→∞

𝜑2 (𝜁) − lim
𝜁→∞

[ 𝜔 (𝜁)
𝜔󸀠 (𝜁)𝜑󸀠2 (𝜁)] − lim

𝜁→∞
𝜓2 (𝜁) = 0. (50)

And then

𝜅1𝑏0 − 𝑑0 = 0. (51)

Substituting (51) and (40) into (38), the following equa-
tions can be obtained:

𝑝0 − 1 + 𝜅11 + 𝜅2 𝑑0 +
𝐺1 − 𝐺2𝐺1 (1 + 𝜅2)

𝑛−1∑
𝑗=1

𝑗𝐿𝑗+1𝑏𝑗
= − 𝐺2 (1 − 𝜂)𝐺1 (1 + 𝜅2)𝑆

󸀠
0

(52)

Now, there are totally 3𝑁𝑒 + 3𝑁𝑓 + 3 equations for the3𝑁𝑒+3𝑁𝑓+3 variables. Briefly, the 𝑥𝑗 can be calculated using
the following equation set:

[[[[[[[[[[[[[[
[

[𝐶](𝑁𝑒+2)×(2𝑁𝑒+2𝑁𝑓+2)[𝐷](𝑁𝑓−1)×(2𝑁𝑒+2𝑁𝑓+2)[𝐸](𝑁𝑒+2)×(3𝑁𝑒+3𝑁𝑓+3)[𝐹](𝑁𝑓−1)×(2𝑁𝑒+2𝑁𝑓+2)[𝐺](𝑁𝑒)×(3𝑁𝑒+2𝑁𝑓+2)[𝑃](𝑁𝑓)×(3𝑁𝑒+3𝑁𝑓+3)1 + 𝜅2

]]]]]]]]]]]]]]
]

[[𝑥]𝑗×1]

=
[[[[[[[[
[

[0](2𝑁𝑒+2𝑁𝑓+2)×1[𝐻]𝑁𝑒×1[𝑄]𝑁𝑓×1
−𝐺2 (1 − 𝜂) 𝑆󸀠0𝐺1

]]]]]]]]
]
.

(53)

The coefficients of 𝐶𝑖𝑗, 𝐷𝑖𝑗, 𝐸𝑖𝑗, 𝐹𝑖𝑗, 𝐺𝑖𝑗, and 𝑃𝑖𝑗 have been
listed in [16].

Thus, all the undetermined coefficients of analytic func-
tions can be solved.

3. Conformal Mapping for the MCA Tunnel

The tunnel lining and rock-mass in z-plane can be mapped
into an annulus in the 𝜁-plane by (1). The interface of the
lining and surrounding rock-mass is reflected by the external
radius (𝑟1 = 1). The inner boundary of the lining is reflected
by the inside radius (𝑟0 < 1). The undetermined parameters
in (1) are 𝑅 and 𝑐𝑘.

Assume that any point𝐴𝑗 at the inner boundary of lining
in z-plane is transferred to the point 𝐴󸀠𝑗 at the inside radius
in 𝜁-plane (Figure 1). Any point 𝐵𝑗 at the interface is similar
to point 𝐵󸀠𝑗 at the external radius. The conformal mapping
function at the interface and the lining inner boundary can
be expressed as follows:

𝑟𝐴𝑗 = 𝑅(𝑟0𝑒i(𝛽𝐴𝑗−𝛼𝐴𝑗) + 𝑛∑
𝑘=0

𝑐𝑘𝑟0−𝑘𝑒−i(𝑘𝛽𝐴𝑗+𝛼𝐴𝑗))

𝑟𝐵𝑗 = 𝑅(𝑟1𝑒i(𝛽𝐵𝑗−𝛼𝐵𝑗) + 𝑛∑
𝑘=0

𝑐𝑘𝑟1−𝑘𝑒−i(𝑘𝛽𝐵𝑗+𝛼𝐵𝑗)) .
(54)
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Departing the real part and imaginary part, (54) can be
then expressed as

sin (𝛽𝐴𝑗 − 𝛼𝐴𝑗) − 𝑛∑
𝑘=0

𝑐𝑘𝑟0−𝑘 sin (𝑘𝛽𝐴𝑗 + 𝛼𝐴𝑗) = 0
𝑟𝐴𝑗
= 𝑅[cos (𝛽𝐴𝑗 − 𝛼𝐴𝑗) + 𝑛∑

𝑘=0

𝑐𝑘𝑟0−𝑘 cos (𝑘𝛽𝐴𝑗 + 𝛼𝐴𝑗)]

sin (𝛽𝐵𝑗 − 𝛼𝐵𝑗) − 𝑛∑
𝑘=0

𝑐𝑘𝑟1−𝑘 sin (𝑘𝛽𝐵𝑗 + 𝛼𝐵𝑗) = 0

𝑟𝐵𝑗
= 𝑅[cos (𝛽𝐵𝑗 − 𝛼𝐵𝑗) + 𝑛∑

𝑘=0

𝑐𝑘𝑟1−𝑘 cos (𝑘𝛽𝐵𝑗 + 𝛼𝐵𝑗)] .
(55)

Suppose that𝐴1 can be accurately mapped into the point𝐴󸀠1, R can be determined as follows:

𝑅 = 𝑟01 + ∑𝑛𝑘=0 𝑐𝑘/𝑟1𝑘 . (56)

𝑐𝑘 and 𝑟0 in (56) can be obtained by solving the following
optimization problem:

Objective function:

min 𝑓
= 𝑚∑
𝑗=0

{𝑟∗𝐴𝑗 − 𝑅[cos (𝛽𝐴𝑗 − 𝛼𝐴𝑗) + 𝑛∑
𝑘=0

𝑐𝑘 cos (𝑘𝛽𝐴𝑗 + 𝛼𝐴𝑗)𝑟0 ]}
2

+ 𝑚∑
𝑗=0

{𝑟∗𝐵𝑗 − 𝑅[cos (𝛽𝐵𝑗 − 𝛼𝐵𝑗) + 𝑛∑
𝑘=0

𝑐𝑘 cos (𝑘𝛽𝐵𝑗 + 𝛼𝐵𝑗) 𝑟1−𝑘]}
2.

(57)

Boundary condition:

𝑛∑
𝑘=0

󵄨󵄨󵄨󵄨𝑘𝑐𝑘󵄨󵄨󵄨󵄨 < 1 (58)

The cross-section of one common MCA highway tunnel
is shown in Figure 2(a). Using the above method, the
conformal mapping function can be expressed as follows:

𝑧 = 5.7577 (𝜁 + 0.22694 − 0.13876𝜁−1 + 0.0578𝜁−2
− 0.00958𝜁−3 − 0.00504𝜁−4)

𝑅0 = 0.935.
(59)

As shown in Figure 2(b), the lining boundaries before and
after mapping have a good agreement.

4. Solutions for the Forces and Displacement

4.1. Solutions for Stresses of Lining andRockMass. Combining
(7) with (13), the stress components for any points of the
lining can be obtained by the following equations:

𝜎𝜌 + 𝜎𝜃 = 4Re[𝜑󸀠3 (𝜁)𝜔󸀠 (𝜁)]
𝜎𝜃 − 𝜎𝜌 + 2i𝜏𝜌𝜃 = 2𝜁2𝜌2

⋅ 1
𝜔󸀠 (𝜁) {𝜔 (𝜁)

𝜑󸀠󸀠3 (𝜁) 𝜔󸀠 (𝜁) − 𝜑󸀠3 (𝜁) 𝜔󸀠󸀠 (𝜁)[𝜔󸀠 (𝜁)]2
+ 𝜓󸀠3 (𝜁)} .

(60)

Moreover, (60) can be expanded as follows:

𝜎𝜃 = 2Re[𝜑󸀠3 (𝜁)𝜔󸀠 (𝜁)] + Re{𝜁2𝜌2
⋅ 1
𝜔󸀠 (𝜁) [𝜔 (𝜁)

𝜑󸀠󸀠3 (𝜁) 𝜔󸀠 (𝜁) − 𝜑󸀠3 (𝜁) 𝜔󸀠󸀠 (𝜁)𝜔󸀠 (𝜁)2
+ 𝜓󸀠3 (𝜁)]}

𝜎𝜌 = 2Re[𝜑󸀠3 (𝜁)𝜔󸀠 (𝜁)] − Re{𝜁2𝜌2
⋅ 1
𝜔󸀠 (𝜁) [𝜔 (𝜁)

𝜑󸀠󸀠3 (𝜁) 𝜔󸀠 (𝜁) − 𝜑󸀠3 (𝜁) 𝜔󸀠󸀠 (𝜁)𝜔󸀠 (𝜁)2
+ 𝜓󸀠3 (𝜁)]}
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Figure 2: Tunnel cross-section before and after mapping (unit m).

𝜏𝜌𝜃 = Im{𝜁2𝜌2
⋅ 1
𝜔󸀠 (𝜁) [𝜔 (𝜁)

𝜑󸀠󸀠3 (𝜁) 𝜔󸀠 (𝜁) − 𝜑󸀠3 (𝜁) 𝜔󸀠󸀠 (𝜁)𝜔󸀠 (𝜁)2
+ 𝜓󸀠3 (𝜁)]} .

(61)

In particular, the stresses of the interface can be calculated
when 𝜌 = 1 and the stresses of the inner boundary of the
lining can be calculated when 𝜌 = 𝑅0.

Combining (7) with (14), the stress components for points
in rock-mass can be obtained by the following equations:

𝜎𝜃 = 2Re[𝜑󸀠 (𝜁)𝜔󸀠 (𝜁)] + Re{𝜁2𝜌2
⋅ 1
𝜔󸀠 (𝜁) [𝜔 (𝜁)

𝜑󸀠󸀠 (𝜁) 𝜔󸀠 (𝜁) − 𝜑󸀠 (𝜁) 𝜔󸀠󸀠 (𝜁)
𝜔󸀠 (𝜁)2

+ 𝜓󸀠 (𝜁)]}
𝜎𝜌 = 2Re[𝜑󸀠 (𝜁)𝜔󸀠 (𝜁)] − Re{𝜁2𝜌2

⋅ 1
𝜔󸀠 (𝜁) [𝜔 (𝜁)

𝜑󸀠󸀠 (𝜁) 𝜔󸀠 (𝜁) − 𝜑󸀠 (𝜁) 𝜔󸀠󸀠 (𝜁)
𝜔󸀠 (𝜁)2

+ 𝜓󸀠 (𝜁)]}
𝜏𝜌𝜃 = Im{𝜁2𝜌2

⋅ 1
𝜔󸀠 (𝜁) [𝜔 (𝜁)

𝜑󸀠󸀠 (𝜁) 𝜔󸀠 (𝜁) − 𝜑󸀠 (𝜁) 𝜔󸀠󸀠 (𝜁)
𝜔󸀠 (𝜁)2

+ 𝜓󸀠 (𝜁)]} .
(62)

The related terms in (61)-(62) can be calculated by the
following equations:

𝜔 (𝜁) = 𝜔 (𝜁) = 𝜔(𝜌2𝜁 )

= 𝑅(𝜌2𝜁−1 + 𝑛∑
𝑘=0

𝑐𝑘𝜌−2𝑘𝜁𝑘)

𝜔(1𝜁) = 𝑅(𝜁−1 + 𝑛∑
𝑘=0

𝑐𝑘𝜁𝑘)

[𝜔(1𝜁)]
󸀠 = 𝑅(−𝜁−2 + 𝑛∑

𝑘=1

𝑘𝑐𝑘𝜁𝑘−1)

𝜔󸀠 (𝜁) = 𝑅(1 − 𝑛∑
𝑘=1

𝑘𝑐𝑘𝜁−𝑘−1)

𝜔󸀠 (𝜁) = 𝑅(1 − 𝑛∑
𝑘=1

𝑘𝑐𝑘𝜌−2𝑘−2𝜁𝑘+1)

𝜔󸀠󸀠 (𝜁) = 𝑅 𝑛∑
𝑘=1

𝑘 (𝑘 + 1) 𝑐𝑘𝜁−𝑘−2.

(63)

4.2. Solutions for Internal Forces. Assume that the tangential
stress at different depth of the lining varies linearly along
the lining thickness, the bending moment, and axial force
of the lining can be obtained based on 𝜎𝜃 of the inner and
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Figure 3: Sketch map for lining forces.

outer boundaries of the lining. The strains under the two
boundaries of the lining caused by the bending moment and
axial force are shown in Figure 3.

Denote that the strain is caused by the bending moment
as 𝜀𝑀 and axial force as 𝜀𝑁. Strains at the two boundaries can
be expressed as

𝜀1 = 𝜀𝑁 − 𝜀𝑀
𝜀2 = 𝜀𝑁 + 𝜀𝑀. (64)

Furthermore, 𝜀𝑀 and 𝜀𝑁 can be calculated by the follow-
ing equations:

𝜀𝑀 = (𝜀2 − 𝜀1)2
𝜀𝑁 = (𝜀2 + 𝜀1)2 .

(65)

According to the material mechanics, the stress can be
obtained as follows:

𝜎 = 𝑀𝑊
𝜎 = 𝑁𝐴 ,

(66)

where, 𝑊 is the lining bending rigidity and 𝐴 is the cross-
section area.

Combining (64)–(66), the bending moment and axial
force can be expressed as

𝑀 = 𝐸2 𝜀2 − 𝜀12 𝑊 = 𝜎𝜃2 − 𝜎𝜃12 𝑊
𝑁 = 𝐸2 𝜀2 + 𝜀12 𝐴 = 𝜎𝜃2 + 𝜎𝜃12 𝐴, (67)

where 𝜎𝜃1 is the Tangential stress on the tension side, while𝜎𝜃2 is the Tangential stress on the compression side.

4.3. Solutions for Displacements. From (12), the displacement
components of the lining can be expressed as follows:

𝑢𝐿 = Re{ 12𝐺2 [𝜅2𝜑3 (𝜁) −
𝜔 (𝜁)
𝜔󸀠 (𝜁)𝜑󸀠3 (𝜁) − 𝜓󸀠3 (𝜁)]}

V𝐿 = Im{ 12𝐺2 [𝜅2𝜑3 (𝜁) −
𝜔 (𝜁)
𝜔󸀠 (𝜁)𝜑󸀠3 (𝜁) − 𝜓󸀠3 (𝜁)]} .

(68)

From (11), the displacement components of the surround-
ing rock-mass can be expressed as
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Figure 4: Normal stress of lining inner boundary (𝑁𝑒 = 10).

𝑢𝑅 = Re{1 − 𝜂2𝐺1 [𝜅1𝜑1 (𝜎) −
𝜔 (𝜎)
𝜔󸀠 (𝜎)𝜑󸀠1 (𝜎) − 𝜓1 (𝜎)]

+ 12𝐺1 [𝜅1𝜑2 (𝜎) −
𝜔 (𝜎)
𝜔󸀠 (𝜎)𝜑󸀠2 (𝜎) − 𝜓2 (𝜎)]}

V𝑅 = Im{1 − 𝜂2𝐺1 [𝜅1𝜑1 (𝜎) −
𝜔 (𝜎)
𝜔󸀠 (𝜎)𝜑󸀠1 (𝜎) − 𝜓1 (𝜎)]

+ 12𝐺1 [𝜅1𝜑2 (𝜎) −
𝜔 (𝜎)
𝜔󸀠 (𝜎)𝜑󸀠2 (𝜎) − 𝜓2 (𝜎)]} .

(69)

5. Example and Discussion

Take a highway tunnel as an example. The tunnel cross-
section is shown in Figure 2. The parameters for the calcu-
lation are 𝐸1 = 15GPa; 𝐸2 = 20GPa; 𝜇1 = 0.28; 𝜇2 = 0.2; 𝜂 =
0.6; 𝑝 = 6MPa; 𝜆 = 1.
5.1. Accuracy of the Complex Function Method. The accuracy
of the complex function method was highly related to the
number of Ne and Nf. The reality stress components 𝜎𝜌 and𝜏𝜌𝜃 of the lining inner boundary equal zero. Thus, the accu-
racy of the proposed method can be examined by comparing
the calculated 𝜎𝜌 and 𝜏𝜌𝜃 of the lining inner boundary with
zero. The results of 𝜎𝜌 and 𝜏𝜌𝜃 at 𝐿1 were shown in Figures
4–9. As shown in Figures 4–9, the calculation precision was
improved with the increase of the number of Ne. When Ne
equals to 10 or 20, the boundary condition at 𝐿1 was not well
satisfied with the reality. While Ne equals 30, the absolute
results of calculated normal stress 𝜎𝜌 and shear stress 𝜏𝜌𝜃 are
far less than 0.001. This means the complex variable method
could be accurate enough to satisfy the boundary condition
at 𝐿1 when the Ne is greater than 30.

The displacement components of lining and surrounding
rock-mass were also presented in Figures 10 and 11. It can
be concluded from the two figures that the displacement
continuity condition was also well satisfied when Ne equals
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Figure 5: Shear stress of lining inner boundary (𝑁𝑒 = 10).
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Figure 6: Normal stress of lining inner boundary (𝑁𝑒 = 20).
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Figure 7: Shear stress of lining inner boundary (𝑁𝑒 = 20).
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Figure 8: Normal stress of lining inner boundary (𝑁𝑒 = 30).
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Figure 9: Shear stress of lining inner boundary (𝑁𝑒 = 30).

30.Thus, 30 were chosen as the number ofNe in the following
calculation.

5.2. Lining Forces and Discussion. The tangential stresses of
the two boundaries of the lining were shown in Figure 12.
Both tangential stresses showed the same trend. The left or
right half of the tunnel lining possessed two peaks and two
troughs in the tangential stress curve. The maximum value
occurred at 115∘ from the tunnel crown to the side wall.
Another peak occurred at the tunnel crown. The troughs
occurred at about 70∘ from the tunnel crown to the side wall
as well as the centre part of the tunnel invert. From Figure 13,
both positive and negative bending moment existed in the
lining. The three turning points of the positive and negative
of the bending moment are 40∘, 95∘, and 135∘. Figure 14 is
the 3D surface plot of the tangential stress in different depth
of the lining. From the projection of the 3D surface on the𝑥-𝑜-𝑧 plane (𝜃-𝑜-𝜎𝜃 plane), the tangential stress of different
layers of lining intersected each other at the same 𝜃 where
the bending moment was zero. From the projection of the 3D
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Figure 10: Displacement 𝑢 along 𝐿2 (𝑁𝑒 = 30).
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Figure 11: Displacement V along 𝐿2 (𝑁𝑒 = 30).

surface on the𝑦-𝑜-𝑧 plane (𝑡-𝑜-𝜎𝜃 plane), a linear relationship
between lining depth and tangential stress could be found and
provided evidence for the assumption in Section 4.2.

Figures 15 and 16 showed the relationship between the
tangential stresses and the parameters 𝜃 and 𝜆 at the two
lining boundaries. It can be obtained that 𝜆 had great influ-
ence on tangential stresses of the lining. From the projection
on the x-o-y plane, negative tangential stress occurred when𝜆 was smaller than 0.6. Thus, for tunnels to be built in
rock with small lateral earth pressure coefficient (e.g., loess
with a coefficient of lateral earth pressure equals 0.5 [21,
22]), reinforced concrete, and fibre concrete linings rather
than plain concrete linings are recommended for the higher
durability performance of the tunnel. From the projection
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Figure 12: Tangential stress at the lining boundaries.
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Figure 13: Axial force and bending moment.

on the x-o-z plane, negative tangential stress occurred when𝜃 was within 40∘ ∼90∘. Therefore, tension-resistant design
should be applied mainly to this part of lining.

The 3D surface projection on the y-o-z plane showed a
various linear relationship between the coefficient of lateral
earth pressure and the tangential stress with different 𝜃.
5.3. Surrounding Rock-Mass Stress and Discussion. From
Figure 17, the tangential stress declined sharply when 𝜌 was
small than 2. In contrast, tangential stress was almost the
same in regions where 𝜌 was great than 3. Therefore, the
tunnel excavation and lining support had a limited impact on
the surrounding rock-mass.
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Figure 14: Tangential stress of the lining in different depth.
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Figure 15: Tangential stress of inner boundary of the lining with 𝜃
and 𝜆.
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Figure 16: Tangential stress of outer boundary of the lining with 𝜃
and 𝜆.
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Figure 17: Relationship between tangential stress of rock-mass and
parameters 𝜃 and 𝜌.
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Figure 18: Relationship between 𝜃 and 𝜆 of the interface from the
rock side, while 𝜎𝜃 = 0.

The surrounding rock-mass will be in an unstable state
when the tangential stress equals zero [23]. The tangential
stress of the interface from the rock side was calculated and
shown in Figure 18. When the coefficient of the lateral pres-
sure was between 0 and 0.6, the zero value of the tangential
stress occurred where 𝜃 is from 45∘ to 90∘, 160∘ to 200∘,
and 270∘ to 315∘. Therefore, supporting of the surrounding
rock-mass in these regions should be enhanced to avoid the
collapse during the tunnel excavation.

6. Conclusion

An elastic plane strain solution for MCA tunnels was
presented based on the complex variable method. Stress
and displacement components were predicted by employing
complex potential functions which were consequently deter-
mined by Cauchy integration and series solution method.
Force solutions for linings were also obtained according to
the tangential stress at the two boundaries.
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The boundary conditions can be well satisfied with the
reality when the number of terms of the analytic function
is greater than 30. As to the linings, the maximum value of
the tangential stress occurs at the corner of the side wall.
The negative tangential stress occurs in tunnels with small
lateral earth pressure coefficients, especially at regions from
the tunnel shoulder to the side wall. A linear relationship was
shown between the tangential stress and the lining depth.
Also, the change of tangential stress is proportional to the
coefficient of lateral earth pressure, but the slope varies with
angles from the tunnel crown to the tunnel side wall. As to
the surrounding rock-mass, the tunnel excavation and lining
support have limited influence on the region when 𝜌 is less
than 2.When the coefficient of the lateral pressure is between
0 and 0.6, the zero value of the tangential stress occurs in
the section from the tunnel shoulder to the side wall as well
as the middle part of the invert. Thus, during the tunnel
excavation, the addition of surrounding rock-mass in these
regions should be considered to avoid the collapse accidents.

The difference existing before and after the conformal
mapping of the lining outline also has an influence on
correctness of results. More attempts should be made in
upcoming works to improve the accuracy of conformal
mapping functions and preserve shape after mapping.
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[4] S. C. Möller and P. A. Vermeer, “On numerical simulation of
tunnel installation,”Tunnelling andUnderground Space Technol-
ogy, vol. 23, no. 4, pp. 461–475, 2008.

[5] X. Liu, Y. Liu, Z. Yang, and C. He, “Numerical analysis on the
mechanical performance of supporting structures and ground
settlement characteristics in construction process of subway
station built by Pile-Beam-Arch method,” KSCE Journal of Civil
Engineering, vol. 21, no. 5, pp. 1690–1705, 2017.

[6] V. Avgerinos, D. M. Potts, and J. R. Standing, “Numerical
investigation of the effects of tunnelling on existing tunnels,”
Geotechnique, vol. 67, no. 9, pp. 808–822, 2017.

[7] G. Behnen, T. Nevrly, andO. Fischer, “Soil-structure interaction
in tunnel lining analyses,” Geotechnik, vol. 38, no. 2, pp. 96–106,
2015.

[8] Y.-L. Pi,M. A. Bradford, and B. Uy, “In-plane stability of arches,”
International Journal of Solids and Structures, vol. 39, no. 1, pp.
105–125, 2001.

[9] W. Gao, D. Wu, K. Luo, and Y.-L. Pi, “Stochastic Behaviour of
Shallow Concrete-filled Steel Tubular Arches,” in Proceedings of
the 23rd Australasian Conference on the Mechanics of Structures
and Materials (ACMSM23), pp. 663–668, Byron Bay, Australia,
2014.

[10] S. G. Lekhnitskii, Anisotropic plates, Foreign Technology Div
Wright-Patterson Afb Oh, 1968.

[11] A. M. Hefny and K. Y. Lo, “Analytical solutions for stresses
and displacements around tunnels driven in cross-anisotropic
rocks,” International Journal for Numerical and AnalyticalMeth-
ods in Geomechanics, vol. 23, no. 2, pp. 161–177, 1999.

[12] T. M. Vu, J. Sulem, D. Subrin, and N. Monin, “Semi-analytical
solution for stresses and displacements in a tunnel excavated
in transversely isotropic formation with non-linear behavior,”
Rock Mechanics and Rock Engineering, vol. 46, no. 2, pp. 213–
229, 2013.

[13] X. Han, L. Chai, and Y. Xia, “Theoritical analysis of the
deformation of shield tunnel segment under fire situation,”
Chinese Journal of Underground Space and Engineering, vol. 13,
no. 2, pp. 525–530, 2017.

[14] J. Lai, S. Mao, J. Qiu et al., “Investigation progresses and
applications of fractional derivative model in geotechnical
engineering,” Mathematical Problems in Engineering, vol. 2016,
Article ID 9183296, 15 pages, 2016.

[15] F. Ye, C. F. Gou, H. D. Sun, Y. P. Liu, Y. X. Xia, and Z.
Zhou, “Model test study on effective ratio of segment transverse
bending rigidity of shield tunnel,” Tunnelling and Underground
Space Technology, vol. 41, no. 1, pp. 193–205, 2014.

[16] Y. H. Takano and I. T. A. Working Grp, “Guidelines for the
design of shield tunnel lining,” Tunnelling And Underground
Space Technology, vol. 15, no. 3, pp. 303–331, 2000.

[17] A.-Z. Lu, L.-Q. Zhang, and N. Zhang, “Analytic stress solutions
for a circular pressure tunnel at pressure and great depth includ-
ing support delay,” International Journal of Rock Mechanics and
Mining Sciences, vol. 48, no. 3, pp. 514–519, 2011.

[18] N. Yasuda, K. Tsukada, and T. Asakura, “Elastic solutions
for circular tunnel with void behind lining,” Tunnelling and
Underground Space Technology, vol. 70, pp. 274–285, 2017.

[19] N. I. Muskhelishvili and J. R. M. Radok, Some Basic Problems
of the Mathematical Theory of Elasticity, Cambridge Univ Press,
London, UK, 1953.

[20] A.-Z. Lu, N. Zhang, and L. Kuang, “Analytic solutions of
stress and displacement for a non-circular tunnel at great
depth including support delay,” International Journal of Rock
Mechanics and Mining Sciences, vol. 70, pp. 69–81, 2014.



14 Mathematical Problems in Engineering

[21] J. X. Niu and D. L. Xie, “Coefficient of at rest earth pressure of
collapsible loess,” Soil Engineering and Foundation, vol. 29, no.
4, pp. 124–126, 2015.

[22] J. Qiu, Y. Xie, H. Fan, Z. Wang, and Y. Zhang, “Centrifuge
modelling of twin-tunnelling induced ground movements in
loess strata,”Arabian Journal of Geosciences, vol. 10, no. 22, 2017.

[23] F. Cui, L. Wang, and Y.-F. Wang, “Stress Analytic solution for
elastic surrounding rock mass of circular tunnels subjected to
non axisymmetric loads,”Chinese Journal of Underground Space
and Engineering, vol. 13, no. 3, pp. 637–642, 2017.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

