Audio Effects Project
ECE 299

July 29,2018

Robert Lee
Declan MclIntosh

This page was intentionally left blank.

Acknowledgment

We would like to thank several people that have significantly helped during the progress
of this project. We would like to acknowledge Brent, the laboratory technician at the
University of Victoria, for his help detailing the specific implementation of the Fast Fourier
Transform used in this project and for writing the FFT code. We would like to also thank
Brent for helping confirm the validity of the deigned circuits before the submission of these
circuits to the manufacturer.

We would like to thank Dr. T. Ilamparithi for his guidance and support, and for his lectures
which gave us the theoretical knowledge required for this project.

We would like to acknowledge the help provided by our tutorial instructor Alireza
Rahimpour during the experiments that taught the tools required for this project.

Further recognition of the manufacturer used, jlcpcb.com, for manufacturing a high quality
and effective printed circuit board in a short period of time, and to DHL for their strong
logistics network to move the ordered PCBs from Shenzhen, China to Victoria, BC, Canada
remarkable quickly.

Finally, the writers of this report would like to extend our appreciation to our friends and
family who have always supported us.

Contents

ACKNOWIESAZMENLeiiiiieiiieiie ettt ettt ettt esaae e bt e s sbeeseesaseenseesnnes i
COMERNES ..ottt ettt ettt et s a e bt e et e s bt et e et e sat et e es e e sbe et e satenbeenbeeanenaeensesanens il
LSt OF TADIES ..ottt ettt ettt e et e et esnbeeseeenae e il
LSt OF FIGUIES ..ttt ettt ettt et e et aeesaeesbeessaeensaeenaeenne v
L PrOJECT GOAL .ot ettt et et e et enbeeenbeenneas 1
II. COMNSLTAINLS ...vieutieiiieiieeiie ettt ettt ettt et e et e et e sabeeteeenbeesseesnseenseesnseenseasnseenseas 1
III. Requirement SPeCifiCatioNScccuieriieeiiieiieeiienie ettt 1
IV, Bill Of MaterialScoceieiiiiiieiieciieeieee ettt ettt ettt e 4
V. Circuit Schematic & PCBc.coouiiiiiiieeeeee e 8
VI Testing & Validation.........cccoeecviiiiiiiieiieeiieeieeieete ettt ettt ens 15
VII. Conclusion & Recommendationsccceeveeeriierieeiiieniesieenieeeieesieesveeeeesaeeens 20
RETETEICES ...ttt ettt et sbe e 22
APPendixX A — ENCLOSUTIEcccviiiiiiiieiieie ettt ettt sae e saae e 23
Appendix B — Gantt Chart for Hypothetical Projectscccccvevieiiiiinieiiiieiecieeeeee 27

Implementation using the STM32F4 Discovery Board................cc.coceiniininnnnn. 27

Implementation using the TMS320F28035 Piccolo development board 27
Appendix C — Sample Code........oiiiiiiiiiiiiieie ettt s ens 31

i

List

Table 1: Bill of Materials [6]
Table 2: Component Choice Justification

of Tables

il

List of Figures

Figure 1: Voltage Reference Schematiccocoveiviiiiiiiiiiiniiniiiecceeeeeee 2
Figure 2: DAC Quantization Error Amelioration Circuit Schematicc.ccoeceevueviennennee. 3
Figure 3: Calculator results for a cutoff frequency of ~10.4 kHz..........cccoevveeiiiniennnnnnn. 3
Figure 4: LM386 SChEeMALICocuveiiiiiiiiiiiieieeiteieee ettt s 4
Figure 5: Audio FX: Logic and Audio Signal Processing Boardcccccecvenerieniencnne. 9
Figure 6: Audio FX: LED Array Board..........ccccoviiiiiiiniiniicienieeceneeeeeeeseee 10
Figure 7: Logic and Audio Signal Processing Board PCB Layout............cccceeevenveniennnene 11
Figure 8: Audio FX: LED Array Board PCB Layout..........cccceeviieiiiiniieniieiiecieeieeeee 12
Figure 9: Logic and Audio Signal Processing Board Bare PCBc..ccccoviiiiniinnnnen. 13
Figure 10: Audio FX: LED Array Board Bare PCBi.........ccccocceviiiniiniiniinieieiieneeee 13
Figure 11: Logic and Audio Signal Processing Board Populated PCB.............c..cccc....... 14
Figure 12: LED Array Board Populated PCBi.........ccccociiiiiiiiiniiiiieeeeeee 15

Figure 13: Oscilloscope display of the audio amplifier scaling the input signal by
approximately 20 times. Yellow corresponds to output and green corresponds to input. 19
Figure 14: Oscilloscope display showing the attenuation of a signal past the cut-off
frequency of 10.4kHz. Green corresponds to input and yellow corresponds to output on the

SAIME SCAL. ..eiuiiiitiiticieet ettt ettt nae 20
Figure 15: Enclosure for the Audio Effects board and LED display. Note the agronomical
button placement on the face of the product.............ccoeciiiiiiiiiiiiiieee, 23
Figure 16: The rear of the enclosure, showing the mounting hole locations for the main
CIFCUIE PCB. .ottt 24
Figure 17: Multiple views of the enclosure designed using SolidWorks a...........cccc...... 25
Figure 18: Gantt chart for first hypothetical scenario: design using STM32F4 Discovery
BOArd......oeiei et 29
Figure 19: Gantt chart for second hypothetical scenario: design using TMS320F28035
Piccolo development Board............c.oovuiiiiiiiiiiiiieie et 29

v

I. Project Goal

The goal of this project was to create an audio player which can take an analog input and
perform some transformations (pitch and echo) on the music, then output this modified music with
an imbedded speaker. This unit should have a convenient user interface and a vibrant display.

II. Constraints

Several constraints were placed on the project by the customer. The project required the
use of the STM32F4 Discovery board (STM32 board) for digital signal processing (DSP) and
logical processing. The board and all peripherals on the printed circuit board (PCB) must be
powered solely by a USB port on a computer. USB ports will provide 5 V at 0.1 A for low power
devices before handshaking negotiations are required [1]. The STM32 board must be used to
implement pitch shifting and add an echo effect. The software must be written in the Eclipse
Integrated Development Environment (IDE). The PCB must be designed using KiCAD. The
designed enclosure (see Appendix A) must be designed in SolidWorks. The PCB and all
components must be RoHS (Restriction of Hazardous Substances) compliant. A cost constraint of
$150 CAD was decided by the group.

III. Requirement Specifications

The product must display the current effect which is added to the audio. The minimum
requirement is through the use of a four-digit seven-segment LED display. However, to facilitate
enhanced customizability, an eight-by-eight LED matrix was used. The display was drawn one
pixel at a time, progressively down each column, then incrementing up the columns. The chosen
refresh rate for the entire display was 250 Hz, the minimum frequency experimentally found to
eliminate flickering. Because there are 64 LEDs that need to be individually lit for one refresh of
the entire display, the timer frequency driving the interrupt service routine (ISR) was chosen to be

250 full display refresh x LEDs

=16kHz (1)

second full display refresh

The refresh rate for the entire display was increased to 5000 Hz to move the noise that was
introduced to the speaker into the inaudible frequency range. Thus, the timer frequency was
changed to

0 full display refresh x LEDs

500 =320kHz (2)

second full display refresh

To achieve this, the prescaler was chosen to be 105, and the timer period was chosen to be 2, so
that, for TIMER4’s maximum clock of 84 MHz, the timer tick frequency and timer frequency can
be calculated to be [2]

Max clock frequency _ 84000000 Hz
Prescaler+1 104+1

TimerTickFrequency = =800000Hz (3)

TimerTickFrequency _ 800000 Hz
Period+1 1+1

TimerFrequency = =400 kHz (4)

which is near the desired frequency.

Button debouncing was implemented in software using another timer, 7/MER3, at 200 Hz driving
an ISR that reads the button states. The ISR stores the previous state of the button in memory and
compares it to the current state. If the two states are consistent across readings, the ISR updates a
global button state variable that fully encapsulates the button debouncing, so it can be reliably used
in other functions. If pitch shifting is enabled, this ISR also reads the 8-bit potentiometer voltage
value and writes this to a global variable. Using similar calculations to the equations shown above,
the prescaler was chosen to be 49, and the period was chosen to be 8399, to give a timer frequency
of 200 Hz.

There were three major analog circuits within the PCB:

- Level shifter circuit: since the input signal is sinusoidal centered at 0 V, and the Analog-
to-Digital Converter (ADC) accepts a voltage range from 0 V to 3 V, the input signal must
be shifted up.

- Digital-to-Analog Converter (DAC) Quantization Error Amelioration Circuit: since the
DAC can only output discrete voltages, not a continuous range of voltages, there are a lot
of jagged bumps in the signal. These arise as high-frequency noise in the signal and are
removed with a lowpass filter.

- Audio amplification and bandpass filtering prior to output to speaker: the LM386 amplifier
was operated with a gain of 20 [3]. The bandpass filter consists of a DC blocking capacitor
and a lowpass filter.

The level shifter circuit is comprised of a voltage reference connected to a voltage follower. This
is then used to voltage divide the input signal using an operational amplifier. The following
equation in the datasheet [4] and the following schematic (see Figure 1) were used,

1.25v Yoltage Referance

VR
Im385m3x—1_2 +5Y

Ril
S0k
NC +iy—L)

L5_DC_Signat |
Figure 1: Voltage Reference Schematic

R
Vis pc_signat = 1-24(% +1) (5)

Ry

where Vis pc signar is the voltage reference value (volts), and R,; and R,g are resistors
(ohms). R,; was set to 100 kQ and R,g was set to 500 kQ, so the reference voltage was 1.488 V.

The DAC quantization error amelioration circuit was implemented using a second-order active
lowpass filter. The following schematic (see Figure 2) and the online calculator [5] (see Figure 3)
were used:

DAC Quantization Error Amelioration Circuit

C8
22 nfF
A_GND
inf MCP602
5 2
R15 R16
1k 1k
DAC_Output \/\/\/_ A A A 3
A_GND —[- V
MCP602 _GND ¥
+5V

Figure 2: DAC Quantization Error Amelioration Circuit Schematic

sqrt (2)
Cs =
2 x 3.14 x Cutoff Frequency x Resistor
C
Cp = —
2
Enter your values:
Cutoff Frequency: 10.4 KHz v

Results:
(Enter any one value - Resistor or C, or Cp)

Resistor (R; = Rp): 1.000000 Kohm v
Capacitor C: 21.63462 nfF v
Capacitor Cp: 10.81731 nF v

Figure 3: Calculator results for a cutoff frequency of ~10.4 kHz

where C, is capacitor Cg, C}, is capacitor Cg, R, and R, are resistors R;5 and R;¢. The calculated
cutoff frequency was approximately 10.4 kHz. The ideal cutoff frequency would be 8 kHz, but
limitations were found in the available capacitor and resistor sizes.

The LM386 audio amplifier was operated with a gain of 20 when the following circuit is used (see
Figure 4).

Audio
Amplification Bandpass Filter
) +5V
U3
o[~ c9 8_0OHM1
B 3 N LM386 CAP_POL Speaker

;2
o o
-«

A_GND

0.05uF

> 5 ECE:CAP_Pol_D+ .37r11.5xP2,0m
2| 2 1
5 >
| | O M
(&)
£_GND

CAP
R14

Figure 4: LM386 Schematic

where R26 and CAP were left empty. This circuit was the suggested circuit on the datasheet for a
gain of 20 [3].

The code is broken down into the following major components, and is supplied as Appendix C:

IV.

Timer-run interrupt service routine to drive the LED 8-by-8 matrix display, as described
above

Timer-run interrupt service routine to poll input buttons and pitch shifting potentiometer,
as described above

Timer-run interrupt service routine to read ADC audio input, and to output processed data
using the DAC

Finite State Machine logic to determine the current state, and to display it on the LED
matrix display

LED matrix display backend functions and data, to enable the user to fill the display buffer
with up to 10 seconds of images, played at 25 frames per second

Bill of Materials

The following tables detail all the required materials for the implemented solution

excluding the PCB itself and the enclosure.

Table 1: Bill of Materials [6]

Label in | Component Description | Part number Cost/unit Source of cost information
schematic quantity
(CAD)
8 Ohml | Speaker ﬁng 5008-03A- | 3,13 DigiKey
Cl 0.05uF Capacitor BC2686CT-ND 0.28 DigiKey
C3 0.05uF Capacitor BC2686CT-ND 0.28 DigiKey
C4 Unused Capacitor Unused Unused | Unused
C6 11nF Capacitor 331 05C143JAR- | 0.19 DigiKey
C7 220uF Capacitor 1189-1546-3-ND | 0.39 DigiKey
C8 22nF Capacitor 331 05C143JAR- | 0.19 DigiKey
C9 220uF Capacitor 1189-1546-3-ND | 0.39 DigiKey
P1 100k Potentiometer | P160KNP- 1.06 DigiKey
OEC15A100K
P2 100k Potentiometer | P160KNP- 1.06 DigiKey
0EC15A100K
P3 100k Potentiometer | P160KNP- 1.06 DigiKey
0EC15A100K
P4 100k Potentiometer | P160KNP- 1.06 DigiKey
OEC15A100K
P5 100k Potentiometer | P160KNP- 1.06 DigiKey
0EC15A100K
R1 100k Ohm 1/16W | CF14JT100KCT- | 0,15 DigiKey
Resistor ND
R2 10k Ohm 1/16W | CF14JT10KOCT- | 0,15 DigiKey
Resistor ND
R3 10k Ohm 1/16W | CF14JT10KOCT- | 0,15 DigiKey
Resistor ND
R4 100k Ohm 1/16W | CF14JT100KCT- | 0,15 DigiKey
Resistor ND
RS 10k Ohm 1/16W | CF14JT10KOCT- | 0,15 DigiKey
Resistor ND
R6 100k Ohm 1/16W | CF14JT100KCT- | 0,15 DigiKey
Resistor ND
R7 100k Ohm 1/16W | CF14JT100KCT- | 0,15 DigiKey
Resistor ND
RS 10k Ohm 1/16W | CF14JT10KOCT- | 0,15 DigiKey
Resistor ND
R9 10k Ohm 1/16W | CF14JT10KOCT- | 0,15 DigiKey
Resistor ND
R10 100k Ohm 1/16W | CF14JT100KCT- | 0,15 DigiKey
Resistor ND
R11 50k Ohm 1/16W | CF18JT150KCT- | 0,15 DigiKey
Resistor ND
R12 10k Ohm 1/16W ﬁg14JT10KOCT- 0.15 DigiKey

Resistor

R13 10k Ohm 1/16W | CF14JT10KOCT- | 0,15 DigiKey
Resistor ND

R14 10 OHM TW 5% AXIAL EVSM 0A10R0JACT- | (.81 DigiKey

R15 lk Ohm 1/16W | CF14JT1KOOCT- | 0,15 DigiKey
Resistor ND

R16 lk Ohm 1/16W | CF14JT1KOOCT- | 0,15 DigiKey
Resistor ND

R17 10 Ohm 1W Resistor EVSH OA10ROJACT- | 0,81 DigiKey

R18 100k Ohm 1/16W | CF14JT100KCT- | 0,15 DigiKey
Resistor ND

R19 10k Ohm 1/16W | CF14JT10KOCT- | 0,15 DigiKey
Resistor ND

R20 10k Ohm 1/16W | CF14JT10KOCT- | 0,15 DigiKey
Resistor ND

R21 0 Ohm 3W Resistor ~’LVI\3’5OZT0ROOCT' 0.15 DigiKey

R22 0 Ohm 3W Resistor ~’LVI\3’5OZT0ROOCT' 0.15 DigiKey

R23 10k Ohm 1/16W | CF14JT10KOCT- | 0,15 DigiKey
Resistor ND

R24 10k Ohm 1/16W | CF14JT10KOCT- | 0,15 DigiKey
Resistor ND

R25 10k Ohm 1/16W | CF14JT10KOCT- | 0,15 DigiKey
Resistor ND

R27 100k Ohm 1/16W | CF14JT100KCT- | 0,15 DigiKey
Resistor ND

R28 500k Ohm 1/16W | S00KAACT-ND 0.44 DigiKey
Resistor

STM1 STM32F4 Discovery | 497-15211-ND 21.07 DigiKey
Board

SW1 Push Button Switch | PS1024ALBLK | 1.71 DigiKey

SW2 Push Button Switch | PS1024ALBLK | 1.71 DigiKey

SW3 Push Button Switch | PS1024ALBLK | 1.71 DigiKey

Ul MCP602 Rail to Rail | MCP602-/P-ND 0.88 DigiKey
Op Amp

U2 MCP602 Rail to Rail | MCP602-/P-ND 0.88 DigiKey
Op Amp

U3 LM386 Audio | 296-43960-5-ND | 1,51 DigiKey
Amplifier

VRI LM385 Voltage | LM385BZ- 0.97 DigiKey
Reference 2.5GOS-ND

LED 1-| 5mm Red LED C503B-RAN- 0.19*64 | DigiKey

64 CZ0C0AA2

QO0-7 Fast Switching MOS- | 2N7000TACT-ND | (),74%*8 DigiKey

FET

Table 2: Component Choice Justification

Label in Functional reason for selecting this component

schematic

8 Ohml | Main output of audio signal to be perceived by the listener.

Cl Used in part of low pass filter after the level shifted input

C3 Used in part of low pass filter as part of band pass filter before speaker output.

C4 Unused but included to change gain on LM386 if necessary during testing.

C6 Part of second order active low pass filter.

C7 DC blocking capacitor before the LM386 uses its internal voltage reference to
shift the signal up from being purely AC.

C8 Part of second order low pass filter.

C9 DC blocking capacitor used to protect speaker from DC current burning it out.

P1 Echo Coefficient, never used as this was not implemented in software.

P2 Echo Time Offset, never used as this was not implemented in software.

P3 Pitch offset, used as an input to the STM32 board which would then change the
pitch offset based on the position of the potentiometer.

P4 Coarse volume control. Used to make large changes to volume level using voltage
splitting of the audio signal

P5 Fine volume control. Used to make small changes to volume level using voltage
splitting of the audio signal.

R1 Current regulating resistor for pull up switch.

R2 Current regulating resistor for input of pull up switch to STM board.

R3 Current regulating resistor for input of pull up switch to STM board.

R4 Current regulating resistor for pull up switch.

R5 Current regulating resistor for input of pull up switch to STM board.

R6 Current regulating resistor for pull up switch.

R7 Current regulating resistor for pull up switch.

R8 Used with R9 for voltage adder between the reference voltage and the signal
voltage.

R9 Used with R8 for voltage adder between the reference voltage and the signal
voltage.

R10 Current limiting resistor for negative feedback on MCP602 to ground.

R11 Current limiting resistor on high side of LM385 voltage reference.

R12 Used to set the output voltage swing for the 100k volume control potentiometer.

This is 10k Ohm so that the swing is 91% for the coarse volume control.

R13 Used to set the output voltage swing for the 100k volume control potentiometer.
This is IM Ohm so that the swing is 9% for the fine volume control.

R14 Impedance matching resistor for band pass filter before speaker output. The
speaker output is about 80hm so a 100hm resistor was used to match it.

R15 Input resistor for second order active low pass filter.

R16 Resistor between non-inverting and negative feedback of second order active low
pass filter.

R17 Current limiting resistor for passive low pass filter after level shifted output to the
board. Used to reduce noise.

R18 Used for current limiting resistor to ground of negative feedback.

R19 Current limiting resistor for input to non-inverting side of LM386 audio amplifier.

R20 Current regulating resistor for input of pull up switch to STM board.

R21 Used for closed loop negative feedback on buffer or voltage follower used to
isolate voltage reference from the AC signal voltage.

R22 Closed loop feedback for voltage adding voltage follower to insulate board from
direct input.

R23 Current limiting resistor for potentiometer.

R24 Current limiting resistor for potentiometer.

R25 Current limiting resistor for potentiometer.

R26 Not used but was laid out on PCB so the LM386 gain could potentially be changed.

R27 Used in calibration of voltage reference.

R28 Used in calibration of voltage reference.

STM1 The main processing unit for the entire project used for all logical processing and
for signal processing and transforming using an FFT and custom software
described above.

SWI Switch used for user input.

SW2 Switch used for user input.

SW3 Switch used for user input.

Ul This was used for both the level shifter voltage follower and for the reference
voltage follower to insulate the reference voltage circuit from the AC signal. Then
it was also used to insulate the board form the imputed signal.

U2 This was used for a second order low pass filter to get rid of quantitation error by
filtering out the drastic steps in the voltage signal.

U3 This was the LM386 Audio operational amplifier used to cleanly amplify the audio
signal to drive the speaker.

VR1 This is the LM385 used for a voltage reference that was then used for the level
shifting of the input signal voltage.

LED 1- | These were used for an 8 by 8 pixel display created on the LED board.

64

2N7000 | These op amps were used to ground a specific row of the LED display so that a

specific row could be displayed at a specific time.

V. Circuit Schematic & PCB

The following figures detail the schematic for the main board (see Figure 5) and the LED board
(see Figure 6). The PCB layout for the main board (see Figure 7) and the LED board (see Figure
8) are detailed. The bare PCB for the main board (see Figure 9) and the LED board (see Figure 10)
are shown. The populated PCB for the main board (see Figure 11) and the LED board (see Figure

12) are shown.

Control Inputs Audio_Input
Audio_Jack_Off Board
3v
a < T _A_GND |
5 & |
2 |
© R2 i
EchoEnable
+5v
RL7 H
EchoTimeOffset Referance Voltage and Buffer
3v Yo 1.25V Voltage Referance s Buffer
*23 D_GND EchoCoefficient 500k e R21
100k 3v 10k
P2 Rz D_GND VR1
100k 55 Im385m3x—1_2 +5V
PL o Main_Board Connections
3y vt ReferanceVoltage
3v 2 1y
o GND +5v 3v
o N
=3 =
3 & |)
] A48 A8 A
R3 LS_DC_Signal coe =z =2
PitchEnable 1-8 S8ca bbb =m® Column2
»1=8] pco PDO
EchoEnable === 3 Column3
LS_DC_Signal 1-1.
PitchEnable
LS_Output 1-19 pcg
end Columni Py
PitchOffset ooy
3v Column0 PCB
D_GND Row0 PCY
PC10 PD10
182* Rowl PC11 PD11
PC12 PD12
PCL3 PDL3
3v x2=8) pc1y PDL4
LED. Array. Board_Interfacing Emergency Extra /0 Pin Access %=1 pcis PD15
§ UsBSV2 USBSVL0 EchoTimeOffset 1-22 pgq peo 2=L
o Mt 632 Rowd Mnt 632 Column0 s RedundantOlnput 1 pgy pE1 R=1
2 Wt 32 124 pp> bEy B=15 Columné
H USBEV3 USBBVL @7%13 28 pp3 pEs =1l
Mnt 632 Nt 6-32 25 3 Column7
=29 pgy PEL
Redundantolnput Rowl Columnd e Row5 d roe P B=14_Row6
USB5V4 USBSVL2 PB14 —23 pgg STM1 pE6 R=11 Row7
Mnt 632 Nt 632 Column5 2-24 =25
Row2 Column2 MHS _— P87 PE7
et fo32 2=19 pgg STM32_F4 peg [L=2
USBEYS USB5VL3 @7%15 2-24 pgg pEg =2
Vnt 632 Nnt 6232 —34 i
Row3 Column3 MHE PB10 PE10
@7 S Redundantdinput Efsen pett =25
3v USBEVS USBSVLL PD8 »=38 pp12 pE12 fb=3
. o Rowlt A Columnt MH7 5 P e pe1s p=2
5 Mot 632 PDY EE%Q 1-38 pgqy PE14 %2
KEY" =, ustony pois peis
g o\ |2 Row5 Column5 MHE 14
= Vnt =32 - =12 ppo p-2
s R20 USB5VE USB5V16 PD10 oCoefficient 1 pa1 BOOT
Redundanttinput AT Row6 AT Columné MH9 hOffset 4 Paz BHO 1222
Mnt 632 =13 pps 2
usEsve usavi7 @7%11 DAC_Output 214 e Pt (2=8¢
Mnt 632 Mnt 6232 —15
‘@: @ PAS -
Row? e Column?7 18 pae NRST P=6x
Wn 632 —17
@ LED_GND PA7 bt
I 2-43 ppg NC
Audio_Qutput =44 pag
=44 pato oD (B33
DAC_Quantization_Error Amelioration Circuit 244 pais onp [1P31
olume_Cantrol)i PALL GND jz;
—4Q pp1s ccocococooos N
DC Blocking 44d1%. . ! 5555555555
Filter Amplification____Bandpass_Filter T AR I3
+5V A AL L
A_GND 7
MCPED2 caP_poL co | B_OHM1 D_GND LED_GND
A CAP_POL Speaker A_GND
4{ H eccowpony lpmxuam
A_GND
_GND GND
Authors: Robert Lee, Declan McIntash
ECE299 Project Group
Sheet: /
. File: Main Board Schematics.sch
Figure 5: Audio FX: Logic and Audio Signal Processing Board Title: Audio FX: Logic and Audio Signal Praccesing Board
Size: User [Date: 2018-06-20 [Rev: 1.34
KiCad E.D.A. kicad £.0.7 [d 11

T 7 3 3 5 3 T 7 T

S = o
<+
~
M
-\
o=

g &8
= @ o SN o N 12N N ~ [
7S OWe awe awve Awve 2wve we awve £
e EE G GENEENER VRV EY:

o N o e o oo N o N o Nl o N 2
w3 L7 D T it T i B 3
eI O £
o N ze-T N £
103 p]
T e
Ed
o~
So
3
R
=
5
O
My
=
ZE-9WNW O
o= o
mwa wa wa Nmm wa wa wa V= € <
£ N RS Rl RS A = RS O o
G
3 p Q[
@
Nz — :
>0
903 k= oo
I]e] Sla
) S S
SMy S =Y o AM
ZE9N O & . I~YG!
o o = = ~
R S A IR
z o al a2
& 235 2 ©|
s & S|
=9 FiLl e
oo el el o ol enl Al o) =l g Y
S8 WS SV IS Ve SVS IV Sve ¢ 58 ole|
o R R e R R i i~ °? S8 |«
- LiW Liﬂ LiW LiW LiW Liﬂ LiW LiW 3 Sa|l S|
My 3 sle
-9/ O O Lo\ T3S
o - el e =)
N ze=g o N|E ||
503 Sulv 8| 1S
= 2N
H/(\a.m:w I w|ni|-|n)kx
So
]
8
2
=
5
emy "2
ZE-9WW ©
@R‘ NI o on o onf on <
o o o o o o (=} o c
V5 VE VEVEVE VS VS VS €
uiw uiw ﬁiw ﬁlw uiw uiw ﬁiw ﬁlw 2
Gl
O
N ZE-TN
#0)
N HIT]e
wmy 3 S
ZE-9H o Pyl
@ x S5
S
R
=
5
HE %_Z W_Z H_Z HE wnz ﬁ_Z H_Z M
7S OWye awae owe awve Nwe Nwe e
EREE EE G BNV
o N o e o oo N o N o N o N 2
S NN TN TIN OIN I TIN S
ZE-9WNW O =
& N ze-T N
£0)
HIT]e
A4
on
og
3
R
=
5
o
K
[4%5° RUTIEY
@ o T~ o o onl | N M| I N
aY8 V8 Y8 dvs dve dvs dys Jvs €
o a0 a8 a8 a6 a0 ae a8 =
ﬁiw ﬁiﬂ wiﬂ wlw ﬁiw ﬁiﬂ wiﬂ wlw 2
o
O
N ZE- U
z0d
HIT e
A4
=
25
S
S
=
b5
ERIE S S~ S~ N O I
S CELEENEENEENCE CEL RN
| iy iy iy | iy v | =
N N N N N N N N ©°
O
~
S
N ZE-THN ~
703 m
T e S
hS~4 q
25 =,
3 \
o S
2 N
5 Am
I S S S L S N 3
a8 V8 VS V8 V8 VS SVE VS €
ST BN B B S BT AN B S »
- - - - - - - - E] .
N N N N N N N N © VA
O
N ZE-TN F
003 S
T =
=
So
35 ~
e .
= 3
5
©
X
3
8o
o) 5 o

10

wWw ohh'T6

1
£

13y93s : (1peg -1
- = (reod-g3)-Tm
! Q

<L
o

e

99T
(3 T P)

= IlwpEd=c2}=paN

&

(1ped=g2)-1N

‘Nc@n_(‘

Net-(MH2=Pag 1)

Net- (RS- Pad2)

€
E
o
N
s
O
o

i € €Y1 §
s
ovﬁ SIOE

=
A

\ py [r
ol 800 “EOY G M
Mv‘.._._._.zxﬂaﬁa W = 30T €IS

v

19k

36 3x-12%

G

w0

B

13pIH-gXY ;

w3

% Q@S

'~y (Y

Figure 7: Logic and Audio Signal Processing Board PCB Layout

Figure 8: Audio FX: LED Array Board PCB Layout

99.568 mm

[T
it
JERE

et BRG] 0

N-@RFODO Ne-ERFO00 M-BRTST0

E
£
)
o
@
o
o

12

@ @

o

Designed By:
Declan Mcintosh &

Robert Lee
%529/6/2018

LI ‘)
OGOOQGQBPBQOQDpnnp

e (’ (™ ®®

2371601A-Y2-180702 II g
, ('9 "
™

Leu_Se

,
m
o
o
w

@

=
o
m
o
h

w
-
o
D

o

E is
5 &
e g
N w
o o

,
m
o
l
w
[
m
-
=
pe
m
©
=}

©
©
©
®©

,
m
o
D

w
~N

m
o
h
m
o
[\
N

-

-

=]

-

-

m

o

N

~
- - -
m m ™
=] o o
- > =
) w =

H0® © © 000000

,
m
o
=
o

o
©
@k ©

- - ~ -
= = =
] o o o
n n p \
& 3 S 2

,
m
o
-
=
m
e
-
o
173
o

®
2k @
16
®

-
-
o
=
o

DO
& ®
&:®
2 ®
2®

@

2383046411
180703

Figure 10: Audio FX: LED Array Board Bare PCB

,.",..j.‘;;l")“;' o o ‘
'O.c~vo:iio’:t‘i“’”'"""‘ Designed b,
Declan Mcintosh

Robert Lee

29/6/2018

“

(=Y o4
g— |1 . g
(5 | -
= L

A

23718014-Y2-180702

m——

Figure 11: Logic and Audio Signal Processing Board Populated P

14

Figure 12: LED Array Board Populated PCB)

VI. Testing & Validation

The testing and validation of the audio effects board required the use of the following equipment:
- Oscilloscope with two inputs and probes
- Function/signal generator
- DC power source
- Multimeter
- Audio source
- 3.5mm male connector
- Laptop
The testing and validation of the LED board required the use of the following equipment:
- DC power source
- Laptop

15

Function Test Plan of Audio FX 299 Project

Tested
Test Test Purpose Test Procedure Test Pass Specifications | P/F | By Date
This test i Play a known smusou.jal
erformed to frequency of 440Hz signal
P . into the input audio jack There should be no audible
verify the .
. . and note the tone output difference between the
integrity of the .
Tone Input relative to the tone output | tone played through the Pass | DM
frequency of . .
. on a known functional known working and DUT
inputs to the . .
frequency of system output. Using a unit.
outputs normal audio input 7/14/
puts. through an AUX cable. 2018
This test is
performed to .
. . Verify the song sounds
verify the Play a song with a bass- .
. . . correct, no noise,
Bass Heavy | integrity of the heavy track in the DUT. . .
. . distortion or other Pass | DM
Song bass heavy song Using a normal audio input .
. anomalies should be noted
inputs have through an AUX cable. in plavthroueh of the son
proper, minimally play & & 7/14/
distorted outputs. 2018
This test is
performed to .
. . Verify the song sounds
verify the Play a song with a treble- .
. . . correct, no noise,
Treble integrity of the heavy track in the DUT. . .
. . distortion or other Pass | RL
Heavy Song | treble heavy song | Using a normal audio input .
. anomalies should be noted
inputs have through an AUX cable. in plavthroueh of the son
proper, minimally play & & 7/14/
distorted outputs. 2018
This test is used The display should be
solid to verify the entirely lit, the entire
. current draw of Run the Display_A1l1l_0On ([display should have the
Display, : .
the display in the | function provided in the same brightness, the LEDs
Current . . Pass | RL
and worst case is such | source code, note display should be completely
Brichtness that it does not condition during test. visible and clear. Note any
& exceed expected current limiting by the STM 7/14/
limitations board or USB supply. 2018
The display should be
entirely lit, the
temperature of each led
Solid . . Run the Display_A1l1l_0n | should be consistent and
. This test is to . . . o . -
Display, . function provided in the minimal, this condition
. verify the thermal . .
Display . . source code, note display must be shared with all Pass | DM
dispersion of the o .
Temperatu disolav unit condition during test. Note | traces related to the
re play ' temperature qualitatively. | display on both the LED
and Audio FX boards, as
well as the wires 7/14/
connecting the two boards. 2018

This test is to

Run the
Display_Scan_Across_LEDs

and press the button on

The cycling should start in
the top left (when the
button is pressed) of the

Single Pixel | verify accurate the board to start the test display as viewed from the
Addressabil | addressing and then note the direction of I/O ports then cycle across | Pass | RL
ity sc‘anning of the the cycling, where the each row from top row to
display. cycling started and where bf)ttom row. The fll"la|
the cycling finishes. display state is all pixels are 7/14/
off. 2018
Run code with a breakpoint
To test the time at the beginning of code.
between the Then resume the running
W.a.ke.Up. initialization qf code while startmg.a This time should be less
Initializatio | starts and the timer, then note the time Pass | DM
. . . than 100m:s.
n board is before a signaling LED on
completely the board lights up
initialized. signifying initialization 7/14/
completion. 2018
The fi trol should
Run music though the efine con' rols 'ou
have a relative swing
system, where both .
. approximately of 10% of
controls are at their .
. o maximum volume. Coarse
. i maximum positions. Turn .
This test verifies , control should swing
. . the fine control down and .
the functionality . approximately 90% of the
Volume note the change in volume. . L
of the coarse and relative beginning and Pass | RL
Controls) Turn the coarse knob down .
fine volume . ending volume when
and note the change in . .
controls. moved its entire range.
volume. Then turn coarse .
. _ When the coarse knob is
knob until a switch is felt. . .
. s switched all the way to its
Note if the music is still . .
lavin lowest position the music 7/14/
playing. should stop playing. 2018
Run Test_Button_Statein Any button pressed in any
. . . order should toggle the
This test verifies the provided source code.
. . . LED board all on or off. The
I/O Button | the functionality Press buttons in random
. . buttons should be Pass | DM
Testing of the button orders several times and .
. responsive and never false
inputs. note changes to the LED . .
displa trigger due to debouncing 7/14/
piay. issues. 2018
Verify the Check the outputted
Level
. expected Level voltage from the level The voltage should read
Shifter . . S . Pass | RL
. shifter shifter output pin with a approximately 1.24 V 7/14/
Testing . .
functionality voltmeter 2018
Input known sine wave at
Verify the known frequencies sweep | The approximate frequency
2nd Order .) .
frequency through the higher at which the output wave is
Low Pass . . .
. response and cut | frequencies until the 70.7% of the input Pass | DM
Filter . . .
Testin off frequency is output wave is 70.7% of amplitude should be about
& as expected the input waves, measured | 10.4 kHz. 7/14/
on an oscilloscope 2018

17

Input a known amplitude

The amplitude of the

e Ve”fY the‘ signal which will not cause | output should be
Amplifier functionality of o - . . Pass
. . clipping on the amplifiers approximately 20 times RL
Testing the output audio . OK
cienal amolifier output then observe the larger than the amplitude 7/14/
& P) output signal amplitude. of the input signal. 2018
Press the pitch shift button | The first observation
Pressing the state | and note the output of the | should be the pitch shifted
buttons should speaker. Then press the audio, then the next
State L
. transition pitch shift button and then | observation should yield an
Machine . . Pass | DM
Testin between the the echo button observing | echo to the output. Finally
g audio effect output. Then press the the third observation
states well. pitch shifting button again | should not pitch shift and 7/14/
observing output. just echo. 2018
The display should show
‘ P‘ressmg the Press the display button in running text of the state
Display display state . for each of these states
each of the four possible
state button should . accurately when pressed. If | Pass | RL
. states, echo pitch, echo .
button. accurately display . there is no state, space
and pitch, and no state. . .
the state. invaders should slide 7/14/
across the screen. 2018
Testing that the While playing music press The pitch ShOUI(.j shift up
. when the knob is turned to
Pitch shift pitch shift fully pitch shift on, then turn the .
. . . : the right and down when
up and works in both up | pitch shift knob, noting the Pass | DM
. . e turned to the left. Further
down. and down pitch pitch shifting in the song up . irrs
. no pitch shifting should 7/14/
shifts. and down. .
occur when it is centered. 2018
Enable the echo state while | The final 1 second of music
Test that the echo playing music then . played before the pause
suddenly pause the input should be echoed several
Echo occurs when the , . . Pass | RL
state is enabled music and note the output | times showing that the
' heard after the music is echo is functioning during 7/14/
disconnected normal operation. 2018
Play music Note 'the . Conr\ect an ?Udlo nput The output should be the
. functionality of playing music to the . Pass
without expected song undistorted DM
offect playing music 3.5mm input jack and note and with minimal noise OK 7/14/
though the board. | the output.) 2018
Connect an audio input
Verify the volume | playing music to the The volume should change
Volume . . . - -
. can be changed in | 3.5mm input jack; note the | significantly as the knob is Pass | RL
changing .)
real time. output during movement turned. 7/14/
of the volume knob. 2018
Press the mode dlsplay' The display should show
. button when no effect is . .
Disola Verify being affected note the space invaders going across
p. : functionality of . & . . the display. No LED should | Pass | DM
testing . display after this button is
the display. be on afterwards and the
pressed over several . 7/14/
. images should be clear.
pressings. 2018

18

Figure 13: Oscilloscope display of the audio amplifier scaling the input signal by approximately 20 times. Yellow corresponds to
output and green corresponds to input.

Figure 14: Oscilloscope display showing the attenuation of a signal past the cut-off frequency of 10.4kHz. Green corresponds to
input and yellow corresponds to output on the same scale.

VII. Conclusion & Recommendations

All major objectives of functionality were achieved for the final project, with some parts of systems
having minor issues and others exceeding requirements adding functionality. The project’s analog
audio subsystems including the second order low pass filter to remove quantization error, the level
shifting input, and the audio signal amplifier using a LM386 functioned as expected with some
marginal deviation from theoretical values. Some noise was noted in the final build of the FX
project. This noise is expected to be caused by noise in the power supply. Further the amplification
of the audio signal was approximately 15 times gain which was lower than the expected 20 gain
of the configuration as designed, giving a quiet sound to the output. The display requirements were
met entirely with an 8 by 8 LED matrix for display. Further the requirements were met with two
linear potentiometers used as voltage dividers of the input voltage signal which were used for
coarse and fine volume control. However, as the potentiometers did not have plastic caps affixed,
when a person would touch the potentiometers some noise would be introduced from the person.
All software requirements were met. Button debouncing was performed using an ISR routine on a
Sms timer. Pitch shifting was implemented using potentiometer-controlled analog input to

20

determine the magnitude and direction of the frequency shift. A circular buffer was used to store
and retrieve raw analog ADC values to implement echo. A finite state machine architecture was
implemented to control which effects were being used at any given time. Finally, another circular
buffer was implemented to display things on the LED array. Overall all expected and requested
functionality was at least minimally met.

There were some issues with a lack of simulation software embedded into the KiCAD software.
The wire used for the connection between the LED display and the main Audio FX board was
22 AWG multi-strand wire and would often break when handled. This was an issue that would had
taken a considerable amount of time to fix entirely so the breaks were fixed as they happened.
During the implementation of pitch shifting there were some issues shifting up, as low frequencies
resulting from the Fast Fourier Transform of the level shift offset, which would produce an
impulse-like value in the low frequency range. As frequencies were shifted up, this impulse-like
value would be shifted past the minimum frequency to be filtered out by the DC-blocking
capacitor, causing it to be audible as a harmonic. This was solved by starting the shift at a higher
frequency, so the impulse value would be unmoved.

There were several limitations to the final design of our Audio FX board. Firstly, the display buffer
could only handle 10 seconds of frames at 25 FPS. This took up 2 KB of memory, which can be
an issue given the relatively limited 192 KB total memory on the board being shared across an
echo buffer, FFT dependencies, and FFT output bins [7]. The I/O, while functional for the required
testing with only 3 pushbuttons, was relatively limited in potential for further functionality without
a convoluted user interface. The major limitation of the final implementation of the project was
the poor maximum volume only amplifying the outputted signal by 15 times gain which made the
sound quiet.

If a successor to our first design was to be built some major changes would be made. First, another
second-order active-low-pass filter would be placed on the input to the ADC of the STM board so
that higher frequency signals on the input would not be sampled and cause aliasing issues as it
wraps around into the maximum frequency of 8 kHz signals the STM board is sampling at. This
would help improve general sound quality of the audio signal. To further improve the audio signal
a capacitor should be placed between power and ground to reduce ripples in the voltage.
Alternatively, all the amplifiers could be powered off a separate voltage regulator which would
help provide a clean power source. This is expected to reduce the notable noise assumed to be
caused by a noisy voltage source. Knowing that the board is not being put in a manufactured case,
the components would be chosen as surface mounts rather than mounting holes for wires to connect
to offboard components. Some changes should also be made to confirm a better gain on the audio
amplifier to make the music experience much better to the ear. These changes would improve the
sound quality and make the music listening experience much better. Additionally, using plastic
caps on the potentiometers would prevent capacitance noise on the audio line. This noise is caused
when the conductive metal exterior of the potentiometer is touched by a capacitive disturbance
like a person who is not properly grounded. Finally, the number of pull-up resistors could be
reduced by using the board’s internal pull-up or pull-down resistors, reducing the cost and
complexity of the PCB.

21

References

References cited should be easily obtainable. Please refrain from using sources that are not
trust worthy. Preferable to refer text books and works published by international organizations of
repute. It is mandatory to cite the source from which you learnt about a concept/idea. It is not
acceptable to copy and paste images. They have to be re-drawn. References must be in IEEE
standard format (https://icee-
dataport.org/sites/default/files/analysis/27/IEEE%20Citation%20Guidelines.pdf).

[1] “USB Power Delivery,” Universal Serial Bus. [Online]. Available:
http://www.usb.org/developers/powerdelivery/. [Accessed: 29-Jul-2018].

[2] Dr. T. llamparithi. ECE 299. Class Lecture, Topic: “STM32F4 Discovery Board.”
Department of Electrical and Computer Engineering, University of Victoria, Victoria,
BC, June 13, 2018.

[3] Texas Instruments, “LM386 Low Voltage Audio Power Amplifier,” SNAS545C
datasheet, May 2004 [Revised May 2017].

[4] Texas Instruments, “LM185/LM285/LM385 Adjustable Micropower Voltage
References,” SNVS741F datasheet, Feb. 2000 [Revised April 2013].

[5] “Sallen-Key Active Butterworth Low Pass Filter Calculator,” Modulus Of Rupture
Calculator - Load, Distance, Breadth, Depth. [Online]. Available:
http://www.calculatoredge.com/electronics/sk low pass.htm. [Accessed: 17-Aug-2018].

[6] “Digikey Electronics,” Digikey Electronics. [Online]. Available: https://www.digikey.ca/.
[Accessed: 17-Aug-2018].

[7] STMicroelectronics, RM0090 Reference manual for STM32F405/415, STM32F407/417,
STM32F427/437 and STM32F429/439 advanced ARM®-based 32-bit MCUs,
STMicroelectronics, April 2017. [Page 68]

[8] Robert Lee and Declan MclIntosh, AudioEffectsProject Repository. [Github]. Available:
https://github.com/robertklee/AudioEffectsProject

22

Appendix A — Enclosure

The design of the enclosure was intended to sit well on a desk and show off the vibrant display
and the intuitive user interface (see Figure 15, Figure 16, and Figure 17). The speaker faces
directly up to be omnidirectional in the sound stage produced by the speaker. The enclosure is
expected to be made from plastic using M3 screws to mount both the LED and the main Audio
FX boards to the enclosure. M6 screws are used to hold the bottom plate to the bottom of the
enclosure. The top hole for the speaker is designed so some epoxy or other adhesive can be used
to secure the speaker as the speaker used in the project does not have mounting screw holes.
There is some translucent material which would be used in front of the LED board from the
outside over the opening. This would likely be a clear plastic or plexi-glass substance. Then the
input buttons and potentiometers are fit into the enclosure using M7 sizing fit. Once fit into the
appropriate labeled holes in the interface paneling, they are held in place by the mounting
hardware provided with the buttons and potentiometers. Finally, the audio input is placed at the
side of the case where the 3.5mm jack will be placed internally and poke through the hole.

Figure 15: Enclosure for the Audio Effects board and LED display. Note the agronomical button placement on the face of the
product.

23

88.90+0.13

88.90£0.13

Figure 16: The rear of the enclosure, showing the mounting hole locations for the main circuit PCB.

83.8210.13

24

100
102.11
150 R10
B : 1 | B
\ﬂléﬁ \
5*; l@..,.. 43.39
b oo— = \\— 10/

ﬁ
T P3N o

150 ©6.35 —
* 4.50 j
* & © o o &l
N | 43.39 e e = TRUE R3.50
+ : | 1
UNLESS OTHERW ISE SPECIFIED: NAME DATE
A DIMENSIONS ARE IN MM DRAWN DM 8/10/2018 zs
TOLERANCES:
FRACTIONAL+ CHECKED RL 8/11/2018 TITLE:
ANGULAR: MACH2 BEND * .
ASRaEih 1 e a Main Enclosure
THREE PLACE DECIMAL MEG APPR. A
INTERPRET G EOMETRIC QA. And le
PROPRIETARY AND CONFIDENTIAL TOLERANCING PER: CORTETiS:
THE INFO RMATIO N CONTAINED IN THIS MATERIAL SIZE DWG. NO REV

DRAWING IS THE SOLE PROPERTY OF Plastic

<INSERT COMPANY NAME HERE>. ANY

REPRODUCTION IN PART OR AS A WHOLE FINISH

WITHOUT THE WRITTEN PERMISSION OF INEEA AT USIED @i *
<INSERT COMPANY NAME HERE> IS
PROHIBITED.

SCALE: 1:4 WEIGHT: SHEET 1 OF 1

APPLICATION DO NOT SCALE DRAWING

2 1

Figure 17: Multiple views of the enclosure designed using SolidWorks a

This page is intentionally left blank.

Appendix B — Gantt Chart for Hypothetical Projects

In this appendix, the planning for a theoretical project is described. This goal of this project would
be to design a robot which can navigate a right-angled maze. This project is mechatronic in
capacity so all disciplines, mechanical, firmware, and electrical design have been factored into the
planning of this project. Two hypothetical scenarios have been considered around this project: A)
The familiar STM32F4 Discovery board is used and B) a new, unknown TMS320F28035 Piccolo
development board is used for the implementation. The Gantt charts are shown below (see Figure
18 for the STM32F4 Discovery board Gantt chart, and see Figure 19 for the TMS320F28035
Piccolo development board Gantt chart) to demonstrate the developed plans and their respective
differences caused by the changed task parameters. The details of each task will be overviewed
and not described in extreme detail as it is not pertinent to the differences introduced by the change
in discovery boards and are subject to the specific details of the project.

Implementation using the STM32F4 Discovery Board

Firstly, 6 hours has been allocated for the high-level conceptual design to develop a general
strategy for this task. Then 10 hours were dedicated to design each of the subsystems. The
mechanical systems should be fairly easy due to the simple mechanical nature of the project, unless
a unique robot design was chosen. However, due to the inexperience and lack of technical expertise
our team exhibits in mechanical design equal time weighting has been given the mechanical design
task. Near the end of the designing of the subsystems, time has been allocated for sourcing of all
the required parts for the Prototype-0 build. After the required parts have been retrieved 5 hours
has been allocated for populating the controlling PCB board as our team has a good amount of
experience soldering. The longest expected task is to implement the planned software into the STM
board with 12 hours as the software for maze solving and control of the mechanical systems is
expected to be quite difficult to write and debug. Next, time has been allocated for testing of the
PO design to highlight any flaws which must be solved before the final project submission. Finally,
time, which may not be required by the project outline but is beneficial, has been allocated for a
second P1 redesign and rebuild to address any issues found during testing.

Implementation using the TMS320F28035 Piccolo development board

Some significant changes were made to the allocated time during the design phase of the plan.
Time has been allocated for learning the new development board with regards to its electrical and
software architecture. This is required so that the electrical and software design efforts can be
completed more smoothly and design around the qualities of the Piccolo board. This also delays
the start of the electrical and software design process. Furthermore, time has been allocated for
implementing the software for the Piccolo board. Small amounts of time have also been added to
the redesigning of the PO to the P1 version as there are more expected errors when working with
an unfamiliar development board. Overall the change of board has added 27 hours of total labour
to the project.

27

This page has intentionally been left blank.

28

ISR Maze Robot With STM32F407 Discovery

WBS DURATION
NUMBER TASK TITLE INHOURS
s Design and Prototyping Phase 41 HEE
11 Conseptual High Level Design 6
.:.u Mechanical Desing Of Chasis and Drive Train | 10 1
Software Architecture Design for STM of the Search
12 Algorithm and Motor Controling Algorithm | 0 | | | | DSEEE— | | e bl
Electrical Desging Of Motor Control and WallfTape
13 Sensing 10
'1,4 Part Sourcing | 5
2 Version Zero Build] 25] [[T
21 Soldering Electircal Components 5
').z Building Mechanical Chasis | 8 | | | |
23 Implementing Software in Embeded STM | 12 [| T 1T 1] T T rrrrrrr rrrrr1rrrrrrrrrrrrrir
o oo e P T I T T T T T T
:3,1 Designing Functional Test Plan 4 | |
32 Conducting Function Test plan | 10 | | T T T T TTT1 111 T T TT T T T T T T 1T 1]
'5 Zersion Zero Redesign and Version One Build l 251 “““
:a.: Re-desinging around Issues in Version Zero 5
4.2 Building Version One | 15
:5.; Re-Testing Functional Test plan on Version Zero | s 1 111 1 rrr et rrrrrrrrrrerrerrrrrrrrrrrrerrrrr T
Total | 105

Figure 18: Gantt chart for first hypothetical scenario: design using STM32F4 Discovery Board

31
32
4

41
4.2

43

Lo da @i Maze Robot With TMS320F28035 Piccolo

Testing Redesign and compleation

TASKTITLE
Design and ping Phase

Conseptual High Level Design

Mechanical Desing Of Chasis and Drive Train

Studing and learning electical and software
properties of Piccolo board

Software Architecture Design for STM of the Search |
Algorithm and Motor Controling Algorithm

Electrical Desging Of Motor Control and Wall/Tape
Sensing

Part Sourcing
Version Zero Build

Soldering Electircal Components

Building Mechanical Chasis

Implementing Software in Embeded Piccolo
Testing of Version Zero

Designing Functional Test Plan

Conducting Function Test plan

Zersion Zero Redesign and Version One Build
Re-desinging around Issues in Version Zero

Building Version One

Re-Testing Functional Test plan on Version Zero

Total | 132]

Figure 19: Gantt chart for second hypothetical scenario: design using TMS320F28035 Piccolo development board

29

This page has intentionally been left blank.

Appendix C — Sample Code

The full source code is available on Github [8].

/7
//

~
KX K XX KX XXX XX XXX XXXXKX XXX XX

x
~

//

Copyright (c) 2018 Robert Lee, Declan McIntosh
University of Victoria ECE 299 Design Project

This file is part of the ®0S++ distribution.
(https://github.com/micro-os—plus)
Copyright (c) 2014 Liviu Ionescu.

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom

the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

#include <stdio.h>

#include <stdlib.h>

#include "diag/Trace.h"

#include "cmsis/cmsis_device.h"
#include "stm32f4xx.h"

#include "ctype.h"

#include <sys/stat.h>

#include "stm32f4xx_hal.h"
#include <string.h> //for memcpy

#include <hamming.h>
#include "stm32f4xx_hal.h"
#include "math.h"

#include "arm_math.h"
#include "arm_const_structs.h"
#include "main.h"

#include "hamming.h"

#include "windowing_fft.h"
#include "AudioChip.h"

/7
//
/7
//
//
/7
//
/7
//
//

//

/7
//

Standalone STM32F4 empty sample (trace via DEBUG).

Trace support is enabled by adding the TRACE macro definition.

By default the trace messages are forwarded to the DEBUG output,

but can be rerouted to any device or completely suppressed, by
changing the definitions required in system/src/diag/trace_impl.c
(currently 0S_USE_TRACE_ITM, 0S_USE_TRACE_SEMIHOSTING_DEBUG/_STDOUT).

Sample pragmas to cope with warnings. Please note the related line at
the end of this function, used to pop the compiler diagnostics status.

31

#pragma GCC diagnostic
#pragma GCC diagnostic
#pragma GCC diagnostic
#pragma GCC diagnostic

/%%
* LED MATRIX LAYOUT:

push

ignored "-Wunused-parameter"
ignored "-Wmissing-declarations"
ignored "-Wreturn-type"

* ~nenannnnanTOP OF LED MATRIXananannnnn

*x Columns: 0@ 1 2

NoubshWNRES

#define NUMBER_OF_LEDS
#define REFRESH_RATE

3 4 5 6 7

(64)

(5000)//5000 will reduce the high pitched noise // this will be multiplied

by 64 since there are 64 LEDs

#define FRAMES_PER_SECOND
#define BUFFER_SIZE_SECONDS

// NOTE: The following
#define ROW_0O
#define ROW_1
#define ROW_2
#define ROW_3
#define ROW_4
#define ROW_5
#define ROW_6
#define ROW_7
#define COL_0O
#define COL_1
#define COL_2
#define COL_3
#define COL_4
#define COL_5
#define COL_6
#define COL_7
#define BUTTON_1
#define BUTTON_2
#define BUTTON_3

#define LEFT_TO_RIGHT
#define RIGHT_TO_LEFT
#define TOP_TO_BOTTOM
#define BOTTOM_TO_TOP

/%%

* X X X

* TIM5 - FFT on input
*/
#define TIM2_PRIORITY
#define TIM3_PRIORITY
#define TIM4_PRIORITY
#define TIM5_PRIORITY
#define NUM_OF_COLS

#define NO_EFFECT
#define ENABLE_ECHO

row/col are NOT on the same bus
(GPIO_PIN_4)
GPIO_PIN_2
GPIO_PIN_7
GPIO_PIN_6
GPIO_PIN_1
GPIO_PIN_0
GPIO_PIN_6
GPIO_PIN_8
GPIO_PIN_9
GPIO_PIN_11)
GPIO_PIN_2
GPIO_PIN_3
GPIO_PIN_7
GPIO_PIN_5
GPIO_PIN_5
GPIO_PIN_6
GPIO_PIN_11)
GPIO_PIN_4)
GPIO_PIN_1)

)
)
)
)
)
)
)
)

)
)
)
)
)
)

PR

AAAA
—_——— —

0
1
2
3

Timer usage documentation:
TIM2 - Generating frequency bars to display on LED array
TIM3 - polling of all button inputs, and debouncing
TIM4 - LED board drawing

signal

#define ENABLE_PITCH_SHIFT (1)

#define ECHO_BUFFER_SIZE (16384)

#define ECHO_DAMPING

volatile char previous_

(0.35)

button_reading_PAQ = 0;

volatile char button_state_PA0 = 0;

volatile char previous_

button_reading_PB11 = 0;

volatile char button_state_PBll = 0;

volatile char previous_

button_reading_PC4 = 0;

(25) // this number should be a factor of REFRESH_RATE
(10) // number of seconds for which the buffer stores data

32

volatile char button_state_PC4 = 0;
volatile char previous_button_reading_PB1l = 0;
volatile char button_state_PBl = 0;

char previous_state_PBll = 0;
char previous_state_PC4 0;
char previous_state_PB1 0;

volatile char current_frame[NUM_OF_COLS];

volatile char display_buffer [FRAMES_PER_SECOND * BUFFER_SIZE_SECONDS] [NUM_OF_COLS];
const int buffer_length = FRAMES_PER_SECOND * BUFFER_SIZE_SECONDS;

volatile int buffer_head = 0; // points to front of buffer
volatile int buffer_tail = -1; // points to next available spot
volatile char current_row 0;

volatile char current_col 0;

volatile int current_frame_number = 0;

const int times_to_repeat_frame = REFRESH_RATE / FRAMES_PER_SECOND;

int LED_Array_State = 0;
int pitch_shift_state = NO_EFFECT;
int echo_state = NO_EFFECT;

volatile int pitch_shift_offset = 0;

volatile intl6_t
EchoBuffer [ECHO_BUFFER_SIZE];

volatile uintl6_t
EchoPointer = 0;

volatile uint8_t
ClearEchoBuffer = TRUE;

//
// Data structure for timer configuration
//

TIM_HandleTypeDef
Timer5_16Khz;

//
// Data structure for general purpose I0 configuration
//
GPIO_InitTypeDef
GpioInitStructure;
//
// Data structure for the D/A(DAC) Converter configuration
//

DAC_ChannelConfTypeDef
DacInitStructure;

DAC_HandleTypeDef
AudioDac; // Structure for the audio digital to analog converter subsystem

//
// Data structures for the A/D Converter configuration
//

ADC_HandleTypeDef
AudioAdc,
ReferenceAdc,
PitchShiftOffsetAdc;

volatile int
ButtonCount 0,
ButtonState RELEASED,
Effect = NO_EFFECT;

//
// Buffering system variables
//

33

volatile int
ADCPTR = 0;

volatile struct tBuffer
Buffers [NUMBER_OF_BUFFERS] ;

volatile int
WindowingState = 0,
WindowingDone = FALSE;

//

// 4 times the size of the main buffer to compensate for addition of complex numbers and that we are

processing
// 2 buffers at a time
//

float
delayedBuf [SIZE*4],
procBuf [SIZEx4];

int
AD_Offset;

void Init_GPIO_Port(uint32_t pin, uint32_t mode, uint32_t speed, uint32_t pull, char bus)
{
GPIO_InitTypeDef GPIO_InitStructure; //a handle to initialize GPIO

GPIO_InitStructure.Pin = pin;
GPIO_InitStructure.Mode = mode;
GPIO_InitStructure.Speed = speed;
GPIO_InitStructure.Pull = pull;
GPIO_InitStructure.Alternate = 0;

if (bus == 'A") {

HAL_GPIO_Init(GPIOD, &GPIO_InitStructure);
} else if (bus == 'B') {

HAL_GPIO_Init(GPIOB, &GPIO_InitStructure);
} else if (bus == 'C') {

HAL_GPIO_Init(GPIOC, &GPIO_InitStructure);
} else if (bus == 'D') {

HAL_GPIO_Init(GPIOD, &GPIO_InitStructure);
} else if (bus == 'E') {

HAL_GPIO_Init(GPIOE, &GPIO_InitStructure);
+
}

void Init_GPIO_Port_Default_Speed_Pull(uint32_t pin, uint32_t mode, char bus)
{

}

Init_GPIO_Port(pin, mode, GPIO_SPEED_MEDIUM, GPIO_NOPULL, bus);

// important for these to be in global as they need to be accessed in interrupt service routine
TIM_HandleTypeDef DisplayTimer;

TIM_HandleTypeDef LEDDisplayTimer;

TIM_HandleTypeDef FrequencySpectrumGeneratorTimer;

void ConfigureTimers()

__HAL_RCC_TIM3_CLK_ENABLE();

DisplayTimer.Instance = TIM3;

DisplayTimer.Init.Period = 49;//period & prescaler combination for 200 Hz frequency
DisplayTimer.Init.Prescaler = 8399;

DisplayTimer.Init.CounterMode = TIM_COUNTERMODE_UP;

DisplayTimer.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;

HAL_TIM_Base_Init(&DisplayTimer);

HAL_NVIC_SetPriority(TIM3_IRQn, TIM3_PRIORITY, TIM3_PRIORITY);
//set priority for the interrupt. Value @ corresponds to highest priority
HAL_NVIC_EnableIRQ(TIM3_IRQn);//Enable interrupt function request of Timer3

__HAL_TIM_ENABLE_IT(&DisplayTimer, TIM_IT_UPDATE);// Enable timer interrupt flag to be set when

timer count is reached
__HAL_TIM_ENABLE(&DisplayTimer);//Enable timer to start

__HAL_RCC_TIM4_CLK_ENABLE();
LEDDisplayTimer.Instance = TIM4;

34

int prescaler = 105;

LEDDisplayTimer.Init.Prescaler = prescaler - 1; // reduce to 800 kHz
LEDDisplayTimer.Init.Period = 84000000 / prescaler / REFRESH_RATE / NUMBER_OF_LEDS - 1;
// reduce to (REFRESH_RATE * NUMBER_OF_LEDS) frequency

LEDDisplayTimer.Init.CounterMode = TIM_COUNTERMODE_UP;
LEDDisplayTimer.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;

HAL_TIM_Base_Init(&LEDDisplayTimer);

HAL_NVIC_SetPriority(TIM4_IRQn, TIM4_PRIORITY, TIM4_PRIORITY);
//set priority for the interrupt. Value @ corresponds to highest priority
HAL_NVIC_EnableIRQ(TIM4_IRQn);//Enable interrupt function request of Timer3

__HAL_TIM_ENABLE_IT(&LEDDisplayTimer, TIM_IT_UPDATE);// Enable timer interrupt flag to be set when
timer count is reached
_ HAL_TIM_ENABLE(&LEDDisplayTimer);//Enable timer to start

_ HAL_RCC_TIM2_CLK_ENABLE();

FrequencySpectrumGeneratorTimer.Instance = TIM2;

prescaler = 140;

FrequencySpectrumGeneratorTimer.Init.Period = prescaler — 1; // reduce to 600 kHz

// reduce to (FRAMES_PER_SECOND * 2) frequency

FrequencySpectrumGeneratorTimer.Init.Prescaler = 84000000 / prescaler / (FRAMES_PER_SECOND%2) - 1;
FrequencySpectrumGeneratorTimer.Init.CounterMode = TIM_COUNTERMODE_UP;
FrequencySpectrumGeneratorTimer.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;

HAL_TIM_Base_Init(&FrequencySpectrumGeneratorTimer);

HAL_NVIC_SetPriority(TIM2_IRQn, TIM2_PRIORITY, TIM2_PRIORITY);
//set priority for the interrupt. Value @ corresponds to highest priority
HAL_NVIC_EnableIRQ(TIM2_IRQn);//Enable interrupt function request of Timer2

_ HAL_TIM_ENABLE_IT(&FrequencySpectrumGeneratorTimer, TIM_IT_UPDATE);// Enable timer interrupt flag
to be set when timer count is reached
_ _HAL_TIM_ENABLE(&FrequencySpectrumGeneratorTimer);//Enable timer to start

}

void Configure_Ports()

{
Init_GPIO_Port_Default_Speed_Pull(GPIO_PIN_12, GPIO_MODE_OUTPUT_PP, 'D');
Init_GPIO_Port_Default_Speed_Pull(GPIO_PIN_@, GPIO_MODE_INPUT, 'A');
Init_GPIO_Port_Default_Speed_Pull(BUTTON_1, GPIO_MODE_INPUT, 'B');
Init_GPIO_Port_Default_Speed_Pull(BUTTON_2, GPIO_MODE_INPUT, 'C');
Init_GPIO_Port_Default_Speed_Pull(BUTTON_3, GPIO_MODE_INPUT, 'B');

}

// utility inline functions to encapsulate the bus and port number of the row/col

inline void Write_Row_0 (uintl6_t new_state) HAL_GPIO_WritePin(GPIOE, ROW_0, new_state

inline void Write_Row_1 (uintl6_t new_state) HAL_GPIO_WritePin(GPIOE, ROW_1, new_state

inline void Write_Row_2 (uintl6_t new_state) HAL_GPIO_WritePin(GPIOB, ROW_2, new_state

inline void Write_Row_3 (uintl16_t new_state)

inline void Write_Row_4 (uint16_t new_state)
()
()
()

)
()
()

HAL_GPIO_WritePin(GPIOD, ROW_3, new_state);

HAL_GPIO_WritePin(GPIOD, ROW_4, new_state)
()
()
()

’
’
inline void Write_Row_5 (uintl6_t new_state H
inline void Write_Row_6 (uintl6_t new_state

inline void Write_Row_7 (uintl6_t new_state

HAL_GPIO_WritePin(GPIOD, ROW_5, new_state
HAL_GPIO_WritePin(GPIOC, ROW_6, new_state
HAL_GPIO_WritePin(GPIOC, ROW_7, new_state

inline void Write_Col_0
inline void Write_Col_1 (uintl6_t new_state
inline void Write_Col_2 (uintl6_t new_state

(uint16_t new_state)
()
()
inline void Write_Col_3 (uintl16_t new_state)
()
()
()
()

HAL_GPIO_WritePin
HAL_GPIO_WritePin
HAL_GPIO_WritePin
HAL_GPIO_WritePin
HAL_GPIO_WritePin
HAL_GPIO_WritePin
HAL_GPIO_WritePin
HAL_GPIO_WritePin

GPIOC, COL_@, new_state
GPIOC, COL_1, new_state
GPIOD, COL_2, new_state
GPIOD, COL_3, new_state
GPIOD, COL_4, new_state
GPIOB, COL_5, new_state
GPIOE, COL_6, new_state
GPIOE, COL_7, new_state

’
’
inline void Write_Col_4 (uintl6_t new_state H
inline void Write_Col_5 (uintl6_t new_state
inline void Write_Col_6 (uintl6_t new_state

inline void Write_Col_7 (uintl6_t new_state

B e L L T X T S e O
e e e e e e ot el e e e e e el e

o~ o~ o~ o o

)
)
)
)
)
)
)
)

void Configure_LED_Display() {
// init all rows and columns as output, medium speed, no pull
Init_GPIO_Port_Default_Speed_Pull(ROW_0, GPIO_MODE_OUTPUT_PP, 'E');
Init_GPIO_Port_Default_Speed_Pull(ROW_1, GPIO_MODE_OUTPUT_PP, 'E');
Init_GPIO_Port_Default_Speed_Pull(ROW_2, GPIO_MODE_OUTPUT_PP, 'B');
Init_GPIO_Port_Default_Speed_Pull(ROW_3, GPIO_MODE_OUTPUT_PP, 'D');
Init_GPIO_Port_Default_Speed_Pull(ROW_4, GPIO_MODE_OUTPUT_PP, 'D');
Init_GPIO_Port_Default_Speed_Pull(;

Init_GPIO_Port_Default_Speed_Pull(

Init_GPIO_Port_Default_Speed_Pull(

Ow_5, GPIO_MODE_OUTPUT_PP, 'D')
OwWw_6, GPIO_MODE_OUTPUT_PP, 'C');
ow_7

R
R
R
R , GPIO_MODE_OUTPUT_PP, 'C');

35

Init_GPIO_Port_Default_Speed_Pull
Init_GPIO_Port_Default_Speed_Pull
Init_GPIO_Port_Default_Speed_Pull
Init_GPIO_Port_Default_Speed_Pull
Init_GPIO_Port_Default_Speed_Pull
Init_GPIO_Port_Default_Speed_Pull
Init_GPIO_Port_Default_Speed_Pull
Init_GPIO_Port_Default_Speed_Pull

_@, GPIO_MODE_OUTPUT_PP, 'C');
~1, GPIO_MODE_OUTPUT_PP, 'C');
—2, GPIO_MODE_OUTPUT_PP, 'D');
~3, GPIO_MODE_OUTPUT_PP, 'D');
—4, GPIO_MODE_OUTPUT_PP, 'D');
5, GPIO_MODE_OUTPUT_PP, 'B');
6, GPIO_MODE_OUTPUT_PP, 'E');
_7, ;

(
(
(
(
(
E
(GPIO_MODE_OUTPUT_PP, 'E');

alalalakakalaka)

// turn off all columns

Write_Col_O(GPIO_PIN_RESET);
Write_Col_1(GPIO_PIN_RESET);
Write_Col_2(GPIO_PIN_RESET);
Write_Col_3(GPIO_PIN_RESET);
Write_Col_4(GPIO_PIN_RESET);
Write_Col_5(GPIO_PIN_RESET);
Write_Col_6(GPIO_PIN_RESET);
Write_Col_7(GPIO_PIN_RESET);

A~~~ e~~~ o~ o~

// turn off all rows

Write_Row_0(GPIO_PIN_RESET);
Write_Row_1(GPIO_PIN_RESET);
Write_Row_2(GPIO_PIN_RESET);
Write_Row_3(GPIO_PIN_RESET);
Write_Row_4(GPIO_PIN_RESET);
Write_Row_5(GPIO_PIN_RESET);
Write_Row_6(GPIO_PIN_RESET);
Write_Row_7(GPIO_PIN_RESET);

~ e~~~ o~~~ o~

Buffer_Init();
}

VESS
* Resets buffer head and tail for empty buffer
*/

inline void Buffer_Clear()

{

buffer_head
buffer_tail

= 0;
= -1; // flag that the buffer is empty

}

/%%

* Indicates if buffer is empty
*/

inline int Buffer_Is_Empty()

{

}

return buffer_tail == -1;

Ve
* frame[] MUST have length NUM_OF_COLS
* Returns @ if buffer full, 1 if success
*/
char Buffer_Pushback(char framell)
{
if (buffer_tail == -1) {
//buffer is empty, update actual available spot
buffer_tail = 0;
} else if (buffer_tail == buffer_head)
{

b

return @; // buffer is full

// copy frame to buffer
memcpy(display_buffer[buffer_taill, frame, NUM_OF_COLS);

buffer_tail++; //increment to next available spot
buffer_tail %= buffer_length; // wrap around to beginning of buffer

return 1; //pushback success
}

/%%
* Pops front of buffer and copies to destination. If empty, nothing is copied.
* dest[] MUST be length NUM_OF_COLS

* Returns @ if buffer empty, 1 if successfully copied
*/
char Buffer_Pop(char dest[])

{
if (buffer_tail == -1)
{
return @; //buffer is empty
// copy frame to buffer
memcpy (dest, display_buffer[buffer_head], NUM_OF_COLS);
buffer_head++;
buffer_head %= buffer_length;
if (buffer_head == buffer_tail) {
//buffer is empty
Buffer_Clear();
¥
return 1;
}
/%%
* Initializes buffer with all @'s. Returns 1 when successful
*/
int Buffer_Init()
{
char all_zeros[NUM_OF_COLS];
for (int 1 = 0; 1 < NUM_OF_COLS; i++) {
all_zeros[i] = 0;
¥
for (int i = @; i < buffer_length; i++) {
memcpy (display_buffer[i], all_zeros, NUM_OF_COLS);
Buffer_Clear();
return 1;
}
/%%
* turns on all LEDs for testing
*/

void Display_A11_0n() {
for (int i = @; i < NUM_OF_COLS; i++) {
current_frame[i] = OxFF;
¥

}

/*%
* turns off all LEDs for testing
*/
void Display_Al11_0ff() {
for (int i = @; i < NUM_OF_COLS; i++) {
current_frame[il = 0;

}

/%%
* If LED_Array is on, toggle off. If off, toggle on.
*/
void Toggle_Display_State() {
if (LED_Array_State) {
Display_Al1_0ff();
LED_Array_State =
} else {
Display_Al1_0n();
LED_Array_State = 1;

0;

}

/%%

* Fill buffer with frames with one LED at a time, cycling through all LEDs

37

* Precondition: buffer is at least framesToRepeat*64 long
*/
void Display_Scan_Across_LEDs() {

const int framesToRepeat = 3;

char frame[NUM_OF_COLS];

for (int i = @; i < NUM_OF_COLS; i++)
{

framel[i] = 0;

+
for (int currentLED = @; currentLED < NUMBER_OF_LEDS; currentLED++)
{
int row = currentLED/NUM_OF_COLS;
int col = currentLED%NUM_OF_COLS;
frame[row] = 1 << col;
for (int i = @; i < framesToRepeat; i++)
{
Buffer_Pushback(frame);
}
framel[row] = 0;
+

for (int 1 = 0; i < NUM_OF_COLS; i++) {
frame[i] = 0;
¥

Buffer_Pushback(frame);
}

VESS
* Creates a bar of height 'height' in the specified column ‘col’
* Col must be <= NUM_OF_COLS
*/
void Create_Column_With_Height(char dest[], int col, int height) {
char col_flag = 1 << col;
for (int i = 1; i <= NUM_OF_COLS; i++)

{
if (i <= height) {
dest [NUM_OF_COLS - i] = dest[NUM_OF_COLS - i] | col_flag; // force it to be 1
} else {
dest [NUM_OF_COLS - i] = dest[NUM_OF_COLS - i] & (@xFF ~ (col_flag)); // force it to be 0
}
+
}
/%%

* source is _source[frame number]
* _source_length is the number of frames
* message_length is the total number of columns in the message
* direction is the direction the image pans
*/
void Fill_Buffer_With_Panning_Image(int _source_rows, int _source_cols,
source[_source_rows] [_source_cols],
int message_length, int direction) {
char frame[NUM_OF_COLS];

// char (xsource)[_source_length] = _source;

// Zero out the frame

for (int i = @; i < NUM_OF_COLS; i++) {
frame[i] = 0;

¥

// Start with blank frame
Buffer_Pushback(frame);

for (int current_index = @; current_index < message_length; current_index++) {
int source_index = current_index / NUM_OF_COLS;
if (source_index >= _source_rows) { break; }
int source_frame_index = current_index % NUM_OF_COLS;

switch (direction) {

char

38

case (LEFT_TO_RIGHT):
case (RIGHT_TO_LEFT):
for (int i = @; i < NUM_OF_COLS; i++) {
framel[i] = framel[i] << 1;

char source_char = sourcelsource_index][i];
// truncate everything right of column
char right_shifted = source_char >> (NUM_OF_COLS - 1 - source_frame_index);

// remove everything left of column
char right_col_only = right_shifted & (@xFE ~ OxFF);

// add in only the right column
frame[i] = frame[i] | right_col_only;

}

break;

case (BOTTOM_TO_TOP):

for (int i = @; i < NUM_OF_COLS — 1; i++) {
// shift rows up by one
frame[i] = framel[i + 1];

}

// add in new row at bottom
frame [NUM_OF_COLS - 1] = sourcelsource_index] [source_frame_index];

break;
// case (RIGHT_TO_LEFT):
// for (int i = @; i < NUM_OF_COLS; i++) {
// frame[i] = frameli] >> 1;
//
// char source_char = sourcel[source_index] [i];
// // truncate everything left of column
// char left_shifted = source_char << (NUM_OF_COLS - 1 - source_frame_index);
//
// // remove everything right of column
// char left_col_only = left_shifted & (0x7F ~ OxFF);
//
// // add in only the right column
// frame[i] = framel[i] | left_col_only;
// }
// break;
default:
trace_printf("Not implemented exception. Invalid direction.");
break;
¥
Buffer_Pushback(frame);
Buffer_Pushback(frame);
¥
}
/%%
111 111 111 111
11 11 11 11 11 11 11 11
1 11 11 11 1
1 1 1 1 1
1 11 11 11 1
11 11 11 11 11 11 11 11
111 111 111 111
in hex:

0x0e 0x03 0x80 0xe0d 0x38 0x00

0x31 0x8c 0x63 0x18 0xc6 0x00

0x40 0x50 0x14 0x05 0x01 0x00

0x80 0x20 0x08 0x02 0x00 0x80

0x40 0x50 0x14 0x05 0x01 0x00

0x31 0x8c 0x63 0x18 0xc6 0x00

0x0e 0x03 0x80 0xe0d 0x38 0x00

0x00 0x00 0x00 0x00 0x00 0x00

*/

void Display_Sine_Wave() {

char sine_wave[7] [NUM_OF_COLS] = {

{ 0x0e, 0x31, 0x40, 0x80, 0x40, 0x31, 0x0e, 0x00 },
{ 0x03, 0x8c, 0x50, 0x20, 0x50, 0x8c, 0x03, 0x00 },
{ 0x80, 0x63, 0x14, 0x08, 0x14, 0x63, 0x80, 0x00 },

{ 0xe0, 0x18, 0x05, 0x02,
{ 0x38, 0xc6, 0x01, 0x00,
{ 0x00, 0x00, 0x00, 0x80,
{ 0x00, 0x00, 0x00, 0x00,
Fill_Buffer_With_Panning_Image(7,

}

/%%
1 1 11
1 1 1111
1111111 111111

11 111 11 11 11

11

11111111111 11111111

1 1111111 1 1
11 11 111
11 11 11

in hex:

*/
void Invade_Space()
{

1
1

11

1111
11111
11 11
111111

11
111
11 1

1
11

0x05, 0x18,
0x01, 0xc6,
0x00, 0x00,
0x00, 0x00,

NUM_OF_COLS, sine_wave, 49, LEFT_TO_RIGHT);

1 1
1 1
1111111
11 111 11

11 11111111111
1 1111111 1
1 11 11

1

11 11

char space_invaders[7] [NUM_OF_COLS] = {

0x37,
0x63,
ox6C,
0x36,
0xC6,
OxEC,
0x00,

1

1
11

{ o0x10, 0x08, Ox1F,
{ ox40, 0x80, 0xC1,
{ 0x60, OxF0, OxF8,
{ 0x06, 0OxOF, Ox1F,
{ 0x02, 0x01, 0x83,
{ 0x08, 0x10, OxF8,
{ 0x00, 0x00, 0x00,
}i
Fill_Buffer_With_Panning_Image(7,
}
/%%
1111 111 11111 1111 1 1
1 1 1 1 1 1 1 1
1111 1 1 1 11111 1 1
1 1 1 1 1 1
1 111 1 1111 1 1

1

0x7F, Ox5F,
0xF3, oxDo,
OxFC, 0x90,
0x3F, 0x09,
oxCF, oxeB,
OxFE, OxFA,
0x00, 0x00,

NUM_OF_COLS, space_invaders, 55, RIGHT_TO_LEFT);

1 1
1 1
1 1
11
1

11

*/

void Display_Pitch_Shift()

{

char pitch_shift_message[7] [NUM_OF_COLS] = {

0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,

S N Y=y,

+;

Ox1E,
OxEF,
0xBD,
0x10,
0x04,
0x01,
0x00,

0x12,
0x42,
0x21,
0x12,
0x0A,
0x02,
0x00,

0x1E,
0x42,
ox21,
0xF5,
0x11,
ox04,

Fill_Buffer_With_Panning_Image(7,

0x10, 0x10,
0x42, OxE2,
0x21, 0x3D,
0x10, 0x10,
0xAQ, 0x40,
0x88, 0x50,
0x00, 0x00,

NUM_OF_COLS, pitch_shift_message, 56, RIGHT_TO_LEFT);

0xe0d, 0x00 },
0x38, 0x00 1},
0x00, 0x00 },
0x00, 0x00 } };

0x50, 0xeD
0x51, 0x82
0x68, 0x94
0x16, 0x29
0x8A, 0x41
0x0A, 0xB0
0x00, 0x00 }

B adn ke ke adn o4

0x00, OxFF }
0x00, OxFF }
0x00, OxFF }
0x00, OxFF }
0x00, OxFF }
0x20, OxFF }
0x00, 0x00 }

40

/%%
1
1111 1111 1 1 11111 1 1
1 1 1 11 1 1 11 1
1111 1 11111 1 1 11 1 1 1
1 1 1 11 1 11 1 1
1111 1111 1 1 11111 1 11

11

in hex:

void Display_Echo()
{

char echo_message[7] [NUM_OF_COLS] = {

0x00, Ox1E, 0x10, Ox1E, 0x10, Ox1E, 0x00, OXFF
0x00, OxF4, 0x84, 0x87, 0x84, OxF4, 0x00, OxXFF
0x00, Ox5F, 0x51, 0xD1l, 0x51, Ox5F, 0x00, OxFF
0x00, 0x00, 0x10, 0x28, 0x05, 0x02, 0x00, OXFF
0x00, 0x20, 0x50, 0x88, 0x04, 0x02, 0x01l, OXFF
0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x00, OXFF
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }

S R S N
B e e as s ad

+;

Fill_Buffer_With_Panning_Image(7, NUM_OF_COLS, echo_message, 56, RIGHT_TO_LEFT);

}
/%%

1111 111 11111 1111 1 1111 1111 1 1 11111
1 11 1 1 11 1 1 1 11 1

1111 1 1 1 1 1111 1 111111 1
1 1 1 1 11 1 1 1 11 1
1 111 1 1111 1 1111 1111 1 1 11111

11

*/
void Display_Pitch_Echo()
{

char pitch_echo_message[7] [NUM_OF_COLS] = {
0x00, 0x3D, 0x24, 0x3C, 0x20, 0x21, 0x00, OXFF
0x00, OxDF, 0x84, 0x84, 0x84, 0xC4, 0x00, OXFF
0x00, 0x79, 0x42, 0x41, 0x42, 0x79, 0x00, OXFF
0x00, Ox1E, 0x90, 0x1E, 0x90, Ox1E, 0x00, OxFF
0x00, OxF4, 0x84, 0x87, 0x84, OxF4, 0x00, OxFF
0x00, Ox5F, 0x51, 0xD1l, 0x51, Ox5F, 0x00, OxFF
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }

B e e an el ad

S N N Y=y,

h
Fill_Buffer_With_Panning_Image(7, NUM_OF_COLS, pitch_echo_message, 56, RIGHT_TO_LEFT);
}

void Display_Debugging

() A
Display_Sine_Wave();

void Display_Mode() {

Buffer_Clear();

if (pitch_shift_state == ENABLE_PITCH_SHIFT && echo_state == ENABLE_ECHO) {
Display_Pitch_Echo();

} else if (pitch_shift_state) {
Display_Pitch_Shift();

} else if (echo_state) {
Display_Echo();

} else {
Invade_Space();

+

}

/I*Clears out echo buffer to AD_Offset so when it's subtracted it becomes @
iﬁ{ine void Echo_Buffer_Clear()
¢ for (int i = @; i < ECHO_BUFFER_SIZE; i++)

¢ EchoBuffer[i] = AD_Offset;

EchoPointer = 0;
}

/*%
* Appends value to end of echo buffer
*/
inline void Echo_Buffer_Pushback(int16_t value)
{
EchoBuffer[EchoPointer] = value;

// increment and wrap around

EchoPointer++;

EchoPointer %= ECHO_BUFFER_SIZE;
}

/%%

* Returns value of EchoBuffer[EchoPointer - 1], wrapping the index around to ECHO_BUFFER_SIZE
*/

inline int16_t Echo_Buffer_Pop()

{
int index = EchoPointer + 1;
index %= ECHO_BUFFER_SIZE;
return EchoBuffer[index];

}

void Update_State()
{
if (button_state_PB11) {
previous_state_PB11 = 1;
} else {
if (previous_state_PB11) {
//falling edge triggered
pitch_shift_state = !(pitch_shift_state);

Display_Mode();

previous_state_PB1l = 0;
+

if (button_state_PC4) {
previous_state PC4 = 1;
} else {
if (previous_state_PC4) {
//falling edge triggered
echo_state = !(echo_state);

Display_Mode();

if (echo_state != ENABLE_ECHO)
{

}

/%%
*

KX K X X X X XXX XXX XXX XX

*/
voi

{

/7
/7
//

/7
/7
//

/7
//
//

/7
//
//

ClearEchoBuffer = TRUE;
}
else if (ClearEchoBuffer == TRUE)
{
// Zero out buffer
Echo_Buffer_Clear();
ClearEchoBuffer = FALSE;
}
previous_state_PC4 = 0;

if (button_state_PB1) {
previous_state_PBl = 1;
} else {
if (previous_state_PB1l) {
//falling edge triggered
Display_Mode();

previous_state_PBl = 0;

Name: TIM5_IRQHandler
Description: Time 5 interrupt service routine call 16,000 times a second.
Inputs:

None

Output:
None

Process:
Send audio signal to D/A converter
Sample audio input
Do echoing effect
Handle windowing state update
Update the LED display

Detect button press and remove bounce
Switch effects mode

d TIM5_IRQHandler(void)
intl6_t

AudioSignal;

TIMER_DEBUG_SIGNAL_ON;

Check for timer update interrupt
if (__HAL_TIM_GET_FLAG(&Timer5_16Khz, TIM_IT_UPDATE) !'= RESET)
{

Check for buffer full status

if(3 == Buffers [ANALOG_OUT_OFFSET].Full)
{

Output the Audio stream to the D/A converter

DAC —> DHR12R1 = Buffers[ANALOG_OUT_OFFSET].Buf [Buffers [ANALOG_OUT_OFFSET].Head];

Advanced the head pointer and check for end of buffer
Buffers [ANALOG_OUT_OFFSET] .Head++; //increment head

if(Buffers[ANALOG_OUT_OFFSET].Head >= SIZE)

43

{
//
// Set the head pointer to the start of the buffer
// Reset the buffer full status
//
Buffers [ANALOG_OUT_OFFSET] .Head
Buffers [ANALOG_OUT_OFFSET].Full

//

// Get values from adc and fill the buffer. when it is full reset the
// head pointer and set status to full then increment ALL buffers

// the & 0x@03 is to loop the buffers back to @ when they get to 4

// the << 3 is to increase the volume due to only being a 12b adc

//

//

// See if the buffer is not full

//
if(@ == Buffers[ADCPTR].Full)
{

//

// Take a reading of the analog input pin and remove the offset signal
//
AudioSignal = HAL_ADC_GetValue(&AudioAdc) - AD_Offset;

//
// If enabled do the echo effect on the raw signal
//
if (echo_state == ENABLE_ECHO)
{
// pop from one index ahead of current EchoPointer
// (which was the AudioSignal value one second ago)
Buffers [ADCPTR].Buf [Buffers [ADCPTR].Head] = AudioSignal *
(Echo_Buffer_Pop() - AD_Offset) *x ECHO_DAMPING;

Echo_Buffer_Pushback(AudioSignal); // pushback current AudioSignal

}
else
{
//
// No echo effect. just store the data in the buffer
//
Buffers [ADCPTR].Buf [Buffers[ADCPTR].Head] = AudioSignal;
}
//
// Update the head pointer
//
Buffers [ADCPTR] .Head++;
//
// See if the buffer is full
//
if(Buffers[ADCPTR].Head >= SIZE)
{
//

// If this statement returns true then the FFT portion of the code has failed.
//
if ((FALSE == WindowingDone) && (@ != WindowingState))

{
//
// Fatal error
//
while (TRUE);
¥
//
// Advance to the next buffer
//

(1-ECHO_DAMPING)

44

Buffers [ADCPTR] .Head = 0; // Reset the head pointer
Buffers [ADCPTR].Full = 1; // Buffer Full = 1
ADCPTR = (ADCPTR + 1) & BUFFERS_MASK;

//
// changes the state for the overlapping windowing system
//
switch(WindowingState)
{
case 0:
WindowingState = 1;
WindowingDone = FALSE;
break;
}
case 1:
{
WindowingState = 2;
WindowingDone = FALSE;
break;
}
case 2:
{
WindowingState = 3;
WindowingDone = FALSE;
break;
}
case 3:
{
WindowingState = 4;
WindowingDone = FALSE;
break;
}
case 4:
{
WindowingState = 3;
WindowingDone = FALSE;
break;
default:
{
//
// Invalid state. Should not get here
//
while (TRUE);
break;
}
}
}
}
//
// Start another conversion
//
HAL_ADC_Start(&AudioAdc);
//
// Clear the timer update interrupt flag
//
__HAL_TIM_CLEAR_FLAG(&Timer5_16Khz, TIM_IT_UPDATE);
+
TIMER_DEBUG_SIGNAL_OFF;
}
/%%

*x A FFT table utility function that shifts the buffer elements so buffer[i] = buffer[i-PitchOffset]
* Starts at start_index, which is the highest index and stops before end_index

* Clears all elements for last PitchOffset number of elements with 0's.
*/
inline void ShiftBufferElementsUp(float *Buffer, int start_index, int end_index, int PitchOffset)
{
int PitchShift;

// Start at highest index, start_index, and grab elements from smaller indices,
// stopping before writing past end_index

PitchShift = start_index;

while (PitchShift >= end_index + PitchOffset)

{
Buffer[PitchShift] = Buffer[PitchShift-PitchOffset];
Buffer[PitchShift+1] = Buffer[(PitchShift+1)-PitchOffset];
PitchShift -= 2;

¥

// Clear the remaining (duplicated) portion of the table
while (PitchShift >= end_index)
{

Buffer[PitchShift] = 0;

PitchShift——;

}

/%%
* A FFT table utility function that shifts the buffer elements so buffer[i] = buffer[i+PitchOffset]
*x Starts at start_index, which is the lowest index and stops before end_index
* Clears all elements for last PitchOffset number of elements with 0's.
*/
inline void ShiftBufferElementsDown (float xBuffer, int start_index, int end_index, int PitchOffset)
{
int PitchShift;

// Start at lowest index, start_index, and grab elements from higher indices,
// stopping before writing past end_index

PitchShift = start_index;

while (PitchShift < (end_index - PitchOffset))

{

Buffer[PitchShift] = Buffer[PitchShift+PitchOffset];
Buffer[PitchShift+1] = Buffer[(PitchShift+1)+PitchOffset];
PitchShift += 2;

¥

// Clear the remaining (duplicated) portion of the table
while (PitchShift < end_index)

{
Buffer[PitchShift] = 0;
PitchShift++;
¥
}
void PitchShift(float *Buffer)
{
//

// Pitch Shift by 32 bins in the FFT table
// Each bin contains one complex number comprised of one real and one imaginary floating point number
//
int PitchOffset = (pitch_shift_offset >= 0)? pitch_shift_offset x 2: pitch_shift_offset *x -2;
//between -32 and 32, take absolute value

// The FFT table is 2048 in length
const int FFT_table_size = 2048;

// The lower half, the indices [@, 1024), corresponds to positive frequencies
// The upper half, the indices [1024, 2048), corresponds to negative frequencies

// Shift frequencies up effect
if (pitch_shift_offset > 0)
{

// Shift the lower half of the FFT table up
ShiftBufferElementsUp(Buffer, (FFT_table_size / 2 - 2), 0, PitchOffset);

// Shift the upper half of the FFT table down
ShiftBufferElementsDown(Buffer, FFT_table_size / 2, FFT_table_size, PitchOffset);

46

// Shift frequencies down effect
if (pitch_shift_offset < 0)

{
// Shift the lower half of the FFT table down
ShiftBufferElementsDown(Buffer, @, FFT_table_size / 2, PitchOffset);
// Shift the upper half of the FFT table up
ShiftBufferElementsUp(Buffer, (FFT_table_size - 2), FFT_table_size / 2, PitchOffset);
¥
}
int ConvertPitchShiftOffset(void)
{
int
ADCResult;
//
// Start a conversion
//
HAL_ADC_Start(&PitchShiftOffsetAdc);
//
// Wait for end of conversion
//
HAL_ADC_PollForConversion(&PitchShiftOffsetAdc, HAL_MAX_DELAY);
//
// Get the 8 bit result
//
ADCResult = HAL_ADC_GetValue(&PitchShiftOffsetAdc);
return(ADCResult);
}
int

main(int argc, charx argv[])

// At this stage the system clock should have already been configured
// at high speed.

unsigned int loop;
HAL_Init();// initializing HAL drivers

__GPIOA_CLK_ENABLE(); // enabling clock for port
__GPIOB_CLK_ENABLE(); // enabling clock for port
__GPIOC_CLK_ENABLE(); // enabling clock for port

GPIOD_CLK_ENABLE(); // enabling clock for port
__GPIOE_CLK_ENABLE(); // enabling clock for port

moow>

for(loop = @; loop < NUMBER_OF_BUFFERS; loop++)
{

Buffers[loop].Head = 0;
Buffers[loop].Full = 0;
memset ((PTR)&Buffers[loop] Buf, @, sizeof(Buffers[loop].Buf));

¥
InitSystemPeripherals();

Configure_Ports();
Configure_LED_Display();

Display_Al1_Off();
// Display_Scan_Across_LEDs();
Display_Sine_Wave();
// Start timers LAST to ensure that no interrupts based on timers will

// trigger before initialization of board is complete
ConfigureTimers();

HAL_GPIO_WritePin(GPIOD, GPIO_PIN_12, 1); // Signal initialization is complete on on-board LED

47

//
//
//
//

}

int previous_state_PAQ = 0;

Take an Offset reading to remove the DC offset from the analog reading
Source PC2 (ADC_CHANNEL_12)

AD_Offset = ConvertReference();

// Infinite loop
while (1)
{
if (button_state_PA@) {
previous_state PAQ = 1;
} else {
if (previous_state_PAQ) {
//falling edge triggered
Buffer_Clear();
Display_Debugging();

previous_state_PAQ = 0;
¥

Update_State();

WindowingFFT();

void TIM3_IRQHandler() //Timer3 interrupt function

{

_ HAL_TIM_CLEAR_FLAG(&DisplayTimer, TIM_IT_UPDATE);//clear flag status

// This interrupt service routine is timer driven at 200 Hz

// If the current reading is the same as the reading during the previous

// interrupt, then the button state is reliable and we feed this to the rest
// of the system

// Check on board button
if (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_0)) {
// button is pressed.
if (previous_button_reading_PA@) {
// if this is consistent with previous reading, set state to 1
button_state PAQ = 1;
¥
//update previous reading to current reading
previous_button_reading_PA@ = 1;
} else {
// button is not pressed
if (!previous_button_reading_PA@) {
// if this is consistent with previous reading, set state to 0
button_state PAQ = 0;
¥
//update previous reading to current reading
previous_button_reading_PA@ = 0;
¥

// Check PC1 button
if (HAL_GPIO_ReadPin(GPIOB, BUTTON_1)) {
// button is pressed.
if (previous_button_reading_PB11) {
// if this is consistent with previous reading, set state to 1
button_state_PB11 = 1;
}
//update previous reading to current reading
previous_button_reading_PB1l = 1;
} else {
// button is not pressed
if (!previous_button_reading_PB11) {
// if this is consistent with previous reading, set state to 0
button_state_PB11 = 0;
}
//update previous reading to current reading
previous_button_reading_PB1l = 0;

48

}

/%%

// Check PC4 button
if (HAL_GPIO_ReadPin(GPIOC, BUTTON_2)) {
// button is pressed.
if (previous_button_reading_PC4) {
// if this is consistent with previous reading, set state to 1
button_state_PC4 = 1;
¥
//update previous reading to current reading
previous_button_reading_PC4 = 1;
} else {
// button is not pressed
if (!previous_button_reading_PC4) {
// if this is consistent with previous reading, set state to 0
button_state_PC4 = 0;
¥
//update previous reading to current reading
previous_button_reading_PC4 = 0;
¥

// Check PB1 button
if (HAL_GPIO_ReadPin(GPIOB, BUTTON_3)) {
// button is pressed.
if (previous_button_reading_PB1) {
// if this is consistent with previous reading, set state to 1
button_state PB1 = 1;
}
//update previous reading to current reading
previous_button_reading_PBl = 1;
} else {
// button is not pressed
if (!previous_button_reading_PB1) {
// if this is consistent with previous reading, set state to 0
button_state PB1 = 0;
}
//update previous reading to current reading
previous_button_reading_PBl = 0;
}

// Check potentiometer of pitch_shift_offset if ENABLE_PITCH_SHIFT
if (pitch_shift_state == ENABLE_PITCH_SHIFT) {
int pitch_shift_offset_raw = ConvertPitchShiftOffset(); // 0 to 255

pitch_shift_offset_raw = 64.0/255 *x pitch_shift_offset_raw; // reduce range to 0 to 64
pitch_shift_offset —= 32; // shift range to -32 to 32;

} else {
pitch_shift_offset = 0;

+

* WARNING: The LED array MUST be advanced from
* increasing rows and columns

*/

void TIM4_IRQHandler() //Timer4 interrupt function

{

_ HAL_TIM_CLEAR_FLAG(&LEDDisplayTimer, TIM_IT_UPDATE); //clear flag status

if (current_row >= NUM_OF_COLS) {
// at end of rows, need to advance to next column

current_col++; //advance to next column
current_row = @; //restart row

if (current_col >= NUM_OF_COLS) {
// if the image has been displayed more than the number of times required
// to achieve the desired REFRESH_RATE, pull the next image from buffer
current_frame_number++;
if (current_frame_number > times_to_repeat_frame) {
Buffer_Pop(current_frame);

current_frame_number = 0; //restart counting
}
current_col = @; //restart column

49

// columns only need to be updated when the column number updates
// for each case, turn off previous column, turn on current column
switch(current_col) {
case 0:
Write_Col_7(GPIO_PIN_RESET);
Write_Col_@(GPIO_PIN_SET);
break;
case 1:
Write_Col_0(GPIO_PIN_RESET);
Write_Col_1(GPIO_PIN_SET);
break;
case 2:
Write_Col_1(GPIO_PIN_RESET);
Write_Col_2(GPIO_PIN_SET);
break;
case 3:
Write_Col_2(GPIO_PIN_RESET);
Write_Col_3(GPIO_PIN_SET);
break;
case 4:
Write_Col_3(GPIO_PIN_RESET);
Write_Col_4(GPIO_PIN_SET);
break;
case 5:
Write_Col_4(GPIO_PIN_RESET);
Write_Col_5(GPIO_PIN_SET);
break;
case 6:
Write_Col_5(GPIO_PIN_RESET);
Write_Col_6(GPIO_PIN_SET);
break;
case 7:
Write_Col_6(GPIO_PIN_RESET);
Write_Col_7(GPIO_PIN_SET);
break;
default:
//Should never enter this
trace_printf("Invalid state in switch(current_col)");
break;

b

char enable_row = current_frame[current_col]l & 1 << current_row;
// for each case, turn off previous row, turn on current row
switch(current_row) {
case 0:
if (enable_row) { Write_Row_0(GPIO_PIN_SET); }
Write_Row_7(GPIO_PIN_RESET);
break;
case 1:
if (enable_row) { Write_Row_1(GPIO_PIN_SET); }
Write_Row_0(GPIO_PIN_RESET);
break;
case 2:
if (enable_row) { Write_Row_2(GPIO_PIN_SET); }
Write_Row_1(GPIO_PIN_RESET);
break;
case 3:
if (enable_row) { Write_Row_3(GPIO_PIN_SET); }
Write_Row_2(GPIO_PIN_RESET);
break;
case 4:
if (enable_row) { Write_Row_4(GPIO_PIN_SET); }
Write_Row_3(GPIO_PIN_RESET);
break;
case 5:
if (enable_row) { Write_Row_5(GPIO_PIN_SET); }
Write_Row_4(GPIO_PIN_RESET);
break;
case 6:
if (enable_row) { Write_Row_6(GPIO_PIN_SET); }
Write_Row_5(GPIO_PIN_RESET);
break;
case 7:
if (enable_row) { Write_Row_7(GPIO_PIN_SET); }

}

Write_Row_6(GPIO_PIN_RESET);
break;
default:
//Should never enter this
trace_printf("Invalid state in switch(current_row)");
break;
+

current_row++; //move to next row

void TIM2_IRQHandler() //Timer2 interrupt function

{

bars

__HAL_TIM_CLEAR_FLAG(&FrequencySpectrumGeneratorTimer, TIM_IT_UPDATE);//clear flag status
// This interrupt service routine is timer driven at 50 Hz

// The FFT table is 2048 in length
const int FFT_table_size = 2048;

// Look at lower half of FFT table where higher indices correspond to higher frequencies

// These indices are [0, 1023].

// Each complex number takes up two elements in the float array. (One for real, one for imaginary)
// We break 1024 elements, or 512 bins, into 8 groups, one for each column of the LED matrix

// This means we investigate 512 / 8, or 64 bins, for each group

// TODO Since octaves are multiplicative, ideally we investigate in powers of 2

// For each bin, we take max(real, imaginary) and add to the float. We are avoiding taking

// the magnitude using sqrt(real”2 + imaginary”~2) since sqrt is processor intensive and

// we don't need the accuracy. max(real,imaginary) is an adequate approximation since

// the max will dominate the square root anyway

// group_sum / group_num_bins gives the average sort-of-magnitude in that group
// average sort-of-magnitude / normalizing_constant brings the magnitude to a normalized_range
// normalized_range x 8 gives the number of LEDs to light up in the column

float group_sum = @; // holds the accumulated sum for each group, used to average
const int group_num_bins = 64; // 64 bins per group, which is converted to a column on the display

const float normalizing_constant = 100; // divide the average by this, to normalize and convert to

int height_of_bar = @; // the height to make the frequency bar
char frequency_spectrum_frame[NUM_OF_COLS]; // to hold the frame being generated

int bins_analyzed = @; // the number of bins already analyzed in the group
int current_col = @; // tracking which column we are in

if (Buffer_Is_Empty())
{
// Only generate the frequency spectrum frame if nothing is being displayed on LED display

for (int i = @0; i < FFT_table_size / 2; i += 2)

{
// Add max(procBuf[i], procBuf[i+1]) to group_sum
group_sum += (procBuf[i] > procBuf[i+1])? procBuf[il: procBuf[i+1];
bins_analyzed++;

// if we have already analyzed the group, create a bar
if (bins_analyzed >= group_num_bins x 2)
{

group_sum /= group_num_bins; //average magnitude

group_sum /= normalizing_constant; // normalize

height_of_bar = (int) (group_sum * 8); // calculate hight of bar
Create_Column_With_Height(frequency_spectrum_frame, current_col, height_of_bar);
// reset temporary variables

bins_analyzed = 0;

group_sum = 0;

height_of_bar = 0;

// increment to next column
current_col++;

51

}

}
Buffer_Pushback(frequency_spectrum_frame); // add it to buffer

void InitSystemPeripherals(void)

{

//
//
//

//
/7
//

/7
//
//

/7
/7
/7
//
//
//

/7
//
//

//
/7
//

//
/7
//
//

/7
//
//

//
//

ADC_ChannelConfTypeDef
sConfig;

Enable device clocks TIMER and GPIO port E

__HAL_RCC_TIM5_CLK_ENABLE();
—_HAL_RCC_GPIOE_CLK_ENABLE();
—_HAL_RCC_DAC_CLK_ENABLE();

Enable ADC3 and GPIO port C clocks

__HAL_RCC_ADC1_CLK_ENABLE()
—_HAL_RCC_ADC2_CLK_ENABLE()
—_HAL_RCC_ADC3_CLK_ENABLE()
—_HAL_RCC_GPIOC_CLK_ENABLE(
—_HAL_RCC_GPIOA_CLK_ENABLE(
—_HAL_RCC_GPIOD_CLK_ENABLE(

(

)
)
)
~_HAL_RCC_GPIOB_CLK_ENABLE()

Enable GPIO Port E15 as an output (used for timing with scope)

GpioInitStructure.Pin = GPIO_PIN_15 | GPIO_PIN_13;
GpioInitStructure.Mode = GPIO_MODE_OUTPUT_PP;
GpioInitStructure.Speed = GPIO_SPEED_FREQ_MEDIUM;
GpioInitStructure.Pull = GPIO_PULLUP;
GpioInitStructure.Alternate = 0;
HAL_GPIO_Init(GPIOD, &GpioInitStructure);

Enable GPIO port Al as an analog output
GpioInitStructure.Pin = GPIO_PIN_4;
GpioInitStructure.Mode = GPIO_MODE_ANALOG;
GpioInitStructure.Speed = GPIO_SPEED_FREQ_MEDIUM;
GpioInitStructure.Pull = GPIO_NOPULL;
GpioInitStructure.Alternate = 0;
HAL_GPIO_Init(GPIOA, &GpioInitStructure);

EnableAudioCodecPassThru();

Configure DAC channel 1
AudioDac.Instance = DAC;
HAL_DAC_Init(&AudioDac);

DacInitStructure.DAC_Trigger = DAC_TRIGGER_NONE;
DacInitStructure.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;
HAL_DAC_ConfigChannel(&AudioDac, &DacInitStructure ,DAC_CHANNEL_1);

Enable DAC channel 1
HAL_DAC_Start(&AudioDac, DAC_CHANNEL_1);

Configure A/D converter channel 3

Enable GPIO port C1l, C2 and C5 as an analog input

52

//
GpioInitStructure.Pin = GPIO_PIN_2 | GPIO_PIN_5; //GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_5;
GpioInitStructure.Mode = GPIO_MODE_ANALOG;
GpioInitStructure.Speed = GPIO_SPEED_FREQ_MEDIUM;
GpioInitStructure.Pull = GPIO_NOPULL;
GpioInitStructure.Alternate = 0;
HAL_GPIO_Init(GPIOC, &GpioInitStructure);

//
// Configure audio A/D (ADC2) for the audio stream
//

AudioAdc.Instance = ADC2;

AudioAdc.Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_DIV2;
AudioAdc.Init.Resolution = ADC_RESOLUTION_12B;
AudioAdc.Init.ScanConvMode = DISABLE;
AudioAdc.Init.ContinuousConvMode = DISABLE;
AudioAdc.Init.DiscontinuousConvMode = DISABLE;
AudioAdc.Init.NbrOfDiscConversion = 0;
AudioAdc.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1;
AudioAdc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
AudioAdc.Init.NbrOfConversion = 1;

AudioAdc.Init.DataAlign = ADC_DATAALIGN_RIGHT;
AudioAdc.Init.DMAContinuousRequests = DISABLE;
AudioAdc.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
HAL_ADC_Init(&AudioAdc);

//
// Select PORTC pin 5 (ADC_CHANNEL_15) for the audio stream
//
sConfig.Channel = ADC_CHANNEL_15;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_112CYCLES;
sConfig.0ffset = 0;

HAL_ADC_ConfigChannel(&AudioAdc, &sConfig);
HAL_ADC_Start(&AudioAdc);

//

// Configure level shifting reference A/D (ADC1)

//
ReferenceAdc.Instance = ADC1;
ReferenceAdc.Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_DIV2;
ReferenceAdc.Init.Resolution = ADC_RESOLUTION_12B;
ReferenceAdc.Init.ScanConvMode = DISABLE;
ReferenceAdc.Init.ContinuousConvMode = DISABLE;
ReferenceAdc.Init.DiscontinuousConvMode = DISABLE;
ReferenceAdc.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1;
ReferenceAdc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
ReferenceAdc.Init.NbrOfConversion = 1;
ReferenceAdc.Init.NbrOfDiscConversion = 0;
ReferenceAdc.Init.DataAlign = ADC_DATAALIGN_RIGHT;
ReferenceAdc.Init.DMAContinuousRequests = DISABLE;
ReferenceAdc.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
HAL_ADC_Init(&ReferenceAdc);
HAL_ADC_Start(&ReferenceAdc);

GpioInitStructure.Pin = GPIO_PIN_1;
GpioInitStructure.Mode = GPIO_MODE_ANALOG;
GpioInitStructure.Speed = GPIO_SPEED_FREQ_MEDIUM;
GpioInitStructure.Pull = GPIO_NOPULL;
GpioInitStructure.Alternate = 0;
HAL_GPIO_Init(GPIOA, &GpioInitStructure);

//

// Configure pitch shift offset A/D (ADC3)

//
PitchShiftOffsetAdc.Instance = ADC3;
PitchShiftOffsetAdc.Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_DIVZ2;
PitchShiftOffsetAdc.Init.Resolution = ADC_RESOLUTION_8B;
PitchShiftOffsetAdc.Init.ScanConvMode = DISABLE;
PitchShiftOffsetAdc.Init.ContinuousConvMode = DISABLE;
PitchShiftOffsetAdc.Init.DiscontinuousConvMode = DISABLE;
PitchShiftOffsetAdc.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1;
PitchShiftOffsetAdc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;

PitchShiftOffsetAdc.Init.NbrOfConversion = 1;
PitchShiftOffsetAdc.Init.NbrOfDiscConversion = 0;
PitchShiftOffsetAdc.Init.DataAlign = ADC_DATAALIGN_RIGHT;
PitchShiftOffsetAdc.Init.DMAContinuousRequests = DISABLE;
PitchShiftOffsetAdc.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
HAL_ADC_Init(&PitchShiftOffsetAdc);

HAL_ADC_Start(&PitchShiftOffsetAdc);

//
// Select PORTA pin 1 (ADC_CHANNEL_1) for the pitch offset
//
sConfig.Channel = ADC_CHANNEL_1;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_112CYCLES;
sConfig.0ffset = 0;

HAL_ADC_ConfigChannel(&PitchShiftOffsetAdc, &sConfig);
HAL_ADC_Start(&PitchShiftOffsetAdc);

//

// Initialize timer to 16Khz

//
Timer5_16Khz.Instance = TIM5;
Timer5_16Khz.Init.CounterMode = TIM_COUNTERMODE_UP;
Timer5_16Khz.Init.Period = 250;
Timer5_16Khz.Init.Prescaler = 20;
Timer5_16Khz.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
HAL_TIM_Base_Init(&Timer5_16Khz);

//

// Enable the timer interrupt

//
HAL_NVIC_SetPriority(TIM5_IRQn, @, 0);
HAL_NVIC_EnableIRQ(TIM5_IRQn);

__HAL_TIM_ENABLE_IT(&Timer5_16Khz, TIM_IT_UPDATE);

//
// Enable timer 5 update interrupt
//
__HAL_TIM_ENABLE(&Timer5_16Khz);

}

int ConvertAudio(void)
{
int
ADCResult;

//
// Start a conversion
//
HAL_ADC_Start(&AudioAdc);

//
// Wait for end of conversion
//
HAL_ADC_PollForConversion(&AudioAdc, HAL_MAX_DELAY);

//
// Get the 12 bit result
//
ADCResult = HAL_ADC_GetValue(&AudioAdc);

return(ADCResult);
}

int ConvertReference(void)

int
ADCResult;

ADC_ChannelConfTypeDef sConfig;

//

54

// Select the channel to convert and start the conversion
//
sConfig.Channel = ADC_CHANNEL_12;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_112CYCLES;
sConfig.0ffset = 0;

HAL_ADC_ConfigChannel(&ReferenceAdc, &sConfig);

//
// Start a conversion
//
HAL_ADC_Start(&ReferenceAdc);

//
// Wait for end of conversion
//
HAL_ADC_PollForConversion(&ReferenceAdc, HAL_MAX_DELAY);

//
// Get the 12 bit result
//
ADCResult = HAL_ADC_GetValue(&ReferenceAdc);

return(ADCResult);

#pragma GCC diagnostic pop

//

55

