
 1

 Audio Effects Project
ECE 299

July 29, 2018

Robert Lee
Declan McIntosh

 2

This page was intentionally left blank.

 i

Acknowledgment

We would like to thank several people that have significantly helped during the progress
of this project. We would like to acknowledge Brent, the laboratory technician at the
University of Victoria, for his help detailing the specific implementation of the Fast Fourier
Transform used in this project and for writing the FFT code. We would like to also thank
Brent for helping confirm the validity of the deigned circuits before the submission of these
circuits to the manufacturer.

We would like to thank Dr. T. Ilamparithi for his guidance and support, and for his lectures
which gave us the theoretical knowledge required for this project.

We would like to acknowledge the help provided by our tutorial instructor Alireza
Rahimpour during the experiments that taught the tools required for this project.

Further recognition of the manufacturer used, jlcpcb.com, for manufacturing a high quality
and effective printed circuit board in a short period of time, and to DHL for their strong
logistics network to move the ordered PCBs from Shenzhen, China to Victoria, BC, Canada
remarkable quickly.

Finally, the writers of this report would like to extend our appreciation to our friends and
family who have always supported us.

 ii

Contents

Acknowledgment ... i
Contents .. ii
List of Tables ... iii
List of Figures .. iv
I. Project Goal .. 1
II. Constraints .. 1
III. Requirement Specifications .. 1
IV. Bill of Materials .. 4
V. Circuit Schematic & PCB ... 8
VI. Testing & Validation ... 15
VII. Conclusion & Recommendations ... 20
References ... 22
Appendix A – Enclosure ... 23
Appendix B – Gantt Chart for Hypothetical Projects ... 27

Implementation using the STM32F4 Discovery Board ... 27
Implementation using the TMS320F28035 Piccolo development board 27

Appendix C – Sample Code .. 31

 iii

List of Tables

Table 1: Bill of Materials [6] .. 5
Table 2: Component Choice Justification ... 7

 iv

List of Figures

Figure 1: Voltage Reference Schematic ... 2
Figure 2: DAC Quantization Error Amelioration Circuit Schematic 3
Figure 3: Calculator results for a cutoff frequency of ~10.4 kHz 3
Figure 4: LM386 Schematic ... 4
Figure 5: Audio FX: Logic and Audio Signal Processing Board 9
Figure 6: Audio FX: LED Array Board .. 10
Figure 7: Logic and Audio Signal Processing Board PCB Layout 11
Figure 8: Audio FX: LED Array Board PCB Layout ... 12
Figure 9: Logic and Audio Signal Processing Board Bare PCB 13
Figure 10: Audio FX: LED Array Board Bare PCB ... 13
Figure 11: Logic and Audio Signal Processing Board Populated PCB 14
Figure 12: LED Array Board Populated PCB ... 15
Figure 13: Oscilloscope display of the audio amplifier scaling the input signal by
approximately 20 times. Yellow corresponds to output and green corresponds to input. 19
Figure 14: Oscilloscope display showing the attenuation of a signal past the cut-off
frequency of 10.4kHz. Green corresponds to input and yellow corresponds to output on the
same scale. .. 20
Figure 15: Enclosure for the Audio Effects board and LED display. Note the agronomical
button placement on the face of the product. .. 23
Figure 16: The rear of the enclosure, showing the mounting hole locations for the main
circuit PCB. ... 24
Figure 17: Multiple views of the enclosure designed using SolidWorks a 25
Figure 18: Gantt chart for first hypothetical scenario: design using STM32F4 Discovery
Board ... 29
Figure 19: Gantt chart for second hypothetical scenario: design using TMS320F28035
Piccolo development board ... 29

 1

I. Project Goal

The goal of this project was to create an audio player which can take an analog input and
perform some transformations (pitch and echo) on the music, then output this modified music with
an imbedded speaker. This unit should have a convenient user interface and a vibrant display.

II. Constraints

Several constraints were placed on the project by the customer. The project required the
use of the STM32F4 Discovery board (STM32 board) for digital signal processing (DSP) and
logical processing. The board and all peripherals on the printed circuit board (PCB) must be
powered solely by a USB port on a computer. USB ports will provide 5 V at 0.1 A for low power
devices before handshaking negotiations are required [1]. The STM32 board must be used to
implement pitch shifting and add an echo effect. The software must be written in the Eclipse
Integrated Development Environment (IDE). The PCB must be designed using KiCAD. The
designed enclosure (see Appendix A) must be designed in SolidWorks. The PCB and all
components must be RoHS (Restriction of Hazardous Substances) compliant. A cost constraint of
$150 CAD was decided by the group.

III. Requirement Specifications

The product must display the current effect which is added to the audio. The minimum
requirement is through the use of a four-digit seven-segment LED display. However, to facilitate
enhanced customizability, an eight-by-eight LED matrix was used. The display was drawn one
pixel at a time, progressively down each column, then incrementing up the columns. The chosen
refresh rate for the entire display was 250 Hz, the minimum frequency experimentally found to
eliminate flickering. Because there are 64 LEDs that need to be individually lit for one refresh of
the entire display, the timer frequency driving the interrupt service routine (ISR) was chosen to be

250
$%&&	()*+&,-	./$./*0

*/123(
	× 	64

789*

$%&&	()*+&,-	./$./*0
= 16	<=> (1)

The refresh rate for the entire display was increased to 5000 Hz to move the noise that was
introduced to the speaker into the inaudible frequency range. Thus, the timer frequency was
changed to

5000
$%&&	()*+&,-	./$./*0

*/123(
	× 	64

789*

$%&&	()*+&,-	./$./*0
= 320	<=> (2)

To achieve this, the prescaler was chosen to be 105, and the timer period was chosen to be 2, so
that, for TIMER4’s maximum clock of 84 MHz, the timer tick frequency and timer frequency can
be calculated to be [2]

@ABCD@AE<FDCGHCIEJ =
K,L	1&21M	$./N%/31-

O./*1,&/.PQ
=

RS	TTT	TTT	UV

QTSPQ
= 800	000	=> (3)

 2

@ABCDFDCGHCIEJ =
X)Y/.X)1MZ./N%/31-

O/.)2(PQ
=

RTT	TTT	UV

QPQ
= 400	<=> (4)

which is near the desired frequency.

Button debouncing was implemented in software using another timer, TIMER3, at 200 Hz driving
an ISR that reads the button states. The ISR stores the previous state of the button in memory and
compares it to the current state. If the two states are consistent across readings, the ISR updates a
global button state variable that fully encapsulates the button debouncing, so it can be reliably used
in other functions. If pitch shifting is enabled, this ISR also reads the 8-bit potentiometer voltage
value and writes this to a global variable. Using similar calculations to the equations shown above,
the prescaler was chosen to be 49, and the period was chosen to be 8399, to give a timer frequency
of 200 Hz.

There were three major analog circuits within the PCB:
- Level shifter circuit: since the input signal is sinusoidal centered at 0 V, and the Analog-

to-Digital Converter (ADC) accepts a voltage range from 0 V to 3 V, the input signal must
be shifted up.

- Digital-to-Analog Converter (DAC) Quantization Error Amelioration Circuit: since the
DAC can only output discrete voltages, not a continuous range of voltages, there are a lot
of jagged bumps in the signal. These arise as high-frequency noise in the signal and are
removed with a lowpass filter.

- Audio amplification and bandpass filtering prior to output to speaker: the LM386 amplifier
was operated with a gain of 20 [3]. The bandpass filter consists of a DC blocking capacitor
and a lowpass filter.

The level shifter circuit is comprised of a voltage reference connected to a voltage follower. This
is then used to voltage divide the input signal using an operational amplifier. The following
equation in the datasheet [4] and the following schematic (see Figure 1) were used,

Figure 1: Voltage Reference Schematic

[7_9^_\)_3,& = 1.24(
bcd
bce

+ 1)					(5)	

where	 [7_9^_\)_3,&	 is	 the	 voltage	 reference	 value	 (volts),	 and	 z{|	 and	 z{R	 are	 resistors	
(ohms).	z{| was set to 100 kΩ and z{R was set to 500 kΩ, so the reference voltage was 1.488 V.

 3

The DAC quantization error amelioration circuit was implemented using a second-order active
lowpass filter. The following schematic (see Figure 2) and the online calculator [5] (see Figure 3)
were used:

Figure 2: DAC Quantization Error Amelioration Circuit Schematic

Figure 3: Calculator results for a cutoff frequency of ~10.4 kHz

where ~, is capacitor ~�, ~Ä is capacitor ~R, z, and zÄ are resistors zQÅ and zQ�. The calculated
cutoff frequency was approximately 10.4 kHz. The ideal cutoff frequency would be 8 kHz, but
limitations were found in the available capacitor and resistor sizes.

 4

The LM386 audio amplifier was operated with a gain of 20 when the following circuit is used (see
Figure 4).

Figure 4: LM386 Schematic

where R26 and CAP were left empty. This circuit was the suggested circuit on the datasheet for a
gain of 20 [3].

The code is broken down into the following major components, and is supplied as Appendix C:

- Timer-run interrupt service routine to drive the LED 8-by-8 matrix display, as described
above

- Timer-run interrupt service routine to poll input buttons and pitch shifting potentiometer,
as described above

- Timer-run interrupt service routine to read ADC audio input, and to output processed data
using the DAC

- Finite State Machine logic to determine the current state, and to display it on the LED
matrix display

- LED matrix display backend functions and data, to enable the user to fill the display buffer
with up to 10 seconds of images, played at 25 frames per second

IV. Bill of Materials

The following tables detail all the required materials for the implemented solution
excluding the PCB itself and the enclosure.

 5

Table 1: Bill of Materials [6]

Label in
schematic

Component Description Part number Cost/unit
quantity
(CAD)

Source of cost information

8_Ohm1 Speaker CDMG15008-03A-
ND 3.13 DigiKey

C1 0.05ÇF	Capacitor BC2686CT-ND 0.28 DigiKey
C3 0.05ÇF	Capacitor BC2686CT-ND 0.28 DigiKey
C4 Unused	Capacitor Unused Unused Unused
C6 11IF	Capacitor SA105C143JAR-

ND 0.19 DigiKey

C7 220ÇF	Capacitor 1189-1546-3-ND 0.39 DigiKey
C8 22IF	Capacitor SA105C143JAR-

ND 0.19 DigiKey

C9 220ÇF	Capacitor	 1189-1546-3-ND 0.39 DigiKey
P1 100k Potentiometer P160KNP-

0EC15A100K 1.06 DigiKey

P2 100k Potentiometer P160KNP-
0EC15A100K 1.06 DigiKey

P3 100k Potentiometer P160KNP-
0EC15A100K 1.06 DigiKey

P4 100k Potentiometer P160KNP-
0EC15A100K 1.06 DigiKey

P5 100k Potentiometer P160KNP-
0EC15A100K 1.06 DigiKey

R1 100k Ohm 1/16W
Resistor

CF14JT100KCT-
ND 0.15 DigiKey

R2 10k Ohm 1/16W
Resistor

CF14JT10K0CT-
ND 0.15 DigiKey

R3 10k Ohm 1/16W
Resistor

CF14JT10K0CT-
ND 0.15 DigiKey

R4 100k Ohm 1/16W
Resistor

CF14JT100KCT-
ND 0.15 DigiKey

R5 10k Ohm 1/16W
Resistor

CF14JT10K0CT-
ND 0.15 DigiKey

R6 100k Ohm 1/16W
Resistor

CF14JT100KCT-
ND 0.15 DigiKey

R7 100k Ohm 1/16W
Resistor

CF14JT100KCT-
ND 0.15 DigiKey

R8 10k Ohm 1/16W
Resistor

CF14JT10K0CT-
ND 0.15 DigiKey

R9 10k Ohm 1/16W
Resistor

CF14JT10K0CT-
ND 0.15 DigiKey

R10 100k Ohm 1/16W
Resistor

CF14JT100KCT-
ND 0.15 DigiKey

R11 50k Ohm 1/16W
Resistor

CF18JT150KCT-
ND 0.15 DigiKey

R12 10k Ohm 1/16W
Resistor

CF14JT10K0CT-
ND 0.15 DigiKey

 6

R13 10k Ohm 1/16W
Resistor

CF14JT10K0CT-
ND 0.15 DigiKey

R14 10 OHM 1W 5% AXIAL FW10A10R0JACT-
ND 0.81 DigiKey

R15 1k Ohm 1/16W
Resistor

CF14JT1K00CT-
ND 0.15 DigiKey

R16 1k Ohm 1/16W
Resistor

CF14JT1K00CT-
ND 0.15 DigiKey

R17 10 Ohm 1W Resistor FW10A10R0JACT-
ND 0.81 DigiKey

R18 100k Ohm 1/16W
Resistor

CF14JT100KCT-
ND 0.15 DigiKey

R19 10k Ohm 1/16W
Resistor

CF14JT10K0CT-
ND 0.15 DigiKey

R20 10k Ohm 1/16W
Resistor

CF14JT10K0CT-
ND 0.15 DigiKey

R21 0 Ohm 3W Resistor JW50ZT0R00CT-
ND 0.15 DigiKey

R22 0 Ohm 3W Resistor JW50ZT0R00CT-
ND 0.15 DigiKey

R23 10k Ohm 1/16W
Resistor

CF14JT10K0CT-
ND 0.15 DigiKey

R24 10k Ohm 1/16W
Resistor

CF14JT10K0CT-
ND 0.15 DigiKey

R25 10k Ohm 1/16W
Resistor

CF14JT10K0CT-
ND 0.15 DigiKey

R27 100k Ohm 1/16W
Resistor

CF14JT100KCT-
ND 0.15 DigiKey

R28 500k Ohm 1/16W
Resistor

500KAACT-ND 0.44 DigiKey

STM1 STM32F4 Discovery
Board

497-15211-ND 21.07 DigiKey

SW1 Push Button Switch PS1024ALBLK 1.71 DigiKey
SW2 Push Button Switch PS1024ALBLK 1.71 DigiKey
SW3 Push Button Switch PS1024ALBLK 1.71 DigiKey
U1 MCP602 Rail to Rail

Op Amp
MCP602-I/P-ND 0.88 DigiKey

U2 MCP602 Rail to Rail
Op Amp

MCP602-I/P-ND 0.88 DigiKey

U3 LM386 Audio
Amplifier

296-43960-5-ND 1.51 DigiKey

VR1 LM385 Voltage
Reference

LM385BZ-
2.5GOS-ND 0.97 DigiKey

LED 1-
64

5mm Red LED C503B-RAN-
CZ0C0AA2

0.19*64 DigiKey

Q0-7 Fast Switching MOS-
FET

2N7000TACT-ND 0.74*8 DigiKey

 7

Table 2: Component Choice Justification

Label in
schematic

Functional reason for selecting this component

8_Ohm1 Main output of audio signal to be perceived by the listener.
C1 Used in part of low pass filter after the level shifted input
C3 Used in part of low pass filter as part of band pass filter before speaker output.
C4 Unused but included to change gain on LM386 if necessary during testing.
C6 Part of second order active low pass filter.
C7 DC blocking capacitor before the LM386 uses its internal voltage reference to

shift the signal up from being purely AC.
C8 Part of second order low pass filter.
C9 DC blocking capacitor used to protect speaker from DC current burning it out.
P1 Echo Coefficient, never used as this was not implemented in software.
P2 Echo Time Offset, never used as this was not implemented in software.
P3 Pitch offset, used as an input to the STM32 board which would then change the

pitch offset based on the position of the potentiometer.
P4 Coarse volume control. Used to make large changes to volume level using voltage

splitting of the audio signal
P5 Fine volume control. Used to make small changes to volume level using voltage

splitting of the audio signal.
R1 Current regulating resistor for pull up switch.
R2 Current regulating resistor for input of pull up switch to STM board.
R3 Current regulating resistor for input of pull up switch to STM board.
R4 Current regulating resistor for pull up switch.
R5 Current regulating resistor for input of pull up switch to STM board.
R6 Current regulating resistor for pull up switch.
R7 Current regulating resistor for pull up switch.
R8 Used with R9 for voltage adder between the reference voltage and the signal

voltage.
R9 Used with R8 for voltage adder between the reference voltage and the signal

voltage.
R10 Current limiting resistor for negative feedback on MCP602 to ground.
R11 Current limiting resistor on high side of LM385 voltage reference.
R12 Used to set the output voltage swing for the 100k volume control potentiometer.

This is 10k Ohm so that the swing is 91% for the coarse volume control.
R13 Used to set the output voltage swing for the 100k volume control potentiometer.

This is 1M Ohm so that the swing is 9% for the fine volume control.
R14 Impedance matching resistor for band pass filter before speaker output. The

speaker output is about 8Ohm so a 10Ohm resistor was used to match it.
R15 Input resistor for second order active low pass filter.
R16 Resistor between non-inverting and negative feedback of second order active low

pass filter.
R17 Current limiting resistor for passive low pass filter after level shifted output to the

board. Used to reduce noise.
R18 Used for current limiting resistor to ground of negative feedback.

 8

R19 Current limiting resistor for input to non-inverting side of LM386 audio amplifier.
R20 Current regulating resistor for input of pull up switch to STM board.
R21 Used for closed loop negative feedback on buffer or voltage follower used to

isolate voltage reference from the AC signal voltage.
R22 Closed loop feedback for voltage adding voltage follower to insulate board from

direct input.
R23 Current limiting resistor for potentiometer.
R24 Current limiting resistor for potentiometer.
R25 Current limiting resistor for potentiometer.
R26 Not used but was laid out on PCB so the LM386 gain could potentially be changed.
R27 Used in calibration of voltage reference.
R28 Used in calibration of voltage reference.
STM1 The main processing unit for the entire project used for all logical processing and

for signal processing and transforming using an FFT and custom software
described above.

SW1 Switch used for user input.
SW2 Switch used for user input.
SW3 Switch used for user input.
U1 This was used for both the level shifter voltage follower and for the reference

voltage follower to insulate the reference voltage circuit from the AC signal. Then
it was also used to insulate the board form the imputed signal.

U2 This was used for a second order low pass filter to get rid of quantitation error by
filtering out the drastic steps in the voltage signal.

U3 This was the LM386 Audio operational amplifier used to cleanly amplify the audio
signal to drive the speaker.

VR1 This is the LM385 used for a voltage reference that was then used for the level
shifting of the input signal voltage.

LED 1-
64

These were used for an 8 by 8 pixel display created on the LED board.

2N7000 These op amps were used to ground a specific row of the LED display so that a
specific row could be displayed at a specific time.

V. Circuit Schematic & PCB

The following figures detail the schematic for the main board (see Figure 5) and the LED board
(see Figure 6). The PCB layout for the main board (see Figure 7) and the LED board (see Figure
8) are detailed. The bare PCB for the main board (see Figure 9) and the LED board (see Figure 10)
are shown. The populated PCB for the main board (see Figure 11) and the LED board (see Figure
12) are shown.

 9

Figure 5: Audio FX: Logic and Audio Signal Processing Board

 10

Figure 6: Audio FX: LED Array Board

 11

Figure 7: Logic and Audio Signal Processing Board PCB Layout

 12

Figure 8: Audio FX: LED Array Board PCB Layout

 13

Figure 9: Logic and Audio Signal Processing Board Bare PCB

Figure 10: Audio FX: LED Array Board Bare PCB

 14

Figure 11: Logic and Audio Signal Processing Board Populated PCB

 15

Figure 12: LED Array Board Populated PCB

VI. Testing & Validation

The testing and validation of the audio effects board required the use of the following equipment:

- Oscilloscope with two inputs and probes
- Function/signal generator
- DC power source
- Multimeter
- Audio source
- 3.5mm male connector
- Laptop

The testing and validation of the LED board required the use of the following equipment:
- DC power source
- Laptop

 16

Function Test Plan of Audio FX 299 Project

Test Test Purpose Test Procedure Test Pass Specifications P/F
Tested
By Date

Tone Input

This test is
performed to
verify the
integrity of the
frequency of
inputs to the
frequency of
outputs.

Play a known sinusoidal
frequency of 440Hz signal
into the input audio jack
and note the tone output
relative to the tone output
on a known functional
system output. Using a
normal audio input
through an AUX cable.

There should be no audible
difference between the
tone played through the
known working and DUT
unit.

Pass DM

7/14/
2018

Bass Heavy
Song

This test is
performed to
verify the
integrity of the
bass heavy song
inputs have
proper, minimally
distorted outputs.

Play a song with a bass-
heavy track in the DUT.
Using a normal audio input
through an AUX cable.

Verify the song sounds
correct, no noise,
distortion or other
anomalies should be noted
in playthrough of the song.

Pass DM

7/14/
2018

Treble
Heavy Song

This test is
performed to
verify the
integrity of the
treble heavy song
inputs have
proper, minimally
distorted outputs.

Play a song with a treble-
heavy track in the DUT.
Using a normal audio input
through an AUX cable.

Verify the song sounds
correct, no noise,
distortion or other
anomalies should be noted
in playthrough of the song.

Pass RL

7/14/
2018

Solid
Display,
Current
and
Brightness

This test is used
to verify the
current draw of
the display in the
worst case is such
that it does not
exceed expected
limitations

Run the Display_All_On
function provided in the
source code, note display
condition during test.

The display should be
entirely lit, the entire
display should have the
same brightness, the LEDs
should be completely
visible and clear. Note any
current limiting by the STM
board or USB supply.

Pass RL

7/14/
2018

Solid
Display,
Display
Temperatu
re

This test is to
verify the thermal
dispersion of the
display unit.

Run the Display_All_On
function provided in the
source code, note display
condition during test. Note
temperature qualitatively.

The display should be
entirely lit, the
temperature of each led
should be consistent and
minimal, this condition
must be shared with all
traces related to the
display on both the LED
and Audio FX boards, as
well as the wires
connecting the two boards.

Pass DM

7/14/
2018

 17

Single Pixel
Addressabil
ity

This test is to
verify accurate
addressing and
scanning of the
display.

Run the
Display_Scan_Across_LEDs
and press the button on
the board to start the test,
then note the direction of
the cycling, where the
cycling started and where
the cycling finishes.

The cycling should start in
the top left (when the
button is pressed) of the
display as viewed from the
I/O ports then cycle across
each row from top row to
bottom row. The final
display state is all pixels are
off.

Pass RL

7/14/
2018

Wake Up
Initializatio
n

To test the time
between the
initialization
starts and the
board is
completely
initialized.

Run code with a breakpoint
at the beginning of code.
Then resume the running
of code while starting a
timer, then note the time
before a signaling LED on
the board lights up
signifying initialization
completion.

This time should be less
than 100ms. Pass DM

7/14/
2018

Volume
Controls

This test verifies
the functionality
of the coarse and
fine volume
controls.

Run music though the
system, where both
controls are at their
maximum positions. Turn
the fine control down and
note the change in volume.
Turn the coarse knob down
and note the change in
volume. Then turn coarse
knob until a switch is felt.
Note if the music is still
playing.

The fine control should
have a relative swing
approximately of 10% of
maximum volume. Coarse
control should swing
approximately 90% of the
relative beginning and
ending volume when
moved its entire range.
When the coarse knob is
switched all the way to its
lowest position the music
should stop playing.

Pass RL

7/14/
2018

I/O Button
Testing

This test verifies
the functionality
of the button
inputs.

Run Test_Button_State in
the provided source code.
Press buttons in random
orders several times and
note changes to the LED
display.

Any button pressed in any
order should toggle the
LED board all on or off. The
buttons should be
responsive and never false
trigger due to debouncing
issues.

Pass DM

7/14/
2018

Level
Shifter
Testing

Verify the
expected Level
shifter
functionality

Check the outputted
voltage from the level
shifter output pin with a
voltmeter

The voltage should read
approximately 1.24 V Pass RL 7/14/

2018

2nd Order
Low Pass
Filter
Testing

Verify the
frequency
response and cut
off frequency is
as expected

Input known sine wave at
known frequencies sweep
through the higher
frequencies until the
output wave is 70.7% of
the input waves, measured
on an oscilloscope

The approximate frequency
at which the output wave is
70.7% of the input
amplitude should be about
10.4 kHz.

Pass DM

7/14/
2018

 18

Amplifier
Testing

Verify the
functionality of
the output audio
signal amplifier.

Input a known amplitude
signal which will not cause
clipping on the amplifiers
output then observe the
output signal amplitude.

The amplitude of the
output should be
approximately 20 times
larger than the amplitude
of the input signal.

Pass
OK RL

7/14/
2018

State
Machine
Testing

Pressing the state
buttons should
transition
between the
audio effect
states well.

Press the pitch shift button
and note the output of the
speaker. Then press the
pitch shift button and then
the echo button observing
output. Then press the
pitch shifting button again
observing output.

The first observation
should be the pitch shifted
audio, then the next
observation should yield an
echo to the output. Finally
the third observation
should not pitch shift and
just echo.

Pass DM

7/14/
2018

Display
state
button.

Pressing the
display state
button should
accurately display
the state.

Press the display button in
each of the four possible
states, echo pitch, echo
and pitch, and no state.

The display should show
running text of the state
for each of these states
accurately when pressed. If
there is no state, space
invaders should slide
across the screen.

Pass RL

7/14/
2018

Pitch shift
up and
down.

Testing that the
pitch shift fully
works in both up
and down pitch
shifts.

While playing music press
pitch shift on, then turn the
pitch shift knob, noting the
pitch shifting in the song up
and down.

The pitch should shift up
when the knob is turned to
the right and down when
turned to the left. Further
no pitch shifting should
occur when it is centered.

Pass DM

7/14/
2018

Echo
Test that the echo
occurs when the
state is enabled.

Enable the echo state while
playing music then
suddenly pause the input
music and note the output
heard after the music is
disconnected

The final 1 second of music
played before the pause
should be echoed several
times showing that the
echo is functioning during
normal operation.

Pass RL

7/14/
2018

Play music
without
effect

Note the
functionality of
playing music
though the board.

Connect an audio input
playing music to the
3.5mm input jack and note
the output.

The output should be the
expected song undistorted
and with minimal noise.

Pass
OK DM 7/14/

2018

Volume
changing

Verify the volume
can be changed in
real time.

Connect an audio input
playing music to the
3.5mm input jack; note the
output during movement
of the volume knob.

The volume should change
significantly as the knob is
turned.

Pass RL
7/14/
2018

Display
testing

Verify
functionality of
the display.

Press the mode display
button when no effect is
being affected note the
display after this button is
pressed over several
pressings.

The display should show
space invaders going across
the display. No LED should
be on afterwards and the
images should be clear.

Pass DM

7/14/
2018

 19

Figure 13: Oscilloscope display of the audio amplifier scaling the input signal by approximately 20 times. Yellow corresponds to
output and green corresponds to input.

 20

Figure 14: Oscilloscope display showing the attenuation of a signal past the cut-off frequency of 10.4kHz. Green corresponds to
input and yellow corresponds to output on the same scale.

VII. Conclusion & Recommendations

All major objectives of functionality were achieved for the final project, with some parts of systems
having minor issues and others exceeding requirements adding functionality. The project’s analog
audio subsystems including the second order low pass filter to remove quantization error, the level
shifting input, and the audio signal amplifier using a LM386 functioned as expected with some
marginal deviation from theoretical values. Some noise was noted in the final build of the FX
project. This noise is expected to be caused by noise in the power supply. Further the amplification
of the audio signal was approximately 15 times gain which was lower than the expected 20 gain
of the configuration as designed, giving a quiet sound to the output. The display requirements were
met entirely with an 8 by 8 LED matrix for display. Further the requirements were met with two
linear potentiometers used as voltage dividers of the input voltage signal which were used for
coarse and fine volume control. However, as the potentiometers did not have plastic caps affixed,
when a person would touch the potentiometers some noise would be introduced from the person.
All software requirements were met. Button debouncing was performed using an ISR routine on a
5ms timer. Pitch shifting was implemented using potentiometer-controlled analog input to

 21

determine the magnitude and direction of the frequency shift. A circular buffer was used to store
and retrieve raw analog ADC values to implement echo. A finite state machine architecture was
implemented to control which effects were being used at any given time. Finally, another circular
buffer was implemented to display things on the LED array. Overall all expected and requested
functionality was at least minimally met.

There were some issues with a lack of simulation software embedded into the KiCAD software.
The wire used for the connection between the LED display and the main Audio FX board was
22AWG multi-strand wire and would often break when handled. This was an issue that would had
taken a considerable amount of time to fix entirely so the breaks were fixed as they happened.
During the implementation of pitch shifting there were some issues shifting up, as low frequencies
resulting from the Fast Fourier Transform of the level shift offset, which would produce an
impulse-like value in the low frequency range. As frequencies were shifted up, this impulse-like
value would be shifted past the minimum frequency to be filtered out by the DC-blocking
capacitor, causing it to be audible as a harmonic. This was solved by starting the shift at a higher
frequency, so the impulse value would be unmoved.

There were several limitations to the final design of our Audio FX board. Firstly, the display buffer
could only handle 10 seconds of frames at 25 FPS. This took up 2 KB of memory, which can be
an issue given the relatively limited 192 KB total memory on the board being shared across an
echo buffer, FFT dependencies, and FFT output bins [7]. The I/O, while functional for the required
testing with only 3 pushbuttons, was relatively limited in potential for further functionality without
a convoluted user interface. The major limitation of the final implementation of the project was
the poor maximum volume only amplifying the outputted signal by 15 times gain which made the
sound quiet.

If a successor to our first design was to be built some major changes would be made. First, another
second-order active-low-pass filter would be placed on the input to the ADC of the STM board so
that higher frequency signals on the input would not be sampled and cause aliasing issues as it
wraps around into the maximum frequency of 8 kHz signals the STM board is sampling at. This
would help improve general sound quality of the audio signal. To further improve the audio signal
a capacitor should be placed between power and ground to reduce ripples in the voltage.
Alternatively, all the amplifiers could be powered off a separate voltage regulator which would
help provide a clean power source. This is expected to reduce the notable noise assumed to be
caused by a noisy voltage source. Knowing that the board is not being put in a manufactured case,
the components would be chosen as surface mounts rather than mounting holes for wires to connect
to offboard components. Some changes should also be made to confirm a better gain on the audio
amplifier to make the music experience much better to the ear. These changes would improve the
sound quality and make the music listening experience much better. Additionally, using plastic
caps on the potentiometers would prevent capacitance noise on the audio line. This noise is caused
when the conductive metal exterior of the potentiometer is touched by a capacitive disturbance
like a person who is not properly grounded. Finally, the number of pull-up resistors could be
reduced by using the board’s internal pull-up or pull-down resistors, reducing the cost and
complexity of the PCB.

 22

References
 References cited should be easily obtainable. Please refrain from using sources that are not
trust worthy. Preferable to refer text books and works published by international organizations of
repute. It is mandatory to cite the source from which you learnt about a concept/idea. It is not
acceptable to copy and paste images. They have to be re-drawn. References must be in IEEE
standard format (https://ieee-
dataport.org/sites/default/files/analysis/27/IEEE%20Citation%20Guidelines.pdf).

[1] “USB Power Delivery,” Universal Serial Bus. [Online]. Available:

http://www.usb.org/developers/powerdelivery/. [Accessed: 29-Jul-2018].
[2] Dr. T. Ilamparithi. ECE 299. Class Lecture, Topic: “STM32F4 Discovery Board.”

Department of Electrical and Computer Engineering, University of Victoria, Victoria,
BC, June 13, 2018.

[3] Texas Instruments, “LM386 Low Voltage Audio Power Amplifier,” SNAS545C
datasheet, May 2004 [Revised May 2017].

[4] Texas Instruments, “LM185/LM285/LM385 Adjustable Micropower Voltage
References,” SNVS741F datasheet, Feb. 2000 [Revised April 2013].

[5] “Sallen-Key Active Butterworth Low Pass Filter Calculator,” Modulus Of Rupture
Calculator - Load, Distance, Breadth, Depth. [Online]. Available:
http://www.calculatoredge.com/electronics/sk low pass.htm. [Accessed: 17-Aug-2018].

[6] “Digikey Electronics,” Digikey Electronics. [Online]. Available: https://www.digikey.ca/.
[Accessed: 17-Aug-2018].

[7] STMicroelectronics, RM0090 Reference manual for STM32F405/415, STM32F407/417,
STM32F427/437 and STM32F429/439 advanced ARM®-based 32-bit MCUs,
STMicroelectronics, April 2017. [Page 68]

[8] Robert Lee and Declan McIntosh, AudioEffectsProject Repository. [Github]. Available:
https://github.com/robertklee/AudioEffectsProject

 23

Appendix A – Enclosure

The design of the enclosure was intended to sit well on a desk and show off the vibrant display
and the intuitive user interface (see Figure 15, Figure 16, and Figure 17). The speaker faces
directly up to be omnidirectional in the sound stage produced by the speaker. The enclosure is
expected to be made from plastic using M3 screws to mount both the LED and the main Audio
FX boards to the enclosure. M6 screws are used to hold the bottom plate to the bottom of the
enclosure. The top hole for the speaker is designed so some epoxy or other adhesive can be used
to secure the speaker as the speaker used in the project does not have mounting screw holes.
There is some translucent material which would be used in front of the LED board from the
outside over the opening. This would likely be a clear plastic or plexi-glass substance. Then the
input buttons and potentiometers are fit into the enclosure using M7 sizing fit. Once fit into the
appropriate labeled holes in the interface paneling, they are held in place by the mounting
hardware provided with the buttons and potentiometers. Finally, the audio input is placed at the
side of the case where the 3.5mm jack will be placed internally and poke through the hole.

Figure 15: Enclosure for the Audio Effects board and LED display. Note the agronomical button placement on the face of the
product.

 24

Figure 16: The rear of the enclosure, showing the mounting hole locations for the main circuit PCB.

 25

Figure 17: Multiple views of the enclosure designed using SolidWorks a

 26

This page is intentionally left blank.

 27

Appendix B – Gantt Chart for Hypothetical Projects

In this appendix, the planning for a theoretical project is described. This goal of this project would
be to design a robot which can navigate a right-angled maze. This project is mechatronic in
capacity so all disciplines, mechanical, firmware, and electrical design have been factored into the
planning of this project. Two hypothetical scenarios have been considered around this project: A)
The familiar STM32F4 Discovery board is used and B) a new, unknown TMS320F28035 Piccolo
development board is used for the implementation. The Gantt charts are shown below (see Figure
18 for the STM32F4 Discovery board Gantt chart, and see Figure 19 for the TMS320F28035
Piccolo development board Gantt chart) to demonstrate the developed plans and their respective
differences caused by the changed task parameters. The details of each task will be overviewed
and not described in extreme detail as it is not pertinent to the differences introduced by the change
in discovery boards and are subject to the specific details of the project.

Implementation using the STM32F4 Discovery Board
Firstly, 6 hours has been allocated for the high-level conceptual design to develop a general
strategy for this task. Then 10 hours were dedicated to design each of the subsystems. The
mechanical systems should be fairly easy due to the simple mechanical nature of the project, unless
a unique robot design was chosen. However, due to the inexperience and lack of technical expertise
our team exhibits in mechanical design equal time weighting has been given the mechanical design
task. Near the end of the designing of the subsystems, time has been allocated for sourcing of all
the required parts for the Prototype-0 build. After the required parts have been retrieved 5 hours
has been allocated for populating the controlling PCB board as our team has a good amount of
experience soldering. The longest expected task is to implement the planned software into the STM
board with 12 hours as the software for maze solving and control of the mechanical systems is
expected to be quite difficult to write and debug. Next, time has been allocated for testing of the
P0 design to highlight any flaws which must be solved before the final project submission. Finally,
time, which may not be required by the project outline but is beneficial, has been allocated for a
second P1 redesign and rebuild to address any issues found during testing.

Implementation using the TMS320F28035 Piccolo development board
Some significant changes were made to the allocated time during the design phase of the plan.
Time has been allocated for learning the new development board with regards to its electrical and
software architecture. This is required so that the electrical and software design efforts can be
completed more smoothly and design around the qualities of the Piccolo board. This also delays
the start of the electrical and software design process. Furthermore, time has been allocated for
implementing the software for the Piccolo board. Small amounts of time have also been added to
the redesigning of the P0 to the P1 version as there are more expected errors when working with
an unfamiliar development board. Overall the change of board has added 27 hours of total labour
to the project.

 28

This page has intentionally been left blank.

 29

Figure 18: Gantt chart for first hypothetical scenario: design using STM32F4 Discovery Board

Figure 19: Gantt chart for second hypothetical scenario: design using TMS320F28035 Piccolo development board

 30

This page has intentionally been left blank.

 31

Appendix C – Sample Code

The full source code is available on Github [8].

// Copyright (c) 2018 Robert Lee, Declan McIntosh
// University of Victoria ECE 299 Design Project

/*
 * This file is part of the �OS++ distribution.
 * (https://github.com/micro-os-plus)
 * Copyright (c) 2014 Liviu Ionescu.
 *
 * Permission is hereby granted, free of charge, to any person
 * obtaining a copy of this software and associated documentation
 * files (the "Software"), to deal in the Software without
 * restriction, including without limitation the rights to use,
 * copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom
 * the Software is furnished to do so, subject to the following
 * conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

// --

#include <stdio.h>
#include <stdlib.h>
#include "diag/Trace.h"
#include "cmsis/cmsis_device.h"
#include "stm32f4xx.h"
#include "ctype.h"
#include <sys/stat.h>
#include "stm32f4xx_hal.h"
#include <string.h> //for memcpy

#include <hamming.h>
#include "stm32f4xx_hal.h"
#include "math.h"

#include "arm_math.h"
#include "arm_const_structs.h"
#include "main.h"
#include "hamming.h"
#include "windowing_fft.h"
#include "AudioChip.h"

// --
//
// Standalone STM32F4 empty sample (trace via DEBUG).
//
// Trace support is enabled by adding the TRACE macro definition.
// By default the trace messages are forwarded to the DEBUG output,
// but can be rerouted to any device or completely suppressed, by
// changing the definitions required in system/src/diag/trace_impl.c
// (currently OS_USE_TRACE_ITM, OS_USE_TRACE_SEMIHOSTING_DEBUG/_STDOUT).
//

// ----- main() ---

// Sample pragmas to cope with warnings. Please note the related line at
// the end of this function, used to pop the compiler diagnostics status.

 32

#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#pragma GCC diagnostic ignored "-Wmissing-declarations"
#pragma GCC diagnostic ignored "-Wreturn-type"

/**
 * LED MATRIX LAYOUT:
 * ~~~~~~~~~~~TOP OF LED MATRIX~~~~~~~~~~
 * Columns: 0 1 2 3 4 5 6 7
 * Rows:
 * 0
 * 1
 * 2
 * 3
 * 4
 * 5
 * 6
 * 7
 */
#define NUMBER_OF_LEDS (64)
#define REFRESH_RATE (5000)//5000 will reduce the high pitched noise // this will be multiplied
by 64 since there are 64 LEDs
#define FRAMES_PER_SECOND (25) // this number should be a factor of REFRESH_RATE
#define BUFFER_SIZE_SECONDS (10) // number of seconds for which the buffer stores data
// NOTE: The following row/col are NOT on the same bus
#define ROW_0 (GPIO_PIN_4)
#define ROW_1 (GPIO_PIN_2)
#define ROW_2 (GPIO_PIN_7)
#define ROW_3 (GPIO_PIN_6)
#define ROW_4 (GPIO_PIN_1)
#define ROW_5 (GPIO_PIN_0)
#define ROW_6 (GPIO_PIN_6)
#define ROW_7 (GPIO_PIN_8)
#define COL_0 (GPIO_PIN_9)
#define COL_1 (GPIO_PIN_11)
#define COL_2 (GPIO_PIN_2)
#define COL_3 (GPIO_PIN_3)
#define COL_4 (GPIO_PIN_7)
#define COL_5 (GPIO_PIN_5)
#define COL_6 (GPIO_PIN_5)
#define COL_7 (GPIO_PIN_6)
#define BUTTON_1 (GPIO_PIN_11)
#define BUTTON_2 (GPIO_PIN_4)
#define BUTTON_3 (GPIO_PIN_1)

#define LEFT_TO_RIGHT (0)
#define RIGHT_TO_LEFT (1)
#define TOP_TO_BOTTOM (2)
#define BOTTOM_TO_TOP (3)

/**
 * Timer usage documentation:
 * TIM2 - Generating frequency bars to display on LED array
 * TIM3 - polling of all button inputs, and debouncing
 * TIM4 - LED board drawing
 * TIM5 - FFT on input signal
 */
#define TIM2_PRIORITY (7)
#define TIM3_PRIORITY (10)
#define TIM4_PRIORITY (5)
#define TIM5_PRIORITY (0)
#define NUM_OF_COLS (8)

#define NO_EFFECT (0)
#define ENABLE_ECHO (1)
#define ENABLE_PITCH_SHIFT (1)

#define ECHO_BUFFER_SIZE (16384)
#define ECHO_DAMPING (0.35)

volatile char previous_button_reading_PA0 = 0;
volatile char button_state_PA0 = 0;
volatile char previous_button_reading_PB11 = 0;
volatile char button_state_PB11 = 0;
volatile char previous_button_reading_PC4 = 0;

 33

volatile char button_state_PC4 = 0;
volatile char previous_button_reading_PB1 = 0;
volatile char button_state_PB1 = 0;

char previous_state_PB11 = 0;
char previous_state_PC4 = 0;
char previous_state_PB1 = 0;

volatile char current_frame[NUM_OF_COLS];
volatile char display_buffer[FRAMES_PER_SECOND * BUFFER_SIZE_SECONDS][NUM_OF_COLS];
const int buffer_length = FRAMES_PER_SECOND * BUFFER_SIZE_SECONDS;
volatile int buffer_head = 0; // points to front of buffer
volatile int buffer_tail = -1; // points to next available spot

volatile char current_row = 0;
volatile char current_col = 0;
volatile int current_frame_number = 0;
const int times_to_repeat_frame = REFRESH_RATE / FRAMES_PER_SECOND;

int LED_Array_State = 0;
int pitch_shift_state = NO_EFFECT;
int echo_state = NO_EFFECT;

volatile int pitch_shift_offset = 0;

volatile int16_t
 EchoBuffer[ECHO_BUFFER_SIZE];

volatile uint16_t
 EchoPointer = 0;

volatile uint8_t
 ClearEchoBuffer = TRUE;

//
// Data structure for timer configuration
//

TIM_HandleTypeDef
 Timer5_16Khz;

//
// Data structure for general purpose IO configuration
//

GPIO_InitTypeDef
 GpioInitStructure;

//
// Data structure for the D/A(DAC) Converter configuration
//

DAC_ChannelConfTypeDef
 DacInitStructure;

DAC_HandleTypeDef
 AudioDac; // Structure for the audio digital to analog converter subsystem

//
// Data structures for the A/D Converter configuration
//

ADC_HandleTypeDef
 AudioAdc,
 ReferenceAdc,
 PitchShiftOffsetAdc;

volatile int
 ButtonCount = 0,
 ButtonState = RELEASED,
 Effect = NO_EFFECT;

//
// Buffering system variables
//

 34

volatile int
 ADCPTR = 0;

volatile struct tBuffer
 Buffers[NUMBER_OF_BUFFERS];

volatile int
 WindowingState = 0,
 WindowingDone = FALSE;

//
// 4 times the size of the main buffer to compensate for addition of complex numbers and that we are
processing
// 2 buffers at a time
//

float
 delayedBuf[SIZE*4],
 procBuf[SIZE*4];

int
 AD_Offset;

void Init_GPIO_Port(uint32_t pin, uint32_t mode, uint32_t speed, uint32_t pull, char bus)
{
 GPIO_InitTypeDef GPIO_InitStructure; //a handle to initialize GPIO

 GPIO_InitStructure.Pin = pin;
 GPIO_InitStructure.Mode = mode;
 GPIO_InitStructure.Speed = speed;
 GPIO_InitStructure.Pull = pull;
 GPIO_InitStructure.Alternate = 0;
 if (bus == 'A') {
 HAL_GPIO_Init(GPIOD, &GPIO_InitStructure);
 } else if (bus == 'B') {
 HAL_GPIO_Init(GPIOB, &GPIO_InitStructure);
 } else if (bus == 'C') {
 HAL_GPIO_Init(GPIOC, &GPIO_InitStructure);
 } else if (bus == 'D') {
 HAL_GPIO_Init(GPIOD, &GPIO_InitStructure);
 } else if (bus == 'E') {
 HAL_GPIO_Init(GPIOE, &GPIO_InitStructure);
 }
}

void Init_GPIO_Port_Default_Speed_Pull(uint32_t pin, uint32_t mode, char bus)
{
 Init_GPIO_Port(pin, mode, GPIO_SPEED_MEDIUM, GPIO_NOPULL, bus);
}

// important for these to be in global as they need to be accessed in interrupt service routine
TIM_HandleTypeDef DisplayTimer;
TIM_HandleTypeDef LEDDisplayTimer;
TIM_HandleTypeDef FrequencySpectrumGeneratorTimer;
void ConfigureTimers()
{
 __HAL_RCC_TIM3_CLK_ENABLE();
 DisplayTimer.Instance = TIM3;
 DisplayTimer.Init.Period = 49;//period & prescaler combination for 200 Hz frequency
 DisplayTimer.Init.Prescaler = 8399;
 DisplayTimer.Init.CounterMode = TIM_COUNTERMODE_UP;
 DisplayTimer.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
 HAL_TIM_Base_Init(&DisplayTimer);

 HAL_NVIC_SetPriority(TIM3_IRQn, TIM3_PRIORITY, TIM3_PRIORITY);
 //set priority for the interrupt. Value 0 corresponds to highest priority
 HAL_NVIC_EnableIRQ(TIM3_IRQn);//Enable interrupt function request of Timer3

 __HAL_TIM_ENABLE_IT(&DisplayTimer, TIM_IT_UPDATE);// Enable timer interrupt flag to be set when
timer count is reached
 __HAL_TIM_ENABLE(&DisplayTimer);//Enable timer to start

 __HAL_RCC_TIM4_CLK_ENABLE();
 LEDDisplayTimer.Instance = TIM4;

 35

 int prescaler = 105;
 LEDDisplayTimer.Init.Prescaler = prescaler - 1; // reduce to 800 kHz
 LEDDisplayTimer.Init.Period = 84000000 / prescaler / REFRESH_RATE / NUMBER_OF_LEDS - 1;
 // reduce to (REFRESH_RATE * NUMBER_OF_LEDS) frequency
 LEDDisplayTimer.Init.CounterMode = TIM_COUNTERMODE_UP;
 LEDDisplayTimer.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
 HAL_TIM_Base_Init(&LEDDisplayTimer);

 HAL_NVIC_SetPriority(TIM4_IRQn, TIM4_PRIORITY, TIM4_PRIORITY);
 //set priority for the interrupt. Value 0 corresponds to highest priority
 HAL_NVIC_EnableIRQ(TIM4_IRQn);//Enable interrupt function request of Timer3

 __HAL_TIM_ENABLE_IT(&LEDDisplayTimer, TIM_IT_UPDATE);// Enable timer interrupt flag to be set when
timer count is reached
 __HAL_TIM_ENABLE(&LEDDisplayTimer);//Enable timer to start

 __HAL_RCC_TIM2_CLK_ENABLE();
 FrequencySpectrumGeneratorTimer.Instance = TIM2;
 prescaler = 140;
 FrequencySpectrumGeneratorTimer.Init.Period = prescaler - 1; // reduce to 600 kHz
 // reduce to (FRAMES_PER_SECOND * 2) frequency
 FrequencySpectrumGeneratorTimer.Init.Prescaler = 84000000 / prescaler / (FRAMES_PER_SECOND*2) - 1;
 FrequencySpectrumGeneratorTimer.Init.CounterMode = TIM_COUNTERMODE_UP;
 FrequencySpectrumGeneratorTimer.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
 HAL_TIM_Base_Init(&FrequencySpectrumGeneratorTimer);

 HAL_NVIC_SetPriority(TIM2_IRQn, TIM2_PRIORITY, TIM2_PRIORITY);
 //set priority for the interrupt. Value 0 corresponds to highest priority
 HAL_NVIC_EnableIRQ(TIM2_IRQn);//Enable interrupt function request of Timer2

 __HAL_TIM_ENABLE_IT(&FrequencySpectrumGeneratorTimer, TIM_IT_UPDATE);// Enable timer interrupt flag
to be set when timer count is reached
 __HAL_TIM_ENABLE(&FrequencySpectrumGeneratorTimer);//Enable timer to start
}

void Configure_Ports()
{
 Init_GPIO_Port_Default_Speed_Pull(GPIO_PIN_12, GPIO_MODE_OUTPUT_PP, 'D');
 Init_GPIO_Port_Default_Speed_Pull(GPIO_PIN_0, GPIO_MODE_INPUT, 'A');

 Init_GPIO_Port_Default_Speed_Pull(BUTTON_1, GPIO_MODE_INPUT, 'B');
 Init_GPIO_Port_Default_Speed_Pull(BUTTON_2, GPIO_MODE_INPUT, 'C');
 Init_GPIO_Port_Default_Speed_Pull(BUTTON_3, GPIO_MODE_INPUT, 'B');
}

// utility inline functions to encapsulate the bus and port number of the row/col
inline void Write_Row_0 (uint16_t new_state) { HAL_GPIO_WritePin(GPIOE, ROW_0, new_state); }
inline void Write_Row_1 (uint16_t new_state) { HAL_GPIO_WritePin(GPIOE, ROW_1, new_state); }
inline void Write_Row_2 (uint16_t new_state) { HAL_GPIO_WritePin(GPIOB, ROW_2, new_state); }
inline void Write_Row_3 (uint16_t new_state) { HAL_GPIO_WritePin(GPIOD, ROW_3, new_state); }
inline void Write_Row_4 (uint16_t new_state) { HAL_GPIO_WritePin(GPIOD, ROW_4, new_state); }
inline void Write_Row_5 (uint16_t new_state) { HAL_GPIO_WritePin(GPIOD, ROW_5, new_state); }
inline void Write_Row_6 (uint16_t new_state) { HAL_GPIO_WritePin(GPIOC, ROW_6, new_state); }
inline void Write_Row_7 (uint16_t new_state) { HAL_GPIO_WritePin(GPIOC, ROW_7, new_state); }

inline void Write_Col_0 (uint16_t new_state) { HAL_GPIO_WritePin(GPIOC, COL_0, new_state); }
inline void Write_Col_1 (uint16_t new_state) { HAL_GPIO_WritePin(GPIOC, COL_1, new_state); }
inline void Write_Col_2 (uint16_t new_state) { HAL_GPIO_WritePin(GPIOD, COL_2, new_state); }
inline void Write_Col_3 (uint16_t new_state) { HAL_GPIO_WritePin(GPIOD, COL_3, new_state); }
inline void Write_Col_4 (uint16_t new_state) { HAL_GPIO_WritePin(GPIOD, COL_4, new_state); }
inline void Write_Col_5 (uint16_t new_state) { HAL_GPIO_WritePin(GPIOB, COL_5, new_state); }
inline void Write_Col_6 (uint16_t new_state) { HAL_GPIO_WritePin(GPIOE, COL_6, new_state); }
inline void Write_Col_7 (uint16_t new_state) { HAL_GPIO_WritePin(GPIOE, COL_7, new_state); }

void Configure_LED_Display() {
 // init all rows and columns as output, medium speed, no pull
 Init_GPIO_Port_Default_Speed_Pull(ROW_0, GPIO_MODE_OUTPUT_PP, 'E');
 Init_GPIO_Port_Default_Speed_Pull(ROW_1, GPIO_MODE_OUTPUT_PP, 'E');
 Init_GPIO_Port_Default_Speed_Pull(ROW_2, GPIO_MODE_OUTPUT_PP, 'B');
 Init_GPIO_Port_Default_Speed_Pull(ROW_3, GPIO_MODE_OUTPUT_PP, 'D');
 Init_GPIO_Port_Default_Speed_Pull(ROW_4, GPIO_MODE_OUTPUT_PP, 'D');
 Init_GPIO_Port_Default_Speed_Pull(ROW_5, GPIO_MODE_OUTPUT_PP, 'D');
 Init_GPIO_Port_Default_Speed_Pull(ROW_6, GPIO_MODE_OUTPUT_PP, 'C');
 Init_GPIO_Port_Default_Speed_Pull(ROW_7, GPIO_MODE_OUTPUT_PP, 'C');

 36

 Init_GPIO_Port_Default_Speed_Pull(COL_0, GPIO_MODE_OUTPUT_PP, 'C');
 Init_GPIO_Port_Default_Speed_Pull(COL_1, GPIO_MODE_OUTPUT_PP, 'C');
 Init_GPIO_Port_Default_Speed_Pull(COL_2, GPIO_MODE_OUTPUT_PP, 'D');
 Init_GPIO_Port_Default_Speed_Pull(COL_3, GPIO_MODE_OUTPUT_PP, 'D');
 Init_GPIO_Port_Default_Speed_Pull(COL_4, GPIO_MODE_OUTPUT_PP, 'D');
 Init_GPIO_Port_Default_Speed_Pull(COL_5, GPIO_MODE_OUTPUT_PP, 'B');
 Init_GPIO_Port_Default_Speed_Pull(COL_6, GPIO_MODE_OUTPUT_PP, 'E');
 Init_GPIO_Port_Default_Speed_Pull(COL_7, GPIO_MODE_OUTPUT_PP, 'E');

 // turn off all columns
 Write_Col_0(GPIO_PIN_RESET);
 Write_Col_1(GPIO_PIN_RESET);
 Write_Col_2(GPIO_PIN_RESET);
 Write_Col_3(GPIO_PIN_RESET);
 Write_Col_4(GPIO_PIN_RESET);
 Write_Col_5(GPIO_PIN_RESET);
 Write_Col_6(GPIO_PIN_RESET);
 Write_Col_7(GPIO_PIN_RESET);

 // turn off all rows
 Write_Row_0(GPIO_PIN_RESET);
 Write_Row_1(GPIO_PIN_RESET);
 Write_Row_2(GPIO_PIN_RESET);
 Write_Row_3(GPIO_PIN_RESET);
 Write_Row_4(GPIO_PIN_RESET);
 Write_Row_5(GPIO_PIN_RESET);
 Write_Row_6(GPIO_PIN_RESET);
 Write_Row_7(GPIO_PIN_RESET);

 Buffer_Init();
}

/**
 * Resets buffer head and tail for empty buffer
 */
inline void Buffer_Clear()
{
 buffer_head = 0;
 buffer_tail = -1; // flag that the buffer is empty
}

/**
 * Indicates if buffer is empty
 */
inline int Buffer_Is_Empty()
{
 return buffer_tail == -1;
}

/**
 * frame[] MUST have length NUM_OF_COLS
 * Returns 0 if buffer full, 1 if success
 */
char Buffer_Pushback(char frame[])
{
 if (buffer_tail == -1) {
 //buffer is empty, update actual available spot
 buffer_tail = 0;
 } else if (buffer_tail == buffer_head)
 {
 return 0; // buffer is full
 }

 // copy frame to buffer
 memcpy(display_buffer[buffer_tail], frame, NUM_OF_COLS);

 buffer_tail++; //increment to next available spot
 buffer_tail %= buffer_length; // wrap around to beginning of buffer

 return 1; //pushback success
}

/**
 * Pops front of buffer and copies to destination. If empty, nothing is copied.
 * dest[] MUST be length NUM_OF_COLS

 37

 * Returns 0 if buffer empty, 1 if successfully copied
 */
char Buffer_Pop(char dest[])
{
 if (buffer_tail == -1)
 {
 return 0; //buffer is empty
 }

 // copy frame to buffer
 memcpy(dest, display_buffer[buffer_head], NUM_OF_COLS);

 buffer_head++;
 buffer_head %= buffer_length;

 if (buffer_head == buffer_tail) {
 //buffer is empty
 Buffer_Clear();
 }

 return 1;
}

/**
 * Initializes buffer with all 0's. Returns 1 when successful
 */
int Buffer_Init()
{
 char all_zeros[NUM_OF_COLS];
 for (int i = 0; i < NUM_OF_COLS; i++) {
 all_zeros[i] = 0;
 }

 for (int i = 0; i < buffer_length; i++) {
 memcpy(display_buffer[i], all_zeros, NUM_OF_COLS);
 }

 Buffer_Clear();

 return 1;
}

/**
 * turns on all LEDs for testing
 */
void Display_All_On() {
 for (int i = 0; i < NUM_OF_COLS; i++) {
 current_frame[i] = 0xFF;
 }
}

/**
 * turns off all LEDs for testing
 */
void Display_All_Off() {
 for (int i = 0; i < NUM_OF_COLS; i++) {
 current_frame[i] = 0;
 }
}

/**
 * If LED_Array is on, toggle off. If off, toggle on.
 */
void Toggle_Display_State() {
 if (LED_Array_State) {
 Display_All_Off();
 LED_Array_State = 0;
 } else {
 Display_All_On();
 LED_Array_State = 1;
 }
}

/**
 * Fill buffer with frames with one LED at a time, cycling through all LEDs

 38

 * Precondition: buffer is at least framesToRepeat*64 long
 */
void Display_Scan_Across_LEDs() {
 const int framesToRepeat = 3;
 char frame[NUM_OF_COLS];

 for (int i = 0; i < NUM_OF_COLS; i++)
 {
 frame[i] = 0;
 }
 for (int currentLED = 0; currentLED < NUMBER_OF_LEDS; currentLED++)
 {
 int row = currentLED/NUM_OF_COLS;
 int col = currentLED%NUM_OF_COLS;

 frame[row] = 1 << col;

 for (int i = 0; i < framesToRepeat; i++)
 {
 Buffer_Pushback(frame);
 }

 frame[row] = 0;
 }

 for (int i = 0; i < NUM_OF_COLS; i++) {
 frame[i] = 0;
 }

 Buffer_Pushback(frame);
}

/**
 * Creates a bar of height 'height' in the specified column 'col'
 * Col must be <= NUM_OF_COLS
 */
void Create_Column_With_Height(char dest[], int col, int height) {
 char col_flag = 1 << col;
 for (int i = 1; i <= NUM_OF_COLS; i++)
 {
 if (i <= height) {
 dest[NUM_OF_COLS - i] = dest[NUM_OF_COLS - i] | col_flag; // force it to be 1
 } else {
 dest[NUM_OF_COLS - i] = dest[NUM_OF_COLS - i] & (0xFF ^ (col_flag)); // force it to be 0
 }
 }
}

/**
 * source is _source[frame number]
 * _source_length is the number of frames
 * message_length is the total number of columns in the message
 * direction is the direction the image pans
 */
void Fill_Buffer_With_Panning_Image(int _source_rows, int _source_cols, char
source[_source_rows][_source_cols],
 int message_length, int direction) {
 char frame[NUM_OF_COLS];

// char (*source)[_source_length] = _source;

 // Zero out the frame
 for (int i = 0; i < NUM_OF_COLS; i++) {
 frame[i] = 0;
 }

 // Start with blank frame
 Buffer_Pushback(frame);

 for (int current_index = 0; current_index < message_length; current_index++) {
 int source_index = current_index / NUM_OF_COLS;
 if (source_index >= _source_rows) { break; }
 int source_frame_index = current_index % NUM_OF_COLS;

 switch (direction) {

 39

 case (LEFT_TO_RIGHT):
 case (RIGHT_TO_LEFT):
 for (int i = 0; i < NUM_OF_COLS; i++) {
 frame[i] = frame[i] << 1;

 char source_char = source[source_index][i];
 // truncate everything right of column
 char right_shifted = source_char >> (NUM_OF_COLS - 1 - source_frame_index);

 // remove everything left of column
 char right_col_only = right_shifted & (0xFE ^ 0xFF);

 // add in only the right column
 frame[i] = frame[i] | right_col_only;
 }
 break;
 case (BOTTOM_TO_TOP):
 for (int i = 0; i < NUM_OF_COLS - 1; i++) {
 // shift rows up by one
 frame[i] = frame[i + 1];
 }

 // add in new row at bottom
 frame[NUM_OF_COLS - 1] = source[source_index][source_frame_index];
 break;
// case (RIGHT_TO_LEFT):
// for (int i = 0; i < NUM_OF_COLS; i++) {
// frame[i] = frame[i] >> 1;
//
// char source_char = source[source_index][i];
// // truncate everything left of column
// char left_shifted = source_char << (NUM_OF_COLS - 1 - source_frame_index);
//
// // remove everything right of column
// char left_col_only = left_shifted & (0x7F ^ 0xFF);
//
// // add in only the right column
// frame[i] = frame[i] | left_col_only;
// }
// break;
 default:
 trace_printf("Not implemented exception. Invalid direction.");
 break;
 }

 Buffer_Pushback(frame);
 Buffer_Pushback(frame);
 }
}

/**
 111 111 111 111
 11 11 11 11 11 11 11 11
 1 1 1 1 1 1 1 1
1 1 1 1 1
 1 1 1 1 1 1 1 1
 11 11 11 11 11 11 11 11
 111 111 111 111

in hex:

0x0e 0x03 0x80 0xe0 0x38 0x00
0x31 0x8c 0x63 0x18 0xc6 0x00
0x40 0x50 0x14 0x05 0x01 0x00
0x80 0x20 0x08 0x02 0x00 0x80
0x40 0x50 0x14 0x05 0x01 0x00
0x31 0x8c 0x63 0x18 0xc6 0x00
0x0e 0x03 0x80 0xe0 0x38 0x00
0x00 0x00 0x00 0x00 0x00 0x00
 */
void Display_Sine_Wave() {
 char sine_wave[7][NUM_OF_COLS] = {
 { 0x0e, 0x31, 0x40, 0x80, 0x40, 0x31, 0x0e, 0x00 },
 { 0x03, 0x8c, 0x50, 0x20, 0x50, 0x8c, 0x03, 0x00 },
 { 0x80, 0x63, 0x14, 0x08, 0x14, 0x63, 0x80, 0x00 },

 40

 { 0xe0, 0x18, 0x05, 0x02, 0x05, 0x18, 0xe0, 0x00 },
 { 0x38, 0xc6, 0x01, 0x00, 0x01, 0xc6, 0x38, 0x00 },
 { 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00 },
 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } };
 Fill_Buffer_With_Panning_Image(7, NUM_OF_COLS, sine_wave, 49, LEFT_TO_RIGHT);
}

/**
 1 1 11 11 1 1
 1 1 1111 1111 1 1
 1111111 111111 111111 1111111
 11 111 11 11 11 11 11 11 11 11 111 11
 11111111111 11111111 11111111 11111111111
 1 1111111 1 1 1 1 1 1 1111111 1
 1 1 1 1 1 11 1 1 11 1 1 1 1 1
 11 11 1 1 1 1 1 1 1 1 11 11

in hex:

10 40 60 06 02 08
08 80 F0 0F 01 10
1F C1 F8 1F 83 F8
37 63 6C 36 C6 EC
7F F3 FC 3F CF FE
5F D0 90 09 0B FA
50 51 68 16 8A 0A
0D 82 94 29 41 B0
 */
void Invade_Space()
{
 char space_invaders[7][NUM_OF_COLS] = {
 { 0x10, 0x08, 0x1F, 0x37, 0x7F, 0x5F, 0x50, 0x0D },
 { 0x40, 0x80, 0xC1, 0x63, 0xF3, 0xD0, 0x51, 0x82 },
 { 0x60, 0xF0, 0xF8, 0x6C, 0xFC, 0x90, 0x68, 0x94 },
 { 0x06, 0x0F, 0x1F, 0x36, 0x3F, 0x09, 0x16, 0x29 },
 { 0x02, 0x01, 0x83, 0xC6, 0xCF, 0x0B, 0x8A, 0x41 },
 { 0x08, 0x10, 0xF8, 0xEC, 0xFE, 0xFA, 0x0A, 0xB0 },
 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
 };
 Fill_Buffer_With_Panning_Image(7, NUM_OF_COLS, space_invaders, 55, RIGHT_TO_LEFT);
}

/**

 1111 111 11111 1111 1 1 1 1
 1 1 1 1 1 1 1 1 1 1 1
 1111 1 1 1 11111 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1
 1 111 1 1111 1 1 1 1 1
 1
11

in hex:

00 00 00 00 00 00
1E EF BD 10 04 01
12 42 21 12 0A 02
1E 42 21 F5 11 04
10 42 21 10 A0 88
10 E2 3D 10 40 50
00 00 00 00 00 20
FF FF FF FF FF FF
 */
void Display_Pitch_Shift()
{
 char pitch_shift_message[7][NUM_OF_COLS] = {
 { 0x00, 0x1E, 0x12, 0x1E, 0x10, 0x10, 0x00, 0xFF },
 { 0x00, 0xEF, 0x42, 0x42, 0x42, 0xE2, 0x00, 0xFF },
 { 0x00, 0xBD, 0x21, 0x21, 0x21, 0x3D, 0x00, 0xFF },
 { 0x00, 0x10, 0x12, 0xF5, 0x10, 0x10, 0x00, 0xFF },
 { 0x00, 0x04, 0x0A, 0x11, 0xA0, 0x40, 0x00, 0xFF },
 { 0x00, 0x01, 0x02, 0x04, 0x88, 0x50, 0x20, 0xFF },
 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
 };
 Fill_Buffer_With_Panning_Image(7, NUM_OF_COLS, pitch_shift_message, 56, RIGHT_TO_LEFT);

 41

}

/**
 1
 1111 1111 1 1 11111 1 1
 1 1 1 1 1 1 1 1 1 1
 1111 1 11111 1 1 1 1 1 1 1
 1 1 1 1 1 1 1 1 1 1
 1111 1111 1 1 11111 1 1 1
 1
11

in hex:

00 00 00 00 00 04
1E F4 5F 00 20 08
10 84 51 10 50 10
1E 87 D1 28 88 20
10 84 51 05 04 40
1E F4 5F 02 02 80
00 00 00 00 01 00
FF FF FF FF FF FF
 */
void Display_Echo()
{
 char echo_message[7][NUM_OF_COLS] = {
 { 0x00, 0x1E, 0x10, 0x1E, 0x10, 0x1E, 0x00, 0xFF },
 { 0x00, 0xF4, 0x84, 0x87, 0x84, 0xF4, 0x00, 0xFF },
 { 0x00, 0x5F, 0x51, 0xD1, 0x51, 0x5F, 0x00, 0xFF },
 { 0x00, 0x00, 0x10, 0x28, 0x05, 0x02, 0x00, 0xFF },
 { 0x00, 0x20, 0x50, 0x88, 0x04, 0x02, 0x01, 0xFF },
 { 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x00, 0xFF },
 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
 };
 Fill_Buffer_With_Panning_Image(7, NUM_OF_COLS, echo_message, 56, RIGHT_TO_LEFT);
}

/**

 1111 111 11111 1111 1 1111 1111 1 1 11111
 1 1 1 1 1 1 1 1 1 1 1 1 1
 1111 1 1 1 1 1111 1 11111 1 1
 1 1 1 1 1 1 1 1 1 1 1 1
 1 111 1 1111 1 1111 1111 1 1 11111

11

in hex:

00 00 00 00 00 00
3D DF 79 1E F4 5F
24 84 42 90 84 51
3C 84 41 1E 87 D1
20 84 42 90 84 51
21 C4 79 1E F4 5F
00 00 00 00 00 00
FF FF FF FF FF FF
 */
void Display_Pitch_Echo()
{
 char pitch_echo_message[7][NUM_OF_COLS] = {
 { 0x00, 0x3D, 0x24, 0x3C, 0x20, 0x21, 0x00, 0xFF },
 { 0x00, 0xDF, 0x84, 0x84, 0x84, 0xC4, 0x00, 0xFF },
 { 0x00, 0x79, 0x42, 0x41, 0x42, 0x79, 0x00, 0xFF },
 { 0x00, 0x1E, 0x90, 0x1E, 0x90, 0x1E, 0x00, 0xFF },
 { 0x00, 0xF4, 0x84, 0x87, 0x84, 0xF4, 0x00, 0xFF },
 { 0x00, 0x5F, 0x51, 0xD1, 0x51, 0x5F, 0x00, 0xFF },
 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
 };
 Fill_Buffer_With_Panning_Image(7, NUM_OF_COLS, pitch_echo_message, 56, RIGHT_TO_LEFT);
}

void Display_Debugging() {
 Display_Sine_Wave();
}

 42

void Display_Mode() {
 Buffer_Clear();
 if (pitch_shift_state == ENABLE_PITCH_SHIFT && echo_state == ENABLE_ECHO) {
 Display_Pitch_Echo();
 } else if (pitch_shift_state) {
 Display_Pitch_Shift();
 } else if (echo_state) {
 Display_Echo();
 } else {
 Invade_Space();
 }
}

/**
 * Clears out echo buffer to AD_Offset so when it's subtracted it becomes 0
 */
inline void Echo_Buffer_Clear()
{
 for (int i = 0; i < ECHO_BUFFER_SIZE; i++)
 {
 EchoBuffer[i] = AD_Offset;
 }

 EchoPointer = 0;
}

/**
 * Appends value to end of echo buffer
 */
inline void Echo_Buffer_Pushback(int16_t value)
{
 EchoBuffer[EchoPointer] = value;

 // increment and wrap around
 EchoPointer++;
 EchoPointer %= ECHO_BUFFER_SIZE;
}

/**
 * Returns value of EchoBuffer[EchoPointer - 1], wrapping the index around to ECHO_BUFFER_SIZE
 */
inline int16_t Echo_Buffer_Pop()
{
 int index = EchoPointer + 1;
 index %= ECHO_BUFFER_SIZE;

 return EchoBuffer[index];
}

void Update_State()
{
 if (button_state_PB11) {
 previous_state_PB11 = 1;
 } else {
 if (previous_state_PB11) {
 //falling edge triggered
 pitch_shift_state = !(pitch_shift_state);

 Display_Mode();
 }
 previous_state_PB11 = 0;
 }

 if (button_state_PC4) {
 previous_state_PC4 = 1;
 } else {
 if (previous_state_PC4) {
 //falling edge triggered
 echo_state = !(echo_state);

 Display_Mode();

 if (echo_state != ENABLE_ECHO)
 {

 43

 ClearEchoBuffer = TRUE;
 }
 else if (ClearEchoBuffer == TRUE)
 {
 // Zero out buffer
 Echo_Buffer_Clear();
 ClearEchoBuffer = FALSE;
 }
 }
 previous_state_PC4 = 0;
 }

 if (button_state_PB1) {
 previous_state_PB1 = 1;
 } else {
 if (previous_state_PB1) {
 //falling edge triggered

 Display_Mode();
 }
 previous_state_PB1 = 0;
 }
}

/**
 * Name: TIM5_IRQHandler
 *
 * Description: Time 5 interrupt service routine call 16,000 times a second.
 * Inputs:
 * None
 *
 * Output:
 * None
 *
 * Process:
 *
 * Send audio signal to D/A converter
 * Sample audio input
 * Do echoing effect
 * Handle windowing state update
 * Update the LED display
 * Detect button press and remove bounce
 * Switch effects mode
 *
 */
void TIM5_IRQHandler(void)
{

 int16_t
 AudioSignal;

 TIMER_DEBUG_SIGNAL_ON;

//
// Check for timer update interrupt
//
 if (__HAL_TIM_GET_FLAG(&Timer5_16Khz, TIM_IT_UPDATE) != RESET)
 {

//
// Check for buffer full status
//
 if(3 == Buffers[ANALOG_OUT_OFFSET].Full)
 {
//
// Output the Audio stream to the D/A converter
//
 DAC -> DHR12R1 = Buffers[ANALOG_OUT_OFFSET].Buf[Buffers[ANALOG_OUT_OFFSET].Head];

//
// Advanced the head pointer and check for end of buffer
//
 Buffers[ANALOG_OUT_OFFSET].Head++; //increment head

 if(Buffers[ANALOG_OUT_OFFSET].Head >= SIZE)

 44

 {
//
// Set the head pointer to the start of the buffer
// Reset the buffer full status
//
 Buffers[ANALOG_OUT_OFFSET].Head = 0;
 Buffers[ANALOG_OUT_OFFSET].Full = 0;
 }
 }

//
// Get values from adc and fill the buffer. when it is full reset the
// head pointer and set status to full then increment ALL buffers
// the & 0x03 is to loop the buffers back to 0 when they get to 4
// the << 3 is to increase the volume due to only being a 12b adc
//

//
// See if the buffer is not full
//
 if(0 == Buffers[ADCPTR].Full)
 {

//
// Take a reading of the analog input pin and remove the offset signal
//
 AudioSignal = HAL_ADC_GetValue(&AudioAdc) - AD_Offset;

//
// If enabled do the echo effect on the raw signal
//
 if (echo_state == ENABLE_ECHO)
 {
 // pop from one index ahead of current EchoPointer
 // (which was the AudioSignal value one second ago)
 Buffers[ADCPTR].Buf[Buffers[ADCPTR].Head] = AudioSignal * (1-ECHO_DAMPING) +
(Echo_Buffer_Pop() - AD_Offset) * ECHO_DAMPING;

 Echo_Buffer_Pushback(AudioSignal); // pushback current AudioSignal
 }
 else
 {

//
// No echo effect. just store the data in the buffer
//

 Buffers[ADCPTR].Buf[Buffers[ADCPTR].Head] = AudioSignal;
 }

//
// Update the head pointer
//
 Buffers[ADCPTR].Head++;

//
// See if the buffer is full
//
 if(Buffers[ADCPTR].Head >= SIZE)
 {

//
// If this statement returns true then the FFT portion of the code has failed.
//
 if ((FALSE == WindowingDone) && (0 != WindowingState))
 {
//
// Fatal error
//
 while (TRUE);
 }

//
// Advance to the next buffer
//

 45

 Buffers[ADCPTR].Head = 0; // Reset the head pointer
 Buffers[ADCPTR].Full = 1; // Buffer Full = 1
 ADCPTR = (ADCPTR + 1) & BUFFERS_MASK;

//
// changes the state for the overlapping windowing system
//
 switch(WindowingState)
 {
 case 0:
 {
 WindowingState = 1;
 WindowingDone = FALSE;
 break;
 }

 case 1:
 {
 WindowingState = 2;
 WindowingDone = FALSE;
 break;
 }

 case 2:
 {
 WindowingState = 3;
 WindowingDone = FALSE;
 break;
 }

 case 3:
 {
 WindowingState = 4;
 WindowingDone = FALSE;
 break;
 }

 case 4:
 {
 WindowingState = 3;
 WindowingDone = FALSE;
 break;
 }

 default:
 {

//
// Invalid state. Should not get here
//
 while (TRUE);
 break;
 }
 }
 }
 }

//
// Start another conversion
//
 HAL_ADC_Start(&AudioAdc);

//
// Clear the timer update interrupt flag
//
 __HAL_TIM_CLEAR_FLAG(&Timer5_16Khz, TIM_IT_UPDATE);

 }
 TIMER_DEBUG_SIGNAL_OFF;
}

/**
 * A FFT table utility function that shifts the buffer elements so buffer[i] = buffer[i-PitchOffset]
 * Starts at start_index, which is the highest index and stops before end_index

 46

 * Clears all elements for last PitchOffset number of elements with 0's.
 */
inline void ShiftBufferElementsUp(float *Buffer, int start_index, int end_index, int PitchOffset)
{
 int PitchShift;

 // Start at highest index, start_index, and grab elements from smaller indices,
 // stopping before writing past end_index
 PitchShift = start_index;
 while (PitchShift >= end_index + PitchOffset)
 {
 Buffer[PitchShift] = Buffer[PitchShift-PitchOffset];
 Buffer[PitchShift+1] = Buffer[(PitchShift+1)-PitchOffset];
 PitchShift -= 2;
 }

 // Clear the remaining (duplicated) portion of the table
 while (PitchShift >= end_index)
 {
 Buffer[PitchShift] = 0;
 PitchShift--;
 }
}

/**
 * A FFT table utility function that shifts the buffer elements so buffer[i] = buffer[i+PitchOffset]
 * Starts at start_index, which is the lowest index and stops before end_index
 * Clears all elements for last PitchOffset number of elements with 0's.
 */
inline void ShiftBufferElementsDown (float *Buffer, int start_index, int end_index, int PitchOffset)
{
 int PitchShift;

 // Start at lowest index, start_index, and grab elements from higher indices,
 // stopping before writing past end_index
 PitchShift = start_index;
 while (PitchShift < (end_index - PitchOffset))
 {
 Buffer[PitchShift] = Buffer[PitchShift+PitchOffset];
 Buffer[PitchShift+1] = Buffer[(PitchShift+1)+PitchOffset];
 PitchShift += 2;
 }

 // Clear the remaining (duplicated) portion of the table
 while (PitchShift < end_index)
 {
 Buffer[PitchShift] = 0;
 PitchShift++;
 }
}

void PitchShift(float *Buffer)
{
//
// Pitch Shift by 32 bins in the FFT table
// Each bin contains one complex number comprised of one real and one imaginary floating point number
//
 int PitchOffset = (pitch_shift_offset >= 0)? pitch_shift_offset * 2: pitch_shift_offset * -2;
 //between -32 and 32, take absolute value

 // The FFT table is 2048 in length
 const int FFT_table_size = 2048;

 // The lower half, the indices [0, 1024), corresponds to positive frequencies
 // The upper half, the indices [1024, 2048), corresponds to negative frequencies

 // Shift frequencies up effect
 if (pitch_shift_offset > 0)
 {
 // Shift the lower half of the FFT table up
 ShiftBufferElementsUp(Buffer, (FFT_table_size / 2 - 2), 0, PitchOffset);

 // Shift the upper half of the FFT table down
 ShiftBufferElementsDown(Buffer, FFT_table_size / 2, FFT_table_size, PitchOffset);
 }

 47

 // Shift frequencies down effect
 if (pitch_shift_offset < 0)
 {
 // Shift the lower half of the FFT table down
 ShiftBufferElementsDown(Buffer, 0, FFT_table_size / 2, PitchOffset);

 // Shift the upper half of the FFT table up
 ShiftBufferElementsUp(Buffer, (FFT_table_size - 2), FFT_table_size / 2, PitchOffset);
 }
}

int ConvertPitchShiftOffset(void)
{
 int
 ADCResult;

//
// Start a conversion
//
 HAL_ADC_Start(&PitchShiftOffsetAdc);

//
// Wait for end of conversion
//
 HAL_ADC_PollForConversion(&PitchShiftOffsetAdc, HAL_MAX_DELAY);

//
// Get the 8 bit result
//
 ADCResult = HAL_ADC_GetValue(&PitchShiftOffsetAdc);

 return(ADCResult);
}

int
main(int argc, char* argv[])
{
 // At this stage the system clock should have already been configured
 // at high speed.

 unsigned int loop;

 HAL_Init();// initializing HAL drivers

 __GPIOA_CLK_ENABLE(); // enabling clock for port A
 __GPIOB_CLK_ENABLE(); // enabling clock for port B
 __GPIOC_CLK_ENABLE(); // enabling clock for port C
 __GPIOD_CLK_ENABLE(); // enabling clock for port D
 __GPIOE_CLK_ENABLE(); // enabling clock for port E

 for(loop = 0; loop < NUMBER_OF_BUFFERS; loop++)
 {
 Buffers[loop].Head = 0;
 Buffers[loop].Full = 0;
 memset((_PTR)&Buffers[loop].Buf, 0, sizeof(Buffers[loop].Buf));
 }

 InitSystemPeripherals();

 Configure_Ports();
 Configure_LED_Display();

 Display_All_Off();

// Display_Scan_Across_LEDs();

 Display_Sine_Wave();

 // Start timers LAST to ensure that no interrupts based on timers will
 // trigger before initialization of board is complete
 ConfigureTimers();

 HAL_GPIO_WritePin(GPIOD, GPIO_PIN_12, 1); // Signal initialization is complete on on-board LED

 48

 int previous_state_PA0 = 0;

//
// Take an Offset reading to remove the DC offset from the analog reading
// Source PC2 (ADC_CHANNEL_12)
//
 AD_Offset = ConvertReference();

 // Infinite loop
 while (1)
 {
 if (button_state_PA0) {
 previous_state_PA0 = 1;
 } else {
 if (previous_state_PA0) {
 //falling edge triggered
 Buffer_Clear();
 Display_Debugging();
 }
 previous_state_PA0 = 0;
 }

 Update_State();

 WindowingFFT();
 }
}

void TIM3_IRQHandler() //Timer3 interrupt function
{
 __HAL_TIM_CLEAR_FLAG(&DisplayTimer, TIM_IT_UPDATE);//clear flag status

 // This interrupt service routine is timer driven at 200 Hz
 // If the current reading is the same as the reading during the previous
 // interrupt, then the button state is reliable and we feed this to the rest
 // of the system

 // Check on board button
 if (HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_0)) {
 // button is pressed.
 if (previous_button_reading_PA0) {
 // if this is consistent with previous reading, set state to 1
 button_state_PA0 = 1;
 }
 //update previous reading to current reading
 previous_button_reading_PA0 = 1;
 } else {
 // button is not pressed
 if (!previous_button_reading_PA0) {
 // if this is consistent with previous reading, set state to 0
 button_state_PA0 = 0;
 }
 //update previous reading to current reading
 previous_button_reading_PA0 = 0;
 }

 // Check PC1 button
 if (HAL_GPIO_ReadPin(GPIOB, BUTTON_1)) {
 // button is pressed.
 if (previous_button_reading_PB11) {
 // if this is consistent with previous reading, set state to 1
 button_state_PB11 = 1;
 }
 //update previous reading to current reading
 previous_button_reading_PB11 = 1;
 } else {
 // button is not pressed
 if (!previous_button_reading_PB11) {
 // if this is consistent with previous reading, set state to 0
 button_state_PB11 = 0;
 }
 //update previous reading to current reading
 previous_button_reading_PB11 = 0;
 }

 49

 // Check PC4 button
 if (HAL_GPIO_ReadPin(GPIOC, BUTTON_2)) {
 // button is pressed.
 if (previous_button_reading_PC4) {
 // if this is consistent with previous reading, set state to 1
 button_state_PC4 = 1;
 }
 //update previous reading to current reading
 previous_button_reading_PC4 = 1;
 } else {
 // button is not pressed
 if (!previous_button_reading_PC4) {
 // if this is consistent with previous reading, set state to 0
 button_state_PC4 = 0;
 }
 //update previous reading to current reading
 previous_button_reading_PC4 = 0;
 }

 // Check PB1 button
 if (HAL_GPIO_ReadPin(GPIOB, BUTTON_3)) {
 // button is pressed.
 if (previous_button_reading_PB1) {
 // if this is consistent with previous reading, set state to 1
 button_state_PB1 = 1;
 }
 //update previous reading to current reading
 previous_button_reading_PB1 = 1;
 } else {
 // button is not pressed
 if (!previous_button_reading_PB1) {
 // if this is consistent with previous reading, set state to 0
 button_state_PB1 = 0;
 }
 //update previous reading to current reading
 previous_button_reading_PB1 = 0;
 }

 // Check potentiometer of pitch_shift_offset if ENABLE_PITCH_SHIFT
 if (pitch_shift_state == ENABLE_PITCH_SHIFT) {
 int pitch_shift_offset_raw = ConvertPitchShiftOffset(); // 0 to 255

 pitch_shift_offset_raw = 64.0/255 * pitch_shift_offset_raw; // reduce range to 0 to 64
 pitch_shift_offset -= 32; // shift range to -32 to 32;
 } else {
 pitch_shift_offset = 0;
 }
}

/**
 * WARNING: The LED array MUST be advanced from
 * increasing rows and columns
 */
void TIM4_IRQHandler() //Timer4 interrupt function
{
 __HAL_TIM_CLEAR_FLAG(&LEDDisplayTimer, TIM_IT_UPDATE); //clear flag status

 if (current_row >= NUM_OF_COLS) {
 // at end of rows, need to advance to next column

 current_col++; //advance to next column
 current_row = 0; //restart row

 if (current_col >= NUM_OF_COLS) {
 // if the image has been displayed more than the number of times required
 // to achieve the desired REFRESH_RATE, pull the next image from buffer
 current_frame_number++;
 if (current_frame_number > times_to_repeat_frame) {
 Buffer_Pop(current_frame);

 current_frame_number = 0; //restart counting
 }
 current_col = 0; //restart column
 }

 50

 // columns only need to be updated when the column number updates
 // for each case, turn off previous column, turn on current column
 switch(current_col) {
 case 0:
 Write_Col_7(GPIO_PIN_RESET);
 Write_Col_0(GPIO_PIN_SET);
 break;
 case 1:
 Write_Col_0(GPIO_PIN_RESET);
 Write_Col_1(GPIO_PIN_SET);
 break;
 case 2:
 Write_Col_1(GPIO_PIN_RESET);
 Write_Col_2(GPIO_PIN_SET);
 break;
 case 3:
 Write_Col_2(GPIO_PIN_RESET);
 Write_Col_3(GPIO_PIN_SET);
 break;
 case 4:
 Write_Col_3(GPIO_PIN_RESET);
 Write_Col_4(GPIO_PIN_SET);
 break;
 case 5:
 Write_Col_4(GPIO_PIN_RESET);
 Write_Col_5(GPIO_PIN_SET);
 break;
 case 6:
 Write_Col_5(GPIO_PIN_RESET);
 Write_Col_6(GPIO_PIN_SET);
 break;
 case 7:
 Write_Col_6(GPIO_PIN_RESET);
 Write_Col_7(GPIO_PIN_SET);
 break;
 default:
 //Should never enter this
 trace_printf("Invalid state in switch(current_col)");
 break;
 }
 }

 char enable_row = current_frame[current_col] & 1 << current_row;
 // for each case, turn off previous row, turn on current row
 switch(current_row) {
 case 0:
 if (enable_row) { Write_Row_0(GPIO_PIN_SET); }
 Write_Row_7(GPIO_PIN_RESET);
 break;
 case 1:
 if (enable_row) { Write_Row_1(GPIO_PIN_SET); }
 Write_Row_0(GPIO_PIN_RESET);
 break;
 case 2:
 if (enable_row) { Write_Row_2(GPIO_PIN_SET); }
 Write_Row_1(GPIO_PIN_RESET);
 break;
 case 3:
 if (enable_row) { Write_Row_3(GPIO_PIN_SET); }
 Write_Row_2(GPIO_PIN_RESET);
 break;
 case 4:
 if (enable_row) { Write_Row_4(GPIO_PIN_SET); }
 Write_Row_3(GPIO_PIN_RESET);
 break;
 case 5:
 if (enable_row) { Write_Row_5(GPIO_PIN_SET); }
 Write_Row_4(GPIO_PIN_RESET);
 break;
 case 6:
 if (enable_row) { Write_Row_6(GPIO_PIN_SET); }
 Write_Row_5(GPIO_PIN_RESET);
 break;
 case 7:
 if (enable_row) { Write_Row_7(GPIO_PIN_SET); }

 51

 Write_Row_6(GPIO_PIN_RESET);
 break;
 default:
 //Should never enter this
 trace_printf("Invalid state in switch(current_row)");
 break;
 }

 current_row++; //move to next row
}

void TIM2_IRQHandler() //Timer2 interrupt function
{
 __HAL_TIM_CLEAR_FLAG(&FrequencySpectrumGeneratorTimer, TIM_IT_UPDATE);//clear flag status

 // This interrupt service routine is timer driven at 50 Hz

 // The FFT table is 2048 in length
 const int FFT_table_size = 2048;

 // Look at lower half of FFT table where higher indices correspond to higher frequencies
 // These indices are [0, 1023].
 // Each complex number takes up two elements in the float array. (One for real, one for imaginary)
 // We break 1024 elements, or 512 bins, into 8 groups, one for each column of the LED matrix
 // This means we investigate 512 / 8, or 64 bins, for each group
 // TODO Since octaves are multiplicative, ideally we investigate in powers of 2
 // For each bin, we take max(real, imaginary) and add to the float. We are avoiding taking
 // the magnitude using sqrt(real^2 + imaginary^2) since sqrt is processor intensive and
 // we don't need the accuracy. max(real,imaginary) is an adequate approximation since
 // the max will dominate the square root anyway

 // group_sum / group_num_bins gives the average sort-of-magnitude in that group
 // average sort-of-magnitude / normalizing_constant brings the magnitude to a normalized_range
 // normalized_range * 8 gives the number of LEDs to light up in the column

 float group_sum = 0; // holds the accumulated sum for each group, used to average
 const int group_num_bins = 64; // 64 bins per group, which is converted to a column on the display

 const float normalizing_constant = 100; // divide the average by this, to normalize and convert to
bars

 int height_of_bar = 0; // the height to make the frequency bar
 char frequency_spectrum_frame[NUM_OF_COLS]; // to hold the frame being generated

 int bins_analyzed = 0; // the number of bins already analyzed in the group
 int current_col = 0; // tracking which column we are in

 if (Buffer_Is_Empty())
 {
 // Only generate the frequency spectrum frame if nothing is being displayed on LED display

 for (int i = 0; i < FFT_table_size / 2; i += 2)
 {
 // Add max(procBuf[i], procBuf[i+1]) to group_sum
 group_sum += (procBuf[i] > procBuf[i+1])? procBuf[i]: procBuf[i+1];
 bins_analyzed++;

 // if we have already analyzed the group, create a bar
 if (bins_analyzed >= group_num_bins * 2)
 {
 group_sum /= group_num_bins; //average magnitude

 group_sum /= normalizing_constant; // normalize

 height_of_bar = (int) (group_sum * 8); // calculate hight of bar

 Create_Column_With_Height(frequency_spectrum_frame, current_col, height_of_bar);
 // reset temporary variables
 bins_analyzed = 0;
 group_sum = 0;
 height_of_bar = 0;

 // increment to next column
 current_col++;
 }

 52

 }
 Buffer_Pushback(frequency_spectrum_frame); // add it to buffer
 }
}

void InitSystemPeripherals(void)
{

 ADC_ChannelConfTypeDef
 sConfig;

//
// Enable device clocks TIMER and GPIO port E
//
 __HAL_RCC_TIM5_CLK_ENABLE();
 __HAL_RCC_GPIOE_CLK_ENABLE();
 __HAL_RCC_DAC_CLK_ENABLE();

//
// Enable ADC3 and GPIO port C clocks
//
 __HAL_RCC_ADC1_CLK_ENABLE();
 __HAL_RCC_ADC2_CLK_ENABLE();
 __HAL_RCC_ADC3_CLK_ENABLE();
 __HAL_RCC_GPIOC_CLK_ENABLE();
 __HAL_RCC_GPIOA_CLK_ENABLE();
 __HAL_RCC_GPIOD_CLK_ENABLE();
 __HAL_RCC_GPIOB_CLK_ENABLE();

//
// Enable GPIO Port E15 as an output (used for timing with scope)
//

// GpioInitStructure.Pin = GPIO_PIN_15 | GPIO_PIN_13;
// GpioInitStructure.Mode = GPIO_MODE_OUTPUT_PP;
// GpioInitStructure.Speed = GPIO_SPEED_FREQ_MEDIUM;
// GpioInitStructure.Pull = GPIO_PULLUP;
// GpioInitStructure.Alternate = 0;
// HAL_GPIO_Init(GPIOD, &GpioInitStructure);

//
// Enable GPIO port A1 as an analog output
//
 GpioInitStructure.Pin = GPIO_PIN_4;
 GpioInitStructure.Mode = GPIO_MODE_ANALOG;
 GpioInitStructure.Speed = GPIO_SPEED_FREQ_MEDIUM;
 GpioInitStructure.Pull = GPIO_NOPULL;
 GpioInitStructure.Alternate = 0;
 HAL_GPIO_Init(GPIOA, &GpioInitStructure);

 EnableAudioCodecPassThru();

//
// Configure DAC channel 1
//
 AudioDac.Instance = DAC;

 HAL_DAC_Init(&AudioDac);

 DacInitStructure.DAC_Trigger = DAC_TRIGGER_NONE;
 DacInitStructure.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE;
 HAL_DAC_ConfigChannel(&AudioDac, &DacInitStructure ,DAC_CHANNEL_1);

//
// Enable DAC channel 1
//
//
 HAL_DAC_Start(&AudioDac, DAC_CHANNEL_1);

//
// Configure A/D converter channel 3
//

//
// Enable GPIO port C1, C2 and C5 as an analog input

 53

//
 GpioInitStructure.Pin = GPIO_PIN_2 | GPIO_PIN_5; //GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_5;
 GpioInitStructure.Mode = GPIO_MODE_ANALOG;
 GpioInitStructure.Speed = GPIO_SPEED_FREQ_MEDIUM;
 GpioInitStructure.Pull = GPIO_NOPULL;
 GpioInitStructure.Alternate = 0;
 HAL_GPIO_Init(GPIOC, &GpioInitStructure);

//
// Configure audio A/D (ADC2) for the audio stream
//

 AudioAdc.Instance = ADC2;
 AudioAdc.Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_DIV2;
 AudioAdc.Init.Resolution = ADC_RESOLUTION_12B;
 AudioAdc.Init.ScanConvMode = DISABLE;
 AudioAdc.Init.ContinuousConvMode = DISABLE;
 AudioAdc.Init.DiscontinuousConvMode = DISABLE;
 AudioAdc.Init.NbrOfDiscConversion = 0;
 AudioAdc.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1;
 AudioAdc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
 AudioAdc.Init.NbrOfConversion = 1;
 AudioAdc.Init.DataAlign = ADC_DATAALIGN_RIGHT;
 AudioAdc.Init.DMAContinuousRequests = DISABLE;
 AudioAdc.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
 HAL_ADC_Init(&AudioAdc);

//
// Select PORTC pin 5 (ADC_CHANNEL_15) for the audio stream
//
 sConfig.Channel = ADC_CHANNEL_15;
 sConfig.Rank = 1;
 sConfig.SamplingTime = ADC_SAMPLETIME_112CYCLES;
 sConfig.Offset = 0;

 HAL_ADC_ConfigChannel(&AudioAdc, &sConfig);
 HAL_ADC_Start(&AudioAdc);

//
// Configure level shifting reference A/D (ADC1)
//
 ReferenceAdc.Instance = ADC1;
 ReferenceAdc.Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_DIV2;
 ReferenceAdc.Init.Resolution = ADC_RESOLUTION_12B;
 ReferenceAdc.Init.ScanConvMode = DISABLE;
 ReferenceAdc.Init.ContinuousConvMode = DISABLE;
 ReferenceAdc.Init.DiscontinuousConvMode = DISABLE;
 ReferenceAdc.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1;
 ReferenceAdc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
 ReferenceAdc.Init.NbrOfConversion = 1;
 ReferenceAdc.Init.NbrOfDiscConversion = 0;
 ReferenceAdc.Init.DataAlign = ADC_DATAALIGN_RIGHT;
 ReferenceAdc.Init.DMAContinuousRequests = DISABLE;
 ReferenceAdc.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
 HAL_ADC_Init(&ReferenceAdc);
 HAL_ADC_Start(&ReferenceAdc);

 GpioInitStructure.Pin = GPIO_PIN_1;
 GpioInitStructure.Mode = GPIO_MODE_ANALOG;
 GpioInitStructure.Speed = GPIO_SPEED_FREQ_MEDIUM;
 GpioInitStructure.Pull = GPIO_NOPULL;
 GpioInitStructure.Alternate = 0;
 HAL_GPIO_Init(GPIOA, &GpioInitStructure);

//
// Configure pitch shift offset A/D (ADC3)
//
 PitchShiftOffsetAdc.Instance = ADC3;
 PitchShiftOffsetAdc.Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_DIV2;
 PitchShiftOffsetAdc.Init.Resolution = ADC_RESOLUTION_8B;
 PitchShiftOffsetAdc.Init.ScanConvMode = DISABLE;
 PitchShiftOffsetAdc.Init.ContinuousConvMode = DISABLE;
 PitchShiftOffsetAdc.Init.DiscontinuousConvMode = DISABLE;
 PitchShiftOffsetAdc.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1;
 PitchShiftOffsetAdc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;

 54

 PitchShiftOffsetAdc.Init.NbrOfConversion = 1;
 PitchShiftOffsetAdc.Init.NbrOfDiscConversion = 0;
 PitchShiftOffsetAdc.Init.DataAlign = ADC_DATAALIGN_RIGHT;
 PitchShiftOffsetAdc.Init.DMAContinuousRequests = DISABLE;
 PitchShiftOffsetAdc.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
 HAL_ADC_Init(&PitchShiftOffsetAdc);
 HAL_ADC_Start(&PitchShiftOffsetAdc);

//
// Select PORTA pin 1 (ADC_CHANNEL_1) for the pitch offset
//
 sConfig.Channel = ADC_CHANNEL_1;
 sConfig.Rank = 1;
 sConfig.SamplingTime = ADC_SAMPLETIME_112CYCLES;
 sConfig.Offset = 0;

 HAL_ADC_ConfigChannel(&PitchShiftOffsetAdc, &sConfig);
 HAL_ADC_Start(&PitchShiftOffsetAdc);

//
// Initialize timer to 16Khz
//
 Timer5_16Khz.Instance = TIM5;
 Timer5_16Khz.Init.CounterMode = TIM_COUNTERMODE_UP;
 Timer5_16Khz.Init.Period = 250;
 Timer5_16Khz.Init.Prescaler = 20;
 Timer5_16Khz.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
 HAL_TIM_Base_Init(&Timer5_16Khz);

//
// Enable the timer interrupt
//
 HAL_NVIC_SetPriority(TIM5_IRQn, 0, 0);
 HAL_NVIC_EnableIRQ(TIM5_IRQn);

 __HAL_TIM_ENABLE_IT(&Timer5_16Khz, TIM_IT_UPDATE);

//
// Enable timer 5 update interrupt
//
 __HAL_TIM_ENABLE(&Timer5_16Khz);

}

int ConvertAudio(void)
{
 int
 ADCResult;

//
// Start a conversion
//
 HAL_ADC_Start(&AudioAdc);

//
// Wait for end of conversion
//
 HAL_ADC_PollForConversion(&AudioAdc, HAL_MAX_DELAY);

//
// Get the 12 bit result
//
 ADCResult = HAL_ADC_GetValue(&AudioAdc);

 return(ADCResult);
}

int ConvertReference(void)
{
 int
 ADCResult;

 ADC_ChannelConfTypeDef sConfig;

//

 55

// Select the channel to convert and start the conversion
//
 sConfig.Channel = ADC_CHANNEL_12;
 sConfig.Rank = 1;
 sConfig.SamplingTime = ADC_SAMPLETIME_112CYCLES;
 sConfig.Offset = 0;

 HAL_ADC_ConfigChannel(&ReferenceAdc, &sConfig);

//
// Start a conversion
//
 HAL_ADC_Start(&ReferenceAdc);

//
// Wait for end of conversion
//
 HAL_ADC_PollForConversion(&ReferenceAdc, HAL_MAX_DELAY);

//
// Get the 12 bit result
//
 ADCResult = HAL_ADC_GetValue(&ReferenceAdc);

 return(ADCResult);
}

#pragma GCC diagnostic pop

// --

